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Zusammenfassung

Ein digitales Signaturverfahren, oft auch nur digitale Signatur genannt, ist ein wichtiger und
nicht mehr wegzudenkender Baustein in der Kryptographie. Es stellt das digitale Äquivalent zur
klassischen handschriftlichen Signatur dar und liefert darüber hinaus noch weitere wünschens-
werte Eigenschaften.
Mit solch einem Verfahren kann man einen öffentlichen und einen geheimen Schlüssel erzeugen.

Der geheime Schlüssel dient zur Erstellung von Signaturen zu beliebigen Nachrichten. Diese
können mit Hilfe des öffentlichen Schlüssels von jedem überprüft und somit verifiziert werden.
Desweiteren fordert man, dass das Verfahren „sicher“ sein soll. Dazu gibt es in der Litera-

tur viele verschiedene Begriffe und Definitionen, je nachdem welche konkreten Vorstellungen
beziehungsweise Anwendungsgebiete man hat. Vereinfacht gesagt, sollte es für einen Angreifer
ohne Kenntnis des geheimen Schlüssels nicht möglich sein eine gültige Signatur zu einer beliebi-
gen Nachricht zu fälschen. Ein sicheres Signaturverfahren kann somit verwendet werden um die
folgenden Ziele zu realisieren:

Authentizität: Jeder Empfänger kann überprüfen, ob die Nachricht von einem bestimmten Ab-
sender kommt.

Integrität der Nachricht: Jeder Empfänger kann feststellen, ob die Nachricht bei der Übertra-
gung verändert wurde.

Nicht-Abstreitbarkeit: Der Absender kann nicht abstreiten die Signatur erstellt zu haben.

Damit ist der Einsatz von digitalen Signaturen für viele Anwendungen in der Praxis sehr wichtig.
Überall da, wo es wichtig ist die Authentizität und Integrität einer Nachricht sicherzustellen, wie
beim elektronischen Zahlungsverkehr, Softwareupdates oder digitalen Zertifikaten im Internet,
kommen digitale Signaturen zum Einsatz.
Aber auch für die kryptographische Theorie sind digitale Signaturen ein unverzichtbares Hilfs-

mittel. Sie ermöglichen zum Beispiel die Konstruktion von stark sicheren Verschlüsselungsver-
fahren.
Eigener Beitrag. Wie bereits erwähnt gibt es unterschiedliche Sicherheitsbegriffe im Rahmen
von digitalen Signaturen. Ein Standardbegriff von Sicherheit, der eine recht starke Form von
Sicherheit beschreibt, wird in dieser Arbeit näher betrachtet. Die Konstruktion von Verfahren,
die diese Form der Sicherheit erfüllen, ist ein vielschichtiges Forschungsthema. Dazu existieren
unterschiedliche Strategien in unterschiedlichen Modellen. In dieser Arbeit konzentrieren wir uns
daher auf folgende Punkte.

• Ausgehend von vergleichsweise realistischen Annahmen konstruieren wir ein stark sicheres
Signaturverfahren im sogenannten Standardmodell, welches das realistischste Modell für
Sicherheitsbeweise darstellt. Unser Verfahren ist das bis dahin effizienteste Verfahren in
seiner Kategorie. Es erstellt sehr kurze Signaturen und verwendet kurze Schlüssel, beides
unverzichtbar für die Praxis.

• Wir verbessern die Qualität eines Sicherheitsbeweises von einem verwandten Baustein, der
identitätsbasierten Verschlüsselung. Dies hat unter anderem Auswirkung auf dessen Effizi-
enz bezüglich der empfohlenen Schlüssellängen für den sicheren Einsatz in der Praxis. Da
jedes identitätsbasierte Verschlüsselungsverfahren generisch in ein digitales Signaturverfah-
ren umgewandelt werden kann ist dies auch im Kontext digitaler Signaturen interessant.



• Wir betrachten Varianten von digitalen Signaturen mit zusätzlichen Eigenschaften, soge-
nannte aggregierbare Signaturverfahren. Diese ermöglichen es mehrere Signaturen effizient
zu einer zusammenzufassen und dabei trotzdem alle zugehörigen verschiedenen Nachrich-
ten zu verifizieren. Wir geben eine neue Konstruktion von solch einem aggregierbaren
Signaturverfahren an, bei der das Verfahren eine Liste aller korrekt signierten Nachrichten
in einer aggregierten Signatur ausgibt anstatt, wie bisher üblich, nur gültig oder ungültig.
Wenn eine aggregierte Signatur aus vielen Einzelsignaturen besteht wird somit das erneu-
te Berechnen und eventuell erneute Senden hinfällig und dadurch der Aufwand erheblich
reduziert.



Abstract

A digital signature scheme, or short digital signature, is an important and indispensable cryp-
tographic building block. It is the digital equivalent of the classical handwritten signature and
provides even more desirable features.
A digital signature scheme generates a public key and a secret key. The secret key is used to

create signatures for arbitrary messages. This can be publicly verified by anyone who is aware
of the public key.
Furthermore one requires that the scheme should be “secure”. There are many different terms

and definitions in the literature, depending on the application. Informally, it should not be
possible for an adversary to forge a valid signature of an arbitrary message without knowing
the secret key. A secure digital signature scheme can therefore be used to achieve the following
security goals:

Authentication: Each receiver can verify whether the message comes from a specific sender.

Data Integrity: Each receiver can determine whether the message was modified during trans-
mission.

Non-Repudiation: The sender cannot deny having created the signature.

Thus the use of digital signatures is very important for many applications in practice. Wherever
it is important to ensure the authenticity and integrity of a message, such as in electronic
payment transactions, software updates or digital certificates on the Internet, digital signatures
are used.
Digital signatures are also a very important tool for cryptographic theory. For example, they

enable the construction of strongly secure encryption schemes.
Own Contribution. As already mentioned, there are different security notions in the context
of digital signatures. A standard notion of security, which describes a rather strong form of
security, is examined in detail in this work. The construction of digital signature schemes that
fulfill this form of security is a rich research topic. Different strategies exist in different models.
In this thesis we therefore focus on the following points.

• Based on comparatively realistic assumptions, we construct a strongly secure digital signa-
ture scheme in the so-called standard model, which is the most realistic model for security
proofs. Our scheme was the most efficient digital signature scheme in its category at that
time. The scheme creates very short signatures and uses short keys, both essential for
practical use.

• We improve the quality of a security proof of a related building block, called identity-
based encryption, which allow us, e.g., to reduce the recommended key length for secure
use in practice. Any identity-based encryption scheme can be generically transformed into
a digital signature scheme. Thus our improvements are also interesting regarding digital
signatures.

• We consider variants of digital signatures with additional features, so-called aggregate
signature schemes. These allow to efficiently combine several signatures into one and
still verify all associated messages. We improve verification of aggregate signatures by



constructing a new scheme, where the verification algorithm outputs a list of all correctly
signed messages in an aggregate signature instead of only valid or invalid. If an aggregated
signature consists of many individual signatures, re-computations and possibly re-sending
of all individual signatures becomes obsolete, which reduces a lot of costs.



1 Introduction

Cryptography

Cryptography literally means “secret writing” and is originally the theory of encrypting inform-
ation or messages. This science started thousands of years ago and is more important than
ever nowadays. It is impossible to imagine life, especially online communication, without cryp-
tography. Cryptography ensures that two parties can securely communicate over an insecure
channel. By now, cryptography is so much more than just encrypting messages and has a wide
range of applications. The research focuses for instance on constructing and designing new secure
cryptographic primitives such as digital signature schemes, identity-based encryption schemes,
cryptographic hash functions and many more cryptographic building blocks. It also concentrates
on improving the security proofs and the efficiency of these cryptographic primitives.

Focus of this Work

In this thesis, we primarily concentrate on digital signature schemes. We are interested in
constructing secure schemes and how to improve them regarding security and efficiency. We
show how to instantiate strong secure digital signature schemes in chapter 3 and aggregate
signature schemes which satisfy an additional property in chapter 4. The efficiency of security
proofs of a related cryptographic primitive, namely identity-based encryption, is discussed in
chapter 5.
But first, for a better understanding of what we mean by security and efficiency, we introduce

some general terms and concepts of cryptography.

Concepts of Cryptography

In cryptography, the following terms and concepts are important for a better understanding of
security and how a security proof works.
Security. Depending on the application of a cryptographic scheme, there are many different
properties a scheme should fullfill, but common to all and most important is to be secure. It is
not easy to give a general definition of security since, e.g., an encryption scheme has different
security requirements than a digital signature scheme. But even for the same class of scheme,
depending on the area of application and other desired features, the requirements can vary
strongly.
This has led to many different security notions in the literature and we specify this in the case

of digital signature schemes in more detail below. At the moment, just keep in mind that there
are many notions of security and we are interested in the way we can prove a scheme secure,
i.e., that we can show the scheme satisfies a specific security notion.
Reductions. The security of cryptographic schemes usually has to be based on complexity
theoretic intractability assumptions, i.e., assumptions stating that it is hard to solve a given
computational problem. A computational problem can be seen as an infinite collection of in-
stances and is said to be hard if computing a solution of a random instance cannot be done
in polynomial time with significant probability. Here, time is given as a function in a security
parameter which is given to all parties of the system, i.e., polynomial time means that the time
required is polynomial in this security parameter.

1
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This need for assumptions is due to the fact that the mere existence of most cryptographic
building blocks already implies P 6= NP . For instance a one-way function, which is a very basic
cryptographic primitive, only exists if P 6= NP . Since we are unable to prove this inequality
given current proof techniques, we can only make assumptions on anything beyond this. Such
assumptions that are used in cryptography are derived from number theoretic problems which
withstood cryptanalytic attacks for many years. A complexity theoretic intractability assump-
tion A is said to be stronger than a complexity theoretic intractability assumption B, if A implies
B (and the converse is false or not known). That means, even if A is false, B can still be true.
In cryptography, a standard assumption (or simple assumption) is a well-studied complexity

theoretic intractability assumption, where the problem instances only depend on the security
parameter and are assumed to be solved in polynomial time with at most negligible probability
(where a negligible function converges faster to zero than the inverse of any polynomial). Since
standard assumptions are comparatively weak, a security proof based on a standard assumption
is preferred over a proof under a stronger, more complex and maybe even not well-studied
assumption.
A reduction is a method for proving security of a cryptographic scheme by reducing the

security of the scheme to the hardness of solving a computational problem (or to the security
of an underlying cryptographic building block). In other words, if there is an algorithm (or
adversary) that breaks the security of the respective cryptographic scheme with non-negligible
probability, it can be used to construct an algorithm (or problem solver) that efficiently solves
an instance of the computational problem. This contradicts the hardness of the computational
problem and the conclusion is that there is no successful adversary on the scheme.
Standard Model. The standard model is a computational model in cryptography where an
adversary is only limited by the amount of computation time. Security proofs in the standard
model are desirable, but often difficult to achieve. Therefore, other security models were in-
troduced, where cryptographic primitives are replaced with idealized versions. For example the
best-known idealized security model is the random oracle model [BR93]. In the random oracle
model a cryptographic hash function of the scheme is idealized as a random function, called the
random oracle. One drawback of this model is that there exists artificially constructed schemes
which can be proven secure in the random oracle model but are insecure with any concrete
instantiation of the hash function in practice [CGH98]. Since in this work all proofs are given
in the standard model, we do not give any further details. We only want to emphasize again,
that a proof in the standard model is always preferred to a proof in any other model.
Cryptographic schemes which can be proven secure using only complexity theoretic intract-

ability assumptions without using any idealization are said to be proven secure in the standard
model.
Tight Security. A tight security reduction means, that the security of the scheme is very
closely related to the hardness of a computational problem, i.e., in the security reduction the
success probability and running time of the problem solver is about the same as the success
probability and running time of the adversary attacking the scheme. In the most cases, this is
not self-evident, since the problem solver has to “use” the adversary for his purposes and maybe
has to guess, with probability 1

L , for which instance of his problem the adversary is useful. This
security loss L leads to the fact that the success probability of the problem solver is much lower
than the success probability of the adversary on the scheme. In order to guarantee the same
security for the scheme as the computational problem is assumed to be hard one has to adjust
the parameters of the scheme, which for instance leads to longer keys. In most applications this
is not desirable and a tight security reduction, where L is a constant factor, allows to choose the
key length independently of, e.g., the number of expected users and is therefore preferred.

2



1.1 Digital Signature Schemes

1.1 Digital Signature Schemes

A digital signature scheme (short: digital signature), roughly speaking, enables the process
of signing and verifying contracts or documents in the digital world, as done in the classical
sense via handwritten signatures. Digital signatures are a very powerful cryptographic tool and
provide much stronger security guarantees than classical handwritten signatures.
A good introduction to this topic, which we are following here to describe digital signature

schemes, is given in [Kat10] and [Jag12]. Finally, we will see why it is difficult to construct
strongly secure digital signature schemes, especially in the standard model under standard as-
sumptions.
Digital Signatures and Applications. Informally, a digital signature scheme is used to
generate a signature for some digital data or message, usually an arbitrary bit-string, which
can be verified by anyone. It consists of three algorithms, one for key generation, signing and
verification, respectively. A signer generates a key pair (pk , sk), via the key generation algorithm
offered by the scheme, where pk is publicly available for any receiver and denoted as the signer’s
public key, and sk is the signer’s corresponding secret key or signing key, which is kept secret.
A signature is then generated by using the signing algorithm of the scheme on input the secret
key and the message. To verify a signature of a message, i.e., to check if the signature is a
valid signature for this message, any receiver can use the verification algorithm of the scheme on
input the public key together with the signature and the corresponding message. The verification
algorithm outputs either 1 (i.e., valid) or 0 (i.e., invalid).
In the following we mention some important security goals that digital signatures enable to

achieve.

Authentication: The receiver can verify if the signature of a message really originates from a
specific sender, since a message can only be verified correctly respective a public key if the
signature was created with the corresponding secret key.

Data Integrity : The receiver can be sure that the message has not been changed during trans-
port, neither maliciously nor due to transmission errors, otherwise verification would out-
put invalid.

Non-Repudiation: The sender of a signature cannot deny, at any time, having signed the
corresponding message.

Note that the achievement of these security goals rely on the fact that the secret key has not
been leaked or revoked. They provide important mechanisms for real-world applications. In the
following we give some examples of important applications of digital signatures.

Electronic Payment Transaction: For electronic payment transaction, e.g. paying with a credit
card, authenticity and integrity of messages are ensured via digital signatures. In particu-
lar, digital signatures are an important security component of the Europay/Mastercard/VISA
framework.

Digital Certificates: A digital certificate is a signed electronic document, which proves the
ownership of a public key. Digital certificates represent an important basic building block,
for example, in a public-key infrastructure (PKI). A PKI is a set of roles, policies and
procedures required for the creation, management, distribution, use, storage and revocation
of digital certificates and the management of public-key encryption.

Transport Layer Security: The Transport Layer Security (TLS) protocol is a cryptographic
protocol to ensure secure communication over a computer network. When we visit a
secure website (i.e., starting with https:// ) then the web browser communicates via the
TLS protocol which authenticates the communication partner via a digital certificate.

3



1 Introduction

Software Updates: If we need to download an update, e.g., for our operating system from the
internet the authenticity must be verified and therefore digital signatures are necessary.

Theoretical Cryptography: Digital signatures are an essential building block in crypotographic
theory. They can be used to achieve stronger security goals for cryptographic schemes,
e.g. public-key encryption schemes [HJ12].

History of Digital Signatures. In 1976, Diffie and Hellman [DH76] not only laid the found-
ations for public-key encryption, they also described the notion of a digital signature scheme
for the first time. When shortly afterwards the RSA encryption algorithm was invented by
Rivest, Shamir and Adleman [RSA78] it could also be used to produce primitive digital signa-
tures although far away from secure, since it allowed meaningful homomorphic operations on
signatures.
Soon afterwards, in 1979, Lamport [Lam79] developed a digital signature scheme which sat-

isfied a relatively weak security property since it could only be used once per key pair. At first
glance, this may seem unnecessary, however, it is generically possible to extend this scheme
to a digital signature scheme that can be used several times. The construction is based on
one-way functions, whose existence is one of the weakest assumptions in cryptography. Further
constructions in the beginning were given in [MH78] and [Rab79].
In 1988, the first security requirements for digital signature schemes were defined by Gold-

wasser, Micali and Rivest [GMR88]. They presented a scheme, GMR signatures, which could
be proven secure in a very strong sense. We describe the security notions in more detail in the
next section.
It can be said that to this day a lot of progress in constructing (strongly) secure digital

signature schemes has taken place and it is still important to improve. The development of new
schemes which satisfy a strong security and are also efficient in terms of key and signature size,
and verfication computation time is a major research topic.
Security Notions of Digital Signatures. The two main requirements we have for a digital
signature scheme are correctness and soundness. Informally, correctness means “the scheme
works”, i.e., for each signature for any message generated via the signing algorithm of the scheme
under any secret key the verification algorithm should always output valid on input the signature,
message and the corresponding public key.
Informally, soundness means “the scheme is secure”, i.e., no efficient algorithm, or adversary,

breaks the respective security property of the scheme with non-negligible probability. In prin-
ciple, one would like that it is not possible to forge a valid signature of a message without
knowing the secret key.
[GMR88] first introduced several strong security notions. A security notion is formalized as

the combination of an attack model, which describes the ability and power of an adversary, and
an attack result, which describes the goal an adversary has to achieve to break the security of the
scheme. There are many security notions depending on the model and the goals, but we only
focus on two important notions regarding the relevance for this work. For formal definitions see
chapter 2.

Existentially unforgeable under non-adaptive chosen-message attack (EUF-naCMA): Before an
adversary sees the public key of the scheme he has to choose a list of messages. Then the
adversary gets the public key and corresponding signatures for the chosen messages. The
goal of the adversary is to forge a valid signature of a new arbitrary message of his choice.

Existentially unforgeable under chosen-message attack (EUF-CMA): The adversary first gets
the public key and can then adaptively choose messages and obtains the corresponding
signatures, where adaptively means depending on the public key or previous signatures.
The goal of the adversary is again to forge a valid signature of a new arbitrary message of
his choice.
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For the most real-world applications, a digital signature scheme, which satisfies the EUF-CMA-
notion, or in other words which is EUF-CMA-secure, is preferred. EUF-CMA security is a
very strong security notion and has become the standard security notion for digital signature
schemes. EUF-CMA is stronger than EUF-naCMA, i.e., EUF-CMA security implies EUF-
naCMA security.
Security Experiment. In order to prove security formally, one has to define the desired
security notions precisely. One possibility to achieve a precise description is via a security
experiment. A security experiment describes a “game” between two parties, the challenger and
the adversary. Intuitively, the adversary wins the game, if he breaks the security of the scheme.
For example, on a high level, we give the EUF-CMA security experiment in the following:

1. The challenger generates a public and secret key of the scheme and forwards the public
key to the adversary.

2. The adversary chooses a message and sends it to the challenger. The challenger signs the
message using the secret key and sends the signature back. The adversary can adaptively
repeat this polynomially often.

3. Finally, the adversary outputs a forgery, consisting of a message and a corresponding
signature.

The adversary wins the game, if the forgery signature is valid, i.e., the verification algorithm
outputs valid on input the public key, the forgery message and the corresponding signature, and
if the forgery message was never queried to the challenger, i.e., the adversary did not see a valid
signature for the forgery message before.
To prove security of a given scheme, the security will be, as already mentioned, reduced to some

complexity theoretic intractability assumption, i.e., to the task of solving a hard computational
problem. A problem solver is playing the security experiment game with an adversary attacking
the scheme. The problem solver gets a computational challenge and has to simulate the security
experiment for the adversary. Therefore, the problem solver embeds his challenge in such a
clever way that he can use a successful adversary for his purposes. This means, if the adversary
outputs a valid forgery with non-negligible probability, the problem solver can use this to solve
his challenge also with non-negligible probability. This contradicts the hardness of the problem
and, hence, such an adversary must have a negligible probability of success.
Problems in Constructing Strongly Secure Digital Signatures. We think that an
essential problem in constructing strongly secure digital signature schemes is that in the security
reduction the adversary wins if he outputs a valid signature for any message of his choice, which
was not queried to the problem solver. This could correspond to the choice of many different
problem instances for the problem solver. Therefore, the problem solver has to guess correctly
for which instance the adversary will forge a signature, to be able to solve his own challenge.
Since there are superpolynomially many possible messages for the adversary to choose and just
as many problem instances for the problem solver, this results in a negligible probability of
solving the computational problem even if the adversary has a high probability of success.
Several reduction strategies which overcome this problem and enable to prove digital signature

schemes EUF-CMA-secure are known in the literature, e.g. [Cor00; Wat05; HK12a; Boy10;
CD96]. However, most of the schemes are not proven secure in the standard model [Cor00] or
are proven secure under non-standard assumptions [CS00; BB08]. Many of them also require
large public keys or generate large signatures, both of which are not desirable.

1.1.1 Contribution to Digital Signatures

In [BHJKS13; BHJKSS13] we introduce a new strategy to overcome this problem, dubbed con-
fined guessing, and give EUF-CMA-secure instantiations under different standard assumptions.

5



1 Introduction

We emphasize here that this technique and the generic construction are not part of this thesis
and are discussed in more detail in the thesis “On Cryptographic Building Blocks and Trans-
formations” [Str15].
Contribution. In this work, the main focus lies on the instantiation of EUF-CMA-secure
digital signature schemes, which we obtain by applying the confined guessing technique. In par-
ticular, we concentrate on an instantiation proven EUF-CMA-secure under the Computational
Diffie-Hellman (CDH) assumption in the standard model. Informally, the CDH assumption
states that it is intractable in certain cyclic groups to compute a group element gab only given
the group elements g, ga and gb. This assumption is a well-studied, relatively weak assumption.
We first instantiate a digital signature scheme which only satisfies a very mild form of se-

curity under the CDH assumption, which usually can be achieved easier than full, i.e. strong,
security. Then, applying a generic transformation, we show an efficient construction of an EUF-
CMA-secure CDH-based digital signature scheme which uses log(k) (for a security parameter k)
instances of the mildly secure digital signature scheme, where we are now in a position to reduce
the EUF-CMA security of the new scheme to the mild security of the underlying scheme.
Thus, a signature of the new scheme consists of log(k) signatures of the underlying scheme.

This can be optimized to constant size by aggregation (further explained in the next section).
However, we need additional elements in the public key, which results in log(k) elements.
We achieve an EUF-CMA-secure CDH-based digital signature scheme proven secure in the

standard model with constant size signatures and logarithmic size public key. At that time, this
was the first strongly secure digital signature scheme with such short signatures and public key
proven secure in the standard model under a very simple assumption.
Possible Optimizations and Further Progress. One way to improve a digital signature
scheme, already strongly secure under a standard assumption in the standard model, is to
improve the efficiency of the scheme. This can be done either in reducing key and signature size
or in terms of a tight security reduction.
As already mentioned and applied to optimize our scheme, aggregation is a possibility to reduce

the size of signatures or the number of signatures that need to be transmitted. Therefore, we
will take a closer look on how this is done and what aggregate signature schemes are in general
in the next section.
Regarding tight security reductions we will focus in this work on a variant of public-key

encryption schemes, denoted as identity-based encryption schemes, which are closely related
to digital signature schemes. As we will see, each identity-based encryption scheme can be
generically transformed into a digital signature scheme and thus, a tight security reduction in
the context of identity-based encryption is also interesting for digital signatures. We give a brief
description in section 1.3.

1.2 Aggregate Signature Schemes

An aggregate signature scheme is an extension of an ordinary digital signature scheme, which
allows to generate an aggregate signature (short: aggregate), that compresses many single signa-
tures of different users on distinct messages.
Aggregate Signatures and Applications. Suppose there are l signers with l different
public keys, who want to sign l different messages for the same receiver with a conventional
digital signature scheme. Then the receiver has to verify all of these message-signature pairs,
where the total bit-length of these pairs grows linearly in the number of signers. If they want to
reduce this overhead concerning storage space, bandwidth and computation time and cost, they
can use an aggregate signature scheme instead. In an aggregate signature scheme, additionally
to the algorithms of a digital signature scheme, there is a public aggregation algorithm. This
aggregation algorithm takes as input a set of l signatures, corresponding to l public keys and
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messages, and outputs an aggregate signature, which can be used to verify all of these signatures
at once. The aggregate signature is of approximately the same size as a single individual signature
of the scheme.
In 2003, the first aggregate signature scheme was proposed by Boneh, Gentry, Lynn and

Shacham (BGLS) [BGLS03] in the random oracle model. From then on, a lot of progress
happened and many aggregate signature schemes were constructed. Most of them, like BGLS,
using bilinear maps [GR06; BNN07; RS09; HKW15]. The first construction of such a scheme
in the standard model using multilinear maps was given in [HSW13]. Since it has been proven
difficult to construct full aggregate schemes in the standard model, a lot of research was focused
on signature schemes with some form of restricted aggregation. Most proposals outside the
bilinear (or multilinear) setting require the signers to aggregate in a “sequential way” (denoted
as sequential aggregate signature schemes), where each signer has to add his individual signature
to the aggregate one after the other by using his own secret key [LMRS04a; Nev08; FLS12;
LLY13]. That means no public aggregation is possible here anymore.
The applications of aggregate signature schemes are numerous and can be found everywhere

one wants to save bandwith and storage space or needs faster verification. For example, in a
public-key infrastructure of depth l, each user is given a chain of l digital certificates. The chain
contains l signatures on l different certificates, each issued by l different Certificate Authorities.
Using an aggregate signature scheme the size can be reduced. Another application is in the
field of sensor networks, where each sensor measures specific data of the environment and sends
this data to a base station, where the data has to be verified or is collected to be sent to
another station. Since bandwith and computational power of the sensors and base stations are
limited aggregate signatures are preferred. The list of possible applications can be continued by
authenticating software, secure logging, secure routing and so on.
Problem. However, one problem which arises in all applications is the fact that the verification
algorithm only outputs valid or invalid, independently of which signature or how many signatures
in the aggregate are valid or invalid. In other words, if just one faulty signature is contained in
the aggregate the verification algorithm outputs invalid, one can not make any conclusions about
the remaining correctly signed signatures and the whole aggregate is useless even if the majority
is still correctly signed. This leads to re-computing and re-sending all affected data which should
be verified via the invalid aggregate. For example in sensor networks, all measured data is lost if
one sensor sends an invalid signature, e.g. because of transmission errors, to the base station for
further aggregation. Usually the base station has not enough computational power to ensure the
validity of each signature before adding them to an aggregate, since verification often requires
expensive computations.

1.2.1 Contribution to Aggregate Signatures

In [HKKKR16] we addressed this problem and developed the concept of fault-tolerant aggregate
signature schemes.
Contribution. In this work, we present the first instantiation of a fault-tolerant aggregate
signature scheme. Such an aggregate signature scheme can tolerate up to a specific number d
of invalid or faulty signatures contained in one aggregate. The verification algorithm of this
scheme does not only output valid and invalid but instead a list which contains all correctly
signed messages and omits the invalidly signed messages.
We achieve this by using a d-cover-free family first introduced by Kautz and Singleton [KS64].

A d-cover-free family is a combinatorial structure and related to error-correcting codes. Inform-
ally, such a family can be represented as a matrixM where the entries are only 1 or 0 and which
is able to “handle” up to d errors.
This matrix gives us a rule how we have to aggregate in our new scheme. Each column cor-

responds to an individual signature. Each 1 entry is replaced with the corresponding signature.
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Aggregation is done row-wise, i.e., each signature in a row is aggregated, using an underlying
ordinary aggregate signature scheme. This results in a vector τ of aggregated signatures, which
is the aggregate signature of our fault-tolerant aggregate signature scheme. The size of the
vector corresponds to the number of rows of the matrix, which is not of constant-size as in the
most ordinary aggregate signature schemes. The same signature is aggregated several times in
different rows and this leads to some kind of redundancy in our vector. A valid ordinary aggreg-
ate signature in the vector is sufficient to verify the validity of all contained signatures. If we
have less than d invalid individual signatures in our aggregate signature, due to the structure of
the d-cover free family, it is still possible by verifying each component of the vector separately
to determine all valid signatures (for more details see chapter 4).
This generic construction can be done with any underlying aggregate signature scheme and

any d-cover-free family. In this work we present a concrete instantiation of a fault-tolerant
aggregate signature scheme using a d-cover-free family based on polynomials over a finite field
[KRS99].

1.3 Identity-Based Encryption Schemes

Identity-based encryption (IBE) is a very important cryptographic primitive. It is related to
public-key encryption (PKE), where a sender can securely communicate with a receiver by only
knowing the receiver’s public key. In a PKE scheme the sender uses the public key to encrypt
a message and the receiver uses a secret key corresponding to the public key for decryption. To
ensure that a public key is authentic, it must be signed by a trusted third party. The introduction
of additional infrastructure to certify the authenticity of public keys and to revoke keys lead to
a difficult key-management problem. Furthermore, it is not guaranteed that public keys are not
compromised.
Identity-Based Encryption Schemes. The idea of identity-based encryption (IBE) is to
solve or at least to simplify these problems and it was first proposed by Shamir [Sha84] in 1984.
In an IBE scheme, in contrast to ordinary PKE schemes, an arbitrary identifier of the receiver
(such as an e-mail address or IP address) and a set of global public parameters are sufficient to
encrypt a message. This eliminates the need to distribute a separate public key for each user
in the system. An authenticated user obtains a corresponding (user) secret key for decrypting
from a trusted authority, which only needs the user’s identifier and a master secret key.
In 2001, the first (efficient) realizations were published by Boneh and Franklin [BF01] and

Cocks [Coc01], both secure in the random oracle model. Since that time, a great progress was
made in achieving IBE schemes that are secure in the standard model [CHK07; BB04a; BB04b;
Wat05; Wat09]. In [Wat09] a new proof strategy, denoted as dual system encryption (see below
for a brief description and chapter 5 for more details), was introduced, which leads to very
efficient IBE schemes based on standard assumptions and satisfying a very strong notion of
security.
Security Notion for IBE Schemes. Informally, the standard notion for security in public-
key encryption schemes demands that it is infeasible for an adversary, i.e., only possible with
negligible probability, given a ciphertext encrypted under a known public key to learn anything
about the corresponding message except for the length. In particular, the adversary is allowed
to choose two arbitrary messages of the same length and receives one of them encrypted as a
challenge ciphertext. The scheme is secure in this sense, if no adversary can efficiently determine
which message was encrypted with a probability significantly better than just simple guessing.
Regarding identity-based encryption the challenge ciphertext is encrypted under a chosen iden-
tity and additionally the adversary is allowed to see revealed user secret keys for other identities
of his choice.
For a long time it was not easy to prove that an IBE scheme satisfies this notion of full

adaptively security in the standard model and even under standard assumption.
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Dual System Encryption Proof Strategy. As already mentioned, in 2009 Waters [Wat09]
introduced dual system encryption, a novel and powerful proof technique, to construct full ad-
aptively secure IBE schemes in the standard model under standard assumptions.
In a dual system setting, ciphertexts and user secret keys can take on two types: normal

or semi-functional. Semi-functional ciphertexts and user secret keys are not used in the real
system, they are only needed in the security proof. A normal user secret key can decrypt normal
or semi-functional ciphertexts, and a normal ciphertext can be decrypted by normal or semi-
functional user secret keys, for the same identity, respectively. However, when a semi-functional
key is used to decrypt a semi-functional ciphertext for the same identity, decryption will fail.
Security for dual systems is proved, as often in security proofs, using a sequence of games

which are shown to be indistinguishable, i.e., if an adversary could distinguish them he can be
used to solve a hard computational problem. The first game is the real security game (with
normal ciphertext and user secret keys). In the next game, the challenge ciphertext is semi-
functional, while all the user secret keys are normal. Then a series of games follow in which
step by step one user secret key after the other is changed to semi-functional. In the last game
all the user secret keys and the challenge ciphertext given to the adversary are semi-functional.
Hence, none of the given user secret keys can be useful for decrypting the challenge ciphertext.
At this point, it is possible to replace the ciphertext by a random message and the adversary
can not do better than guessing. Thus, proving security becomes relatively easy.

1.3.1 Contribution to Identity-Based Encryption

In [HKS15] we introduce a new variant of the dual system proof technique, dubbed extended
nested dual system groups, to be able to prove almost tight and full adaptive security of an IBE
scheme in the multi-instance, multi-ciphertext setting. The multi-instance, multi-ciphertext
setting models a more realistic scenario, which is desirable. In this scenario we have many in-
stances of an IBE scheme and in each instance the adversary obtains many challenge ciphertexts
to distinguish for different identities.
Contribution. In this work, we present the first instantiation of extended nested dual system
groups (ENDSG) in composite-order pairing-friendly groups. ENDSGs are based on nested dual
system groups (NDSG), developed by Chen and Wee [CW13], which are based on the dual
system framework introduced by Waters [Wat09].
NDSGs enable to prove the first IBE scheme almost tightly secure in the standard model under

standard assumptions in the single-instance, single-ciphertext setting. The dual system proof
strategy usually requires, as already mentioned, a game based approach, where each game hop
is reduced to a computational problem. This results in a security loss in size of the number of
games. In [Wat09], the number of games is approximately the same as the number of user secret
keys revealed to the adversary. In [CW13], the number of games is approximately the same as
the number of bits of the challenge identity, which only depends on the security parameter and
is independent of the number of user secret keys. This is considered as almost tight.
ENDSGs enable to prove the first IBE scheme almost tightly secure in the standard model

under standard assumptions in the multi-instance, multi-ciphertext setting.
Relations between IBE Schemes and Signature Schemes. An observation by Naor
mentioned in [BF01] describes the relation between IBE schemes and digital signature schemes.
It states, that any IBE scheme can be generically transformed in a digital signature scheme.
The exact transformation is given in chapter 5. This means, that any progress regarding IBE
schemes, e.g. achieving tighter security proofs or shorter parameters, can be transferred to the
field of digital signature schemes. This is also interesting in view of our result to achieve almost
tight security proofs for digital signature schemes in the multi-user scenario.
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2 Preliminaries

Notation. For n ∈ R, let [n] := {1, . . . , bnc}. Throughout this thesis, k ∈ N denotes the
security parameter. We assume, if not stated explicitly, it is implicitly given to all algorithms
in the unary representation 1k. For a finite set S, we denote by s← S the process of sampling
s uniformly from S.

For a probabilistic algorithm A, we write y ← A(x) for the process of running A on input x
with uniformly chosen random coins, and assigning y the result. To make the random coins r
explicit, we write A(x; r). If A’s running time is polynomial in k, then A is called probabilistic
polynomial-time (PPT).

For two random variables X,Y , we denote with SD (X ; Y ) the statistical distance of X and
Y . We might also say that X and Y are ε-close if SD (X ; Y ) ≤ ε.

Definition 1. A function f : N→ R≥0 is negligible if

∀c ∈ R ∃k0 ∈ N ∀k ≥ k0 : f(k) ≤ 1/kc,

i.e., it vanishes faster than the inverse of any polynomial.
On the other hand, f is significant if

∃c ∈ R, k0 ∈ N ∀k ≥ k0 : f(k) ≥ 1/kc,

i.e., it dominates the inverse of some polynomial.

Definition 2 (Bilinear map). Let G1,G2 and GT be cyclic groups of order N . A bilinear map
e : G1 ×G2 → GT has the following properties:

Bilinearity. For all g1, g
′
1 ∈ G1 and g2, g

′
2 ∈ G2 it holds

e(g1g
′
1, g2) = e(g1, g2)e(g′1, g2) and e(g1, g2g

′
2) = e(g1, g2)e(g1, g

′
2)

This implies e(ga1 , g2) = e(g1, g
a
2) = e(g1, g2)a, for a ∈ ZN .

Non-Degeneracy. For generators g1 ∈ G1 and g2 ∈ G2 :

e(g1, g2) is a generator of GT .

If N = p ∈ P this is equivalent to e(g1, g2) 6= 1.

Efficiently computable. The map e is efficiently computable.

If G1 = G2 we say e is a symmetric map, otherwise asymmetric.

Definition 3 (Group generation algorithm). A group generation algorithm is a PPT algorithm
Grp as follows:

Group Generation. Grp(1k, n), on input 1k and an integer n ∈ N \ {0}, outputs a tuple of the
form

(G,H,GT , N, g, h, p1, . . . , pn, gp1 , . . . , gpn , hp1 , . . . , hpn , e).

G,H and GT are descriptions of groups of order

|G| = |H| = |GT | = N = p1 · . . . · pn,
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for k-bit primes p1, . . . , pn ∈ P, with generators g and h, respectively, and e : G×H→ GT

is a bilinear map. gp1 , . . . , gpn and hp1 , . . . , hpn are generators of the (proper) subgroups
Gpi ⊂ G and Hpi ⊂ H of order

|Gpi | = |Hpi | = pi,

for i ∈ {1, . . . , n}, respectively.

Especially, if e : G ×G → GT is a symmetric bilinear map, we omit the group H and the
elements h, hpi , for i ∈ {1, . . . , n} and write

(G,GT , N, g, gp1 , . . . , gpn , e)← Grp(1k, n),

unless it is necessary for a better understanding.
If e : G×G→ GT and n = 1, we omit the integer n and write

(G, g,GT , p, e)← Grp(1k).

Throughout this thesis, we only write the output which we need and omit the rest. For instance
if the prime order of the subroups are secret, and if we are only interested in the group G, we
write

(G, g,N, gp1 , . . . , gpn)← Grp(1k, n) or

(G, g, p)← Grp(1k)

Digital Signature Schemes

In the following, we give a formal definition of a digital signature scheme, which is the basis of
most of the following constructions in the next chapters.

Definition 4 (Signature scheme). A signature scheme Σ = (Gen, Sig,Ver) with message space
Mk consists of three PPT algorithms:
Key Generation. The setup algorithm Gen(1k), on input the security parameter 1k, outputs a

public key pk and a secret key sk .
Signing. The signing algorithm Sig(sk ,M), on input the secret key sk and a message M ∈Mk,

outputs a signature σ.
Verification. The verification algorithm Ver(pk ,M, σ), on input the public key pk , a message

M , and a signature σ, outputs a bit b ∈ {0, 1}. Intuitively, the case b = 1 corresponds to
a valid signature on the message, and the case b = 0 corresponds to invalid.

We require Σ to be correct in the sense that for any k ∈ N, all (pk , sk)← Gen(1k), all M ∈Mk,
and all σ ← Sig(sk ,M), the output of Ver(pk ,M, σ) = 1.

Security Notions for Digital Signature Schemes. Informally, the desired security guar-
antee a signature scheme should offer is that no efficient ((probabilistic) polynomial time) ad-
versary is able to “forge“ a valid message/signature pair with respect to an honestly generated
public key pk . There are many different notions regarding the abilities and interactions of the
adversary (or forger F ) and which security goals are sufficient to break. We concentrate on a
very strong notion, called existential unforgeable under chosen-message attacks [GMR88], which
is desirable to achieve. We also give a formal definition of a weaker, but related notion, called
existential unforgeable under non-adaptive chosen-message attacks, where each signature scheme
satisfying this notion can be transformed to a signature scheme that satisfies the strong notion
(see also chapter 3, Lemma 5). Both notions are satisfied, if an adversary has only negligible ad-
vantage in winning the following corresponding security experiments, formalized in Definition 5,
Definition 6 and Figure 2.1 and briefly described below:
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Experiment Expeuf-nacma
Σ,F (k)

(Mi)i∈[q] ← F (k)

(pk , sk)← Gen(1k)
σi ← Sig(sk ,Mi), for all i ∈ [q]
(M∗, σ∗)← F (state, pk , σ1, . . . , σq)
if Ver(pk ,M∗, σ∗) = 1

and M∗ 6∈ {Mi}i∈[q]

return 1
else
return 0

Experiment Expeuf-cma
Σ,F (k)

(pk , sk)← Gen(1k)
(M∗, σ∗)← F Sig(sk ,·)(pk)
if Ver(pk ,M∗, σ∗) = 1

and F has not queried Sig(sk ,M∗)
return 1

else
return 0

Figure 2.1: EUF-naCMA and EUF-CMA experiment for signature schemes.

Definition 5 (Existential unforgeability under non-adaptive chosen-message attacks). We say
a signature scheme Σ is existentially unforgeable under non-adaptive chosen-message attacks
(EUF-naCMA-secure) if

Adveuf-nacma
Σ,F (k) := Pr

[
Expeuf-nacma

Σ,F (k) = 1
]
,

is negligible for any PPT adversary F , where Expeuf-nacma
Σ,F (k) is defined in Figure 2.1 and briefly

described below.

Description of Expeuf-nacma
Σ,F :

• The adversary F outputs a set of messages (Mi)i∈[q], for which F wants corresponding
signatures (non-adaptively), where q = q(k) is the total number of signature queries.

• The experiment generates a key pair (pk , sk) ← Gen(1k), computes signatures σi ←
Sig(sk ,Mi), for all i ∈ [q], and provides F with (pk , σ1, . . . , σq).

• Finally, F outputs a forgery (M∗, σ∗).

The adversary F wins the experiment iff Ver(pk ,M∗, σ∗) = 1 and M∗ /∈ {M1, . . . ,Mq}.

Definition 6 (Existential unforgeability under chosen-message attacks). We say a signature
scheme is existentially unforgeable under chosen-message attacks (EUF-CMA-secure) if

Adveuf-cma
Σ,F (k) := Pr

[
Expeuf-cma

Σ,F (k) = 1
]

is negligible for any PPT adversary F , where Expeuf-cma
Σ,F (k) is defined in Figure 2.1 and briefly

described below.

Description of Expeuf-cma
Σ,F :

• The experiment generates a key pair (pk , sk)← Gen(1k) and provides F with pk .

• During the experiment F has access to a Sig(sk , ·)-oracle, to adaptiveley query signatures
for messages M ∈Mk under pk .

• Finally, F outputs a forgery (M∗, σ∗).

The adversary F wins the experiment iff Ver(pk ,M∗, σ∗) = 1 and F has not queried Sig(sk ,M∗).
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Standard Assumptions

In the following, we give two examples of well known standard assumptions in cryptography,
which are relevant for this work, to construct useful cryptographic building blocks and for
introducing related assumptions in the next chapters.
The Discrete Logarithm (DL) Problem. For a concrete instantiation of a chameleon hash
function defined in chapter 3, we require the discrete logarithm problem.

Definition 7 (DL assumption). We say that the discrete logarithm (DL) assumption holds
relative to a group generation algorithm Grp(·) if

AdvdlGrp,A(k) := Pr
[
A(1k, g, gx) = x

]
is negligible for any PPT adversary A, where (G, g, p) ← Grp(1k) and x ← Zp is uniformly
chosen.

The Decisional Diffie-Hellman (DDH) Problem. Since some of our standard assumptions
in the following chapters are based on the decisional Diffie-Hellman Problem or related to it, we
give a formal definition.

Definition 8 (DDH assumption). We say that the Decisional Diffie-Hellman (DDH) assumption
holds relative to a group generation algorithm Grp(·) if

AdvddhGrp,A(k) := |Pr
[
A(1k, g, ga, gb, gab) = 1

]
− Pr

[
A(1k, g, ga, gb, gc) = 1

]
|

is negligible for any PPT adversary A, where (G, g, p)← Grp(1k) and a, b, c← Zp are uniformly
chosen.
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3 A Strongly Secure Digital Signature
Scheme

The design of efficient digital signature schemes that can be proven strongly secure under reliable
standard assumptions in the standard model is one of the most important goals in cryptographic
research.

Digital signature schemes can be built from any one-way function [Lam79; NY89; Rom90].
However, this generic construction is not particularly efficient. For instance, each signature
contains O(k2) preimages. As so often in real life the proved secure schemes with the best
security guarantees are not nearly as efficient as the signature schemes that are used in practice,
where applications require fast signing and verification along with short public keys and short
signatures. One could hope that for concrete assumptions (such as the RSA or Diffie-Hellman-
related assumptions), it is possible to derive much more efficient schemes.

Most efficient digital signature schemes follow a hash-and-sign paradigm (rather than a tree-
based approach [CS00; HW09b; Fis02]) to obtain efficient schemes, in particular with short public
keys and signatures. However, each of the hash-and-sign signature schemes requires relatively
strong assumptions, e.g., random oracles [BLS04; GJKW07; GPV08], strong RSA assumption
[CS00; CS00; GHR99] or other very specific strong assumptions [BB04c; Wat09; HK12b; CL04].

In this chapter we construct a rather efficient, stateless and compact EUF-CMA-secure signa-
ture scheme based on the Computational Diffie-Hellman (CDH) assumption. To achieve this, we
use a new technique, dubbed confined guessing, which was published in [BHJKS13; BHJKSS13].
Most of the content of the following chapter is taken from these works, partly verbatim.

As far as we know, there were only two signature schemes based on the standard CDH
assumption in the standard model at that time [HW09a; Wat05]. In [HW09a] a stateful signature
scheme was constructed, i.e., the signer needs to maintain certain states. This property is not
desirable in general but is acceptable in some applications. However, they achieve constant size
public keys and signatures.

Therefore, [Wat05] was the only construction for stateless signature schemes that has been
proven secure under the standard CDH assumption in the standard model so far. However, the
signature scheme has constant size signatures but linear size public keys.

Our Contribution

Our construction is based on the signature scheme of [HW09a], but we remove the state and
apply the technique of confined guessing. Thus, we are able to construct a rather efficient and
EUF-CMA-secure signature scheme under a standard assumption. In our CDH-based signature
scheme public keys and signatures contain O(log(k)) and O(1) group elements, respectively. At
that time, this scheme was the first fully secure and stateless CDH-based signature scheme with
such short public keys and short signatures proven secure in the standard model.

3.1 Organization

In section 3.2 we introduce some useful cryptographic primitives and the standard CDH assump-
tion on which the security of our scheme is based.

In section 3.3 we introduce tag-based signatures and the concept of confined guessing. In
contrast to an ordinary signature scheme, a tag-based signature scheme signs a message along
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3 A Strongly Secure Digital Signature Scheme

Experiment Expeuf-dnacma
Σ,F (k)

(Mi)i∈[q] ← F (1k)

(pk , sk)← Gen(1k)
σi ← Sig(sk ,Mi), for all i ∈ [q]
(M∗, σ∗)← F (state, pk , (σi)i∈[q])
if Ver(pk ,M∗, σ∗) = 1
and ∀i 6= j : Mi 6= Mj

and M∗ 6∈ {Mi}i∈[q]

return 1,
else
return 0

Figure 3.1: EUF-dnaCMA experiment for signature schemes.

with a tag t. Confined guessing is a generic transformation from a tag-based signature scheme
which satisfies a relatively mild form of security to an ordinary signature scheme which satisfies
EUF-CMA security.

In section 3.4 we give an instantiation of our tag-based scheme based on the CDH assumption.
We apply the transformation and some optimizations to achieve an instantiation of a rather
efficient fully secure CDH-based signature scheme.

It is also possible to construct fully secure signature schemes under other standard assump-
tions as briefly mentioned in section 3.5.1 for RSA and the Short Integer Solution (SIS) as-
sumption. We emphasize here that the generic transformation, and the instantiations based on
RSA and SIS, are not part of this thesis. We only state the relevant results and parts which
we need for our CDH-based instantiation and explain the approach in a nutshell for a better
understanding in section 3.3. For more details on this, we refer to [BHJKS13; BHJKSS13] and
the thesis “On Cryptographic Building Blocks and Transformations” [Str15].

3.2 Preliminaries

In this section we give some definitions and notations which are necessary for this chapter.

Definition 9 (Distinct-message existential unforgeability under (non-adaptive) chosen-mes-
sage attacks). We say a signature scheme is existential unforgeable under distinct-message non-
adaptive chosen-message attacks (EUF-dnaCMA-secure) if

Adveuf-dnacma
Σ,F (k) := Pr

[
Expeuf-dnacma

Σ,F (k) = 1
]
,

is negligible for any PPT adversary F , where Expeuf-dnacma
Σt,F (k), is defined in Figure 3.1.

The Computational Diffie-Hellman (CDH) Problem. For a concrete instantiation of
the confined guessing technique (see section 3.4) we require the Computational Diffie-Hellman
(CDH) assumption.

Definition 10 (CDH assumption). We say that the Computational Diffie-Hellman (CDH) as-
sumption holds relative to a group generation algorithm Grp(·) if

AdvcdhGrp,A(k) := Pr
[
A(1k, g, ga, gb) = gab

]
is negligible for any PPT adversary A, where (G, g,GT , p, e) ← Grp(1k) and a, b ← Zp are
uniformly chosen.
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3.2 Preliminaries

Pseudorandom Functions. Pseudorandom functions are a very useful cryptographic prim-
itive. Informally, a pseudorandom function is a family of efficiently computable functions which
are indistinguishable from a truly random function. They are a very useful tool to construct
other secure cryptographic primitives.

Definition 11 (Pseudorandom Function). For any set S a pseudorandom function (PRF) with
range S is an efficiently computable function PRFS : {0, 1}k × {0, 1}∗ → S. We may also
write PRFSκ (x) for PRFS(κ, x) with key κ ∈ {0, 1}k. Additionally we require that for any PPT
algorithm A

Advprf
PRFS ,A

(k) :=
∣∣∣Pr
[
APRFSκ (·)(1k) = 1 for κ← {0, 1}k

]
− Pr

[
AUS(·)(1k) = 1

]∣∣∣
is negligible in k where US is a truly uniform function to S.

Note that for any efficiently samplable set S with uniform sampling algorithm Samp we can
generically construct a PRF with range S from a PRF PRF{0,1}

k
by using the output of PRF{0,1}

k

κ

as random coins for Samp. Following this principle we can construct (PRFSi)i∈[n] for a family
of sets (Si)i∈[n] from a single PRF PRF{0,1}

k
with sufficiently long output (hence we need only

one key κ).
Chameleon Hashing. A hash function is a function that compresses data of arbitrary size, i.e.,
of size {0, 1}∗, to a bit-string of fixed size, e.g. {0, 1}k, the hash value, depending on the security
parameter k. A chameleon hash function is a very helpful cryptographic tool. Informally, a
chameleon hash function is a collision-resistant hash function, although collisions can be easily
computed by knowing a corresponding trapdoor.

Chameleon hash functions were first formalized by Krawczyk and Rabin [KR00]. One im-
portant application of chameleon hash functions is a generic transformation of an EUF-naCMA-
secure signature scheme to an EUF-CMA-secure signature scheme ([HW09c], see also Lemma 5
in section 3.3).

Definition 12 (Chameleon Hash Scheme). A chameleon hash scheme consists of two PPT
algorithms (CHGen, CHTrapColl).

Generation. CHGen(1k), on input a security parameter 1k, outputs a tuple (CH, τ) where CH is
the description of an efficiently computable chameleon hash function CH : M×R → N
which maps a message M and randomness r to a hash value CH(M, r).

Collision. CHTrapColl(τ,M, r,M ′), on input a trapdoor τ , arbitrary M, r,M ′, computes r′ with
CH(M, r) = CH(M ′, r′), and outputs r′.

We require that the distribution of r′ is uniform given only CH and M ′

We require collision-resistance in the sense that it is infeasible to find (M, r) 6= (M ′, r′) with
CH(M, r) = CH(M ′, r′) without knowing the trapdoor τ .

Definition 13 (Collison-Resistance). For any PPT algorithm A, the function

AdvcrCH,A(k) := Pr[A(CH) = (M, r,M ′, r′)],

such that CH(M, r) = CH(M ′, r′) with (M, r) 6= (M ′, r′), is negligible in k, for (CH, τ) ←
CHGen(1k).

Construction. Krawczyk and Rabin also provided a discrete-logarithm-based instantiation,
which is interesting for our CDH-based instantiation in section 3.4. The construction is as
follows:

Let (G, g, p)← Grp(1k). Let (CHGen,CHTrapColl) be the chameleon hash function

CH : Zp × Zp → G,

where
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3 A Strongly Secure Digital Signature Scheme

Generation. CHGen(1k), on input a security parameter 1k, chooses x← Zp, computes h := gx,
and outputs a tuple

(CH, τ) := ((g, h), x),

such that, given (M, r) ∈ Zp × Zp, the chameleon hash value is computed as

CH(M, r) = gMhr.

Collision. CHTrapColl(τ,M, r,M ′), on input a trapdoor τ = x, arbitrary M, r,M ′, computes

r′ ≡ M −M ′

x
mod p.

such that
gMhr = gM

′
hr
′

and outputs r′.

Theorem 1. For any PPT adversary A, given CH = (g, h) and computing (M, r,M ′, r′) ∈ Z4
p

with success probability εA, such that (M, r) 6= (M ′, r′) and

gMhr = gM
′
hr
′
,

there exists a PPT adversary B, who solves the discrete logarithm problem in G with success
probability εB ≥ εA.

The proof can be found in [KR00].

3.3 Generic Transformation: From Mild to Full Security

We now briefly describe the confined guessing technique, a generic transformation from mildly
secure tag-based signature schemes to fully secure signature schemes (without tags). The follow-
ing definitions, theorems and explanations in this section are entirely adopted from [BHJKS13;
BHJKSS13] and a further discussion on this topic can be found in [Str15]. Let us first define
the notion of tag-based signature schemes.

Definition 14. A tag-based signature scheme Σt = (Gent,Sigt,Vert) with message space Mk

and tag space Tk consists of three PPT algorithms.

Key generation. Gent(1
k) takes as input a security parameter and outputs a key pair (pk , sk).

Sign. Sigt(sk ,M, t), on input a secret key sk , message M , and tag t, computes a signature σ.

Verification Vert(pk ,M, σ, t), on input a public key pk , message M , signature σ, and a tag t,
outputs a bit b ∈ {0, 1}.

For correctness, we require for any k ∈ N, all (pk , sk)← Gent(1
k), all M ∈ Mk, all t ∈ Tk, and

all σ ← Sigt(sk ,M, t) that Vert(pk ,M, σ, t) = 1.

We define a mild security notion for tag-based signature schemes, dubbed EUF-dnaCMA∗m
security, which requires an adversary F to initially specify all (distinct) messages Mi it wants
signed, along with corresponding tags ti. After that, F gets to see a public key, and is sub-
sequently expected to produce a forgery σ∗ for an arbitrary fresh message M∗, but with respect
to an already used tag t∗ ∈ {ti}i. As a slightly technical (but crucial) requirement, we only
allow F to initially specify at most m messages Mi with tag ti = t∗. We call m the tag-collision
parameter ; it influences key and signature sizes, and the security reduction.

20



3.3 Generic Transformation: From Mild to Full Security

Definition 15 (EUF-dnaCMA∗m). Let m ∈ N. A tag-based signature scheme Σt is exist-
entially unforgeable under distinct-message non-adaptive chosen-message attacks with m-fold
tag-collisions (short: EUF-dnaCMA∗m secure) if

Adv
euf-dnacma∗m
Σt,F

(k) := Pr
[
Exp

euf-dnacma∗m
Σt,F

(k) = 1
]

is negligible for any PPT adversary F . Here, experiment Exp
euf-dnacma∗m
Σt,F

(k) is defined in Fig-
ure 3.2.

Experiment Exp
euf-dnacma∗m
Σt,F

(k)

(Mj , tj)j∈[q] ← F (1k)

(pk , sk)← Gent(1
k)

σj ← Sigt(sk ,Mj , tj) for all j ∈ [q]
(M∗, σ∗, t∗)← F (state, pk , (σj)j∈[q])
if Vert(pk ,M

∗, σ∗, t∗) = 1
and ∀i 6= j : Mi 6= Mj

and M∗ /∈ {Mj}j∈[q]

and |{j : tj = t∗}| ≤ m
and t∗ ∈ {tj}j∈[q]

return 1
else
return 0

Figure 3.2: EUF-dnaCMA∗m experiment for tag-based signature schemes.

In this section, we recapitulate how to use an EUF-dnaCMA∗m secure scheme Σt to build an
EUF-dnaCMA secure scheme Σ. This transformation is not a part of this thesis, but is necessary
for the following section. (Full EUF-CMA security can then be achieved using a chameleon hash
function [KR00]. We will see this explicit in a concrete instantiation in the next section.)
Description of the Tag Space. The signature scheme Σ constructed below (see also Fig-
ure 3.3) assigns to each message M a vector of tags (t1, . . . , tl), where each tag is derived from
the message M by applying a pseudorandom function as ti := PRFTiκ (M). A Σ-signature is of
the form σ = (σ1, σ2, . . . , σl), where each σi ← Sigt(sk ,M, ti) is a signature according to Σt with
message M and tag ti.

To this end, we separate the tag space Tk into l := blogc(k)c pairwise disjoint sets Ti, such
that |Ti| = 2dcie. Here c > 1 is a granularity parameter that will affect key and signature sizes,
and the security reduction, and is specified globally. For instance, if c = 2 and Tk = {0, 1}k,
then we may set Ti := {0, 1}2i .

The crucial idea is to define the sets Ti of allowed tags as sets quickly growing in i. This
means that (m + 1)-tag-collisions (i.e., the same tag ti being chosen for m + 1 different signed
messages) are very likely for small i, but become quickly less likely for larger i.
Signature Scheme Σ. Concretely, let Σ = (Gen, Sig,Ver) be a signature scheme and let
Σt = (Gent,Sigt,Vert) be a tag-based signature scheme with message space Mk and tag space
Tk = {0, 1}k =

⋃l
i=1 Ti, let m ∈ N and c > 1, and let PRF be a PRF with range Tk.

Key generation. Gen(1k), on input 1k, runs (pk ′, sk ′)← Gent(1
k), chooses a uniformly random

PRF key κ← {0, 1}k, and outputs a key pair (pk , sk) := ((pk ′, κ), (pk , sk ′)).

Sign. Sig(sk ,M), on input a secret key sk and a message M , computes tags ti := PRFTiκ (M)
and signatures σi ← Sigt(sk

′,M, ti) for i ∈ [l], and outputs a signature σ := (σi)
l
i=1.
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3 A Strongly Secure Digital Signature Scheme

Gen(1k)

(pk ′, sk ′)← Gent(1
k)

κ← {0, 1}k
pk := (pk ′, κ)
sk := (pk , sk ′)
return (pk , sk)

Sig(sk ,M)

ti := PRFTiκ (M) for i ∈ [l]
σi ← Sigt(sk

′,M, ti)
return σ := (σi)

l
i=1

Ver(pk ,M, σ = (σi)
l
i=1)

ti := PRFTiκ (M) for i ∈ [l]
return

l∧
i=1

Vert(pk
′,M, σi, ti)

Figure 3.3: The EUF-dnaCMA secure signature scheme.

Verification Ver(pk ,M, σ), on input a public key pk , a message M and a purported signature
σ = (σi)

l
i=1, deterministically computes tags ti := PRFTiκ (M) for i ∈ [l], and outputs

l∧
i=1

Vert(pk
′,M, σi, ti).

Figure 3.3 provides an overview over these algorithms.
It is straightforward to verify Σ’s correctness: If Σt is correct, then Σ is correct.

Theorem 2. If PRF is a PRF and Σt is an EUF-dnaCMA∗m secure tag-based signature scheme,
then Σ is an EUF-dnaCMA-secure signature scheme. Concretely, let F be an EUF-dnaCMA
forger on Σ that makes q = q(k) signature queries and has advantage ε := Adveuf-dnacma

Σ,F (k) with
ε > 1/p(k) for infinitely many k ∈ N. Then there exists an EUF-dnaCMA∗m forger F ′ on Σt

that makes q′(k) ≤ 2 ·
(

2·qm+1

ε(k)

)c/m
+ l · q non-adaptive signature queries and has advantage

ε′ := Adv
euf-dnacma∗m
Σt,F ′

(k), and a PRF distinguisher with advantage εPRF such that

ε′ ≥ ε

2
− εPRF −

p′(k)

|Mk|

for infinitely many k, where p′(k) is a suitable polynomial, andMk denotes Σt’s (and thus Σ’s)
message space.

The proof can be found in [BHJKS13; BHJKSS13].
We restate the idea of the reduction strategy in the following and mention some useful lemmata
and requirements which are necessary in the next section.
Idea of the Reduction Strategy. We first give an intuition why Σ is EUF-dnaCMA secure.
For this purpose, we map an adversary F on Σ’s EUF-dnaCMA security to an adversary F ′ on
Σt’s EUF-dnaCMA∗m security. Intuitively, F ′ will internally simulate the EUF-dnaCMA security
experiment for F and embed its own Σt-instance (with public key pk ′) in the Σ-instance of F
by setting pk := pk ′. Additionally, the seed κ for PRF is chosen internally by F ′.

Say that F makes q = q(k) (non-adaptive) signing requests for messages M1, . . . ,Mq. To
answer these q requests, F ′ can obtain signatures under pk ′ from its own EUF-dnaCMA∗m
experiment. The corresponding tags are chosen as in Σ.Sig, as t(j)i = PRFTiκ (Mj), j ∈ [q].
Once F produces a forgery σ∗ = (σ∗i )

l
i=1 for a message M∗, F ′ will try to use σ∗i∗ (with tag

t∗i∗ = PRFTi∗κ (M∗) for some appropriate i∗ ∈ [l]) as its own forgery.
Indeed, σ∗i∗ will be a valid Σt-forgery (in the EUF-dnaCMA∗m experiment) if

(a) F ′ did not initially request signatures for more than m messages for the forgery tag t∗i∗

(b) t∗i∗ already appears in at least one of F ′’s initial signature requests.
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3.3 Generic Transformation: From Mild to Full Security

Our technical handle to make this event likely is a suitable choice of i∗. First, recall that the
i-th signature σi uses dcie-bit tags. We will hence choose i∗ such that
(i) the probability of an (m+1)-tag-collision among the t(j)i∗ , j ∈ [q], is significantly lower than

F ’s success probability (so F will sometimes have to forge signatures when no (m+ 1)-tag
collision occurs), and

(ii) |Ti∗ | = 2

⌈
ci
∗⌉

is polynomially small (so all tags in Ti∗ can be initially queried by F ′).
The following Lemma 3 is helpful for the analysis of selecting the challenge index in Lemma 4.

Lemma 3 ([HJK11b], Lemma 2.3). Let A be a set with |A| = a. Let X1, . . . , Xq be q inde-
pendent random variables, taking uniformly random values from A. Then the probability that
there exist m + 1 pairwise distinct indices i1, . . . , im+1 such that Xi1 = · · · = Xim+1 is upper
bounded by qm+1

am .

The proof can be found in [HJK11b].

Lemma 4. For index

i∗ :=

⌈
logc

(
log2

(
2 · qm+1

ε(k)

)1/m
)⌉

(3.1)

it holds that

Pr
[
∃ distinct j0, . . . , jm ∈ [q] with t(j0)

i∗ = · · · = t
(jm)
i∗

]
≤ ε(k)

2
, (3.2)

and
|Ti∗ | ≤ p′′(k) (3.3)

for a suitable polynomial p′′(k) and all k ∈ N with ε(k) ≥ 1/p(k).

Proof. From Lemma 3, we obtain

Pr
[
∃ distinct j0, . . . , jm with t(j0)

i∗ = · · · = t
(jm)
i∗

]
≤ qm+1

|Ti∗ |m
=

qm+1

2m·dci
∗e

(3.1)

≤ qm+1(
2qm+1

ε(k)

) =
ε(k)

2
.

Furthermore,

|Ti∗ | = 2dc
i∗e

(3.1)

≤ 2 · 2c·log2((2qm+1/ε(k))1/m) = 2 ·
(

2qm+1

ε(k)

)c/m ε(k)≥1/p(k)

≤ 2 ·
(
2p(k)qm+1

)c/m
,

which is bounded by a suitable polynomial p′′(k).

Now, in a next step, we are able to use known techniques to convert an EUF-dnaCMA secure
signature scheme into an EUF-CMA secure signature scheme, i.e., by applying a chameleon hash
function, as already used in previous works like in [HW09c].

Lemma 5 ([HW09c], Lemma 2.3). Assuming the signature scheme Σ is EUF-naCMA secure
and let CH : M×R → N be a chameleon hash function, there exists a signature scheme Σ’
which is EUF-CMA secure. Concretely,

Adveuf-cma
Σ′,F (k)− 1

|N |
≤ Adveuf-nacma

Σ,F ′ (k),

where F and F ′ are PPT forgers in the EUF-CMA and the EUF-naCMA security experiment,
respectively.

The proof can be found in [HW09c].
Thus, we can apply Lemma 5 to transform our EUF-dnaCMA secure signature scheme from
Theorem 2 into an EUF-CMA secure signature scheme.
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3 A Strongly Secure Digital Signature Scheme

Corollary 1. Applying Lemma 5 to the EUF-dnaCMA secure signature scheme Σ = (Gen, Sig,Ver)
yields an EUF-CMA secure signature scheme Σ′ = (Gen′, Sig′,Ver′).

The proof is conceptual similar to the proof of Lemma 5 and we refer to [BHJKS13; BHJKSS13]
and [Str15] for further details.

3.4 Instantiation: A CDH-Based Scheme

The confined guessing technique enables instantiations of very efficient fully secure digital signa-
tures schemes. In this section we present a concrete CDH-based instantiation. This is the main
result in this thesis related to the confined guessing concept.

Following the described technique as before, we construct a full-fledged EUF-CMA-secure
signature scheme based on the CDH assumption. We start by constructing a tag-based scheme
under the CDH assumption, which achieves EUF-dnaCMA∗m security. Our construction is de-
rived from the stateful CDH-based scheme of Hohenberger and Waters [HW09a], and we prove
it EUF-dnaCMA∗m-secure.

In particular, in the security experiment, the adversary is non-adaptive, i.e. chooses dis-
tinct messages along with not necessarily distinct tags in advance before seeing the public key.
The winning condition requires the adversary to re-use a previously used tag for his forgery
(M∗, t∗, σ∗). In other words, one tag has to be recycled. Thus, the adversary has to commit
to a part of his forgery (M∗, t∗, σ∗) before he even sees the public key. This restriction can be
exploited to embed a CDH-problem in the public key associated with t∗ in a way that enables
to extract a solution of that problem using the forgery.

Then we can apply the generic transformation described in section 3.3 to achieve full EUF-
CMA security. Furthermore, we illustrate some optimizations that allow us to reduce the size of
signatures, for instance using aggregation. Finally, we obtain compact public keys, which only
require O(log(k)) group elements, and short signatures of constant size O(1). At that time, our
scheme was the first fully secure and stateless CDH-based signature scheme with such compact
public keys and short signatures proven secure in the standard model.

3.4.1 Construction

Parameters. From now on, we consider finite groups G and GT of prime order p, generated by
(G, g,GT , p, e)← Grp(1k), where e : G×G→ GT is an efficiently computable non-degenerate
bilinear map, (i.e., e(g, g) 6= 1 for g 6= 1 and e(ga, gb) = e(g, g)ab for a, b ∈ Z).

Our message space in this construction isM = Zp and for arbitrary messages M ∈ {0, 1}∗,
we consider an appropriate collision-resistant hash function H : {0, 1}∗ → Zp. (Technically, if G
is not fixed for a given security parameter, then a fixed message space can be, e.g., Z2` , where
2` lower bounds all possible p = |G| for this security parameter.)

Our tag space in this construction is T = {0, 1}k and thus a tag t is a k-bit string, which can
be interpreted as an element of Zp since p > 2k.
Tag-Based Signature Scheme ΣCDH

t . We construct our CDH-tag-based signature scheme
ΣCDH
t = (Gent,Sigt,Vert) with message spaceM = Zp and tag space T = {0, 1}k as follows (see

also Figure 3.4):

Key Generation. Gent(1
k), on input 1k, runs (G, g,GT , p, e) ← Grp(1k), samples a uniform

random exponent a ← Zp, random group elements u0, . . . , um, z, h ← G and outputs
(pk , sk) := ((G, g,GT , p, e, g

a, u0, . . . , um, z, h), (pk , a)).

Sign. Sigt(sk ,M, t), on input sk , message M ∈ Zp and tag t ∈ {0, 1}k, samples s ← Zp,

computes uM := u0

m∏
i=1

uM
i

i , and outputs (σ̃1, σ̃2) := ((uM )a(zth)s, gs).
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Gent(1
k)

(G, g,GT , p, e)← Grp(1k)
pp := (G, g,GT , p, e)
a← Zp
u0, . . . , um, z, h← G
pk := (pp, ga, u0, . . . , um,

z, h)
sk := (pk , a)
return (pk , sk)

Sigt(sk ,M, t)

s← Zp
uM := u0

m∏
i=1

uM
i

i

σ̃1 := (uM )a(zth)s

σ̃2 := gs

return (σ̃1, σ̃2)

Vert(pk ,M, σ = (σ̃1, σ̃2), t)

if t 6∈ {0, 1}k
return 0

if e(σ̃1, g) 6=
e(uM , ga)e(zth, σ̃2)

return 0
else
return 1

Figure 3.4: The modified Hohenberger-Waters CDH-tag-based signature scheme ΣCDH
t [HW09a].

Verification. Vert(pk ,M, σ, t), on input pk , message M , purported signature σ = (σ̃1, σ̃2), and
tag t outputs 0 if t 6∈ {0, 1}k

∨
e(σ̃1, g) 6= e(uM , ga)e(zth, σ̃2) else 1.

Correctness follows from the bilinearity of the pairing e:

e(uM , ga)e(zth, σ̃2) = e(uM , ga)e(zth, gs) = e((uM )a, g)e((zth)s, g)

= e((uM )a(zth)s, g) = e(σ̃1, g).

Size of Keys and Signature. The public key consists of (m+ 4) group elements, which is a
constant number for a fixed m ∈ N. The secret key consists of the public key and one element
of Zp. The signature consists of 2 group elements.
Comparison to the Hohenberger and Waters Scheme. The tag-based signature scheme
ΣCDH
t described here is derived from the stateful CDH-based scheme of Hohenberger and Waters

[HW09a], but with two crucial modifications. In [HW09a] a signature is of the form

σ = (σ1, σ2, σ3, σ4), with

σ1 = (uMvrd)a(wdlog(state)ezstateh)r̃, σ2 = gr̃, σ3 = r, σ4 = state,

where state is a counter, which increments in every single signing process. As mentioned in
[HW09a], we can think of r̃ (which we denote as s in our construction) as being the randomness
from the Boneh-Boyen selectively-secure Identity-Based-Encryption scheme interpreted as a sig-
nature scheme [BB04a]. We will remove all components from this scheme that are not required
to prove the scheme EUF-dnaCMA∗m-secure.

First, we substitute the implicit chameleon hash function uMvr used in [HW09a] multiplied
with a random group element d with a product uM = u0

∏m
i=1 u

M i

i , which is sufficient for our
non-adaptive case and also relevant for EUF-dnaCMA∗m security since this modification will
allow us to simulate up to m signatures per tag t in the proof. You can think of this product as
a weak programmable hash function [HJK11a].

Second, we omit the wdlog(state)e-factor in the “Boneh-Boyen hash function” which simplifies
this part to (zth)s, where we use a tag t instead of a state. This factor was relevant if the
adversary forges a message with a state it has not queried before, but is not necessary anymore,
since the adversary in the EUF-dnaCMA∗m security experiment has to choose a “recycled” tag
t ∈ {t1, . . . , tq} for which he forges a signature.

Here, q is the number of queries the adversary will make and thus is polynomial in k. Let q′

be the number of distinct tags queried by F . In the reduction it is possible to guess the forgery
tag of the adversary with non-negligible probability 1/q′.
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Theorem 6. If the CDH assumption holds relative to a group generation algorithm Grp(·), then
the scheme ΣCDH

t from Figure 3.4 is EUF-dnaCMA∗m-secure. Let F be a PPT adversary with
advantage ε := Adv

euf-dnacma∗m
ΣCDH
t ,F

(k) asking for q := q(k) signatures, then it can be used to solve a
CDH challenge with probability at least

ε

q′
,

where q′ denotes the number of distinct tags queried by F .

Proof. In the following we need to be able to generate valid signatures for the message-tag pairs
we receive (non-adaptively at the beginning) from the adversary without knowing the secret key.
Therefore we set up the public key in a specific way described below. We obtain q′ distinct tags
t1, · · · , tq′ . We guess one of them and additionally embed a CDH challenge in the public key
which enables to extract a corresponding solution for the problem if the forgery of the adversary
is valid and if the forgery tag is equal to our guess. This happens with probability ε

q′ .

Public Key Setup. The simulation receives a CDH challenge (g, ga, gb), with corresponding
group description (G, g,GT , p, e) ← Grp(1k), and pairs (Mi, ti)i∈[q] for which the adversary F
asks for signatures. We first guess an index i∗ ← [q] for which we suppose F will forge a signature
on a fresh message M∗ /∈ {Mi}i∈[q] but with forgery tag t∗ = ti∗ .

The adversary F queries q =
∑q′

i=1mi > 0 signatures for messages with tags where q′ is the
number of distinct tags (t′i)i∈[q′] and mi the number of messages queried for tag t′i. During the
simulation, we denote the messages corresponding to tag ti∗ as M∗1 , · · · ,M∗mi∗ . We construct a
polynomial f ∈ Zp[X] such that f ′s zeros exactly correspond to the messages M∗1 , · · · ,M∗mi∗ ,
i.e. f(M∗i ) = 0 for i = 1, . . . ,mi∗ , as follows:

f(X) :=

mi∗∏
i=1

(X −M∗i ) =

mi∗∑
i=0

diX
i ∈ Zp[X].

The coefficients d0, . . . , dmi∗ ∈ Zp are efficiently computable. In particular, for mi∗ = 0 we have∏0
i=1(X −M∗i ) = 1.
Using the above coefficients, we set up the public key for F by first choosing random

R0, . . . , Rm, xz, xh ∈ Zp and then set

ui :=

{
(gb)digRi , i = 0, . . . ,mi∗

gRi i = mi∗ + 1, · · · ,m

z := gbgxz ,

h := g−bti∗gxh

embedding gb from its CDH challenge in each group element and the specific tag ti∗ in the group
element h.

The simulation sets
pp := (G, g,GT , p, e)

and sends to the adversary F

pk := (pp, ga, u0, . . . , um, z, h)

and implicitly sets the secret key as
sk := a.

By defining

R(X) :=
m∑
i=0

RiX
i
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we can write

uM = u0

m∏
i=1

uM
i

i

= gb·d0+R0+
∑mi∗
i=1 M i·b·di+

∑m
i=1M

i·Ri

= gb·(
∑mi∗
i=0 di·M i)+

∑m
i=0Ri·M i

= gbf(M)+R(M)

Signing. There are two cases we have to consider when F non-adaptively asks for a signature
for (Mi, ti).
If ti = ti∗ and thus Mi = M∗j for some j = 1, . . . ,mi∗ , we are able to compute a valid signature
as follows: We choose a random si ← Zp and set σi := (σ̃1,i, σ̃2,i), where

σ̃1,i = (ga)R(M∗j ) · (zti∗h)si ,

σ̃2,i = gsi .

This is justified by the fact that f(M∗j ) = 0 and thus gbf(M∗j ) = 1. Hence, we have

σ̃1,i = (ga)R(M∗j ) · (zti∗h)si

= (gbf(M∗j )gR(M∗j ))a · (zti∗h)si

= (uM∗j )a · (zti∗h)si .

Therefore, we have

e(σ̃1,i, g) = e((uM∗j )a · (zti∗h)si , g)

= e(uM∗j , g
a)e(zti∗h, gsi)

= e(uM∗j , g
a)e(zti∗h, σ̃2,i)

resulting in σi = (σ̃1,i, σ̃2,i) being a valid signature for (Mi, ti) (Figure 3.4).
If ti 6= ti∗ then, following the original Boneh-Boyen simulation, we choose a random s′i ← Zp

and set

Si : = gs
′
i/(ga)f(Mi)(ti−ti∗ )−1

= gs
′
i−af(Mi)(ti−ti∗ )−1

.

We compute the corresponding signature σi := (σ̃1,i, σ̃2,i) as follows:

σ̃1,i = (ga)R(Mi) · Sxzti+xhi · (gb)s′i(ti−ti∗ ) ,

σ̃2,i = Si.

Thus, implicitly, we set the randomness si = s′i − f(Mi)(ti − ti∗)−1 mod p and obtain Si = gsi .
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Due to the following identity σi = (σ̃1,i, σ̃2,i) is valid

σ̃1,i = (ga)R(Mi) · Sxzti+xhi · (gb)s′i(ti−ti∗ )

= (gR(Mi))a · (gxztigxh)si · (gb)s′i(ti−ti∗ )

= (gab)f(Mi) · (gab)−f(Mi) · (gR(Mi))a · (gxztigxh)si · (gb)s′i(ti−ti∗ )

= (gab)f(Mi) · (gR(Mi))a · (gxztigxh)si · (gb)s′i(ti−ti∗ ) · (g−ab)f(Mi)

= (gab)f(Mi) · (gR(Mi))a · (gxztigxh)si · (gb(ti−ti∗ ))

si︷ ︸︸ ︷
s′i−af(Mi)(ti−ti∗ )−1

= ((gbf(Mi)+R(Mi))a · (gxztigxh)si · (gb(ti−ti∗ ))si

= (uMi)
a · (gxzti · gbti · gxh · g−bti∗ )si

= (uMi)
a · ((gb+xz)ti · (g−bti∗+xh))si

= (uMi)
a · (ztih)si .

Extract from Forgery. After receiving the public key pk and the signatures (σi)i∈[q], the
adversary F responds with (M∗, σ∗, t∗) for some tag t∗ ∈ {t1, . . . , tq′} and σ∗ = (σ̃∗1, σ̃

∗
2) . We

abort if σ∗ is not a valid forgery or any other winning condition is violated. Otherwise, since
the verification equation holds, we have

σ̃∗1 = (uM∗)a(zt
∗
h)s
∗
,

σ̃∗2 = gs
∗
.

for some suitable s∗.
If ti∗ 6= t∗, we abort. Otherwise, our guess was correct (ti∗ = t∗) and it holds that

σ̃∗1 = (uM∗)a(zt
∗
h)s
∗

= ((gb)f(M∗)(gR(M∗)))a((gb+xz)t
∗
(g−bti∗+xh))s

∗

(∗)
= gabf(M∗)gaR(M∗)(gxzt

∗
gxh)s

∗

= gabf(M∗)gaR(M∗)gs
∗(xzt∗+xh),

where (∗) follows because ti∗ = t∗. Since σ∗ is a valid forgery, we have M∗ /∈ {M∗1 , . . . ,M∗mi∗}.
Thus we have f(M∗) 6= 0 and the simulator is able to compute

R(M∗), and thus (ga)R(M∗)

xzt
∗ + xh, and thus σ̃∗

(xzt
∗+xh)

2

f(M∗)−1 in Zp.

Hence, the following computation yields gab :

(σ̃∗1/(g
aR(M∗)σ̃∗

(xzt
∗+xh)

2 ))f(M∗)−1
= (gabf(M∗)+aR(M∗)+s∗(xzt∗+xh) · g−aR(M∗)−s∗(xzt∗+xh))f(M∗)−1

= (gabf(M∗))f(M∗)−1

= gab.

Analysis. We show that the adversary F cannot distinguish between the experiment and the
simulation. By ε we denote the advantage of the adversary F in the experiment and by success
the event, that the simulation outputs a solution gab. The simulator does not pick (ui)

m
i=0,

z, and h at random, but sets them as described above. Since the Ri, xz and xh are chosen
randomly and independently, this yields the correct distribution, so the view of the adversary is
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still identical to his view in the experiment and the signatures are correctly distributed. Hence,
the simulator is successful if it does not abort and if F is successful. Further, if F is successful,
an abort only occurs if t∗ is not guessed correctly (out of q′ possibilities). Thus, we have

Pr [success] = Pr [F successful] · Pr [ti∗ = t∗] =
ε

q′
.

3.4.2 Full EUF-CMA-Security and Optimizations

Now, we can use the generic transformation from Theorem 2 and our result from Theorem 6
to construct a stateless EUF-dnaCMA secure signature scheme. To achieve a fully EUF-CMA-
secure signature scheme, we add a chameleon hash function (see Lemma 5). Additionally, we use
aggregation to optimize the length of the signatures. We first give a description of the optimized
CDH-based scheme ΣCDH

opt and explain these steps in more detail afterwards.
We construct our optimized CDH-based signature scheme ΣCDH

opt = (Gen, Sig,Ver) with mes-
sage space M = Zp, a pseudorandom function PRFTiκ with range Tk = {0, 1}k for generating
internal tags ti from corresponding tag space Ti = {0, 1}dcie and l := blogc(k)c instances as
described in section 3.3 as follows (see Figure 3.5):

Key Generation. Gen(1k), on input 1k, runs (G, g,GT , p, e) ← Grp(1k), samples a random
exponent a ← Zp, random group elements w, u0, . . . , um, z1, . . . , zl, h ← G, a random
κ ∈ {0, 1}k, and outputs (pk , sk) := ((G, g,GT , p, e, w, κ, g

a, u0, . . . , um, z, h), (pk , a)).

Sign. Sig(sk ,M), on input sk and message M ∈ Zp, samples s, r ← Zp, computes x := gMwr =

CH(g,w)(M, r), ux := u0
∏m
i=1 u

xi
i , ti := PRFTiκ (x) for i = 1, . . . , l, and zt :=

∏l
i=1 z

ti
i and

outputs (σ̃1, σ̃2, r) := ((ux)a(zt · h)s, gs, r).

Verification. Ver(pk ,M, σ), on input pk , message M , purported signature σ = (σ̃1, σ̃2, r),
computes x := CH(g,w)(M, r), and ti := PRFTiκ (x), for i = 1, . . . , l, and outputs 1 if

e(σ̃1, g) = e(ux, ga)e(h
l∏

i=1
ztii , σ̃2), else 0.

Correctness follows again from the bilinearity of the pairing e:

e(ux, ga)e(h
l∏

i=1

ztii , σ̃2) = e(ux, ga)e(zt · h, gs) = e((ux)a, g)e((zt · h)s, g)

= e((ux)a(zt · h)s, g) = e(σ̃1, g).

Additional Group Elements in the Public Key. The public key pk of our optimized
CDH-based scheme ΣCDH

opt consists of additional group elements w, z1, . . . , zl compared to our
CDH-based scheme ΣCDH. The group element w is necessary to implement the chameleon hash
function CH(g,w)(M, r) := gMwr from section 3.2, where the trapdoor τ is the exponent logg(w).
We recall, that given a valid signature σ = (σ̃1, σ̃2, r) for a message M with randomness r,
it is possible to use the trapdoor of the chameleon hash function to compute a randomness
r′ = CHTrapColl(τ,M, r,M ′) for a message M ′ such that σ′ = (σ̃1, σ̃2, r

′) is a valid signature for
M ′. Note that this new signature is computable without knowing the secret key sk = a but only
by knowing the trapdoor of the chameleon hash function and a valid signature for M . This is
a useful tool to convert EUF-dnaCMA-secure signature schemes to EUF-CMA-secure signature
schemes (see also Lemma 5).

Furthermore, the group elements z1, . . . , zl are necessary for aggregation: In the generic trans-
formation we used blogc(k)c instances of an EUF-dnaCMA∗m-secure tag-based scheme to achieve
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Gen(1k)

(G, g,GT , p, e)← Grp(1k)
a← Zp
w, u0, . . . , um,
z1, . . . , zl, h← G
κ← {0, 1}k
pp := (G, g,GT , p, e, w, κ)
pk := (pp, ga, u0, . . . , um,

z1, . . . , zl, h)
sk := (pk , a)
return (pk , sk)

Sig(sk ,M)

s, r ← Zp
gMwr = CH(g,w)(M, r)

x := gMwr

ux := u0
∏m
i=1 u

xi
i

for i := 1 to l do
ti := PRFTiκ (x)

zt :=
∏l
i=1 z

ti
i

σ̃1 := (ux)a(zt · h)s

σ̃2 := gs

return (σ̃1, σ̃2, r)

Ver(pk ,M, σ = (σ̃1, σ̃2, r))

x := CH(g,w)(M, r)
for i := 1 to l do
ti := PRFTiκ (x)

if e(ux, ga)e(h
l∏

i=1
ztii , σ̃2)

= e(σ̃1, g)
return 1

else
return 0

Figure 3.5: The optimized CDH-based signature scheme ΣCDH
opt .

an EUF-dnaCMA-secure scheme. Adding a chameleon hash function for each instance already
achieves EUF-CMA security. However, this would result in signatures comprising O(log k) group
elements of the form σ = (σ1, . . . , σlog k), where σi = (σ̃1,i, σ̃2,i, ri). To improve this and achieve
constant size signatures, we use aggregation, i.e. we essentially multiply the signatures of each
instance similar to [LOSSW06]. In particular, an aggregated signature in our optimized scheme
is of the form σ = (σ̃1, σ̃2, r) = ((ux)a(zt · h)s, gs, r), where x = gMwr is the chameleon hash
value, i.e we replace the term zt with a product zt :=

∏l
i=1 z

ti
i . Despite the use of aggregation,

we can re-use u0, . . . , um, h, one sk := a and one randomness s for all instances i. This is due
to the fact that during the reduction the simulation is able to set up these elements as before
and it is only necessary to use distinct zi, since the simulation embeds the CDH challenge only
in one specific zi∗ such that it is still possible to generate valid signatures but also to extract a
solution from the forgery signature.

Unfortunately, to account for constant-size signatures, our public key consists now of O(log k)
group elements. In this sense our optimization is rather a tradeoff: We prefer constant-size
signatures with public keys of logarithmic-size over logarithmic-size signatures with constant-
size public keys. Public keys are transmitted only once, whereas signatures are transmitted more
often.

Theorem 7. If the CDH assumption holds relative to a group generation algorithm Grp(·),
then the optimized CDH-based signature scheme ΣCDH

opt in Figure 3.5 is an EUF-CMA-secure
signature scheme. Let F be a PPT adversary with advantage ε := Adveuf-cma

ΣCDH
opt ,F

(k) asking for
q := q(k) signatures, then it can be used to solve a CDH challenge with probability at least

εc/m+1 − 2εc/m(εPRF + εCH)

22+c/m · qc+c/m
,

where εPRF and εCH correspond to the advantages for breaking PRF and CH, respectively.

Proof. We only sketch the proof here, because it is essentially a combination of Theorem 2,
Lemma 4, Lemma 5 and the proof from Theorem 6. We emphasize the differences and important
parts. In particular, we have to deal with l = blogc(k)c instances and obtain our signature by
generic aggregation.
Public Key Setup. First, we select an index i∗, as in Lemma 4, and guess a tag ti∗ from the
corresponding set Ti∗ . Next, we pick a random κ← {0, 1}k, a random τ ← Zp and set w := gτ .
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Thus, τ is a trapdoor for the chameleon hash function CH(g,w). Then, we sample random distinct
M ′1, . . . ,M

′
q, r
′
1, . . . , r

′
q ← Zp and compute the chameleon hash values

xj = CH(g,w)(M
′
j , r
′
j),

for messageM ′j and corresponding randomness r′j , j ∈ [q].1 Due to the collision resistance of the
chameleon hash function and the fact that |Zp| >> q, we can assume that all xj are distinct,
otherwise we abort. We derive tags

t
(j)
i := PRFTiκ (xj)

for each instance i ∈ [l] and each query j ∈ [q]. We recall, for messageM ′j , we have corresponding

tags t(j)1 , . . . , t
(j)
l for each instance.

Then, we consider the set J := { j ∈ [q] | t(j)i∗ = ti∗}. Hence, |J | is the number of all messages
M ′j , which corresponding tag t(j)i∗ used for instance i∗ is the same as our guessed tag ti∗ . If
|J | > m, we abort, otherwise |J | =: mi∗ ≤ m. Similar to the proof of Theorem 6, we define a
polynomial f ∈ Zp[X] s.t. f(xj) = 0 iff j ∈ J . Hence, f is of the form

f(X) :=
∏
j∈J

(X − xj) =

mi∗∑
i=0

diX
i,

for appropriate coefficients d0, . . . , dmi∗ ∈ Zp.
We sample u0, . . . , um, h as in the proof of Theorem 6 to embed our CDH challenge. Further,

we choose random group elements zi for i ∈ [l] by choosing random exponents xzi ∈ Zp for them
and additionally embed the CDH challenge in zi∗ , i.e.:

ui :=

{
(gb)digRi , i = 0, . . . ,mi∗

gRi i = mi∗ + 1, · · · ,m

zi :=

{
gxzi , i 6= i∗

gbgxzi∗ , i = i∗

h := g−bti∗gxh .

The simulation sets

pp := (G, g,GT , p, e, w, κ),

and sends to the adversary F

pk := (pp, ga, u0, . . . , um, z1, . . . , zl, h)

and, hence, implicitly sets the secret key as

sk := a.

By defining R(X) :=
∑m

i=0RiX
i, we can write

ux = gbf(x)+R(x).

Signing. After receiving the public key pk , the adversary adaptively queries messagesM1, . . . ,Mq.
The simulation has to be able to produce correctly distributed valid signatures σ(j) = (σ̃1,j , σ̃2,j , rj)

1Here, we assume to know the number of signatures q ≥ 0 the adversary F is going to query.
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for each of them. To do so, we first compute rj s.t. xj = CH(g,w)(Mj , rj), by using the trapdoor
τ . Thus, the tags t(j)i = PRFTiκ (xj) belong to Mj , for i = 1, . . . , l.

Now, we consider the instance i = i∗ for each query: Again, we have two cases, either t(j)i∗ = ti∗

or t(j)i∗ 6= ti∗ . In both cases we can apply the same techniques as in the proof of Theorem 6 to

obtain an appropriate (uxj )
a(z

t
(j)
i∗
i∗ h)sj .

For the other instances i 6= i∗, we compute (z
t
(j)
i
i )sj = (gxzi t

(j)
i )sj = (gsj )xzi t

(j)
i due to the fact

that we know the exponents xzi .
Then we can aggregate all zi, i = 1, . . . , l, by muliplying them together, to obtain a valid

signature for each query Mj , j ∈ [q], as follows:

σ̃1,j = (uxj )
a(h

l∏
i=1

z
t
(j)
i
i )sj ,

σ̃2,j = gsj ,

σ(j) := ((uxj )
a(h

l∏
i=1

z
t
(j)
i
i )sj , gsj , rj) = (σ̃1,j , σ̃2,j , rj).

Extract from Forgery. Finally, the adversary F responds with (M∗, σ∗) where σ∗ =

(σ̃∗1, σ̃
∗
2, r
∗). We abort if σ∗ is not valid or M∗ is not fresh, i.e. M∗ = Mj , for some j ∈ [q]. We

can assume that F has not produced a collision x∗ = CH(g,w)(M
∗, r∗) = xj for some j ∈ [q]. The

probability of that is negligible due to the collision resistance of the chameleon hash function.
Thus, we have f(x∗) 6= 0. We compute t∗i = PRFTiκ (x∗) for each instance i ∈ [l]. If t∗i∗ 6= ti∗ , we
guessed ti∗ incorrectly and abort, otherwise since the verification equation holds we have

σ̃∗1 = (ux∗)a(h
l∏

i=1

z
t∗i
i )s

∗
,

σ̃∗2 = gs
∗

for some suitable s∗.
We can compute (gs

∗
)xzi t

∗
i = (z

t∗i
i )s

∗ for i 6= i∗ and obtain

σ∗1/
l∏

i=1,i 6=i∗
(z
t∗i
i )s

∗
= (ux∗)a(z

t∗
i∗
i∗ h)s

∗
.

Since f(x∗) 6= 0 and t∗i∗ = ti∗ we are able to extract a solution gab to the CDH challenge as
follows:

(ux∗)a(z
t∗
i∗
i∗ h)s

∗
= ((gb)f(x∗)gR(x∗))a((gb+xzi∗ )t

∗
i∗ (g−bti∗+xh))s

∗

(∗)
= ((gb)f(x∗)gR(x∗))a(gbt

∗
i∗+xzi∗ t

∗
i∗−bt

∗
i∗+xh)s

∗

= gabf(x∗)gaR(x∗)(gxzi∗ t
∗
i∗gxh)s

∗

= gabf(x∗)gaR(x∗)gs
∗(xzi∗ t

∗
i∗+xh).

where (∗) follows because of t∗i∗ = ti∗ . Thus

(gabf(x∗)gaR(x∗)gs
∗(xzi∗ t

∗
i∗+xh)/(gaR(x∗)σ̃∗

(xzi∗ t
∗
i∗+xh)

2 ))f(x∗)−1
= gab.

Analysis. The analysis is similar to Theorem 2, Lemma 4, Lemma 5 and the proof of Theorem 6.
We denote by ε the advantage of the adversary F in the experiment and by success the event
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that the simulation outputs a solution gab. Hence,

Pr[success] ≥ Pr[ti∗ = t∗]
(ε

2
− (εPRF + εCH)

)
=

1

|Ti∗ |

(ε
2
− (εPRF + εCH)

)
(∗)
≥ ε1+c/m − 2εc/m(εPRF + εCH)

22+c/m · qc+c/m
,

where (∗) holds by Lemma 4, since we have |Ti∗ | ≤ 2 ·
(

2qm+1

ε(k)

)c/m
. Here, εPRF is the advantage

for a suitable adversary on PRF and εCH is the advantage to produce a collision for CH, both
being negligible in the security parameter.

Remark 1. We want to clarify once again, why we have to use O(log(k)) group elements in the
public key. In the security proof we have to set up the public key elements in a way that enables
to generate valid signatures and to extract a solution gab of the CDH challenge from the forgery
of the adversary. If we would re-use the group element z for aggregation instead of different zi’s
our product would then be of the form

zt =
l∏

i=1

zti = z
∑l
i=1 ti .

In the security proof we embed the CDH challenge in one specific zi∗ = gbgxzi∗ tailored to ti∗
and set zi = gxzi , for i 6= i∗. Now, we would have to embed the challenge in z = gbgxz , which
results in

zt = z
∑l
i=1 ti = g(b+xz)

∑l
i=1 ti

After receiving a valid forgery σ∗ = (σ̃∗1, g
s∗ , r∗) from the adversary, we are not able to compute

a solution gab, anymore, since we need to compute

(z
∑
i6=i∗ ti)s

∗
= (g(b+xz)

∑
i6=i∗ ti)s

∗

for that. Thus, we have to use either b or s∗ to compute

(gb)s
∗

= (gs
∗
)b

which we both do not know.

3.5 State-of-the-Art

In [BHJKS13; BHJKSS13] further instantiations based on the RSA and Short Integer Solutions
(SIS) assumption, respectively, are given. These are not part of this thesis, but will be briefly
mentioned for completeness.

3.5.1 RSA- and SIS-Based Instantiations

With the generic transformation from section 3.3 it is not only possible to construct EUF-
CMA-secure digital signatures under the CDH assumption (see section 3.4) but also under the
RSA and SIS assumption. For RSA, similar to CDH, further optimizations on the system’s
parameters (e.g. aggregation of signatures) can be done (see [BHJKS13; BHJKSS13]). Both
public key and signatures consist of O(1) elements. This yields to the most efficient (also in
terms of computation time) fully secure RSA-based scheme known at that time.

In the SIS-based scheme, signatures consist of O(log(k) ·m) and verification keys of O(n ·m)
group elements, where n,m denote the usual SIS matrix dimensions. Compared to SIS-based
schemes at that time, this gives very small public keys, at the price of slightly larger signatures.
This is due to the fact that aggregation techniques for lattice-based signatures rarely existed at
that time.
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3.5.2 Recent Improvements

In [XQZL14] based on the confined guessing technique, especially for the lattice-based signature
scheme, they construct a lattice-based tag-based signature scheme with shorter signature length
proven strongly secure in the standard model. They reduce the size of the signature by adopt-
ing the technique of lattice basis delegation with fixed dimension. Shortly after that [DM14]
combines the confined guessing technique with the “vanishing trapdoors” technique of Boyen
[Boy10] and achieves short signatures consisting only of a single lattice vector but with larger
public keys. This has been improved to short public keys and short signatures in [AS15]. But all
of these works, including ours, have a rather large security loss in the reduction. The latest work
from Boyen and Li [BL16] and Alperin-Sheriff and Apon [ASA17] for the first time constructed
lattice-based signature schemes with short signatures and rather efficient security reductions. In
[BL16] they have an almost tight security reduction which was improved in [ASA17] to a tight
security reduction. However, both still require large public keys.

Concerning tight security reductions Kajita et al. [KOF17] present a signature scheme with
the tightest security reduction among known constant-size signature schemes secure under the
CDH assumption. They first construct a signature scheme, satisfying a new security notion,
denoted as existentially unforgeable against extended random-message attacks (EUF-XRMA),
based on our construction but with a tighter security reduction. They transform it to an EUF-
CMA-secure scheme without loosing the tightness.
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4 A Fault-Tolerant Aggregate Signature
Scheme

An aggregate signature scheme is a variant of a digital signature scheme which allows to compress
a big amount of individual signatures from different signers into one short signature, referred
to as the aggregate signature [BGLS03]. This is very useful for saving verification computa-
tions, bandwidth and storage space. Therefore, aggregate signatures have plenty of applications
[AGH10].

For example, a well-known field of application are sensor networks [CCMT09], which consist
of several small sensors that measure an aspect of their physical environment and send their
findings to a central base station. Digital signatures ensure the integrity and authenticity of the
measurements during transfer from the sensors to the base station. Using a conventional digital
signature scheme, the verifying base station would need to receive each signature separately,
which is bandwidth-intensive. However, if the signatures were aggregated beforehand using
an aggregate signature scheme, the bandwidth consumption on the side of the base station is
reduced drastically. Also, verifying an aggregate signature is typically considerably faster than
verifying all individual signatures.

However, if the aggregate signature contains only one invalid individual signature, the verifica-
tion algorithm outputs invalid. Moreover, there is no way to identify which individual signatures
are invalid or which individual signatures are still valid.

To overcome this problem, we construct the first fault-tolerant aggregate signature scheme,
published in [HKKKR16]. A fault-tolerant aggregate signature scheme extends an aggregate
signature scheme, such that the verification algorithm does not only output valid or invalid
but instead the list of correctly signed messages belonging to an aggregate signature. That is
desirable for many applications, since an invalid aggregate signature results in re-computing and
re-sending all data.

We emphasize here, that we almost entirely taken the important parts of these chapter from
[HKKKR16], partly verbatim, with some useful additions, descriptions and further explanations.

Our Contribution

We construct the first d-fault-tolerant aggregate signature scheme based on d-cover-free families,
which are a combinatorial structure related to error-correcting codes and are able to “handle” up
to d errors. In a d-fault-tolerant aggregate signature scheme the verification algorithm outputs a
list of correctly signed messages instead of only valid or invalid. This prevents re-computations
and re-sending of large amounts of data. Thus, we define a new cryptographic building block
and show an instantiation with respect to a concrete d-cover-free family based on polynomials
over a finite field.

4.1 Organization

In section 4.2 we give some necessary definitions and notations and repeat the notion of aggregate
signatures. We discuss the notion of fault-tolerance in section 4.3. The verification algorithm
of our fault-tolerant aggregate signature scheme is able to identify the subset of all messages
belonging to an aggregate that were signed correctly, provided that the number of aggregated
faulty signatures does not exceed a certain bound.
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In section 4.4 we give a construction of a d-fault-tolerant aggregate signature scheme from
an ordinary aggregate signature scheme based on a d-cover-free family [Für96], where d denotes
the number of faulty individual signatures, the scheme can cope with. An aggregate signature
of our scheme is a vector of aggregated signatures of the underlying scheme. The maximum
number n of signatures that can be aggregated in our scheme must be fixed in advance, and
thus, is bounded. The size of the vector, i.e. of our aggregate signature, is logarithmic in n.

We also show an unbounded construction in section 4.4.1, where the length of the aggregate
signature grows linearly in the number of aggregated signatures, but the factor in this linear
function can be made arbitrarily small.

In section 4.4.2 we present an additional feature of our scheme, denoted as selective veri-
fication. Selective verification enables to verify some individual message-signature pair in an
aggregate signature without verifying the whole aggregate, which speeds up verification.

In section 4.5 we give a concrete instantiation of a d-cover-free family which is based on
polynomials over a finite field [KRS99]. We generalize this to multivariate polynomials in section
4.5.3.

In section 4.6.1 we mention a useful application of our d-fault-tolerant aggregate signature
scheme in the secure logging scenario, published in [HKKKH17], which is not part of this thesis.

4.2 Preliminaries

In this section we will give some necessary existing definitions and notations.

Definition 16 (Multiset, Multiplicity). A multiset is a pair (T, µ), where T is a set and µ : T →
N>0 is a mapping to the strictly positive natural numbers. For t ∈ T the natural number µ(t)
is the multiplicity (number of occurrence) of t in T . In the following we will omit the mapping
µ, when using multisets.

For two multisets T1, T2, the union T1 ∪ T2 is defined as the multiset where the multiplicity
of each element in T1 ∪ T2 is the sum of the multiplicities in T1, T2.

Remark 2. We consider multisets which consists of public key and message pairs, e.g. T =
((pk1,M1), . . . , (pkn,Mn)). Note, that the public keys and messages are not necessarily distinct.

Aggregate Signatures. We quickly review the definition of aggregate signature schemes and
the associated security notion, defined in [BGLS03].

Definition 17. An aggregate signature scheme Σ = (Gen,Sig,Agg,Verify) with message space
Mk consists of four PPT algorithms:

Key Generation. Gen(1k), on input 1k, outputs a key pair (pk , sk).

Sign. Sig(sk ,M), on input a secret key sk and a message M , outputs a signature σ.

Aggregation Agg(C1, C2, τ1, τ2), on input two multisets of public-key and message pairs C1

and C2 and corresponding (aggregate) signatures τ1 and τ2, outputs (C, τ), where τ is an
aggregate signature, certifying the validity of the messages in C := C1 ∪ C2 under the
corresponding public keys.

(Aggregate) Verification. Verify(C, τ), on input a multiset of public key and message pairs C
and an (aggregate) signature τ for C, outputs 1, if the signature is valid, and 0 otherwise.

We require Σ to be correct in the sense that for any k ∈ N:

(Gen, Sig,Verify′) is correct ∧ [Verify(C1, τ1) = 1 ∧ Verify(C2, τ2) = 1⇒ Ver(C1, C2, τ1, τ2) = 1],

where

Verify′(C, σ) =

{
Verify(C, σ), |C| = 1

0, else
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Security Notion for Aggregate Signatures. Following [BGLS03], we define a security
notion for aggregate signature schemes in the aggregate chosen-key model, dubbed EUF-agg-
CMA security, where the security notion and experiment is defined in Definition 18, and briefly
described here:

• The challenger generates a pair of keys (pk , sk)← Gen(1k) and gives the public key pk to
the adversary.

• The adversary F may (adaptively) issue signature queries Mi to a signature oracle, which
responds with σi ← Sig(sk ,Mi).

• Finally, F outputs a multiset of public key and message pairs C∗ and an (aggregate)
signature τ∗.

The adversary wins the experiment iff there is a message M∗ such that c∗ = (pk ,M∗) is in
C∗, Verify(C∗, τ∗) = 1, and M∗ has never been submitted to the signature oracle.

Definition 18 (EUF-agg-CMA). An aggregate signature scheme Σ is existentially unforgeable
in the aggregate chosen-key model under chosen message attacks (EUF-agg-CMA-secure) if

Adveuf-agg-cma
Σ,F (k) := Pr

[
Expeuf-agg-cma

Σ,F (k) = 1
]

is negligible for any PPT adversary F . The experiment Expeuf-agg-cma
Σ,F (k) is defined in Figure 4.1.

Experiment Expeuf-agg-cma
Σ,F (k)

(pk , sk)← Gen(1k)
(C∗, τ∗)← F Sig(sk ,·)(pk)
if Verify(C∗, τ∗) = 1

and ∃ c∗ =: (pk ,M∗) ∈ C∗
and F has not queried Sig(sk ,M∗)

return 1
else
return 0

Figure 4.1: EUF-agg-CMA experiment for aggregate signature schemes.

Cover-Free Families. For our construction of a fault-tolerant aggregate signature scheme in
section 4.4 and section 4.5 we employ a d-cover-free family [Für96], which allows us to detect
up to d invalid individual signatures in our aggregate signature.

Definition 19 (d-Cover-Free Family, [Für96]). A d-cover-free family F = (S,B) (denoted by
d-CFF) consists of a set S of m elements, the universe, and a set B of n subsets of S, where
d < m < n, such that: For any d subsets Bi1 , . . . , Bid ∈ B and all B ∈ B \ {Bi1 , . . . , Bid}, it
holds that

|B \
d⋃

k=1

Bik | ≥ 1.

In other words, it is not possible to cover a single subset with at most d different subsets. To
get a better representation of a d-CFF and to simplify the handling of it, we will use a matrix
in the following way:

Definition 20 (Incidence Matrix). For a d-CFF F = (S,B), where the elements of S and B
have a well-defined order, such that we can write S = {s1, . . . , sm}, B = {B1, . . . , Bn}, we define
its incidence matrix M∈ {0, 1}m×n as follows:
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M[i, j] =

{
1, if si ∈ Bj ,
0, otherwise.

The i-th row ofM is denoted byMi ∈ {0, 1}n, for i ∈ {1, . . . ,m}.

So, si ∈ S corresponds to row i and Bj ∈ B corresponds to column j, i.e. rows(M) = m
(number of rows) and cols(M) = n (number of columns).

4.3 Fault-Tolerant Aggregate Signatures

In this section we explain the concept of fault-tolerance and mention some useful notations, to
simplify the syntax of a fault-tolerant aggregate signature scheme.
Claims and Claim Sequences. As a notational convenience, we introduce the concept of
claims.

Definition 21 (Claim). A claim c is a pair (pk ,M) of a public key and a messageM , conveying
the meaning that the owner of pk has authenticated the message M .

In this sense, a signature σ for M that is valid under pk is a proof for the claim c. This
definition simplifies the representation of our algorithms.

The signature scheme we introduce in section 4.4 requires an order among the claims. Since
the actual order is arbitrary, it must be supported by the aggregation and verification algorithms.
We therefore define fault-tolerant signature schemes based on sequences of claims, instead of
multisets of claims. We now give a formal definition and explain in more detail afterwards.

Definition 22 (Claim Sequence, claim placeholder). A claim sequence C is a tuple of claims
c and claim placeholders ⊥. The multiset of elements of a claim sequence C excluding ⊥ is
denoted by elem (C).

Example 1. C = (c1, c2,⊥, c4) is a claim sequence of length 4 and contains the claims c1, c2, c4

on position 1, 2 and 4 and one claim placeholder ⊥ on position 3. The multiset of elements of
C is elem (C) = {c1, c2, c4}.

We make use of claim placeholders ⊥, since in the general aggregation setting we have to deal
with ‘incomplete’ claim sequences, i.e. a claim sequence does not necessarily contain a claim at
position j.

When aggregating the signatures of two such incomplete claim sequences C1, C2, the claim se-
quences will be merged, we write C1 tC2, meaning that claim placeholders in C1 are replaced by
actual claims from C2, for each position j where C1[j] = ⊥ and C2[j] 6= ⊥, and vice versa. (This
merging operation replaces the multiset union used by general aggregate signature schemes.)

More precisely, when we want to aggregate an individual signature σ for a claim c into an
aggregate signature τ ′ corresponding to claim sequence C ′, we have to assign a unique ‘position’
j to c, such that C ′[j] = ⊥, for j ∈ {1, . . . , |C ′|} or j := |C ′| + 1, to obtain a new aggregate
signature τ with a new corresponding claim sequence C, where c is included on position j, i.e.
C[j] = c. If one wishes to verify τ , one must call Verify with the claim sequence C. Therefore,
two aggregate signatures τ1, τ2 for two claim sequences C1, C2 can not be aggregated if C1[j] 6= ⊥
and C2[j] 6= ⊥ for some j.

Thus, our scheme does not support fully flexible, arbitrary aggregation, i.e. without regarding
any order. However, if the signers agree in advance on the positions j of their claims, they can
aggregate all their signatures into a single combined signature τ . This precondition can easily be
satisfied in many applications. In wireless sensor networks for example, one only has to configure
each sensor to use a different predefined position j. Moreover, it is always possible to use our
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scheme as a sequential aggregate signature scheme (for more details see [LMRS04b]), since the
position j of a claim needs only be determined when it is first aggregated. Hence, our scheme
fits for all applications where sequential aggregate signatures are sufficient, too, such as secure
logging [MT08].

More formally, we define the mergeability of claim sequences as follows:

Definition 23 (mergeable, exclusively mergeable). Two claim sequences C1, C2 are mergeable
if for all i ∈ {1, . . . ,min(|C1| , |C2|)} it holds that C1[i] = ⊥ or C2[i] = ⊥ or C1[i] = C2[i]. C1, C2

are called exclusively mergeable, if for all such i it holds that C1[i] = ⊥ or C2[i] = ⊥.

Definition 24 (merged claim sequence, empty signature). Let C1 and C2 be two mergeable
claim sequences of length k and l, respectively. Without loss of generality, assume k ≤ l. Then
the merged claim sequence C1 tC2 is (c1, . . . , cl), where

ci :=

{
C1[i], if C2[i] = ⊥, C2[i] = C1[i] or i > k,

C2[i], otherwise.

The empty signature λ is a signature valid for exactly the claim sequences containing only ⊥
and the empty claim sequence, defined as 〈〉.

In particular, two exclusively mergeable sequences are mergeable.

Example 2. For example, let c1, c2, c3 be distinct claims. Define C1 := (⊥, c2, c3), C2 :=
(c1,⊥,⊥), C ′2 := (c1, c2,⊥), C ′′2 := (c1, c3, c2). Then,

• C1, C2 are exclusively mergeable, C1 tC2 = (c1, c2, c3), because for all i ∈ {1, 2, 3} either
C1[i] = ⊥ or C2[i] = ⊥.

• C1, C
′
2 are mergeable, but not exclusively mergeable, C1 tC ′2 = (c1, c2, c3), because

C1[2] = C ′2[2] 6= ⊥.

• C1, C
′′
2 are not mergeable, since e.g. ⊥ 6= C1[2] 6= C ′′2 [2] 6= ⊥.

For technical reasons, as already mentioned we only allow exclusivley mergeable claim se-
quences C1 and C2 as input of our aggregation algorithm (i.e. there is no position where C1 and
C2 both contain a claim, even if these claims are identical). As a consequence, if a signature τ
is aggregated into two different aggregate signatures τ1, τ2 using the same position j, τ1 and τ2

can not be aggregated. Note, however, that this does not exclude the possibility to aggregate τ
into τ1 and τ2 at different positions.

Definition 25 (Subsequences). Let C = (c1, . . . , cn), n ∈ N, be a tuple and b ∈ {0, 1}n be a
bit sequence specifying a selection of indices. Then C[b] is the subsequence of C of length n
containing exactly the elements cj where b[j] = 1, replacing all other claims by ⊥.

Example 3. In particular, ifM is an incidence matrix of a cover-free family F = (S,B), then
C[Mi] is the subsequence containing all cj , where M[i, j] = 1, for j = 1, . . . , |B|, and ⊥ at all
other positions.

Syntax of Fault-Tolerant Aggregate Signature Schemes. We are now prepared to define
fault-tolerant aggregate signature schemes. The main difference of such a scheme compared to
an ordinary aggregate signature scheme is that its verification algorithm does not only output
a boolean value 1 or 0 that identify if either all claims are valid or at least one claim is invalid,
but it outputs a multiset of valid claims.

Thus, the ouput of the verification algorithm gives (some) information on which claims in
C are valid. If the signature, for example, include more errors than the scheme can cope with,
Verify may output just a subset of the valid claims. Other claims may be clearly false or just
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not certainly true. (The verification algorithm ought to be conservative and reject a claim in
case of uncertainty.)

The aggregation algorithm is called with two claim sequences, hence, before aggregating, a
single claim c must be converted to a claim sequence C := (⊥, . . . ,⊥, c) by assigning a position
to c.

Definition 26. An aggregate signature scheme with list verification1 Σ = (Gen,Sig,Agg,Verify)
and message spaceMk consists of four PPT algorithms as follows:

Key Generation. Gen(1k), on input 1k, outputs a key pair (pk , sk).

Sign. Sig(sk ,M), on input a secret key sk and a message M , outputs a signature σ.

Aggregation. Agg(C1, C2, τ1, τ2), on input two exclusively mergeable claim sequences C1 and C2

and corresponding (aggregate) signatures τ1 and τ2, outputs (C, τ), where τ is an aggregate
signature, certifying the validity of the claim sequence C := C1 tC2.

List Verification Verify(C, τ), on input a claim sequence C and an (aggregate) signature τ for
C, outputs a multiset of claims Cvalid ⊆ elem (C) specifying the valid claims in C for τ .

Note that Cvalid may be a proper subset of elem (C), or even empty, if none of the claims can be
derived from τ (for certain). Again, here, C may contain ⊥ as a claim placeholder.

For correctness we require the following paragraphs.
Regular Signatures. Informally, a signature is regular if it is created by running the algorithms
of Σ. More formally, consider the following definition.

Definition 27 (Regular Signatures). Let C be a claim sequence and τ be an (aggregate) sig-
nature. We recursively define what it means for τ to be regular for C:

• If (pk , sk) is in the image of Gen(1k) and C = ((pk ,M)) for a message M , and if τ is in
the image of Sig(sk ,M), then τ is said to be regular for C and for any claim sequence
obtained by prepending any number of ⊥ symbols to C.

• If τ1 is regular for a claim sequence C1, τ2 is regular for a claim sequence C2, and C1, C2 are
exclusively mergeable, then τ is regular for C1 tC2 if τ is in the image of Agg(C1, C2, τ1, τ2).

• The empty signature λ is regular for the claim sequences containing only ⊥ and the empty
claim sequence 〈〉.

If an (aggregate) signature τ is not regular for a claim sequence C, it is called irregular for C.

Fault-Tolerance. Informally, an aggregate signature scheme with list verification is fault-
tolerant, if it still outputs all valid claims, even if there are some faulty claims. More formally,
consider the following definitions.

Definition 28 (Tolerance against d errors). Let S = {(c1, σ1), . . . , (cn, σn)} be a multiset of
claim and signature pairs, which is partitioned into two multisets Sreg and Sirreg, containing the
pairs for which σi is regular for Ci = (ci) and irregular for Ci, respectively.2

• Then the multiset S contains d errors, if |Sirreg| = d.

1The name ‘list verification’ is chosen to indicate the changes in syntax, in particular that the verification
algorithm outputs a multiset (list) instead of just 1 or 0.

2While there may be schemes with valid signatures which are not regularly generated, like in the usual correctness
properties, our guarantees do only concern regular signatures.
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• An aggregate signature scheme Σ with list verification is tolerant against d errors, if for
any such multiset S containing at most d errors, for any aggregate signature τ that was
aggregated from the signatures in S (in arbitrary order) and the corresponding claim
sequence C, which may additionally contain any number of claim placeholders ⊥, we have

R ⊆ Cvalid := Verify(C, τ),

where R is the multiset of all claims ci (i.e. the first component of the pairs) in Sreg.

Remark 3. In other words, Verify outputs at least all claims of regular signatures. Intuitively,
one would expect R = Cvalid. However, this is not achievable in general, as the aggregation
of multiple irregular signatures may contain a new valid claim ci corresponding to an irregular
signature σi. This does not contradict security, as crafting such irregular signatures may be hard
if one does not know σi. For an example see Example 6 in section 4.5.

Definition 29 (Fault-Tolerance). For d ∈ N we define:

• A d-fault-tolerant aggregate signature scheme is an aggregate signature scheme with list
verification that is tolerant against d errors.

• A fault-tolerant aggregate signature scheme is a scheme that is d-fault-tolerant for some
d > 0.

From now on, we denote a fault-tolerant aggregate signature scheme (with list verification) as
Σft.

Correctness. Observe that 0-fault-tolerance means that if S contains only regularly created
signatures, then Verify must output all claims in S (or C, respectively). This is analogous to the
common definition of correctness for aggregate signature schemes.

Definition 30 (Correctness). We say an aggregate signature scheme with list verification is
correct, if it is tolerant against 0 errors.

Errors During Aggregation. Our definitions above assume that aggregation is always done
correctly. This is a necessary assumption, since it is impossible to give guarantees for arbitrary
errors that happen during aggregation. Consider for example a faulty aggregation algorithm
that ignores its input and just outputs a random string. It is an interesting open question to
find a fault-tolerant signature scheme that can tolerate certain types of aggregation errors, too.
Size of Fault-Tolerant Aggregate Signatures. A typical attribute of an aggregate signature
scheme is that the length of an aggregate signature is (almost) the same as that of an individual
signature [HSW13]. Furthermore, the number of signatures that can be aggregated into a single
signature should be unbounded.

We show that these goals are mutually exclusive for a fault-tolerant aggregate signature
schemes if one wishes to maintain a constant d ≥ 1.

Theorem 8. Let n, d ∈ N, and Σft = (Gen, Sig,Agg,Verify) be a d-fault-tolerant signature
scheme. Assume that Cvalid = R for all claim sequences C and corresponding aggregate signatures
τ constructed from an arbitrary multiset S = {(c1, σ1), . . . , (cn, σn)} of n claim signature pairs
and containing at most d errors, and where R is the multiset of all claims ci accompanied by a
regular signature σi in S. Then we have

|τ | ∈ Ω(log2 n)

as a function of n, where d is considered constant, and |τ | is the length of the aggregate signature
τ in bits.
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The proof can be found in [HKKKR16] and will be discussed in another thesis.

Definition 31 (Compression Ratio). Denote by size(σ) the size of a signature σ. Let C be a
claim sequence of length n, and τ an aggregate signature of maximum size3 which is regular for
C. We say that an aggregate signature scheme has compression ratio ρ(n) if

n

size(τ)
∈ Θ(ρ(n)).

Note that if size(τ) is upper bounded by a constant, then the compression ratio is ρ(n) = n,
which is optimal for common aggregate signature schemes, but as already explained above this
is not possible for fault-tolerant aggregate signatures.
Security Notion for Fault-Tolerant Aggregate Signatures. The security notion and
experiment for fault-tolerant aggregate signatures schemes (with list verification), dubbed EUF-
ft-agg-CMA, is a direct adaption of the EUF-agg-CMA-security notion and experiment for ag-
gregate signature schemes from section 4.2 with a slightly modification, defined in Definition 32,
and briefly described here:

• The challenger generates a pair of keys (pk , sk)← Gen(1k) and gives the public key pk to
the adversary.

• The adversary F may (adaptively) issue signature queriesMi to the signature oracle, which
responds with σi ← Sig(sk ,Mi).

• Finally, F outputs a claim sequence C∗ and an (aggregate) signature τ∗.

The adversary wins the experiment iff there is a message M∗ such that c∗ = (pk ,M∗) ∈
Verify(C∗, τ∗), and M∗ has never been submitted to the signature oracle.

Definition 32 (EUF-ft-agg-CMA). A fault-tolerant aggregate signature scheme (with list veri-
fication) Σft is existentially unforgeable in the aggregate chosen-key model under chosen message
attacks (EUF-ft-agg-CMA-secure) iff

Adveuf-ft-agg-cma
Σft,F

(k) := Pr
[
Expeuf-ft-agg-cma

Σft,F
(k) = 1

]
is negligible for any PPT adversary F . The experiment Expeuf-ft-agg-cma

Σft,F
(k) is defined in Figure 4.2.

Experiment Expeuf-ft-agg-cma
Σft,F

(k)

(pk , sk)← Gen(1k)
(C∗, τ∗)← F Sig(sk ,·)(pk)
if Verify(C∗, τ∗) =: Cvalid

and ∃ c∗ = (pk ,M∗) ∈ Cvalid
and F has not queried Sig(sk ,M∗)

return 1
else
return 0

Figure 4.2: EUF-ft-agg-CMA experiment for fault-tolerant aggregate signature schemes (with
list verification).

3The size of an aggregated signature might depend on the aggregation order.
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4.4 Generic Construction

In this section we give a generic construction of a fault-tolerant aggregate signature scheme
(with list verification). We emphasize here that this part will also be discussed in more detail
in another thesis, with respect to the correctness and security proof.
Our Construction. The construction is based on an arbitrary aggregate signature scheme Σ′,
which is used as a black box, and a cover-free family F = (S,B), where |S| = m, and |B| = n,
for m � n. Our scheme inherits its security from Σ′, and can tolerate d faults if it uses a
d-cover-free family.

Let Σ′ = (Gen′,Sig′,Agg′,Verify′) be an ordinary aggregate signature scheme according to
Definition 17. Moreover, letM be the incidence matrix of a d-cover-free family F = (S,B), as
defined in Definition 20 (In section 4.5 we provide a concrete instantiation).

We first show a bounded construction and in section 4.4.1 an unbounded extension. In the
bounded construction, the maximum number of signatures that can be aggregated is cols(M) =
|B| = n.

In our scheme, signatures for just one claim are simply signatures of the underlying scheme
Σ′, whereas aggregate signatures are short vectors of length rows(M) = |S| = m of signatures
of Σ′. We identify each element of the universe S with a position in this vector, and each subset
B ∈ B with an individual signature of the underlying scheme Σ′.

We require that the underlying scheme Σ′ supports claim sequences and claim placeholders as
an input to Agg′ and Verify′, contrary to just multisets, as in the definition of standard aggregate
signature schemes (Definition 17).

Moreover, we assume that Σ′ supports the empty signature λ as an input to Agg′ and Verify′.
However, these are not essential restrictions, as for instance any standard aggregate scheme
may be easily adapted to a scheme of the modified syntax, by ignoring any order and claim
placeholders, i.e. applying elem (·) on the claim sequences before they are passed to the Agg′ and
Verify′ algorithm.

More formally, let Σ′ = (Gen′,Sig′,Agg′,Verify′) be an aggregate signature scheme, with
message space Mk. Let F = (S,B) be a d-cover-free family, with incidence matrix M, where
|S| = m = rows(M), and |B| = n = cols(M). Our fault-tolerant aggregate signature scheme
(with list verification) Σft = (Gen, Sig,Agg,Verify) consists of the following four algorithms (see
also Figure 4.2):

Key Generation. Gen(1k), on input 1k, runs (pk ′, sk ′)← Gen′, and outputs a key pair (pk , sk) :=
(pk ′, sk ′).

Sign. Sig(sk ,M), on input a secret key sk and a messageM , runs σ′ ← Sig′(sk ,M), and outputs
a signature σ := σ′ .

Aggregation. Agg(C1, C2, τ1, τ2), on input two exclusively mergeable claim sequences C1 and
C2, and corresponding (aggregate) signatures τ1 and τ2, proceeds as follows:

1. If one or both of the claim sequences Cl (l ∈ {1, 2}) contains only one (proper) claim
c, i.e. τl is an individual signature, then σl is initialized as τl, the corresponding
signature given to Agg′. Then τl is expanded to a vector, by setting

τl[i] :=

{
σl, ifM[i, j] = 1,

λ, otherwise,
for i = 1, . . . ,m,

where j is the index of c in the claim sequence.

2. Then the (aggregate) signatures τ1, τ2, which are both vectors now, are aggregated
component-wise, i.e.

τ [i] := Agg′(C1[Mi], C2[Mi], τ1[i], τ2[i]).
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Gen(1k)

(pk ′, sk ′)← Gen′(1k)
pk := pk ′

sk := sk ′

return (pk , sk)

Sig(sk ,M)

σ′ ← Sig′(sk ,M)
σ := σ′

return σ

Agg(C1, C2, τ1, τ2)

for l := 1 to 2 do
if |elem (Cl) | = 1 then

assign position j
σl := τl
for i := 1 to m do

if M[i, j] = 1 then
τl[i] := σl

else τl[i] := λ
//end for

//end if
//end for
for i := 1 to m do
τ [i] := Agg′(C1[Mi], C2[Mi], τ1[i], τ2[i])

C := C1 tC2

return (C, τ)

Verify(C, τ)

Cvalid := ∅
for i := 1 to m do

bi := Verify′(C[Mi], τ [i])
if bi = 1 then
Cvalid := Cvalid ∪ elem (C[Mi])

//end if
//end for
return Cvalid

Figure 4.3: Our EUF-ft-agg-CMA-secure d-fault-tolerant aggregate signature scheme (with list
verification).

Finally, Agg outputs (C, τ), where τ =

 τ [1]
...

τ [m]

 is an aggregate signature, certifying the

validity of the claim sequence C := C1 tC2.

List Verification. Verify(C, τ), on input a claim sequence C and an (aggregate) signature τ for
C, computes for each component τ [i] of τ

bi := Verify′(C[Mi], τ [i]), for i = 1, . . . ,m,

and the multiset of valid claims

Cvalid :=
⋃

i∈{1,...,m},bi=1

elem (C[Mi])

and outputs Cvalid.

The next theorem considers the correctness and security of our scheme and is further discussed
in another thesis.

Theorem 9. If Σ′ is an EUF-agg-CMA-secure aggregate signature scheme, then the scheme
Σft defined above, based on a d-CFF, is an EUF-ft-agg-CMA-secure d-fault-tolerant aggregate
signature scheme (with list verification), and is correct.
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The proof can be found in [HKKKR16].
Illustration. We want to illustrate our construction here for a better understanding. Let
Σ′ = (Gen′, Sig′,Agg′,Verify′) be an ordinary aggregate signature scheme (for instance BGLS).
We set our parameters in the following way:

m = 4, n = 6, d = 1.

This means our aggregate signature τ will be a vector of 4 elements

τ =


τ1

τ2

τ3

τ4


and we can aggregate up to 6 individual signatures σ1, . . . , σ6 with

σj ← Sig′(sk ,Mj), j = 1, . . . , 6.

Thus, we have to choose a 4 × 6 incidence matrixM that can tolerate d = 1 faulty signature,
e.g.:

M := (mi,j) :=


1 0 0 1 0 1
1 1 0 0 1 0
0 1 1 1 0 0
0 0 1 0 1 1


According to this, the 1-entries in column j indicate the positions, where we embed our individual
signatures σj , i.e. 

σ1 0 0 σ4 0 σ6

σ1 σ2 0 0 σ5 0
0 σ2 σ3 σ4 0 0
0 0 σ3 0 σ5 σ6

 .

Now, we use the underlying aggregate signature scheme Σ′ and aggregate the signatures in one
row, which results in

τ =


τ1

τ2

τ3

τ4

 =


Agg′(σ1, σ4, σ6)
Agg′(σ1, σ2, σ5)
Agg′(σ2, σ3, σ4)
Agg′(σ3, σ5, σ6)

 =̂


σ1 σ4 σ6

σ1 σ2 σ5

σ2 σ3 σ4

σ3 σ5 σ6

 .

If exactly one signature σj is invalid, all τi are faulty where mi,j = 1.

Example 4. For a concrete example, suppose σ2 is invalid. Then τ2 and τ3 will be invalid,
whereas τ1 and τ4 are valid. We see that σ1, σ4 and σ6 occur in τ1, and σ3 and σ5 occur in
τ4, and so we may be sure that the corresponding messages were signed correctly under the
corresponding public keys. Hence, Verify will output

Cvalid = elem (C[M1]) ∪ elem (C[M4]) = {c1, c3, c4, c5, c6}

Unfortunately, this is not possible if two or more faulty signatures are aggregated. Lets assume
that σ1 and σ2 are invalid. In this case, τ1, τ2 and τ3 become invalid and τ4 is the only valid
aggregate signature. We could still derive the validity of σ3, σ5, σ6, because τ4 is valid. However,
the validity of σ4 can no longer be verified, since σ4 is not part of τ4.
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Compression Ratio. Let C = (c1, . . . , cn), n ∈ N, be a claim sequence of length n, and
τ be an aggregate signature regular for C. We assume in the following that the length of all
signatures of the underlying scheme Σ′ is bounded by a constant in n (but poly in k) const and
is at least 1. Then the compression ratio of our scheme is

ρ(n) =
n

rows(M)
,

since
n

size(τ)
≤ n

rows(M) · const
∈ O(ρ(n)) and

n

size(τ)
≥ n

rows(M)
∈ Ω(ρ(n)). (4.1)

Clearly, the compression ratio ρ(n) of our scheme is less than 1 if n < rows(M), and the
resulting aggregate signature is larger than the sum of the individual signature sizes when
only few signatures have been aggregated so far. Our scheme can be easily adapted to fix
this behavior, by simply storing all individual signatures instead of immediately aggregating
them, until n = rows(M). When the n+ 1-st signature is added, the individual signatures are
aggregated using the aggregation algorithm defined above. When further signatures are added,
the size of the aggregate signature remains bounded by rows(M) · const.

4.4.1 Unbounded Aggregation

In order to achieve unbounded aggregation, we do not need just one cover-free family, but a
sequence of cover-free families increasing in size, such that we can switch to the next larger one,
as soon as we exceed the capacity for the number of aggregatable signatures. This sequence
needs to exhibit a monotonicity property, in order to work with our scheme, which we define
next.

Definition 33 (Monotone Family). We consider a family (M(λ))λ of incidence matrices of
corresponding d-cover-free families (Fλ)λ := (Sλ,Bλ)λ, where rows(λ) denotes the number of
rows and cols(λ) denotes the number of columns of M(λ). (M(λ))λ is a monotone family of
incidence matrices of (Fλ)λ, if for λ ≥ 1,

Sλ ⊆ Sλ+1,

Bλ ⊆ Bλ+1,

s.t.
Sλ+1 = {s1, . . . , srows(λ), srows(λ)+1, . . . , srows(λ+1)}

and
Bλ+1 = {B1, . . . , Bcols(λ), Bcols(λ)+1, . . . , Bcols(λ+1)},

where Sλ = {s1, . . . , srows(λ)} and Bλ = {B1, . . . , Bcols(λ)}.

Note that Definition 33 implies that

M(λ+1) =

(
M(λ) A

0 B

)
where for i = 1, . . . , rows(λ), j = cols(λ) + 1, . . . , cols(λ+ 1)

A[i, j] =

{
1, if si ∈ Bj ,
0, otherwise

46



4.4 Generic Construction

and for i = rows(λ), . . . , rows(λ+ 1), j = cols(λ) + 1, . . . , cols(λ+ 1)

B[i, j] =

{
1, if si ∈ Bj ,
0, otherwise.

So, eachM(λ) contains all previousM(1), . . . ,M(λ−1).
Now, we are able to achieve unbounded aggregation, i.e. our construction is able to aggregate

an arbitrary number of signatures, by replacing the fixed incidence matrixM of a d-CFF in our
construction with a monotone family of incidence matrices (M(λ))λ.

For this, a run of our aggregation algorithm Agg on inputs C1, C2, τ1, τ2 first has to determine
the smallest λ, such that

cols(λ) ≥ max(|C1|, |C2|)
and then proceeds with the corresponding incidence matrixM(λ).

Analogously, our verification algorithm Verify on inputs C, τ first determines the smallest λ
such that

cols(λ) ≥ |C|
.
Compression Ratio. The compression ratio of our unbounded scheme is ρ(n) = n/rows(λ),
where λ is the minimum index such that cols(λ) ≥ n.

4.4.2 Selective Verification

Let τ be a regular (aggregate) signature with corresponding claim sequence C = (c1, . . . , cn), n ∈
N. Assume we want to know whether a signature for a specific claim c∗ was correctly aggregated
into τ , but we want to avoid verifying all the claims in C to save verification time, especially if C
is large. It is a unique feature of our fault-tolerant aggregate signature scheme that there is an
additional algorithm, denoted by SelectiveVerify(C, τ, c∗) (see also Figure 4.4), that outputs the
number of occurrences of c∗ in C that have a valid signature in τ , i.e., the number of occurrences
of c∗ in Verify(C, τ), while being faster than actually calling Verify(C, τ).

Let Σft be the d-fault-tolerant aggregate signature scheme (with list verification) defined
above and Σ′ be the underlying aggregate signature scheme. Then SelectiveVerify works as
follows:

• First, it determines the set

J := {j ∈ N : cj = c∗ for cj ∈ C} ,

i.e. the set of indices j where c∗ occurs in C.

• Then it determines the set

I := {i ∈ rows(M)| ∃j ∈ J : M [i, j] = 1},

i.e. the set of indices of all rows where an individual signature for c∗ was aggregated.

• Then, it initializes
Ĉ := 〈〉

and iterates over all i ∈ I, checking if

bi := Σ.Verify(C[Mi], τ [i]) = 1.

If this is the case for an i, it sets

Ĉ := Ĉ tC[Mi].

As soon as Ĉ contains |J | occurrences of c∗, SelectiveVerify skips all remaining i ∈ I.
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SelectiveVerify(C, τ, c∗)

n := |C|
J := ∅, I := ∅, C∗ := ∅, Ĉ := 〈〉
for j := 1 to n do

if cj = c∗ then
J := J ∪ {j}

for i := 1 to rows(M)
for j := 1 to n do

if j ∈ J then
if M[i, j] = 1 then

I := I ∪ {i}
break

for i := 1 to rows(M) do
if i ∈ I then
if Verify′(C[Mi], τ [i]) = 1 then
Ĉ := Ĉ tC[Mi]
if |Ĉ| = |J | then
break

C∗ := {j ∈ N : cj = c∗ for cj ∈ Ĉ}
return |C∗|

Figure 4.4: Additional algorithm SelectiveVerify.

• After the loop is done, SelectiveVerify outputs the number of occurrences of c∗ in Ĉ.

Remark 4. Since Verify returns all claims that are contained in a subsequence C[Mi] with bi =
1, the output of SelectiveVerify is exactly the number of occurrences of c∗ in Verify. SelectiveVerify
therefore inherits the fault-tolerance and security properties already proven for Verify.

In the best case, SelectiveVerify requires only one call to the underlying verification algorithm
Verify′. In the worst case, it still only requires

|I| ≤
∑
j∈J
|Bj |

calls to Verify′, where Bj is the set from the cover-free family corresponding to column j.
Subsignature. Going a little further, it is even possible to create a ‘subsignature’ for c∗ that
allows everyone to check that c∗ has a valid signature without requiring the complete claim
sequence C and the complete signature τ : It is sufficient to give

Ĉ :=
⊔
i∈I

C[Mi]

and the signatures
τ [i] for i ∈ I

to the verifier.

48



4.5 Instantiation with a Cover-Free Family Based on Polynomials over a Finite Field

4.5 Instantiation with a Cover-Free Family Based on Polynomials
over a Finite Field

In this section, we consider a concrete construction of a d-CFF which can be used to instantiate
our generic d-fault-tolerant aggregate signature scheme. There are several d-CFF constructions
in the literature, for instance, constructions based on concatenated codes [DLVY01; DMR00],
polynomials, algebraic-geometric Goppa codes as well as randomized constructions [KRS99].
The following theorem gives a lower bound for the number of rows of the incidence matrix in
terms of parameter d and the number of columns.

Theorem 10. For a d-CFF F = (S,B), where |S| = m, |B| = n, it holds

m ≥ const · d2

log d
log n

for some constant const ∈ (0, 1).

Proofs can be found in [DVPS14; Für96; Rus94].
In the following construction we use for simplicity only a single incidence matrix. However, by
[LVRW06], there is a generic construction to transform an incidence matrix into a monotone
family of incidence matrices.

Lemma 11 ([LVRW06]). If F = (S,B) and F ′ = (S ′,B′) are d-CFFs, then there exists a d-CFF
F∗ = (S∗,B∗) with |S∗| = |S|+ |S ′| and |B∗| = |B|+ |B′|.

Proof. SupposeM andM′ are the incidence matrices of d-CFFs F = (S,B) and F ′ = (S ′,B′),
respectively. Then

M∗ =

(
M 0
0 M′

)
is an incidence matrix for a d-CFF F∗ = (S∗,B∗) with |S∗| = |S|+ |S ′| and |B∗| = |B|+ |B′|.

For our approach we could use a deterministic construction of a d-CFF based on polyno-
mials like [KRS99] did in the following way and for which we propose a generalization to the
multivariate case in section 4.5.3.

4.5.1 Construction

For our d-CFF F = (S,B) let
Fq = {x1, . . . , xq}

be a finite field and
S := F2

q = {(xi, xj) : i, j = 1, . . . , q} ,

and thus
|S| = q2.

For ease of presentation, we assume that q is a prime (as opposed to a prime power), so we may
write

Fq = {0, . . . , q − 1}.

We consider the set

Fq[X]≤l :=
{
alX

l + · · ·+ a1X + a0 : ai ∈ Fq, i = 0, . . . , l
}
,

of all univariate polynomials f ∈ Fq[X] of degree at most l. We have

|Fq[X]≤l| = ql+1.
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For every f ∈ Fq[X]≤l, we consider the subset

Bf := {(x1, f(x1)), . . . , (xq, f(xq))} ⊂ S, of size |Bf | = q,

consisting of all tuples (x, y) ∈ S which lie on the graph of f ∈ Fq[X]≤l, i.e. for which f(x) = y.
From this we obtain

B := {Bf : f ∈ Fq[X]≤l} , which is of size

|B| = ql+1,

since we have |Fq[X]≤l| = ql+1 different sets Bf in B.
For any distinct Bf , Bf1 , . . . , Bfd ∈ B it holds that

|Bf ∩Bfi | ≤ l, for i = 1, . . . , d

since the degree of each polynomial gi := f − fi is at most l, i.e.

deg (gi) ≤ l

and hence they have at most l zeros. Thus, we have∣∣∣∣∣Bf \
d⋃
i=1

Bfi

∣∣∣∣∣ ≥ q − d · l
To achieve a d-CFF with these definitions,

q ≥ d · l + 1

must be satisfied.
Now, we consider the incidence matrixM of a d-CFF, which consists of |S| rows and |B| columns.


1 2 . . . . . . |B|

1 ∗ ∗ . . . . . . ∗
2 ∗ ∗ . . . . . . ∗
...

...
...

. . . . . .
...

|S| ∗ ∗ . . . . . . ∗

 =M, where ∗ ∈ {0, 1}.

Each row corresponds to an element of S and each column to an element of B.
Hence, in the construction above each row corresponds to a tuple (x, y) ∈ F2

q (= S), where
we define the order lexicographically, i.e. (0, 0), (0, 1), . . . , (q − 1, q − 1). In the following, let

si := (xi, yi),

denote the corresponding tuple for row i, for i = 0, . . . , q2 − 1, where

xi, yi ∈ {0, . . . , q − 1}, s.t i = q · xi + yi.

Hence,

s0 = (0, 0), s1 = (0, 1), . . . , sq−1 = (0, q − 1),

sq = (1, 0), sq+1 = (1, 1), . . . , s2q−1 = (1, q − 1),

...
...

. . .

sq2−q = (q − 1, 0), sq2−q+1 = (q − 1, 1), . . . , sq2−1 = (q − 1, q − 1).
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Each column of the incidence matrixM corresponds to a polynomial of degree at most l, where
we decide to use lexicographically order starting with constant polynomials and ending with
polynomials of degree l, i.e.

f0 := 0, f1 := 1, f2 := 2, . . . , fq−1 := q − 1,
fq := X, fq+1 := X + 1, fq+2 := X + 2, . . . , f2q−1 := X + q − 1,
f2q := 2X, f2q+1 := 2X + 1, f2q+2 := 2X + 2, . . . , f3q−1 := 2X + q − 1,

...
fql+1−1 := (q − 1)X l + (q − 1)X l−1 + · · ·+ (q − 1)X + q − 1.

By fj we denote the corresponding polynomial for column j, for j = 0, . . . , qk+1 − 1, again
starting from 0. Now, the incidence matrix is built as

M[i, j] =

{
1, if fj(xi) = yi,

0, otherwise.

Example 5. For d = 2 and l = 2 we have

q ≥ d · l + 1 = 2 · 2 + 1 = 5

and therefore set q = 5 and obtain a 2-CFF with

S = {(0, 0), (0, 1), . . . , (4, 3), (4, 4)},

|S| = 52 = 25.

We have
B = {Bf0 , . . . , Bf124}, since |F5[X]≤2| = 52+1 = 125,

where
Bfj = {(0, fj(0)), (1, fj(1)), . . . , (4, fj(4))},

|Bfj | = 5, j = 0, . . . , 53 − 1

and
f0 := 0, f1 := 1, . . . , f4 := 4,
f5 := X, f6 := X + 1, . . . , f9 := X + 4,

...
f120 := 4X2 + 4X, . . . , f124 := 4X2 + 4X + 4.

Thus, we obtain our incidence matrixM as follows:


0 1 . . . X . . . 4X2 + 4X + 4

(0, 0) 1 0 . . . 1 . . . 0
(0, 1) 0 1 . . . 0 . . . 0
...

...
...

. . .
...

. . .
...

(4, 4) 0 0 . . . 1 . . . 1

 =M

Example 6 (BGLS). For a concrete example of an underlying aggregate signature scheme
Σ′ = (Gen′,Sig′,Agg′,Verify′), we consider the aggregate signature scheme of Boneh, Gentry,
Lynn and Shacham (BGLS) [BGLS03].

BGLS describes a bilinear aggregate signature scheme based on CDH, which is EUF-CMA-
secure in the random oracle model. The system parameters of BGLS are (G, g,GT , p, e) ←
Grp(1k) generated as in chapter 2, where G and GT are groups of prime order p and e is an
efficiently computable non-degenerate bilinear map. The scheme employs a full-domain hash
function H : {0, 1}∗ → G with message space Mk = {0, 1}∗ and requires that all messages in
an aggregate signature are distinct.
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Key Generation. Gen′(1k), on input 1k, chooses x ← Zp, and outputs a key pair (pk , sk) :=
(gx, x)

Sign. Sig′(sk ,M), on input a secret key sk = x and a message M ∈ {0, 1}∗, computes σ :=
H(M)x, and outputs σ.

Aggregation. Agg′(C1, C2, τ1, τ2), on input exclusivley mergeable claim sequences C1 =
(c1, . . . , cr), C2 = (c1, . . . , cs) (w.l.o.g r < s), (aggregate) signatures τ1 and τ2, computes
C := C1 tC2 = (c1, . . . , cs) and τ := τ1 · τ2 =

∏r
ci 6=⊥ σi ·

∏s
ci 6=⊥ σi and outputs (C, τ)

(where σi = H(Mi)
xi for ci = (gxi ,Mi) 6= ⊥).

(Aggregate) Verification. Verify′(C, τ), on input a claim sequence C = (c1, . . . , cn) and an
(aggregate) signature τ =

∏n
ci 6=⊥ σi, computes hi := H(Mi), for Mi ∈ ci 6= ⊥, and outputs

1 if e(τ, g) =
∏n
ci 6=⊥ e(hi, g

xi), else 0.

We construct from this a fault-tolerant aggregate signature scheme (with list verification)
Σft = (Gen, Sig,Agg,Verify) as described in our construction in section 4.4 (especially of the
algorithms Agg and Verify).

We only want to show here our statement of Remark 3, maintains that the multiset R of
all claims corresponding to a regular signature is not necessarily equal to the multiset Cvalid
outputted by Verify (i.e. R ⊆ Cvalid = Verify(C, τ)).

For this we set the parameters d = 2,m = 25 and n = 125 (as above in Example 5) to achieve
a 2-CFF. For BGLS as the underlying aggregate signature scheme we obtain

τ =


τ1

τ2
...
τ25

 =


σ1 · σ5 · . . .
σ2 · σ6 · . . .

...
σ5 · . . . · σ125

 =̂


σ1 0 . . . σ5 0 . . . 0
0 σ2 . . . 0 σ6 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . σ5 0 . . . σ125

 ,

where σi ∈ G, i = 1, . . . , 125, and τ ∈ G25.
For d = 2 faulty signatures the scheme will still be able to output all correctly signed messages.
Suppose for instance, that σ1 is the valid signature for c1 but we add a faulty signature σ̃1 for
c1 in column 1 instead of σ1, which we can write as

σ̃1 = gr · σ1 ∈ G, for some r ∈ Zp.

If there is another faulty signature, e.g

σ̃5 = gr
′ · σ5, for some r′ ∈ Zp,

this leads to

τ̃1 = gr · σ1 · gr
′ · σ5 · . . .

= gr+r
′ · σ1 · σ5 · . . .

in row 1. For r′ = −r we have

τ̃1 = gr−r · σ1 · σ5 · . . .
= σ1 · σ5 · . . .
= τ1

In this case, row 1 would also be valid, i.e Verify′(C[M1], τ̃1) = 1. Although the signatures σ̃1

and σ̃5, respectiveley, are not regular for the corresponding claims c1 and c5, respectivley, these
claims will also be added to Cvalid. In this case the set R of regular claims is a proper set of the
ouput of Verify, i.e.

R ⊂ Cvalid

Note, that this only happens with negligible probability.
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4.5 Instantiation with a Cover-Free Family Based on Polynomials over a Finite Field

Compression Ratio of Our Bounded Scheme. If our bounded scheme is instantiated
with this polynomial-based CFF, and we assume that the length of signatures of the underlying
scheme Σ′ is bounded by a constant in n (but poly in k) const, then, as shown in Equation 4.1,
the compression ratio is

ρ(n) =
n

rows(M)
=

n

|S|
=

n

q2
.

For n = |B|, we therefore have

ρ(n) =
|B|
|S|

=
ql+1

q2
.

Since q ≥ dl+ 1, we have that |B| grows exponentially in l, whereas |S| grows only quadratically
in l. Hence, |B| is exponential in |S|, or, stated differently, |S| is logarithmic in |B|.
Compression Ratio of Our Unbounded Scheme. When our unbounded scheme is in-
stantiated with the monotone family of CFFs obtained by fixing an incidence matrix M and
repeatedly using Lemma 11 onM, then the asymptotic compression ratio is ρ(n) = 1, since

n

rows(λ)
≤ cols(λ)

rows(λ)
=

cols(M)

rows(M)
for all λ,

which is constant. Therefore, the size of an aggregate signature is linear in the length of the
claim sequence.

However, if we assume that all signatures of the underlying scheme Σ′ have a size bounded
by const, then the concrete size of an aggregate signature is at most

rows(λ) · const ≤ λ · rows(M) · V
≤ (n/cols(M) + 1) rows(M) · const

=

(
rows(M)

cols(M)
n+ rows(M)

)
· const ,

since rows(λ) = λ · rows(M) for the construction of the monotone family of CFFs, and λ =
dn/cols(M)e ≤ n/cols(M) + 1.

Therefore the length of the aggregate signature is linear in n, but the factor rows(M)/cols(M)
can be made arbitrarily small by choosing a proper CFF, such as the one described above.

It is an interesting open problem to construct an unbounded fault-tolerant scheme with better
compression ratio, for example by finding a better monotone family of CFFs. A generalization
of the above construction to multivariate polynomials, which might be advantageous in some
scenarios, is given in section 4.5.3.

4.5.2 Selective Verification

With this univariate polynomial-based construction of a d-CFF it is very easy to generate our
incidence matrix or only some parts of it, which we need for our verification algorithm or if we
want to check some information separately.

If, for example, one is interested to verify the validity of only one single claim signature pair
(cj , σj) in an aggregate signature, it is not necessary to generate the whole matrix but only the
rows where the related column j has 1-entries. So, you only have to know which polynomial
corresponds to column j.
For this, we can use the fact, that for each positive number

n ∈ {0, . . . , ql+1 − 1}

exists a unique q-adic representation, i.e.

n = al · ql + al−1 · ql−1 + · · ·+ a0, where al, . . . , a0 ∈ {0, . . . , q − 1}.
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4 A Fault-Tolerant Aggregate Signature Scheme

So, each n corresponds to a (l + 1)-tuple denoted by

(a
(n)
l , . . . , a

(n)
0 ).

Thus, for column j ∈ {0, . . . , ql+1 − 1} we assign the polynomial

fj = a
(j)
l X l + · · ·+ a

(j)
0 .

Analogously, for each row i = 0, . . . , q2 − 1,we assign the tuple

(b
(i)
1 , b

(i)
0 ) ∈ F2

q , where i = b
(i)
1 · q + b

(i)
0 .

Let
I ′j :=

{
i ∈ {0, . . . q2 − 1} : fj(b

(i)
1 ) = b

(i)
0

}
, for j ∈ {0, . . . , ql+1 − 1},

be the subsets of all rows i′ ∈ I ′j where fj(b
(i′)
1 ) = b

(i′)
0 for corresponding j = 0, . . . , ql+1 − 1.

Hence, it suffices to generate only the rows i′ ∈ I ′j to verify the validity of σj . To get
the 1-entries of these rows, we have to check for each i′ ∈ I ′j which polynomials f ∈ Fq[X]≤l

satisfy f(b
(i′)
1 ) = b

(i′)
0 . For all arbitrary, but fixed values al, . . . , a1 ∈ {0, . . . , q − 1} compute an

appropriate a0. This results in ql polynomials, accordingly columns, per row. If the coefficients
of the appropriate polynomials are known then we can use them to compute the number of the
corresponding columns with 1-entries, as described before.

4.5.3 Cover-Free Family Based on Multivariate Polynomials

For our polynomial based construction, we can also use multivariate polynomials

f ∈ Fq[X1, . . . , Xt], t ∈ N,

of degree at most l. Each multivariate polynomial f with degree ≤ l consists of monomials in
terms of

ai1,...,itX
i1
1 · · ·X

it
t , where ai1,...,it ∈ Fq and i1 + · · ·+ it ≤ l.

We denote by

Fq[X1, . . . , Xt]≤l :=

 ∑
i1+···+in≤l

ai1,...,itX
i1
1 · · ·X

it
t : ai1,...,it ∈ Fq


the set of all multivariate polynomials f ∈ Fq[X1, . . . , Xt] of degree at most l. The maximal
number of monomials of degree exactly l, is(

t+ l − 1

l

)
.

Hence, for degree at most l, we have

l∑
i=0

(
t+ i− 1

i

)
=

(
t+ l

l

)
and hence, |Fq[X1, . . . , Xt]≤l| = q(

t+l
l ).

We can now define
Bf :=

{
(x, f(x)) : x ∈ Ft

q

}
with |Bf | = qt,

and
B := {Bf : f ∈ Fq[X1, . . . , Xt]≤l} with |B| = q(

t+l
l ).
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Now, we set
S := Ft+1

q , which is of size |S| = qt+1.

The number of zeros is at most l · qt−1 and thus, for different Bf , Bf1 , . . . , Bfd ∈ B it holds∣∣∣∣∣Bf \
d⋃
i=1

Bfi

∣∣∣∣∣ ≥ qt − d · l · qt−1.

To achieve a d-CFF with these definitions, the condition,

qt ≥ d · l · qt−1 + 1

must be satisfied.
Compression Ratio of Our Bounded Scheme. If our bounded scheme is instantiated with
this multivariate CFF, and we assume for simplicity, that the size of signatures of the underlying
scheme Σ′ is bounded by a constant, then as shown in Equation 4.1 , the compression ratio is

ρ(n) =
n

rows(M)
=

n

|S|
=

n

qt+1
.

For n = |B|, we therefore have

ρ(n) =
|B|
|S|

=
q(
t+l
l )

qt+1
.

Compression Ratio of Our Unbounded Scheme. By using Lemma 11 on M we can
also obtain a monotone CFF based on multivariate polynomials and use it to instantiate our
unbounded scheme. The discussion about the compression ratio of the unbounded scheme in
the previous section also applies to this instantiation.

4.6 State-of-the-Art

First, we want to show an application of our d-fault-tolerant aggregate signature scheme, which
was a follow-up paper published in [HKKKH17]. We emphasize here, that this is not part of
this thesis and for more details we refer to [HKKKH17].

4.6.1 Application of Fault-Tolerant Sequential Aggregate Signatures

Aggregate signature schemes have another important application in the field of secure logging.
Log files are used to record events like user actions, system errors, failed log-in attempts as
well as general information, and play an important role in computer security by providing, for
example, accountability and a basis for intrusion detection. Log files are usually kept for very
long periods of time, which means that thousands or even millions of log entries need to be
stored. Keeping correct and informative log files is crucial for system maintenance, security and
forensics. Cryptographic logging schemes offer integrity checks that protect a log file even in the
case where an adversary has broken into the system.

A relatively recent feature of these schemes is resistance against truncations, i.e. the deletion
and/or replacement of the end of the log file. This is especially relevant as system intruders
are typically interested in manipulating the later log entries that point towards their attack.
However, there are not many schemes that are resistant against truncating the log file, and
those that are, have at least one of the following disadvantages: They are memory intensive
(they store at least one signature per log entry), or fragile, i.e. a single error in the log renders
the signature invalid and useless in determining where the error occurred.
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4 A Fault-Tolerant Aggregate Signature Scheme

In [HKKKH17] we constructed a publicly-verifiable secure logging scheme that is robust
(not fragile), space efficient and truncation secure under simple assumptions. Our generic con-
struction uses a variant of fault-tolerant aggregate signature scheme, which is sequential and
forward-secure (a specific security notion). Because of the fault-tolerance it can cope with a
number of manipulated log entries (bounded a priori) and offer strong robustness guarantees
while still being space efficient.

4.6.2 Recent Improvements

In [HKKKR16] we pose the open problem to find a better monotone family, for the case of
unbounded aggregation, in order to achieve a more efficient unbounded scheme. In [BIM18] they
define a nested cover-free family, which is a more flexible sequence of d-cover-free families. They
provide concrete constructions of such families that yield unbounded fault-tolerant aggregate
signature schemes with a better compression ratio than in [HKKKR16].

Another approach for constructing fault-tolerant aggregate signature schemes instead of ap-
plying a cover-free family is given in [WCD18]. They make use of concepts from finite set theory
and put forward a new method to separate all individual signatures in many subsets. Then, veri-
fiying the valid individual signatures becomes more efficient. Compared to [HKKKR16] their
scheme can verify more valid individual signatures while verifying less aggregated signatures.
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5 Almost Tight Identity-Based-Encryption
Security

In this chapter we focus on identity-based encryption (IBE) schemes. Informally, an IBE scheme
is a variant of a public-key encryption scheme in which the public key of a user is some inform-
ation about his identity (e.g. an e-mail address). Together with a master public key and some
public parameters, this allows encrypting without distributing all user public keys in advance.
A user obtains a (user) secret key from a trusted authority, which only needs the identity and a
master secret key. A generic transformation from any IBE scheme to a digital signature scheme
exist [BF01].

We instantiate an (almost) tightly and fully secure identity-based encryption (IBE) scheme in
the multi-instance, multi-ciphertext setting under a simple assumption. We recall in more detail
in the following what we mean with tight security, especially in the case of a multi-instance,
multi-ciphertext scenario.

We emphasize here, that we almost entirely taken the important parts of these chapter from
[HKS15], partly verbatim, with some useful additions, descriptions and further explanations.

Tight Security in General and the Multi-Instance, Multi-Ciphertext Setting.

For many cryptographic primitives (e.g encryption or signature schemes), we currently cannot
prove security directly. Hence, we typically reduce the security of a given scheme to the hardness
of a computational problem, in the sense that every successful and efficient adversary A on the
scheme, can be used to construct a successful and efficient problem solver B. Thus, B solves a
computational problem with significant probability, which is assumed to be not efficiently solv-
able. This contradiction shows that there cannot exist such an efficient and successful adversary
A on the scheme, which proves the security of the scheme.

Usually, B has a lower probability of success than A. Frequently, the reason for this is that B
has to guess something, e.g. where he embeds the computational problem. Now it may be that
the probability of success of B decreases inversely proportional to the number of ciphertexts
or signatures. To look at this loss of such a reduction is both a theoretically and practically
interesting question.

Informally, the loss of a reduction quantifies the difference between the success of a hypo-
thetical adversary A on the cryptographic scheme, and the success of the derived problem solver
B. The smaller the loss is, the tighter the security of the cryptographic scheme is related to
the underlying computational problem. Therefore, it is desirable to develop primitives whose
security can be reduced tightly (i.e., loss-freely) to the security of the underlying assumption,
i.e., in which the success probability of B is independent of the number of encrypted or signed
messages.

A tight reduction is also desirable from a practical perspective. Otherwise, if the crypto-
graphic primitive is instantiated in concrete terms, it is necessary - in order to achieve sufficient
security - that the parameters (e.g the key length) are set accordingly large, which has a neg-
ative impact on efficiency. In other words, the tighter a reduction, the better are the security
guarantees we can give for a specific instance of the scheme.
Multi-Instance, Multi-Ciphertext Setting. However, in most practical usage scenarios,
a cryptographic primitive is used multiple times. The multi-instance, multi-ciphertext setting
represents a more realistic scenario. In this setting many instances of a scheme are used, which
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5 Almost Tight Identity-Based-Encryption Security

represents many different users of the scheme or, e.g., in the IBE setting many different exe-
cutions of the scheme for different master public keys and corresponding master secret keys.
An adversary on the scheme is allowed to see many different challenge ciphertexts per instance.
In the case of digital signatures, only the multi-instance setting (denoted as multi-user setting)
is considered. Depending on the type of the scheme and the security notion corruptions are
allowed or not, i.e., the adversary is allowed to learn different (user) secret keys or not. Hence,
tight security reductions become particularly meaningful when they reduce an adversary on the
whole system (with many instances of the cryptographic scheme) to a problem solver. For many
primitives (such as secret-key [BDJR97] or public-key [BDPR98] encryption), one-instance se-
curity is known to imply multi-instance and multi-ciphertext security. However, [BBM00] shows
that in general the security loss depends on the number of instances and number of challenge
ciphertexts. Thus, this generic reduction is not tight and the corresponding security guarantees
for concrete schemes may indeed vanish in the number of instances and challenge ciphertexts.
Existing Tightly Secure Schemes. The loss of security reductions has been considered
explicitly by [BDJR97] for the case of encryption schemes. The first “somewhat tight” reductions
(whose loss is independent of the number of instances of the scheme, but not of the number of
ciphertexts) for public-key encryption (PKE) schemes were given in [BBM00]. In the following
years, more tight (or somewhat tight) reductions for encryption schemes were constructed in the
random oracle model [GMMV03; CKS08; Bol09], or from “q-type” assumptions [Gen06; GH09].1

However, only recently, the first PKE schemes emerged [HJ12; ADKNO13; LJYP14] whose
tight security (in the multi-instance, multi-ciphertext setting) can be proved under simple as-
sumptions in the standard model. Even more recently, identity-based encryption (IBE) schemes
with “almost tight” security (under simple assumptions) have been constructed [CW13; BKP14].
This required new techniques, since it is not clear how to extend the techniques of [HJ12;
ADKNO13; LJYP14] to the IBE setting. In this case, “almost tight” means that their security
reduction loss only depends on the security parameter, but still considers the standard IBE secur-
ity experiment [BF01] with one encryption and one instance of the scheme. Nonetheless, while
the IBE schemes from [CW13; BKP14] are not proved tightly secure in a multi-user, multi-
ciphertext setting, these schemes imply tightly secure PKE schemes (even in the multi-user,
multi-ciphertext setting) when plugged into the transformations of [BF01; HJ12; LJYP14].

Our Contribution

We instantiate the first almost tightly and fully secure IBE scheme under a simple (dual system)
assumption in composite-order pairing-friendly groups. This is also interesting regarding multi-
instance (multi-user) fully secure signature schemes with an almost tight security reduction,
since any IBE scheme can be converted into a signature scheme by the Naor transformation.

5.1 Organization

In section 5.3 we give a formal definition of an IBE scheme and consider security notions for the
standard setting and for the multi-instance, multi-ciphertext setting.

We describe a known transformation from any IBE scheme to a signature scheme and discuss
the security relations in section 5.3.1.

In section 5.3.2 we explain the dual system strategy for proving full security of IBE schemes
introduced by Waters [Wat09] and some resulting variants. We mention nested dual system
groups [CW13], which enable to prove the first almost tightly and fully secure IBE scheme in

1A “q-type” assumption may depend on the size of the investigated cryptographic system. (That is, larger
cryptographic systems may only be secure under a stronger instance of the assumption.) Hence, a tight
reduction (even in a multi-instance scenario) to a q-type assumption may not yield security guarantees that
are independent of the number of users.
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the one instance setting. We explain their high-level proof strategy and why it is not applicable
for multi-instance and multi-ciphertext IBE schemes. This leads to extended nested dual system
groups which are formally described in section 5.4 and necessary for proving the security in the
multi-instance, multi-ciphertext setting. In section 5.4.1 the generic construction is given for
completeness. We mention here that this is not part of this thesis and a further discussion on
this topic can be found in [Str15].

In section 5.5 we give an instantiation of extended dual system groups which leads to an
almost tightly and fully secure IBE scheme in the multi-instance, multi-ciphertext setting under
a simple (dual system) assumption.

5.2 Preliminaries

For an algorithm y ← A(1k, x), on input a security parameter 1k and x, and output y, we write

(yi)i∈[n] ← (A(1k, x))n, n ∈ N

for executing A(1k, x) n times and obtaing n outputs (y1, . . . , yn).
We write vectors in bold font, e.g., v = (v1, . . . , vn) for a vector of length n ∈ N and with

components v1, . . . , vn. (We may also write v = (vi)i∈[n] or even v = (vi)i if the dimension is
clear from the context.) In the following, we use a component-wise multiplication of vectors, i.e.,

v · v′ = (v1, . . . , vn) · (v′1, . . . , v′n) = (v1 · v′1, . . . , vn · v′n).

Further, we write
vj := (vj1, . . . , v

j
n),

for component-wise exponentiation with j ∈ N.
To remove the entry at position i from a vector v = (vi)i∈[n] we write

v−i := (v1, . . . , vi−1, vi+1, . . . , vn), for i ∈ [n].

Finally, exponentiation with a vector v = (vi)i∈[n] is written as

sv := (sv1 , . . . , svn).

The Bilinear Decisional Diffie-Hellman (BDDH) Problem. In section 5.4.1 and sec-
tion 5.5 we introduce two variants of the Bilinear Decisional Diffie-Hellman (BDDH) assumption,
which is defined in the following.

Definition 34 (BDDH assumption). We say that the Bilinear Decisional Diffie-Hellman (BDDH)
assumption holds relative to a group generation algorithm Grp(·) if

Advbddh
Grp,A(k) := |Pr

[
A(1k, g, ga, gb, gc, gabc) = 1

]
− Pr

[
A(1k, g, ga, gb, gc, gd) = 1

]
|

is negligible for any PPT adversary A, where (G, g, p) ← Grp(1k) and a, b, c, d ← Zp are uni-
formly chosen.

5.3 Identity-Based Encryption (IBE)

In the following we give a formal definition of an identity-based encryption (IBE) scheme and se-
curity notions in the one-instance, one-ciphertext and multi-instance, multi-ciphertext scenario,
respectively. Furthermore, we describe the relation to signature schemes and some important
techniques for proving security and its difficulties.
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Definition 35 (Identity-based encryption). An identity-based encryption (IBE) scheme IBE =
(Par,Gen,Ext,Enc,Dec) with identity space ID and message space Mk consists of five PPT
algorithms.

Parameter Sampling. Par(1k, n), on input a security parameter 1k and an identity length para-
meter n ∈ N, outputs public parameters pp and secret parameters sp. (We assume that
Ext, Enc, and Dec have implicitly access to pp.)

Key Generation. Gen(pp, sp), on input public parameters pp and secret parameters sp, outputs
a master public key mpk and a master secret key msk .

User Secret Key Extraction. Ext(msk , id), on input a master secret key msk and an identity
id ∈ ID, outputs a user secret key usk id associated with id .

Encryption Enc(mpk , id ,M), on input a master public key mpk , an identity id ∈ ID, and a
message M ∈Mk, outputs a ciphertext Cid associated with id .

Decryption Dec(usk id , Cid ), on input a user secret key usk id for an identity id ∈ ID, and a
ciphertext Cid , outputs M ∈Mk ∪ {⊥}.

We require IBE to be correct in the sense that for any k, n ∈ N, for all (pp, sp)← Par(1k, n),
for all (mpk ,msk)← Gen(pp, sp), for all id ∈ ID, for all usk id ← Ext(msk , id), for all M ∈Mk,
and for all Cid ← Enc(mpk , id ,M), Dec satisfies Dec(usk id , Cid ) = M .

Experiment Expibe-ind-cpa
IBE,A (k, n)

(pp, sp)← Par(1k, n)
(mpk ,msk)← Gen(pp, sp)
(id∗,M∗0 ,M

∗
1 )← AExt(msk ,·)(pp,mpk)

b← {0, 1}
C∗id∗ ← Enc(mpk , id∗,M∗b )

b∗ ← AExt(msk ,·)(C∗id∗)
if b = b∗ and |M∗0 | = |M∗1 |

and A has not queried Ext(msk , id∗)
return 1

else
return 0

Figure 5.1: The IBE-IND-CPA experiment.

Security Notion for IBE. The security notion for an IBE scheme [BF01], dubbed IBE-IND-
CPA security, and the experiment is defined in Definition 36, and briefly described here:

• The experiment generates some parameter pair (pp, sp)← Par(1k, n), a master public and
secret key pair (mpk ,msk)← Gen(pp, sp), and provides A with (pp,mpk).

• During the experiment, A has access to an Ext(msk , ·)-oracle to adaptively query user
secret keys for identities id ∈ ID.

• Subsequently, A outputs a challenge identity id∗ ∈ ID and two messages M∗0 ,M∗1 ∈M.

• The experiment then computes C∗id∗ ← Enc(mpk , id∗,M∗b ), for b ← {0, 1}, and sends the
ciphertext C∗id∗ to A.

• Finally, A outputs a guess b∗.
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The adversary A wins the experiment if b = b∗, |M∗0 | = |M∗1 | and id∗ has never been submitted
to the Ext-oracle.

Definition 36 (IBE-IND-CPA). An IBE scheme IBE is indistinguishable under chosen plaintext
attacks (short: IBE-IND-CPA-secure) if

Advibe-ind-cpa
IBE,A (k, n) := |Pr

[
Expibe-ind-cpa

IBE,A (k, n) = 1
]
− 1/2 |

is negligible for any PPT adversary A. Experiment Expibe-ind-cpa
IBE,A is defined in Figure 5.1.

Multi-Instance, Multi-Ciphertext Setting

The classical security model for IBE schemes described above requires that the single challenge
ciphertext in a single instance of the scheme reveals nothing about the corresponding message
even if the adversary can query user secret keys for up to q identities.

Now, we consider the scenario, where we have many instances of an IBE scheme, i.e. many
master public keys, and in each instance the adversary obtains many challenge ciphertexts to
distinguish for different identities, but for the same chosen bit b. This models a much more
realistic scenario, which is very desirable.
Security Notion for Multi-Instance, Multi-Ciphertext IBE. The security notion for
a multi-instance, multi-ciphertext IBE scheme, dubbed (µ, q)-IBE-IND-CPA security, for µ in-
stances, and q challenge ciphertexts, where (µ, q) ∈ N2, and the experiment is defined in Defin-
ition 37, and briefly described here:

Let Enc′(mpk , id , b,M0,M1) be a PPT auxiliary encryption oracle that, given a master public
key mpk , a challenge identity id ∈ ID, a bit b ∈ {0, 1}, and two messagesM0,M1 ∈M, outputs
a challenge ciphertext Cid ← Enc(mpk , id ,Mb).

• The experiment generates some parameter pair (pp, sp) ← Par(1k, n), master public and
secret key pairs (mpk j ,msk j) ← (Gen(pp, sp))µ, and provides A with (pp,mpk j), for
j ∈ [µ].

• During the experiment, A has access to an Ext(msk j , ·)-oracle, to adaptively query user
secret keys for identities id ∈ ID under mpk j , for all instances j ∈ [µ].

• A has also access to an Enc′(mpk j , ·, b, ·, ·)-oracle, to adaptively query challenge ciphertexts
for corresponding mpk j and a (uniform) bit b← {0, 1}, for all instances j ∈ [µ].

• Finally, A outputs a guess b∗.

The adversary A wins the experiment iff b = b∗ and A is admissible, i.e.

- A never queries an Ext(msk j , ·) oracle on an identity id for which it has already queried
the corresponding Enc′(mpk j , ·, b, ·, ·) oracle (and vice versa)

- Each message pair A selected as input to Enc′ contained only equal-length messages

- A has only queried its Enc′-oracles at most q times per j-instance.

Definition 37 ((Weak) (µ, q)-IBE-IND-CPA). A multi-instance, multi-ciphertext IBE scheme
IBE is (µ,q)-indistinguishable under chosen plaintext attacks (short: (µ, q)-IBE-IND-CPA-secure)
if

Adv
(µ,q)-ibe-ind-cpa
IBE,A (k, n) := |Pr

[
Exp

(µ,q)-ibe-ind-cpa
IBE,A (k, n) = 1

]
− 1/2 |.

is negligible for any PPT adversary A. Experiment Exp(µ,q)-ibe-ind-cpa
IBE,A is defined in Figure 5.2.
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Furthermore, we call IBE weak (µ,q)-indistinguishable under chosen plaintext attacks (short:
weak(µ, q)-IBE-IND-CPA-secure) if

Adv
(µ,q)-ibe-ind-cpa
IBE,A (k, n) := |Pr

[
Exp

(µ,q)-ibe-ind-cpa
IBE,A (k, n) = 1

]
− 1/2 |.

is negligible for any weak PPT adversaries A. We call A weak if it never requests chal-
lenge ciphertexts for the same scheme instance and identity twice (i.e., if it never queries any
Enc′(mpk j , ·, b, ·, ·) oracle twice with the same identity id).

Experiment Exp
(µ,q)-ibe-ind-cpa
IBE,A (k, n)

(pp, sp)← Par(1k, n)
(mpk j ,msk j)j∈[µ] ← (Gen(pp, sp))µ

b← {0, 1}
b∗ ← A(Ext(mskj ,·),Enc′(mpkj ,·,b,·,·))j∈[µ](pp, (mpk j)j∈[µ])
if A is admissible and b = b∗

return 1
else
return 0

Figure 5.2: The (µ, q)-IBE-IND-CPA security experiment.

Remark 5. We remark that the one-instance, one-ciphertext notion (1, 1)-IBE-IND-CPA is the
standard notion of IBE security as defined in Definition 36.

Note, that in general, an IBE scheme which is secure in the classical single model implies to be
secure in the multi-instance, multi-ciphertext model. However, this implication is not tightness-
preserving. If µ and q are the number of instances and challenge ciphertexts per instance,
respectively, the generic reduction results in a multiplicative security loss O(µ · q) [BBM00].

5.3.1 Naor Transformation: From IBE to Signatures

Boneh and Franklin mentioned in [BF01] an observation by Naor: “Any IBE scheme can be
immediately converted into a public key signature scheme.”

The Naor transformation applied to their IBE scheme resulted in the BLS signature scheme
with short signatures [BLS04]. Furthermore, Waters [Wat05] presented the first efficient IBE
scheme that is fully secure without random oracles (a modification of the Boneh-Boyen scheme
[BB04a]) and a resulting signature scheme via the Naor transformation that is EUF-CMA-secure
under the CDH assumption without random oracles.

Further, the signature schemes thus derived from [CW13; BKP14] are then suitable for the
conversions of [HJ12; LJYP14], yielding PKE schemes tightly secure in the multi-user, multi-
ciphertext setting.
Naor Transformation. Let IBE = (Par,Gen,Ext,Enc,Dec) be an identity-based encryption
scheme with identity space ID = {0, 1}n and message spaceMk. For (pp, sp)← Par(1k, n), the
signature scheme ΣNT = (GenNT, SigNT,VerNT), with message space MΣ

k = ID, consists of the
following three algorithms (see also Figure 5.3):

Key Generation. GenNT(pp, sp), on input public parameters pp and secret parameters sp, runs
(mpk ,msk)← Gen(pp, sp), and outputs key pair (pk , sk) := (mpk ,msk).

Signing. SigNT(sk ,M), on input a secret key sk and a message M ∈ MΣ
k = ID, computes

uskM ← Ext(sk ,M) and outputs a signature σ = uskM .
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GenNT(pp, sp)

(mpk ,msk)← Gen(pp, sp)
pk := mpk
sk := msk
return (pk , sk)

SigNT(sk ,M)

uskM ← Ext(sk ,M)
return σ := uskM

VerNT(pk ,M, σ = uskM )

choose random M ′ ∈Mk

CM ← Enc(pk ,M,M ′)
M̃ = Dec(σ,CM )
if M ′ = M̃
return 1

else
return 0

Figure 5.3: Naor transformation applied to an identity-based encryption scheme IBE = (Par,
Gen,Ext,Enc,Dec) to obtain the signature scheme ΣNT = (GenNT, SigNT,VerNT),
with message spaceMΣ

k = ID = {0, 1}n.

Verification. VerNT(pk ,M, σ), on input a public key pk , a message M and a purported signa-
ture σ, chooses M ′ ← Mk randomly from the message space of IBE, computes CM ←
Enc(pk ,M,M ′), decrypts M̃ = Dec(σ,CM ), and ouputs 1 if M ′ = M̃ , else 0.

Note, that the verification algorithm VerNT of the signature scheme ΣNT is randomized.
Relations between Security Notions of IBE Schemes and Signature Schemes. In
[CFHIZ07] they give formal security treatments for the Naor transformation and discuss several
implications and separations among security notions of identity-based encryption schemes and
transformed signature schemes.

Their main result states that an IBE-IND-CPA-secure identity-based encryption scheme with
messages space Mk, such that 1

|Mk| is negligible in k (e.g. Mk = {0, 1}k), already implies an
EUF-CMA-secure transformed signature scheme. Therefore, secure signature schemes can be
generally derived from IBE schemes.

Multi-User Signature Schemes.

In this chapter, we construct an IBE scheme in the multi- instance, multi-ciphertext setting with
security loss O(k) independent of the number of instances, challenge ciphertexts and user secret
key queries. Therefore, it is important to consider the relation to multi-user signature schemes,
which we obtain after applying the Naor transformation.

The multi-user setting describes a more realistic scenario for many applications of digital
signature schemes in the real world [HJ12; Bad14]. Informally, in a multi-user signature scheme
the security experiment allows an adversary to query signatures from different users, i.e. signed
under different secret keys for which he knows the corresponding public keys. Then, he has
to produce a forgery (M∗, σ∗), which is valid under a public-key pk j for one of the users and
for a fresh message M∗, which he never queried corresponding to sk j , j ∈ [µ], where µ is the
number of instances, i.e. users in the system. The following definition is the natural extension
of EUF-CMA security in the multi-user setting.

Definition 38 (Multi-user existential unforgeability under chosen-message attacks). We say
a signature scheme is existentially unforgeable under chosen-message attacks in the multi-user
setting (µ-EUF-CMA-secure), where µ is the number of users, if

Advµ-euf-cma
Σ,F (k) := Pr

[
Expµ-euf-cma

Σ,F (k) = 1
]

is negligible for any PPT adversary F , where Expµ-euf-cma
Σ,F (k) is defined in Figure 5.4.

63



5 Almost Tight Identity-Based-Encryption Security

Experiment Expµ-euf-cma
Σ,F (k)

(pk j , sk j)j∈[µ] ← (Gen(pp, sp))µ

(M∗, σ∗)← F Sig(·,·)(pk1, . . . , pkµ)
if ∃j∗ ∈ [µ] : Ver(pk j∗ ,M

∗, σ∗) = 1
and F has not queried Sig(sk j∗ ,M

∗)
return 1

else
return 0

Figure 5.4: The µ-EUF-CMA security experiment, where µ ∈ N is the number of users.

Problems in Constructing Tightly Secure (Multi-User) Signature Schemes. It is a
straightforward reduction to show that EUF-CMA security implies µ-EUF-CMA security, by
just simply guessing the appropriate public key and corresponding secret key under which the
adversary will forge a signature. Therefore the security loss is linear in the number of users,
i.e. O(µ) (similar to IBE schemes in the multi-instance setting). A lot of recent work focused
on constructing tightly secure signature schemes [KW03; Sch11; HJ12; HJK12; Seu12; FJS14].
However, there were only few in the multi-user setting [HJ12; Bad14; BHJKL15] at that time. In
[HJ12] they construct a tightly µ-EUF-CMA-secure structure-preserving signature scheme in the
standard model under a standard assumption. Informally, in a structure-preserving signature
scheme all operations can be expressed using equations over a (usually pairing-friendly) cyclic
group. However, the signatures of their scheme are very large. This inefficiency of the parameters
is often a result of tight security reductions, especially in the context of structure-preserving
signatures.

Hence, due to the relation between IBE schemes and signature schemes our result of an al-
most tightly secure IBE scheme in the multi-instance, multi-ciphertext setting is also interesting
regarding the construction of tightly secure multi-user signature schemes.

In 2018, [GJ18] considered an extension of µ-EUF-CMA security, dubbed µ-EUF-CMAcorr,
where an adversary is allowed to corrupt users and thus obtains the corresponding secret keys.
They constructed the first practical tightly µ-EUF-CMAcorr-secure signature scheme in the
standard model without bilinear maps.

5.3.2 The Development of IBE and Dual System Methodology

The Dual System Methodology established a new way to prove security of IBE schemes and
related cryptographic schemes. This proof strategy was developed and published by Waters
[Wat09]. Before we explain this strategy on a high-level we briefly summarize some previous
ideas, which led to the new approach.

The first construction of an efficient IBE scheme was introduced by Boneh and Franklin [BF01]
using bilinear maps. Their proof of security is in the random oracle model under the Bilinear
Diffie-Hellman assumption. One important question was, if it is possible to prove security of
their scheme in the standard model. Canetti, Halevi and Katz [CHK07] proved security of
the Boneh-Franklin IBE scheme without a random oracle, but in a weaker model, called the
selective-ID model. In this model an adversary has to choose his challenge identity id∗ before he
even sees the master public key and public parameters of the system. Boneh and Boyen [BB04b]
constructed the first fully secure IBE scheme in the standard model, and subsequently Waters
[Wat05] published one with better efficiency. All of these works used a similar proof strategy,
namely partitioning.
Partitioning Strategy. In a partitioning reduction, as in general reductions, one reduces the
security of the scheme to an underlying complexity assumption. Here, partitioning means, that
a reduction algorithm B splits the identity space ID into two parts, ID1 and ID2, such that
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normal usk id semi-funct. usk id

normal Cid 3 3

semi-funct. Cid 3 7

Table 5.1: Successful (3) and unsuccessful (7) decryption regarding normal and semi-functional
user secret keys usk id and ciphertexts Cid , respectively, for identity id .

• for identities id ∈ ID1 the reduction algorithm B is able to generate user secret keys

• for identities id ∈ ID2 the reduction algorithm B embeds an underlying complexity as-
sumption, i.e. B can use these identities as challenge identity id∗, but is unable to generate
user secret keys for id

This strategy has several drawbacks. Reductions in fully secure schemes partition the identity
space according to the number of user secret key queries (poly in k), which leads to a large
security loss. Furthermore, in such a reduction, the partitioning strategy is implemented in the
public parameters, which makes them very large and impractical for some applications. For
instance, the public parameters in Waters’ [Wat05] efficient fully secure scheme in the standard
model consists of O(k) group elements. Further, the strategy is not applicable for proving secur-
ity for hierarchical IBE (HIBE) [HL02] or attribute-based encryption (ABE) [SW05] schemes,
which offer more functionality. The last two disadvantages were removed using the following
new approach due to Waters [Wat09].
Dual System Encryption. [Wat09] introduces a new technique, dubbed Dual System En-
cryption, for proving full security of IBE and HIBE schemes under simple assumptions. This
technique yields IBE and HIBE schemes with public parameters, ciphertexts and user secret
keys consisting of only a constant number of group elements.

In a Dual System Encryption system, both user secret keys and ciphertexts can either be
normal or semi-functional. Both forms are indistinguishable from each other. A normal user
secret key or ciphertext, respectively, is generated by using the key generation algorithm or
encryption algorithm, respectively, of the scheme. A semi-functional user secret key or ciphertext
instead is generated by using additional algorithms. These are not part of the original IBE or
HIBE scheme and only used during the security proof. A semi-functional user secret key for an
identity id is able to decrypt normal ciphertexts corresponding to id , but fail for semi-functional
ciphertexts corresponding to id . Analogously, semi-functional ciphertexts are only decryptable
using normal user secret keys corresponding to the same identity (see also Table 5.1).

In order to prove security of an IBE scheme, a sequence of games is defined as follows:

Game 0. Game 0 is the original security experiment of the IBE scheme, where all queried user
secret keys usk idj , for j = 1, . . . , q = q(k), and the challenge ciphertext Cid∗ are normal.

Game 1. Game 1 is defined as Game 0 apart from the fact that the challenge ciphertext is
semi-functional.

Game 2.i. Game 2.i is defined as Game 1 except that all user secret keys usk idj , for j = 1, . . . , i,
are semi-functional and all user secret keys usk idj , for j = i+ 1, . . . , q are normal.

Game 3. Game 3 is defined as Game 2.q except that the the message encrypted in the challenge
ciphertext is an independent uniform k-length bitstring.
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In the security reduction [Wat09] shows that each game is indistinguishable from the next
game under simple assumptions. Intuitively, for Game 0 and Game 1 they argue that no ad-
versary can distinguish these games, since all user secret keys are still normal, hence, they can
help to decrypt regardless whether the challenge ciphertext is normal or semi-functional. In
Game 2.q all user secret keys are semi-functional, hence, it is no problem to change the chal-
lenge message to random as in Game 3, since no semi-functional user secret key is usable for
decrypting a semi-functional challenge ciphertext. At the end, the challenge message is random
and an adversary can only win by guessing.

One important point the authors had to deal with in their security proof was to ensure that
it is not possible for the reduction algorithm to distinguish Game 2.i from Game 2.i+1 by itself,
for instance by generating a semi-functional ciphertext Cidi+1 for the corresponding user secret
key usk idi+1 and test if decryption fails or not. They overcome this problem by embedding a
polynomial f(id) = a · id + b of degree one, both in semi-functional user secret keys and semi-
functional ciphertexts, such that the decryption algorithm will only work, i.e. decrypt correctly,
if f(id) is used only once as input, either for the semi-functional ciphertext or the semi-functional
user secret key.

Since q = q(k) hybrid games are necessary to change all user secret keys from normal to semi-
functional, and each step requires a computational assumption, the security loss still depends
on the number of user secret key queries. This can be improved using the following technique
by Chen and Wee [CW13].
Nested Dual System Groups. Waters [Wat05] posed the important question, if it is pos-
sible to construct a fully secure IBE scheme with a tight security reduction under a standard
assumption.

In [CW13] Chen and Wee constructed the first almost tight and fully secure IBE scheme under
a standard assumption. Almost tight means that the security loss only depends on the security
parameter k and is independent of the number of user secret key queries. In their approach
they introduced an abstraction called Nested Dual System Groups (NDSG). NDSG can be seen
as a variant of Dual System Groups (DSG) [CW14] which itself are based on the Dual System
framework introduced by [Wat09]. Informally, NDSG consists of a triple of groups (G,H,GT )
and a bilinear map e : G × H → GT , satisfying a number of abstract properties, not further
explained here.

[CW13] combines the Dual System Encryption technique with ideas of the analysis of the
Naor-Reingold pseudorandom function [NR04]. In Dual System Encryption the semi-functional
user secret keys are introduced one after the other, which results in q hybrid games to change
all user secret keys from normal to semi-functional. The idea is to use the identities of the IBE
scheme as input for random functions and to iterate over the input bits in the binary encoding of
the identity, as done in the analysis of the Naor-Reingold PRF. Therefore, we consider identities
id = (id1 . . . idn) ∈ ID = {0, 1}n, n = n(k) and random functions Ri, i = 1, . . . , n for inputs
id |i = id1 . . . id i (the i-bit prefix of id), more formally Ri : {0, 1}i → H, Ri(id |i)→ hi. Then we
say, a challenge ciphertext or user secret key for an identity id is semi-functional of type i, if it
contains additional randomness in form of Ri(id |i) (e.g. added by multiplying). Starting from
0-bit prefix to 1-bit prefix, 2-bit prefix . . . , to the entire identity, the dependency on the input
identity increases in every step. This property is called nested hiding (see also section 5.4).

This yields n hybrid games, described below. In Game 2.i the challenge ciphertext and each
user secret key are semi-functional of type i, which means that their semi-functional component
depends only on the first i bits of the corresponding identity id given as input to Ri. Hence, their
entropy in the semi-functional component increases in every game from Ri(id |i) to Ri+1(id |i+1),
for i = 1, . . . , n. At the end Rn(id∗), for the challenge identity id∗, is like a truly random value.
Therefore, the challenge message is perfectly hidden and can be replaced by a random message.

Game 0. Game 0 is the original security experiment of the IBE scheme, where all queried user
secret keys usk idj , for j = 1, . . . , q = q(k), and the challenge ciphertext Cid∗ are normal.
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s-f. type i usk id s-f. type i+ 1 usk id

id |i = id ′|i id |i = id ′|i id |i = id ′|i id |i = id ′|i

id |i+1 6= id ′|i+1 id |i+1 = id ′|i+1 id |i+1 6= id ′|i+1 id |i+1 = id ′|i+1

s-f. type i Cid ′ 3 3 7 7

s-f. type i+ 1 Cid ′ 7 7 7 3

Table 5.2: Successful (3) and unsuccessful (7) decryption regarding semi-functional type i and
i + 1 user secret keys usk id , for identity id , and semi-functional type i and i + 1
ciphertexts Cid ′ , for identity id ′.

Game 1. Game 1 is defined as Game 0 apart from the fact that the challenge ciphertext is
pseudo-normal (generated in a way, that enables gradual randomization).

Game 2.i Game 2.i is defined as Game 1 except that the challenge ciphertext and all user
secret keys usk idj , for j = 1, . . . , q, are semi-functional of type i.

Game 3. Game 3 is defined as Game 2.n except that the message encrypted in the challenge
ciphertext is a uniform k-length bitstring.

Note, type i user secret keys usk id , for an identity id , can decrypt type i ciphertexts Cid ′ ,
for an identity id ′, if id |i = id ′|i, and fail otherwise (see also Table 5.2). If id |i = id ′|i both are
multiplied with the same randomness Ri(id |i) and during decryption some kind of cancellation
takes place. For different semi-functional types, e.g. semi-functional type i user secret key usk id
and semi-functional type i+ 1 ciphertext Cid (and vice versa) decryption fails even for the same
identity id . Since the user secret key is multiplied by randomness Ri(id |i), which is different
from the randomness Ri+1(id |i+1) multiplied by the ciphertext, no cancellation happens and
decryption fails.

Again, one problem arises with this strategy: The reduction algorithm B is also in a position
to distinguish Game 2.i from Game 2.i+1 by itself (as mentioned in the Dual System Strategy),
if B is able to create a semi-functional type i user secret key usk id∗ for the challenge identity
id∗ to test if decryption would succeed (i.e., Cid∗ is semi-functional of type i) or fail (i.e., Cid∗

is semi-functional of type i+ 1).
Hence, Chen and Wee move from the i-th to the (i+ 1)-th hybrid through a single reduction

as follows: first, they guess the (i+ 1)-th bit id∗i+1 of the challenge identity id∗. Then, they set
up things such that

• all user secret keys for identities id with id i+1 = id∗i+1 (i.e., that coincide in the (i+ 1)-th
bit with id∗) are of the same type as in the previous hybrid (i.e., carry only a blinding
term Ri(id |i)),

• all user secret keys for identities id with id i = 1 − id∗i carry a blinding term of Ri(id |i) ·
R′(id |i)). Depending on the input of the reduction, we have either that R′ = 1 (such that
the overall blinding term is R(id |i)), or that R′ is an independently random function (such
that Ri(id |i) ·R′(id |i) =: Ri+1(id |i+1)).

The first property prevents the reduction B from testing by itself, since both semi-functional
type i and type i+1 user secret keys for identities id , with id |i+1 = id∗|i+1, are the same, which
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s-f. type i usk id s-f. type i+ 1 usk id

id |i = id ′|i id |i = id ′|i id |i = id ′|i id |i = id ′|i

id |i+1 6= id ′|i+1 id |i+1 = id ′|i+1 id |i+1 6= id ′|i+1 id |i+1 = id ′|i+1

s-f. type (∧, i) Cid ′ 3 3 7 7

s-f. type (∼, i) Cid ′ 3 3 7 7

s-f. type (∧, i+ 1) Cid ′ 7 7 7 3

s-f. type (∼, i+ 1) Cid ′ 7 7 7 3

Table 5.3: Successful (3) and unsuccessful (7) decryption regarding semi-functional type i and
i + 1 user secret keys usk id , for identity id , and semi-functional type (∧, i), (∼, i),
(∧, i+ 1) and (∼, i+ 1) ciphertexts Cid ′ , for identity id ′.

means that both types successfully decrypt a semi-functional type i and type i + 1 challenge
ciphertext Cid∗ .

Depending on whether or not R′ = 1, this setup simulates the i-th or the (i+ 1)-th hybrid.
Problem of this Approach in the Multi-Instance, Multi-Ciphertext Setting. In their
(i + 1)-th game hop, only challenge ciphertexts for identities with the same (i + 1)-th bit can
be generated. In the multi-instance, multi-ciphertext setting we have many different challenge
ciphertexts for corresponding identities. Since the identities are not equal they differ in at least
one bit. Thus, their approach cannot in any obvious way be extended to multiple challenge
ciphertexts for different identities. For similar reasons, a generalization to multiple instances
of the scheme fails. To overcome this problem, we introduce Extended Nested Dual System
Groups (ENDSG), which are formally described in section 5.4. The idea of the strategy is
briefly described here.
Proof Strategy for Multi-Instance, Multi-Ciphertext IBE Schemes. Informally, ex-
tended nested dual system groups (ENDSG) are a tuple of groups (G,H,GT , Ĝ, G̃, Ĥ, H̃) and
a bilinear map e : G ×H → GT , where G,H and GT are composite-order groups of the same
order with proper subgroups Ĝ, G̃ ⊂ G and Ĥ, H̃ ⊂ H of different order.

Similar to NDSG, we use random functions Ri to increase the entropy in our semi-functional
objects. But, in comparison, we distribute the blinding terms Ri(id |i) used in NDSG in two
different subgroups, i.e., we use two different random functions R̂i(id |i) and R̃i(id |i) instead,
which map in Ĥ and H̃, respectively. In our case, we have semi-functional type-(∧, i) and type-
(∼, i) ciphertexts, which contain either Ĝ-elements and R̂i(id |i) or G̃-elements and R̃i(id |i),
and semi-functional type i user secret keys, which contain both R̂i(id |i) and R̃i(id |i) and no
additional Ĝ- or G̃-elements. For decryption rules see Table 5.3.

In order to move from the (i − 1)-th to the i-th hybrid, we thus follow a different strategy
that involves three reductions. We only describe these three games in the following, since the
other games are similar to the games in NDSG adapted to the multi-instance, multi-ciphertext
setting (for more details see section 5.4.1):

Game 2.i.0. Game 2.i is defined as Game 1 except that all user secret keys are semi-functional
of type i− 1 and all challenge ciphertexts are semi-functional of type (∧, i− 1).

Game 2.i.1. Game 2.i.1 is defined as Game 2.i.0 except that if the i-th bit of a challenge identity
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is 0, then the corresponding challenge ciphertext is semi-functional of type (∧, i − 1),
otherwise if the bit is 1 then it is semi-functional of type (∼, i − 1). (Note, that all user
secret keys are still semi-functional of type i− 1.)

Game 2.i.2. Game 2.i.2 is defined as Game 2.i.1 except that the challenge ciphertexts are
semi-functional of type (·, i) (where · can be ∧ or ∼ as defined in game 2.i.1 depending on
the i-th bit of the challenge identity) and all user secret keys are semi-functional of type i.

We take advantage of the property of the bilinear map, that elements from ∧− and ∼ −
subgroups behave as follows under the bilinear map e: e(ĝ, h̃) = e(g̃, ĥ) = 1 (i.e., cancellation)
and e(ĝ, ĥ) = e(g̃, h̃) 6= 1 (i.e., reaction), for all ĝ ∈ Ĝ, g̃ ∈ G̃, ĥ ∈ Ĥ, h̃ ∈ H̃. In other words,
cancellation is needed for successful decryption and if there is any reaction, decryption fails.
During the reduction this enables to embed a computational challenge in the form of (R̂′, R̃′) in
the user secret keys usk id . Depending on the ith-bit id i of the identity for a corresponding user
secret key, we embed the challenge either in

R̂i(id |i) = R̂i−1(id |i−1) · R̂′ and set R̃i(id |i) := R̃i−1(id |i−1), if id i = 1,

or
R̃i(id |i) = R̃i−1(id |i−1) · R̃′ and set R̂i(id |i) := R̂i−1(id |i−1), if id i = 0.

Again, depending on R̂′ = R̃′ = 1 or not, this is exactly Game 2.i.1 or 2.i.2.
Note again, testing with the challenge ciphertexts (or any other ciphertext) is not possible.

We have semi-functional type (∧, i) ciphertexts if id∗i = 0, but for all user secret keys usk id with
id i = 0, we embedded an additional term R̃′ in the user secret key. Since the ∧− and ∼ −
components cancel each other out, decryption succeeds no matter if the key is semi-functional
of type i − 1 or i (for identities with the same i-bit prefix). Hence, a “reaction“ (resulting in
a failing decryption), that would be helpful to distinguish the games, is not possible for these
challenge ciphertexts and user secret keys. Analogously for id∗i = 1.

In other words, we shift the challenge ciphertexts according to their ith-bit either in the
∧−semi-functional space or in the ∼ −semi-functional space. Then, we apply Chen and Wee’s
proof strategy in both subspaces, seperately.

From a conceptual perspective, it might also be interesting to note that none of our reductions
needs to guess, e.g., an identity bit.

5.4 Extended Nested Dual System Groups (ENDSG)

In the following, based on NDSGs, we construct a new notion we call extended nested dual
system groups.
A Variant of Nested Dual System Groups. We introduce a variant of Chen and Wee’s nes-
ted dual system groups (NDSG) [CW13], dubbed extended nested dual system groups (ENDSG)
defined in Definition 39. Mainly, we re-use and extend the notions from [CW13].

Group Generation. Further, let Grp(1k, n′) be a group generation algorithm as defined in Defin-
ition 3, i.e.

(G,H,GT , N, (gp1 , . . . , gpn′ ), (hp1 , . . . , hpn′ ), g, h, e)← Grp(1k, n′)

for a pairing e : G ×H → GT , for composite-order groups G,H,GT , all of known group
order N = p1 · · · pn′ , and generators g and h. Further, (gpi)i and (hpi)i are generators of
the (proper) subgroups Gpi ⊂ G and Hpi ⊂ H of order pi.

Definition 39 (ENDSG). An extended nested dual system group ENDSG = (SampP, SampG,

SampH, ŜampG, S̃ampG) consists of five PPT algorithms:
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Parameter Sampling. SampP(1k, n), on input a security parameter 1k and parameter n ∈ N,
samples

(G,H,GT , N, (gp1 , . . . , gpn′ ), (hp1 , . . . , hpn′ ), g, h, e)← Grp(1k, n′),

for a constant integer n′ depending on n and determined by SampP, and outputs public
parameters

pp = (G,H,GT , N, g, h, e,m, n, pars)

and secret parameters
sp = (ĥ, h̃, p̂ars, p̃ars),

where m : H→ GT is a linear map, ĥ, h̃ are nontrivial H-elements, and pars, p̂ars, p̃ars may
contain arbitrary additional information used by SampG,SampH, and ŜampG and S̃ampG.

G-group Sampling. SampG(pp), on input public parameters pp, outputs g = (g0, . . . , gn) ∈
Gn+1.

H-group Sampling. SampH(pp), on input public parameters pp, outputs h = (h0, . . . , hn) ∈
Hn+1.

Semi-Functional G-group Sampling 1. ŜampG(pp, sp), on input public parameters pp and secret
parameters sp, outputs ĝ = (ĝ0, . . . , ĝn) ∈ Gn+1.

Semi-Functional G-group Sampling 2. S̃ampG(pp, sp), on input public parameters pp and secret
parameters sp, outputs g̃ = (g̃0, . . . , g̃n) ∈ Gn+1.

Correctness of ENDSG. For correctness, we require for all k ∈ N, for all integers n = n(k) > 1,
for all pp, where pp is the first output of SampP(1k, n), the following properties:

Associativity. For all (g0, . . . , gn) ← SampG(pp) and for all (h0, . . . , hn) ← SampH(pp), we
have e(g0, hi) = e(gi, h0), for all i ∈ [n].

Projective. For all s ∈ Z∗N , for g0 which is the first output of SampG(pp; s), for all h ∈ H, we
have m(h)s = e(g0, h).

Security of ENDSG. For security, we require for all k ∈ N, for all integers n = n(k) > 1, for
all (pp, sp)← SampP(1k, n), the following properties:

Orthogonality. For m specified in pp, for ĥ, h̃ specified in sp, we have

m(ĥ) = m(h̃) = 1.

For g0, ĝ0, and g̃0 that are the first outputs of SampG(pp), ŜampG(pp, sp), and S̃ampG(pp, sp),
respectively, we have that

e(g0, ĥ) = 1, e(g0, h̃) = 1, e(ĝ0, h̃) = 1, and e(g̃0, ĥ) = 1.

G- and H-subgroups. The outputs of SampG, ŜampG, and S̃ampG are distributed uniformly
over the generators of different nontrivial subgroups of Gn+1 (that only depend on pp) of
coprime order, respectively, while the output of SampH is uniformly distributed over the
generators of a nontrivial subgroup of Hn+1 (that only depends on pp).

Non-degeneracy. For ĥ specified in sp and for ĝ0 which is the first output of ŜampG(pp, sp),
it holds that e(ĝ0, ĥ) is uniformly distributed over the generators of a nontrivial subgroup
of GT (that only depends on pp). Similarly, e(g̃0, h̃) is uniformly distributed over the
generators of a nontrivial subgroup of GT (that only depends on pp), where h̃ is specified
in sp and g̃0 is the first output of S̃ampG(pp, sp).
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Left-subgroup indistinguishability 1 (LS1). For any PPT adversary D, we have that the
function

Advls1
ENDSG,Grp,D(k, n) := |Pr [D(pp,g) = 1]− Pr [D(pp,gĝ) = 1] |

is negligible in k, where g← SampG(pp), ĝ← ŜampG(pp, sp).

Left-subgroup indistinguishability 2 (LS2). For any PPT adversary D, we have that the
function

Advls2
ENDSG,Grp,D(k, n) := |Pr

[
D(pp, ĥh̃,g′ĝ′,gĝ) = 1

]
− Pr

[
D(pp, ĥh̃,g′ĝ′,gg̃) = 1

]
|

is negligible in k, where g,g′ ← SampG(pp), ĝ, ĝ′ ← ŜampG(pp, sp), g̃ ← S̃ampG(pp, sp),
for ĥ and h̃ specified in sp.

Nested-hiding indistinguishability (NH). For any PPT adversary D, for all q′ = q′(k), the
function

Advnh
ENDSG,Grp,D(k, n, q′) := max

i∈[bn
2
c]

(
|Pr

[
D(pp, ĥ, h̃, ĝ−(2i−1), g̃−2i, (h1, . . . ,hq′)) = 1

]
− Pr

[
D(pp, ĥ, h̃, ĝ−(2i−1), g̃−2i, (h

′
1, . . . ,h

′
q′)) = 1

]
|
)
,

is negligible in k, where ĝ← ŜampG(pp, sp), g̃← S̃ampG(pp, sp), and

hi′ := (hi′,0, . . . , hi′,n)← SampH(pp),

h′i′ := (hi′,0, . . . , hi′,2i−1 · (ĥ)γ̂i′ , hi′,2i · (h̃)γ̃i′ , . . . , hi′,n),

for i ∈ {0, . . . , n}, for ĥ, h̃ specified in sp, for γ̂i′ , γ̃i′ ← Z∗ord(H), and for all i′ ∈ [q′].

(Informal) Comparison of NDSGs and ENDSGs. Loosely speaking, in contrast to the
NDSGs from [CW13], ENDSGs have a second semi-functional G-group sampling algorithm
S̃ampG as well as a second nontrivialH-element h̃ in sp. Further, we omit the SampGT-algorithm.
Concerning the ENDSG properties, we extend the NDSG properties and assumptions appropri-
ately and introduce one additional assumption (i.e., LS2).

5.4.1 Generic Construction

We emphasize here, that this section is not part of this thesis and extensively discussed in
[Str15]. It is reproduced here for a better understanding of the result in our next section, where
we construct an instantiation of this scheme.
A variant of the IBE of [CW13]. [HKS15] presents a variant of Chen and Wee’s IBE
scheme [CW13]. As a basic building block an extended nested dual system group ENDSG =

(SampP, SampG,SampH, ŜampG, S̃ampG) as described in section 5.4 is used.
Besides, for groups GT (defined below), let UH be a family of universal hash functions

H : GT → {0, 1}k such that for any nontrivial subgroup G′T ⊂ GT , and for H← UH, X ← G′T ,
and U ← {0, 1}k, it holds SD ((H,H(X)) ; (H, U)) = O(2−k).

Let IBE = (Par,Gen,Ext,Enc,Dec) with identity space ID = {0, 1}n, for n = n(k) a priori,
and message spaceMk = {0, 1}k be defined as follows:

Parameter Generation. Par(1k, n), on input a security parameter 1k and a parameter n ∈ N,
samples (pp′, sp′)← SampP(1k, 2n)
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with
pp′ = (G,H,GT , N, g, h, e,m, 2n, pars)

and
sp′ = (ĥ, h̃, p̂ars, p̃ars).

Further, Par(1k, n) samples a universal hash function

H← UH.

Finally, Par(1k, n) outputs the public and secret parameters (pp, sp), where

pp := (pp′,H) and sp := sp′.

Key Generation. Gen(pp, sp), on input public parameters pp and secret parameters sp, samples
msk ← H, and outputs a master public key and master secret key

(mpk ,msk) := ((pp,m(msk)),msk).

Secret Key Extraction. Ext(msk , id), on input a master secret key msk ∈ H and an identity
id = (id1 . . . idn) ∈ ID, samples (h0, . . . , h2n) ← SampH(pp) and outputs a user secret
key

usk id := (h0,msk ·
n∏
i=1

h2i−idi) =: (K0,K1).

Encryption. Enc(mpk , id ,M), on input a master public key mpk = (pp,m(msk)), an identity
id = (id1 . . . idn) ∈ ID, and a message M ∈Mk, computes

(g0, . . . , g2n) := SampG(pp; s), for s← Z∗N ,

and
gT := m(msk)s

(∗)
= e(g0,msk),

where (*) holds due to ENDSG’s projective property, and outputs a ciphertext

Cid := (g0,
n∏
i=1

g2i−idi ,H(gT )⊕M) =: (C0, C1, C2).

Decryption. Dec(usk id , Cid ′), on input a user secret key usk id =: (K0,K1) and a ciphertext
Cid ′ =: (C0, C1, C2), outputs

M := H

(
e(C0,K1)

e(C1,K0)

)
⊕ C2.

Correctness of IBE. For id = id ′ it holds

H

(
e(C0,K1)

e(C1,K0)

)
⊕ C2 = H

(
e(g0,msk ·

∏n
i=1 h2i−idi)

e(
∏n
i=1 g2i−id ′i , h0)

)
⊕ (H(gT )⊕M)

= H

(
e(g0,msk)

∏n
i=1 e(g0, h2i−idi)∏n

i=1 e(g2i−id ′i , h0)

)
⊕ H(gT )⊕M

(∗)
= H(e(g0,msk))⊕ H(gT )⊕M (∗)

= H(gT )⊕ H(gT )⊕M
= M,
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(∗) holds due to ENDSG’s associativity and projective properties.
(µ, q)-IBE-IND-CPA Security of IBE. The high-level proof strategy is based on the IBE-
IND-CPA proof strategy of [CW13], but deviate on the low level. In order to provide an overview
on the proof strategy, auxiliary secret-key extraction Ext and auxiliary encryption Enc, random
functions R̂j,i and R̃j,i, pseudo-normal ciphertexts, semi-functional type-(·, i) ciphertexts, and
semi-functional type-i user secret keys similarly to [CW13] are defined:

Auxiliary Secret Key Extraction. Ext(pp,msk , id ; h), on input public parameters pp, a mas-
ter secret key msk , an identity id = id1 . . . idn ∈ ID, and h = (h0, . . . , h2n) ∈ H2n+1,
outputs a user secret key

usk id := (h0,msk ·
n∏
i=1

h2i−idi).

Auxiliary Encryption Function. Enc(pp, id ,M ;msk ,g), on input a public parameter pp,
an identity id = id1 . . . idn ∈ ID, a message M ∈ Mk, a master secret key msk , and
g = (g0, . . . , g2n) ∈ (G)2n+1, outputs a ciphertext

Cid := (g0,
n∏
i=1

g2i−idi ,H(e(g0,msk))⊕M).

Random Function Families. Let

id |i := id1 . . . id i ∈ {0, 1}i =: ID|i

be the i-bit prefix of an identity id . For an instance j ∈ [µ] and i ∈ [n]∪ {0}, consider the
following independent and truly random functions

R̂j,i : ID|i → H, id |i 7→ (ĥ)γ̂j,i(id |i)

and
R̃j,i : ID|i → H, id |i 7→ (h̃)γ̃j,i(id |i),

where
γ̂j,i : ID|i → Z∗ord(H), id |i 7→ γ̂j,id |i

and
γ̃j,i : ID|i → Z∗ord(H), id |i 7→ γ̃j,id |i .

Pseudo-Normal Ciphertexts. Pseudo-normal ciphertexts are generated as

Cid := Enc(pp, id ,M ;msk ,gĝ)

= (g0ĝ0,

n∏
i=1

g2i−idi ĝ2i−idi ,H(e(g0ĝ0,msk))⊕M),

for uniform g = (g0, . . . , g2n) ← SampG(pp) and ĝ = (ĝ0, . . . , ĝ2n) ← ŜampG(pp, sp).
(Hence, pseudo-normal ciphertexts have G-components sampled from ŜampG and thus
msk is needed as additional input to replace gT = m(msk)s = e(g0,msk) by e(g0ĝ0,msk)).

Semi-Functional Type-(∧, i) and Type-(∼, i) Ciphertexts. Let R̂j,i and R̃j,i be random
functions as defined above. Semi-functional ciphertexts of type (∧, i) are generated as

Ĉid := Enc(pp, id ,M ;msk · R̂j,i(id |i) · R̃j,i(id |i),gĝ)

(1)
= (g0ĝ0,

n∏
i=1

g2i−idi ĝ2i−idi ,H(e(g0ĝ0,msk · R̂j,i(id |i)))⊕M)

73



5 Almost Tight Identity-Based-Encryption Security

while semi-functional ciphertexts of type (∼, i) are generated as

C̃id := Enc(pp, id ,M ;msk · R̂j,i(id |i) · R̃j,i(id |i),gg̃)

(2)
= (g0g̃0,

n∏
i=1

g2i−idi g̃2i−idi ,H(e(g0g̃0,msk · R̃j,i(id |i)))⊕M),

where g = (g0, . . . , g2n) ← SampG(pp), ĝ = (ĝ0, . . . , ĝ2n) ← ŜampG(pp), and g̃ =

(g̃0, . . . , g̃2n)← S̃ampG(pp), while (1) and (2) hold due to ENDSG’s properties.

Semi-Functional Type-i User Secret Keys. Let R̂j,i and R̃j,i be defined as above. For h =
(h0, . . . , h2n)← SampH(pp), semi-functional type-i user secret keys are generated as

usk id := Ext(pp,msk · R̂j,i(id |i) · R̃j,i(id |i), id ; h)

= (h0,msk · R̂j,i(id |i) · R̃j,i(id |i) ·
n∏
i=1

h2i−idi).

Theorem 12. If ENDSG is an extended nested dual system group system as defined in section 5.4
and H is a universal hash function, then IBE defined as above is weakly (µ, q)-IBE-IND-CPA-
secure. Concretely, for any weak PPT adversary A with at most q′ = q′(k) key extraction queries
per instance and running time t in the (µ, q)-IBE-IND-CPA security experiment (µ instances, q
challenge ciphertexts) with IBE, there are distinguishers D1 on LS1, D2 on LS2, and D3 on NH
with running times t′1 ≈ t′2 ≈ t′3 ≈ t + O(µnkc(q + q′)), respectively, for some constant c ∈ N,
with

Adv
(µ,q)-ibe-ind-cpa
IBE,A (k, n) ≤ Advls1

ENDSG,Grp,D1
(k, 2n) + 2n · Advls2

ENDSG,Grp,D2
(k, 2n)

+ n · Advnh
ENDSG,Grp,D3

(k, 2n, µq′) + µq ·O(2−k), (5.1)

for a group generation algorithm Grp defined as in Definition 3.

The full proof can be found in [HKS15] and also in [Str15] in more detail. We only outline
the idea of the proof to clarify where the security properties of ENDSG are used.
Idea of the Proof Strategy. [HKS15] shows the (µ, q)-IBE-IND-CPA security of IBE for any
weak PPT adversary A in a sequence of games where they successively change the games until
they arrive at a game where A has only negligible advantage (i.e., success probability of 1/2) in
the sense of (µ, q)-IBE-IND-CPA. In Table 5.4 an overview how the challenge ciphertexts and
user secret keys are generated is given.

Game 0. Game 0 is the (µ, q)-IBE-IND-CPA experiment as defined above.

Game 1. Game 1 is defined as Game 0 apart from the fact that all challenge ciphertexts are
pseudo-normal.

Game 2.i.0. Game 2.i.0 is defined as Game 1 except that all user secret keys are semi-functional
of type (i − 1) and all challenge ciphertexts are semi-functional of type-(∧, i − 1), for all
i ∈ [n].

Game 2.i.1. Game 2.i.1 is defined as Game 2.i.0 except that if the i-th bit of a challenge identity
is 1, then the corresponding challenge ciphertext is semi-functional of type (∼, i − 1).
(Otherwise, if the i-th bit of a challenge identity is 0, then the corresponding challenge
ciphertext is semi-functional of type (∧, i− 1).)

Game 2.i.2. Game 2.i.2 is defined as Game 2.i.1 except that the challenge ciphertexts are semi-
functional of type (·, i) (where · can be ∧ or ∼ as defined in Game 2.i.1, i.e., depending on
the i-th challenge identity bit) and all the user secret keys are semi-functional of type i.
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Game 3. Game 3 is defined as Game 2.n.2 except that the challenge ciphertexts are semi-
functional of type (∧, n) (the user secret keys are semi-functional of type n).

Game 4. Game 4 is defined as Game 3 except that the messages encrypted in the challenge
ciphertexts are uniform k-length bitstrings.

Further, Table 5.4 indicates which assumption or property, respectively, is used to show the
indistinguishability of the corresponding games (marked with a label on the arrows). The cor-
responding proofs can be found in [HKS15] and [Str15] and are not part of this thesis. Taking
them together, this shows Theorem 12.

Game Challenge ciphertexts for id∗j,i′ User secret keys for id

G. 0 Enc(mpk j , id
∗
j,i′ ,M

∗
j,i′,b) Ext(msk j , id)

G. 1 Enc(pp, id∗j,i′ ,M
∗
j,i′,b;msk j ,gĝ) Ext(pp,msk j , id ; h)

G. 2.i.0 Enc(pp, id∗j,i′ ,M
∗
j,i′,b;msk j · R̂j,i−1(id∗j,i′ |i−1),gĝ) Ext(pp,msk j · R̂j,i−1(id |i−1) · R̃j,i−1(id |i−1), id ; h)

G. 2.i.1 if id∗j,i′,i = 0 : Ext(pp,msk j · R̂j,i−1(id |i−1) · R̃j,i−1(id |i−1), id ; h)

Enc(pp, id∗j,i′ ,M
∗
j,i′,b;msk j · R̂j,i−1(id∗j,i′ |i−1),gĝ)

if id∗j,i′,i = 1 :

Enc(pp, id∗j,i′ ,M
∗
j,i′,b;msk j · R̃j,i−1(id∗j,i′ |i−1),gg̃)

G. 2.i.2 if id∗j,i′,i = 0 : Ext(pp,msk j · R̂j,i(id |i) · R̃j,i(id |i), id ; h)

Enc(pp, id∗j,i′ ,M
∗
j,i′,b;msk j · R̂j,i(id∗j,i′ |i),gĝ)

if id∗j,i′,i = 1 :

Enc(pp, id∗j,i′ ,M
∗
j,i′,b;msk j · R̃j,i(id∗j,i′ |i),gg̃)

G. 3 Enc(pp, id∗j,i′ ,M
∗
j,i′,b;msk j · R̂j,n(id∗j,i′),gĝ) Ext(pp,msk j · R̂j,n(id) · R̃j,n(id), id ; h)

G. 4 Enc(pp, id∗j,i′ , Rj,i′ ;msk j · R̂j,n(id∗j,i′),gĝ) Ext(pp,msk j · R̂j,n(id) · R̃j,n(id), id ; h)

LS1

orthog.

LS2

NH

i = n :
LS2

stat.ind.

Table 5.4: Instance-j challenge ciphertexts for challenge identity id∗j,i′ , for g ← SampG(pp), for ĝ ←
ŜampG(pp, sp), for g̃ ← S̃ampG(pp, sp), for Rj,i′ ← {0, 1}k, and for instance-j user secret
keys for identity id , for h ← SampH(pp), for all (j, i′, i) ∈ [µ] × [q] × [n]. The differences
between games are given by underlining.

From Weak to Full (µ, q)-IBE-IND-CPA Security. The theorem above shows only weak
security: One must assume that the adversary A never asks for encryptions under the same
challenge identity and for the same scheme instance twice. It is not clear how to remove this
restriction assuming only the abstract properties of ENDSGs. However, at the cost of one
additional tight reduction to (a slight variant of) the Bilinear Decisional Diffie-Hellman (BDDH)
assumption (dubbed s-BDDH), full (µ, q)-IBE-IND-CPA security can be shown.
A (subgroup) variant of the BDDH assumption (s-BDDH). For proving full security
of the IBE scheme in the multi-instance, multi ciphertext setting the following assumption is
required.

Definition 40. For any PPT adversary D, We say that the subgroup Bilinear Decisional Diffie-
Hellman (s-BDDH) assumption holds relative to a group generation algorithm Grp(·) if

Advs-bddh
ENDSG,Grp,D(k, n) := |Pr

[
D(pp,g,ga, ĝ, ĝa, ĝb0, ĥ, ĥ

b, ĥc, e(ĝ0, ĥ)abc) = 1
]

− Pr
[
D(pp,g,ga, ĝ, ĝa, ĝb0, ĥ, ĥ

b, ĥc, e(ĝ0, ĥ)z) = 1
]
|

is negligible in k, for (pp, sp) ← SampP(1k, n), for g ← SampG(pp), for ĝ = (ĝ0, . . . , ĝn) ←
ŜampG(pp, sp), for ĥ specified in sp, for e specified in pp, and for (uniform) a, b, c, z ← Z∗N .
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In a nutshell, [HKS15] sets up e(ĝs0, ĥγ) = e(g, g)abc for a generator g and random exponents
a, b, c with ĝs0 = ga and ĥγ = gbc. The s-BDDH assumption now states that e(g, g)abc looks
random even given g, ga, gb, gc. Furthermore, by the random self-reducibility of s-BDDH, the
corresponding reduction is tight.

For more details, we refer to [HKS15] and [Str15]. This leads to the following corollary:

Corollary 2 (Full (µ, q)-IBE-IND-CPA security of IBE). Let Grp be a group generation al-
gorithm as defined in Definition 3. If ENDSG is an ENDSG system, s-BDDH holds relative
to a group generation algorithm Grp(·), and H is a universal hash function, then IBE is (µ, q)-
IBE-IND-CPA-secure. Concretely, for any PPT adversary A with at most q′ = q′(k) extraction
queries per instance and running time t in the (µ, q)-IBE-IND-CPA security experiment with
IBE, there are distinguishers D1 on LS1, D2 on LS2, D3 on NH, and D4 on s-BDDH with running
times t′1 ≈ t′2 ≈ t′3 ≈ t′4 ≈ t+ O(µnkc(q + q′)), respectively, some constant c ∈ N, with

Adv
(µ,q)-ibe-ind-cpa
IBE,A (k, n) ≤ Advls1

ENDSG,Grp,D1
(k, 2n) + 2n · Advls2

ENDSG,Grp,D2
(k, 2n)

+ n · Advnh
ENDSG,Grp,D3

(k, 2n, µq′) + Advs-bddh
ENDSG,Grp,D4

(k, 2n)

+ µq ·O(2−k), (5.2)

for group generator Grp defined as above.

5.5 Instantiation of ENDSG from Composite-Order Groups

In this section we present a concrete instantiation of extended nested dual system groups from
composite-order pairing-friendly groups. This is the main result in this thesis related to identity-
based encryption with almost tight security in the multi-instance, multi-ciphertext setting. Es-
pecially, the relation to resulting instantiations of signature schemes in the multi-user setting
with a security loss in O(k).
Assumptions in Groups with Composite-Order. We slightly modify two (known) dual
system assumptions (see DS1, DS3 below, and [CW13]) and define one (new) dual system
assumption (see DS2 below). Further, we give a dual system variant of the Bilinear Decisional
Diffie-Hellman assumption, dubbed DS-BDDH, and argue that DS-BDDH implies s-BDDH from
section 5.4.1.

Let Grp(1k, 4) be a composite-order group generator that outputs the following group para-
meters

(G,H = G,GT , N, e, g, gp1 , gp2 , gp3 , gp4)

with the composite-order groups G,GT , each of order

N = p1 · · · p4,

for pairwise-distinct k-bit primes p1, . . . , p4 ∈ P. Further, gpi is a generator of the subgroup
Gpi ⊂ G of order pi, and g is a generator of G. More generally, we write Gq ⊆ G for the unique
subgroups of order q. We use the following assumptions in groups with composite-order:

Dual system assumption 1 (DS1). For any PPT adversary D, the function

Advds1
Grp,D(k) := |Pr

[
D(pars, g′p1) = 1

]
− Pr

[
D(pars, g′p1p2) = 1

]
|

is negligible in k, for (G,GT , N, e, g, (gpi)i∈[4])← Grp(1k, 4),

pars := (G,GT , N, e, g, gp1 , gp3 , gp4), and g′p1 ← Gp1 , g
′
p1p2 ← Gp1p2 .
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Dual system assumption 2 (DS2). For any PPT adversary D, the function

Advds2
Grp,D(k) := |Pr

[
D(pars, g′p1p2) = 1

]
− Pr

[
D(pars, g′p1p3) = 1

]
|

is negligible in k, for (G,GT , N, e, g, (gpi)i∈[4])← Grp(1k, 4),

pars := (G,GT , N, e, g, gp1 , gp4 , gp1p2 , gp2p3),

gp1p2 ← Gp1p2 , gp2p3 ← Gp2p3 , and g′p1p2 ← Gp1p2 , g
′
p1p3 ← Gp1p3 .

Dual system assumption 3 (DS3). For any PPT adversary D, the function

Advds3
Grp,D(k) := |Pr

[
D(pars, gxyp2 , g

xy
p3 ) = 1

]
− Pr

[
D(pars, gxy+γ′

p2 , gxy+γ′
p3 ) = 1

]
|

is negligible in k, for (G,GT , N, e, g, (gpi)i∈[4])← Grp(1k, 4),

pars := (G,GT , N, e, g, (gpi)i, g
x
p2X̂4, g

y
p2 Ŷ4, g

x
p3X̃4, g

y
p3 Ỹ4),

X̂4, X̃4, Ŷ4, Ỹ4 ← Gp4 , x, y,← Z∗N , and γ′ ← Z∗N .

Dual system bilinear DDH assumption (DS-BDDH). For any PPT adversaryD, the func-
tion

Advds-bddh
Grp,D (k) := |Pr

[
D(pars, e(gp2 , gp2)abc) = 1

]
− Pr [D(pars, e(gp2 , gp2)z) = 1] |

is negligible in k, for (G,GT , N, e, g, (gpi)i∈[4])← Grp(1k, 4), for

pars := (G,GT , N, e, g, (gpi)i, g
a
p1 , g

a
p2 , g

b
p2 , gp2p4 , g

b
p2p4 , g

c
p2p4),

gp2p4←Gp2p4 , a, b, c, z ← Z∗N .

Lemma 13 (DS-BDDH implies s-BDDH). For any PPT adversary D with running time t
on s-BDDH there is a distinguisher D′ on DS-BDDH with running time t′ ≈ t such that

Advds-bddh
Grp,D′ (k) = Advs-bddh

Grp,D (k, n),

for Grp as defined in Definition 3. Hence, s-BDDH holds holds relative to Grp if DS-BDDH holds
relative to Grp.

Proof. Description. The challenge input to D′ is provided as (pars,T), where T is either

T = e(gp2 , gp2)abc or T = e(gp2 , gp2)z ← GT ,

for
pars = (G,GT , N, e, g, (gpi)i, g

a
p1 , g

a
p2 , g

b
p2 , gp2p4 , g

b
p2p4 , g

c
p2p4),

for
gp2p4

g← Gp2p4 , and for a, b, c, z ← Z∗N .

First, D′ sets the public parameters as

pp := (G,H := G,GT , N, g, e,m, n, pars
′),

for m : h′ 7→ e(g1, h
′), pars′ := (gp1 , gp4 , g

w
p1 , h := g, hw), for w← (Z∗N )n, and for some integer n

determined by D′.
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Then, D′ calls D on input

(pp,g := (gsp1 , g
s·w
p1 ),ga, ĝ := (gŝp2 , g

ŝ·w
p2 ), ĝa, gb·ŝp2 , gp2p4 , g

b
p2p4 , g

c
p2p4 ,T),

for s, ŝ← Z∗N .
Finally, D outputs a value which D′ forwards to its own challenger.

Analysis. Note that pp is distributed as defined in s-BDDH.
If T = e(gp2 , gp2)abc, then

Pr
[
D′(pars, e(gp2 , gp2)abc) = 1

]
= Pr

[
D(pp,g,ga, ĝ, ĝa, gbŝp2 , gp2p4 , g

b
p2p4 , g

c
p2p4 , e(gp2 , gp2)abc) = 1

]
follows.
Otherwise, if T = e(gp2 , gp2)z, then

Pr
[
D′(pars, e(gp2 , gp2)z) = 1

]
= Pr

[
D(pp,g,ga, ĝ, ĝa, gbŝp2 , gp2p4 , g

b
p2p4 , g

c
p2p4 , e(gp2 , gp2)z) = 1

]
.

Hence, Lemma 13 follows.

ENDSGs from Groups with Composite-Order. Let Grp(1k, 4) be as defined in Definition 3.
For simplicity, we write

gi := gpi and gij := gpipj ,

for all (i, j) ∈ [4]× [4].
We instantiate an ENDSG ENDSGco = (SampP, SampG,SampH, ŜampG, S̃ampG) from composite-

order groups as follows:

Parameter Sampling. SampP(1k, n), on input 1k and n, samples

(G,H,GT , (pi)i, e, g, h, (gi)i∈[4])← Grp(1k, 4)

and outputs
pp := (G,H,GT , N, g, e,m, n, pars)

and
sp := (ĥ, h̃, p̂ars, p̃ars),

for

– m : H→ GT ,m : h′ 7→ e(g1, h
′),

– pars := (g1, g4, g
w
1 , h, h

w ·R4), for w← (Z∗N )n, R4
g← (Gp4)n,

– ĥ
g← Gp2p4 , h̃

g← Gp3p4 ,

– p̂ars := (g2, g
w
2 ), p̃ars := (g3, g

w
3 ).

G-Group Sampling. SampG(pp), on input public parameters pp, samples a random s← Z∗N
and outputs (gs1, g

s·w
1 ).

H-Group Sampling. SampH(pp), on input public parameters pp, samples a random r ← Z∗N
and outputs (hr, hr·w ·R′4), for R′4

g← (Gp4)n.

Semi-Functional G-Group Sampling 1. ŜampG(pp, sp), on input public parameters pp and
secret parameters sp, samples a random s← Z∗N and outputs (gs2, g

s·w
2 ).

Semi-Functional G-Group Sampling 2. S̃ampG(pp, sp), on input public parameters pp and
secret parameters sp, samples a random s← Z∗N and outputs (gs3, g

s·w
3 ).
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Correctness of ENDSGco. For all k, n ∈ N and group parameters

(G,H,GT , N, e, g, h, (gi)i∈[4])← Grp(1k, 4),

we have:

Associativity. For w = (w1, . . . , wn) ∈ (Z∗N )n, for all s, r ← Z∗N , for R′4 = (R′1, . . . , R
′
n) ←

(Gp4)n, such that

(gs1, g
s·w
1 ) = SampG(pp; s) and (hr, hr·w ·R′4) = SampH(pp; r),

it holds that

e(g0, hi) := e(gs1, h
r·wi ·R′i) = e(gs1, h

r·wi) = e(gs·wi1 , hr) = e(gi, h0)

for all i ∈ [n].

Projective. For all s← Z∗N , for all h ∈ H, it holds that

m(h)s = e(g1, h)s = e(gs1, h) = e(g0, h),

where (g0, . . . , gn) := (gs1, . . . , g
s·wn
1 ) = SampG(pp; s).

Security of ENDSGco. For all k, n ∈ N, for all (pp, sp)← SampP(1k, n), we have:

Orthogonality. For ĥ, h̃ specified in sp, we have

m(ĥ) = e(g1, ĥ) = e((gp2p3p4)γg1 , (gp1p3)γĥ) = 1,

m(h̃) = e(g1, h̃) = e((gp2p3p4)γg1 , (gp1p2)γh̃) = 1

for suitable exponents γg1 , γĥ, γh̃ ∈ Z
∗
N . Further, for gs1, gs

′
2 , and gs

′′
3 that are the first

outputs of SampG(pp; s), ŜampG(pp, sp; s′), and S̃ampG(pp, sp; s′′), for s, s′, s′′ ← Z∗N , we
have

e(gs1, ĥ) = e(g0, ĥ) = 1,

e(gs1, h̃) = e(g0, h̃) = 1,

e(gs
′

2 , h̃) = e(ĝ0, h̃) = 1,

e(gs
′′

3 , ĥ) = e(g̃0, ĥ) = 1.

G- and H-Subgroups. Since g1, g2, and g3 are generators of subgroups Gp1 , Gp2 , and Gp3 of
coprime order, the outputs of SampG, ŜampG, and S̃ampG are uniform over the generators,
which generates nontrivial subgroups ofG of coprime order. Since h is a generator ofH and
R′4 is uniform over the generators of (Gp4)n, the output of SampH is uniformly distributed
over the generators of H.

Non-Degeneracy. For the first output gs2 of ŜampG(pp, sp; s) (with uniform s ∈ Z∗N ), and for
ĥ ∈ Gp2p3 as specified in sp, it holds that

e(gs2, ĥ) = e(g2, ĥ)s

is uniformly distributed over the generators of the subgroup generated by e(g2, ĥ). This
subgroup is nontrivial except with probability 2−Ω(k) (over pp). Similarly, for the first
output gs3 of S̃ampG(pp, sp; s), it holds that

e(gs3, h̃) = e(g3, h̃)s

is distributed uniformly over the generators of the subgroup generated by e(g3, h̃) ( for
uniform s← Z∗N ).
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5 Almost Tight Identity-Based-Encryption Security

Left-Subgroup Indistinguishability 1. We prove the following lemma.

Lemma 14 (DS1 implies LS1). For any PPT adversary D with running time t on LS1
of ENDSGco as defined above there is a distinguisher D′ on DS1 with running time t′ ≈ t
such that

Advds1
Grp,D′(k) = Advls1

ENDSGco,Grp,D(k, n),

for Grp as defined in Definition 3. Hence, LS1 holds relative to Grp if DS1 holds relative
to Grp.

Proof. Description. The challenge input to D′ is provided as (pars,T), where T is either

T = g′1 ← Gp1 or T = g′12 ← Gp1p2 ,

for
pars = (G,GT , N, e, g, g1, g3, g4).

First, D′ sets the public parameters as

pp := (G,H := G,GT , N, g, e,m, n, pars
′),

for
m : H→ GT ,m : h′ 7→ e(g1, h

′),

pars′ := (g1, g4, g
w
1 , h := g, hw), for w← (Z∗N )n,

and for some integer n determined by D′. Then, D′ calls D on input (pp,T,Tw). Finally,
D outputs a value which D′ forwards to its own challenger.

Analysis. Note that pp is distributed as defined in LS1.

If T = g′1, then
(g′1, (g

′
1)w)

is distributed as the output of SampG(pp) as needed and, hence,

Pr
[
D′(pars, g′1) = 1

]
= Pr

[
D(pp, (g′1, (g

′
1)w)) = 1

]
follows.

Otherwise, if T = g′12, then
(g′12, (g

′
12)w)

is distributed as SampG(pp) · ŜampG(pp, sp), for suitable sp, as desired and, hence, we
have that

Pr
[
D′(pars, g′12) = 1

]
= Pr

[
D(pp, (g′12, (g

′
12)w)) = 1

]
.

As a consequence, Lemma 14 follows.

Left-Subgroup Indistinguishability 2. We prove the following lemma.

Lemma 15 (DS2 implies LS2). For any PPT adversary D with running time t on LS2
of ENDSGco defined as above there is a distinguisher D′ on DS2 with running time t′ ≈ t
such that

Advls2
ENDSGco,Grp,D(k, n) = Advds2

Grp,D′(k),

for Grp as defined in Definition 3. Hence, LS2 holds relative to Grp if DS2 holds relative
to Grp.
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Proof. Description. The challenge input to D′ is provided as (pars,T), where T is either

T = g′12 ← Gp1p2

or
T = g′13 ← Gp1p3 ,

for
pars = (G,GT , N, e, g, g1, g4, g12, g23).

First, D′ defines the public parameters as

pp := (G,H := G,GT , N, g, e,m, n, pars
′),

for
m : H→ GT ,m : h′ 7→ e(g1, h

′), and

pars′ := (g1, g4, g
w
1 , h := g, hw), for w← (Z∗N )n,

and for some integer n determined by D′.

Then, D′ calls D on input
(pp, g23g

γ
4 , g12,T,T

w)

for γ ← Z∗N . Finally, D outputs a value which is forwarded by D′ to its own challenger.

Analysis. Note that pp is distributed as defined in LS2.

If T = g′12, then
(g′12, (g

′
12)w)

is distributed as SampG(pp) · ŜampG(pp, sp), for suitable sp, as needed and, hence, we have
that

Pr
[
D′(pars, g′12) = 1

]
= Pr

[
D(pp, g23g

γ
4 , g12, (g

′
12, (g

′
12)w)) = 1

]
follows.

Otherwise, if T = g′13, then
(g′13, (g

′
13)w)

is distributed as SampG(pp) · S̃ampG(pp, sp), for suitable sp, as desired and, hence,

Pr
[
D′(pars, g′13) = 1

]
= Pr

[
D(pp, g23g

γ
4 , g12, (g

′
13, (g

′
13)w)) = 1

]
holds. As a consequence, Lemma 15 follows.

Nested-Hiding Indistinguishability. We prove the following lemma.

Lemma 16 (DS3 implies NH). For any PPT adversary D with running time t on NH
of ENDSGco there is a distinguisher D′ on DS3 with running time t′ ≈ t such that

Advnh
ENDSGco,Grp,D(k, n, q′) ≤ Advds3

Grp,D′(k),

for all q′ ∈ N. Hence, NH holds relative to Grp if DS3 holds relative to Grp.

Proof. The proof follows the same strategy as shown in Chen and Wee’s work [CW13]
except that we have to integrate two coprime-order semi-functional generators ĥ and h̃
instead of just one as in [CW13].
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Description. The challenge input to D′ is provided as (pars,T), where T := (T̂, T̃) is
either

T = (T̂, T̃) = (gxy2 , gxy3 )

or
T = (T̂, T̃) = (gxy+γ′

2 , gxy+γ′

3 ),

for
pars =: (G,GT , N, e, g1, g2, g3, g4, g

x
2 X̂4, g

y
2 Ŷ4, g

x
3 X̃4, g

y
3 Ỹ4),

for X̂4, Ŷ4, X̃4, Ỹ4
g← Gp4 , x, y ← Z∗N , and for γ′ ← Z∗N .

Furthermore, D′ receives an auxiliary input i ∈ [bn2 c], for some integer n ∈ N determined
by D′. First, D′ samples r, r̂, r̃, ŝ, s̃← Z∗N , R′4

g← (Gp4)n, w′ ← (Z∗N )n, and sets

h := (g1g2g3g4)r, ĥ := (g2g4)r̂, h̃ := (g3g4)r̃,

ĝ−(2i−1) := (gŝ2, g
ŝw′
2 )−(2i−1), g̃−2i := (gs̃3, g

s̃w′
3 )−(2i),

where h, ĥ, and h̃ are generators of G, Gp2p4 , and Gp3p4 , respectively.

Then, D′ defines public parameters as

pp := (G,H := G,GT , N, g, e, n,m, pars
′),

for
m : H→ GT ,m : h′ 7→ e(g1, h

′)

and

pars′ := (g1, g4, g
w′
1 , h, hw′(gy2 Ŷ4)re2i−1(gy3 Ỹ4)re2iR′4)

= (g1, g4, g
w
1 , h, h

wR4),

where ej is the j-th unit vector of length n. Hence, implicitly, we have

w =


w′ mod p1p4

w′ + y · e2i−1 mod p2

w′ + y · e2i mod p3

and R4 = R′4 + Ŷ r
4 · e2i−1 + Ỹ r

4 · e2i.

Now, by running the algorithm from [CW14, Lemma 6] on input

(1q
′
, (g2, g4, g

x
2 X̂4, g

y
2 Ŷ4, T̂))

and on input
(1q
′
, (g3, g4, g

x
3 X̃4, g

y
3 Ỹ4, T̃)),

D′ generates tuples
(g
r̂j
2 X̂4,j , T̂j)

q′

j=1 and (g
r̃j
3 X̃4,j , T̃j)

q′

j=1,

respectively, where

T̂j =

{
g
r̂jy
2 · Ŷ4,j , if T̂ = gxy2

g
r̂jy
2 · Ŷ4,j · g

γ̂′j
2 , if T̂ = gxy+γ′

2

and

T̃j =

{
g
r̃jy
3 · Ỹ4,j , if T̃ = gxy3

g
r̃jy
3 · Ỹ4,j · g

γ̃′j
3 , if T̃ = gxy+γ′

3 .
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Further, D′ samples r′j ← Z∗N , X′4,j
g← (Gp4)n, for all j ∈ [q′], and calls D on input

(pp, ĥ, h̃, ĝ2i−1, g̃2i, (T1, . . . ,Tq′)),

where

Tj = (hr
′
j · gr̂j2 X̂4,j · g

r̃j
3 X̃4,j , (h

r′j · gr̂j2 X̂4,j · g
r̃j
3 X̃4,j)

w′ ·
((gy2 Ŷ4)r

′
jrT̂j)

e2i−1 · ((gy3 Ỹ4)r
′
jrT̃j)

e2iX′4,j)

=


(hrj , hrj ·w ·X4,j) if T̂j = g

r̂jy
2 · Ŷ4,j

and T̃j = g
r̃jy
3 · Ỹ4,j

(hrj , hrj ·w · gγ̂je2i−1

2 · gγ̃je2i

3 ·X4,j) if T̂j = g
r̂jy
2 · Ŷ4,j · g

γ̂j
2

and T̃j = g
r̃jy
3 · Ỹ4,j · g

γ̃j
3

for hrj := hr
′
j · gr̂j2 X̂4,j · g

r̃j
3 X̃4,j and X4,j := X′4,j + Ŷ

r′jr

4 e2i−1 + Ỹ
r′jr

4 e2i implicitly and w
as above.

Analysis. Note that pp is distributed as defined in NH.

If T = (gxy2 , gxy3 ), then
T̂j = g

r̂jy
2 · Ŷ4,j

and
T̃j = g

r̃jy
3 · Ỹ4,j ,

for all j ∈ [q′], and, thus, (T1, . . . ,Tq′) is distributed as (h1, . . . ,hq′), for suitable sp, as
needed.

Otherwise, if T = (gxy+γ′

2 , gxy+γ′

3 ), then

T̂j = g
r̂jy
2 · Ŷ4,j · g

γ̂j
2

and
T̃j = g

r̃jy
3 · Ỹ4,j · g

γ̃j
3 ,

for all j ∈ [q′], and, thus, (T1, . . . ,Tq′) is distributed as (h′1, . . . ,h
′
q′), for suitable sp,

since (ĥ, g
γ̂j
2 · Ŷ4,j) and (h̃, g

γ̃j
3 · Ỹ4,j) are identically distributed as (ĥ, (ĥ)γ̂j · Ŷ4,j) and

(h̃, (h̃)γ̃j · Ỹ4,j), respectively, for γ̂j , γ̃j ← Z∗N , Ŷ4,j , Ỹ4,j
g← Gp4 , for all j ∈ [q′].

Result. Now, we have shown that our concrete instantiation ENDSGco from composite-order
groups satisfies all required properties of extended nested dual system groups as defined in
section 5.4. If the dual system assumptions DS1, DS2 and DS3 introduced in this section holds
relative to a group generation algorithm Grp(·) defined in Definition 3 (i.e., in composite-order
pairing-friendly groups) then Lemma 14, Lemma 15 and Lemma 16 show the implications for
LS1, LS2 and NH. Together with a universal hash function this allows to apply Theorem 12 to
achieve a weakly (µ, q)-IBE-IND-CPA-secure IBE scheme. Since Lemma 13 show that our dual
system variant of the BDDH assumption implies the s-BDDH assumption from section 5.4.1, we
are able to apply Corollary 2 to achieve full (µ, q)-IBE-IND-CPA security.

5.6 State-of-the-Art

Our construction is built in composite-order groups and one open problem stated in [HKS15]
was, if it is possible to give a realization of extended nested dual system groups in prime order
groups, which are more efficient. In groups with composite-order it must be ensured, that it is
not possible to factorize efficiently. For this reason, the parameters must be larger.
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5.6.1 Almost Tight IBE Security in Prime-Order Groups

Shortly after our result for composite-order groups, [AHY15] and [GCDCT16], independently,
gave prime-order solutions in the multi-instance, multi-ciphertext setting. In [GCDCT16] they
follow the extended nested dual system groups strategy and proposed two constructions. The
first one is under a standard assumption. The second one is an improved version of the first one
(in terms of efficiency regarding ciphertext/key size and encryption/decryption cost) but relies
on a non-standard assumption.

In [AHY15] their approach was different. They introduced a new notion, broadcast encoding,
which is compatible with composite-order and prime-order groups. Thus, they provided a generic
framework to build almost tightly secure ordinary IBE schemes and IBE schemes with additional
features. Their scheme achieves a similar efficiency as in [GCDCT16] but also under a non-
standard assumption. This suggested that there is a trade-off between efficiency and the strength
of a complexity assumption. The question arises if it is possible to construct an (almost) tightly
secure IBE scheme in the multi-instance, multi-ciphertext setting under a standard assumption
with similar efficiency as in [GCDCT16] and [AHY15].

5.6.2 Recent Improvements

In [GDCC16] this question was answered in the affirmative. Their scheme offers the same
efficiency as the second one in [GCDCT16], but relies on a standard assumption. They revisted
the almost tigthly secure IBE scheme of Blazy et al. [BKP14] and combine it with the framework
of extended nested dual system groups and the ideas in [GCDCT16] to extend it to the multi-
instance, multi-ciphertext setting. Subsequently, [LYWY17] improves this result for Blazy et
al.’s scheme.

Another important improvement regarding the tightness of the security reduction in the
multi-instance, multi-ciphertext setting was given in [CGW17]. Their scheme achieves constant
size master secret keys, ciphertexts and user secret keys and has a fast decryption algorithm.
Their security reduction loss is linear in log(q), i.e., in O(log(q)), where q is the upper bound
of user secret keys and ciphertexts queries per instance. For concrete values, e.g. q = 230 and
n = 128 this is a tighter reduction than in previous works. However, the security relies on a
non-standard assumption in composite-order groups.

Regarding chosen-ciphertext security [HJP18] recently constructed the first IBE scheme,
which is almost tightly secure against chosen ciphertext attacks in the multi-instance, multi-
ciphertext setting.
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6 Concluding Remarks

Digital signature schemes, and all its variants and related cryptographic concepts, such as aggreg-
ate signature schemes and identity-based encryption schemes, are a big and important branch
in cryptographic research.

The design and construction of efficient schemes, in terms of short key and signature size and
in terms of fast signing and verification computations, is essential for the use in practice. If this
can be combined with strong security requirements proven in a realistic model under reliable
and simple assumptions, this is a great achievement. According to the latest state-of-the-art,
the multi-user scenario is a more accurate representation of real-world applications.

Furthermore, since the quality of a security reduction has an impact on the recommended
key lengths in practice, a tight reduction leads to shorter keys and parameters.

If you take all this together an efficient digital signature scheme proven strongly and tightly
secure under standard assumptions in the multi-user model is preferred. Depending on the type
of signature schemes (e.g., structure-preserving signatures) this often requires a trade-off and
research is still far away to achieve all of this.

We hope one step towards this goal was made in this thesis. We constructed a very efficient
digital signature scheme proven strongly secure under a standard assumption in the standard
model. We also realized an almost tight security reduction in a multi-user, multi-challenge
setting for identity-based encryption, closely related to digital signatures.
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