EFFICIENT LEARNING MACHINES

FROM KERNEL METHODS TO DEEP LEARNING

vorgelegt von
M.Sc.
Maximilian Alber

ORCID: 0000-0002-4614-6297

von der Fakultat IV — Elektrotechnik und Informatik
der Technischen Universitat Berlin
zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
— Dr. rer. nat. —

genehmigte Dissertation

Promotionsausschuss:
Vorsitzender Prof. Dr. Benjamin Blankertz
Gutachter Prof. Dr. Klaus-Robert Miiller
Gutachter Prof. Dr. Fei Sha
Gutachter Prof. Dr. Volker Markl

Tag der wissenschaftlichen Aussprache: 10. Mai 2019

Berlin 2019

ABSTRACT

SCIENCE is in a constant state of evolution. There is a permanent quest for advancing
knowledge in the light of changing capabilities and matters. The field of Machine
Learning itself is shaped by the ever-increasing amount of data and computing power,
creating new challenges as well as paving the way for new opportunities. This thesis
is on adapting learning-based machines to these emerging prospects. In particular,
subject of this work are three distinct research topics with the underlying drivers: the
wish to reliably predict (a) given a large number of classes, (b) given a large number
of samples, and (c) to understand complex algorithms and data models. Each reflects
a unique need for an efficient proposition and we contribute by creating approaches
located in the intersection of algorithm and software development in order to tackle
the following problem statements.

The first contribution researches multi-class classification with large label spaces
and the effective prediction method support vector machines. Recent work suggests
so-called all-in-one support vector machine formulations outperform one-vs.-rest
formulations, but it is a challenge to leverage their potential for settings with a large
number of classes. We approach this problem by proposing for two all-in-one machines
exact optimization algorithms that distribute computation and model parameters
evenly on computing instances. This allows us to perform an analysis on text data
with a large label spaces and to confirm the favorable performance of all-in-one
formulations.

Other cornerstones of Machine Learning are kernel methods and neural networks. The
ever-growing data collections expose a scaling issue of kernel methods with respect
to a large number of data points. The predominant approach to alleviate this is an
approximation based on random features. In our second contribution we argue that
this randomness renders the method inefficient and dissect the effect of these data- and
task-agnostic learning bases by means of an empirical study. Viewing approximated
kernel machines as neural networks and a novel, efficient optimization approach enable
us to shed light onto the interplay of these two important learning paradigms.

Our last contribution aims to facilitate a better understanding of the predictions of
deep neural networks. These data models have shown impressive results in a wide
range of applications and are an invaluable tool. Yet, compared to many other Machine
Learning techniques, their functioning is hard to understand and to retrace. Among
many proposed methods, propagation-based prediction analysis has shown convincing
results and is a promising candidate to address this shortcoming. A drawback is the
lack of efficient software for many methods and emerging network structures. We
contribute to this by developing the software library iNNwvestigate, whose features are
an intuitive interface and a modular design — enabling non-expert users access to
these methods as well as accelerating research on complex neural networks.

IT1

ZUSAMMENFASSUNG

D1t WISSENSCHAFTEN befinden sich in einer fortwdhrenden Evolution, welche von
den sich permanent &ndernden Fahigkeiten und Gegebenheiten getrieben ist. Das
Feld des maschinellen Lernens selbst ist durch stdndig wachsende Datenmengen und
Rechenleistungen geprégt, was sowohl neue Herausforderungen schafft als auch den
Weg fiir neue Losungen ebnet. Diese Arbeit beschéftigt sich mit der Anpassung
von lernbasierten Methoden an diese neuen Perspektiven. Gegenstand dieser Arbeit
sind insbesondere drei unterschiedliche Forschungsbereiche mit den folgenden, zu-
grundeliegenden Treibern: dem Wunsch eine zuverlédssige Vorhersage zu treffen (a)
gegeben einer grofen Anzahl von Klassen oder (b) gegeben einer groften Anzahl von
Datenpunkten, und (c¢) komplexe Datenmodelle besser verstehen zu kénnen. Jeder
dieser Punkte bedarf einer effizienten Losung und um die folgenden Problemstellun-
gen zu bearbeiten, erforschen wir Ansétze im Schnittpunkt von Algorithmen- und
Software-Entwicklung.

Der erste Beitrag behandelt die Klassifizierung mit einer grofen Anzahl von Klassen
sowie die effektiven Vorsagemethoden Stiitzvektormaschinen. Vielversprechende For-
mulierungen dieser Methode optimieren alle Klassen gleichzeitig, jedoch stellt sich die
Nutzung ihres Potentials in der genannten Anwendung als Herausforderung dar. Fiir
zwei solche Formulierungen schlagen wir exakte Optimierungsverfahren vor, deren
Berechnungen und Modellparameter sich auf verschiedene Recheninstanzen verteilen
lassen. Dies ermoglicht es uns eine Analyse mit grofen Textdaten durchzufiithren und
die Uberlegenheit von Klassen-iibergreifenden Ansitzen zu bestitigen.

Weitere Eckpfeiler des maschinellen Lernens sind Kernmethoden und neuronale Netze.
Das Aufkommen von Datensétzen mit einer grofsen Anzahl von Datenpunken offenbart
ein Skalierungsproblem von Kernmethoden und der vorherrschende Losungsansatz
beruht auf einer Approximation mit Zufallszahlen. In unserem zweiten Beitrag
argumentieren wir die Ineffizienz der Nutzung von Zufallszahlen und zerlegen den
Effekt dieser Daten- und Problem-unabhéngigen Methode in einer empirischen Studie.
Dazu betrachten wir approximierte Kernmaschinen als neuronale Netze und entwickeln
einen neuartigen, effizienten Optimierungsansatz um den Ubergang zwischen den
beiden Lernparadigmen zu untersuchen.

Das Ziel unseres letzten Beitrags ist ein besseres Verstdndnis fiir die komplexen Ar-
beitsweisen tiefer, neuronaler Netze zu ermdglichen. Dieses wertvolle Lernwerkzeug
hat in einer Vielzahl von Anwendungen beeindruckende Ergebnisse erzielt. Seine
Funktionsweise ist aber im Vergleich zu anderen Techniken schwierig nachzuvol-
lziehen. Eine Reihe von Methoden wurde als Losung vorgeschlagen und darunter sind
“propagation”-basierte Analysen iiberzeugende Kandidaten — jedoch fehlt fiir viele
dieser Algorithmen effiziente Software. Mit der Entwicklung der Softwarebibliothek i/N-
Nuestigate, welche sich durch eine intuitive Schnittstelle und einen modularen Aufbau
auszeichnet, erdffnen wir Laien den Zugang zu solchen Methoden und beschleunigen
deren Forschung mit komplexen, neuronalen Netzen.

ACKNOWLEDGEMENTS

WORDS seldom cover the whole story and nor does or should this thesis reflect the
entirety of my PhD time. Yet, it marks the conclusion of this phase in my life and I
would like to use this opportunity to thank the dear people involved.

Danke Mama fir die bedingungslose Unterstiitzung, ’es Vertrauen in mi, und dein
Einsotz mir a guats Leben zu ermeglichen — une di war’i net dor Mensch, der’i bin!

Kara Emilie, vi fojdes a4t under storre delen av min avhandlingstid, i vilken, att citera
Kilpi, “du rubbar hela min existens”. Jag vill tacka dig for allt nytt du forde in i mitt
liv, for ditt stod och din kérlek.

In this period I had a lot of fun and joy with my friends and colleagues and received
a lot of support and advice from them. Alex, Beccy, Nina, and Philipp thank you
— so much — for the good times, all the talks about life and for being around when
needed and when not! Alma, Annika, Daniel, Jack, Linus, Lisa, Magda, Mattias, Nico,
Stephi, Yori and many more: I am very happy and grateful for the nice times spend
with you guys! Special thanks I owe you, Sven and Pieter-Jan, for the guidance and
support throughout the — sometimes hard — PhD time and beyond! While I stayed
in California, you welcomed me to your beautiful home: I thank you wholeheartedly
Christine, John, and Tom!

In four years a lot of life happens and I want to express my deepest gratitude to you,
Klaus, for the unconditional trust in difficult times and for facilitating my research
efforts with freedom and support. Your guidance and patience is the basis for the
great work environment in our lab!

My research was always a product of synergies with awesome people and I thank
Ann-Kathrin, David, Grégoire, Irwan, Julian, Klaus, Kristof, Miriam, Pan, Philipp,
Pieter-Jan, Prajit, Quoc, Sara, Sebastian, Stephi, Sven, Urun, Wojciech, and many
more for insightful discussions and fruitful collaborations. Especially, I would like to
thank Fei for sharing his experience and views on Machine Learning — I learned a lot
during our project, thank you! — and Marius for supporting me in my first project
and beyond.

No man is an island — I am very happy to be part of such a nice lab — thank you
peeps! During my PhD time I worked in the BBDC project and thank Mikio for
introducing me to it and Shin for leading it so carefully. While writing this text I was
glad to receive advice from Alex and reviews from Andreas, Kristof, Marina, Pieter-
Jan, and Stephi. Thank you! T also thank Andrea and Dominik for their patient
assistance in administrative and technical matters. Finally, I would like to thank
Irwan, Sara, Gabriel and Quoc for the good time at Google.

VII

ABBREVIATIONS AND NOTATION

Abbreviations

Abbreviation
CPU

CS

DAB

DAG

DBCA
densenet121
DMOZ

DTD

GB

GPU

IG
inception_v3
*G

KAE

LIME

LLW
LRP

LSHTC
MC
MC-SVM
ML

MPI
NASNetA /nasnet_large
OVR
OvVO
PCA

RB

ReLU
resnet50
SAB

SG

SGD

Description

Central processing unit

Crammer and Singer (SVM formulation)
Discriminatively adapted basis

Directed acyclic graph

Dual block coordinate ascent

Name of a neural network from Huang et al. (2017)
Directory Mozilla

Deep Taylor Decomposition

(prediction analysis method)

Guided Backprop (prediction analysis method)
Graphics processing unit

Integrated Gradients (prediction analysis method)
Name of a neural network from Szegedy et al. (2016)
Input * gradient (prediction analysis method)
Kernel approximation error

“Local interpretable model-agnostic explanations”
(prediction analysis method)

Lee, Lin, and Wahba (SVM formulation)
Layer-wise Relevance Propagation

(prediction analysis method)

A benchmark for large-scale text classification
Multi-core

Multi-class SVM

Machine Learning

Message passing interface

Name of a neural network from Zoph et al. (2018)
One-vs.-rest (SVM)

One-vs.-one (SVM)

Principal component analysis

Random basis

Rectified linear unit

Name of a neural network from He et al. (2016)
Supervised adapted basis

SmoothGrad (prediction analysis method)
Stochastic gradient descent

IX

Abbreviations

Abbreviation
SpecINT

SVM
SW
TF/IDF

UAB
VGG16/vggl6

Ww

Mathematical notation

Symbol

11predicm&e

Q0

z,7') : R x RT — R
x) = max{0,1 — x}

S ==y

n

Nmax

é: R s RD
o

T

Yi

Description

Benchmark for CPUs from the

Standard Performance Evaluation Corporation
Support Vector Machine

Software

Term frequency-inverse document frequency
(pre-processing)

Unsupervised adapted basis

Name of a neural network

from Simonyan and Zisserman (2014)
Weston and Watkins (SVM formulation)

Description

Indicator function: 1 if predicate is true, 0 otherwise.
Number of classes

SVM regularization parameter

Number of input dimensions

Number of (random) features or size of embedding
Average number of non-zero input features per sample
Kernel function

Hinge loss

Number of training samples

Average number of input samples per class
Maximum number of input samples per class
Feature function

Bandwidth of Gaussian kernel

Features of sample ¢

Label of sample i

Specific notations are presented in the corresponding contexts.

CONTENTS

Abbreviations and notation

| Introduction

1
2

Challenges in Machine Learning
Contribution of this thesis L.
2.1 Included publications oL
2.2 All publications

Il Fundamentals

1

Machine Learning e
1.1 Learning models o oo
1.1.1 Risk minimization for classification tasks
1.1.2 Optimization
1.2 Algorithms
1.2.1 Support Vector Machines
1.2.2 Kernel machines
1.2.3 Neural networks
1.3 Analyzing predictionso oL
1.3.1 Linear model Lo

1.3.2 Neural networks L.
Software tools for Machine Learning
2.1 Local computing o

2.2 Distributed computingo
2.3 Deep learning frameworks 0oL

Il Distributed optimization of multi-class SVMs

1
2
3

Introductiono
Related work
All-in-one SVMs
3.1 Derivation of the Lagrangian dual problems
Distributed SVM-algorithms,
4.1 Algorithm for Lee, Lin, and Wahba

4.1.1 Convergence
4.1.2 Implementation details
4.2 Algorithm for Weston and Watkins
4.2.1 Preliminaries oL
4.2.2 Core observation
4.2.3 Excursus: 1-factorization of a graph

4.2.4 Algorithm L

27
27
29
31
32
34
34
36
36
37
37
38
38
39

XI

6
7

4.2.5 Convergence and implementation details
Experiments

5.1 Setup
5.2 Validation of solvers
5.3 Datasets e
5.4 Speedup
5.5 Classification and timing results.

5.5.1 Lin, Lee, & Wahba
Discussion o e
Conclusion e

IV Efficient learning of kernel approximations

1

Ot = W N

6
7

Introduction
Related work oo
Casting kernel approximations as shallow, random neural networks . .
Adaptation of random kernel approximations
Experiments
5.1 Experimental setup oo
5.2 Analysis
Discussion e
Conclusion e

V Efficient software for prediction analysis

1
2

Introduction L
Related work and aims
2.1 Related software packages
The iNNvestigate library o L.
3.1 Characterization
3.2 Propagation-based prediction analysis

3.2.1 Creating a propagation backend

3.2.2 Customizing the back-propagation

3.2.3 Generalizing to more complex networks
3.3 Benchmark L oo
3.4 Completing the implementation

3.4.1 Interfaceo

3.4.2 Hyper-parameter selection.

3.4.3 Visualization
Applications
4.1 Analyzing a prediction oL
4.2 Comparing explanation algorithms
4.3 Developing explanation algorithms
4.4 Comparing network architectures
4.5 Systematic network evaluation
Discussion

5.1 Challenges

53
53
55
56
o8
59
60
61
66
67

6

5.2

Limitations and outlook

Conclusion e

VI Summary and conclusions

Bibliography
List of figures
List of tables

A Appendix

1

Efficient learning of kernel approximations

1.1
1.2
1.3

Additional empirical evidence
Deep kernel machines oL
Optimization

Efficient software for prediction analysis

2.1
2.2
2.3
24
2.5

Prediction- and gradient-based algorithms
PatternNeto o
Hyper-parameter selection,
Visualization
LRP proposition for batch normalization layers

103

107

123

129

XIIT

Chapter 1

INTRODUCTION

1 Challenges in Machine Learning

Science is in a constant state of evolution. As opportunities emerge new research
questions arise, other areas call for adaptation to changing conditions, and again others
become obsolete. The field of Machine Learning itself has steady drivers for such
change, and the two most important ones are data and computing power. The inherent
and close bond with both factors stimulated and facilitated many breakthroughs,
including deep learning.

Figure 1.1 exemplarily depicts the rapid change and shows the increase of computing
capabilities and data availability in the last decades. On one hand, this influence is
characterized by the progress of computational frameworks — from the increase of
single-core speedup (E.g., Schaller, 1997) and the advent of parallel and distributed
systems (E.g., Gropp et al., 1996; Dagum and Enon, 1998) to dedicated Machine
Learning hardware (E.g., Jouppi et al., 2017) — calling for and enabling advancements
in Machine Learning methodologies (E.g., Rumelhart et al., 1986; Cortes and Vapnik,
1995; Breiman, 1996; Freund and Schapire, 1996; Breiman, 2001; Miiller et al., 2001;
Scholkopf and Smola, 2002; Montavon et al., 2012; LeCun et al., 2015). On the
other hand, this is backed by data collection and management technologies — from
relational databases (E.g., Codd, 1970) over to distributed, NoSQL storages (E.g.,
DeCandia et al., 2007; Chang et al., 2008; Lakshman and Malik, 2010; Vavilapalli
et al., 2013) and adaptive, stream-oriented systems (E.g., Alexandrov et al., 2014;
Toshniwal et al., 2014; Carbone et al., 2015) — fostering a data basis to express the
upcoming modeling capabilities (E.g., Scholkopf et al., 1998; Simonyan and Zisserman,
2014; Szegedy et al., 2016; Schiitt et al., 2017a; Mikolov et al., 2013; Sutskever et al.,
2014; Vaswani et al., 2017).

The dependence on mathematical and computational frameworks as well as on the
availability of data characterizes the unique and inter-disciplinary position of Ma-
chine Learning. To unveil its abilities, this field is reliant on a fruitful synergy
between mathematical /methodological and engineering domains. An example is the
success (Krizhevsky et al., 2012) of deep, convolutional neural network at the Ima-
geNet competition (Deng et al., 2009) which was caused by algorithmic advances (Nair
and Hinton, 2010; Srivastava et al., 2014; Bottou, 2010) hand in hand with a tailored
implementation to exploit the available hardware capabilities maximally. One reason
for the need of such synergy is the complexity of learning algorithms. Far from being
embarrassingly parallel, many exhibit worse than linear asymptotic complexity, which
causes their needs to outgrow the available resources easily. Accordingly, a large body
of Machine Learning research is about making learning faster and more efficient, e.g.,

I INTRODUCTION

107§ —
100 | a00 | &
5]
10° ¢ <
B 300 g
g 5
103 | 2
i S
102 F :.
15 72100 2
10* 60 =
E o 0@p 3548 =
0 20 24 ﬂ Q
100 §© O‘ O‘ ° ‘8 “(. : : ? I{—S‘[\ﬁ[\jmmm T T T T E
1 O 0 O n O n O 10O

EZ2L323 sz 588522322173

— = 4 = — a4 a aO « O =IO N =0 = 0 1 — D~

O O OO +H OO O o HO

Fig. I.1: Machine Learning drivers. Inherent drivers of Machine Learning are the
increase in computing power and data availability. This exponentional development
is exemplarily sketched by the presented plots. The plot on the left side shows the
characteristics of CPUs over four decades'. The depicted properties are:

, SpecINT %103, Typical power consumption in Watt, Number of logical cores.
The second plot depicts the average amount of video hours uploaded to the platform
YouTube in the indicated months®.

Platt (1999), Miiller et al. (2001), LeCun et al. (2012), Bottou (2010), Rahimi and
Recht (2008), Ioffe and Szegedy (2015), and Nair and Hinton (2010).

Above all, next to this perpetual strive for tackling larger problems new and distinct
challenges arise. For instance, the application of learning machines in critical decision
processes sparked interest in research on attack scenarios (E.g., Dalvi et al., 2004;
Goodfellow et al., 2014; Kurakin et al., 2016; Papernot et al., 2017) or privacy (E.g,
Shokri and Shmatikov, 2015; Abadi et al., 2016a) in Machine Learning. Special among
these new topics, and driven by models becoming increasingly complex due to the
potential of leveraging knowledge from more and more data, is the revived desire
to understand and explain the workings of data models (E.g., Bachrens et al., 2010;
Zeiler and Fergus, 2014; Springenberg et al., 2015; Lundberg and Lee, 2017; Ancona
et al., 2018; Montavon et al., 2018).

These challenges and the described interplay of the mathematical and engineering
disciplines in Machine Learning is what this thesis is dedicated to: the development of
new algorithms as well as the implementation of new software to tackle the research
problems posed by the increase in computing power, available data, and modeling
capabilities.

'Data up to the year 2010 was collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L.
Hammond, and C. Batten. Data was collected for 2010-2015 by K. Rupp. Source:
https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

2Source:
https://wuw.statista.com/statistics/269477/hours-of-video-uploaded-to-youtube-every-minute/

https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/
https://www.statista.com/statistics/259477/hours-of-video-uploaded-to-youtube-every-minute/

Contribution of this thesis

2 Contribution of this thesis

Chapter IV
Efficient learning
by distributing

Chapter III Chapter V
Efficient learning Efficient analyzing
with compact through SW design
representations

. Domain spectrum . .
Mathematical ¢ » Engineering

Fig. 1.2: Machine Learning domain spectrum.

The overall objective of this work is to find new ways to deal with the challenges
given by the rising data availability, computational capabilities, and model capaci-
ties. Specifically, this thesis contributes to the described evolution by choosing and
treating three distinct research questions and aims. Together they form an exemplary
representation of the inter-disciplinary nature of Machine Learning and Figure 1.2
depicts this spectrum figuratively by showing where the three contributions of this
thesis reside. Each of the following propositions is characterized by a different setting
and solution approach:

Chapter llI: Distributed optimization of multi-class SVMs

e Setting: Support vector machines (SVMs) are an important tool for classi-
fication problems, yet promising all-in-one SVM formulations hardly scale
to problems with a large number of categories.

e Research question: Can all-in-one SVMs training be distributed and scaled
to problems with a large amount of classes and, if so, do all-in-one SVMs
still perform favorably compared to one-vs.-rest SVMs?

e Contribution: The development of scalable, distributed optimization al-
gorithms for two promising all-in-one formulations and subsequently a
comparison with one-vs.-rest SVMs on large text data.

Chapter 1V: Efficient learning of kernel approximations

e Setting: Kernel machines are a well-researched and reliable method for
non-linear prediction problems and kernel approximations with agnostic,
random basis functions are used to scale them to problems with a large
number of samples.

I INTRODUCTION

e Research question: Can the performance of such kernel machines be in-
creased by adapting the basis’ parameters either to the kernel function or to
the task at hand, instead of using agnostic, random sampling?

e Contribution: The development of an end-to-end optimization scheme and
the design and execution of an empirical evaluation to examine the space
between approximated kernel machines and neural networks.

Chapter V: Efficient software for prediction analysis

e Setting: Due to growing capabilities data models are becoming increasingly
complex, thereby harder to understand and to retrace. Propagation-based
prediction analysis is a promising approach to remedy this, yet has a lack
of efficient software for many methods and for emerging network structures.

o Research aim: To reveal, develop and implement approaches for efficient
implementations of propagation-based prediction analysis with an emphasis
on the usability for the non-expert user and facilitating research on emerging
network architectures.

e Contribution: We develop the software library iNNvestigate featuring an
intuitive, accessible interface as well as a modular design to allow focused
research and show the first successful applications.

The remaining part of this thesis is organized as follows: Chapter II treats the
fundamentals such as basic Machine Learning concepts, optimization, prediction
analysis algorithms and relevant engineering topics and Chapter VI completes this
work with a summary and a conclusion.

2.1 Included publications

The work presented in this thesis has been or is about to be published in peer-reviewed
journals, books and conferences. Indeed, the main chapters of this thesis follow these
very closely. The following list enumerates the publications in chronological order and
a note at the end of every entry indicates the status of the publication.

1. M Alber, J Zimmert, U Dogan, and M Kloft (2017b). “Distributed optimization
of multi-class SVMs”. In: PLOS ONE 12.6, pp. 1-18

2. M Alber, P-J Kindermans, KT Schiitt, K-R Miiller, and F Sha (2017a). “An
Empirical Study on The Properties of Random Bases for Kernel Methods”. In:
Advances in Neural Information Processing Systems 30, pp. 2763-2774

3. M Alber, S Lapuschkin, P Seegerer, M Hégele, KT Schiitt, G Montavon, W
Samek, K-R Miiller, S Dahne, and P-J Kindermans (2019). “iNNvestigate neural
networks!” To appear in: Journal of Machine Learning Research (Accepted)

4. M Alber (2019). “Software and application patterns for explanation methods”.
To appear in: Interpretable Al: Interpreting, Exzplaining and Visualizing Deep
Learning. Springer (Accepted)

Contribution of this thesis

2.2 All publications

The subsection contains all the publications I have (co-)authored during my work for
this thesis. Again, the list enumerates the publications in chronological order and a
note at the end of every entry indicates the status of the publication.

Journal articles

1. M Alber, J Zimmert, U Dogan, and M Kloft (2017b). “Distributed optimization
of multi-class SVMs”. In: PLOS ONE 12.6, pp. 1-18

2. M Alber, S Lapuschkin, P Seegerer, M Hégele, KT Schiitt, G Montavon, W
Samek, K-R Miiller, S Diahne, and P-J Kindermans (2019). “iNNvestigate neural
networks!” To appear in: Journal of Machine Learning Research (Accepted)

Book chapters

3. M Alber (2019). “Software and application patterns for explanation methods”.
To appear in: Interpretable Al: Interpreting, Explaining and Visualizing Deep
Learning. Springer (Accepted)

4. P-J Kindermans, S Hooker, J Adebayo, M Alber, KT Schiitt, S Dahne, D
Erhan, and B Kim (2019). “The (Un)reliability of saliency methods”. To appear
in: Interpretable Al: Interpreting, Explaining and Visualizing Deep Learning.
Springer (Accepted)

Conference articles

5. M Alber, P-J Kindermans, KT Schiitt, K-R Miiller, and F Sha (2017a). “An
Empirical Study on The Properties of Random Bases for Kernel Methods”. In:
Advances in Neural Information Processing Systems 30, pp. 27632774

6. P-J Kindermans, KT Schiitt, M Alber, K-R Miiller, D Erhan, B Kim, and
S Dahne (2018). “Learning how to explain neural networks: PatternNet and
PatternAttribution”. In: International Conference on Learning Representations

7. A-K Dombrowski, M Alber, CJ Anders, M Ackermann, K-R Miiller, and P
Kessel (2019). “Could not get lock /var/lib/dpkg/lock-frontend”. Submitted to:
Advances in Neural Information Processing Systems 33 (Submitted)

8. S Brandl, D Lassner, and M Alber (2019). “Balancing the composition of word
embeddings”. Submitted to: Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing (Submitted)

I INTRODUCTION

Conference workshop contributions

9.

10.

11.

12.

M Alber, J Zimmert, U Dogan, and M Kloft (2016). “Distributed optimization of
multi-class SVMs”. In: Neural Information Processing Systems 2016 - Extreme
Classification workshop (Received best paper award)

P-J Kindermans, S Hooker, J Adebayo, M Alber, KT Schiitt, S Dahne, D
Erhan, and B Kim (2017). “The (Un)reliability of saliency methods”. In: Neural
Information Processing Systems 2017 - Interpreting, Fxplaining and Visualizing
Deep Learning - Now what? workshop

M Alber, I Bello, B Zoph, P-J Kindermans, P Ramachandran, and Q Le (2018a).
“Backprop Evolution”. In: International Conference on Machine Learning 2018
- AutoML workshop

M Alber, S Lapuschkin, P Seegerer, M Hégele, KT Schiitt, G Montavon, W
Samek, K-R Miiller, S Déhne, and P-J Kindermans (2018b). “How to iNNvesti-
gate neural networks’ predictions!” In: Neural Information Processing Systems
2018 - Machine Learning Open Source Software workshop

Chapter 11

FUNDAMENTALS

Based on the spectrum of Machine Learning presented in the introduction we split the
fundamentals for this thesis in two parts. The first one will cover mathematical and
methodological topics regarding theory and algorithms on learning machines. The
second one will introduce engineering tools and approaches for Machine Learning
applications.

While it is hard to draw a clear line between the domains, we note for the readers
awareness that — according to the overview in Figure [.2 — the Machine Learning
fundamentals on learning are mostly applied in Chapter I1I and IV and on analyz-
ing predictions in Chapter V. The engineering fundamentals are most practical in
Chapter III and V.

1 Machine Learning

Along with Big Data technologies, Machine Learning is the technical engine of Artificial
Intelligence (Russell and Norvig, 2016) and is the practice of designing algorithms that,
given data, are able to create and use (mathematical) models to make predictions and
decisions — without being ezplicitly programmed to perform the task at hand (Bishop,
2006). Subsequently we will introduce how machines can perform learning and make
predictions as well as how one can analyze the resulting data models. We will confine
this description to the areas and algorithms concerning this thesis, namely supervised
classification using support vector machines, kernel methods and neural networks
and the analysis of the according predictions. A further treatment of the topics is
out of the scope of this thesis and we refer the interested reader to the dedicated
literature (E.g., Bishop, 2006; Duda et al., 2012; Montavon et al., 2012; Goodfellow
et al., 2016).

This section is organized in three parts. The first will introduce a theoretical framework
for classification tasks and how it can be used for gradient based optimization of
models. The second will cover specific algorithms for tackling such problems and the
last will present techniques to interpret the learned prediction processes.

1.1 Learning models

Learning can be decomposed in three factors: representation, evaluation, and optimiza-
tion (Domingos, 2012). The representation specifies how data and model parameters
are encoded, the optimization describes how model parameters are adapted or “learned”
to fit the posed task, and, finally, the evaluation states the measure for evaluating

II FUNDAMENTALS

the resulting model. Examples are support vectors, trees; evolutionary algorithms,
continuous optimization; and accuracy, squared error respectively (Domingos, 2012).
In this section we treat optimization and evaluation of data models. The next section
gives examples how these are combined with chosen representations in specific learning
algorithms.

1.1.1 Risk minimization for classification tasks

In Machine Learning three major types of learning are distinguished depending on the
learning signal during training (Bishop, 2006): (1) Supervised learning, where for each
sample the correct solution is given. (2) Reinforcement learning, where during training
an oracle only reveals, if a proposed solution is correct or not. (3) Unsupervised
learning, where no learning signal is given.

In this work we are concerned with supervised learning and more specifically with
classification. In more detail, we assume to be given identical and independently
distributed (iid) training data (x1,91),. .., (n, Yn) which is drawn from a (unknown)
data distribution P(x,y), where the features are x; € R% and the labels are y; €
{—1,+1} for binary classification and y; € {1,...,C} for multi-class classification. The
fact that we are given the true labels for each data point makes this a supervised
learning problem. In the following we use the binary classification setup to present the
theoretical foundations. The results can be extended to the multi-classification case.
Our goal is to find some function f that is able to classify unseen data x correctly. The
first step to approach this objective is to define an evaluation metric that estimates
the classification ability and the field of statistical learning theory (Vapnik, 1995)
defines tools for such purpose. The expected error for a function f is defined as:

RIf) = / I(f(x),y) dP(zy) (IL1)

where [is a loss function suited to the task at hand. Predominant for classification is
the Hamming or 0/1 loss {(y,y') = Ly—,.

The function f that solves our objective best, is the one that minimizes the expected
error. Unfortunately, the data distribution P(z,y) is typically unknown and we cannot
compute or minimize the expected error directly. We are only given a sample of the
data distribution, namely the training data, and approximate the expected error with
the empirical risk — the sum of the losses on the training set:

Remp[f] = - Z l(f(xl)7 yz) (112)

One can always obtain a empirical error of zero — by simply memorizing the feature/la-
bel pairs — and the art of Machine Learning is to find a solution that nonetheless
generalizes to unseen data, i.e., minimizes the expected error. The discrepancy be-
tween expected error and empirical risk is known as generalization error and Vapnik

Machine Learning

and Chervonenkis (1974) give a bound for this true risk:

h(in(3) +1) = In(3)

n

¥ >0 (IL.3)

R[f] < Remplf] + \/

with a probability of at least 1 —§ when n > h and where h is the Vapnik-Chervonenkis
(VC) dimension. The VC dimension is a measurement for the separability of data
points of different classes.

Given predictions for a dataset there are several ways to evaluate it. The Hamming loss
or accuracy as evaluation is predominant for classification problems, but, depending
on the given tasks, alternative evaluation functions might be more suitable. For
instance consider binary classification where we have the classes “false” and “true”,
then precision and recall are defined as follows (Fawcett, 2006):

precision(Y,Y) Z Ly_q and v=1/ Z 1y, (I1.4)

recall(Y,Y) Z]ly L and P 1/Zﬂy ! (I1.5)

and are measures of how many samples classified as true are actually true and of how
many of the actually true samples where classified as true. Both measures are combined
by the harmonic mean in the so-called F1 score, which defined as follows (Rijsbergen,
1979):

2 precision(Y,Y) recall(Y,Y)
precision(Y,Y) + recall(Y,Y)

f1_score(Y,Y) = (I1.6)
The Fl-score can be extended to multi-class settings by, e.g., ignoring the class
distribution (micro) or by calculating the F1-scores for each class individually and
taking the mean (macro) '. The presented measures are useful, e.g., for classification
problems with a skewed class distribution.

1.1.2 Optimization

Given a loss for evaluation our goal is to find a solution that minimizes the empirical
risk (Vapnik, 1995). In practice this is done by choosing a function family, e.g., a
function f with parameters ©, and minimizing:

mln Zl f(zi;0),y (IL.7)

While the empirical risk is theoretically bounded, in practice the (estimated) gen-
eralization error might be not good enough and Machine Learning proposes many
ways to improve learning. One way to improve the true risk is to collect more data
or use data augmentation to lower the bound, if possible, and another way is limit

!Scikit-learn Fl-measures: https://scikit-learn.org/stable/modules/model_evaluation.
html#precision-recall-f-measure-metrics

https://scikit-learn.org/stable/modules/model_evaluation.html#precision-recall-f-measure-metrics
https://scikit-learn.org/stable/modules/model_evaluation.html#precision-recall-f-measure-metrics

II FUNDAMENTALS

the function complexity to prevent overfitting to the training data — so-called regu-
larizing. This last approach is theoretically analyzed under the term structural risk
optimization (Vapnik and Chervonenkis, 1974).

The exact way to perform the optimization depends on the chosen function family. In
this work we will use functions that cannot be optimized (efficiently) with closed form
solution, but that are differentiable and we will use their derivatives for the learning
process. In the following two optimization schemes are presented. They are used in
Chapter IV and III respectively.

We note that Machine Learning setups typically contain so-called hyper-parameter
that are not directly optimized using the presented approaches, but are set by using
experience, heuristics or schemes like cross-validation (Bishop, 2006).

Gradient descent Given a derivative with respect to the parameters of a model:

ol(f(x:0),y)

56 (IL8)

gradient-based optimization builds upon the fact that the gradient points into a
direction in parameter space that increases the objective function. The informal idea
is to take one step into the opposite direction to find better parameters — and result
in a smaller objective value:

1 Ol(f (24;0), i)
Onew = © ’YTL ZZ; 20 (119)
with the hyper-parameter learning rate v € Ry controlling the relative step size of the
update. Ideally this is done repeatedly until a minimum is reached, in which case the
gradient is equal to zero. In contrast to gradient descent which relies on the gradient
over the whole training set (Equation I1.9), stochastic gradient descent (SGD) relies
on a stochastic sample to compute a noisy estimate of the gradient:

ol(f(x;©),y:)

Onew = 0 — 7 20

(11.10)
where the sample (x;,y;) is drawn randomly from the training set. Given a limited
computation or time budget this allows for a increased number of updates of the model
parameters and can speed up the training significantly. It is proven that given a set
of conditions — such as lowering the learning rate during training — SGD converges
to the same solution as gradient descent (Bottou, 2010, 2012).

In practice a so-called mini-batch of samples is used instead of a single one to reduce the
influence of the stochastic noise. A complementary technique to counter the noise is to
use a running average of the gradient direction, called SGD with momentum (Polyak,
1964):

ol(f(2i;0), i)

Muew = oM =755 (I1.11)

@new =0+ Mnew

10

Machine Learning

In Chapter IV we use an advanced version of this scheme named ADAM (Kingma and
Adam, 2015) that further adapts the learning rate to the noise during the training.
Unfortunately, the optimization for complex functions can lead to challenging error
landscapes, e.g., they can have discontinuities and many local minima. It is matter of
active research how neural networks can be optimized most efficiently (E.g., Reddi
et al., 2018).

Lagrangian optimization Some optimization problems like support vector ma-
chines can be formulated by means of (in-)equality constraints. For instance a
constraint could be that a data sample should not be miss-classified. A well-known
solution to these constrained optimization problems is the method of Lagrange multi-
pliers (Borwein and Lewis, 2010) and its extension for inequalities by Karush (1939)
and Kuhn and Tucker (1951). In more detail, we assume an optimization problem in
the so-called primal form:

min f(z) subject to g(z) <0 (I1.12)

where we maximize the function f that is subject to a (number of inequality) constraints
g. Then the basic idea is to introduce a Lagrangian multiplier A:

L(z,a) = f(x) + Ag(a) (IL.13)
and to formulate the optimization problem in this way:

mzin max L(z,«) (I1.14)
where the influence of the Lagrangian multiplier only cancels if the constraint holds.
There are a number of conditions that need to hold that both problems lead to the
same solution (Borwein and Lewis, 2010). We assume they hold and reformulate
Equation I1.14 to:

m)a\mxmxinL(x,a) (IL.15)

and — assuming we can solve x in terms of A — we can formulate the so-called dual
of the problem:
max Ly(c) (IL.16)

which can be solved using optimization approaches like gradient descent. In a convex
setting the difference between the minimum of the primal problem and the maximum
of the dual problem is called duality gap. If strong duality holds both solutions are
the same and the duality gap is 0. For more details we refer to Borwein and Lewis
(2010).

1.2 Algorithms

Support Vector Machines, kernel methods and neural networks are three central
algorithms of Machine Learning. They describe ways to represent data and model

11

II FUNDAMENTALS

parameters, and how to optimize them: Support Vector Machines are a margin-based
approach to create classification machines, Kernel methods are feature transformations
— based on a similarity metric — that can be used in a subsequent classifier, and
neural networks are both — feature transformers and classifiers.

1.2.1 Support Vector Machines

Recall our binary classification setup from Section 1.1.1 and assume that the data
points of the two classes can be separated linearly, then the idea of Support Vector
Machines (Cortes and Vapnik, 1995, SVMs) is to find a hyper-plane that separates
both classes. There might exist many hyper-planes that are able to do so and SVM
search for the one with largest margin to the closest data points of the respective
classes. The intuition is that future, unseen points are likely to be close to existing
ones and that a hype-plane most distant to them will therefore generalize best.

In more detail, given the function f(x) = (z,w) + b with the parameters w € R% and
b € R the hyper-plane is given by f(x) = 0 and its so-called canonical form can be
ensured by following conditions:

yi({xj,w) +b)>1 Vi=1,...,n. (I1.17)

In this case the margin is given by ﬁ and is the smallest distance between any data
point and the hyper-plane, i.e., no data point lies inside this margin of the hyper-plane.
Thus it can be regarded as confidence of the solution and SVMs try to maximize it:

min = ||w|?
w,b 2 (1118)
st yi({z,w)+b)>1 Vi=1,...,n

In practice many classification problems are not strictly, linearly separable — e.g.,
due to noise or outliers — and Cortes and Vapnik (1995) propose to relax the hard
margin constraint with slack variables &;:
leading to following optimization problem:
w Loy
min = [|w ;
whé 2 i
=0 (I1.20)
st yi((r,w)+0)>1-¢& Vi=1,...,n
& >0 Vi=1,...,n

where C' is a regularization parameter controlling the trust in the data and thus the
capacity of the function.

12

Machine Learning

This constrained optimization problem can be solved using Lagrange multipliers (see
Section 1.1.2) and the resulting dual formulation reads as follows:

n n n
1
max Lg(a) = g 5 E E Qi YiYi (T, T5)
i=1

i=1 j=1
n
s.t. Z a;y; =0
i=1

0<a;<C VYi=1,...,n

(11.21)

where the initial parameters w are represented as linear combinations of the so-called
support vectors — the data points with a; # 0:

n
w = Z G YT (I1.22)
i=1

For the derivation of the dual problem, how to recover the bias and further details we
refer to Scholkopf and Smola (2002).

1.2.2 Kernel machines

While the presented SVM and other linear models are an effective tool to perform
classification, their successful application depends on the linear separability of the
input data. Linear separability is often not given and one approach to tackle such
problems is to define a feature function ¢(x) that projects the data into a space in
which classes are linearly separable. Many such mappings project into high dimensional
feature space where it is easier to find discriminative features, but the large number
of dimensions can pose a burdensome computational complexity. Kernel methods are
a well-known technique to avoid an expansion in such a space by using the so-called
kernel trick (Miiller et al., 1997). This is done by defining a similarity metric called
kernel that is based on a feature function and can be used in methods that solely
rely on the similarity of features — such as SVMs that can be expressed with the dot
product of two data points (z;, x;).

A kernel is defined as follows (Vert et al., 2004):

Definition 1 (Kernel) A function k :XxX +— R is called a positive definite kernel
iff it is symmetric, that is, k(z,z") = k(2', z) for any two objects x,x’ €X, and positive
definite, that is, > ", Z?:l cicik(xs, x5) > 0 for any n > 0, any choice of n objects
T1,...,Tn €X, and any choice of real numbers ci,...,c, € R.

then relationship between kernel and feature function is given as

Theorem 2 For any kernel k on an space X, there exists a Hilbert space F and a
mapping ¢ X — F such that

k(z,2") = (¢(x), o))

for any x,x" €X where (u,b) represents the dot product in the Hilbert space between
any two points u,b € F.

13

II FUNDAMENTALS

Well-known kernels are the linear kernel k(z,z’) = (z,2’), the polynomial kernel
k(z,2') = ((x,2') + ¢)¢, and the Gaussian or radial basis function kernel k(z,z’) =

_]l

e 202,

A given kernel can be used to replace the dot product in the dual formulation of a
SVM (Equation 11.20) to classify in the induced feature space. For more details on
kernel methods we refer to Scholkopf and Smola (2002).

1.2.3 Neural networks

We will introduce first the basic building block of neural networks and then make
the leap to modern computer vision models. Inspired by the human brain structure,
neural networks consist of connected neurons (McCulloch and Pitts, 1943). A neuron
is composed of weighted, incoming connections and an activation mechanism to signal
its activity. Mathematically this is expressed as a dot product of incoming connections
z € R? and their weights w € R?, a bias b € R, and a scalar, activation function
a:R—R:

d
h(z)=a (Z Tiw; + b) (11.23)
i=1

An example for an activation function is the sigmoid function a(x) = 1/(1 4+ e~%)
which transforms the input to a “on/off” response.

The prevalent structuring of these connections is by grouping neurons in so-called
layers. In the simplest form each neuron is connected to all neurons from the previous
layer — no incoming connections within or to the upper layer exist. Using matrix
algebra this can be expressed as follows and is known as a fully-connected layer with
a weight matrix W; € R%*%+1 and a bias b; € R%+1:

hz(x) =a (sz + bz) (H.24)

Exemplary a 2-layer neural network can be expressed as follows with dy = d, dg =1
and d; as well as do as hyper-parameters:

f(x) = ha(hi(ho(z))) (I1.25)

Relating this to Section 1.2.2, a neural network can be seen as complex feature function
¢(z):
f(x) = (wo, p(x)) + boxr with ¢(x) = hi(ho(x)) (11.26)
The optimization of the multi-layered neural networks is typically done with gradient
descent and relies on partial derivatives and gradient back propagation (Rumelhart
et al., 1986). This is based on the idea of the chain rule:
ol(f(x),y) Ol(f(x),y) Oha(x) Oh1(x) Oho(x)

Ox ~ Oha(x) Ohyi(x)Oho(z) Ox (1L.27)

and, building upon, the gradients for the respective parameters are as follows:

ol(f(x),y) _ 0l(f(x),y) Ohi(x)

(11.28)

14

Machine Learning

The gradients of the bias b; are given accordingly. This structure allows for an efficient
computation by reusing the results iteratively. We note that it can be challenging
to train deep neural networks and there are many conventions and tricks used in
practice (E.g., LeCun et al., 2012).

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT 6@28x28
32x32 S2: f. maps

6@14x14

Full connection Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection

Fig. II.1: Convolutional neural network. The structure of a convolutional neural
network as originally proposed by LeCun et al. (1998a). It consists of convolutional
layers with small filters that are applied in a grid-like fashion to the image. Max-
pooling layers are applied to sub-sample the image representation and the final part

is designed to classify given the extracted features. This figure is from LeCun et al.
(1998a,).

Starting with this basic setup, the field of neural network has evolved into a complex
domain and there are many different ingredients that are used to power deep learning —
a synonym for deep neural networks. In this work we use convolutional neural networks
for computer vision applications. For these networks the input image is represented
as 2-dimensional map and this structure is retained until the last (classification) part
of the network. The most important building blocks of convolutional neural networks
are convolutional and max-pooling layers to extract shift and translation invariant
features, rectified linear units (ReLUs) as fast and expressive activation functions,
Batch Normalization and residual connections to condition the neural network, and
finally a softmax layers to create a probability distribution over the class activations.
In more detail:

Convolutional layers are — as the basic fully-connected layer — inspired by the
biological processes, namely by receptive fields (LeCun et al., 1998a). A convolutional
filter takes as input a fraction of the input image and the same filter is applied in
a grid-like fashion on the whole image representation. Furthermore, in each layer a
number of different filters are applied. Figure II.1 shows this exemplarily. The weight-
sharing in convolutional layers makes them shift-invariant, i.e., the same filter gets
applied on to many positions.

Pooling layers are used to reduce the “resolution” of the image representation. This is
usually done by taking the maximum of a fraction of the input image — similar to the
receptive field of a convolution filter. In Figure I1.1 pooling is denoted as subsampling.
Pooling makes the network to some extent translation invariant.

ReL U-activations were introduced by Nair and Hinton (2010) and are a piece-wise linear
function that is a(x) = x for z > 0 and 0 otherwise. This function is computationally

15

II FUNDAMENTALS

very efficient and has been widely adopted.

Batch normalization similar how LeCun et al. (2012) pointed out that neural networks
need to be initialized in the right way, Ioffe and Szegedy (2015) propose to introduce
layers that normalize the forward propagated values to 0 mean and standard deviation
during the training. Furthermore, the layer learns a shift and multiplicative factor for
the data, after normalizing it. The authors show that this enables more robust and
faster training.

Residual connections were proposed to overcome a practical depth limitation of deep
neural networks. He et al. (2016) showed that despite the fact that a deeper neural
network can represent a shallower one and should be more expressive, in practice the
training of neural networks was not able to converge to better solutions — from a
certain depth onwards the results actually got worse. As solution He et al. (2016)
proposed residual layers by using so-called short cuts h(x) = x + g(x), where the first
component is an identity mapping and makes the retention of information over layers
more likely. This allows to train much deeper networks.

Softmax is multi-class prediction function to normalize the outputs of a network to
a probability distribution. The formula reads as follows: f(z) = Ze—zez with z € R
the activation for the respective classes and e is applied element-wise. As surrogate
multi-class loss, typically log(f(z)) is used.

Further details are beyond the scope of this thesis and we refer to the dedicated
literature (Bishop, 1995; Montavon et al., 2012; Goodfellow et al., 2016).

1.3 Analyzing predictions

Neural networks can be very complex models and there exists a natural desire to
understand their workings. Several approaches are proposed in literature and in this
work we focus on the direction called prediction analysis. Prediction analysis tries to
“explain” a single prediction of a classifier — in our specific case of a neural network. In
more detail, we will describe algorithms that, given a neural network f(z): R% — R,
create an analysis e : R — R? with the same dimensionality as the initial input.

How such an analysis can be interpreted depends on the applied algorithm. To give a
first intuition on possible interpretations we will review the simplest neural network,
namely a linear model, first. This allows us to establish a number of concepts, before
we will present the relevant prediction analysis algorithms for deep neural networks.

1.3.1 Linear model

To understand deep neural networks it is helpful to examine their basic building blocks
— linear models — first. The toy example from Kindermans et al. (2018) shown in
Figure I1.2 is based on the data «:

r=s+d s = asy, with as = (1,0)7, ye[-1,1]

I1.29
d = age, with aq = (1,1)T, €€ N(u,0?) ()

16

Machine Learning

Signal s Distractor d Data x Rotations of
y € - gg
/ oty ' \ z
| =

N S D | <

y€[-1,1] e~ N(p,o?) wix=ywla +ew o =y w not informative about s!
=1 =0

Fig. I1.2: Interpretation of a linear model. This figure shows an interpretation
for the prediction of a linear model (Haufe et al., 2014). The data is generated by
T = asy + aqe and is color coded w.r.t. to the output of the learned model §j = w” z.
The influence of the distractor aq is shown on the right hand side: the weight vector
tries to filter the “noise” and accordingly adapts to it — as a result it is not informative
about the signal direction. This figure is from Kindermans et al. (2018). Best viewed

in digital and color.

A linear regression model w is trained to extract § = w’z from the data. By
construction s is the signal of the data — and contains the information about y. The
distractor d (Haufe et al., 2014) obfuscates the signal and makes the regression task
more difficult. In order to extract y, our model needs to filter d from the data —
therefore weight vectors are also called filters. In our example w = (1, —1)7 fulfills
this task.

With this example in mind, we note:

e In general the optimal weight w does not align with the signal direction as.

— It rather tries to cancel the contribution of the distractor — which is given
when the weight vector w is orthogonal to the distractor direction w”d = 0.

— Accordingly, when the direction of the distractor changes the weight vector
changes. See right hand side in Figure I1.2.

e A change of the signal direction as can be compensated by the weight vector
w by a change of sign and magnitude such that w”ay =1 — but its direction
stays constant.

To summarize: (1) The weight vector’s direction is determined by the distractor’s
direction and (2) in general it is not aligned with the signal’s direction in the data.
Thus the weight vector reveals how the noise from the data is filtered, whereas the
signal direction reveals how the signal is generated. For the given example it is possible
to recover the signal direction as. We refer to Haufe et al. (2014) and Kindermans
et al. (2018) for more details.

1.3.2 Neural networks

Based on the interpretation of a linear model Kindermans et al. (2018) propose to
categorize prediction analysis algorithms in three categories:

17

II FUNDAMENTALS

__

DeconvNet Guided Backprop PatternNet

30000000 C 0

¥

rd Re Backward ReLU @L I
ted) (deactivated) ~ \LJ Hnearfeuron

Forward pass

/

68 ES

Forward ReLU Forward ReLU

Example Ie)
VGG-16 classification (activated) (deactivated) (a

Fig. I1.3: Analyzing by back-propagating. This figure depicts schematically
the analysis categorization (function, signal, and interaction approximation) and
schematically how a selection of algorithms works. The prediction is done with a
VGG16 network (Simonyan and Zisserman, 2014). For a detailed description of the
algorithms we refer to the main text. This figure is adapted from Kindermans et al.
(2018). Best viewed in digital and color.

Function approximation: Algorithms that reveal how the function filters the signal
from the data.

Signal approximation: Algorithms that show the signal directions in the data —
based on the model’s filtering.

Interaction approximation: Algorithms that combine both principles to create a
focused analysis (see Montavon et al. (2017)).

Exemplarily Figure I1.3 shows the three categories.

Compared to a linear model deep neural networks are more complex and a duality with
a generative process — as described for a linear model — is not given. This makes
the prediction analysis for deep neural networks harder and indeed many different
approaches have been proposed. Due to the absence of a generative model or any
other ground truth it is unclear which method performs “best”. We will now describe
different attempts and use the categorization to interpret the algorithms.

The considered prediction analysis algorithms can be split into two major groups.
The first group regards the given model as a black box — by only using function
and gradient evaluations for the analysis. This group can be applied to arbitrary
prediction functions. The second group is linked to neural networks and uses the
respective structure of a model to create a tailored analysis procedure. Typically this
is done with a backward propagation through the model, similar to the computation
of the gradient w.r.t. to the input.

Prediction- and gradient-based al%orithms This algorithm family only uses
the prediction f(x) or the gradient aggf to create an analysis (Kindermans et al.,
2016; Shrikumar et al., 2017; Smilkov et al., 2017; Sundararajan et al., 2017; Zintgraf
et al., 2017; Ribeiro et al., 2016; Lundberg and Lee, 2017). We will now present the
algorithms used in this thesis.

18

Machine Learning

Gradient or Saliency map (Baehrens et al., 2010) shows the sensitivity of the function
w.r.t. to the input e(z) = %gcx) and is the weight vector w for a linear model — thus
can be seen as function approximation algorithm.
Input * gradient (Shrikumar et al., 2017; Kindermans et al., 2016) is formulated as
e(x) = % ® « and can be regarded as interaction approximation. This algorithm
is the same as the basic LRP method (Bach et al., 2015) for a number of neural
networks (Kindermans et al., 2016).
SmoothGrad (Smilkov et al., 2017) tries to “smooth” the gradient by averaging it over
a number m distorted inputs e(z) = Y_;" %_:) with € € N'(0,02). It can be seen
as a function approximation.
Integrated Gradients (Sundararajan et al., 2017) analyzes a prediction with respect to
a reference image. The reference image should not contain any information correlated
with the prediction, e.g., a black image. This idea is closely related to Montavon
et al. (2017), but is based on the whole function instead of a single neuron. Given a
reference image x,.y the function reads as follows:
1
e(x) = (2 — Tyef) @/ 8{;55) da. (I1.30)

a=0 x:zref'i'a(x_xref)

To capture the non-linear structure of a function Integrated Gradients uses an average
of the gradients along a path and can be seen as an interaction approximation.
Occlusion (Zeiler and Fergus, 2014) creates an analysis by combining predictions where
a part of the image was occluded. In its simplest form the an image is divided into non-
overlapping regions and each regions gets assigned the predicted value produced for the
perturbed input. Finally, all the values get normalized by subtracting the prediction
for the original images. We would regard this as an interaction approximation.
Local interpretable model-agnostic explanations (Ribeiro et al., 2016, LIME) uses a
different approach by creating a dataset to learn a linear classifier mimicking the
network in a local neighborhood. The resulting weights are indicating the importance
of the respective features. For images a common way is to use connected regions with
the same color as features which are occluded or not. Again, we would regard this as
an interaction approximation.

Propagation-based algorithms The next function group adapts to the structure
of the network by performing a back-propagation from the output back to the network’s
input.

DeconvNet (Zeiler and Fergus, 2014) is depicted in Figure I1.3 and tries to approximate
the signal. The idea is that in a ReLLU-network the signal cannot be negative and
thus negative values get blocked in the backward pass by applying a ReLL.U.

Guided Backprop (Springenberg et al., 2015) is closely related to DeconvNet and in
fact can be seen as its extension. Basically, the idea that a negative signal should be
blocked on the backward pass is retained and extended by also blocking signals for
which the corresponding value in the forward pass was negative — as it was no signal
in the first place. This algorithm is also shown in Figure I1.3.

Layer-wise relevance propagation (Bach et al., 2015, LRP) defines output value of the
prediction as “relevance” R. The relevance gets then back-propagated by using a “rule”

19

II FUNDAMENTALS

for a each layer. The relevance R; for the input neuron ¢ for a layer is computed as
follows, given the relevance R; of a number of connected neurons j:

L maw
R; = R; I1.31
Z > Tiwij + b ()

and can be rewritten for a linear layer h(z) =y = W + b as:

bw_mapping(x,y,r = bp,) = ® (W'z) (I132)

with z = r @ (W + b) '
The final analysis is created by using the rule to back-propagate until the input
is reached. In literature this rule was denoted as “LRP-Z” and the authors have
propose at least two more rules. The first one is called “LRP-epsilon” and introduces
a parameter for numerical stability or to filer signals. It reads as follows for a single

neuron:
xiwij

R = :
’ EJ: > wiwgj + by + sign(xwij)e

R; (I1.33)

Furthermore, the “LRP-alpha-beta” rule weighs positive and negative contributions
differently:

wlwij)Jr - (%iwij)f ‘
e Z < J(@iwij +b;) T ﬁzi@iwij + bi)‘) R; (I1.34)

The initial LRP-Z algorithm is (only) equal to input * gradient for networks only
consisting of convolutional, fully-connected, max-pooling layers (Kindermans et al.,
2016) — therefore it can be seen as interaction approximation and is depicted in
Figure I1.3.

Deep Taylor Decomposition (Montavon et al., 2017) is, similar to LRP, based on
definitions for single neurons. It is theoretically more founded and some LRP rules
can be expressed in this framework — giving them a theoretical meaning. The Deep
Taylor Decomposition is based on a linear Taylor expansion and follows the same idea
as Integrated Gradients, namely finding a so-called rootpoint for which the function
evaluates to zero and using the second element of the expansion — the gradient — as
analysis. In Deep Taylor this is done for each neuron individually and, given some
assumptions and depending on the input value range, different rules are applied. If a
neuron has an unbounded input the W?2-rule should be used and reads for a single
neuron as follows:

2
w;
_ v .
R; = % = u? R, (11.35)

If a neuron has only positive input the Z+-rule should be used:

R; = ZZ P (11.36)

20

Software tools for Machine Learning

If the neuron’s input is bounded in the range [a, b] the Zp-rule should be used:

+ + -

W — aw.. — bw;.

Ri=) % Y U P, (11.37)
; > LiW;; — AW, — bwij

We note that the Deep Taylor has a range of assumptions, e.g., the output must be
positive, and refer to Montavon et al. (2017) for more details. Deep Taylor can be
seen as interaction approximation.

PatternNet € PatternAttribution (Kindermans et al., 2018) tries to extend the pattern
theory for a linear model (Haufe et al., 2014) to deep neural networks. It is limited to
networks similar to VGG16 (Simonyan and Zisserman, 2014). PatternNet attempts
to approximate the signal by learning the individual pattern direction of single
neurons. These directions are then used to propagate the output signal back to the
input. PatternAttribution approximates the interaction by means of the Deep Taylor
framework. While the Deep Taylor algorithms search for an adequate rootpoint in
the direction of weight vector, PatternAttribution uses the signal direction to do so.
The algorithms are showcased in Figure I1.3. For more details we refer to Kindermans
et al. (2018).

2 Software tools for Machine Learning

In this section we first highlight some challenges to consider when creating efficient
Machine Learning software and subsequently describe the programming languages,
software libraries and tools for the implementation of the proposed algorithms. We
group the approaches in three complimentary parts: The first is dedicated to local
implementations, i.e., on a single machine, and the second focuses on means to
distribute Machine Learning algorithms — both parts are used to implement a
distributed SVM for sparse data in Chapter I1II. Chapter IV and Chapter V focus on
neural networks (related) topics and for the development we employ dedicated deep
learning software which is treated in the last part.

The application in Chapter III posed three challenges that are representative for
Machine Learning workloads. Compared to other sciences Machine Learning can be
very data intensive: the more data an algorithm can process for training the better
the resulting models (E.g., Bottou, 2012). This is one of the reasons why graphical
processing units (GPUs) are very popular in Machine Learning. They are tailored
to perform similar operations on an array of data — using the single instruction -
multiple data principle (Flynn, 1972). In general this requires efficient data loading
and processing.

Many data science tasks like, e.g., data pre-processing, are embarrassingly parallel,
Machine Learning is typically not. The training of data models can be inherently com-
plicated and is characterized by complex data dependencies and iterative processes.
In order to still take advantage of parallel computation and data pipelines, communi-
cation with low latency is a key to scale these algorithms. This is is one requirement
for tools to distribute such computations.

21

II FUNDAMENTALS

Finally, we note that Machine Learning applications can be divided into programs
processing sparse or dense data. In this context sparse data and, typically, sparse
models are given when a large fraction of their values is exactly zero. While software
for dense data can be used to process sparse data, this is usually rather inefficient and
therefore dedicated software for sparse data is required. One big implication of sparse
data is a irregular memory access pattern that — recalling the Machine Learning is
rather memory bound — has a major influence on the performance. The SVMs in
Chapter III work on sparse data and the algorithms in Chapter IV and Chapter V
use dense data.

2.1 Local computing

We define as local computing the computation on a single machine, which can entail the
usage of one or several CPUs or of one or several GPUs. Programs handling dense data
are typically expressed in linear algebra routines like matrix-vector-multiplications
and the usage of standard software like Numpy (Van Der Walt et al., 2011) or deep
learning frameworks (E.g., Abadi et al., 2016b; Paszke et al., 2017) allows already for
implementations with good performance. These software tools in turn rely on highly
efficient backends such as BLAS (Blackford et al., 2002) for CPUs or CUDA (Nickolls
et al., 2008) for GPUs. We highlight that this is possible, because linear algebra and
tensor operations have proven to be useful interfaces and the algebra routines typically
form the largest fraction of the program.

The case with sparse data requires more involvement. Many algorithms with sparse
data are specially tailored for this type of representation. They consist of many
small operations on data and usually require many loops. In this scenario high level
languages such as Python are not well suited due to the interpretation overhead and
low level and compiled programming languages like C are needed in order to obtain
efficient code.

There is no general recipe on how to implement sparse algorithms best, but one
important aspect is to be aware of the memory and cache structures of CPUs. There
is a chain of memory structures that starts with the main memory as largest, but
slowest, and several caches that are becoming smaller‘, but faster, the closer they are
located to the processing core. Memory locations that are accessed frequently will be
kept in caches close to the CPU core and can be retrieved more quickly. Furthermore,
when accessing a single memory location a whole “memory page” — a continuous
larger region around the location — will be loaded into the caches. Accordingly it is
important to design the memory access pattern of a program to access similar regions
together and reuse variables as long as they are in the cache. For applications with
(irregular) sparse data this is a key for making an implementation efficient. For more
information on access patterns we refer to, e.g., Kreutzer et al. (2014).

An alternative to implement an algorithm in a low level language is to program non-
performance critical section in, e.g., Python, and using C routines for performance
critical sections. In this gap, Cython (Behnel et al., 2011) allows to program with low
level routines using Python syntax and many other benefits. It is able to run as fast
as a conventional C program, but needs to be compiled before the execution.

22

Software tools for Machine Learning

In Chapter III we distribute the computation over several processes where each one
works on a dedicated core. There are several ways to do so and a well-known one is
OpenMP (Dagum and Enon, 1998). This library offers a slim and portable interface,
which helps to avoid low level interactions with the respective operating system.
It works as follows. The same program is called for a number of times and each
parallel process gets a unique id. Based on this id the processes can perform different
tasks and communicate with each other. Special group communication routines are
available such as broadcasting messages and — for Machine Learning purposes useful —
reducing operations like performing a sum of values over all processes. A big advantage
of multi-process computation is that the processes or alternatively threads can share
the same memory, thus there is no need to communicate large memory blocks like ,
e.g., vectors, as one can exchange pointers or locks instead. The drawback of shared
memory is the need for active memory management between the processes to ensure
the consistency of the values. The implementation of parallel or distributed programs
requires attention on a number of further issues like, e.g., deadlocks. We refer to the
according literature for more details (Andrews, 2000).

In Chapter III we use Python, Cython, and OpenMP to realize a distributed imple-
mentation with efficient memory access patterns. Leveraging the power of GPUs is
very hard for applications with sparse data due to the irregular memory pattern. Ad-
ditionally, many algorithms, which are tailored to sparse data, are sequential in nature
and not well suited for the highly parallel nature of such processors. For these reasons
we did not pursue this direction.

2.2 Distributed computing

Distributed computing and parallel computing are similar in the sense that several
processes run in parallel. Their key distinction is the ability to share memory. While in
parallel computing (on one machine) processes can share the same memory, distributed
(on different machines) processes cannot share the same memory?. This changes the
programming model and makes the communication in distributed systems more costly.
In Machine Learning, where many, rapid iterations and large model parameters are
common, it can be a challenge to successfully use distributed computations (E.g.,
Boden et al., 2018). The main reasons are the higher latency and the cost to
communicate many or big messages.

There a several options for distribute computation and we discuss three types. The
first is MPI (Gropp et al., 1996), the second are parameter server (E.g., Ho et al.,
2013; Li et al., 2014), and the last are data flow systems (E.g. Dean and Ghemawat,
2008; Carbone et al., 2015; Zaharia et al., 2016).

MPI (Gropp et al., 1996) is closely related to OpenMP (Dagum and Enon, 1998).
They share similar interfaces and have the same programming setup, namely that all
processes are based on the same program, but are executed with different identifiers.
Due to this common interface and its low overhead it was our choice in Chapter III.
For (stochastic) gradient descent based training it is common to use distributed
parameter server setups (E.g., Ho et al., 2013; Li et al., 2014). The idea of this

2An exception are emerging systems that enable remote direct memory access (RDMA).

23

II FUNDAMENTALS

approach is that a set of servers saves and manages the model parameters, and a set of
workers retrieves the parameters to train them in a predefined setting. One important
factor for these systems to perform well is the stochastic component of SGD allowing
for a relaxed parameter update scheme (E.g., Ho et al., 2013) to for instance to ease
the “last reducer” problem. This is not given for the SVM algorithms in Chapter 111
and therefore we do not use this approach.

In data management data flow systems such as MapReduce (Dean and Ghemawat,
2008), Flink (Carbone et al., 2015) and Spark (Zaharia et al., 2016) are key enabler
for big data applications. They are designed for use cases with (1) large amounts
of data, (2) unknown data flow patterns, e.g., (the amount of) data that flows in
join operation etc. depends on the processed data and is not known a priori, (3)
few to no iterations of the directed acyclic computational graph, and (4) moderate
latency requirements, with the notable exception of stream processing engines like,
e.g., Flink (Carbone et al., 2015). This stands in contrast to the training workload of
Machine Learning models with the properties: (1) often moderate amounts of data
that can be stored on a single machine, (2) known data flow patterns, e.g., the batch-
size typically determines (the amount of) data to be communicated and induces fixed
communication patterns, (3) acyclic directed computational graphs that are repeated
for a large number of times, and (4) low latency requirements. For instance Boden
et al. (2018) examines this issue. Our application in Chapter III is exemplary for a
Machine Learning workload and accordingly we decided against data flow systems
to distribute our computation. We note that data flow systems are useful for many
other tasks in the a data pipeline like pre-processing or for deploying data models at
the inference time.

2.3 Deep learning frameworks

The success of deep learning has triggered the development for a number of dedicated
systems for neural networks (E.g., Bergstra et al., 2010; Abadi et al., 2016b; Paszke
et al., 2017). Neural networks can be described as computational graphs relying
on tensor data types and operations. This uniform pattern is the basis for deep
learning frameworks. As these software libraries are specialized for the training and
application of (deep) neural networks, algorithms for sparse data can so far not be
realized efficiently with these systems.

Modern deep learning systems have a number of features: (1) high level descriptions
of operations using tensor algebra, (2) the ability to run the computational graph
on heterogeneous hardware, (3) specialized backends to take advantage of GPUs as
accelerators, (4) integrated parameter servers to distribute computations. For a more
detailed description we refer to, e.g., Abadi et al. (2016D)

There are a number of libraries that try to standardize deep learning workflows and
one of them is Keras (Chollet, 2015) with the aim to make deep learning accessible to
a larger audience. This has the advantage that the user can focus on task like the
development of a new neural network architecture. On the other hand, it can require
some workarounds to implement tasks with different usage patterns.

The applications in Chapter IV and Chapter V are related to deep learning and we use

24

Software tools for Machine Learning

Keras and TensorFlow (Abadi et al., 2016b) for our implementations. In Chapter V
we use Keras as basis to make our code accessible, yet it required us to implement
several workaround to make our advanced graph processing possible and efficient.

25

Chapter 111

DISTRIBUTED OPTIMIZATION OF
MULTI-CLASS SVMS

Classification tasks with a large number of categories are among the
most common and important problem settings in Machine Learn-
ing. For tackling such problems as for instance the classification
of text into categories, the recommendation of items to users, or
matching words to audio in natural language processing, support
vector machines (SVMs) have proven to be very effective. These
margin-based approaches can be divided into two major groups,
one-vs.-rest and all-in-one SVMs, where the former prevails due to
its simpler nature. Yet recent research showed for tasks with few
classes all-in-one SVMs consistently perform better and leads us to
the main question of this chapter: Can all-in-one SVMs training
be distributed and scaled to problems with a large amount of classes
and, if so, do all-in-one SVMs still perform favorably compared to
one-vs.-rest SVMs? To approach this question we develop decom-
posable optimization routines for two well-known, all-in-one SVMs
formulations. The decomposition allows us to distribute the com-
putation and memory efforts evenly among different computing
instances. As a result we are able to conduct an empirical evalua-
tion with sparse and high dimensional text-data. The comparison
confirms that all-in-one SVMs can indeed outperform one-vs.-rest
SVMs and, furthermore, lead to significantly sparser models. Most
of the work in this chapter was previously published in Alber et al.
(2016, 2017b).

1 Introduction

Modern data analysis often requires computation with a large number of classes.
Consider the following real world examples: (1) A crawler continuously monitors the
internet for new webpages, which should be categorized. (2) Given data from an
online biomedical, bibliographic database, the task is to index it for quick access for

27

III DISTRIBUTED OPTIMIZATION OF MULTI-CLASS SVMS

clinicians. (3) A company collects data from an online feed of photographs and would
like to classify image categories. (4) For newly added articles to an online encyclopedia,
the respective article categories should be predicted. (5) Given a huge collection of
ads, one desires to built a classifier from this data. The mentioned problems — taken
from varying application domains ranging from the sciences to technology — involve
a large number of classes, typically at least in the thousands.

Classification problems are one of the key applications of Machine Learning and
one of the most powerful and most used methods to tackle them are multi-class
support vector machines (MC-SVMs, Vapnik, 1995). This family of algorithms is
well-studied (Schélkopf and Smola, 2002) and can be divided into two major groups:

1. One-vs.-one (OVO) and one-vs.-rest (OVR) MC-SVMs decompose the problem
into multiple binary subproblems that are subsequently aggregated (Vapnik,
1995; Rifkin and Klautau, 2004). Training can be parallelized in a straight
forward way.

2. All-in-one MC-SVMs extend the concept of the margin to multiple classes.
Because there is no unique extension of the margin concept, multiple all-in-
one MC-SVMs have been proposed, including the ones by Weston and Watkins
(WW, 1999), Lee, Lin, and Wahba (LLW, 2004), and Crammer and Singer (CS,
2002). See Rifkin and Klautau (2004), Allwein et al. (2001), Hsu and Lin (2002),
Hill and Doucet (2007), Liu (2007), Guermeur (2007), and Dogan et al. (2016)
for conceptual and empirical comparisons.

Recently, Dogan et al. (2016) compared the various all-in-one MC-SVM variants on
rather moderately sized datasets and showed advantages of all-in-one MC-SVMs over
OVR MC-SVM, but — so far — slow training time has prohibited further comparisons
on data involving a large number of classes. Naturally, this leads to the following two
questions: (1) Is it possible to scale exact, all-in-one MC-SVMs to problems with a
large number of classes, and (2) do they still perform favorably compared to OVR
MC-SVMs?

We approach these questions by developing distributed algorithms where up to O(C)
nodes solve Weston and Watkins (WW, 1999) and Lee, Lin, and Wahba (LLW, 2004)
in parallel, dividing model and computation evenly on different computing instances.
The resulting solvers are compared to a state-of-the-art OVR solution. Our choice of
MC-SVMs is motivated by the comparison of Dogan et al. (2016).

The algorithm proposed for WW draws inspiration from graph theory, namely the
solution to the 1-factorization problem of a graph (Bondy and Murty, 1976). On
the other hand, we parallelize LLW training by introducing an auxiliary variable to
the dual problem that decouples the objective into a sum over C many independent
subproblems.

We provide both multi-core and distributed implementations of the proposed algo-
rithms. We report an empirical comparison of the proposed solvers with the one-vs.-rest
implementation by LIBLINEAR (Fan et al., 2008) on text classification data taken
from the LSHTC corpus (Partalas et al., 2015). The datasets pose a challenge for
training of linear models such as SVMs due to their high-dimensional input and out-

28

Related work

put domain, which results in potentially very large models. Our approach counteracts
this by distributing the model evenly among different nodes.
The main contributions of this work are the following:

e We propose the first distributed, exact solver for WW and LLW.

e We provide both, multi-core and truly distributed, implementations of the
solvers.

e We give the first comparison of WW, LLW, and OVR on the DMOZ data from
the LSHTC ’10-"12 corpora using the full feature resolution.

The chapter is structured as follows. In the next two Sections, 2 and 3, we discuss
related work as well as the problem setting and preliminaries, respectively. Building
upon, we present in Section 4 the proposed distributed algorithms for LLW and WW
and analyze their convergence properties empirically in Section 5. The last part
consists of a critical discussion in Section 6 and concluding words in Section 7.

2 Related work

First we introduce related work that motivates our research question, before confining
our approach from other related work.

On one-vs.-rest and all-in-one SVMs First and foremost, Dogan et al. (2016)
show that all-in-one SVM formulations outperform the one-vs.-rest formulation. Addi-
tionally, they suggest WW as the best choice of all-in-one SVMs and also indicate
that LLW is a good fit for very high-dimensional feature spaces. This analysis is
conducted on small scale datasets and rises the question, if this result translates to se-
tups of larger scale. Furthermore, recent work (Babbar and Scholkopf, 2017, 2018)
suggests that approximated all-in-one SVMs do not match the performance of OVR
methods, which motivates our choice to work with ezact optimization procedures. We
will contribute more to this discussion in Section 6.

Distributed algorithms for multi-class SVMs Most approaches to paralleliza-
tion of MC-SVM training are based on OVO or OVR (E.g., Fan et al., 2008; Babbar
et al., 2016; Babbar and Schoélkopf, 2018), including a number of approaches that at-
tempt to learn a hierarchy of labels (E.g., Bengio et al., 2010; Deng et al., 2011; Gao
and Koller, 2011; Choromanska and Langford, 2015; Zhou et al., 2011; Gopal and
Yang, 2013b; Madzarov et al., 2009) or train ensembles of SVMs on individual sub-
sets of the data (E.g., Govada et al., 2015b,a; Lodi et al., 2010). We benchmark our
results against LIBLINEAR’s (Fan et al., 2008) efficient one-vs.-rest solver.

There is a line of research on parallelizing stochastic gradient (SGD) based training of
MC-SVMs over multiple computers (Gupta et al., 2014; Do, 2014). SGD builds on
iteratively approximating the loss term by one that is based on a subset of the data,
e.g., a single sample or a mini-batch. In contrast, batch solvers — such as the ones
proposed in the present chapter — are based on the full sample. While there is a long

29

III DISTRIBUTED OPTIMIZATION OF MULTI-CLASS SVMS

ongoing discussion whether the batch or the SGD approach is superior, the common
opinion is that SGD has its advantages in the early phase of the optimization, while
classical batch solvers shine in the later phase due to less noisy gradients (Bottou, 2012).
In this sense, the two approaches are complementary and could also be combined.
Other work on distributed algorithms distinguishes from our approach that it requires
each computation node to hold the whole model in memory as well as to communicate
it to each node after an update. In our problem setting, high-dimensional sparse input
and output data, the model size can be very large and prohibits this approach from
scaling to problems with very large label spaces. In contrast our algorithms store the
model in distributed manner on different nodes and communicate only a global class
mean (LLW) or a fraction of the model between node-pairs after updates (WW).
The related work closest to the present one is by Han and Berg (2012). They build on
the alternating direction method of multipliers (ADMM, Boyd et al., 2011) to break
the Crammer and Singer optimization problem (Crammer and Singer, 2002) into
smaller parts, which can be solved individually on different computers. In contrast
to our technique, the optimization problem is parallelized over the samples, not the
variables and thus classes, and requires, as pointed out, each computation instance
to hold the whole model in memory as well as to communicate it to all nodes after
an update. Note also, it is unclear at this point whether the approach of Han and
Berg (2012) could be adapted to LLW and WW, which are the objects of study in
the present chapter.

Other work on binary linear SVMs is a distributed box-constrained quadratic op-
timization algorithm by Lee and Roth (2015). It works by distributing the kernel
matrix over all available computational nodes, hence again distributing the data and
exhibiting the same scaling issue as noted above. Some other competitive families
of distributed algorithms solve the primal objective directly using distributed coordi-
nate ascent (Mahajan et al., 2018). This approach is similar to Lee and Roth (2015),
however requires a continuously differentiable loss function.

Traditional, but no longer competitive, approaches on distributed binary SVMs include
Zhu et al. (2008), Forero et al. (2010), and Pechyony et al. (2011). We cite these
here for completeness. Beyond SVMs there is a large body of work on distributed
multi-class, e.g., Agarwal et al. (2014) and Gopal and Yang (2013a), and multi-label
learning algorithms, e.g., Prabhu and Varma (2014), which will be discussed in more
detail in Section 6.

Single-core solvers for multi-class SVMs Even though LLW and WW exhibit
advantageous theoretical properties (Lee et al., 2004; Weston and Watkins, 1999; Dogan
et al., 2016), to our knowledge no extensive empirical studies on large datasets exist
in the literature. A library that includes almost all proposed MC-SVM formulations
is the Shark ML library (Igel et al., 2008). Shark features single-core solvers for LLW,
WW and CS based on sequential, dual block coordinate ascent, which updates all
dual variables of the same datapoints at the same time. While in practice Shark is
not suitable for our large scale problems, we include the classification results of this
solver in our comparision in order to show that our implementations are exact.

The two most popular MC-SVM libraries, SVM™ulticlass (Joachims et al., 2009) and

30

All-in-one SVMs

LIBLINEAR (Fan et al., 2008), implement only the Crammer and Singer (2002)
formulation. Out of the two, we restrict our comparison to LIBLINEAR, which we
found to outperform SVMmulticlass

Another interesting idea is pursued by Jenssen et al. (2012). They developed a
scatter-based MC-SVM using class prototypes. Unfortunately, their algorithm and
implementation is based on kernel matrices which is prohibitive given our data with
many samples and classes. Therefore we decided to not compare to this work.

Last but not least, it needs to be mentioned that large-scale multi-class classification
problems are in practice often solved using Vowpal Wabbit (Agarwal et al., 2014),
which is an increasingly popular on-line classification tool. Vowpal Wabbit is, however,
a fundamentally inexact solver and is thus excluded from our comparison.

3 All-in-one SVMs

We consider the following problem from Section 1.1.1 where we are given some data
(x1,41),- .., (Tn,yn) with 2; € R and y; € {1,...,C}. Each class has in average 7
samples and the largest number of samples for a single class is nyq,. Based on this,
we are predicting a class by using the model

§(x) ;= argmaxw? x, (IIL.1)

C

where W = (w1, .., we) € R¥C are the parameters. The aim is to efficiently find good
parameters in order to predict well on unseen data using Equation III.1.

To address this problem setting, a number of generalizations of the binary SVM
(Cortes and Vapnik, 1995) have been proposed. We are specifically studying the two
formulations proposed by Lee, Lin, and Wahba (LLW, 2004) and Weston and Watkins
(WW, 1999) dropping the bias terms in both:

Lee, Lin, and Wahba (LLW) - Primal:
1
mvivnz 5||wc\|2+c > i(—wlxy)
c=

Gyize (I1L.2)
s.t. Z we =10
Weston and Watkins (WW) - Primal:

C

1

mml/nz §\|wc\|2 +C Z l(wyTia:i —wl'zy) (II1.3)
c=1 By F£c

Throughout this chapter, [(x) = max{0,1 — x} will denote the hinge-loss.
Both formulations lead to the following, very similar dual problems:

31

III DISTRIBUTED OPTIMIZATION OF MULTI-CLASS SVMS

Lee, Lin, and Wahba (LLW) - Dual:
C

1 2
max —=|| = Xae +w||” + o
Q€RXC peRd ; 2 H ¢ H z;c e (HI4)

s.t. Vi iy, =0,Ve#y;:0< ;. <C

Weston and Watkins (WW) - Dual:

C

1
max, D | =5l - Xad*+ 3 aic
ack c=1 1y FcC
(I11.5)
s.t. Vi oy, = — Z Qi e,

cicyi
VC#yil OSOéi,CSC

3.1 Derivation of the Lagrangian dual problems

Now we derive the dual formulation for LLW and WW. For LLW we introduce an
auxiliary variable w that is exploited by our distributed algorithm, as explained in
the next section.

Lin, Lee, and Wahba Using slack variables, the primal LLW problem is stated as
follows:

C

. 1
win 3 S+ 0 Y €
c=1 Ly #cC
st Y we=0 (I11.6)
c
Vi - 5i,c>1+wcx7,

We introduce the Lagrangian multipliers o € R™*¢, g € R”, and w € R¢ with
¢, Bi > 0.

1
L(W,&, 0, 8,0) =) §||wc|\2 + > (Clie+ aie(l+wlz — &) — Bickic)
c=1 iy F£C

N wT(ZC: we) (IIL7)

32

All-in-one SVMs

Due to the fact that Slater’s condition (Borwein and Lewis, 2010) holds, we have
strong duality and can use the dual formulation

max min L(VV, ga «, B’ ﬁ))

a7ﬁ7w W7§

st. ViVe: aje Bic> 0.

Subsequently, the partial derivatives are given by

0
851’,0
0

5 LV.6 00 B,0) =we+ Y | aiemi + 1.
¢ ity F#c

L(W7£>aaﬁaw) =C - Qjc — Bi,c

Setting the derivatives equal to zero leads to the following conditions:
VivVe: 0< . <C

We = — E QT + W
iiyi#c
= —Xa.+ w.

Finally, after updating the Lagrangian, the dual formulation is as follows
11
max > —5ll - Xa +al’+) aie (111.8)

RnXC peRd .
ac WE c=1 Ly F£C

aivyi = O

Ve#wyi: 0< . <C.

Vi

Weston and Watkins Similarly, we also derive the WW dual. This dualization can
also be found in Keerthi et al. (2008). With slack variables the primal WW problem
reads as follows:

C
, 1
min > Qllwcll2+0}z §irc
=1 tyite (I1L.9)

Ve#yi: &ie>0.
Once more we introduce the Lagrangian multipliers o € R"*¢, 8 € R™ with e, Bi > 0.

C
1
LW,&0,8) =) | |Sllwel®+ Y (Clic+ aic(l+wiwi —wyzi — &) = Bicic)
c=1 By Fc
(I11.10)

33

III DISTRIBUTED OPTIMIZATION OF MULTI-CLASS SVMS

Again, we have strong duality and can use the dual formulation, due to the fact that
Slater’s condition (Borwein and Lewis, 2010) holds:

in L(W.
max min (W, &, o,)

st. ViVe: aje Bic> 0.
Then the partial derivatives are:
0
0 c
0
ow,

L(W{aaaﬁ) =C - Qjc — Bz’,c

L(Wf,@,ﬂ) = W + Z Q-

iyite
We set the derivatives equal zero and get to the following conditions:
VivVe: 0< o <C
We = — Z ;o = —Xaoe.
Ty
Then the Lagrangian dual formulation is as follows

C

1
max, D | =5l - Xad*+ 3 aic
acR c=1 1y F£cC
(IT1.11)
s.t. Vi : Qi y, = — Z Qj ¢,

ciey;
Ve#y;: 0< 0. <C

4 Distributed SVM-algorithms

In this section, we derive algorithms that solve LLW and WW in a distributed manner.
We start with addressing LLW.

4.1 Algorithm for Lee, Lin, and Wahba
Please note the optimality condition for LLW is:

C
1
W= > Xa. (I11.12)
c=1

Which can be exploited by solvers to remove the variable w from the optimization. In
contrast, the core idea of our LLW solver is to actually keep the auxiliary variable, as
it decouples the objective function into the following sum:

C
obj(e) =) subobj(ac,). (I11.13)
c=1

34

Distributed SVM-algorithms

Algorithm 1 Lee, Lin, and Wahba

1: function SOLVE-LLW (C, X,Y)

2 for ¢ = 1..C do in parallel > For each class ¢ in parallel.
3 we <+ 0

4: a. +— 0

5: forve 1 do

7 while not optimal do

8 optimal < True

9: shuffleData()

10: forieI\1I.do > Optimize each w, in parallel.
11: solvel DIimLLW (4, c)

12: w < Reduce(), w./C) > Compute and communicate w across nodes.
13: We $— We — W

Algorithm 2 Solving 1-dim sub-problem of LLW

1: function SOLVEIDIMLLW (i,c)

2 global C, X, k, a., w., optimal

3 g+ whz; —1 > Compute gradient.
4: if g < —e and a; . < C then

5: 0 min{C — a; ¢, —g/k;}

6 optimal < False

7 if g > e and a;. > 0 then

8 0 max{—aj¢, —g/ki}

9 optimal + False

10: We — We + 0x; > Update primal parameters.
11: Qic Qe+ 0 > Update dual parameters.

As optimization algorithm we use the dual block coordinate ascent (DBCA, Keerthi
et al., 2008, Algorithm 3.1) with a specifically tailored block structure, considering as
blocks w as well as each single coordinate ;.. As we observe from Equation II1.13,
the optimization of the columns c. . is mutually independent of each other, given
fixed w. Hence, it can be distributed evenly over C nodes. On the cth node, we
run coordinate ascend on the subobjective subobj(a., w) over aj.,i = 1,...,n, as
described in the next paragraph. After one epoch of o computation, the variable w is
updated via Equation II1.12. The final algorithm is shown in Algorithm 1. Following
the strategy of Keerthi et al. (2008) we work with primal and dual variables at the
same time to enhance the computational efficiency.

Solving the one-dimensional problem It is mandatory to update every single
a; . within Algorithm 1. Let the objective in Equation III1.4 be D(«, w), then using

35

III DISTRIBUTED OPTIMIZATION OF MULTI-CLASS SVMS

block ascent (Keerthi et al., 2008) ;. is optimized by solving the problem

argmax D(a + de; ¢, W)
5 (I11.14)
st. 0< e +0<C,

where €; . € R"™*€ is one at the (i, ¢)th coordinate and zero elsewise. Set w. := —Xa,+
w; then the gradient for ¢ is % [D(a + 8e;0)] = 2] we — a1 2;6 + 1. Hence, the optimal

T —
solution of Equation III.14 is given by § = min{C — «; ., max{—a;, —xg}}; ! }}. The

corresponding pseudo-code can be found in Algorithm 2.

4.1.1 Convergence

It was shown that the block coordinate ascent method converges under suitable regu-
larity conditions (Tseng, 2001; Bertsekas et al., 1995). Our objective is continuously
differentiable and strictly convex. The constraints are solely box constraints, hence
the feasible set decomposes as a Cartesian product over the blocks. Algorithm 1 tra-
verses the two blocks in cyclic order. Under these conditions, the DBCA method
provably converges (Bertsekas et al., 1995, Prop. 2.7.1).

Note that in practice, we observed speedups by updating w in Algorithm 1 after
each tenth of an epoch, breaking the cyclic order. The blocks of coordinates are
then traversed in so-called essentially cyclic order, e.g., Section 2 in Tseng (2001),
meaning that there exists T' € N such that each block is traversed at least once after
T iterations. Closer inspection of the proof in Prop. 2.7.1 in Bertsekas et al. (1995)
reveals that the result holds also under this slightly more general assumption.
Further, we drop variables «;. in the optimization if they are not updated in 3
subsequent epochs. This is called shrinking and, e.g., also used in Keerthi et al.
(2008) for MC-SVMs. Once the stopping condition holds, we run another epoch
of optimization over all variables, including the ones that were dropped. If the
stopping criterion is then met, we terminate the algorithm, otherwise we continue the
optimization.

4.1.2 Implementation details

Our implementation uses OpenMPI (MPI, Gropp et al., 1996) for inter-machine and
OpenMP (multi-core or MC, Dagum and Enon, 1998) for intra-machine communication.
Note that Algorithm 1 has very mild communication requirements: only the sum of all
weight vectors w =) w, needs to be communicated. Hence, MPT suffers very little
from communication overhead between the various machines. In practice, we may not
be able to fully parallelize to the maximum of C cores; therefore our algorithm will
divide the set of classes into a number of chunks and optimize each one sequentially.
Given ¢ cores, it is advisable to use ¢ chunks with C/c classes.

Recall, d is the average number of non-zero entries per sample and 7 is the average
number of samples per class. Given c¢ cores and [iteration steps, the optimization
has an asymptotic runtime estimate of O(I - (% -7 - d + dlogy c)), where the first
part of the sum amounts for the gradient updates and the second for the model

36

Distributed SVM-algorithms

communication and update. Given the maximal average dual sparsity during training
as 1 — a at each node, the algorithm exhibits an asymptotic space complexity of
(9(% -(d+n-a)+d) to store the weight matrix, the dual coefficients and the weight
vector used for averaging in sparse format. The current implementation relies on a
dense parameter representation, but can be adjusted accordingly.

4.2 Algorithm for Weston and Watkins

In this section, we propose a distributed algorithm for WW, which draws inspiration
from the 1-factorization problem of a graph.

4.2.1 Preliminaries

Also this approach is based on running dual coordinate ascend, e.g., algorithm 3.1
in Keerthi et al. (2008), this time over ;. on the WW objective function as follows.
Denote the objective in Equation II1.5 by D(«) and we recall that black ascent (Keerthi
et al., 2008) optimizes «; . by solving the following problem

argmax D(a + de;)
5 (IIL.15)
st. 0<aj.+0<C.

Setting w. = Zi:yi#(—xiai,c + ZC:#% zia;), the gradient for J is given by

% [D(a + de;)] = —xl (wy, — w.) — 21 2;6 + 1. And is optimal at:
T (w,, — -1
§ = min <C — ¢, Max (—ai,c, 7y (Wy Twc))> (I11.16)
2x; T

This computation is summarized in Algorithm 3.

Algorithm 3 Solving 1-dim sub-problem of WW

1: function SOLVE1DIMW W (i,c)

2 global C, X, w,,, w,, a,, optimal

3 g (wgZ —w)z; — 1 > Compute gradient.
4 if g < —e and ;. < C then

5: 0 min{C — ¢, —g/2k;}

6 optimal < False

7 if g > e and a; . > 0 then

8 § + max{—aj., —g/2k;}

9 optimal <+ False

10: Wy, < Wy, + 0x; > Update primal parameters.
11: We — We — 0T

12: Qje — Qe+ 0 > Update dual parameters.

37

III DISTRIBUTED OPTIMIZATION OF MULTI-CLASS SVMS

4.2.2 Core observation

We observe from above that optimizing with regard to «;. will require only the
weight vectors w,, and w.. In other words, given four different classes c1, 2, c3, ¢4, the
optimization of the block of variables («, ¢1)iuy;—c, — according to Equation I11.16
— is independent of the optimization of the block (v, 03)i;yi:c4. Hence it can be
parallelized. In the next section we describe how we exploit this structure to derive a
distributed optimization algorithm.

4.2.3 Excursus: 1-factorization of a graph

Assume that C is even. The core idea now is to form % many disjoint blocks
(0, c1)isys=cas - - - » (0, €c—1)imy;=c of variables. Each of these blocks can be optimized

in parallel. The challenge is to derive a maximally distributed optimization schedule
where each block (o, ¢j)iy,=c, for any j # k is optimized.

To better understand the problem, we consider the following analogy. We are given a
football league with C teams. Before the season, we have to decide on a schedule such
that each team plays with every other team exactly once. Furthermore, all teams
shall play on every matchday so that in total we need only C — 1 matchdays. This
problem is the I-factorization problem in graph theory, e.g., Bondy and Murty (1976).
The solution to this problem, illustrated in Figure III.1, is as follows.

39 39 39 39

4 4 4 4/

I ' Xl ’Arl /1
e e 5

5 5\ 5 . e 5

6 7 6 6 7 6 7
r=1 r=2 r=3 r="7

Fig. II1.1: 1-factorization. Illustration of the solution of the 1-factorization problem
of a graph with C = 8 many nodes. The goal is to match each node with any other
node once. The solution idea is to arrange node 8 centrally and at each step rotate
the pattern by one.

We arrange one node centrally and all other nodes in a regular polygon around the
center node. At round 7, we connect the centered node with node r and connect all
other nodes orthogonal to this line. The pseudocode to compute the partner of a
given node ¢ at a certain round r is given in Algorithm 4. Note that in case of an
uneven number of classes, we introduce a dummy class C 4+ 1, making the number
of classes even. When running the algorithm we skip all computations involving the
dummy class.

38

Distributed SVM-algorithms

Algorithm 4 Solving the graph 1-factorization problem. Indices start with one.

1: function MATCHCLASS(C,c,T)
2 if C is even and ¢ = C then
3 return r

4 if ¢ = r then

5: if C is even then
6: return C

7 else

8 return c

9 return mod(2r —¢,C — 1)

4.2.4 Algorithm

=

Finally the algorithm shown in Algorithm 5 optimizes the WW formulation. It
performs DBCA over the variables o; . using the schedule derived in Section 4.2.3 and
the coordinate updates derived in Section 4.2.1.

Algorithm 5 Watkins-Weston

1: function SOLVE-WW (¢,X,Y)

2 for ¢ = 1..C do in parallel > Initialize in parallel.
3 we <+ 0

4 a. +— 0

5: forie I do

6 k; < xZTx,

7 while not optimal do

8 optimal <+ True

9: shuffleDatal()

10: forr=1.C—-1do > For each matching round:
11: for ¢ =1..C do in parallel > Update class pairs in parallel.
12: ¢ + matchClass(C, ¢, r)

13: if ¢ > c then

14: Gather wg

15: for 1 € I. do

16: solvel DimWW (i, ¢)

17: for i € Iz do

18: solvelDIimWW((i, ¢)

19: Return wg

4.2.5 Convergence and implementation details

Note that our algorithm performs again the same coordinate updates as Algorithm
3.1 in Keerthi et al. (2008). Hence, they share the same favorable convergence
behavior. Formally, convergence is guaranteed for exactly the same reasons discussed

39

III DISTRIBUTED OPTIMIZATION OF MULTI-CLASS SVMS

in Section 4.1.1. We also employ the same speedup tricks, i.e., shrinking and updating
every tenth of an epoch.

In practice, because of limitations of computational resources, we might not be able to
fully parallelize to the maximum of C/2 cores. In that case, our algorithm divides the
set of classes into number-of-cores many chunks and solves each bundle sequentially.
For optimal speedup, it is advisable to arrange the classes into chunks of equal number
of classes and data points.

Given the average number of non-zero entries per sample d and the average number of
samples per class n, ¢ cores and I iteration steps, the optimization has an asymptotic
runtime estimate of O(I - C - (% - -d+d)), where the first part of the sum amounts
for the gradient updates and the second for the model communication. Given the
maximal average dual sparsity during the training as 1 — a, at each node the algorithm
exhibits an asymptotic space complexity of O(% -(d+7n-a)) to store the weight matrix
and the dual coefficients in sparse format. The current implementation uses a dense
parameter representation, but can be adjusted accordingly.

As with LLW, we implemented a mixed MPI-OpenMP solver for WW. However, note
that, while LLW has mild communication needs, WW needs to pair the weight vectors
of the matched classes ¢ and ¢ in each epoch, for which C/2 weight vectors needs to
communicated among computers. Therefore it is crucial to communicate efficiently.

We tackled the problem as follows. First of all, we use OpenMP for computations
on a single machine to efficiently parallelize among cores. Here, due to the shared
memory, no weight vectors need to be moved. The more challenging task is to
handle inter-machine communication efficiently. Our approach is based on two key
observations.

If the data is high-dimensional data, yet sparse, we keep the full weight matrix in
memory for fast access, and communicate only the non-zero entries between computers.
Regardless of the increased computational effort, this takes only a fraction of time
compared to sending dense data.

Furthermore, we relax the WW matching scheme to reduce the communication effort.
Coming back to the football analogy, recall that we match classes like football teams
are matched during a season (see Section 4.2.3). Considering that each football team
belongs to a country (like each class belongs to a machine), we would like to make every
team play against every other team, while reducing the amount of “travel” performed.
To do so we add an overlay matching scheme — in addition to the matching of teams
on a single country, which is performed as follows. In the overlay scheme the countries
are arranged with the same matching scheme (see Section 4.2.3) and every time two
countries are matched, the teams of country travel together to the matched country
and play against each team of that country. Returning to classes and machines, this
means we transfer bundles of classes (countries) together between computers, e.g.,
employ batching, and reduce the network communication drastically compared to
a scheme where single classes are matched across machines. Every epoch we first
execute the scheme within a country and then the one across countries.

40

Experiments

5 Experiments

This section is structured as follows. After introducing the experimental setup we
empirically verify the soundness of the proposed algorithms by comparing them to
an existing, slower solver on small scale datasets. Then we introduce the employed
datasets, on which we investigate the convergence and runtime behavior of the proposed
algorithms as well as the induced classification performance.

5.1 Setup

We use two different types of machines for our experiments. Type A has 20 physical
CPU cores, 128 GB of memory and a 10 GigaBit ethernet network. Type B has 24
physical CPU cores and 386 GB of memory. We use up to 4 type A machines for our
distributed solvers. On type B we ran the experiments involving the not distributed
solver for Crammer and Singer (2002) due to the memory requirements.

Training repetitions were run on training sets with a random order of the data. Note
that the training set is the same in each run; only the order of points is shuffled,
which can impact the DBCA algorithm. For each result we report the average over
the indicated number of repetitions. Furthermore, we report the model density, or
sparsity, which is defined as the fraction of non-zero model parameters.

On one hand, the results of our solvers always converge to same prediction result
and, on the other hand, we found the timing results to be consistent and reliable
across datasets and regularization parameters. Therefore we omit further statistical
hypotheses tests.

For LIBLINEAR solvers we use the newest available version as of April 2016 with the
default settings. We implemented our solveres using OpenMP, OpenMPI, and the
Python-ecosystem. In more detail, we used Van Der Walt et al. (2011), Behnel et al.
(2011), and Dalcin et al. (2011) in our software. The source code is provided under
https://github.com/albermax/xcsvm.

5.2 Validation of solvers

In our first experiment, we validate the correctness of the proposed solvers. We
downloaded data from the LIBLINEAR (Fan et al., 2008)! and UCI (Asuncion and
Newman, 2007)? dataset repositories. Where training and test splits are unavailable,
we split the data once into 90% train and 10% test sets. For each dataset, the optimal
feature scaling was selected, in order to maximize the average accuracy on the test
sets. Datapoints in the datasets iris and news were thus normalized to unit norm, and
in the datasets letter and satimage were normalized to unit variance. All other data
was considered without normalization.

Then we compared our LLW and WW solvers with the state-of-the-art implementation
contained in the ML library Shark (Igel et al., 2008). To do so we implemented the
same stopping criteria as Igel et al. (2008). The results, averaged over 10 runs, are

https://www.csie.ntu.edu.tw/~cjlin/liblinear/
*https://archive.ics.uci.edu/ml/datasets.html

41

https://github.com/albermax/xcsvm
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://archive.ics.uci.edu/ml/datasets.html

IIT DISTRIBUTED OPTIMIZATION OF MULTI-CLASS SVMSs

S-LLW D-LLW S-WW D-WW
Dataset: Err. | Den. AErr. | ADen. Err. | Den. | AErr. | ADen.

SensIT
log(C): -1 | 21.34 | 100.0 0.00 0.00 | 19.88 | 100.0 0.00 0.00
0 1 20.95 | 100.0 0.00 0.00 | 19.51 | 100.0 0.00 0.00

1] 20.78 | 100.0 0.00 0.00 | 19.38 | 100.0 0.00 0.00

glass
log(C): -1 | 66.67 | 100.0 0.00 0.00 | 38.10 | 100.0 0.00 0.00
0] 61.90 | 100.0 0.00 0.00 | 19.05 | 100.0 0.00 0.00

1] 33.33 | 100.0 0.00 0.00 | 19.05 | 100.0 0.00 0.00

iris
log(C): -1 | 13.33 | 100.0 0.00 0.00 | 6.67 | 100.0 0.00 0.00
0] 26.67 | 100.0 0.00 0.00 | 13.33 | 100.0 0.00 0.00

1] 26.67 | 100.0 0.00 0.00 | 13.33 | 100.0 0.00 0.00

letter
log(C): -1 | 87.04 | 100.0 0.00 0.00 | 28.26 | 100.0 | -0.01 0.00
0] 87.24 | 100.0 0.00 0.00 | 29.03 | 100.0 | 4-0.01 0.00

1] 61.91 | 100.0 0.00 0.00 | 28.93 | 100.0 | -0.01 0.00
news20
log(C): -1 | 29.23 | 97.24 0.00 0.00 | 15.30 | 49.72 | +0.02 | +0.44
0] 22.97 | 97.24 0.00 0.00 | 14.80 | 42.70 0.00 | 4+2.04

1] 16.15 | 97.04 0.00 | +0.13 | 15.98 | 43.47 0.00 | +2.50

rcvl
log(C): -1 | 47.96 | 78.00 0.00 0.00 | 11.31 | 23.45 0.00 | 4+2.97
03341 | 77.98 | -0.14 | 40.02 | 11.52 | 20.12 0.00 | 4+2.81

1] 12.03 | 77.98 0.00 | +0.02 | 12.03 | 20.06 0.00 | +2.99
satimage
log(C): -1 | 26.73 | 100.0 | +0.02 0.00 | 15.80 | 100.0 0.00 0.00
0] 26.80 | 100.0 0.00 0.00 | 15.53 | 100.0 | -0.06 0.00

1] 26.90 | 100.0 0.00 0.00 | 16:00 | 100.0 | -0.04 0.00

splice
log(C): -1 | 16.37 | 100.0 | -0.08 0.00 | 16.16 | 100.0 0.00 0.00
0] 16.15 | 100.0 | -0.06 0.00 | 16.28 | 100.0 | 40.09 0.00

1] 16.28 | 100.0 | 4+-0.06 0.00 | 16.24 | 100.0 | +0.08 0.00

usps
log(C): -1 | 31.84 | 100.0 0.00 0.00 | 8&8.17 | 100.0 0.00 0.00
0 | 30.04 | 100.0 | 40.05 0.00 | 9.37 | 100.0 0.00 0.00

1] 28.00 | 100.0 0.00 0.00 | 10.51 | 100.0 0.00 0.00

Tab. III.1: Comparison to existing solver. Error on the test set and model
density in % of the Shark solver (denoted S) and the respective difference achieved
by the proposed solver (denoted D), averaged over 10 repetitions. The results across
solver implementations show very good accordance.

42

Experiments

shown in Table II1.1. We observe good accordance of the results and model sparsity of
the proposed solvers and the reference implementation from the Shark toolbox, thus
confirming that our respective solvers are indeed exact solvers of LLW and WW.
Furthermore, at random we tested whether the duality-gap of our solvers closes. We
did this for both solvers with different C' values and datasets. In any case the duality
gap closed, i.e., decreased by an order of two magnitudes. Based on this we chose our
stopping criteria € equal to 0.1 for the LSHTC datasets in the next section.

5.3 Datasets

We experiment on large classification datasets, where the number of classes ranges
between 451 and 27, 875. The relevant statistics of the datasets are shown in Table I11.2.
The LSHTC-* datasets are high-dimensional text datasets taken from the LSHTC
corpus (Partalas et al., 2015). The datasets belong to the released competition rounds
1 to 3, i.e., ’10-’12. LSHTC-2011 and LSHTC-2012 originate from the DMOZ corpus.
The most challenging dataset is given by LSHTC-2011. It contains the most samples,
classes and dimensions. The according features were extracted using the TF/IDF
representation and we use the full feature resolution for training.

Dataset n train n test C d

LSHTC-small 4,463 1,858 1,139 51,033
LSHTC-large 128,710 34,880 | 12,294 | 381,581
LSHTC-2012 383,408 | 103,435 | 11,947 | 575,555
LSHTC-2011 394,754 | 104,263 | 27,875 | 594,158

Tab. III.2: Dataset properties. The table shows the used datasets from the
LSHTC-corpus and their properties. n train and n test denote the number of samples
in the training and test set respectively, C the number of classes and d the number of
dimensions. The most challenging dataset is given by LSHTC-2011. It contains the
most samples, classes and dimensions.

5.4 Speedup

In order to measure the speedup provided by increasing the number of machines/cores,
we run a fixed amount of iterations for a fixed amount of class bundles over the
whole LSHTC-large dataset. We use 10 runs over 10 iterations with a fixed parameter
C equal 1 without shrinking. While the MC execution works on one machine, the
MPI executes on 2 or 4 machines by spreading the used cores evenly on each node.
This analysis covers merely the technical aspects of our implementations and later in
the section we will have a closer look into the interplay of the mathematical, hence
convergence, and distribution properties of our proposed solutions.

The results are shown in Figure II[.2. Both solvers exhibit linear speedup, regardless
if distributed or not, due to the small communication cost. Yet the speedup of WW
is bounded by a larger constant compared to LLW.

43

III DISTRIBUTED OPTIMIZATION OF MULTI-CLASS SVMS

In more detail, we note that WW implementation does not show linear speedup when
the number of used cores per machine gets increased from 1 to 2. Afterwards again
a linear increase is observed, but now with a higher constant factor. This holds for
each variant, e.g., MC, MPI-2, and MPI-4. We suspect that the cache throughput
limit is hit and causes this effect. The implementation for WW was designed to take
advantage of memory alignment, in contrast to the LLW implementation for which
this stalling cannot be seen. Thus, the scaling of our application is memory-bound
rather than CPU-bound and suggests systems with more cache throughput would
allow for a higher speedup. For instance, GPUs are optimized for memory throughput,
but in general they do not perform well with applications with irregular memory
access such as our sparse solvers and it is unclear if our application would benefit
from using them.

The scaling across machines, i.e., from MC to MPI-2 to MPI-4, seems also to perform
favorable, but due to the limited number of machines used one cannot generalize this
further.

LSHTC-large

T T

L Al 24

—o— LLW-MC | 93
- m- LLW-MPI-2 B S
+ LLW-MPI-4 - 3
—— WW-MC 1922 8,
-u- WW-MPI-2 n

a2 WW-MPI-4
| 21
20

20 21 22 23 24 25
Number of Cores

Fig. I11.2: Speedup. Speedup of our solver respectively in the number of cores. For
*_MPI-2 and *-MPI-4 the number of cores is split evenly on 2 and 4 machines. We
observe a linear speedup in the number of cores for both solvers.

5.5 Classification and timing results

Now we evaluate and compare the proposed algorithms on the LSHTC datasets for
a range of C' values, i.e., we perform no cross-validation. For comparison we use a
solver from the well-known LIBLINEAR package, namely the one-vs.-rest multi-core
implementation with L2L1-loss (OVR, Chiang et al., 2016). For completeness we also
include the single-core Crammer and Singer implementation (CS, Fan et al., 2008).
Each training algorithm was run 3 times, using randomly shuffled data, and the results
were averaged. Note that the training set is the same in each run, but the different
order of data points can impact the convergence and runtime of the algorithms. Due
to the lack of performance we do not compare to the LLW and WW implementation
in the Shark ML library.

44

Experiments

Dataset: Error Model-Density
LSHTC | OVR CS| WW | LLW | OVR CS | WW | LLW
-small

log(C): -8 | 93.00 | 59.74 | 72.82 | 93.00 | 92.74 | 11.11 | 69.73 | 92.74
-2 | 85.36 | 59.74 | 65.34 | 93.00 | 81.54 | 11.13 | 16.44 | 92.74

-1 74.54 | 59.74 | 57.59 | 93.00 | 46.76 | 11.12 6.06 | 92.74

01 6437 | 5549 | 54.57 | 93.00 | 38.20 | 11.76 5.74 | 9274

1] 57.75 | 54.57 | 54.41 | 93.00 | 38.63 | 11.69 | 5.73 | 92.74

-large
log(C): -8 | 88.12 | 58.57 | 66.47 | 95.86 | 75.26 2.53 | 18.50 | 100.0
-2 | 85.21 | 58.57 | 60.58 | 95.86 | 45.14 2.53 4.45 | 100.0

-1 7796 | 57.82 | 55.28 | 95.86 | 25.28 2.55 1.71 | 100.0

01 63.11 | 53.61 | 53.98 | 9586 | 18.33 | 2.69 | 1.61 | 100.0

1| 57.18 | 54.18 | H54.41 * | 18.55 2.67 1.66 *

-2012
log(C): -8 | 83.66 | 49.81 | 58.02 | 92.63 | 72.60 1.73 | 16.97 | 99.52
-2 | 75.15 | 49.65 | 50.20 | 92.63 | 46.20 1.71 4.06 | 99.52

-1 | 60.38 | 46.14 | 44.94 | 92.63 | 25.87 1.76 1.52 | 99.52

0| 47.33 | 42.67 | 44.01 *1 18.20 2.06 | 1.42 *
1] 46.83 | 45.60 | 46.15 * | 18.46 2.09 1.47 *
-2011

log(C): -8 | 87.95 | 59.09 | 68.19 | 96.18 | 72.38 1.57 | 13.49 | 100.0
-2] 8585 | 59.09 | 62.14 | 96.18 | 45.97 1.57 3.16 | 100.0
-1 76.78 | 58.18 | 57.31 | 96.18 | 25.97 1.55 1.19 | 100.0
01 63.11 | 55.58 | 56.94 *1 1824 | 1.69 | 1.11 *
1]60.01 | 57.78 | 58.32 * | 18.46 1.70 1.14 *

Tab. II1.3: Test error and model density. Test set error and model density in %
as achieved by the OVR, WW, and LLW, and CS solvers on the LSHTC datasets.
Lower is better. For each solver the result with the best error is in bold font. For LLW
entries with a '*’ did not converge within a day of runtime. The all-in-one solvers
WW and CS outperform consistently OVR.

Classification results Table II1.3 shows the error and the model sparsity, i.e.,
fraction of zeros in the model parameters, for the compared solutions. We further
provide the Micro-F1 and Macro-F1 score in Table I11.4.

Unfortunately, we note that the solution for LLW shows for all datasets a high error
and also results in very dense models. We examine the behavior of this solver in more
detail below, and omit it from the further analysis here.

For all datasets the other all-in-one multi-class formulations, i.e., WW and CS, perform
significantly better than OVR. On one hand the error is smaller and the F1-scores
are better. On the other hand, the learned models are much sparser, i.e., up to a
magnitude. The results confirm the results from Dogan et al. (2016) and also justify
the increased solution complexity of these formulations.

Comparing WW and CS, CS performs as well or slightly better at classifying. Though

45

IIT DISTRIBUTED OPTIMIZATION OF MULTI-CLASS SVMSs

Dataset: Micro-F1 Macro-F1
LSHTC | OVR CS| WW | LLW | OVR CS | WW | LLW
-small

log(C): -8 7.00 | 40.26 | 27.18 | 7.00 0.61 | 22.08 | 10.73 | 0.61
-2 | 1442 | 40.26 | 34.66 7.00 2.70 | 22.08 | 16.15 0.61
-1 25.46 | 40.26 | 42.41 7.00 8.72 | 22.08 | 24.71 0.61
0| 3547 | 44.46 | 4543 7.00 | 16.42 | 26.70 | 28.75 0.61
1] 42.41 | 45.48 | 45.59 7.00 | 25.09 | 28.73 | 29.15 0.61

log(C): -8 | 11.77 | 41.35 | 33.53 | 4.14 0.88 | 25.43 | 15.05| 0.09
-2 | 14.80 | 41.52 | 39.42 4.14 1.51 | 25.41 | 20.83 0.09

-1 22.02 | 4219 | 44.72 4.14 3.35 | 25.83 | 27.90 0.09

*

0] 36.86 | 46.41 | 46.02 *| 14.76 | 30.99 | 31.29
1] 42.80 | 45.83 | 45.59 *125.87 | 31.13 | 31.12 *
-2012

log(C): -8 | 16.34 | 50.19 | 41.98 | 7.37 0.28 | 20.55 8.08 | 0.01
-2 | 24.85 | 50.35 | 49.80 7.37 0.69 | 20.72 | 16.17 | 0.01
-1 | 39.62 | 53.86 | 55.06 7.37 2.64 | 23.76 | 25.94 0.01

0] 52.67 | 57.33 | 55.99 *| 12.46 | 32.57 | 32.06 *
1] 53.17 | 54.40 | 53.85 *124.41 | 31.84 | 30.95 *
-2011

log(C): -8 12.05 | 4091 | 31.81 | 3.82 0.46 | 22.44 | 1047 | 0.05
-2 14.15 | 4091 | 37.86 3.82 0.62 | 2246 | 16.48 0.05
-1 23.22 | 41.82 | 42.69 3.82 1.89 | 23.37 | 23.17 0.05
01 36.89 | 44.42 | 43.06 *1 10.60 | 26.97 | 27.25 *
1] 39.99 | 4222 | 41.86 *121.30 | 26.31 | 26.97 *

Tab. II1.4: F1-scores. Micro-F1 and Macro-F1 scores in % as achieved by the OVR,
WW, LLW, and CS solvers on the LSHTC datasets. Higher is better. For each solver
and each metric the best result across C' values is in bold font. For LLW entries with
a "*” did not converge within a day of runtime. The all-in-one solvers WW and CS
outperform consistently OVR.

WW leads to sparser models, which are up to half of the size of the respective CS
models. To the best of our knowledge this is the first comparison of these well-known
multi-class SVMs on the studied LSHTC data.

One of the key challenges when learning a linear model on such datasets is the model
size. Due to the high-dimensional input and high-dimensional output domains the
model has a potential size of d x C. Given the right regularization the actual model
size can be significantly smaller due to sparsification, i.e., pushing a large fraction of
the parameters towards 0 (see Table II1.3). Yet there is no guarantee that the model
will be sparse as we see from the results — especially during the optimization, thus
the model size can be and is a prohibitive factor for the scaling of such methods and
distributing the model across computing instances can be a viable tool to alleviate
this.

46

Experiments

LSHTC-large LSHTC-2011
5,000 ‘ b ‘ ‘
- 30,000
4,000 +
3,000 |- =
- 420,000 -2
g £
& 2,000 =
- 10,000
1,000 -
| | | | | | | |
-9 -1 0 1 —2 -1 0 1
log(C) log(C)

‘ -e- OVR = CS =+ WW-MP -»- WW-MPI-2-e- WW-MPI-4

Fig. II1.3: Training times. Training time for different regularization parameters C
for the various solvers. We observe that the parameter C has a significant influence
on the runtime of the all-in-one solvers WW and CS, while it is modest for the OVR
solution. All parallel solvers use the same amount of cores. LLW was omitted due to
the slow convergence.

Timing results Another important aspect of our analysis is to examine how long
our solvers take to converge to a solution. Here it is important to note that different
formulations and optimization schemes lead to different convergence rates. This is of
interest as the runtime of many Machine Learning solution is affected on one hand
by the mathematical optimization properties and the implementation details on the
other hand.

The first property to inquire is the regularization parameter C, which has a major
impact on the convergence and thus the runtime of SVMs algorithms. The larger
C the less constraint the optimization space and the more possible solutions exist.
The second is the interplay between shrinking and distributing. Shrinking removes
variables that are unlikely to change from the optimization process and thereby reduces
the size of the problem as well as the runtime. But this also renders the positive
effect of distributing the computation smaller, because the parallelizable fraction of
the computation shrinks and this puts more stress on the communication overhead.

The main focus is the comparison of the parallel and distributed solvers which run
on type A machines, of which we had 4 to our disposition. For completeness we
also report the runtime of the single core solver CS, which runs on one machine of
type B to meet the large memory requirements of this approach. The multi-core
solutions OVR and WW-MC use 16 cores, while the MPI solution WW-MPI spreads
over 2 or 4 machines using 8 and 4 cores respectively at each node, thus trains the
model distributed. We omit LLW from this comparison, because the classification and
convergence performance did not meet the expectations and refer to the next section.
From Figure I11.3, we observe that the runtime of all-in-one methods WW and CS

47

III DISTRIBUTED OPTIMIZATION OF MULTI-CLASS SVMS

varies with varying C and they perform fastest in a more regularized domain, i.e.,
for small C values. On the other hand OVR seems more resilient to a changing
regularization parameter C'. We also observe that the communication overhead for
our solution of WW changes depending on the regularization strength. The figure
indicates that overhead is modest, yet increases significantly in the unregularized
domain.

Comparing the parallel and distributed solvers one can find that multi-core solution
WW-MC always performs faster than multi-core solution OVR, and that the distributed
solutions WW-MPI-* despite increased communication effort still perform better than
the multi-core solution OVR in all except one case.

Comparing the all-in-one solvers, the sequential solver CS converges surprisingly
fast compared to the parallelized WW. The single core performance of WW, which
approximately takes the time of WW-MC times the ideal speedup 4, as derived from
Figure I11.2, would run somewhat slower than the one of CS. Which is reasonable as
the objective of CS is far less complex than the one of WW and is very suitable for
shrinking approaches. We note that CS will likely not scale to much larger problem
settings due to its sequential nature.

5.5.1 Lin, Lee, & Wahba

Knowing that LLW converges to the correct solution, as the duality-gap closes (see
Section 5.2), the results indicate that the chosen C' range is not suitable. For LSHTC-
small we conducted experiments with much larger C' values. And indeed, as shown in
Table I11.5, LLW performs best in a nearly unconstrained setting. In our experiments
we observed that the model learned by LLW is never sparse, neither in the weight
matrix W, nor in dual factors a. Resource limitations and slow convergence properties
hindered us to conduct experiments with even larger C' values. It is left to future
work to explore this space or even develop a unconstrained version of LLW.

log(C): 2 3 4
Error: 87.73 66.74 59.31
Micro F1: 2.08 15.07 | 40.69
Macro F1: 12.27 33.26 24.58

W-Density: 92,74 | 9274 | 92,74
a-Density: 99.88 | 99.87 | 99.90

Tab. II1.5: Further results for the LLW-solver. Error, Micro-F1, and Macro-F1
on the test set and model density in % of the LLW solver on the LSHTC-small dataset.
One can observe that LLW performs the better the less regularized the optimization
is, i.e., the larger C.

6 Discussion

Our first discussion point is the limitation of our solvers to multi-class classification,
which hinders us from exploring even larger datasets in this context as they typically

48

Discussion

have multiple labels per data point (multi-label classification). Our work as well
as Dogan et al. (2016) suggests that all-in-one solvers classify better than OVR
in multi-class classification settings. On the other hand, the work of Babbar and
Scholkopf (2017, 2018) shows that approximated all-in-one solvers for CS do not
match the performance of plain OVR in the case of multi-label classification, even
though on larger scale, and thereby points to the most promising future direction
of this contribution: the extension of the proposed WW formulation to multi-label
losses. In order to examine the hypothesis that exact all-in-one solvers perform better
for the discussed (larger) multi-label datasets, it requires an adaptation of the WW
formulation and it might require an adaptation of the presented scaling scheme. A
possible extension of Equation III.3 could be realized in the following way where y;
denotes the set of labels for a data point i:

C

) 1

min E §||wc||2 +C E l(wixi —wlz) (I11.17)
c=1 i:cy;

Another hindrance to scale to the larger multi-label datasets for the current implemen-
tation is handling the potential huge model sizes. This contribution tackles this by
distributing the model across different computing instances, yet this measure might
be not enough for model sizes of larger datasets®. We note that the discussed large
multi-label datasets are very sparse, thus it is unlikely that the actual model will be
very dense, yet still possible as we observed in our experiments. One way to alleviate
this issue would be to store the model parameter in sparse format in a hash table. It
is unclear how this would effect the overall scaling behavior of the implementation.
An alternative might be to only store model parameters which can have a non-zero
gradient — as for some it will always be zero, because there is no corresponding con-
nection between an output label and input feature in the training set. The PD-Sparse
algorithms (Yen et al., 2016, 2017) approximates the CS loss by imposing additional
sparsity constraints which provably lead to a final sparse solution and empirically also
keep the model during training sparse. Other methods like tree- (Prabhu and Varma,
2014; Jain et al., 2016; Jasinska et al., 2016; Prabhu et al., 2018), embedding- (Yu
et al., 2014; Bhatia et al., 2015; Tagami, 2017) or deep learning-based (Vincent et al.,
2015; Liu et al., 2017; Grave et al., 2017) techniques circumvent this issue by con-
struction. These methods impose a limit to the model capacity and this leads us to
the next discussion point.

Another interesting question for datasets with large output label spaces revolves
around so call head and tail labels (Jain et al., 2016). The key idea is that few head
labels occur very often in the dataset, in contrast to many tail labels that occur seldom
and form the tail of the label distribution. Interestingly, it is to note that in many
applications it is more important or informative to predict rarely occurring labels with
higher accuracy than head labels. E.g., consider a data point with the following labels:
“book”, “novel”, “Miss Marple”, “Agatha Christie”. Labels like “book” and “novel” would

3E.g., considering the Amazon-3M dataset in the Extreme Classification repository
(http://manikvarma.org/downloads/XC/XMLRepository.html) the size of a (dense) linear model
would be in the order of Petabytes.

49

http://manikvarma.org/downloads/XC/XMLRepository.html

III DISTRIBUTED OPTIMIZATION OF MULTI-CLASS SVMS

be likely head label, i.e., occur often, in contrast to tail labels like “Miss Marple”
and “Agatha Christie” that occur seldom, but are much more informative and might
even imply more frequent labels. In our experiments especially the F1-macro score
puts more stress on tail-labels and the result suggest that all-in-one methods perform
favorable to OVR. In literature there is a discussion which methods captures the
structure of tail labels best (Jain et al., 2016; Babbar and Scholkopf, 2018). Generally,
tree-, embedding- or deep-learning-based approaches, as mentioned above, tend to
capture global structures better, linear classifiers such as SVMs tend to capture tail
distributions more accurately (Babbar and Scholkopf, 2017, 2018). The work of Cheng
et al. (2016) tries to combine the best of both worlds by combining a deep neural
network with a shallow classifier. This, again, suggests to extend the WW solver to
multi-label losses.

For the domain of classification with large label spaces a few desiderata can be named.
Most important are a small asymptotic training or prediction time — ideally it would
be logarithmic in the number of classes log(C). In the case of prediction time this
is achieved, e.g., by tree-based techniques (Prabhu and Varma, 2014; Jain et al.,
2016; Jasinska et al., 2016; Prabhu et al., 2018). For our SVM solvers the prediction
and training time is at least linear and thus not ideal. The prediction time itself
could possibly be reduced by using methods like maximum inner product search, e.g.,
Shrivastava and Li (2014). Likely one needs to trade-off between matching these
criteria and the prediction performance of shallow models like SVMs.

In this context we would like to discuss the interplay of mathematical/methodological
and engineering domains in Machine Learning. We did not mention the adaptation of
the LLW formulation as the performance was surprisingly weak in our experiments.
While our solution and implementation for LLW shows very good scaling properties
and, furthermore, it provably and empirically converges to the right solutions; but
eventually it did not converge in a reasonable amount of time of one day on the posed
problems. This exemplifies that, while distributed and parallel solutions are often
needed for scaling Machine Learning applications, a solely technical approach like
an efficient distribution scheme is not necessarily enough — underlining the need for
synergy of both domains. Nevertheless the scalability of this algorithm is very good,
due to its low communication overhead, and a version specifically designed to converge
fast in nearly unconstrained settings might result in a promising solution.

Also to mention is the effect of shrinking on the runtime and distribution efficiency.
The algorithm of WW scales quadratically in the number classes, which is very large
in our case, but due to the combination of shrinking and distribution techniques
our solution yields reasonably good runtime performance. The drawback is that the
interplay of both techniques is complex as shrinking effectively reduces the problem
during training and thereby it reduces the advantage of distributing the optimization
procedure. This interaction had significant impact on our solution and is another
example for the complexity of applied, distributed Machine Learning.

50

Conclusion

7 Conclusion

We proposed distributed algorithms for solving the multi-class SVM formulations
by Lee, Lin, and Wahba (LLW, 2004) and Weston and Watkins (WW, 1999). The
algorithm addressing LLW takes advantage of an auxiliary variable, while our approach
for optimizing WW in parallel is based on the 1-factorization problem from graph
theory.

The experiments confirmed the correctness of the solvers, in the sense of an exact
solver, and show linear speedup when the number of cores is increased. This speedup
allows us to train LLW and WW on LSHTC datasets, and our analysis contributed
by comparing MC-SVM formulations these rather large data sets, where such analysis
was still lacking.

In comparison to OVR we showed that WW can achieve competitive classification
results in less time, while still leading to a much sparser model. An interesting path for
future work is to extend the formulation for multi-label problems and subsequently to
inquiry if the algorithm can convince with good performance on even larger problem
settings.

Unexpectedly, LLW shows clear disadvantages over the other MC-SVMs. Yet the
favorable scaling properties might make further research interesting, for instance
regarding the development of an unconstrained algorithm. We ease further research
by publishing the source code under https://github.com/albermax/xcsvm.
Overcoming the limitations of a single machine, i.e. distribution, is a key problem
and a key enabler in large scale learning. To best of our knowledge, we are the first to
train an exact, all-in-one MC-SVMs in a distributed manner. We hope this first step
inspires further research in this context.

51

https://github.com/albermax/xcsvm

Chapter IV

EFFICIENT LEARNING OF KERNEL
APPROXIMATIONS

Kernel methods have strong theoretical foundations and proven
their usefulness in numerous applications. With the increasing
availability of data and the emerging of deep learning techniques
a weakness of kernel methods got exposed, namely the quadratic
dependence on the number of input samples. To alleviate this
handicap random approximations of kernel projections have been
proposed and constitute a middle ground between neural networks
and kernel methods: they can be cast as a one-layer neural net-
work where the basis layer’s parameters are drawn at random. In
this chapter we pose two critical questions: Can the performance
of such kernel machines be increased by adapting the basis’ param-
eters either to the kernel function or to the task at hand, instead
of using agnostic random sampling? In order to answer this ques-
tion we consider random feature kernel approximations as neural
networks and subsequently show how they can be trained end-to-
end. This enables us to, first, adapt the basis layer to specific
kernel objectives and, second, directly to the task at hand. Our
empirical evaluation suggests that the random parameterization is
inefficient and that our more direct optimization approach can re-
duce the number of parameters by orders of magnitude, while still
capturing general data properties. Most of this chapter’s work was
previously published in Alber et al. (2017a).

1 Introduction

Kernel methods are a major contribution to the field of Machine Learning. They exhibit
strong theoretical foundations (Scholkopf et al., 1999; Miiller et al., 2001; Scholkopf
and Smola, 2002) and have been successfully embedded in many methods (E.g., Cortes
and Vapnik, 1995; Mika et al., 1999; Baudat and Anouar, 2000; Scholkopf et al.,
1998). The core idea of kernel functions is to rely on a similarity metric between two

53

IV EFFICIENT LEARNING OF KERNEL APPROXIMATIONS

input points and especially for tasks with a small number of training samples n this
shows advantageous behavior. On the downside it hinders kernel methods to scale to
problem settings with a large sample count n, because building on a metric between
two points scales by design quadratically in n. To alleviate this issue many techniques
have been proposed (E.g., Scholkopf et al., 1999; Williams and Seeger, 2000; Drineas
and Mahoney, 2005) including random feature approximations (Rahimi and Recht,
2008, 2009). This last method approximates the similarity metric by using randomized
basis functions and allows for new usage patterns by enabling kernel-based methods
to be (re-)formulated efficiently in primal space.

Recent work on scaling kernel methods using random basis functions has shown
that their performance on challenging tasks such as speech recognition can match
closely those of deep neural networks (Lu et al., 2014; Dai et al., 2014; Wilson et al.,
2016). However, research also highlighted two disadvantages of random basis functions.
First, a large number of basis functions, i.e., features, is needed to obtain useful
representations of the data. In a recent empirical study (Lu et al., 2014), a kernel
machine matching the performance of a deep neural network required a much larger
number of parameters. Second, a finite number of random basis functions leads to
an inferior kernel approximation error that is data-specific (Rahimi and Recht, 2008;
Sutherland and Schneider, 2015; Yang et al., 2012).

Deep neural networks learn representations that are adapted to the data using end-to-
end training. Kernel methods on the other hand can only achieve this by selecting
the optimal kernels to represent the data — a challenge that persistently remains.
Furthermore, there are interesting cases in which learning with deep architectures is
advantageous, as they require exponentially fewer examples (Montufar et al., 2014).
Yet arguably both paradigms have the same modeling power as the number of training
examples goes to infinity and empirical studies suggest that for real-world applications
the advantage of one method over the other is somewhat limited (Lu et al., 2014; Dai
et al., 2014; Wilson et al., 2016; Yang et al., 2015b).

Understanding the differences between approximated kernel methods and neural
networks is crucial to use them optimally in practice. In particular, there are two
aspects that require investigation: (1) How much performance is lost due to the
kernel approximation error of the random basis? (2) What is the possible gain of
adapting the features to the task at hand? Since these effects are expected to be data-
dependent, we argue that an empirical study is needed to complement the existing
theoretical contributions (Rahimi and Recht, 2008; Yang et al., 2012; Le et al., 2013;
Sutherland and Schneider, 2015; Yu et al., 2016).

In this work, we investigate these issues by making use of the fact that approximated
kernel methods can be cast as shallow neural networks with one hidden layer. The
bottom layers of these networks are random basis functions that are generated in a
data-agnostic manner and are not adapted during training (Rahimi and Recht, 2008,
2009; Le et al., 2013; Yu et al., 2016).

This stands in stark contrast to — even the conventional single hidden layer —
neural network where the bottom-layer parameters are optimized with respect to
the data distribution and the loss function. This so-called end-to-end learning has
not been applied to random feature based networks before, because the optimization

54

Related work

process with trigonometric activation functions can be very unstable. In this work
we contribute by adding an additional constant in the lower layer that stabilizes the
optimization routine. It does not reduce the attainable function space and enables
our approach to make very efficient use of the parameter space.

Then to pursue the stated research aims we constructed experiments that allow us
to isolate the effect of the randomness of the basis and contrast it to data- and task-
dependent adaptations. Specifically, we designed our experiments to distinguish four
cases:

e Random Basis (RB): we use the (approximated) kernel machine in its tradi-
tional formulation (Rahimi and Recht, 2008; Yu et al., 2016).

e Unsupervised Adapted Basis (UAB): we adapt the basis functions to better
approximate the true kernel function.

e Supervised Adapted Basis (SAB): we adapt the basis functions using kernel
target alignment (Cristianini et al., 2001) to incorporate label information.

e Discriminatively Adapted Basis (DAB): we adapt the basis functions with
a discriminative loss function, i.e., optimize jointly over basis and classifier
parameters. This corresponds to conventional neural network optimization.

In particular, we want to gain insights in whether data-dependent basis functions
(UAB and SAB) improve over data-agnostic basis functions (RB), and how well task-
adapted basis functions (SAB) can perform in contrast to bases that result from
end-to-end training (DAB).

The remainder is structured as follows. After a presentation of related work we explain
approximated kernel machines in context of neural networks in Section 3 and describe
our propositions in Section 4. In Section 5 we quantify the benefit of adapted basis
function in contrast to their random counterparts empirically. Finally, we give a
critical discussion in Section 6 and conclude in Section 7.

2 Related work

Kernel approximations and their applications To overcome the limitations of
kernel learning, several approximation methods have been proposed. In addition to
Nystrom methods (Williams and Seeger, 2000; Drineas and Mahoney, 2005), random
Fourier features (Rahimi and Recht, 2008, 2009) have gained a lot of attention.
Random features or (faster) enhancements (Le et al., 2013; Feng et al., 2015; Yu et al.,
2015, 2016) were successfully applied in many applications (Dai et al., 2014; Lu et al.,
2014; Huang et al., 2014; Wilson et al., 2016), and were theoretically analyzed (Yang
et al., 2012; Sutherland and Schneider, 2015). They inspired scalable approaches to
learn kernels with Gaussian processes (Wilson et al., 2016; Yang et al., 2015a; Lazaro-
Gredilla et al., 2010). Similarly to our approach Yu et al. (2015) explores ways to
optimize the random features basis. This work presents an alternating optimization
scheme, which is in contrast to our end-to-end adaptation. Other recent work (Rudi
and Rosasco, 2017; Carratino et al., 2018) focuses on optimizing random features

55

IV EFFICIENT LEARNING OF KERNEL APPROXIMATIONS

without adapting the basis itself. Another way to use the kernel framework in primal
space are (sub-sampled) empirical kernel maps (Scholkopf et al., 1999).

On the intersection between kernel methods and neural networks No-
tably, Montavon et al. (2011) explores the connection between kernel methods and
neural networks by modeling the internal representations in a kernel framework and
Cho and Saul (2009) examines the connection by creating kernels with neural network
inspired feature functions. In this chapter we build upon the theory in Cho and Saul
(2009). The field of RBF-networks explores basis functions with an Gaussian activa-
tion function, e.g., Moody and Darken (1989) and Miiller et al. (1999) show how to
efficiently adapt them to data. Next to random features approximations there exists
some exploratory research body (E.g., Sakhnini et al., 1999; Zuo et al., 2009; Gashler
and Ashmore, 2014; Chan et al., 2018) on trigonometric activation functions.

Distinction Our work contributes in several ways: we view kernel machines from a
neural network perspective and delineate the influence of different adaptation schemes.
None of the above does this. The related work of Yang et al. (2012) compares the data-
dependent Nystrom approximation to random features. While our approach generalizes
to structured matrices, i.e., fast kernel machines, Nystrém does not. Most similar to
our work is Yang et al. (2015b). They interpret the Fastfood kernel approximation as
a neural network. Their aim is to reduce the number of parameters in a convolutional
neural network, while we try to shed light on the connection between approximated
kernel machines and kernels. They also use dropout inside the kernel approximation,
which further limits the comparability to this analysis.

3 Casting kernel approximations as shallow, random neural
networks

Recall from Section 1.2.2 that kernels are pairwise similarity functions k(z,x’) :
R? x R — R between two data points z,z’ € R%. They are equivalent to the inner-
products in an intermediate, potentially infinite-dimensional feature space produced
by a function ¢ : R? — RP

k(z,2") = ¢(x)" ¢(a) (IV.1)

Non-linear kernel machines typically avoid using ¢ explicitly by applying the kernel
trick. They work in the dual space with the (Gram) kernel matrix. This imposes a
quadratic dependence on the number of samples n and prevents its application in
large scale settings. Several methods have been proposed to overcome this limitation
by approximating a kernel machine with the following functional form

fl@) =WTh(x) + b, (IV.2)

where ngb(a:) is the approximated kernel feature map. Now, we will explain how to
obtain this approximation for the Gaussian and the ArcCos kernel (Cho and Saul,

56

Casting kernel approximations as shallow, random neural networks

2009). We chose the Gaussian kernel because it is the default choice for many tasks.
On the other hand, the ArcCos kernel yields an approximation consisting of rectified,
piece-wise linear units (ReLLU) as used in deep learning (Nair and Hinton, 2010; Glorot
et al., 2011; Krizhevsky et al., 2012).

Gaussian kernel To obtain the approximation of the Gaussian kernel, we use the
following property (Rahimi and Recht, 2008). Given a smooth, shift-invariant kernel
k(z — 2') = k(z) with Fourier transform p(w), then:

k(z) = /Rd p(w)ej“’Tzdw. (Iv.3)

Using the Gaussian distribution p(w) = N(0,07!), we obtain the Gaussian kernel

(V)]

ll=1l

k(z) =exp 27 .

r{‘hus, the Akernel value]c(x, z') can be approximated by the inner product between
¢(x) and ¢(2'), where ¢ is defined as

b(x) = \/g[sin(Wga:), cos(Whz)] (IV.4)

and Wp € R™*P/2 a5 a random matrix with its entries drawn from N'(0,0~1). The
resulting features are then used to approximate the kernel machine with the implicitly
infinite dimensional feature space,

k(z,2') ~ ¢(x)T p(2'). (IV.5)

ArcCos kernel To yield a better connection to state-of-the-art neural networks we
use the ArcCos kernel (Cho and Saul, 2009)

1
K, o) = = |zl [l] T0)

with J(#) = (sin 0+ (7 — 6) cos) and 6 = cos_l(m), the angle between x and
z’. The approximation is not based on a Fourier transform, but is given by

o) = \/EmaX(O, Wikz) (Iv.6)

with Wg € R™P being a random Gaussian matrix. This makes the approximated
feature map of the ArcCos kernel closely related to ReLUs in deep neural networks.

o7

IV EFFICIENT LEARNING OF KERNEL APPROXIMATIONS

Neural network interpretation The approximated kernel features ¢(x) can be
interpreted as the output of the hidden layer in a shallow neural network. To obtain
the neural network interpretation, we rewrite Equation IV.2 as the following

f(z) =WTh(Wiz) +b, (IV.7)

with W € RP*C with C number of classes, and b € R¢. Here, the non-linearity h
corresponds to the obtained kernel approximation map. Now, we substitute z = ng
in Equations. IV.4 and IV.6 yielding h(z) = 1/1/Dlsin(z), cos(z)]? for the Gaussian
kernel and h(z) = y/1/D max(0, z) for the ArcCos kernel.

4 Adaptation of random kernel approximations

Having introduced the neural network interpretation of random features, the key
difference between both methods is which parameters are trained. For the neural
network, one optimizes the parameters in the bottom-layer and those in the upper
layers jointly. For kernel machines, however, Wp is fixed, i.e., the features are not
adapted to the data. Hyper-parameters (such as o defining the bandwidth of the
Gaussian kernel) are selected with cross-validation or heuristics (Gretton et al., 2005;
Dai et al., 2014; Yu et al., 2016). Consequently, the basis is not directly adapted to
the data, loss, and task at hand.

In our experiments, we consider the classification setting (see Section 1.1.1) where for
the given data X € R"*? containing n samples with d input dimensions one seeks to
predict the target labels Y € [0, 1]"*¢ with a one-hot encoding for C classes. We use
accuracy as the performance measure and the multinomial-logistic loss as its surrogate.
All our models have the same, generic form shown in Equation IV.7. However,
we use different types of basis functions to analyze varying degrees of adaptation.
In particular, we study whether data-dependent basis functions improve over data-
agnostic basis functions. On top of that, we examine how well label-informative,
thus task-adapted basis functions can perform in contrast to the data-agnostic basis.
Finally, we use end-to-end learning of all parameters to connect to neural networks.

Random Basis - RB: For data-agnostic kernel approximation, we use the current
state-of-the-art of random features. Orthogonal random features (Yu et al., 2016,
ORF) improve the convergence properties of the Gaussian kernel approximation over
random Fourier features (Rahimi and Recht, 2008, 2009). The ArcCos kernel is applied
as described above.

We also use these features as initialization of the following adaptive approaches.

Unsupervised Adapted Basis - UAB: While the introduced random bases con-
verge towards the true kernel with an increasing number of features, it is to be expected
that an optimized approximation will yield a more compact representation. We ad-
dress this by optimizing the sampled parameters W w.r.t. the kernel approximation

58

Experiments

error (KAE):

L(z,2") = S (k(z,2") — o) " o)) (IV.8)

This objective is kernel- and data-dependent, but agnostic to the classification task.

Supervised Adapted Basis - SAB: As an intermediate step between task-agnostic
kernel approximations and end-to-end learning, we propose to use kernel target
alignment (Cristianini et al., 2001) to inject label information. This is achieved by a
target kernel function ky with ky (z,2’) = +1 if and 2’ belong to the same class
and ky (z,2") = 0 otherwise. We maximize the alignment between the approximated
kernel k£ and the target kernel ky for a given data set X:

) - (K,Ky)
AX Kk ky) = \/<K7K><Ky,KY>

with <Ka,Kb> = EZ] kia(l‘i,l'j)k'b(l‘i,l‘j).

(IV.9)

Discriminatively Adapted Basis - DAB: The previous approach uses label
information, but is oblivious to the final classifier. On the other hand, a discriminatively
adapted basis is trained jointly with the classifier to minimize the classification
objective, i.e., W, W, b are optimized at the same time. This is the end-to-end
optimization performed in neural networks.

Optimizing the basis The periodic structure of trigonometric functions makes
their optimization a challenge. Our proposition to overcome this hurdle is to model
the bandwidth scale 1/0 explicitly as a constant. Practically, we substitute Wp with
1/0 Gp in Equation IV .4, sample G € R¥*P/2 from A/(0,1) and orthogonalize the
matrix as given in Yu et al. (2016) to approximate the Gaussian kernel. For adapting
schemes UAB, SAB, and DAB we only update Gp and keep 1/0 fixed. The hyper-
parameter o can be reliably set using the heuristics from Yu et al. (2015, 2016). The
resulting mapping looks as follows:

o(x) = \/g [sin(1/0 GLa), cos(1/o GEa)] (IV.10)

Note, as we do not directly regularize the weights, the model can still assume the
same parameter space as without this re-parameterization, but this change allows for
a stable (end-to-end) optimization process.

5 Experiments

In the following, we present the empirical results of our study, starting with a
description the experimental setup. Then, we proceed to present the results of using
data-dependent and task-dependent basis approximations. In the end, we bridge our
analysis to deep learning and fast kernel machines.

59

IV EFFICIENT LEARNING OF

KERNEL APPROXIMATIONS

Gisette
Gaussian ArcCos
10°F U I 11 mg"‘ 1l 1t
1070 E . 0.9 107 E
- H Ho. {o.9
072 T g o100] &
2 0of T ir los £ 85 1w o b g
2 ‘.. e B o8 2
10-+F o7 10t f S E <
. S B “
b -, : 3] {o7
10 . 10 .
10-6 L 1L 10.6 10* £
10 100 1000 10000 10 100 1000 10000 10 100 1000 10000 10 100 1000 10000
of Features # of Features # of Features # of Features
MNIST
Gaussian ArcCos
W e T I 100F *. 10 1"
< 3 . PN = =+
102} T 10°F =]
. e [108 §’ o 10t .. 1 |08 &
s 103} .. 22w -~] g
o L 106 2 [R
il . 06 g 10 los &
- 10k]
10-5F MRS 10.4 10° 1
L L L L L n n n 10! n n L n S n n n 10.4
10 100 1000 10000 10 100 1000 10000 10 100 1000 10000 10 100 1000 10000
of Features # of Features ¢ of Features + of Features
CoverType
Gaussian ArcCos
10 — = . . .) . .
. 102 . 1
10-1F % - - r == 0.9 - 10.9
S 100 *: . : "
02| o, F 108 & . {os &
2 T e £ 2 - g
X100 | T [107§ & e lor &
. < 4 4
oL e F {06 10
- 10.6
10-5 [MRS 105 10-6 0.6
10 100 1000 10000 10 100 1000 10000 10 100 1000 10000 10 1001000 10000
of Features # of Features # of Features # of Features
CIFARI10
Gaussian ArcCos
B r Jos T Tos
107 & i w0l o —
10-2 . o
L - =
- . b 106 8 o 102k 10.6 &
10 3 N - : =
< - g < " 2
Mo ~. | loa $ T . g
10 . . . los
105 ~ 100 . .
L 1o b
10 100 1000 10000 10 100 1000 10000 10 100 1000 10000 10 100 1000 10000

of Features

of Features

of Features

of Features

‘ Basis: —+—random (RB)

unsupervised ada. (UAB) —+supervised ada. (SAB) ——discriminative ada. (DAB) ‘

Fig. IV.1: Adapting bases. The plots show the relationship between the number
of features (x-axis), the KAFE in logarithmic spacing (left, dashed lines) and the
classification error (right, solid lines). Typically, the KAE decreases with a higher
number of features, while the accuracy increases. The KAE for SAB and DAB (orange
and red dotted line) hints how much the adaptation deviates from its initialization
(blue dashed line). Best viewed in digital and color.

5.1 Experimental setup

We used the following seven data sets for our study: Gisette (Guyon et al., 2004),
MNIST (LeCun et al., 1998b), CoverType (Blackard and Dean, 2000), CIFAR10
features from (Coates et al., 2011), Adult (Kohavi, 1996), Letter (Frey and Slate,
1991), USPS (Hull, 1994). The results for the last three can be found in the supplement.
We center the data sets and scale them feature-wise into the range [—1,41]. We use
validation sets of size 1,000 for Gisette, 10,000 for MNIST, 50,000 for CoverType,
5,000 for CIFARI10, 3, 560 for Adult, 4,500 for Letter, and 1, 290 for USPS. We repeat

60

Experiments

every test three times and report the mean over these trials and we found the results to
be consistent and reliable across datasets, methods and number of features. Therefore
we refrain from further statistical hypotheses tests.

Optimization We train all models with mini-batch stochastic gradient descent. The
batch size is 64 and as update rule we use ADAM (Kingma and Adam, 2015). We use
early-stopping where we stop when the respective loss on the validation set does not
decrease for ten epochs. We use Keras (Chollet, 2015), Scikit-learn (Pedregosa et al.,
2011a), NumPy (Van Der Walt et al., 2011) and SciPy (Jones et al., 2014) for our
implementation. We set the hyper-parameter o for the Gaussian kernel heuristically
according to Yu et al. (2015, 2016).

The UAB and SAB learning problems scale quadratically in the number of samples
n. Therefore, to reduce memory requirements we optimize by sampling mini-batches
from the kernel matrix. A batch for UAB consists of 64 sample pairs = and 2’ as
input and the respective value of the kernel function k(z,z’) as target value. Similarly
for SAB, we sample 64 data points as input and generate the target kernel matrix as
target value. For each training epoch we randomly generate 10,000 training and 1,000
validation batches, and evaluate the performance on 1,000 unseen, random batches.

5.2 Analysis

Table IV.1 gives an overview of the best performances achieved by each basis on each
data set.

Gaussian ArcCos
Dataset RB UAB SAB DAB RB UAB SAB DAB
Gisette 98.1 979 98.1 97.9 97.7 978 97.8 97.8
MNIST 98.2 98.2 98.3 98.3 97.2 974 97.7 97.9
CoverType 91.9 919 90.4 95.2 83.6 83.1 88.7 92.9
CIFAR10 76.4 76.8 79.0 77.3 74.9 76.3 79.4 75.3

Tab. IV.1: Classification performance. Best accuracy in % for different bases.

Data-adapted kernel approximations First, we evaluate the effect of choosing a
data-dependent basis (UAB) over a random basis (RB). In Figure IV.1, we show the
kernel approximation error (KAE) and the classification accuracy for a range from 10
to 30,000 features (in logarithmic scale). The first striking observation is that a data-
dependent basis can approximate the kernel equally well with up to two orders of
magnitude fewer features compared to the random baseline. This holds for both the
Gaussian and the ArcCos kernel. However, the advantage diminishes as the number of
features increases. When we relate the kernel approximation error to the accuracy, we
observe that initially a decrease in KAE correlates well with an increase in accuracy.
However, once the kernel is approximated sufficiently well, using more feature does
not impact accuracy anymore. Taking the difficulty of the classification problem

61

IV EFFICIENT LEARNING OF KERNEL APPROXIMATIONS

into account — the predictors classify Gisette and MNIST better than CoverType
and CIFAR10 — the trend suggests that UAB leads to more compact and accurate
representations when tasks are simpler, yet more datasets would need to be examined
to make a conclusive statement.

We conclude that the choice between a random or data-dependent basis strongly
depends on the application. When a short training procedure is required, optimizing
the basis could be too costly. On the other hand, if the focus lies on fast inference,
we argue to optimize the basis to obtain a compact representation. In settings with
restricted resources, e.g., mobile devices, this can be a key advantage.

Task-adapted kernels A key difference between kernel methods and neural net-

works originates from the training procedure. In kernel methods the feature represen-
tation is fixed while the classifier is optimized. In contrast, deep learning relies on
end-to-end training such that the feature representation is tightly coupled to the clas-
sifier. Intuitively, this allows the representation to be tailor-made for the task at hand.
Therefore, one would expect that this allows for an even more compact representation
than the previously examined data-adapted basis.
In Section 4 we proposed a task-adapted kernel (SAB). Figure IV.1 shows that the
approach is comparable in terms of classification accuracy to discriminatively trained
basis (DAB). Only for CoverType data set SAB performs significantly worse due
to the limited model capabilities, which we will discuss below. Both task-adapted
features improve significantly in accuracy compared to the random and data-adaptive
kernel approximations.

Task 1 Transferred - Task 2
1r— . , = T 1

7
5 5
s 0.8 108 2
2 2
5] 3
< <

0.6 |- 10.6
10 100 1000 10 100 1000
of Features # of Features

‘ Basis: ——random (RB) unsupervised ada. (UAB) ——supervised ada. (SAB)——discriminative ada. (DAB) ‘

Fig. IV.2: Transfer learning. We train to discriminate a random subset of 5 classes
on the MNIST data set (left) and then transfer the basis function to a new task
(right), i.e., train with the fixed basis from task 1 to classify between the remaining
classes.

Transfer learning The beauty of kernel methods is, however, that a kernel function
can be used across a wide range of tasks and consistently result in good performance.
Therefore, in the next experiment, we investigate whether the resulting kernel retains
this generalization capability when it is task-adapted. To investigate the influence
of task-dependent information, we randomly separate the classes MNIST into two
distinct subsets. The first task is to classify five randomly samples classes and their

62

Experiments

MNIST CoverType
ArcCos2 ArcCos3 ArcCos2 ArcCos3
1 1 1 1
0.9} 1 0.9
0.8} 1t 10.8
- P L — || — .
g g &os . - 08 g
Z 0.6} 1t 106 & & =
g g g 07 1h 107 &
2 < < <
041 1T 104 0.6 0.6
02l L 102 0.5 0.5
10 100 1000 10000 10 100 1000 10000 10 100 1000 10000 10 100 1000 10000
of Features # of Features 4 of Features # of Features
Basis: —+—random (RB) unsupervised ada. (UAB) —+supervised ada. (SAB)——discriminative ada. (DAB) ‘
MNIST
RB UAB SAB DAB
1 1 1 1
0.8 1t 10.8 0.8} b 77’f 10.8
£ o06) 1t {06 £ £ o6 {06 £
g g g g
< < = S
0.4} 1t 104 0.4 10.4
02|))) I))) 0.2 02} |))) L))) Jo.2
10 100 1000 10000 10 100 1000 10000 10 100 1000 10000 10 100 1000 10000
of Features # of Features i of Features # of Features
CoverType
RB UAB SAB DAB
1 : . 1 1 ; 1
0.9} 1t 10.9 0.9} 1t 10.9
& 08| 1 108 & Zos 1t {08 &
< < «® «®
£ £ £ £
g 07f 1t 107 8 807 H 107 §
g g 8 g
< << <
0.6 1t 10.6 0.6 10.6
0.5 1t 105 0.5 10.5
10 100 1000 10000 10 100 1000 10000 10 100 1000 10000 10 100 1000 10000
of Features # of Features + of Features + of Features
‘ Kernel: ArcCos —+ ArcCos2 -+ ArcCos3 ‘

Fig. IV.3: Deep kernel machines. The plots show the classification performance
of the ArcCos-kernels with respect to the kernel (first part) and with respect to the
number of layers (second part). Best viewed in digital and color.

respective data points, while the second task is to do the same with the remaining
classes. We train the previously presented model variants on task 1 and transfer their
bases to task 2 where we only learn the classifier. The experiment is repeated with
five different splits and the mean accuracy is reported.

Figure IV.2 shows that on the transfer task, the random and the data-adapted bases
RB and UAB approximately retain the accuracy achieved on task 1. The performance
of the end-to-end trained basis DAB drops significantly, however, yields still a better
performance than the default random basis. Surprisingly, the supervised basis SAB
using kernel-target alignment retains its performance and achieves the highest accuracy
on task 2. This shows that using label information can indeed be exploited in order
to improve the efficiency and performance of kernel approximations without having to
sacrifice generalization. L.e., a target-driven kernel (SAB) can be an efficient and still
general alternative to the universal Gaussian kernel.

63

IV EFFICIENT LEARNING OF KERNEL APPROXIMATIONS

Deep kernel machines We extend our analysis and draw a link to deep learn-
ing by adding two deep kernels (Cho and Saul, 2009). As outlined in the afore-
mentioned paper, stacking a Gaussian kernel is not useful, instead we use Ar-
cCos kernels that are related to deep learning as described below. Recall the
ArcCos kernel from Eq. 3 as ki(x,2’). Then the kernels ArcCos2 and ArcCos3
are defined by the inductive step kiy1(z,2') = L[ki(2,2)k;(2’,2")]7Y2J(6;) with
0; = cos™ ' (ki(z,2")[ki(z, 2)k;i(«',2')]~'/?). Similarly, the feature map of the Arc-
Cos kernel is approximated by a one-layer neural network with the ReLU-activation
function and a random weight matrix Wp

D ArcCos(z) = dp(x) = \/g max (0, Whz), (IV.11)

and the feature maps of the ArcCos2 and ArcCos3 kernels are then given by a 2- or
3-layer neural network with the ReLU-activations, i.e., & ArcCos2(T) = ngﬁBl(qggo (z))
and ¢ arecos3 () = ¢5,(d5, (d5,(2))). The training procedure for the ArcCos2 and
ArcCos3 kernels remains identical to the training of the ArcCos kernel, i.e., the random
matrices Wp, are simultaneously adapted. Only, now the basis consists of more than
one layer, and, to remain comparable for a given number of features, we split these
features evenly over two layers for a 2-layer kernel and over three layers for a 3-layer
kernel.

In the following we describe our results on the MNIST and CoverType data sets. We
observed that the so far described relationship between the cases RB, UAB, SAB,
DAB also generalizes to deep models (see Fig. IV.3, first part, and Fig. A.3 in the
supplement). Le., UAB approximates the true kernel function up to several magnitudes
better than RB and leads to a better resulting classification performance. Furthermore,
SAB and DAB perform similarly well and clearly outperform the task-agnostic bases
RB and UAB.

We now compare the results across the ArcCos-kernels. Consider the third row of
Fig. IV.3, which depicts the performance of RB and UAB on the CoverType data
set. For up to 3,000 features, the deeper kernels perform worse than the shallow ones.
Only given enough capacity the deep kernels are able to perform as good as or better
than the single-layer bases. On the other hand, for the CoverType data set, task
related bases, i.e., SAB and DAB, benefit significantly from a deeper structure and
are thus more efficient. Comparing SAB with DAB, for the ArcCos kernel with only
one layer SAB leads to worse results than DAB. Given two layers the gap diminishes
and vanishes with three layers (see Fig. IV.3). This suggests that for this data set the
evaluated shallow models are not expressive enough to extract the task-related kernel
information.

Fast kernel machines By using structured matrices one can speed up approximated
kernel machines (Le et al., 2013; Yu et al., 2016). We will now investigate how this
technique influences the presented basis schemes. The approximation is achieved by
replacing random Gaussian matrices with an approximation composed of diagonal
and structured Hadamard matrices. The advantage of these matrix types is that they
allow for low storage costs as fast multiplications. Recall that the input dimension

64

Experiments

MNIST
RB UAB
1 1
1071 E ., 107!
.
2 - i 2
10 \,.... b 08 5 10 08
. & e <]
LQ:J 1073 . 1 5 31] 1073 R g
X N r 106 & X - . 0.6 8
10 < 1071 R <
.. R
5 il . 4 A . A . 4
10~ EIE. 0.4 10 3 0.4
10 100 1000 10000 10 100 1000 10000 10 100 1000 10000 10 100 1000 10000
of Features # of Features # of Features # of Features
CoverType
RB UAB
1 1
1071 E < q 1071
. b 10.9 0.9
102 T~ - 102 o
- b 0.8 & 0.8 &
- . g2 5 £
S0 . 1 for E 2107 0.7 g
.
N < <
101 .. r 10.6 1074 0.6
e
10-5 b 10.5 10-5 1 0.5
10 100 1000 10000 10 100 1000 10000 10 100 1000 10000 10 100 1000 10000
of Features # of Features # of Features ¢ of Features
MNIST CoverType
SAB DAB SAB DAB
1 1 1 1
/ — 09] 1r 0.9
0.8} b 0.8
& &g oos| 1r 08 &
< < ® <
5 5 5 47]
::) 0.6] L 0.6 g i 0.7 0.7 E
0.6 0.6
0.4 b 104 05 05
10 100 1000 10000 10 100 1000 10000 10 100 1000 10000 10 100 1000 10000
of Features # of Features # of Features # of Features
| Basis: ——Gp —HD— HDHD— HDHDHD|

Fig. 1V .4: Fast kernel machines. The plots show how replacing the basis Gp with
an fast approximation influences the performance of a Gaussian kernel. le., Gp is
replaced by 1, 2, or 3 structured blocks H D;. Fast approximations with 2 and 3 blocks
might overlap with Gp. Best viewed in digital and color.

is d and the number of features is D. By using the fast Hadamard-transform these
algorithms only need to store O(D) instead of O(dD) parameters and the kernel
approximation can be computed in O(D logd) rather than O(Dd).

We use the approximation from Yu et al. (2016) and replace the random Gaussian
matrix Wp = 1/0 Gp in Eq. IV.4 with a chain of random, structured blocks Wp ~
1/o HD; ... HD;. Each block HD; consists of a diagonal matrix D; with entries
sampled from the Rademacher distribution and a Hadamard matrix H. More blocks
lead to a better approximation, but consequently require more computation. We
found that the optimization is slightly more unstable and therefore stop early only
after 20 epochs without improvement. When adapting a basis we will only modify the
diagonal matrices.

We re-conducted our previous experiments for the Gaussian kernel on the MNIST and
CoverType data sets (Fig. IV.4). In the first place one can notice that in most cases
the approximation exhibits no decline in performance and that it is a viable alternative

65

IV EFFICIENT LEARNING OF KERNEL APPROXIMATIONS

for all basis adaption schemes. There are two major exceptions: Consider first the
left part of the second row which depicts a approximated, random kernel machine
(RB). The convergence of the kernel approximation stalls when using a random basis
with only one block. As a result the classification performance drops drastically. This
is not the case when the basis is adapted unsupervised, which is given in the right
part of the second row. Here one cannot notice a major difference between one or
more blocks. This means that for fast kernel machines an unsupervised adaption can
lead to a more effective model utilization, which is crucial for resource aware settings.
Furthermore, a discriminatively trained basis such as a neural network, can be effected
similarly from this re-parameterization (see Fig. IV.4, bottom row). Here an order of
magnitude more features is needed to achieve the same accuracy compared to an exact
representation, regardless how many blocks are used. In contrast, when adapting the
kernel in a supervised fashion no decline in performance is noticeable. This shows
that this procedure uses parameters very efficiently.

Optimization
1
140 |
120 + 0.98
100} 0.96 ..
S 80 £
ngi 0 0.94 g
092 <
40 ¢
20 - 0.9
0 10 100 1000 10000 0.8
of Features

‘ Activation: ——ReLU —sin-cos ‘

Fig. IV.5: Optimization. Comparison of the optimization duration (solid) in
epochs of the cos-sin and the ReLu non-linearity given a varying number of features on
the MNIST benchmark. For reference the obtained accuracies are plotted as dashed
lines.

Optimization In general, the periodic nature of the sine and cosine function imposes
limitations to applicability in neural networks. When scaled and initialized properly
we found that the activation function in Equation IV.4 can be optimized and reaches
similar performances as a ReLLU-powered neural network. From Figure IV.5 one can
see that the sin-cos activation function needs only a reasonable amount of epochs
more to converge than with the ReLLU activation.

6 Discussion

Compared to neural networks (Gaussian) kernel methods have the drawback that
their application is limited to classification problems with a suitable feature space.
Random feature approximations and subsequently our method inherit this disadvan-
tage. Whereas neural network are known for their capabilities to learn such spaces,

66

Conclusion

kernel methods do not. In principle these two methods could be combined as, e.g.,
Yang et al. (2015b) uses neural network as feature extractor and as classifier based on
random features. A limitation when jointly optimizing the feature extractor and the
classifier can be that the input distribution to the classifier varies and makes choosing
suitable hyper-parameter, such as o, challenging. In general, our approach to set the
hyper-parameter o to be a constant can be a limitation for future applications.
Furthermore, the variants UAB and SAB adapt to a kernel function and consequently
scale quadratically with the number of samples n, because there are n? target values
to learn. Yet UAB and SAB are optimized with a mini-batch scheme and training
times can be adjusted to the actual complexity of the target kernel function. Therefore
the learning process can be adapted to a time or resource budget.

Our work suggests that drawing parameters at random is wasteful, yet knowing that a
Gaussian kernel can only be approximated with an infinite number of features (Rahimi
and Recht, 2008; Sutherland and Schneider, 2015; Yang et al., 2012), one might wonder
how our approaches can yield good performance with a small number of features. The
first reason is that the Gaussian kernel bases (RB and UAB) represent a much more
complex feature function than is needed for the ultimate task at hand. Compared to
them, SAB and DAB are tailored to the classification problem and the complexity of
the SAB is implicitly and of the DAB is explicitly bounded by the task at hand —
thus they can be much more efficient. This in concordance with the findings of Braun
et al. (2008), who show that information needed to fulfill the task at hand is typically
contained in a low number of the leading PCA dimensions of the kernel feature space.
We note that traditional kernel methods circumvent this expansion of the (infinite)
feature space by taking advantage of the kernel trick (Miiller et al., 2001; Scholkopf
and Smola, 2002), while random features and other approximation schemes do not by
design.

Especially the SAB variant shows a good compromise between generalization and
classification performance and has the potential to fuse the benefits of kernel methods
and end-to-end training of neural networks. E.g., in domains with limited number
of data samples this can be a promising way to leverage the data-efficiency of kernel
methods and the feature-learning capabilities of neural networks.

7 Conclusion

Our analysis shows how random and adaptive bases affect the quality of learning.
For random features this comes with the need for a large number of features and
suggests that two issues severely limit approximated kernel machines: the basis being
(1) agnostic to the data distribution and (2) agnostic to the task. To inquiry this
we proposed an efficient optimization scheme for approximated kernel machines that
allows to train them like neural networks end-to-end.

In our analysis we have found that data-dependent optimization of the kernel ap-
proximation consistently results in a more compact representation for a given kernel
approximation error. The size of the basis could be reduced by up to two orders of
magnitude. Moreover, task-adapted features could further improve upon this. Even
with fast, structured matrices, the adaptive features allow to further reduce the num-

67

IV EFFICIENT LEARNING OF KERNEL APPROXIMATIONS

ber of required parameters. This presents a promising strategy when a fast and
computationally cheap inference is required, e.g., on mobile devices.

Beyond that, we have evaluated the generalization capabilities of the adapted variants
on a transfer learning task. Remarkably, all adapted bases outperform the random
feature baseline here. We have found that the kernel-target alignment works particu-
larly well in this setting, having almost the same performance on the transfer task as
the target task. At the junction of kernel methods and deep learning, this shows that
incorporating label information can indeed be beneficial for performance without hav-
ing to sacrifice generalization capability. Investigating this in more detail appears to
be highly promising and suggests the path for future work.

68

Chapter V

EFFICIENT SOFTWARE FOR
PREDICTION ANALY®SIS

The ability to adapt to elaborate data distributions makes deep
neural networks powerful learning machines. However, design,
training, and implementation of them can pose serious challenges
as research is still far from a thorough understanding of the in-
ner workings of such models. The community proposed prediction
analysis as one way to remedy this. The idea is to highlight ‘“im-
portant” features in the input domain, and among these algorithms
propagation-based techniques pose a promising direction. They al-
low for fast execution time and have the ability to take advantage
of high-level features in their analysis, but efficient software is lack-
ing for many methods and for emerging network structures. The
research aim of this chapter is therefore: To reveal, develop and im-
plement approaches for efficient implementations of propagation-
based prediction analysis with an emphasis on the usability for the
non-expert user and facilitating research on emerging network ar-
chitectures. Based on an review of the state-of-the-art, we will moti-
vate our aim and then introduce the software package ¢NNvestigate
which is — in a broader sense — the essence of this chapter’s work.
It is designed to provide an intuitive interface to users, which facil-
itates the application and comparability of the discussed methods.
The modular approach of the library allowed us to efficiently im-
plement a wide range of methods and subsequently compare them
on different network architectures. Moreover, we give examples
how our work stimulates research efforts and questions. Most of
the work in this chapter is based on Alber et al. (2018b, 2019) and
Alber (2019).

69

V EFFICIENT SOFTWARE FOR PREDICTION ANALYSIS

1 Introduction

Recent developments showed that neural networks can be applied successfully in
many technical applications like computer vision (E.g., Krizhevsky et al., 2012; He
et al., 2016; LeCun et al., 2015), speech synthesis (E.g., Van Den Oord et al., 2016)
and translation (E.g., Vaswani et al., 2017; Sutskever et al., 2014; Bahdanau et al.,
2015). Inspired by such successes many more domains use Machine Learning and
specifically deep neural networks for, e.g., material science and quantum physics (E.g.,
Montavon et al., 2013; Schiitt et al., 2017b,a; Chmiela et al., 2017, 2018), cancer
research (E.g., Binder et al., 2018; Korbar et al., 2017), strategic games (E.g., Silver
et al., 2016, 2017), knowledge embeddings (E.g., Mikolov et al., 2013; Pennington
et al., 2014; Alber et al., 2017a), and even for automatic Machine Learning (E.g.,
Zoph et al., 2018; Alber et al., 2018a). With this broader application focus the
requirements beyond predictive power alone rise. One key requirement in this context
is the ability to understand and interpret predictions made by a neural network or
generally by a learning machine. In at least two areas this ability plays an important
role: domains that require an understanding because they are intrinsically critical or
because it is mandatory by law, and domains that strive to extract knowledge beyond
the predictions of learned models. As exemplary domains can be named: health
care (E.g., Binder et al., 2018; Korbar et al., 2017; Gondal et al., 2017), applications
affected by laws like the GDPR (Voigt and Bussche, 2017), and natural sciences (E.g.,
Montavon et al., 2013; Schiitt et al., 2017b,a; Chmiela et al., 2017, 2018).

The advancement of deep neural networks is based on their potential to leverage
complex and structured data by learning complicated inference processes. This makes
a better understanding of such models challenging, yet a rewarding target. Various
approaches to tackle this problem have been developed, e.g., Bachrens et al. (2010),
Bach et al. (2015), Montavon et al. (2017), Springenberg et al. (2015), Smilkov et al.
(2017), Sundararajan et al. (2017), Shrikumar et al. (2017), Kindermans et al. (2018),
Zeiler and Fergus (2014), Zintgraf et al. (2017), Ribeiro et al. (2016), Lundberg and
Lee (2017), and Selvaraju et al. (2017). While the nature and objectives of explanation
algorithms can be ambiguous (Lipton, 2016), in practice gaining specific insights can
already enable practitioners and researchers to create knowledge as first promising
results show, e.g., Lapuschkin et al. (2016a, 2017, 2019), Binder et al. (2018), Zintgraf
et al. (2017), and Sundararajan et al. (2017).

In particular, we focus on techniques to analyze the predictions of neural networks
that aim to highlight “important” features in the input space of a targeted neural
network (Montavon et al., 2017). For the rest of this chapter we will use the terms
“explaining” and “explanation” to refer to the process or the result of such methods.
Given the potential of such approaches, the existence and an understanding of stan-
dard usage patterns and, especially, standard software is of particular importance
to facilitate the transition of explanation methods from research into widespread ap-
plication domains. This, on one hand, lowers the application barrier and effort for
non-expert users and, on the other hand, it allows experts to focus on algorithm
customization and research.

70

Related work and aims

Our work supports this development by extracting, explaining, and implementing
patterns for efficient implementations of propagation-based explanation algorithms
— and ultimately contributing the software package iNNvestigate to the research
community. It features a clear interface for users and many implemented explanation
methods as well as modular backend for developers of new algorithms. The software
is efficient due the chosen abstractions and a seamless integration into deep learning
frameworks. In this chapter we will present a selection of application patterns and
first results on how our contribution stimulated research for explanation methods.
Moreover, we will outline challenges and research questions for future explanation
algorithms and software.

The content of this chapter is organized as follows. In the next section we discuss
related work and specify the aim of our effort in more detail. In Section 3 we will
present the software iNNvestigate, describe how it is designed and how it is used
to implement explanation algorithms. In Section 4 we showcase applications of the
software and in Section 5 we will provide a discussion on limitations as well as further
challenges. Eventually, we give a conclusion in Section 6.

2 Related work and aims

With the rise of deep neural networks Machine Learning models are getting more and
more evolved — and accordingly such learning machines become less comprehensible.
Research proposed many approaches to tackle this shortcoming, e.g., Haufe et al.
(2014), Zeiler and Fergus (2014), Montavon et al. (2018), Nguyen et al. (2016),
Mordvintsev et al. (2015), Ribeiro et al. (2016), and Ancona et al. (2018). Among
these attempts, prediction analysis received particular attention (E.g., Baehrens et al.,
2010; Bach et al., 2015; Montavon et al., 2017; Springenberg et al., 2015; Smilkov et al.,
2017; Sundararajan et al., 2017; Shrikumar et al., 2017; Kindermans et al., 2018; Zeiler
and Fergus, 2014; Selvaraju et al., 2017). This algorithm family differs in that it tries
to “explain” a single prediction of a neural network. Typically this entails emphasizing
or highlighting presumably important features in the input space (Montavon et al.,
2017).

More specifically we focus in this work on propagation-based algorithms (E.g., Bach
et al., 2015; Montavon et al., 2017; Springenberg et al., 2015; Sundararajan et al., 2017;
Shrikumar et al., 2017; Kindermans et al., 2018; Zeiler and Fergus, 2014). They adapt
to the architecture of a neural network by, as the name already suggests, performing
a back-propagation along the network. This requires knowledge about the networks
structure and stands in contrast to methods that treat the model as a black box and
only use function or gradient evaluation for creating an analysis (Kindermans et al.,
2016; Shrikumar et al., 2017; Smilkov et al., 2017; Sundararajan et al., 2017; Zintgraf
et al., 2017; Ribeiro et al., 2016; Lundberg and Lee, 2017). Such algorithms typically
use repeated function or gradient calls to create an explanation — therefore their
runtime is often a multiple of a single call. On the other hand, propagation-based
methods perform only one backprop-pass and can be very fast. For more details we
refer to the Section 1.3 in Chapter II.

71

V EFFICIENT SOFTWARE FOR PREDICTION ANALYSIS

Based on their characteristics different methods define different ways to propagate
information and, subsequently, deliver different explanations. Yet ho is it possible
that for a single prediction different explanations exist? Omne reason is that each
method emphasizes distinct features, e.g., signals vs. filters of the network (Haufe
et al., 2014; Kindermans et al., 2018). Another, more complicated, reason is the
absence of a ground truth or evaluation criteria for explanation methods. Samek
et al. (2017) tries to solve this problem, yet in general it persists and is part of the
issues of the discussed methods, e.g., (Kindermans et al., 2017; Dombrowski et al.,
2019). Nonetheless, despite their short existence explanation methods have shown
promising results (E.g., Lapuschkin et al., 2016a; Binder et al., 2018; Lapuschkin et al.,
2017; Zintgraf et al., 2017; Sundararajan et al., 2017) and already their objective —
facilitating understanding — makes them a worthwhile research topic.

Aim In this work we contribute to the need for a better understanding of neural
networks (predictions) by pursuing the following objectives:

e (1) Lowering the application barrier and effort of explanation methods for
non-experts and,

e (2) providing an API that allows experts to focus on algorithm customization
and research.

Additional reasons underline the need for this software to be efficient and well designed:

e (1) There is no clear evaluation criteria for explanation algorithms and the
suitability of a method must be determined for each task at hand. Therefore it
is important that software facilitates the comparison of different approaches in
order to find the best match.

e (2) The biggest need for understanding is created by large and complicated
neural networks, yet for many methods (E.g., Bach et al., 2015; Montavon et al.,
2017) there are no implementations that can adapt or generalize to them.

e (3) New network architectures are emerging and challenge current explanation
approaches. Ideally, an existing software library would facilitate research efforts
to tackle this.

e (4) Novel research directions apply the mentioned instance-based methods to
whole datasets and use the results to learn about the prediction process, e.g.,
(Lapuschkin et al., 2016a, 2019). This requires software with good performance.

2.1 Related software packages

None of the subsequently discussed implementations addresses these objectives and
requirements (fully). The most common reason is that the respective implementa-
tion accompanies the publication of an algorithm and is product of a research process.
This set of implementations does not adhere to a common interface or platform, and

72

The iNNvestigate library

such a fragmentation makes it hard to compare algorithms. The most similar related
work are the two software packages, DeepExplain (Ancona et al., 2018) and keras-
vis (Kotikalapudi and contributors, 2017). Compared to our library both support a
considerably smaller number of methods, especially they don’t support the complex,
but promising methods LRP, Deep Taylor Decomposition, PatternNet, and Patter-
nAttribution. Furthermore, none offers an interface to support the implementation of
propagation-based methods.

In more detail, the following software implementations of explanation techniques are
available: For the LRP-algorithm a toolbox was published (Lapuschkin et al., 2016b)
that contains explanatory code in Python and MatLab as well as a faster Caffee-
implementation for production purposes. For the algorithms DeepLIFT (Shrikumar
et al., 2017), DeepSHAPE (Lundberg and Lee, 2017), "prediction difference analy-
sis" (Zintgraf et al., 2017), and LIME (Ribeiro et al., 2016) the authors also published
source code that is based on Keras/Tensorflow, Tensorflow, Tensorflow and scikit-learn
respectively. For the algorithm GradCam (Selvaraju et al., 2017) the authors pub-
lished a Caffee-based implementation. There exist more GradCam implementations
for other frameworks, e.g., Kotikalapudi and contributors (2017).

Software packages that contain more than one algorithm family are the following.
The software to the paper DeepExplain (Ancona et al., 2018) contains implementa-
tions for the gradient-based algorithms saliency map, gradient * input, Integrated
Gradients, one variant of DeepLIFT and LRP-Epsilon as well as for the occlusion
algorithm. The implementation is based on Tensorflow. The Keras-based software
keras-vis (Kotikalapudi and contributors, 2017) offers code to perform activation max-
imization, saliency algorithms Deconvnet and GuidedBackprop as well as GradCam.
For comparison, the library presented in this chapter, iNNvestigate (Alber et al.,
2019), is also Keras-based and contains implementations for the algorithms saliency
map, gradient * input, Integrated Gradients, Smoothgrad, DeconvNet, GuidedBack-
prop, Deep Taylor Decomposition, different LRP algorithms as well as PatternNet
and PatternAttribution. It also offers an interface to facilitate the implementation of
propagation-based explanation methods.

3 The iNNvestigate library

The name hints it all: Investigating the predictions of neural networks — iNNvestigate.
The software package was developed to meet the outlined objectives, in a nutshell,
creating an accessible software for applying, comparing and developing explanation
methods.

The roots of this project originate from the work on PatternNet and PatternAttribu-
tion (Kindermans et al., 2018). The authors encountered many issues that inspired us
to create this software. Since then the code was entirely redesigned and rewritten,
and, eventually, released as an open-source project.

In this section we will discuss the design and implementation patterns and showcase
them by implementing the most important explanation methods. In more detail,
Section 3.1 gives an overview on the specific characteristics of this software package,
Section 3.2 describes the design and concrete implementation of propagation-based

73

V EFFICIENT SOFTWARE FOR PREDICTION ANALYSIS

methods and Section 3.4 completes this by introducing the user interface and other
important functionality for applying explanation algorithms. In Section 3.3 we will
benchmark the runtime performance of iNNuvestigate.

3.1 Characterization

To give an overview of this software package we outline first the methodological part
and then the technical details. The distinctive features of iNNvestigate are as follows:

e A clear and simple user interface (See Section 3.4.1).
e A modular backend for propagation-based methods (See Section 3.2).

e A wide range of implemented methods:

— The reference implementation for PatternNet and PatternAttribution (Kin-
dermans et al., 2018).

— The new reference implementation for the LRP methods (Bach et al., 2015).

— The only implementation for Deep Taylor Decomposition for Keras and
TensorFlow (Montavon et al., 2017).

— Implementations for: saliency maps (Baehrens et al., 2010), Smooth-
Grad (Smilkov et al., 2017), input*gradient (Kindermans et al., 2016;
Shrikumar et al., 2017), Deconvnet (Zeiler and Fergus, 2014), GuidedBack-
prop (Springenberg et al., 2015), and IntegratedGradients (Sundararajan
et al., 2017).

e An implementation of the evaluation algorithm “perturbation analysis” (Samek
et al., 2017).

The software library is released as open-source package under the BSD-2 license and
the repository is available at https://github.com/albermax/innvestigate. The
development is based on the Python ecosystem and the deep learning framework
Keras (Chollet, 2015). Keras is designed to make deep learning accessible for a broad
range of users and iNNwvestigate users benefit from that as they can take advantage of
features like reference implementations for many neural networks, data preprocessing
pipelines, and a big community. Currently only TensorFlow (Abadi et al., 2016b) is
supported as Keras backend and the computation of all mentioned methods can be
scheduled on the CPU or GPU devices. There are no dependencies on proprietary
software.

3.2 Propagation-based prediction analysis

Implementing a neural network efficiently can be a complicated and error-prone process
and additionally implementing an explanation algorithm makes things even trickier.
We will now introduce the key patterns of explanation algorithms that allow for an
efficient and structured implementation. Subsequently we complete the section by

74

https://github.com/albermax/innvestigate

The iNNvestigate library

A2:1G A3: Occlusion

o -';?} _ {n ¥
by

B2: DeepTaylor

B3:LRP B4: PatternNet B5: PatternAtt.

Fig. V.1: Exemplary application of the implemented algorithms. This fig-
ure shows the results of the implemented explanation methods applied on the image
in the upper-left corner using the VGG16 network (Simonyan and Zisserman, 2014).
The prediction- or gradient-based methods (group A, see Appendix 2.1) are Input *
Gradient (Kindermans et al., 2016; Shrikumar et al., 2017, A1), Integrated Gradi-
ents (Sundararajan et al., 2017, A2), Occlusion (Zeiler and Fergus, 2014, A3), and
LIME (Ribeiro et al., 2016, A4). The propagation-based methods (group B) are
Guided Backprop (Springenberg et al., 2015, B1), Deep Taylor (Montavon et al., 2017,
B2), LRP (Lapuschkin et al., 2017, B3), PatternNet & PatternAttribution (Kinder-
mans et al., 2018, B4 and B5). On how the explanations are visualized we refer to
Section 3.4.3. Best viewed in digital and color.

explaining how to approach interface design, parameter tuning, and visualization of
the results.

To make the code examples as useful as possible we will not rely on pseudo-code,
but rather use Keras (Chollet, 2015), TensorFlow (Abadi et al., 2016b) and iN-
Nvestigate (Alber et al., 2019) to implement our examples for the example network
VGG16 (Simonyan and Zisserman, 2014). The results are illustrated in Figure V.1
and will be created step-by-step. The code listings contain the most important code
fragments and we refer for the corresponding executable code to Alber (2019).

75

V EFFICIENT SOFTWARE FOR PREDICTION ANALYSIS

Let us recall that the algorithms we explore have a common functional form, namely
they map from the input to a equal-dimensional saliency map, e.g., the output saliency
map has the same tensor shape as the input tensor. More formal: given a neural
network model that maps some input to a single output neuron f : R" — R, the
considered algorithms have the following form e : R” — R". We will select as output
neuron the neuron with the largest activation in the final layer. Any other neuron
could also be used. We assume that the target neural network is given as Keras model
and the corresponding input and output tensor are given as follows:

Create model without trailing softmax
model = make_a_keras_model ()

Get TF tensors

input, output = model.inputs[0], model.outputs[0]

Reduce output to response of neuron with largest activation
max_output = tf.reduce_max (output, axis=1)

00O ULk WN

©

Select a sample image

x_not_pp = select_a_sample_image ()
11 # and preprocess it for the network
x = preprocess(x_not_pp)

—
=]

—
()

The explanation algorithms of interest can be divided into two major groups depending
on how they treat the given model. The first group of algorithms treats the model as a
black-box with only access to function and gradient evaluations and the second group
considers the model as a white-box, i.e., requires the ability to introspect the model
and adapt to its composition. The former extracts information on the prediction
process by repetitive function or gradient evaluations with altered inputs, the latter
is typically more complex to implement, but aims to gain insights more efficiently
and /or of different quality.

As mentioned propagation-based algorithms are the main focus of this work — albeit
1NNwvestigate contains also gradient-based techniques. For completeness and for
comparison we describe and implement also a number of prediction- and gradient-
based methods. The according section can be found in the Appendix 2.1. We will
now describe the implementation of propagation-based methods.

Algorithms using a custom back-propagation routine to create an explanation are in
stark contrast to prediction- or gradient-based explanation algorithms: they rely on
knowledge about the model’s internal functioning to create more efficient or diverse
explanations.

Consider gradient back-propagation that works by first decomposing a function
and then performing an iterative backward mapping. For instance, the function
f(x) = u(v(x)) = (uow)(x) is first split into the parts v and v — of which it is
composed of in the first place — and then the gradient % is computed iteratively

Of _ Suow v
or — _ ov oz

and g—g. Similar to the computation of the gradient, all propagation-based explanations
have this approach in common: (1) each algorithm defines, explicitly or implicitly, how
a network should be decomposed into different parts and (2) how for each component

. iy . . . Suo
by backward mapping each component using the partial derivatives “5>*

76

The iNNvestigate library

User
Interface
~ (aV] [sp)
g S =
£ £ £
5 S S
Lo = ey
< < <
Propagation-Backend
e h\
Deep Learning
Software-Framework
. J

Fig. V.2: Software-stack. The diagram depicts exemplarily the software stack of
iNNvestigate (Alber et al., 2019). It shows how different propagation-based methods
are build on top of a common graph-backend and expose their functionality through a
common interface to the user.

the backward mapping should be performed. When implementing an algorithm for an
arbitrary network it is important to consider that different methods target different
components of a network, that different decompositions for the same method can lead
to different results and that certain algorithms cannot be applied to certain network
structures.

For instance consider GuidedBackprop (Springenberg et al., 2015) and Deep Taylor
Decomposition (Montavon et al., 2017, DTD). The first targets ReLU-activations in
a network and describes a backward mapping for such non-linearities, while partial
derivatives are used for the remaining parts of the network. On the other hand, DTD
and many other algorithms expect the network to be decomposed into linear(izable)
parts — which can be done in several ways and may result in different results.
When developing such algorithms the emphasis is typically on how a backward mapping
can lead to meaningful explanations, because the remaining functionality is very similar
and shared across methods. Knowing that, it is useful to split the implementation of
propagation-based methods in the following two parts. The first part contains the
algorithm details — thus defines how a network should be decomposed and how the
respective mappings should be performed. It builds upon the next part which takes
care of the common functionality, namely decomposing the network as previously
specified and iteratively applying the mappings. Both are denoted as "Algorithm"
and "Propagation-backend" in iNNvestigate’s software stack in Figure V.2.

This abstraction has the big advantage that the complex and algorithm independent
graph-processing code is shared among explanation routines and allows the developer
to focus on the implementation of the explanation algorithm itself.

7

V EFFICIENT SOFTWARE FOR PREDICTION ANALYSIS

We will now describe how each component can be implement, starting with the
backend. Eventually it should allow the developer to realize a method in the following
schematic way — using the interface to be presented in Section 3.4.1:

1 # A backward mapping function, e.g., for convolutional layers
2 def backward_mapping(Xs, Ys, bp_Ys, bp_state):

3 return compute_backward_mapping_magic ()

4

5 # A class bundling all algorithm functionality

6 class ExplanationAlgorithm(Analyzer):

7 R

8 # Defining how to perform the algorithm

9 def _create_analysis(self):

10 # Tell the backend that this mapping

11 # should be applied, e.g., to all convolutional layers.
12 register_backward_mapping(

13 condition=lambda x: is_convolutional_layer (x),

14 backward_mapping)

15

16

17 # Create and build algorithm for a model
18 analyzer = ExplanationAlgorithm(model)
19 # Perform the analysis

20 analyze = analyzer.analyze(x)

3.2.1 Creating a propagation backend

Let us reiterate the aim, which is to create routines that capture common functionality
to all propagation-based algorithms and thereby facilitate their efficient implementa-
tion. Given the information which graph-parts shall be mapped and how, the backend
should decompose the network accordingly and then process the back-propagation as
specified. It would be further desirable that the backend is able to identify if a given
neural network is not compatible with an algorithm, e.g., because the algorithm does
not cover certain network properties.

In this respect we see as major challenges for creating an efficient backend the following:

Interface: How shall an algorithm specify the way a network should be decomposed
and how should each backward mapping be performed?

Graph matching: Decomposing the neural network according to the algorithm’s
specifications and, ideally, detecting possible incompatibilities. Note that the
specifications can describe the structure of the targeted components as well as
their location in the network, e.g., DTD treats layer differently depending where
they are located in the network.

Back-propagation: Once determined which backward mapping is used for which part
of the network graph, the respective mappings should be applied in the right
order until the final explanation is produced.

The first two challenges are solved by choosing appropriate abstractions. The abstrac-
tions should be fine-grained enough to enable the implementation of a wide range of

78

The iNNvestigate library

concat

[(aud | [add | [add | [(add | [add |
A

Normal Cell Reduction Cell

Fig. V.3: NASNetA cells. The computer vision network NASNetA (Zoph et al.,
2018) was created with automatic Machine Learning, i.e., the architecture of the two
depicted building blocks was found with an automated algorithm. The normal cell
and the reduction cell have the same purpose as convolutional or max-pooling layers
in other networks, but are far more complex. Figure is from Zoph et al. (2018).

algorithms, while being coarse-grained enough to allow for an efficient implementation.
The last challenge is in the first place an engineering task.

Interface & Matching Before we discuss how such a backend can be implemented,
we would like to consider potential architectures of neural networks. Neural networks
are often characterized by their layer-oriented structure and the simplest of them are
sequential neural networks where each layer is stacked on another layer. In contrast
many state-of-the-art neural network have much more complicated and non-sequential
architectures. For instance, NASNetA (Zoph et al., 2018) has a similar high level
structure as VGG16 (Simonyan and Zisserman, 2014), namely they are both composed
of normal and reduction cells. In VGG16 these cells are implemented as a single
convolutional (or dense) layer and as a max-pooling layer respectively. The normal
and reduction cells of NASNetA are shown in Figure V.3. They are composed of many
different layers which are connected in a non-sequential manner. This increases the
overall network complexity considerably and to correctly implement an explanation
software that is applicable to such and other network structures it is necessary to
choose the right abstractions.

Accordingly, the first step towards a clear interface is to regard a neural network as a
directed-acyclic-graph (DAG) of layers — instead of a stack of layers. The notion of
a graph of "layers" might not seem intuitive in the first place and comes from the

79

V EFFICIENT SOFTWARE FOR PREDICTION ANALYSIS

time when neural networks were typically sequential, thus one layer was stacked onto
another. Modern networks, e.g., as NASNetA in Figure V.3, can be more complex
and in such architectures each layer is rather a node in a graph than a layer in a stack.
Regardless of that, nodes in such a DAG are still commonly called layers and we will
keep this notation.

A second step is to be aware of DAGs granularity. Different deep learning frameworks
represent neural networks in different ways and layers can be composed of more
basic operations like additions and dot products, which in turn can be decomposed
further. The most intuitive and useful level for implementing explanation methods
is to view each layer as node. A more fine-grained view is in many cases not needed
and would only complicate the implementation. On the other hand, we note that it
might be desired or necessary to fuse layers of networks into one node, e.g., adjacent
convolutional and batch normalization layers can be expressed as a single convolutional
layer.

Building on this network representation, there are two interfaces to define. One to
define where a mapping shall be applied and one how it should be performed.
There are two ways to realize the matching interface and they can be sketched as
follows. The first binds a custom backward mapping before or during network building
to a method of a layer class — statically by extending a layer class or by overloading
its gradient operator. The second receives the already build model and matches the
mappings dynamically to the respective layer nodes. This can be done by evaluating a
programmable condition for each layer instance or node in order to assign a mapping.
Except for the matching conditions, both techniques expose the same interface and
in contrast to the first approach the later is more challenging to implement, but has
several advantages: (1) It exposes a clear interface by separation of concerns: the
model building happens independently of the explanation algorithm. (2) The forward
DAG can be modified before the explanation is applied, e.g., batch normalization layer
can be fused with convolutional layers. (3) When several explanation algorithms are
build for one network, they can share the forward pass. (4) The matching conditions
can introspect the whole model, because the model was already build at that point in
time. (5) One can build efficiently the gradient w.r.t. explanations by using forward-
gradient computation — in the background and for all explanation algorithms by
using automatic differentiation.

80

The iNNvestigate library

The two approaches can be sketched in Python as follows:

1 # Approach A

2 # Use mapping Y for layer type X

3 register_mapping_for_layer_type (layer_type_X, mapping_Y)
4 build_model_with_custom_mapping ()

5 execute_explanation ()
6
7
8

Approach B

model = build_model ()
9 graph = extract_and_update_graph(model)
10 for node in graph:

11 # Match node to mapping based on conditions

12 # A node can be a layer or a sub-graph.

13 # Condition can introspect whole model for decision.
14 mapping = match_node_to_mapping(node, model.graph)
15 assign_mapping_to_node (node, mapping)

One of the distinctive features of iNNwvestigate is that it uses the second, more evolved
variant.

The second interface addresses the backward mapping and is a function that takes as
parameters the input and output tensors of the targeted layer, the respective back-
propagated values for the output tensors and, optionally, some meta-information on
the back-propagation process. The following code segment shows the interface of a
backward mapping function in the iNNuvestigate library. Due to same purpose other
implementations have very similar interfaces.

1 # Xs = input tensors of a layer or sub-graph

2 # Ys = ouput tensors of a layer or sub-graph

3 # bp_Ys = back-propagated values for Ys

4 # bp_state = additional information on state

5 # return back-propagated values for Xs

6 def backward_mapping(Xs, Ys, bp_Ys, bp_state):

7 # the backward mapped tensors correspond in shape

8 # with respective the output tensors of the forward pass

9 assert len(Ys) == len(bp_Ys)

10 assert all(Y.shape == bp_Y.shape for Y, bp_Y in zip(Y¥s, bp_Ys))
11

12 bp_Xs = compute_backward_mapping_magic ()

13

14 # the returned tensors correspond in shape

15 # with the respective input tensors of the forward pass

16 assert len(Ys) == len(bp_Ys)

17 assert all(Y.shape == bp_Y.shape for Y, bp_Y in zip(Y¥s, bp_Ys))
18 return bp_Xs

Note that this signature can not only be used for the backward mapping of layers,
but for any connected sub-graph. In the remainder we will use a simplified interface
where each layer has only one input and one output tensor.

Back-propagation Having matched backward mappings with network parts the
backend still needs to create the actual backward propagation. Practically this can

81

V EFFICIENT SOFTWARE FOR PREDICTION ANALYSIS

be done explicitly, as we will show below, or by overloading the gradient operator in
the deep learning framework of choice. While the latter is easier to implement it less
flexible and has the dis-advantages mentioned above.

The implementations of neural networks is characterized by their layer-oriented
structure and the simplest of them are sequential neural networks where each layer is
stacked on another layer. To back-propagate through such a network one starts with
the model’s output value and propagates from top layer to the next lower one and so
on. Given mapping functions that take a tensor and back-propagate along a layer,
this can be sketched as follows:

1 current = output

2 for layer in model.layers[::-1]:

3 current = back_propagate(layer.input, layer.output, current)
4 analysis = current

In general neural networks can be much more complex and are represented as directed,
acyclic graphs. This allows for multiple input and output tensors for each "layer node".
An efficient implementation is for instance the following. First the right propagation
order is established using the depth-first search algorithm to create a topological
ordering (Cormen et al., 2009). Then given this ordering, the propagation starts
at the output tensors and proceeds in direction of the input tensors. At each step,
the implementation collects the required inputs for each node, applies the respective
mapping and keeps track of the back-propagated tensors after the mapping. Note,
nodes that branch in the forward pass, i.e., have an output tensor that is used several
times in the forward pass, receive several tensors as inputs in the backward pass.
These need to be reduced to a single tensor before being fed to the backward mapping.
This is typically like in the gradient computation, namely by summing the tensors:

82

The iNNvestigate library

1 intermediate_tensors = {output: outputl}

2 execution_order = calculate_execution_order ()

3 for layer, inputs, outputs in execution_order[::-1]:

4 # gather corresponding back-propagated tensors for each output tensor
5 back_propagated_values = [

6 # Reduce to single tensor if the forward passed branched!
7 sum(intermediate_tensors[t])

8 for t in outputs

9]

10

11 # backprop through layer

12 tmp = back_propagate (inputs, outputs, back_propagated_values)
13

14 # store intermediate tensors

15 for input, intermediate in =zip(inputs, tmp):

16 if input in intermediate_tensors:

17 intermediate_tensors[input] = [intermediate]

18 else:

19 # The corresponding forward tensor branched!

20 intermediate_tensors[input].append(intermediate)

21

22 # get the last output

23 analysis = intermediate_tensors[model.input]

Despite its relative simplicity, implementing and debugging such an algorithm can
be tedious. This among propagation-based methods common operation is part of
the iNNwvestigate library and as a result one only needs to specify how the back-
propagation through specific layers should be performed. Even handier, as default
backward mapping the gradient-propagation is used and one only needs to specify
whenever the back-propagation should be performed differently.

3.2.2 Customizing the back-propagation

Based on the established interface we are now able to implement various propagation-
based explanation methods in an efficient manner.

Guided Backprop As a first example we implement the algorithm Guided Back-
prop (Springenberg et al., 2015). The back-propagation of Guided Backprop is the
same as for the gradient computation, except that whenever a ReLU is applied in the
forward pass another ReLLU is applied in the backward pass. Note that the default
back-propagation mapping in :NNvestigate is the partial derivative, thus we only need
to change the propagation for layers that contain a ReLLU activation and apply an ad-
ditional ReLLU in the backward mapping. The corresponding code looks like follows
and can already be applied to arbitrary networks (see Bl in Figure V.1):

83

V EFFICIENT SOFTWARE FOR PREDICTION ANALYSIS

1 # Guidded-Backprop-Mapping

2 # X = input tensor of layer

3 # Y = ouput tensor of layer

4 # bp_Y = backpropagated value for Y

5 # bp_state = additional information on state

6 def guided_backprop_mapping(X, Y, bp_Y, bp_state):

7 # Apply RelLU to back-propagate values

8 tmp = tf.nn.relu(bp_Y)

9 # Propagate back along the gradient of the forward pass

10 return tf.gradients(Y, X, grad_ys=tmp)

11

12 # Extending iNNvestigate base class with the Guideded Backprop code
13 class GuidedBackprop(ReverseAnalyzerBase):

14

15 # Register the mapping for layers that contain a ReLU

16 def _create_analysis(self, *args, **xkwargs):

17

18 self. _add_conditional_reverse_mapping(

19 # Apply to all layers that contain a relu activation

20 lambda layer: kchecks.contains_activation(layer, ’relu’),
21 # and use the guided_backprop_mapping to do the backrop step.
22 tf_to_keras_mapping(guided_backprop_mapping),

23 name=’guided_backprop’,

24)

25

26 return super (GuidedBackprop, self)._create_analysis(*xargs, **xkwargs)
27

28 # Creating an instance of that analyzer

29 analyzer = GuidedBackprop(model_wo_sm)

30 # and apply it.

31 B1 = analyzer.analyze(x)

Deep Taylor Typically propagation-based methods are more evolved. Propagations
are often only described for fully connected layers and one key pattern that arises is
extending this description seamlessly to convolutional and other layers. Examples
for this case are the “Layerwise relevance propagation” (Bach et al., 2015, LRP),
the “Deep Taylor Decomposition” (Montavon et al., 2017, DTD) and the “Excitation
Backprop” (Zhang et al., 2018, EB) algorithms. Despite different motivation all
algorithms yield similar propagation rules for neural networks with ReL.U-activations.
The first algorithm takes the prediction values at the output neuron and calls it
relevance. Then this relevance is re-distributed at each neuron by mapping the back-
propagated relevance proportionally to weights onto the inputs. We consider here
the so-called Z+ rule. In contrast, Deep Taylor is motivated by a (linear) Taylor
decomposition for each neuron and Excitation Backprop by a probabilistic “Winner-
Take-All” scheme. Ultimately, for layers with positive input and positive output values

— like the inner layers in VGG16 — they all have the following propagation formula:

bw _mapping(z,y,r:=bp _y) =20 (Wfrz)

V.1
with z = r @ (zW3) V1)

given a fully connected layer with W denoting the weight matrix where negative
values are set to 0. Using the library iNNvestigate this can be coded in this way:

84

The iNNvestigate library

1 # Deep-Taylor/LRP/EB’s Z+-Rule-Mapping for dense layers
2 # Call R=bp_Y, R for relevance
def z_rule_mapping_dense(X, Y, R, bp_state):

Get layer and the parameteres

layer = bp_state[’layer’]

W = tf.maximum(layer.kernel, 0)

Z = tf.tensordot(X, W, 1) + b
normalize incoming relevance
10 tmp = R / Z

11 # map back

© 00O Utk W

12 tmp = tf.tensordot(tmp, tf.transpose(W), 1)
13 # times input
14 return tmp * X

Unfortunately, this mapping implementation only covers fully-connected layers, while
another key layer family, namely convolutional layers, are not covered. By creating
another mapping for two dimensional convolutions the code can be completed and
applied to VGG16. For the unconstrained input layer we will use the bounded rule
proposed by Montavon et al. (2017):

1 # Deep-Taylor/LRP/EB’s Z-Rule-Mapping for conv layers
2 # Call R=bp_Y, R for relevance
def z_rule_mapping_conv(X, Y, R, bp_state):

Get layer and the parameters

layer = bp_state[’layer’]

W = tf.maximum(layer.kernel, O)

Z = tf.keras.backend.conv2d(X, W, layer.strides, layer.padding) + b
normalize incoming relevance
10 tmp = R / Z

© 00U W

11 # map back

12 tmp = tf.keras.backend.conv2d_transpose (

13 tmp, W, (1,)+keras.backend.int_shape(X)[1:],
14 layer.strides, layer.padding)

15 # times input

16 return tmp * X

17

18 # Extending iNNvestigate base class with the Deep Taylor/LRP/EB’s Z+-rule
19 class DeepTaylorZl (ReverseAnalyzerBase):

20 # Register mappings for dense and convolutional layers.

21 # Add Bounded DeepTaylor rule for input layer.

22

23 analyzer = DeepTaylorZil(model_wo_sm)

24 B2a = analyzer.analyze(x)

and the result is shown in Figure V.1 denoted as B2.

Still, this code does not cover one-dimensional, three-dimensional or any other special
type of convolutions. Conveniently unnecessary code-replication can be avoided
by using automatic differentiation. The core idea is that many methods can be
expressed as pre-/post-processing of the gradient back-propagation. Using automatic
differentiation our code example can be expressed as follows and works now with any
type of convolutional layer:

85

V EFFICIENT SOFTWARE FOR PREDICTION ANALYSIS

1 # Deep-Taylor/LRP/EB’s Z+-Rule-Mapping for all layers with a kernel
2 # Call R=bp_Y, R for relevance
3 def z_rule_mapping_all(X, Y, R, bp_state):

4 # Get layer

5 layer = bp_state[’layer’]

6 # and create layer copy without activation part
7 W = tf.maximum(layer.kernel, 0)

8 layer_wo_act = kgraph.copy_layer_wo_activation(
9 layer, weights=[W], keep_bias=False)

10

11 Z = layer_wo_act (X)

12 # normalize incoming relevance

13 tmp = R / Z

14 # map back

15 tmp = tf.gradients(Z, X, grad_ys=tmp) [0]
16 # times input

17 return tmp * X

LRP For some applications or methods it can be necessary to use different propaga-
tion rules for different layers. E.g., Deep-Taylor requires different rules depending on
the input data range (Montavon et al., 2017) or for LRP it was empirically demon-
strated to be useful to apply different rules for different parts of a network (Lapuschkin
et al., 2017). To exemplify this, we show how to use a different LRP rules for dif-
ferent layer types as presented in (Lapuschkin et al., 2017). In more detail, we will
apply the epsilon rule for all dense layer and the alpha-beta rule for convolutional lay-
ers. This can be implemented in iNNvestigate by changing the matching conditions.
Using provided LRP-rule mappings this looks as follows:

1 class LRPConvNet (ReverseAnalyzerBase):

2

3 # Register the mappings for different layer types
4 def _create_analysis(self, *args, *xkwargs):

5

6 # Use Epsilon rule for dense layers

7 self._add_conditional_reverse_mapping(

8 lambda layer: kchecks.is_dense_layer (layer),
9 LRPRules.EpsilonRule,

10 name=’dense’,

11)

12 # Use AlphalBetaO rule for conv layers

13 self._add_conditional_reverse_mapping/(

14 lambda layer: kchecks.is_conv_layer (layer),
15 LRPRules.AlphalBetaORule,

16 name=’conv’,

17)

18

19 return super (LRPConvNet, self)._create_analysis(*args, **kwargs)
20

21 analyzer = LRPConvNet (model_wo_sm)

22 B3 = analyzer.analyze(x)

The result can be examined in Figure V.1 marked with B3.

86

The iNNvestigate library

PatternNet & PatternAttribution PatternNet & PatternAttribution (Kinder-
mans et al., 2018) are two algorithms that are inspired by the pattern-filter theory for
linear models (Haufe et al., 2014). They learn for each neuron in the network a sig-
nal direction called pattern. In PatternNet the patterns are used to propagate the
signal from the output neuron back to the input by iteratively using the pattern direc-
tions of the neurons and the method can be realized with a gradient backward-pass
where the filter weights are exchanged with the pattern weights. PatternAttribution
is based on the Deep Taylor Decomposition (Montavon et al., 2017). For each neu-
ron it searches the rootpoint in the direction of its pattern. Given the pattern a the
corresponding formula is:

bw_mapping(z,y,r =bp_y) = (w ® a)'r (V.2)

and it can be implemented by doing a gradient backward pass where the filter weights
are element-wise multiplied with the patterns.

So far we implemented the backward-mappings as functions and registered them inside
an analyzer class for backpropagation. In the next example we will create a single
class that takes a parameter, namely the patterns, and the mapping will be a class
method that uses a different pattern for each layer mapping (B4 in Figure V.1). The
following code sketches the implementations which can be found in Appendix 2.2:

Extending iNNvestigate base class with the PatternNet algorithm
class PatternNet (ReverseAnalyzerBase):

1
2
3
4 # Storing the patterns.

5 def init__(self, model, patterns, **kwargs):
6

7

8

self . _patterns = patterns/[:]

super (PatternNet , self). init__(model, *x*xkwargs)

9 def _get_pattern_for_layer (self, layer):
10 return self._patterns.pop(-1)
11

12 # Peform the mapping
13 def _patternnet_mapping(self, X, Y, bp_Y, bp_state):

15 # Use patterns specific to bp_state[’layer’]

18 # Register the mapping
19 def _create_analysis(self, *args, *xkwargs):

22 analyzer = PatternNet (model_wo_sm, net[’patterns’])
23 B4 = analyzer.analyze (x)

Encapsulating the functionality in a single class allows us now to easily extend
PatternNet to PatternAttribution by changing the parameters that are used to
perform the backward pass (B5 in Figure V.1):

87

V EFFICIENT SOFTWARE FOR PREDICTION ANALYSIS

Extending PatternNet to PatternAttribution
class PatternAttribution(PatternNet):

def _get_pattern_for_layer (self, layer):
filters = layer.get_weights () [0]
patterns = self._patterns.pop(-1)
return filters * patterns

analyzer = PatternAttribution(model_wo_sm, net[’patterns’])
B5 = analyzer.analyze (x)

O O 00O Uk WN

[y

3.2.3 Generalizing to more complex networks

For our examples we relied on the VGG16 network (Simonyan and Zisserman, 2014)
which is composed of linear and convolutional layers with ReL.U-or Softmax-activations
as well as max-pooling layers. Recent networks in computer vision like, e.g., Incep-
tionV3 (Szegedy et al., 2016), ResNet50 (He et al., 2016), DenseNet (Huang et al.,
2017), or NASNet (Zoph et al., 2018), are far more complex and contain a variety
of new layers like batch normalization layer (Ioffe and Szegedy, 2015), new types of
convolutional layers (E.g., Chollet, 2017) and merge layers that allow for residual
connections (He et al., 2016).

The presented code examples either generalize to these new architectures or can be
easily adapted to them. Exemplary, Figure V.10 in Section 4 shows a variety of
algorithms applied to several state-of-the-art neural networks for computer vision. For
each algorithm the same explanation code is used to analyze all different networks.
The exact way to adapt algorithms to new network families depends on the respective
algorithm and is beyond the scope of this chapter. Typically it consists of implementing
new mappings for new layers, if required.

3.3 Benchmark

The the runtime efficiency of the presented code can be expressed with a benchmark.
As a reference implementation we use the LRP-Caffe-Toolbox (Lapuschkin et al.,
2016b), because it is in some sense the predecessor to iNNvestigate and it was designed
to implement algorithms with a similar complexity, namely the LRP-variants — which
are the most complex algorithms we reviewed.

We test three algorithms that are implemented in both libraries and run them with
the VGG16 network (Simonyan and Zisserman, 2014). Both frameworks need some
time to compile the computational graph and to execute it on a batch of images,
accordingly we measure both, the setup time and the execution time, for analyzing
512 images.

The LRP-Toolbox has a sequential and a parallel implementation for CPUs. We show
the time for the faster, parallel implementation. For iNNvestigate we evaluate the
runtime on the CPU and on the GPU. The workstation for the benchmark is equipped
with an Intel Xeon CPU E5-2690-v4 2.60GHz with 24 physical cores mapped to 56

88

The iNNvestigate library

virtual cores and 256GB of memory. Both implementation can use up to 32 cores.
The GPU is a Nvidia P100 with 16G of memory. We repeat each test 10 times and
report the average duration. We found the timing results to be consistent and reliable
across methods and thus omit further statistical hypotheses tests.

Figure V.4 shows the measured duration on a logarithmic scale. The iNNvestigate
library is up to 29 times faster when both implementations run on the CPU. This
increases up to 510 times when using iNNwvestigate with the GPU compared to
the LRP-Toolbox implementation on the CPU. This is achieved while iNNvestigate
also considerably reduces the amount and the complexity of code to implement the
explanation algorithms compared to the LRP-Toolbox. On the other hand, when
using N Nwvestigate one needs to compile a function graph and accordingly the setup
needs up to 3 times as long as for the LRP-Toolbox — yet amortizes already when
analyzing a few images.

This runtime efficiency is an advantage for methods that require explanations for a
whole dataset. For instance, Lapuschkin et al. (2016a, 2019) creates explanations for
a whole dataset to detect if a model focuses on correlated background or to group
similar predictions. For such applications iNNvestigate requires a fraction of the
runtime compared of the LRP-Toolbox. When comparing to implementations of other
(simpler) algorithms based on frameworks such as TensorFlow we don’t expect the
difference to be as significant.

10* | E
10t E
k= i - o7 29x |
) 2L X X |
g 107¢ E
= B 1

- 0.3x 468

10t | 05 510 426 o5

L ﬂ’_‘ I I I .
Setup Deconvnet LRP-Epsilon LRP-*

[JLRP-Toolbox (CPU) []iNNvestigate (CPU) | iNNvestigate(GPU)

Fig. V.4: Runtime comparison. The figure shows the setup- and run-times for
512 analyzed images in logarithmic range for the LRP-Toolbox and the iNNvestigate
library. Each block contains the measured time for either the setup or one of the
following algorithms: Deconvnet (Zeiler and Fergus, 2014), LRP-Epsilon (Bach et al.,
2015), and the LRP configuration from Lapuschkin et al. (2017), denoted as LRP-*.
The numbers in black indicate the respective speedup with regard to the LRP-Toolbox.

3.4 Completing the implementation

More than the implementation of the methodological core is required to successfully
apply and use explanation software. Depending on the hyper-parameter selection

89

V EFFICIENT SOFTWARE FOR PREDICTION ANALYSIS

and visualization approaches the explanation result may vary drastically. Therefore
it is important that software is designed to help the users to easily select the most
suitable setting for their task at hand. This can be achieved by exposing the algorithm
software via an easy and intuitive interface, allowing the user to focus on the method
application itself. Subsequently we will address these topics. First we will discuss
interface design and then address hyper-parameter selection, post-processing and
visualizations techniques implemented in iNNvestigate. We note that the input data
pre-processing is by construction the same as for the given model.

3.4.1 Interface

Exposing clear and easy-to-use software interfaces and routines facilitates that a broad
range of practitioners can benefit from a software package. For instance the popular
scikit-learn (Pedregosa et al., 2011b) package offers a clear and unified interface for
a wide range of Machine Learning methods, which can be flexibly adjusted to more
specific use cases.

In our case one commonality of all explanation algorithms is that they operate on
a neural network model and therefore an interface to receive a model description
is required. There are two commonly used approaches. The first one is chosen by
several software packages, e.g., DeepLIFT (Shrikumar et al., 2017) and the LRP-
toolbox (Lapuschkin et al., 2016b), and consists of expecting the model in form of
a configuration (file). A drawback of this approach is that the model needs to be
serialized before the explanation can be executed.

An alternative way is to take the model represented as a memory object and operate
directly with that, e.g., DeepExplain (Ancona et al., 2018) and iNNwvestigate (Alber
et al., 2019) work in this way. Typically this memory object was build with a deep
learning framework. This approach has the advantage that an explanation can be
created without additional overhead and it is easy to use several explanation methods
in the same program setup — which is especially useful for comparisons and research
purposes. Furthermore, a model, stored in form of a configuration, can still be loaded
by using the respective deep learning framework’s routines and then being passed to
the explanation software.

The interface of the iNNvestigate package mimics the one of the popular software
package scikit-learn and allows to create an explanation with a few lines of code. We
note the this interface separates concerns — the model building is independent of the
subsequent explanation — and is only possible due to our design decisions outlined in
Section 3.2.1. An example application looks as follows:

Build the explanation algorithm

with the hyper -parameter pattern_type set to ’relu’

analyzer = PatternAttribution(model_wo_sm, pattern_type=’relu’)

fit the analyzer to the training data (if an analyzer requires it)
analyzer.fit (X_train)

and apply it to an input

e = analyzer.analyze(x)

N O Ut WN

90

The iNNvestigate library

Image SG - abs: Low noise - - High noise

f .ﬁs ‘% £

SG - sqr.: Low noise - - High noise
w8
{,, * w5 -]

IG’s ref. From black - - to white
e : : i 3w
£ & S
et * &

Fig. V.5: Influence of hyperparamters. Row one to three show how different
hyper-parameters change the output of explanation algorithms. Row 1 and 2 depict
the Smoothgrad (SG) method where the gradient is transformed into a positive value
by taking the absolute or the square value respectively. The columns show the influence
of the noise scale parameter with low to high noise from left to right. In row 3 we show
how the explanation of the Integrated Gradients (IG) method varies when selecting
as reference an image that is completely black (left side) to completely gray (middle)
to completely white (right). Best viewed in digital and color.

3.4.2 Hyper-parameter selection

Like for many other tasks in Machine Learning explanation methods can have hyper-
parameters, but unlike for other algorithms, for explanation methods no clear selection
metric exists. Therefore selecting the right hyperparameter can be a tricky task. One
way is a (visual) inspection of the explanation result by domain experts. This approach
is suspected to be prone to the human confirmation bias. As an alternative in image
classification settings Samek et al. (2017) proposed a method called “perturbation
analysis”. The algorithm divides an image into a set of regions and sorts them in
decreasing order of the “importance” each regions gets attributed by an explanation
method. Then the algorithm measures the decay of the neural networks prediction
value when perturbing the blocks in the given order, i.e., “removing” the information of
the most important image parts first. The key ideas is that if an explanation method
highlights important regions better the performance will decay faster.

To visualize the sensitivity of explanation methods w.r.t. to their hyper-parameter
Figure V.5 contains two example settings. The first example application shows the
results for Integrated Gradients in row 3 where the image baseline varies from a black
to a white image. While the black, nor the white, or the gray image as reference
contains any valuable information, the explanation varies significantly — emphasizing
the need to pay attention to hyper-parameters of explanation methods. More on the

91

V EFFICIENT SOFTWARE FOR PREDICTION ANALYSIS

Graymap Heatmap Scaling Masking Blending Back-projection

N

S
&

Fig. V.6: Different visualizations. Fach column depicts a different visualization
technique for the explanation of PatternAttribution or PatternNet (last column). The
different visualization techniques for attribution methods are: graymaps (Smilkov et al.,
2017) or single color maps to show only absolute values (column 1), heatmaps (Bach
et al., 2015) to show positive and negative values (column 2), scaling the input by
absolute values (Sundararajan et al., 2017, column 3), masking the least important
parts of the input (Ribeiro et al., 2016, column 4), and blending the heatmap and
the input (Selvaraju et al., 2017, column 5). The last technique is used to visualize
signal extraction methods and is projecting the values back into the input value
range (Kindermans et al., 2018, column 6). Best viewed in digital and color.

sensitivity of explanation algorithms w.r.t. to this specific parameter can be found
in Kindermans et al. (2017). The corresponding explanations can be generated with
the code in Appendix 2.3.

Another example is the postprocessing of the saliency output. For instance for
SmoothGrad the sign of the output is not considered to be informative and can be
transformed to a positive value by using the absolute or the square value. This in
turn has a significant impact on the result as depicted in Figure V.5 (row 1 vs. row
2). Furthermore, the second parameter of SmoothGrad is the scale of the noise used
for smoothing the gradient. This hyper-parameter varies from small on the left hand
side to large on the right hand side and, again, has a substantial impact on the result.
Which setting to prefer depends on the application. The explanations were created
with the code fragment in Appendix 2.3.

3.4.3 Visualization

The innate aim of explanation algorithms is to facilitate the understanding for humans.
To do so the output of algorithms needs to be transformed into a human understandable
format.

For this purpose different visualization techniques were proposed in the domain
of computer vision. In Figure V.6 we depict different approaches and each one
emphasizes or hides different properties of a method. The five approaches are using
graymaps (Smilkov et al., 2017) or single color maps to show only absolute values
(column 1), heatmaps (Bach et al., 2015) to show positive and negative values (column
2), scaling the input by absolute values (Sundararajan et al., 2017) (column 3), masking
the least important parts of the input (Ribeiro et al., 2016) (colmun 4), blending
the heatmap and the input (Selvaraju et al., 2017) (column 5), or projecting the
values back into the input value range (Kindermans et al., 2018) (column 6). The last

92

Applications

xC Bk RN
o2 O et @ T\
23 (a0 ot 20T o S y \O¢ A ox
G002 et B AN o ® ¥ G xe S\, <oy e (o
W eV @8 (00T aco™ 0% T U T ed \}‘?j’ R\ €0 N\% 0ee® oat® oot®
label: 3 - - * £ l%‘J "',1 _‘l‘.\' i?t i T = i e L= - -~ @ logit: 9.80
newon:2 I O el @ & o @ N @ ¢ T
: - - T e | T, v I - -
label: 3 3 Ta = T - logit: 2.37
neuron: 3 3 .;,L-p- b ity ,;; A ‘1“1 Pk) 1‘ 1 Ty pr%b: 0.00
T % B @ F L o L : w N
label: 3 3 b A o # - et *® - 5 logit: -14.98
neuron: 4 - 31 E 3 L) = 3N A . | prob: 0.00
s 2 & € L B LY -
jabel: 3 :If e My o v o o o o PR oo oo
neuron: 5 [i i ﬁ.' i Il i '91. # a @ prob: 0.
i ol L .
label: 3 [l w_l'.- iy WEsy S i = = i =2 - = | logit: -11.13
neuron: 6 3 - e {7 bt 13: . = 5 - ‘P pr%b: 0.00
- - R | * U

Fig. V.7: Analyzing a prediction. The heatmaps show different analyses for a
VGG-like network on MNIST. The network predicts the class 2, while the true label is
3. The heatmaps suggest that the network is not able detect the line discontinuity
between the center and the lower, left stroke. Furthermore, while the presence of the
right semicircle seems to be an indicator against a 2, this does not outweigh other
factors. Fach columns is dedicated to a different explanation algorithm. On the left
hand side the true label and for each row the respective output neuron is indicated.
Probabilities and pre-softmax activation are denoted on the right hand side of the
plot. LRP-* denotes configuration from (Lapuschkin et al., 2017). We note that Deep
Taylor is not defined when the output neuron is negative. Best viewed in digital and
color.

technique is used to visualize signal extraction techniques, while the other ones are
used for attribution methods (Kindermans et al., 2018). To convert color images to a
two-dimensional tensor, the color channels are typically reduced to a single value by
the sum or a norm. Then the value gets projected into a suitable range and finally the
according mapping is applied. This is done for all except for the last method, which
projects each value independently. An implementation of the visualization techniques
can be found in Appendix 2.4.

For other domains than image classification different visualization schemes are imag-
inable.

4 Applications

In this section we will use the implemented algorithms and examine common applica-
tion patterns for explanation methods. We chose the following five patterns to reflect
our initial objectives: (1) Analyzing single (miss-)prediction to gain insights on the
model, and subsequently on the data. (2) Comparing algorithms to find a suitable ex-
planation technique for the task at hand. (3) Researching and developing explanation
methods. (4) Comparing prediction strategies of different network architectures. (5)
Systematically evaluating the predictions of a network.

93

V EFFICIENT SOFTWARE FOR PREDICTION ANALYSIS

All except for the last application, which is semi-automatic, typically require a
qualitative analysis to gain insights — and we will now see how explanation algorithms
support this process. Furthermore, this section will give a limited overview and
comparison of explanation techniques. A more detailed analysis is beyond the technical
scope of this chapter.

We visualize the methods as presented in Section 3.4.3, i.e., use heatmaps for all
methods except for PatternNet, which tries to produce a given signal and not an
attribution. Accordingly we use a projection into the input space for it. Deconvnet
and Guided Backprop are also regarded as signal extraction methods, but fail to
reproduce color mappings and therefore we visualize them with heatmaps. This allows
to identify the location of signals more easily. For more details we refer to Kindermans
et al. (2018).

4.1 Analyzing a prediction

In our first example we focus on the explanation algorithms themselves and the
expectations posed by the user. Therefore we chose a dataset without irrelevant
features in the input space. In more detail we use a VGG-like network on the MNIST
dataset (LeCun et al., 1998b) with an accuracy greater than 99% on the test set.

Figure V.7 shows the result for an input image of the class 3 that is incorrectly
classified as 2. The different rows show the explanations for the output neurons for
the classes 2, 3, 4, 5, 6 respectively, while each column contains the analyses of the
different explanation algorithms.

The true label of the image is 3 and also intuitively it resembles a 3, yet it is classified
as 2. Can we retrace why the network decided for a 27 Having a closer look, on
the first row — which explains the class 2 — the explanation algorithms suggest
that the network considers the top and the left stroke as very indicative for a 2, and
does not recognize the discontinuity between the center and the lower, left part as
contradicting. On the other hand, a look on the second row — which explains a 3 —
suggests that according to the explanations the left stroke speaks against the digit
being a 3. Potential takeaways from this are that the network does not recognize or
does not give enough weight on the continuity of lines or that the dataset does not
contain enough digit 3 with such a lower left stroke.

Taking this as an example of how such tools can help to understand a neural network,
we would like to note that all the stated points are presumptions — based on the
assumption that the explanations are meaningful. But given this leap of faith, our
argumentation seems plausible and what a user would expect an explanation algorithm
to deliver.

We would also like to note that there are common indicators across different methods,
e.g., that the topmost stroke is very indicative for a 2 or that the leftmost stroke is
not for a 3. This suggest that the methods base their analysis on similar signals in
the network. Yet it is not clear which method performs “best” and this leads us to
the next example.

94

Applications

= S
e G =y
o0 OF ettt 20V RS
%‘/\% 20 X P 20 3 [R of (0 X
o0 o e o€ 882 4o ¢ \° DA P \
\d oo \ef o o £ 3€ o 2 A <0 > < e(® o™
oo o Lwe e NS 0ec® oot et e ° o 0ee® o Qo™
label: bell pepper ‘ | 2 51 : : ” logit: 16.08
pred: bell pepperh/ i'J‘." O § 2y) s §4 7 ;«fj "R prob: 0.91
% P : 2 4 i
label: Dungeness crab B 9‘ - 3 4 5 logit: 14.41
pred: Dungeness crab - 2: g ~) ’ e - _a| prob: 0.36
label: baseball v o & el : a . g 2 ’ y e logit: 17.28
pred: baseball = e - d"'- g . .y . oy s & ™ & ‘& prob:0.54
| . 5
label: submarine ™S logit: 9.85
pred: submarine [JSCSE | £ e 855 S8 prob: 0.40
. & -
label: broom o 1 i;‘ é" 4 ‘/‘ e logit: 17.71
pred: broom L -j<—¢;ﬁqy>’ 4 ¥ J5 § 1 prob: 0.94
o ol .

label: abaya
pred: abaya

X 8. a Wi o B A, Y | ogit: 18.80
_ i (0 L prob: 0.96
— - " 5 ; L NRAIPRD \ R
: g Wak R) ¥ ogi
label: ice lolly ratsl o8 a - 4 g & N ey ¥ Ty | logit: 10.22
' Sl G b RERE R TR T AR
D e y 42 p

by
=0
=

pred: pinwheel | prob: 0.24

|
=

Fig. V.8: Comparing algorithms. The figure depicts the prediction analysis of a
variety of algorithms (columns) for a number of input images (rows) for the VGG16
network (Simonyan and Zisserman, 2014). The true and the predicted label are
denoted on the left hand side and the softmax and pre-softmax outputs of the network
are printed on the right hand side. LRP-* denotes the configuration from (Lapuschkin
et al., 2017). Best viewed in digital and color.

4.2 Comparing explanation algorithms

For explanation methods there exists no clear evaluation criteria and this makes it
inherently hard to find a method that “works” or to choose hyper-parameters (see
Section 3.4.2). Therefore we argue for the need of extensive comparisons to identify a
suitable method for the task at hand.

Figure V.8 gives an example of such a qualitative comparison and shows the explanation
results for a variety of methods (columns) for a set of pictures. We observe that
compared to the previous example the analysis results are not as intuitive anymore
and we also observe major qualitative differences between the methods. For instance,
the algorithms Occlusion and LIME produce distinct heatmaps compared to the other
gradient- and propagation-based results. Among this latter group, the results vary in
sparseness, but also in which regions the attribution is located. Note that despite its
“bad” results, for completeness we added the method DeconvNet (Zeiler and Fergus,
2014).

Consider the image in the last row, which is miss-classified as pinwheel. While one
can interpret that some methods indicate the right part of the hood as significant
for this decisions, this is merely a speculation and it is hard to make sense of the
analyses — revealing the current dilemma of explanation methods and the need for
more research. Nevertheless it is important to be clear about such problems and give
the user tools to make up her own opinion.

95

V EFFICIENT SOFTWARE FOR PREDICTION ANALYSIS

AY e
0 o A
es“e‘v:(A R 66“56“; o o “as“e‘; A o
e e W\ e e (e (e e (e
AN W AN AN 2\ AN AW W AN
a
L "o ‘{:‘
¢ T ¢
A
s " >
4 A .. L
e =
» Z ? ’m q
N
£
/
[} pe] 2
)
L -
¢ /—q Q :};

Fig. V.9: LRP batch normalization development. The different columns show
the suggested approaches to handle batch normalization layers for three different
network architectures. “l-Linear”, “I-Linear®”’, and “2-Linear” interpret the batch
normalization as a one or two linear layers accordingly. We observe that default
linearization approaches “1-Linear” and “2-Linear” lead to different results and also for
different architectures their results vary qualitatively. The third variant “I1-Linear*”
was proposed by Hui and Binder (2018) and is described in the text. Best viewed in
digital and color.

4.3 Developing explanation algorithms

Before the development of this library the LRP and Deep Taylor methods were — to
the best of our knowledge — never applied to emerging networks such as Inception
V3 (Szegedy et al., 2016) or ResNet50 (He et al., 2016). With the new abstractions
it became easier to adapt the algorithms to these networks, which are much more
complex than VGG16 (Simonyan and Zisserman, 2014), not just due to new layers,
but also due to structural differences such as skip-connections.

96

Applications

One of the upcoming issues when applying LRP to such networks was the handling
of the batch normalization layer (Ioffe and Szegedy, 2015). As we mentioned in
Section 3.2.1 this layer can be seen as one or two linear layers, or even be merged
with a neighboring convolutional layer without modifying the prediction. This allows
for different ways to linearize the network before applying the explanation algorithm.
In Figure V.9 we show different approaches to tackle this problem for the LRP function
family. We note that in this plot the heatmaps are scaled to highlight small values
by taking the square root and preserving the sign. For all networks we use the LRP-
PresetA (Lapuschkin et al., 2017) algorithm and the different columns denote the
different batch normalization handling approaches for a given network. For “l1-Linear’
and ‘“2-Linear” the batch normalization layers are interpreted as one or two linear
layers and we use the default LRP epsilon rule (Bach et al., 2015) as back-propagation
mapping. The approaches lead to very different results, both between “l1-Linear’
and “2-Linear” and between different network architectures. We highlight this as
an example for the need to test algorithms on a wide range of architectures as well
as the for the unsolved question how the linearization of neural networks influences
propagation-based explanation algorithms.

The last approach “1-Linear*” is a proposition of Hui and Binder (2018) which uses a
modified LRP alpha-beta rule (Bach et al., 2015) to suppress the back-propagated
relevance (Bach et al., 2015) in batch normalization layers and is given in Appendix 2.5.
This variant results in appealing heatmaps, but we stress that it is theoretically unclear
what effect it has on the overall meaning of the explanation. It would be of interest
to analyze this effect theoretically, e.g., within the Deep Taylor framework (Montavon
et al., 2017).

)

)

4.4 Comparing network architectures

Another possible comparative analysis is to examine the explanations for different
architectures. This allows on one hand to assess the transferability of explanation
methods and on the other hand to inspect the functioning of different networks.
Figure V.10 exemplarily depicts such a comparison for an image for the class “baseball”.
We observe that the quality of the results for the same algorithm can vary significantly
between different architectures, e.g., for some algorithms the results are very sparse
for deeper architectures. Moreover, the difference between different algorithms applied
to the same network seems to increase with the complexity of the architecture (The
complexity increases from the first to the last row).

Nevertheless, we note that explanation algorithms give an indication for the different
prediction results of the networks and can be a valuable tool for understanding such
networks. A similar approach can be used to monitor the learning of a network during
the training.

4.5 Systematic network evaluation

Our last example uses a promising strategy to leverage explanation methods for
analysis of networks beyond a single prediction. We evaluate explanations for a whole

97

V EFFICIENT SOFTWARE FOR PREDICTION ANALYSIS

S
ne]
o oF ext e’
1©° 3 YORABR @
. (2 2aC ? o) 20 of
\\)6\0(\ < d\e(\’ﬁ 0‘\(\6 'ded ° ¥ Gf (oK . Eps\\ * ,(3\1\
\(\Q\) OC(' \’\\'\ G(a 5((\0 6\)\ \(\Q\) \(\\.eq \,?\? \,?\? Oeeo
network: vgg16 f- : ’*.';,_ *7_” ~ i 3 <o ' : i ‘f"':" \‘ : . logit: 9.90
pred: crayfish 47 @ : N prob: 0.18
o i
network: inception_v3 P > Kon logit: 7.96
pred: baseball i ©, prob: 0.54
Ll 02

network: resnet50 I ~N@ N e . ~ logit: 10.23

pred: hotdog ; ' % < ’ &N ~_ prob: 0.27

network: densenet121 f X s logit: 9.68

pred: meat loaf . prob: 0.20
network: nasnet_large - . ﬁ, - logit: 10.03

pred: baseball PR ’ ; e prob: 0.94

el 2 ’
T -

Fig. V.10: Comparing architectures. The figure depicts the prediction analysis
of a variety of algorithms (columns) for a number of neural networks (rows). The true
label for this input image is “baseball” and the prediction of the respective network is
given on the left hand side. The softmax and pre-softmax outputs of the network are
printed on the right hand side. LRP-* denotes the configuration from (Lapuschkin
et al., 2017). Best viewed in digital and color.

dataset to search for classes where the neural network uses (correlated) background
features to identify an object. Other examples for such systematic evaluations are,
e.g., grouping predictions based on their frequencies (Lapuschkin et al., 2019). These
approaches are distinctive in that they do not rely on the miss-classification as signal,
i.e., one can detect undesired behavior for samples which are correctly classified by a
network.

We use again a VGG16 network and create for each example of the ImageNet
2012 (Deng et al., 2009) validation set a heatmap using the LRP method with
the configuration from (Lapuschkin et al., 2017). Then we compute the ratio of the
attributions absolute values summed inside and outside of the bounding box, and
pick the class with the lowest ration, namely “basketball”. A selection of images and
their heatmaps is given in Table V.1. The first four images are correctly classified,
but one can observe from the heatmaps that the network does not focus on the actual
basketball inside the bounding boxes. This suggests the suspicion that the network
is not aware of the concept “basketball” as a ball, but rather as a scene. Similarly,
in the next three images the basket ball is not identified — leading to wrong predic-
tions. Finally, the last image contains a basketball without any sport scenery and gets
miss-classified as ping-pong ball.

98

Applications

-

] fis

volleyball

shoe shop ping-pong ball

Tab. V.1: Bounding box analysis. The result of our bounding box analysis suggests
that the target network does not use features inside the bounding box to predict
the class “basketball”. The images have all the true label “basketball” and the label
beneath an image indicates the predicted class. We note that for none of the images
the network relies on the features of a basketball for the prediction, except for the
prediction “ping-pong ball”. The result suggest that concept “basketball” is a scenery
rather than a ball object for the network. Best viewed in digital and color.

One can argue that a sport scene is a strong indicator for the class “basketball”, on
the other the bounding boxes make clear that the class addresses a ball rather than
a scene and the miss-classified images show that taking the scenery rather than a
ball as indicator can be miss-leading. The use of explanation methods can support

99

V EFFICIENT SOFTWARE FOR PREDICTION ANALYSIS

developers to identify such flaws of the learning setup caused by, e.g., biased data or
networks that rely on the “wrong” features (Lapuschkin et al., 2019).

5 Discussion

In the subsequent discussion we will first focus on general topics and eventually
discussion iNNwvestigate specific matters.

5.1 Challenges

Neural networks come in a large variety. They can be composed of many different
layers and be of complex structure (E.g., Figure V.3 shows the sub-blocks of the
NASNetA network). Many (propagation-based) explanation methods are designed
to handle fully connected layers in the first place, yet to be universally applicable a
method and its implementations must be able to scale beyond fully-connected networks
and be able to generalize to new layer types. The advantage of methods that treat
models as a blackbox is their applicability independent of a network’s complexity. On
the other hand, they are typically slower and cannot take advantage of high level
features like white box methods (Lapuschkin et al., 2017; Selvaraju et al., 2017).

To promote research on white-box methods for complex neural networks it is necessary
alleviate researchers from unnecessary implementation efforts. Therefore it is important
that tools exist that allow for fast prototyping and let researchers focus on algorithmic
developments. One example is the library iNNvestigate, which offers an API that allows
to modify the backpropagation easily and implementations of many of state-of-the
explanation methods ready for advanced neural networks. We showed in Section 3.2.3
how a library like iNNvestigate helps to generalize algorithms to various architectures.
Such efforts are promising to facilitate research as they make it easier to compare and
develop methods as well as facilitate faster adaption to (recent) developments in deep
learning.

For instance, despite first attempts (Arras et al., 2017; Ancona et al., 2018) LSTMs
(Hochreiter and Schmidhuber, 1997; Sutskever et al., 2014) and attention layers
(Vaswani et al., 2017) are still a challenge for most propagation-based explanation
methods. Another challenge are architectures discovered automatically with, e.g.,
neural architecture search (Zoph et al., 2018). They often outperform competitors
that were created by human intuition, but are very complex. A successful application
of and examination with explanation methods can be a promising way to shed led into
their workings. The same reasoning applies to networks like SchNet (Schiitt et al.,
2017b), WaveNet (Van Den Oord et al., 2016), and AlphaGo (Silver et al., 2016) —
which led to breakthroughs in their respective domains and a better understanding of
their predictions would reveal valuable knowledge.

Another open research question regarding propagation-based methods concerns the
decomposition of network into components. Methods like Deep Taylor Decomposition,
LRP, DeepLIFT, DeepSHAPE decompose the network and create an explanation based
on the linearization of the respective components. Yet networks can be decomposed in
different ways: for instance the sequence of a convolutional and a batch normalization

100

Conclusion

layer can be treated as two components or be represented as one layer where both are
fused. Another example is the treatment of a single batch normalization layer which
can be seen as one or as two linear layers. Further examples can be found and it is
not clear how the different approaches to decompose a network influence the result of
the explanation algorithms. Future research should address this.

5.2 Limitations and outlook

Finally we would like to address limitations of the proposed software package and give
an outlook.

First to mention is that not all explanation methods are covered yet. For instance
DeepLIFT (Shrikumar et al., 2017) and DeepSHAPE (Lundberg and Lee, 2017) are
two missing, propagation-based methods. Furthermore, it would be of value to extend
the functionality to algorithms based on different concepts like LIME (Ribeiro et al.,
2016) or prediction difference analysis (Zintgraf et al., 2017) to give the user a nearly
complete selection of state-of-the-art algorithms for deep neural networks.

Like most research for explanation based methods iNNuvestigate has a focus on computer
vision — which allows for an intuitive validation. While in principle the library is
applicable on arbitrary deep neural networks it would be helpful to extend examples
and utility functionality to domains like text and natural language processing.
Recent work of Dombrowski et al. (2019) uses the gradient of explanation functions to
create adversarial examples. Using solely current features of deep learning frameworks
this is rather inefficient, because the libraries not are designed to compute gradients
with respect to multiple neurons in one backward pass. The modular design of
iNNwvestigate allows for an integration of the so-called forward gradient computation,
which would form a useful feature to make the computations of such gradients efficient.
We plan to extend the library accordingly in the future.

Deep learning is a fast changing field and so is the popularity of software frameworks.
While Keras and TensorFlow still form a big part of the spectrum, the uprising of
PyTorch (Paszke et al., 2017) — especially among researchers — limits the reach of
our software package. It remains a question for the future, if the software can be
redesigned in order to support both major deep learning frameworks.

A closely connected matter is how a sustainable community beyond the authors around
iNNwvestigate can be created and maintained. For the long term view of the project it
is rather important to foster a reasonably sized community of active supporters. An
extension for PyTorch could help such growth.

6 Conclusion

With our development of the software iNNvestigate we added a missing piece to the
(research) toolbox for deep learning. It aims to facilitate the access of non-expert
users to a wide range of explanation methods and to support creating algorithms by
bundling important functionality in a library. The two central pieces of the software
are an intuitive and uniform interface towards the general user and a backend that
supports the development of propagation-based algorithms.

101

V EFFICIENT SOFTWARE FOR PREDICTION ANALYSIS

Building on this we implemented a wide range of explanation algorithms — including
the reference implementations for PatternNet, PatternAttribution (Kindermans et al.,
2018) and the LRP methods (Bach et al., 2015). It allows practitioners to easily
compare these algorithms and find the most suitable candidate for their task at
hand. This is especially important in a field where no clear evaluation metric exists.
Furthermore, our work enabled us to apply such algorithms to a number of complex
computer vision networks and thereby pointing out issues of existing approaches as
well as sparking research to alleviate this. We also report the first results in this
direction.

We consider iNNwvestigate as a first step into the direction of consolidating prediction
analysis methods and are confident that its features will trigger more research in this
area of Machine Learning. In this light we outlined future challenges for prediction
analysis in general and iNNwvestigate in specific, e.g., the ambiguous linearization of
deep networks and the changing software landscape, to mention two. We also hope
that library will continue to gain attention and that a sustainable community will
grow to support it.

102

Chapter VI

SUMMARY AND CONCLUSIONS

This thesis was initially motivated by the emerging challenges in Machine Learning that
are posed by the increase of data availability, computing resources, and subsequent
model complexity. In order to pursue this motivation we selected three distinct
problem settings and presented approaches towards their solution. The proposed
algorithms contribute to several fields within the broad spectrum of Machine Learning
by making use of techniques from the mathematical /methodological and engineering
domains.

Chapter III & IV The first two research questions were driven by the emergence of
larger datasets, once regarding the number of classes and once regarding the number
of samples. In both cases we adapted and examined methods in larger setups that
showed successful results in smaller settings.

In the first case this concerned all-in-one SVMs and was approached by developing
solutions for two such formulations that distribute computation and model parameter
evenly on different computing instances. Based on this implementation we were able
to show that one formulation is indeed able to perform better on large text problems
than one-vs.-rest SVMs, while the analysis also revealed that the other formulation
does not perform well on such problems. Drawbacks of the proposed solutions are
their limitations to multi-class problems and the negative influence of shrinking on
the distributed computation.

Outlook: Recalling that one-vs.-rest approaches outperform approrimated all-in-one
SVMs in large, multi-label tasks, the contradicting results of this work raise the
question whether ezact solvers can do better. One way to inquiry this is to extend our
proposed algorithm to multi-label problems. A different research direction is given
in the intersection of SVMs and neural networks, namely to explore if the expensive
training in deep learning can benefit from shrinking techniques which are applied
in the dual optimization of SVMs. Finally, another downside of SVMs is the linear
prediction time and it is of interest to explore if the prediction with highly sparse
matrices can be performed faster, yet still accurate enough, with maximum inner
product search algorithms.

In the second case random feature approximations for kernel methods appeared to be
wasteful regarding the potential parameter space. We developed an efficient optimiza-
tion scheme to showcase our claim and, furthermore, shed light into the connection
of approximated kernel machines and neural network by designing experiments that
reveal the influence of data- and task-agnostic basis functions. Downsides of our pro-
posed optimization methods are the limited applicability of (Gaussian) kernels and,
moreover, the quadratic scaling factor of bases adapted to a kernel function.

103

VI SUMMARY AND CONCLUSIONS

Outlook: We suggest future work should inquiry in more detail how neural networks
can take advantage of kernel methods by, e.g., using the supervised adaptive basis
scheme to create (transferable) embeddings. For instance, in the setting of Chapter I11
a scalable adaptation of this scheme to large label spaces could facilitate the learning
of embeddings that reflect the long tail of the class distribution better — based on the
consideration that this kernel can put stress on the relation between rare or confusing
classes.

Conclusion: In both cases we proposed efficient solutions and validated the initial
hypothesis with an empirical evaluation. The novel results provide insights in two
specific areas of Machine Learning: the effectiveness of all-in-one SVMs for extreme
classification and the inefficiency of random features for approximated kernel machines.
We are confident that they help to facilitate the understanding of the respective
domains and inspire further research in those directions.

Chapter V In contrast, our last contribution is meant for direct application. For this
work we approach another emerging issue in Machine Learning, namely increasingly
complex models and prediction processes. To meet the wish and need for a better
understanding and retracability many propagation-based methods were proposed in
literature and exhibit promising results. A drawback is the lack of efficient software for
many methods and the missing evidence of their effectiveness on recent and advanced
neural networks. We extracted patterns for efficient software in this domain and
created the software package iNNvestigate, whose purpose is to tackle this issue. Its
key features are an intuitive interface lowering the access burden to such methods
and a modular library design enabling efficient implementations. This allowed us to
implement many analysis algorithms and, furthermore, to apply and extend them to
new networks. A limitation of the library is the choice of the underlying framework
Keras and it is of interest to research if the software can be extended to other deep
learning frameworks.

QOutlook: These first successful applications of the software library posed new research
questions: How can algorithms be adapted best to new architectures and, closely
related, what is the influence of the ambiguous decomposition of neural networks into
presumably linear components — a technique many propagation-based methods rely
on. In the future, it will be fruitful to extend the method selection of the library further
and to research how (semi-)automated algorithms, e.g., for detecting if a network
relies on irrelevant features, can be incorporated efficiently. Collecting feedback from
the growing user base and including more developers in a subsequent re-factoring of
the software can be a promising way to attract a larger number of contributors and
to adapt the library to (future) needs.

Conclusion: In contrast to the previous contributions in this thesis iNNvestigate
targets a more applied audience. The repository of the software has already gained
significant attention in a short amount of time. We hope that in the future this will
accelerate and more contributors will help to keep this software useful for many in
the long term.

104

Conclusion In conclusion, this thesis tackled three distinct challenges in Machine
Learning posed by the increase of data and computing power. Our contributions
constitute of algorithm development, software design, implementations, and empirical
analyses. The evaluations showed that our approaches yield improvements in terms of
accuracy, model compactness, accessibility, and scalability in various dimensions. Our
results give new insights in the respective domains that also lead to a number of new
research questions. Lastly, with the presented library iNNwvestigate we provide a novel
and practical tool to the community.

105

BIBLIOGRAPHY

Abadi, M, A Chu, I Goodfellow, HB McMahan, I Mironov, K Talwar, and L. Zhang
(2016a). “Deep learning with differential privacy”. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, pp. 308—
318.

Abadi, M, P Barham, J Chen, Z Chen, A Davis, J Dean, M Devin, S Ghemawat,
G Irving, M Isard, et al. (2016b). “Tensorflow: a system for large-scale machine
learning.” In: Proceedings of the 11th USENIX Symposium on Operating Systems
Design and Implementation 16, pp. 265—283.

Agarwal, A, O Chapelle, M Dudik, and J Langford (2014). “A Reliable Effective
Terascale Linear Learning System”. In: Journal of Machine Learning Research 15,
pp. 1111-1133.

Alber, M (2019). “Software and application patterns for explanation methods”. To ap-
pear in: Interpretable Al: Interpreting, Fxzplaining and Visualizing Deep Learning.
Springer.

Alber, M, J Zimmert, U Dogan, and M Kloft (2016). “Distributed optimization of
multi-class SVMs”. In: Neural Information Processing Systems 2016 - Extreme
Classification workshop.

Alber, M, P-J Kindermans, KT Schiitt, K-R Miiller, and F Sha (2017a). “An Empirical
Study on The Properties of Random Bases for Kernel Methods”. In: Advances in
Neural Information Processing Systems 30, pp. 2763-2774.

Alber, M, J Zimmert, U Dogan, and M Kloft (2017b). “Distributed optimization of
multi-class SVMs”. In: PLOS ONE 12.6, pp. 1-18.

Alber, M, I Bello, B Zoph, P-J Kindermans, P Ramachandran, and Q Le (2018a).
“Backprop Evolution”. In: International Conference on Machine Learning 2018 -
AutoML workshop.

Alber, M, S Lapuschkin, P Seegerer, M Hégele, KT Schiitt, G Montavon, W Samek,
K-R Miiller, S Déhne, and P-J Kindermans (2018b). “How to iNNvestigate neural
networks’ predictions!” In: Neural Information Processing Systems 2018 - Machine
Learning Open Source Software workshop.

Alber, M, S Lapuschkin, P Seegerer, M Hégele, KT Schiitt, G Montavon, W Samek, K-
R Miiller, S Déhne, and P-J Kindermans (2019). “iNNvestigate neural networks!”
To appear in: Journal of Machine Learning Research.

Alexandrov, A, R Bergmann, S Ewen, J-C Freytag, F Hueske, A Heise, O Kao, M
Leich, U Leser, V Markl, et al. (2014). “The stratosphere platform for big data
analytics”. In: The International Journal on Very Large Data Bases 23.6, pp. 939-
964.

Allwein, EL, RE Schapire, and Y Singer (2001). “Reducing multiclass to binary:
A unifying approach for margin classifiers”. In: Journal of Machine Learning
Research 1, pp. 113-141.

107

VI BIBLIOGRAPHY

Ancona, M, E Ceolini, C Oztireli, and M Gross (2018). “Towards better understanding
of gradient-based attribution methods for Deep Neural Networks”. In: International
Conference on Learning Representations.

Andrews, GR (2000). Foundations of multithreaded, parallel, and distributed program-
ming. Addison-Wesley.

Arras, L, G Montavon, K-R Miiller, and W Samek (2017). “Explaining Recurrent Neu-
ral Network Predictions in Sentiment Analysis”. In: Proceedings of the EMNLP’17
Workshop on Computational Approaches to Subjectivity, Sentiment € Social Media
Analysis, pp. 159-168.

Asuncion, A and D Newman (2007). UCI machine learning repository.

Babbar, R and B Scholkopf (2017). “DiSMEC: Distributed Sparse Machines for
Extreme Multi-label Classification”. In: Proceedings of the 10th ACM International
Conference on Web Search and Data Mining, pp. 721-729.

Babbar, R and B Scholkopf (2018). “Adversarial Extreme Multi-label Classification”.
In: arXiv preprint arXiw:1805.01570.

Babbar, R, K Maundet, and B Scholkopf (2016). “TerseSVM: A Scalable Approach
for Learning Compact Models in Large-scale Classification”. In: Proceedings of
the 2016 SIAM International Conference on Data Mining, pp. 234—242.

Bach, S, A Binder, G Montavon, F Klauschen, K-R Miiller, and W Samek (2015).
“On Pixel-wise Explanations for Non-Linear Classifier Decisions by Layer-wise
Relevance Propagation”. In: PLOS ONE 10.7, pp. 1-46.

Baehrens, D, T Schroeter, S Harmeling, M Kawanabe, K Hansen, and K-R Miiller
(2010). “How to explain individual classification decisions”. In: Journal of Machine
Learning Research 11, pp. 1803—-1831.

Bahdanau, D, K Cho, and Y Bengio (2015). “Neural machine translation by jointly
learning to align and translate”. In: International Conference on Learning Repre-
sentations.

Baudat, G and F Anouar (2000). “Generalized discriminant analysis using a kernel
approach”. In: Neural Computation 12.10, pp. 2385-2404.

Behnel, S, R Bradshaw, C Citro, L Dalcin, DS Seljebotn, and K Smith (2011). “Cython:
The best of both worlds”. In: Computing in Science & Engineering 13.2, pp. 31—
39.

Bengio, S, J Weston, and D Grangier (2010). “Label embedding trees for large multi-
class tasks”. In: Advances in Neural Information Processing Systems 23, pp. 163~
171.

Bergstra, J, O Breuleux, F' Bastien, P Lamblin, R Pascanu, G Desjardins, J Turian, D
Warde-Farley, and Y Bengio (2010). “Theano: A CPU and GPU math expression
compiler”. In: Proceedings of the Python for scientific computing conference 4.3,
pp. 3-11.

Bertsekas, DP, ML, Homer, DA Logan, and SD Patek (1995). Nonlinear programming.
Athena scientific.

Bhatia, K, H Jain, P Kar, M Varma, and P Jain (2015). “Sparse local embeddings for
extreme multi-label classification”. In: Advances in Neural Information Processing
Systems 28, pp. 730-738.

108

Binder, A et al. (2018). “Towards computational fluorescence microscopy: Machine
learning-based integrated prediction of morphological and molecular tumor pro-
files”. In: arXiv preprint arXiv:1805.11178.

Bishop, CM (2006). Pattern recognition and machine learning. Springer.

Bishop, CM et al. (1995). Neural networks for pattern recognition. Oxford university
press.

Blackard, JA and DJ Dean (2000). “Comparative Accuracies of Artificial Neural
Networks and Discriminant Analysis in Predicting Forest Cover Types from Car-
tographic Variables”. In: Computers and FElectronics in Agriculture 24.3, pp. 131—
151.

Blackford, LS, A Petitet, R Pozo, K Remington, RC Whaley, J Demmel, J Dongarra,
I Duff, S Hammarling, G Henry, et al. (2002). “An Updated Set of Basic Linear
Algebra Subprograms (BLAS)”. In: ACM Transactions on Mathematical Software
28.2, pp. 135-151.

Boden, C, T Rabl, and V Markl (2018). “Distributed Machine Learning-but at what
COST”. In: Neural Information Processing Systems 2018 - Machine Learning
Systems workshop.

Bondy, JA and USR Murty (1976). Graph theory with applications. Elsevier Science.

Borwein, J and AS Lewis (2010). Convex analysis and nonlinear optimization: theory
and examples. Springer.

Bottou, L (2010). “Large-scale machine learning with stochastic gradient descent”. In:
Proceedings of COMPSTAT’2010, pp. 177-186.

Bottou, L (2012). “Stochastic gradient descent tricks”. In: Neural networks: Tricks of
the trade, pp. 421-436.

Boyd, S, N Parikh, E Chu, B Peleato, and J Eckstein (2011). “Distributed optimization
and statistical learning via the alternating direction method of multipliers”. In:
Foundations and Trends in Machine Learning 3.1, pp. 1-122.

Brandl, S, D Lassner, and M Alber (2019). “Balancing the composition of word
embeddings”. Submitted to: Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing.

Braun, ML, JM Buhmann, and K-R Miiller (2008). “On Relevant Dimensions in
Kernel Feature Spaces”. In: Journal of Machine Learning Research 9, pp. 1875—
1908.

Breiman, L (1996). “Bagging predictors”. In: Machine Learning 24.2, pp. 123-140.

Breiman, L (2001). “Random forests”. In: Machine Learning 45.1, pp. 5-32.

Carbone, P, A Katsifodimos, S Ewen, V Markl, S Haridi, and K Tzoumas (2015).
“Apache Flink™: Stream and Batch Processing in a Single Engine”. In: IEEFE Data
Engineering Bulletin 38.4, pp. 28-38.

Carratino, L, A Rudi, and L Rosasco (2018). “Learning with SGD and Random
Features”. In: Advances in Neural Information Processing Systems 81, pp. 10213—
10224.

Chan, K-H, S-K Im, W Ke, and N-L Lei (2018). “SinP [N|: A Fast Convergence
Activation Function for Convolutional Neural Networks”. In: 2018 IEEE/ACM
International Conference on Utility and Cloud Computing Companion, pp. 365—
369.

109

VI BIBLIOGRAPHY

Chang, F, J Dean, S Ghemawat, WC Hsieh, DA Wallach, M Burrows, T Chandra,
A Fikes, and RE Gruber (2008). “Bigtable: A distributed storage system for
structured data”. In: ACM Transactions on Computer Systems 26.2, Article: 4,
pp. 1-26.

Cheng, H-T, L. Koc, J Harmsen, T Shaked, T Chandra, H Aradhye, G Anderson, G
Corrado, W Chai, M Ispir, et al. (2016). “Wide & deep learning for recommender
systems”. In: Proceedings of the 1st Workshop on Deep Learning for Recommender
Systems, pp. 7-10.

Chiang, W-L, M-C Lee, and C-J Lin (2016). “Parallel Dual Coordinate Descent
Method for Large-scale Linear Classification in Multi-core Environments”. In:
Proceedings of the 22th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 1485-1494.

Chmiela, S, A Tkatchenko, HE Sauceda, I Poltavsky, KT Schiitt, and K-R Miiller
(2017). “Machine learning of accurate energy-conserving molecular force fields”.
In: Science Advances 3.5, 1ID: €1603015.

Chmiela, S, HE Sauceda, K-R Miiller, and A Tkatchenko (2018). “Towards exact
molecular dynamics simulations with machine-learned force fields”. In: Nature
communications 9.1, ID: 3887.

Cho, Y and LK Saul (2009). “Kernel methods for deep learning”. In: Advances in
Neural Information Processing Systems 22, pp. 342-350.

Chollet, F et al. (2015). Keras. https://github.com/fchollet/keras.

Chollet, F (2017). “Xception: Deep Learning with Depthwise Separable Convolutions”.
In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1800—
1807.

Choromanska, AE and J Langford (2015). “Logarithmic Time Online Multiclass
prediction”. In: Advances in Neural Information Processing Systems 28, pp. 55—
63.

Coates, A, AY Ng, and H Lee (2011). “An Analysis of Single-Layer Networks in
Unsupervised Feature Learning”. In: 15th International Conference on Artificial
Intelligence and Statistics, pp. 215-223.

Codd, EF (1970). “A relational model of data for large shared data banks”. In:
Communications of the ACM 13.6, pp. 377-387.

Cormen, TH, CE Leiserson, RL Rivest, and C Stein (2009). Introduction to Algorithms.
MIT press.

Cortes, C and VN Vapnik (1995). “Support-vector networks”. In: Machine Learning
20.3, pp. 273-297.

Crammer, K and Y Singer (2002). “On the algorithmic implementation of multiclass
kernel-based vector machines”. In: Journal of Machine Learning Research 2,
pp. 265-292.

Cristianini, N, A Elisseeff, J Shawe-Taylor, and J Kandola (2001). “On kernel-target
alignment”. In: Advances in Neural Information Processing Systems 14, pp. 367—
373.

Dagum, L and R Enon (1998). “OpenMP: an industry standard API for shared-
memory programming”. In: Computational Science € Engineering 5.1, pp. 46—
55.

110

https://github.com/fchollet/keras

Dai, B, B Xie, N He, Y Liang, A Raj, M-FF Balcan, and L Song (2014). “Scalable kernel
methods via doubly stochastic gradients”. In: Advances in Neural Information
Processing Systems 27, pp. 3041-3049.

Dalcin, LD, RR Paz, PA Kler, and A Cosimo (2011). “Parallel distributed computing
using python”. In: Advances in Water Resources 34.9, pp. 1124-1139.

Dalvi, N, P Domingos, S Sanghai, D Verma, et al. (2004). “Adversarial classification”.
In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 99-108.

Dean, J and S Ghemawat (2008). “MapReduce: Simplified data processing on large
clusters”. In: Communications of the ACM 51.1, pp. 107-113.

DeCandia, G, D Hastorun, M Jampani, G Kakulapati, A Lakshman, A Pilchin, S
Sivasubramanian, P Vosshall, and W Vogels (2007). “Dynamo: Amazon’s highly
available key-value store”. In: ACM SIGOPS Operating Systems Review 41.6,
pp. 205-220.

Deng, J, W Dong, R Socher, L-J Li, K Li, and L Fei-Fei (2009). “Imagenet: A large-
scale hierarchical image database”. In: 2009 IEEE Conference on Computer Vision
and Pattern Recognition, pp. 248-255.

Deng, J, S Satheesh, AC Berg, and F Li (2011). “Fast and balanced: Efficient label tree
learning for large scale object recognition”. In: Advances in Neural Information
Processing Systems 24, pp. 567-575.

Do, T-N (2014). “Parallel multiclass stochastic gradient descent algorithms for classify-
ing million images with very-high-dimensional signatures into thousands classes”.
In: Vietnam Journal of Computer Science 1.2, pp. 107-115.

Dombrowski, A-K, M Alber, CJ Anders, M Ackermann, K-R Miiller, and P Kessel
(2019). “Could not get lock /var/lib/dpkg/lock-frontend”. Submitted to: Advances
in Neural Information Processing Systems 33.

Domingos, P (2012). “A Few Useful Things to Know About Machine Learning”. In:
Communications of the ACM 55.10, pp. 78-87.

Dogan, U, T Glasmachers, and C Igel (2016). “A Unified View on Multi-class Support
Vector Classification”. In: Journal of Machine Learning Research 17, pp. 1-32.

Drineas, P and MW Mahoney (2005). “On the Nystrom method for approximating a
Gram matrix for improved kernel-based learning”. In: Journal of Machine Learning
Research 6, pp. 2153-2175.

Duda, RO, PE Hart, and DG Stork (2012). Pattern classification. John Wiley & Sons.

Fan, R, K Chang, C Hsieh, X Wang, and C Lin (2008). “LIBLINEAR: A library for
large linear classification”. In: Journal of Machine Learning Research 9, pp. 1871—
1874.

Fawcett, T (2006). “An introduction to ROC analysis”. In: Pattern recognition letters
27.8, pp. 861-874.

Feng, C, Q Hu, and S Liao (2015). “Random Feature Mapping with Signed Circu-
lant Matrix Projection.” In: 2015 International Joint Conferences on Artificial
Intelligence, pp. 3490-3496.

Flynn, MJ (1972). “Some computer organizations and their effectiveness”. In: IEEFE
transactions on computers 100.9, pp. 948-960.

111

VI BIBLIOGRAPHY

Forero, PA, A Cano, and GB Giannakis (2010). “Consensus-Based Distributed Support
Vector Machines”. In: Journal of Machine Learning Research 11, pp. 1663-1707.

Freund, Y and RE Schapire (1996). “Experiments with a New Boosting Algorithm”. In:
Proceedings of the 13th International Conference on Machine Learning, pp. 148—
156.

Frey, PW and DJ Slate (1991). “Letter recognition using Holland-style adaptive
classifiers”. In: Machine Learning 6.2, pp. 161-182.

Gao, T and D Koller (2011). “Discriminative learning of relaxed hierarchy for large-
scale visual recognition”. In: Proceedings of the 2011 International Conference on
Computer Vision, pp. 2072-2079.

Gashler, MS and SC Ashmore (2014). “Training deep fourier neural networks to fit
time-series data”. In: Proceedings of the 9th International Conference on Intelligent
Computing, pp. 48-55.

Glorot, X, A Bordes, and Y Bengio (2011). “Deep sparse rectifier neural networks”. In:
15th International Conference on Artificial Intelligence and Statistics, pp. 315—
323.

Gondal, WM, JM Kohler, R Grzeszick, GA Fink, and M Hirsch (2017). “Weakly-
supervised localization of diabetic retinopathy lesions in retinal fundus images”.
In: 2017 IEEE International Conference on Image Processing, pp. 2069-2073.

Goodfellow, I, J Shlens, and C Szegedy (2014). “Explaining and Harnessing Adversarial
Examples”. In: International Conference on Learning Representations.

Goodfellow, I, Y Bengio, and A Courville (2016). Deep learning. MIT press.

Gopal, S and Y Yang (2013a). “Distributed training of Large-scale Logistic models.” In:
Proceedings of the 30th International Conference on Machine Learning, pp. 289—
297.

Gopal, S and Y Yang (2013b). “Recursive regularization for large-scale classification
with hierarchical and graphical dependencies”. In: Proceedings of the 19th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 257-265.

Govada, A, S Ranjani, A Viswanathan, and S Sahay (2015a). “A Novel Approach to
Distributed Multi-Class SVM”. In: arXiv preprint arXiv:1512.01993.

Govada, A, B Gauri, and SK Sahay (2015b). “Distributed Multi Class SVM for Large
Data Sets”. In: Proceedings of the 3rd International Symposium on Women in
Computing and Informatics, pp. 54-58.

Grave, E, A Joulin, M Cissé¢, H Jégou, et al. (2017). “Efficient softmax approximation
for GPUS”. In: Proceedings of the 34th International Conference on Machine
Learning, pp. 1302-1310.

Gretton, A, O Bousquet, AJ Smola, and B Scholkopf (2005). “Measuring statistical
dependence with Hilbert-Schmidt norms”. In: Algorithmic Learning Theory, pp. 63—
77.

Gropp, W, E Lusk, N Doss, and A Skjellum (1996). “A high-performance, portable
implementation of the MPI message passing interface standard”. In: Parallel
Computing 22.6, pp. 789-828.

Guermeur, Y (2007). “VC Theory for Large Margin Multi-Category Classifiers”. In:
Journal of Machine Learning Research 8, pp. 2551-2594.

112

Gupta, MR, S Bengio, and J Weston (2014). “Training highly multiclass classifiers.”
In: Journal of Machine Learning Research 15, pp. 1461-1492.

Guyon, I, SR Gunn, A Ben-Hur, and G Dror (2004). “Result Analysis of the NIPS
2003 Feature Selection Challenge.” In: Advances in Neural Information Processing
Systems 17, pp. 545-552.

Han, X and AC Berg (2012). “DCMSVM: Distributed parallel training for single-
machine multiclass classifiers”. In: 2012 IEEE Conference on Computer Vision
and Pattern Recognition, pp. 3554—-3561.

Haufe, S, F Meinecke, K Goérgen, S Dahne, J-D Haynes, B Blankertz, and F Biefmann
(2014). “On the interpretation of weight vectors of linear models in multivariate
neuroimaging”. In: Neuroimage 87, pp. 96-110.

He, K, X Zhang, S Ren, and J Sun (2016). “Deep residual learning for image recogni-
tion”. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770-778.

Hill, SI and A Doucet (2007). “A framework for kernel-based multi-category classifica-
tion”. In: Journal of Artificial Intelligence Research 30.1, pp. 525-564.

Ho, Q, J Cipar, H Cui, S Lee, JK Kim, PB Gibbons, GA Gibson, G Ganger, and
EP Xing (2013). “More effective distributed ml via a stale synchronous parallel
parameter server”. In: Advances in Neural Information Processing Systems 26,
pp. 1223-1231.

Hochreiter, S and J Schmidhuber (1997). “Long Short-Term Memory”. In: Neural
Computation 9.8, pp. 1735—-1780.

Hsu, CW and CJ Lin (2002). “A comparison of methods for multiclass support vector
machines”. In: IEEE Transactions on Neural Networks 13.

Huang, G, Z Liu, L v. d. Maaten, and KQ Weinberger (2017). “Densely Connected
Convolutional Networks”. In: 2017 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2261-2269.

Huang, P-S, H Avron, TN Sainath, V Sindhwani, and B Ramabhadran (2014). “Kernel
methods match deep neural networks on timit”. In: 2014 IEEE International
Conference on Acoustics, Speech and Signal Processing, pp. 205-209.

Hui, YW and A Binder (2018). Personal communication.

Hull, JJ (1994). “A database for handwritten text recognition research”. In: IEEFE
Transactions on Pattern Analysis and Machine Intelligence 16.5, pp. 550-554.

Igel, C, T Glasmachers, and V Heidrich-Meisner (2008). “Shark”. In: Journal of
Machine Learning Research 9, pp. 993—996.

loffe, S and C Szegedy (2015). “Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift”. In: Proceedings of the 32th International
Conference on Machine Learning, pp. 448-456.

Jain, H, Y Prabhu, and M Varma (2016). “Extreme multi-label loss functions for
recommendation, tagging, ranking & other missing label applications”. In: Proceed-
ings of the 22th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 935-944.

Jasinska, K, K Dembczynski, R Busa-Fekete, K Pfannschmidt, T Klerx, and E
Hullermeier (2016). “Extreme f-measure maximization using sparse probability

113

VI BIBLIOGRAPHY

estimates”. In: Proceedings of the 33th International Conference on Machine
Learning, pp. 1435-1444.

Jenssen, R, M Kloft, A Zien, S Sonnenburg, and K-R Miiller (2012). “A scatter-based
prototype framework and multi-class extension of support vector machines”. In:
PLOS ONE 7.10, pp. 1-16.

Joachims, T, T Finley, and C-NJ Yu (2009). “Cutting-plane Training of Structural
SVMs". In: Machine Learning 77.1, pp. 27-59.

Jones, E, T Oliphant, and P Peterson (2014). SciPy: Open source scientific tools for
Python. http://wuw.scipy.org/.

Jouppi, NP, C Young, N Patil, D Patterson, G Agrawal, R Bajwa, S Bates, S Bhatia,
N Boden, A Borchers, et al. (2017). “In-datacenter performance analysis of a
tensor processing unit”. In: ACM/IEEE 44th Annual International Symposium on
Computer Architecture, pp. 1-12.

Karush, W (1939). “Minima of functions of several variables with inequalities as side
constraints”. In: M. Sc. Dissertation. Deptartement of Mathematics, Univeristy
of Chicago.

Keerthi, SS, S Sundararajan, K-W Chang, C-J Hsieh, and C-J Lin (2008). “A Sequential
Dual Method for Large Scale Multi-class Linear Svms”. In: Proceedings of the
14th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 408-416.

Kindermans, P-J, KT Schiitt, K-R Miiller, and S Dahne (2016). “Investigating the
influence of noise and distractors on the interpretation of neural networks”. In:
Neural Information Processing Systems 2016 - Interpretable Machine Learning
for Complex Systems workshop.

Kindermans, P-J, S Hooker, J Adebayo, M Alber, KT Schiitt, S Dahne, D Erhan, and
B Kim (2017). “The (Un)reliability of saliency methods”. In: Neural Information
Processing Systems 2017 - Interpreting, Fxplaining and Visualizing Deep Learning
- Now what? workshop.

Kindermans, P-J, KT Schiitt, M Alber, K-R Miiller, D Erhan, B Kim, and S D&hne
(2018). “Learning how to explain neural networks: PatternNet and PatternAttri-
bution”. In: International Conference on Learning Representations.

Kindermans, P-J, S Hooker, J Adebayo, M Alber, KT Schiitt, S Ddhne, D Erhan, and B
Kim (2019). “The (Un)reliability of saliency methods”. To appear in: Interpretable
Al Interpreting, Explaining and Visualizing Deep Learning. Springer.

Kingma, D and JB Adam (2015). “A Method for Stochastic Optimisation”. In: Inter-
national Conference on Learning Representations.

Kohavi, R (1996). “Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-
Tree Hybrid.” In: Proceedings of the 2th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 202-207.

Korbar, B, AM Olofson, AP Miraflor, CM Nicka, MA Suriawinata, L. Torresani, AA
Suriawinata, and S Hassanpour (2017). “Looking Under the Hood: Deep Neural
Network Visualization to Interpret Whole-Slide Image Analysis Outcomes for
Colorectal Polyps”. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 821-827.

114

http://www.scipy.org/

Kotikalapudi, R and contributors (2017). keras-vis. https://github.com/raghakot/
keras-vis.

Kreutzer, M, G Hager, G Wellein, H Fehske, and AR Bishop (2014). “A unified
sparse matrix data format for efficient general sparse matrix-vector multiplication
on modern processors with wide SIMD units”. In: SIAM Journal on Scientific
Computing 36.5, pp. 401-423.

Krizhevsky, A, I Sutskever, and GE Hinton (2012). “Imagenet classification with deep
convolutional neural networks”. In: Advances in Neural Information Processing
Systems 25, pp. 1097-1105.

Kuhn, HW and AW Tucker (1951). “Nonlinear Programming”. In: Proceedings of the
Second Berkeley Symposium on Mathematical Statistics and Probability, pp. 481—
492.

Kurakin, A, I Goodfellow, and S Bengio (2016). “Adversarial machine learning at
scale”. In: International Conference on Learning Representations.

Lakshman, A and P Malik (2010). “Cassandra: a decentralized structured storage
system”. In: ACM SIGOPS Operating Systems Review 44.2, pp. 35—40.

Lapuschkin, S, A Binder, G Montavon, K-R Miiller, and W Samek (2016a). “Analyzing
Classifiers: Fisher Vectors and Deep Neural Networks”. In: 2016 IEEE Conference
on Computer Vision and Pattern Recognition, pp. 2912-2920.

Lapuschkin, S, A Binder, G Montavon, K-R Miiller, and W Samek (2016b). “The
Layer-wise Relevance Propagation Toolbox for Artificial Neural Networks”. In:
Journal of Machine Learning Research 17, pp. 3938-3942.

Lapuschkin, S, A Binder, K-R Miiller, and W Samek (2017). “Understanding and Com-
paring Deep Neural Networks for Age and Gender Classification”. In: Proceedings
of the ICCV’17 Workshop on Analysis and Modeling of Faces and Gestures.

Lapuschkin, S, S Wéldchen, A Binder, G Montavon, W Samek, and K-R Miiller (2019).
“Unmasking Clever Hans predictors and assessing what machines really learn”. In:
Nature Communcations 10, ID: 1096.

Lazaro-Gredilla, M, J Quinonero-Candela, CE Rasmussen, and AR Figueiras-Vidal
(2010). “Sparse Spectrum Gaussian Process Regression”. In: Journal of Machine
Learning Research 11, pp. 1865-1881.

Le, Q, T Sarlos, and AJ Smola (2013). “Fastfood — Computing Hilbert Space Expan-
sions in loglinear time”. In: Journal of Machine Learning Research 28, pp. 244—
252.

LeCun, YA, L Bottou, Y Bengio, and P Haffner (1998a). “Gradient-based learning
applied to document recognition”. In: Proceedings of the IEEE 86.11, pp. 2278~
2324.

LeCun, YA, C Cortes, and CJ Burges (1998b). The MNIST database of handwritten
digits. http://yann.lecun.com/exdb/mnist/.

LeCun, YA, L Bottou, GB Orr, and K-R Miiller (2012). “Efficient backprop”. In:
Neural networks: Tricks of the trade, pp. 9-48.

LeCun, YA, Y Bengio, and GE Hinton (2015). “Deep Learning”. In: Nature 521.7553,
pp. 436-444.

115

https://github.com/raghakot/keras-vis
https://github.com/raghakot/keras-vis
http://yann.lecun.com/exdb/mnist/

VI BIBLIOGRAPHY

Lee, C-p and D Roth (2015). “Distributed box-constrained quadratic optimization
for dual linear SVM”. In: Proceedings of the 32th International Conference on
Machine Learning, pp. 987-996.

Lee, Y, Y Lin, and G Wahba (2004). “Multicategory Support Vector Machines: Theory
and Application to the Classification of Microarray Data and Satellite Radiance
Data”. In: Journal of the American Statistical Association 99.465, pp. 67-82.

Li, M, DG Andersen, JW Park, AJ Smola, A Ahmed, V Josifovski, J Long, EJ Shekita,
and B-Y Su (2014). “Scaling distributed machine learning with the parameter
server”. In: Proceedings of the 11th USENIX Symposium on Operating Systems
Design and Implementation, pp. 583—598.

Lipton, ZC (2016). “The mythos of model interpretability”. In: International Confer-
ence on Machine Learning 2016 - Human Interpretability in Machine Learning
workshop.

Liu, J, W-C Chang, Y Wu, and Y Yang (2017). “Deep learning for extreme multi-
label text classification”. In: Proceedings of the 40th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 115-124.

Liu, Y (2007). “Fisher consistency of multicategory support vector machines”. In: 11th
International Conference on Artificial Intelligence and Statistics, pp. 289—-296.

Lodi, S, R Nanculef, and C Sartori (2010). “Single-pass distributed learning of multi-
class svms using core-sets”. In: Proceedings of the 2010 SIAM International
Conference on Data Mining, pp. 257-268.

Lu, Z, A May, K Liu, AB Garakani, D Guo, A Bellet, L Fan, M Collins, B Kingsbury,
M Picheny, and F Sha (2014). “How to scale up kernel methods to be as good as
deepneural nets”. In: arXiv preprint arXiv:1411.4000.

Lundberg, SM and S-T Lee (2017). “A unified approach to interpreting model pre-
dictions”. In: Advances in Neural Information Processing Systems 30, pp. 4765—
4774.

Madzarov, G, D Gjorgjevikj, and I Chorbev (2009). “A Multi-class SVM Classifier
Utilizing Binary Decision Tree.” In: Informatica (Slovenia) 33.2, pp. 225-233.

Mahajan, D, SS Keerthi, and S Sellamanickam (2018). “A distributed block coordinate
descent method for training 11 regularized linear classifiers”. In: Journal of Machine
Learning Research 18, pp. 1-32.

McCulloch, WS and W Pitts (1943). “A logical calculus of the ideas immanent in
nervous activity”. In: The bulletin of mathematical biophysics 5.4, pp. 115-133.

Mika, S, G Rétsch, J Weston, B Schélkopf, and K-R Miiller (1999). “Fisher discriminant
analysis with kernels”. In: Proceedings of the 1999 IEEE signal processing society
workshop, pp. 41-48.

Mikolov, T, I Sutskever, K Chen, GS Corrado, and J Dean (2013). “Distributed
representations of words and phrases and their compositionality”. In: Advances in
Neural Information Processing Systems 26, pp. 3111-3119.

Montavon, G, ML Braun, and K-R Miiller (2011). “Kernel analysis of deep networks”.
In: Journal of Machine Learning Research 12, pp. 2563-2581.

Montavon, G, GB Orr, and K-R Miiller (2012). Neural Networks: Tricks of the Trade.
Springer.

116

Montavon, G, M Rupp, V Gobre, A Vazquez-Mayagoitia, K Hansen, A Tkatchenko, K-
R Miiller, and OA Von Lilienfeld (2013). “Machine learning of molecular electronic
properties in chemical compound space”. In: New Journal of Physics 15.9, ID:
095003.

Montavon, G, S Bach, A Binder, W Samek, and K-R Miiller (2017). “Explaining
NonLinear Classification Decisions with Deep Taylor Decomposition”. In: Pattern
Recognition 65, pp. 211-222.

Montavon, G, W Samek, and K-R Miiller (2018). “Methods for interpreting and
understanding deep neural networks”. In: Digital Signal Processing 73, pp. 1-15.

Montufar, GF, R Pascanu, K Cho, and Y Bengio (2014). “On the number of linear
regions of deep neural networks”. In: Advances in Neural Information Processing
Systems 27, pp. 2924-2932.

Moody, J and CJ Darken (1989). “Fast learning in networks of locally-tuned processing
units”. In: Neural Computation 1.2, pp. 281-294.

Mordvintsev, A, C Olah, and M Tyka (2015). Inceptionism: Going deeper into neu-
ral networks. https://ai.googleblog.com/2015/06/inceptionism- going-
deeper-into-neural .html.

Miiller, K-R, AJ Smola, G Rétsch, B Scholkopf, J Kohlmorgen, and VN Vapnik (1997).
“Predicting Time Series with Support Vector Machines”. In: Proceedings of the
7th International Conference on Artificial Neural Networks, pp. 999—-1004.

Miiller, K-R, AJ Smola, G Rétsch, B Scholkopf, J Kohlmorgen, and VN Vapnik (1999).
“Using support vector machines for time series prediction”. In: Advances in Kernel
Methods: Support Vector Learning, pp. 243-254.

Miiller, K-R, S Mika, G Rétsch, K Tsuda, and B Schélkopf (2001). “An introduction
to kernel-based learning algorithms”. In: IEEE Transactions on Neural Networks
12.2, pp. 181-201.

Nair, V and GE Hinton (2010). “Rectified linear units improve restricted boltzmann
machines”. In: Proceedings of the 27th International Conference on Machine
Learning, pp. 807-814.

Nguyen, A, A Dosovitskiy, J Yosinski, T Brox, and J Clune (2016). “Synthesizing the
preferred inputs for neurons in neural networks via deep generator networks”. In:
Advances in Neural Information Processing Systems 29, pp. 3387-3395.

Nickolls, J, I Buck, M Garland, and K Skadron (2008). “Scalable Parallel Programming
with CUDA”. In: Queue 6.2, pp. 40-53.

Papernot, N, P McDaniel, I Goodfellow, S Jha, ZB Celik, and A Swami (2017).
“Practical black-box attacks against machine learning”. In: Proceedings of the 2017
ACM on Asia Conference on Computer and Communications Security, pp. 506—
519.

Partalas, I, A Kosmopoulos, N Baskiotis, T Artiéres, G Paliouras, E Gaussier, I
Androutsopoulos, M Amini, and P Gallinari (2015). “LSHTC: A Benchmark for
Large-Scale Text Classification”. In: arXiv preprint arXiv:1503.08581.

Paszke, A, S Gross, S Chintala, G Chanan, E Yang, Z DeVito, Z Lin, A Desmaison,
L Antiga, and A Lerer (2017). “Automatic differentiation in pytorch”. In: Neural
Information Processing Systems 2017 - Workshop Autodiff.

117

https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

VI BIBLIOGRAPHY

Pechyony, D, L. Shen, and R Jones (2011). “Solving large scale linear svm with
distributed block minimization”. In: Neural Information Processing Systems 2011
- Big Learning: Algorithms, Systems, and Tools for Learning at Scale workshop.

Pedregosa, F et al. (2011a). “Scikit-learn: Machine Learning in Python”. In: Journal
of Machine Learning Research 12, pp. 2825-2830.

Pedregosa, F, G Varoquaux, A Gramfort, V Michel, B Thirion, O Grisel, M Blondel, P
Prettenhofer, R Weiss, V Dubourg, et al. (2011b). “Scikit-learn: Machine learning
in Python”. In: Journal of Machine Learning Research 12, pp. 2825-2830.

Pennington, J, R Socher, and C Manning (2014). “Glove: Global vectors for word
representation”. In: Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing, pp. 1532-1543.

Platt, JC (1999). “Fast training of support vector machines using sequential minimal
optimization”. In: Advances in Kernel Methods, pp. 185-208.

Polyak, BT (1964). “Some methods of speeding up the convergence of iteration
methods”. In: USSR Computational Mathematics and Mathematical Physics 4,
pp. 1-17.

Prabhu, Y and M Varma (2014). “Fastxml: A fast, accurate and stable tree-classifier
for extreme multi-label learning”. In: Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 263-272.

Prabhu, Y, A Kag, S Gopinath, K Dahiya, S Harsola, R Agrawal, and M Varma
(2018). “Extreme Multi-label Learning with Label Features for Warm-start Tagging,
Ranking & Recommendation”. In: Proceedings of the 11th ACM International
Conference on Web Search and Data Mining, pp. 441-449.

Rahimi, A and B Recht (2008). “Random Features for Large-Scale Kernel Machines”.
In: Advances in Neural Information Processing Systems 20, pp. 1177-1184.
Rahimi, A and B Recht (2009). “Weighted Sums of Random Kitchen Sinks: Replacing
minimization with randomization in learning”. In: Advances in Neural Information

Processing Systems 21, pp. 1313-1320.

Reddi, SJ, S Kale, and S Kumar (2018). “On the convergence of adam and beyond”.
In: International Conference on Learning Representations.

Ribeiro, MT, S Singh, and C Guestrin (2016). “"Why Should I Trust You?": Explaining
the Predictions of Any Classifier”. In: Proceedings of the 22th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 1135—
1144.

Rifkin, R and A Klautau (2004). “In defense of one-vs-all classification”. In: Journal
of Machine Learning Research 5, pp. 101-141.

Rijsbergen, CJV (1979). Information Retrieval. 2nd. Butterworth-Heinemann.

Rudi, A and L Rosasco (2017). “Generalization Properties of Learning with Random
Features”. In: Advances in Neural Information Processing Systems 30, pp. 3215—
3225.

Rumelhart, DE, GE Hinton, and RJ Williams (1986). “Learning internal representa-
tions by error propagation”. In: Parallel Distributed Processing: Fxplorations in
the Microstructure of Cognition 1, pp. 318-362.

Russell, SJ and P Norvig (2016). Artificial Intelligence: A modern approach. Pearson
Education.

118

Sakhnini, IT, MT Manry, and H Chandrasekaran (1999). “Iterative improvement of
trigonometric networks”. In: 2015 International Joint Conferences on Artificial
Intelligence, pp. 1275-1280.

Samek, W, A Binder, G Montavon, S Lapuschkin, and K-R Miiller (2017). “Evalu-
ating the visualization of what a Deep Neural Network has learned”. In: IFEE
Transactions on Neural Networks and Learning Systems 28.11, pp. 2660-2673.

Schaller, RR (1997). “Moore’s law: past, present and future”. In: IEEE Spectrum 34.6,
pp. 52-59.

Scholkopf, B and AJ Smola (2002). Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press.

Scholkopf, B, AJ Smola, and K-R Miiller (1998). “Nonlinear component analysis as a
kernel eigenvalue problem”. In: Neural Computation 10.5, pp. 1299-1319.

Scholkopf, B, S Mika, CJ Burges, P Knirsch, K-R Miiller, G Rétsch, and AJ Smola
(1999). “Input space versus feature space in kernel-based methods”. In: IEEFE
Transactions on Neural Networks 10.5, pp. 1000-1017.

Schiitt, KT, F Arbabzadah, S Chmiela, K-R Miiller, and A Tkatchenko (2017a).
“Quantum-chemical insights from deep tensor neural networks”. In: Nature Com-
munications 8, 1D: 13890.

Schiitt, KT, P-J Kindermans, HES Felix, S Chmiela, A Tkatchenko, and K-R Miiller
(2017b). “SchNet: A continuous-filter convolutional neural network for modeling
quantum interactions”. In: Advances in Neural Information Processing Systems
30, pp. 991-1001.

Selvaraju, RR, M Cogswell, A Das, R Vedantam, D Parikh, and D Batra (2017). “Grad-
cam: Visual explanations from deep networks via gradient-based localization”. In:
Proceedings of the 2017 International Conference on Computer Vision, pp. 618—
626.

Shokri, R and V Shmatikov (2015). “Privacy-preserving deep learning”. In: Proceedings
of the 2015 ACM SIGSAC Conference on Computer and Communications Security,
pp. 1310-1321.

Shrikumar, A, P Greenside, and A Kundaje (2017). “Learning Important Features
Through Propagating Activation Differences”. In: Proceedings of the 34th Interna-
tional Conference on Machine Learning, pp. 3145-3153.

Shrivastava, A and P Li (2014). “ Asymmetric LSH (ALSH) for sublinear time maximum
inner product search (MIPS)”. In: Advances in Neural Information Processing
Systems 27, pp. 2321-2329.

Silver, D, A Huang, CJ Maddison, A Guez, L Sifre, G van den Driessche, et al. (2016).
“Mastering the game of Go with deep neural networks and tree search”. In: Nature
529.7587, pp. 484-489.

Silver, D, J Schrittwieser, K Simonyan, I Antonoglou, A Huang, A Guez, T Hubert,
L Baker, M Lai, A Bolton, et al. (2017). “Mastering the game of Go without
human knowledge”. In: Nature 550.7676, pp. 354—359.

Simonyan, K and A Zisserman (2014). “Very deep convolutional networks for large-
scale image recognition”. In: arXiv preprint arXiw:1409.1556.

119

VI BIBLIOGRAPHY

Smilkov, D, N Thorat, B Kim, F Viégas, and M Wattenberg (2017). “Smoothgrad: Re-
moving noise by adding noise”. In: International Conference on Machine Learning
2017 - Workshop on Visualization for Deep Learning.

Springenberg, JT, A Dosovitskiy, T Brox, and M Riedmiller (2015). “Striving for
Simplicity: The All Convolutional Net”. In: International Conference on Learning
Representations - Workshop track.

Srivastava, N, GE Hinton, A Krizhevsky, I Sutskever, and R Salakhutdinov (2014).
“Dropout: a simple way to prevent neural networks from overfitting”. In: Journal
of Machine Learning Research 15, pp. 1929-1958.

Sundararajan, M, A Taly, and Q Yan (2017). “Axiomatic Attribution for Deep
Networks”. In: Proceedings of the 34th International Conference on Machine
Learning, pp. 3319-3328.

Sutherland, DJ and J Schneider (2015). “On the error of random Fourier features”.
In: Proceedings of the 31st Conference on Uncertainty in Artificial Intelligence,
pp. 862-871.

Sutskever, I, O Vinyals, and QV Le (2014). “Sequence to Sequence Learning with
Neural Networks”. In: Advances in Neural Information Processing Systems 27,
pp. 3104-3112.

Szegedy, C, V Vanhoucke, S Toffe, J Shlens, and Z Wojna (2016). “Rethinking the in-
ception architecture for computer vision”. In: 2016 IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2818-2826.

Tagami, Y (2017). “AnnexML: Approximate nearest neighbor search for extreme
multi-label classification”. In: Proceedings of the 23th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 455—464.

Toshniwal, A, S Taneja, A Shukla, K Ramasamy, JM Patel, S Kulkarni, J Jackson,
K Gade, M Fu, J Donham, et al. (2014). “Storm at twitter”. In: Proceedings of the
2014 ACM SIGMOD International Conference on Management of Data, pp. 147—
156.

Tseng, P (2001). “Convergence of a block coordinate descent method for nondifferen-
tiable minimization”. In: Journal of Optimization Theory and Applications 109.3,
pp. 475-494.

Van Den Oord, A, S Dieleman, H Zen, K Simonyan, O Vinyals, A Graves, N Kalch-
brenner, A Senior, and K Kavukcuoglu (2016). “Wavenet: A generative model for
raw audio”. In: arXiv preprint arXiw:1609.03499.

Van Der Walt, S, SC Colbert, and G Varoquaux (2011). “The NumPy array: A structure
for efficient numerical computation”. In: Computing in Science € Engineering
13.2, pp. 22-30.

Vapnik, VN (1995). The nature of statistical learning theory. Springer.

Vapnik, VN and AJ Chervonenkis (1974). Theory of pattern recognition. Nauka.

Vaswani, A, N Shazeer, N Parmar, J Uszkoreit, L Jones, AN Gomez, L. Kaiser, and I
Polosukhin (2017). “Attention is all you need”. In: Advances in Neural Information
Processing Systems 30, pp. 5998-6008.

Vavilapalli, VK, AC Murthy, C Douglas, S Agarwal, M Konar, R Evans, T Graves,
J Lowe, H Shah, S Seth, et al. (2013). “Apache Hadoop Yarn: Yet another resource

120

negotiator”. In: Proceedings of the 4th annual Symposium on Cloud Computing,
Article: 5, pp. 1-16.

Vert, J, K Tsuda, and B Scholkopf (2004). “A Primer on Kernel Methods”. In: Kernel
Methods in Computational Biology, pp. 35-70.

Vincent, P, A de Brébisson, and X Bouthillier (2015). “Efficient exact gradient update
for training deep networks with very large sparse targets”. In: Advances in Neural
Information Processing Systems 28, pp. 1108-1116.

Voigt, P and A Von dem Bussche (2017). The EU General Data Protection Regulation
(GDPR). Springer.

Weston, J and C Watkins (1999). “Support vector machines for multi-class pattern
recognition”. In: Proceedings of the Seventh FEuropean Symposium On Artificial
Neural Networks, pp. 219-224.

Williams, CK and M Seeger (2000). “Using the Nystrém method to speed up kernel
machines”. In: Advances in Neural Information Processing Systems 13, pp. 661—
667.

Wilson, AG, Z Hu, R Salakhutdinov, and EP Xing (2016). “Deep kernel learning”. In:
20th International Conference on Artificial Intelligence and Statistics, pp. 370—
378.

Yang, T, Y-F Li, M Mahdavi, R Jin, and Z-H Zhou (2012). “Nystréom method vs
random fourier features: A theoretical and empirical comparison”. In: Advances
in Neural Information Processing Systems 25, pp. 476-484.

Yang, Z, A Wilson, AJ Smola, and L Song (2015a). “A la Carte — Learning Fast
Kernels”. In: Journal of Machine Learning Research 38, pp. 1098-1106.

Yang, Z, M Moczulski, M Denil, N de Freitas, AJ Smola, L. Song, and Z Wang (2015b).
“Deep Fried Convnets”. In: Proceedings of the 2015 International Conference on
Computer Vision, pp. 1476-1483.

Yen, IE-H, X Huang, P Ravikumar, K Zhong, and I Dhillon (2016). “PD-Sparse: A
primal and dual sparse approach to extreme multiclass and multilabel classifica-
tion”. In: Proceedings of the 33th International Conference on Machine Learning,
pp. 3069-3077.

Yen, IE-H, X Huang, W Dai, P Ravikumar, I Dhillon, and E Xing (2017). “PPDsparse:
A Parallel Primal-Dual Sparse Method for Extreme Classification”. In: Proceedings
of the 23th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 545-553.

Yu, FX, S Kumar, H Rowley, and S-F Chang (2015). “Compact nonlinear maps and
circulant extensions”. In: arXiv preprint arXiv:1503.03893.

Yu, FX, AT Suresh, KM Choromanski, DN Holtmann-Rice, and S Kumar (2016).
“Orthogonal random features”. In: Advances in Neural Information Processing
Systems 29, pp. 1975-1983.

Yu, H-F, P Jain, P Kar, and I Dhillon (2014). “Large-scale multi-label learning with
missing labels”. In: Proceedings of the 31th International Conference on Machine
Learning, pp. 593-601.

Zaharia, M, RS Xin, P Wendell, T Das, M Armbrust, A Dave, X Meng, J Rosen,
S Venkataraman, MJ Franklin, et al. (2016). “Apache spark: A unified engine for
big data processing”. In: Communications of the ACM 59.11, pp. 56—65.

121

VI BIBLIOGRAPHY

Zeiler, MD and R Fergus (2014). “Visualizing and understanding convolutional net-
works”. In: Proceedings of the 2014 European Conference on Computer Vision,
pp- 818-833.

Zhang, J, SA Bargal, Z Lin, J Brandt, X Shen, and S Sclaroff (2018). “Top-down
neural attention by excitation backprop”. In: International Journal of Computer
Vision 126.10, pp. 1084-1102.

Zhou, D, L Xiao, and M Wu (2011). “Hierarchical classification via orthogonal transfer”.
In: Proceedings of the 28th International Conference on Machine Learning, pp. 801—
808.

Zhu, K, H Wang, H Bai, J Li, Z Qiu, H Cui, and EY Chang (2008). “Parallelizing
Support Vector Machines on Distributed Computers”. In: Advances in Neural
Information Processing Systems 20, pp. 257-264.

Zintgraf, LM, TS Cohen, T Adel, and M Welling (2017). “Visualizing deep neural
network decisions: Prediction difference analysis”. In: International Conference on
Learning Representations.

Zoph, B, V Vasudevan, J Shlens, and QV Le (2018). “Learning Transferable Architec-
tures for Scalable Image Recognition”. In: 2018 IEEE Conference on Computer
Vision and Pattern Recognition, pp. 8697-8710.

Zuo, W, Y Zhu, and L Cai (2009). “Fourier-neural-network-based learning control for
a class of nonlinear systems with flexible components”. In: IEFE Transactions on
Neural Networks 20.1, pp. 139-151.

122

1.1

1.2

II.1

I1.2

1.3

1111

LIST OF FIGURES

Machine Learning drivers. Inherent drivers of Machine Learning
are the increase in computing power and data availability. This expo-
nentional development is exemplarily sketched by the presented plots.
The plot on the left side shows the characteristics of CPUs over four
decades'. The depicted properties are: Transistors /10%, SpecINT
%103, Typical power consumption in Watt, Number of logical cores.
The second plot depicts the average amount of video hours uploaded
to the platform YouTube in the indicated months®.

Machine Learning domain spectrum.

Convolutional neural network. The structure of a convolutional
neural network as originally proposed by LeCun et al. (1998a). It
consists of convolutional layers with small filters that are applied in
a grid-like fashion to the image. Max-pooling layers are applied to
sub-sample the image representation and the final part is designed to
classify given the extracted features. This figure is from LeCun et al.
(1998a). . . v v o

Interpretation of a linear model. This figure shows an interpre-
tation for the prediction of a linear model (Haufe et al., 2014). The
data is generated by = = asy + aq4e and is color coded w.r.t. to the out-
put of the learned model § = w”z. The influence of the distractor ag
is shown on the right hand side: the weight vector tries to filter the
“noise” and accordingly adapts to it — as a result it is not informa-
tive about the signal direction. This figure is from Kindermans et al.
(2018). Best viewed in digital and color.

Analyzing by back-propagating. This figure depicts schematically
the analysis categorization (function, signal, and interaction approxi-
mation) and schematically how a selection of algorithms works. The
prediction is done with a VGG16 network (Simonyan and Zisserman,
2014). For a detailed description of the algorithms we refer to the
main text. This figure is adapted from Kindermans et al. (2018). Best
viewed in digital and color.

1-factorization. Illustration of the solution of the 1-factorization
problem of a graph with C = 8 many nodes. The goal is to match each
node with any other node once. The solution idea is to arrange node 8
centrally and at each step rotate the pattern by one.

3

123

LIST OF FIGURES

I11.2 Speedup. Speedup of our solver respectively in the number of cores.
For *-MPI-2 and *-MPI-4 the number of cores is split evenly on 2 and
4 machines. We observe a linear speedup in the number of cores for
both solvers. 44

I11.3 Training times. Training time for different regularization parameters
C for the various solvers. We observe that the parameter C' has a
significant influence on the runtime of the all-in-one solvers WW and
CS, while it is modest for the OVR solution. All parallel solvers use the
same amount of cores. LLW was omitted due to the slow convergence. 47

IV.1 Adapting bases. The plots show the relationship between the number
of features (x-axis), the KAE in logarithmic spacing (left, dashed
lines) and the classification error (right, solid lines). Typically, the
KAE decreases with a higher number of features, while the accuracy
increases. The KAE for SAB and DAB (orange and red dotted line)
hints how much the adaptation deviates from its initialization (blue
dashed line). Best viewed in digital and color. 60

IV.2 Transfer learning. We train to discriminate a random subset of
5 classes on the MNIST data set (left) and then transfer the basis
function to a new task (right), i.e., train with the fixed basis from task
1 to classify between the remaining classes. 62

1V.3 Deep kernel machines. The plots show the classification performance
of the ArcCos-kernels with respect to the kernel (first part) and with
respect to the number of layers (second part). Best viewed in digital
and color. 63

IV.4 Fast kernel machines. The plots show how replacing the basis Gp
with an fast approximation influences the performance of a Gaussian
kernel. L.e., Gp is replaced by 1, 2, or 3 structured blocks H D;. Fast
approximations with 2 and 3 blocks might overlap with Gp. Best
viewed in digital and color. oL 65

IV.5 Optimization. Comparison of the optimization duration (solid) in
epochs of the cos-sin and the ReLu non-linearity given a varying number
of features on the MNIST benchmark. For reference the obtained
accuracies are plotted as dashed lines. 66

124

List of figures

V.1

V.2

V.3

V4

V.5

Exemplary application of the implemented algorithms. This
figure shows the results of the implemented explanation methods applied
on the image in the upper-left corner using the VGG16 network (Si-
monyan and Zisserman, 2014). The prediction- or gradient-based meth-
ods (group A, see Appendix 2.1) are Input * Gradient (Kindermans
et al., 2016; Shrikumar et al., 2017, A1), Integrated Gradients (Sun-
dararajan et al., 2017, A2), Occlusion (Zeiler and Fergus, 2014, A3),
and LIME (Ribeiro et al., 2016, A4). The propagation-based methods
(group B) are Guided Backprop (Springenberg et al., 2015, B1), Deep
Taylor (Montavon et al., 2017, B2), LRP (Lapuschkin et al., 2017, B3),
PatternNet & PatternAttribution (Kindermans et al., 2018, B4 and
B5). On how the explanations are visualized we refer to Section 3.4.3.

Best viewed in digital and color. o oL

Software-stack. The diagram depicts exemplarily the software stack
of iNNvestigate (Alber et al., 2019). It shows how different propagation-
based methods are build on top of a common graph-backend and expose

their functionality through a common interface to the user.

NASNetA cells. The computer vision network NASNetA (Zoph
et al., 2018) was created with automatic Machine Learning, i.e., the
architecture of the two depicted building blocks was found with an
automated algorithm. The normal cell and the reduction cell have the
same purpose as convolutional or max-pooling layers in other networks,

but are far more complex. Figure is from Zoph et al. (2018).

Runtime comparison. The figure shows the setup- and run-times
for 512 analyzed images in logarithmic range for the LRP-Toolbox and
the iNNwvestigate library. Each block contains the measured time for
either the setup or one of the following algorithms: Deconvnet (Zeiler
and Fergus, 2014), LRP-Epsilon (Bach et al., 2015), and the LRP
configuration from Lapuschkin et al. (2017), denoted as LRP-*. The
numbers in black indicate the respective speedup with regard to the

LRP-Toolbox.

Influence of hyperparamters. Row one to three show how different
hyper-parameters change the output of explanation algorithms. Row
1 and 2 depict the Smoothgrad (SG) method where the gradient is
transformed into a positive value by taking the absolute or the square
value respectively. The columns show the influence of the noise scale
parameter with low to high noise from left to right. In row 3 we show
how the explanation of the Integrated Gradients (IG) method varies
when selecting as reference an image that is completely black (left side)
to completely gray (middle) to completely white (right). Best viewed

in digital and color.o oo

125

LIST OF FIGURES

126

V.6

V.7

V.8

V.9

Different visualizations. Each column depicts a different visualiza-
tion technique for the explanation of PatternAttribution or PatternNet
(last column). The different visualization techniques for attribution
methods are: graymaps (Smilkov et al., 2017) or single color maps to
show only absolute values (column 1), heatmaps (Bach et al., 2015)
to show positive and negative values (column 2), scaling the input by
absolute values (Sundararajan et al., 2017, column 3), masking the
least important parts of the input (Ribeiro et al., 2016, column 4), and
blending the heatmap and the input (Selvaraju et al., 2017, column 5).
The last technique is used to visualize signal extraction methods and
is projecting the values back into the input value range (Kindermans

et al., 2018, column 6). Best viewed in digital and color.

Analyzing a prediction. The heatmaps show different analyses for a
VGG-like network on MNIST. The network predicts the class 2, while
the true label is 3. The heatmaps suggest that the network is not able
detect the line discontinuity between the center and the lower, left
stroke. Furthermore, while the presence of the right semicircle seems to
be an indicator against a 2, this does not outweigh other factors. Each
columns is dedicated to a different explanation algorithm. On the left
hand side the true label and for each row the respective output neuron
is indicated. Probabilities and pre-softmax activation are denoted on
the right hand side of the plot. LRP-* denotes configuration from
(Lapuschkin et al., 2017). We note that Deep Taylor is not defined
when the output neuron is negative. Best viewed in digital and color.

Comparing algorithms. The figure depicts the prediction analysis of
a variety of algorithms (columns) for a number of input images (rows)
for the VGG16 network (Simonyan and Zisserman, 2014). The true and
the predicted label are denoted on the left hand side and the softmax
and pre-softmax outputs of the network are printed on the right hand
side. LRP-* denotes the configuration from (Lapuschkin et al., 2017).

Best viewed in digital and color.o

LRP batch normalization development. The different columns
show the suggested approaches to handle batch normalization layers
for three different network architectures. “1-Linear”, “1-Linear®”, and
“2-Linear” interpret the batch normalization as a one or two linear
layers accordingly. We observe that default linearization approaches
“l-Linear” and “2-Linear” lead to different results and also for different
architectures their results vary qualitatively. The third variant “1-
Linear*” was proposed by Hui and Binder (2018) and is described in

the text. Best viewed in digital and color.

93

List of figures

V.10 Comparing architectures. The figure depicts the prediction analysis
of a variety of algorithms (columns) for a number of neural networks
(rows). The true label for this input image is “baseball” and the
prediction of the respective network is given on the left hand side. The
softmax and pre-softmax outputs of the network are printed on the
right hand side. LRP-* denotes the configuration from (Lapuschkin
et al., 2017). Best viewed in digital and color. 98

A.1 Adapting bases. The plots show the relationship between the number
of features (x-Axis), the KAE in logarithmic spacing (left, dashed
lines) and the classification error (right, solid lines). Typically, the
KAE decreases with a higher number of features, while the accuracy
increases. The KAE for SAB and DAB (orange and red dotted line)
hints how much the adaptation deviates from its initialization (blue
dashed line). Best viewed in digital and color. 132
A.2 Deep kernel machines. The performance of the ArcCos-kernels with
1-, 2-, and 3-layer models. The KAE is given in dashed lines and the
accuracy in solid lines. Best viewed in digital and color. 133
A.3 Deep kernel machines. The plots show the relationship between
the number of features (x-Axis), the KAE in logarithmic spacing (left,
dashed lines) and the classification error (right, solid lines). Typi-
cally, the KAE decreases with a higher number of features, while the
accuracy increases The KAE for SAB and DAB (orange and red dot-
ted line) hints how much the adaptation deviates from its initialization
(blue dashed line). Best viewed in digital and color. 134

127

LIST OF TABLES

III.1 Comparison to existing solver. Error on the test set and model
density in % of the Shark solver (denoted S) and the respective differ-
ence achieved by the proposed solver (denoted D), averaged over 10
repetitions. The results across solver implementations show very good
accordance.
1I1.2 Dataset properties. The table shows the used datasets from the
LSHTC-corpus and their properties. n train and n test denote the
number of samples in the training and test set respectively, C the number
of classes and d the number of dimensions. The most challenging dataset
is given by LSHTC-2011. It contains the most samples, classes and
dimensions.
II1.3 Test error and model density. Test set error and model density in
% as achieved by the OVR, WW, and LLW, and CS solvers on the
LSHTC datasets. Lower is better. For each solver the result with the
best error is in bold font. For LLW entries with a ™*’ did not converge
within a day of runtime. The all-in-one solvers WW and CS outperform
consistently OVR.
II1.4 Fl-scores. Micro-F1 and Macro-F1 scores in % as achieved by the
OVR, WW, LLW, and CS solvers on the LSHTC datasets. Higher is
better. For each solver and each metric the best result across C' values
is in bold font. For LLW entries with a "*’ did not converge within a day
of runtime. The all-in-one solvers WW and CS outperform consistently
OVR. . e
II1.5 Further results for the LLW-solver. Error, Micro-F1, and Macro-
F1 on the test set and model density in % of the LLW solver on the
LSHTC-small dataset. One can observe that LLW performs the better
the less regularized the optimization is, i.e., the larger C.

IV.1 Classification performance. Best accuracy in % for different bases.

V.1 Bounding box analysis. The result of our bounding box analysis
suggests that the target network does not use features inside the bound-
ing box to predict the class “basketball”. The images have all the true
label “basketball” and the label beneath an image indicates the pre-
dicted class. We note that for none of the images the network relies
on the features of a basketball for the prediction, except for the pre-
diction “ping-pong ball”. The result suggest that concept “basketball”
is a scenery rather than a ball object for the network. Best viewed in
digital and color.

61

129

LIST OF TABLES

A.1 Classification performance. Best accuracy in % for different bases. 131

130

Chapter A

APPENDIX

1 Efficient learning of kernel approximations

1.1 Additional empirical evidence

In Table A.1 and Figure A.1 we show the results of our main experiment for three
additional data sets. Please find the analysis in the main text.

Gaussian ArcCos
Dataset RB UAB SAB DAB RB UAB SAB DAB
Adult 85.1 85.0 84.8 85.1 85.0 85.1 84.9 85.0
Letter 96.1 96.1 97.1 97.6 95.3 95.3 90.0 98.7
USPS 95.1 95.0 94.5 95.3 94.3 944 92.0 95.1

Tab. A.1: Classification performance. Best accuracy in % for different bases.

1.2 Deep kernel machines

Figure A.2 and Figure A.3 depict in more detail how the kernels ArcCos2 and ArcCos3
perform on the MNIST and the CoverType data set. Please find the analysis in the
main text.

1.3 Optimization

Overall, the training time of the different bases relate as follows. With respect to the
classification performance SAB and DAB are considerably faster than RB and UAB.
This holds mainly because one only needs to train a much smaller basis while reaching
the same performance. With regard to the number of features all methods expose
a linear increase in training time. This is caused due the chosen learning procedure.
Given the same number of features, methods without kernel adaption, i.e., RB and
DAB, are up to a magnitude faster than the others. Further, training using a RB can
be up to a magnitude faster than DAB. Note that we did not tune nor implement the
kernel adaption to be fast, but to give high accuracy.

131

A APPENDIX

KAE

1071

10-6

Gaussian

100 1000
of Features

10

10000

10

100 1000
of Features

10000

K

101 ¢ :
1072 ¢
103}
101
107 ¢
1076 ¢

Gaussian

10 100 1000

of Features

10000

10

100 1000
of Features

10000

KAE

107"! L
1074

105 F

10-6

Gaussian

10 100 1000

of Features

10000

10

100 1000
of Features

10000

of Features

of Features

‘Basis: ——random (RB)

unsupervised ada. (UAB) ——supervised ada. (SAB) ——discriminative ada. (DAB) ‘

Adult
10
wrf
0.84 H0.84
= 100 F =
082 £ m | g
£ 8] 0.82 F
{os S ™ el g
= 10 {os <
10.78 107°F
1074 . . . 10.78
10 100 1000 10000 10 100 1000 10000
of Features # of Features
Letter
ArcCos
: — -1
10t - 1 10.9
19% 5 w0 e . . 1 los z
£ A9 s s £
106 2 § 10-3 areeeens | 10.7 &
< <
104 1079 1 10.6
107 1 10.5
0.2
10 100 1000 10000 10 100 1000 10000
of Features # of Features
USPS
ArcCos
100 F |
sf
10.9 102 N . 10.9
s B 10% | b 5
17° £ 8 10k - £
EIS ", 108 2
07 8 M 10°f e 3
< b RO <
101}
06 1072 | 10.7
10 100 1000 10000 10 100 1000 10000

Fig. A.1: Adapting bases. The plots show the relationship between the number
of features (x-Axis), the KAE in logarithmic spacing (left, dashed lines) and the
classification error (right, solid lines). Typically, the KAE decreases with a higher
number of features, while the accuracy increases. The KAE for SAB and DAB (orange
and red dotted line) hints how much the adaptation deviates from its initialization
(blue dashed line). Best viewed in digital and color.

132

Efficient learning of kernel approximations

MNIST
RB UAB
109 1) 1
i] 10° F]
10% | ir 108 10t ¢ 10 08
g o0t b g m 100 E H]
< Z < 5 g
o0k 1 106 & M 10%F 1 0.6 §
10t E 1 = 100 F <
100 ¢ 4 10.4 100 F RS 0.4
10 100 1000 10000 10 100 1000 10000 10 100 1000 10000 10 100 1000 10000
of Features # of Features # of Features # of Features
CoverType
RB UAB
1 1
o 100 F]
100 1F 1 1r 0.9
= 1072} . 10 1 1 0.8 §>
=<]]
s L , b 07 g
1074} 1] 2
L , 1t 0.6
100} 1+ g 1t 0.5
10 100 1000 10000 10 100 1000 10000 10 100 1000 10000 10 100 1000 10000
of Features # of Features # of Features # of Features
MNIST CoverType
SAB DAB SAB DAB
1 1 1 1
b 10.9 b 0.9
0.8} g 0.8} g
z b 108 & & b 0.8 &
I ® < <
3 - 8 8]
g 06} 1r 1078 8 o6t 10 07 &
< < < <
3 10.6 H 0.6
041 11 los 0.4} 11 05
10 100 1000 10000 10 100 1000 10000 10 100 1000 10000 10 100 1000 10000

Fig.

A.2: Deep kernel machines. The performance of the ArcCos-kernels with 1-,

of Features

of Features

of Features

‘ Kernel:

ArcCos =+ ArcCos2 -+ ArcCos3 ‘

of Features

2-, and 3-layer models. The KAF is given in dashed lines and the accuracy in solid
lines. Best viewed in digital and color.

133

A APPENDIX

MNIST
ArcCos2 ArcCos8
N 10¢ ERS]
100F © b 1 . - 1
10° o 107]
H {os o o 1 o8
m 10*E . El g = ... &
= aeem =, b 06 &
2 10t e 40 106 £ 2 100 S g
b] < 102k 1t {04 <
10'F 1l s 100 1 ;
100k . . , B - . . , . , . . L \ . \ 102
10 100 1000 10000 10 100 1000 10000 10 100 1000 10000 10 100 1000 10000
of Features # of Features of Features of Features
CoverType
ArcCos2 ArcCos8
X F 1
10 e]
F {09 10° L b {o.9
10t el —" los & 10! ‘ E — los &
. 1 . 88 ponne . g
< 1l RN 1 s < > El
< 10 e r 107 § 10 enaeene 107 &
. T < =
1073 b H10.6 10-3} 1t H0.6
107°F \ . \ L. \ . \ 0.5 10-5 b , , | 1L \ , \ 105
10 100 1000 10000 10 100 1000 10000 10 100 1000 10000 10 100 1000 10000
/ of Features # of Features # of Features # of Features

‘ Basis: ——random (RB) unsupervised ada. (UAB) ——supervised ada. (SAB) ——discriminative ada. (DAB) ‘

Fig. A.3: Deep kernel machines. The plots show the relationship between the
number of features (x-Axis), the KAE in logarithmic spacing (left, dashed lines)
and the classification error (right, solid lines). Typically, the KAE decreases with
a higher number of features, while the accuracy increases The KAFE for SAB and
DAB (orange and red dotted line) hints how much the adaptation deviates from its
initialization (blue dashed line). Best viewed in digital and color.

134

Efficient software for prediction analysis

2 Efficient software for prediction analysis

This section contains additional content for Chapter V and the code snippets build
up on the already presented ones.

2.1 Prediction- and gradient-based algorithms

Algorithms that only rely on function or on gradient evaluations can be of very simple,
yet effective nature (Kindermans et al., 2016; Shrikumar et al., 2017; Smilkov et al.,
2017; Sundararajan et al., 2017; Zintgraf et al., 2017; Ribeiro et al., 2016; Lundberg
and Lee, 2017). A downside can be the their runtime, which is often a multiple of a
single function call.

Input * gradient As a first example we consider input * gradient (Kindermans
et al., 2016; Shrikumar et al., 2017). The name already says it: the algorithm consists
of an element-wise multiplication of the input times the gradient. The corresponding
formula is:

e(r) =20 Vyf(x). (A.1)

The method can be implemented as follows and the result is marked as A1 in Figure V.1:

1 # Take gradient of output neuron w.r.t. to the input
2 gradient = tf.gradients(max_output, input) [0]

3 # and multiply it with the input

4 input_t_gradient = input * gradient

5 # Run the code with TF

6 A1l = sess.run(input_t_gradient, {input: x1})

Integrated Gradients A more evolved example is the method Integrated Gradi-
ents (Sundararajan et al., 2017) which tries to capture the effect of non-linearities
better by computing the gradient along a line between an input image and a given
reference image 2’. The corresponding formula for i-th input dimension is:

1
() = (=)o [

=0 0x;

dov. (A.2)

z=z'+a(z—z")

To implement the method the integral is approximated with a finite sum and, building
on the previous code snippet, the code looks as follows (result is tagged with A2 in
Figure V.1):

135

A APPENDIX

1 # Nr. of steps along path

2 steps = 32

3 # Take as reference a black image,

4 # i.e., lowest number of the networks input value range.
5 x_ref = np.ones_like(x) * mnet[’input_range’][0]

6 # Take gradient of output neuron w.r.t. to input

7 gradient = tf.gradients(max_output, input)[0]

8

9 # Sum gradients along the path from x to x_ref

10 gradient_sum = np.zeros_like(x)

11 for step in range(steps):

12 # Create intermediate input

13 x_step = x_ref + (x - x_ref) * step / steps

14 # Compute and add the gradient for intermediate input
15 gradient_sum += sess.run(gradient, {input: x_step})
16

17 # Integrated Gradients formula

18 A2 = gradient_sum * (x - x_ref)

Occlusion In contrast to the two presented methods occlusion-based methods rely
on the function value instead of its gradient, e.g., Zeiler and Fergus (2014) and Zintgraf
et al. (2017). The basic variant (Zeiler and Fergus, 2014) divides the input, typically an
image, into a grid of non-overlapping patches. Then each patch gets the function value
assigned that is obtained when the patch region in the original image is perturbed or
replaced by a reference value. Eventually, all values are normalized with the default
activation given when no patch is occluded. The algorithm can be implemented as
follows and the result is denoted as A3 in Figure V.1:

1 diff = np.zeros_like(x)

2 # Choose a patch size

3 psize = 8

4

5 # Occlude patch by patch and calculate activation for each patch
6 for i in range (0, net[’image_shape’][0], psize):

7 for j in range (0, net[’image_shape’][0], psize):
8

9 # Create image with the patch occluded

10 occluded_x = x.copy()

11 occluded_x[:, i:i+psize, j:j+psize, :] = 0

12

13 # Store activation of occluded image

14 diff[:, i:i+psize, j:j+psize, :] = sess.run(
15 max_output, {input: occluded_x}) [0]

16

17 # Normalize with initial activation value
18 A3 = sess.run(max_output, {input: x})[0] - diff

LIME The last prediction-based explanation class, e.g., Ribeiro et al. (2016) and
Lundberg and Lee (2017), decomposes the data into features. Subsequently, prediction
results for inputs — composed of perturbed features — are collected, yet instead of

136

Efficient software for prediction analysis

using the values directly for the explanation, they are used to learn an importance
value for the respective features.

One representative algorithm is “Local interpretable model-agnostic explanations”
(Ribeiro et al., 2016, LIME) that learns a local regressor for each explanation. It works
as follows for images. First the image is divided into segments, e.g., continuous color
regions. Then a dataset is sampled where the features are a randomly perturbed, e.g.,
filled with gray color. The target of the sample is determined by the prediction value
for the accordingly altered input. Using this dataset a weighted, regression model
is learned and the resulting weight vector’s values indicate the importance of each
segment in the neural network’s initial prediction. The algorithm can be implemented
as follows and the result is denoted as A4 in Figure V.1:

Segment (not pre-processed) image

segments = skimage.segmentation.quickshift(
x_not_pp[0], kernel_size=4, max_dist=200, ratio=0.2)

nr_segments = np.max(segments) + 1

Create dataset

nr_samples = 1000

9 # Randomly switch segments on and off

10 features = np.random.randint (0, 2, size=(nr_samples, nr_segments))
11 # Make sure original image is present

12 features[0, :] =1

14 # Get labels for features
15 1labels = []

16 for sample in features:
17 tmp = x.copy()

18 # Switch segments on and off

19 for segment_id, segment_on in enumerate (sample):
20 if segment_on == O0:

21 tmp [0] [segments == segment_id] = (0, 0, 0)
22 # Get predicted value for this sample

23 labels.append(sess.run(max_output, {input: tmpl}) [0])
24

25

26 # Compute sample weights

27 distances = sklearn.metrics.pairwise_distances (
28 features,

29 features [0] . reshape (1, -1),

30 metric=’cosine’,

31).ravel()
32 kernel_width = 0.25
33 sample_weights = np.sqrt(np.exp(-(distances ** 2) / kernel_width *x* 2))

34

35 # Fit Ll-regressor

36 regressor = sklearn.linear_model.Ridge(alpha=1, fit_intercept=True)
37 regressor.fit(features, labels, sample_weight=sample_weights)

38 weights = regressor.coef_

39

40

41 # Map weights onto segments

42 A4 = np.zeros_like(x)

43 for segment_id, w in enumerate(weights):

44 A4[0] [segments == segment_id]l = (w, w, w)

137

A APPENDIX

As initially mentioned a drawback of prediction- and gradient-based methods can be
slow runtime, which is often a multiple of a single function evaluation — as the loops
in the code snippets already suggested. For instance Integrated Gradients used 32
evaluations, the occlusion algorithm (224/4)% = 562 = 3136 and LIME 1000 (same as
in Ribeiro et al. (2016)). Especially for complex networks and for applications with
time constraints this can be prohibitive.

2.2 PatternNet

The exemplary implementation for PatterNet discussed in Section 3.2:

Extending iNNvestigate base class with the PatternNet algorithm
class PatternNet (ReverseAnalyzerBase):

Storing the patterns.

def __init__(self, model, patterns, *xkwargs):
self . _patterns = patterns/[:]
super (PatternNet, self).__init__(model, **kwargs)

def _get_pattern_for_layer (self, layer):
return self._patterns.pop(-1)

def _patternnet_mapping(self, X, Y, bp_Y, bp_state):
Get layer,
layer = bp_state[’layer’]
exchange kernel weights with patterns,
weights = layer.get_weights ()
weights [0] = self._get_pattern_for_layer (layer)
and create layer copy without activation part and patterns as filters
layer_wo_act = kgraph.copy_layer_wo_activation(layer, weights=weights)

if kchecks.contains_activation(layer, ’relu’):
Gradient of activation layer
tmp = tf.where(Y > O, bp_Y, tf.zeros_like(bp_Y))

else:
Gradient of linear layer
tmp = bp_Y

map back along layer with patterns instead of weights
pattern_Y = layer_wo_act (X)
return tf.gradients(pattern_Y, X, grad_ys=tmp) [0]

Register the mappings
def _create_analysis(self, *args, **xkwargs):
self._add_conditional_reverse_mapping(
Apply to all layers that contain a kernel
lambda layer: kchecks.contains_kernel (layer),
tf_to_keras_mapping(self._patternnet_mapping),
name=’pattern_mapping’,

)

return super (PatternNet, self)._create_analysis(*args, **kwargs)
analyzer = PatternNet(model_wo_sm, net[’patterns’])
B4 = analyzer.analyze(x)

138

Efficient software for prediction analysis

2.3 Hyper-parameter selection

The code snippet for the hyper-parameter selection for Integrated Gradients:

—_
= O ©00 g0 Ut WK

—

I = [1
Take 5 samples from network’s input value range

for ri in np.linspace(net[’input_range’][0], net[’input_range’][1], num=5):

and analyze with each.
analyzer = innvestigate.create_analyzer (
’integrated_gradients’,
model_wo_sm,
reference_inputs=ri,
steps=32
)
IG.append (analyzer.analyze (x))

The code snippet for the hyper-parameter selection for SmoothGrad:

1
2
3

4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

SG1, 862 = [1, []
Take 5 scale samples for the noise scale of smoothgrad.
for scale in range(5):
noise_scale = (net[’input_range’][1]-net[’input_range’][0])
Smoothgrad with absolute gradients
analyzer = innvestigate.create_analyzer (
’smoothgrad’,
model_wo_sm,
augment_by_n=32,
noise_scale=noise_scale,
postprocess=’abs’
)
SG1.append (analyzer.analyze (x))

Smoothgrad with with squared gradients

analyzer = innvestigate.create_analyzer (
’smoothgrad’,
model_wo_sm,
augment_by_n=32,
noise_scale=noise_scale,
postprocess=’square’

)

SG2.append (analyzer.analyze (x))

* scale / 5

139

A APPENDIX

2.4 Visualization

The exemplary implementation of visualization approaches discussed in Section 3.4.3:

1 def explanation_to_heatmap(e):

2 # Reduce color axis

3 tmp = np.sum(e, axis=color_channel_axis)

4 # To range [0, 255]

5 tmp = (tmp / np.max(np.abs(tmp))) * 127.5 + 127.5
6

7 # Create and apply red-blue heatmap

8 colormap = matplotlib.cm.get_cmap("seismic"

9 tmp = colormap(tmp.flatten().astype(np.int64))[:, :3]
10 tmp = tmp.reshape(e.shape)

11 return tmp

12

13 def explanation_to_graymap(e):

14 # Reduce color axis

15 tmp = np.sum(np.abs(e), axis=color_channel_axis)

16 # To range [0, 255]
17 tmp = (tmp / np.max(np.abs(tmp))) * 255

18

19 # Create and apply red-blue heatmap

20 colormap = matplotlib.cm.get_cmap("gray")

21 tmp = colormap (tmp.flatten().astype(np.int64))[:, :3]
22 tmp = tmp.reshape (e.shape)

23 return tmp

24

25 def explanation_to_scale_input(e):

26 # Create scale

27 e = np.sum(np.abs(e), axis=color_channel_axis, keepdims=True)
28 scale = e / np.max(e)

29

30 # Apply to image

31 return (x_not_preprocessed / 255) * scale

32

33 def explanation_to_scale_input(e):

34 # Get highest scored segments

35 # Segments are reused from the LIME example.

36 segments_scored = [(np.max(e[0] [segments == sid]), sid)
37 for sid in range(nr_segments)]

38 highest_ones = sorted(segments_scored, reverse=True) [:50]
39

40 # Compute mask

41 mask = np.zeros_like(segments)

42 for _, sid in highest_ones:

43 mask [segments == sid] = 1

44

45 # Apply mask
46 ret = (x_not_pp.copy() / 255)

47 ret [0] [mask == 0] = 0
48 return ret
49

50 def explanation_to_blend_w_input(e):

51 = np.sum(np.abs(e), axis=channel_axis, keepdims=True)
52 Add blur
53 = skimage.filters.gaussian(x[e], 3)[Nonel

55 = (e - e.min())/(e.max()-e.min())

56 Get and apply colormap

57 heatmap = plot.get_cmap(’jet’)(el:, :,:,0]1)[:,:,:,:3]
58 # Overlap

59 ret = (1.0-e) * (x_not_pp / 255) + e * heatmap

e
#
e
54 # Normalize
e
#

140

Efficient software for prediction analysis

60 return ret

62 def explanation_to_projection(e):
63 # To range [0, 1]
64 return (e / np.max(np.abs(e))) + 0.5

2.5 LRP proposition for batch normalization layers

Following the notation in Section 1.3.2 on LRP in Chapter II the rule proposed by
Hui and Binder (2018) for batch normalization layers is defined as follows:

R, = (« t_t « tt
i = (o b I
T, w; +0; T, w; +0; (A.3)
x;w; T, W, '
i 7 3 3

R,

Qg + as
z; w; +0b; x; w; +0b;

where w; = ;/1/0? + € and b; = (—y;pi/+/ 02 + €)+ B; with u, o, v, B the parameters
of the batch normalization layer (Ioffe and Szegedy, 2015) and a = (2, —1,0,0).

141

	Title Page
	Abstract
	Zusammenfassung
	Acknowledgements
	Abbreviations and notation
	Contents
	Introduction
	Challenges in Machine Learning
	Contribution of this thesis
	Included publications
	All publications

	Fundamentals
	Machine Learning
	Learning models
	Risk minimization for classification tasks
	Optimization

	Algorithms
	Support Vector Machines
	Kernel machines
	Neural networks

	Analyzing predictions
	Linear model
	Neural networks

	Software tools for Machine Learning
	Local computing
	Distributed computing
	Deep learning frameworks

	Distributed optimization of multi-class SVMs
	Introduction
	Related work
	All-in-one SVMs
	Derivation of the Lagrangian dual problems

	Distributed SVM-algorithms
	Algorithm for Lee, Lin, and Wahba
	Convergence
	Implementation details

	Algorithm for Weston and Watkins
	Preliminaries
	Core observation
	Excursus: 1-factorization of a graph
	Algorithm
	Convergence and implementation details

	Experiments
	Setup
	Validation of solvers
	Datasets
	Speedup
	Classification and timing results
	Lin, Lee, & Wahba

	Discussion
	Conclusion

	Efficient learning of kernel approximations
	Introduction
	Related work
	Casting kernel approximations as shallow, random neural networks
	Adaptation of random kernel approximations
	Experiments
	Experimental setup
	Analysis

	Discussion
	Conclusion

	Efficient software for prediction analysis
	Introduction
	Related work and aims
	Related software packages

	The iNNvestigate library
	Characterization
	Propagation-based prediction analysis
	Creating a propagation backend
	Customizing the back-propagation
	Generalizing to more complex networks

	Benchmark
	Completing the implementation
	Interface
	Hyper-parameter selection
	Visualization

	Applications
	Analyzing a prediction
	Comparing explanation algorithms
	Developing explanation algorithms
	Comparing network architectures
	Systematic network evaluation

	Discussion
	Challenges
	Limitations and outlook

	Conclusion

	Summary and conclusions
	Bibliography
	List of figures
	List of tables
	Appendix
	Efficient learning of kernel approximations
	Additional empirical evidence
	Deep kernel machines
	Optimization

	Efficient software for prediction analysis
	Prediction- and gradient-based algorithms
	PatternNet
	Hyper-parameter selection
	Visualization
	LRP proposition for batch normalization layers

