Skip to main content
Log in

Epigenetische Kontrolle der Genaktivität

Grundlagen und neue Erkenntnisse zum Klonen

  • Reproduktionsbiologie
  • Published:
Reproduktionsmedizin

Zusammenfassung

Die individuelle Entwicklung beginnt mit einer befruchteten Eizelle, die bereits die gesamte genetische Information für die Ausbildung eines jeden Zelltyps enthält. Das humane Genom beinhaltet nach derzeitiger Schätzung ca. 35.000 Gene, die für die Differenzierung von mehr als 200 histologisch definierten Gewebetypen verantwortlich sind. Differenzierung einer Zelle bedeutet, dass ein Großteil des Genoms abgeschaltet wird. Der Differenzierungsprozess ist an den genauen Ablauf eines genetischen Expressionsprogramms gebunden, welcher jedoch unter epigenetischer Kontrolle steht. Auf diese Weise wird ein molekulares Gedächtnis geformt, welches die Differenzierung einer jeden Zelle definiert. Hierbei wird nicht die Basensequenz der DNS selbst verändert, sondern ihre Zugängigkeit wird über DNS-Methylierung und Veränderungen der Chromatinstruktur beeinflusst. Diese Mechanismen werden bereits bei der Reifung der Keimzellen eingeleitet. Hierbei kommt es zu deutlichen Unterschieden im Umfang der Methylierung bei Spermien und Eizellen. Ein Teil der Methylierungen ist so fest, dass sie auch noch nach der Befruchtung und bei allen Folgezellen Bestand haben; diese werden als Imprints bezeichnet. In der frühen Embryonalentwicklung finden weitere Veränderungen statt, wobei es zu typisch "mütterlichen" und typisch "väterlichen" Genomunterschieden kommt. Entscheidend sind die Methylierung der DNS sowie die Methylierung oder Azetylierung der Kernproteine, besonders der Histone. Ob und wie diese Prozesse umkehrbar sind und ineinandergreifen ist derzeit ein zentrales Anliegen der Forschung, besonders im Zusammenhang mit den Klonierungsversuchen. Der schwierigste Schritt ist die Rückführung einer adulten Körperzelle auf die Entwicklungsstufe einer Zygote als Basis für die Bildung verschiedener Gewebe oder eines Individuums, wie es erstmals bei dem Schaf Dolly erfolgreich durchgeführt wurde. Limitierender Faktor beim Klonen, also der Herstellung einer totipotenten Zelle aus einem somatischen Zellkern, der in eine enukleierte Oozyte transferiert wurde, scheinen epigenetische Vorgänge zu sein. Fehlsteuerungen in den epigenetischen Regulationsmechanismen können schwerwiegende Folgen, wie zum Beispiel Schizophrenie, Immunkrankheiten oder Krebserkrankungen, haben.

Abstract

Each zygote already contains the entire genome sufficient for the formation of all the different cellular components of the later human body. The human genome comprises ca. 35,000 genes needed for the formation and function of the more than 200 histologically distinct cell types. Differentiation normally means deactivation of most of the genes. Only those genes responsible for the differentiation programs stay switched on. The so-called molecular memory of development is formed by special epigenetic mechanisms. This occurs without alteration of the DNA sequence, but modulation of the DNA accessibility by methylation and remodeling of the chromatin. This partially already occurs during germ cell maturation. By imprinting and methylation striking differences evolve between sperm and oocytes. Following fertilization, the epigenetic asymmetry between the parental genomes even becomes amplified. Central mechanisms in the epigenetic transcriptional control are DNA methylation as well as methylation and acetylation of histone proteins. If and how those mechanisms are revertible and how they act together are part of the current research, especially in nuclear transfer investigations. The most exciting question is how to reprogram somatic nuclei to achieve a totipotent cell for the development of different cell types for therapeutic transplantation or even an entire individual as first accomplished by cloning the sheep Dolly. The limiting factors in restoration of a totipotent cell out of a somatic cell seem to be the correct inversion of epigenetic methylations put to the genome during development. Furthermore, naturally occurring failures of epigenetic control mechanisms during development may have severe consequences such as schizophrenia, cancer, or immune defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1.
Abb. 2.
Abb. 3.
Abb. 4.
Abb. 5.

Literatur

  1. Adenot PG, Mercier Y, Renard JP, Thompson EM (1997) Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1-cell mouse embryos. Development 124 4615–4625

    Google Scholar 

  2. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell. Garland Science, New York

  3. Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23:185–8

    Google Scholar 

  4. Avner P, Heard E (2001) X-chromosome inactivation: counting, choice and initiation. Nat Rev Genet 2:59–67

    Google Scholar 

  5. Balakier HG, Tarkowski AK (1980) The role of germinal vesicle karyoplasms in the development of the male pronucleus in the mouse. Exp Cell Res 128:79–85

    Google Scholar 

  6. Ballestar E, Wolffe AP (2001) Methyl-CpG-binding proteins-targeting specific gene repression. Eur J Biochem 268:1-6.

    Google Scholar 

  7. Barton SC, Arney KL, Shi W, Niveleau A, Fundele R, Surani MA, Haaf T (2001) Genome-wide methylation patterns in normal and uniparental early mouse embryos. Hum Mol Genet 10:2983–2987

    Google Scholar 

  8. Becker PB, Hörz W (2002) ATP-dependent nucleosome remodeling. Annu Rev Biochem 71:247–273

    Google Scholar 

  9. Bestor TH (2000) The DNA methyltransferases of mammals. Hum Mol Genet 9:2395–2402

    Google Scholar 

  10. Betts DH, Bordignon V, Hill JR, Winger Q, Westhusin ME, Smith LC, King WA (2001) Reprogramming of telomerase activity and rebuilding of telomere length in cloned cattle. Proc Natl Acad Sci USA 98:1077–1082

    Google Scholar 

  11. Bird AP, Wolffe AP (1999)Methylation-induced repression-belts, braces and chromatin. Cell 99:451–454

    Google Scholar 

  12. Bourc'his D, Le Bourhis D, Patin D, Niveleau A, Comizzoli P, Renard JP, Viegas-Pequignot E (2001) Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos. Curr Biol 11:1542–1546

    Google Scholar 

  13. Cibelli JB, Stice SL, Goleuke PJ et al. (1998) Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science 280:1256–1258

    Google Scholar 

  14. Constancia M, Dean W, Lopes S, Moore T, Kelsey G, Reik W (2000) Deletion of a silencer element in Igf2 results in loss of imprinting independent of H19. Nat Genet 26:203–6

    Google Scholar 

  15. Cowell IG, Aucott R, Mahadevaiah SK et al. (2002) Heterochromatin, HP1 and methylation at lysine 9 of histone H3 in animals. Chromosoma 111:22–36

    Google Scholar 

  16. Dean W, Bowden L, Aitchison A et al. (1998) Altered imprinted gene methylation and expression in completely ES cell-derived mouse fetuses: association with aberrant phenotypes. Development 125:2273–2282

    Google Scholar 

  17. Dean W, Santos F, Stojkovic M, Zakhartchenko V, Walter J, Wolf E, Reik W (2001) Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc Natl Acad Sci USA 98:13734–13738

    Google Scholar 

  18. Denning C, Dickinson P, Burl S, Wylie D, Fletcher J and Clark AJ (2001) Gene targeting in primary fetal fibroblasts from sheep and pig. Cloning Stem Cells 3:221–231

    Google Scholar 

  19. Dennis C (2003) Altered states. Nature 421:686–688

    Google Scholar 

  20. Eggan K, Akutsu H, Hochedlinger K, Rideout WM, Yanagimachi R, Jaenisch R (2000) X-chromosome inactivation in cloned mouse embryos. Science 290:1578–1581

    Google Scholar 

  21. Feil R (2001) Early-embryonic culture and manipulation could affect genomic imprinting. Trends Mol Med 7:245–246

    Google Scholar 

  22. Feinberg AP, Vogelstein B (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301:89–92

    Google Scholar 

  23. Ferguson-Smith AC, Surani MA (2001) Imprinting and the epigenetic asymmetry between parental genomes. Science 293:1086–1089

    Google Scholar 

  24. Gibbons RJ, McDowell TL, Raman S, O'Rourke DM, Garrick D, Ayyub H, Higgs DR (2000) Mutations in ATRX, encoding a SWI/SNF-like protein, cause diverse changes in the pattern of DNA methylation. Nat Genet 24:368–71

    Google Scholar 

  25. Giles J, Knight J (2003) Dolly's death leaves researchers woolly on clone aging issue. Nature 421:776

    Google Scholar 

  26. Haaf T, Shi W, Fundele R, Arney KL, Surani MA, Barton SC (2003) Differential demethylation of paternal and maternal genomes in the preimplantation mouse embryo: implications for mammalian development. In: Schmid M (ed) Chromosomes Today. Kluwer Academic Publishers, Nl (in press)

  27. Heard E, Clerc P, Avner P (1997) X-chromosome inactivation in mammals. Annu Rev Genet 31:571–610

    Google Scholar 

  28. Henery CC, Miranda M, Wiekowski M, Wilmut I, DePamphilis ML (1995) Repression of gene expression at the beginning of mouse development. Dev Biol 169:448–460

    Google Scholar 

  29. Hochedlinger K, Jänisch R (2002) Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature 415:1035–1038

    Google Scholar 

  30. Humpherys D, Eggan K, Akutsu H et al. (2001) Epigenetic instability in ES cells and cloned mice. Science 293: 95¯97

  31. Jedlicki A, Barros C, Salgado AM, Herrera E (1986) Effects of in vivo oocytes aging on sperm chromatin decondensation in the golden hamster. Gamete Res 14:347–354

    Google Scholar 

  32. Jenuwein T (2001) RE-SET-Ting heterochromatin by histone methyltransferase. Trends Cell Biol 11:266–273

    Google Scholar 

  33. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    Google Scholar 

  34. Jones PA, Laird PW (1999) Cancer epigenetics comes of age. Nat Genet 21:163–7

    Google Scholar 

  35. Kaati G, Bygren LO, Edvinsson S (2002) Cardiovascular and diabetes mortality determined by nutrition during parents' and grandparents' slow growth period. Eur J Hum Genet 10:682–8

    Google Scholar 

  36. Kang YK, Koo DB, Park JS, Choi YH, Chung AS, Lee KK, Han YM (2001) Aberrant methylation of donor genome in cloned bovine embryos. Nat Genet 28:173–177

    Google Scholar 

  37. Kang YK, Park JS, Koo DB, Choi YH, Kim SU, Lee KK Han YM (2002) Limited demethylation leaves mosaic-type methylation states in bovine pre-implantation embryos. EMBO J 21: 1092–1100

    Google Scholar 

  38. Kato Y, Tani T, Sotomaru Y et al. (1998) Eight calves cloned from somatic cells of a single adult. Science 282:2095–2098

    Google Scholar 

  39. Kato, Y. Rideout WM 3rd, Hilton K, Barton SC, Tsunoda Y, Surani MA (1999) Developmental potential of mouse primordial germ cells. Development 126:1823–1832

    Google Scholar 

  40. Khosla S, Dean W, Brown D, Reik W, Feil R (2001) Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes. Biol Reprod 64:918–926

    Google Scholar 

  41. Kishi M, Itagaki Y, Takakura R et al. (2000) Nuclear transfer in cattle using colostrum-derived mammary gland epithelial cells and ear-derived fibroblast cells. Theriogenology 54:675–684

    Google Scholar 

  42. Kouzarides T (2002) Histone methylation in transcriptional control. Curr Opin Genet Dev 12:198–209

    Google Scholar 

  43. Lanza RP, Cibelli JB, Diaz F et al. (2000) Cloning of an endangered species (Bos gaurus) using interspecies nuclear transfer. Cloning 2:79–90

    Google Scholar 

  44. Lawson KA, Dunn NR, Roelen BA et al. (1999) Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev 13:424–36

    Google Scholar 

  45. Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915–926

    Google Scholar 

  46. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8Å resolution. Nature 389:251–260

    Google Scholar 

  47. Lyle R, Watanabe D, te Vruchte D et al. (2000) The imprinted antisense RNA at the Igf2r locus overlaps but does not imprint Mas1. Nat Genet 25:19–21

    Google Scholar 

  48. Mann JR (2001) Imprinting in the germ line. Stem Cells 19: 289–294

    Google Scholar 

  49. Mayer W, Niveleau A, Walter J, Fundele R, Haaf T (2000) Demethylation of the zygotic paternal genome. Nature 403: 501–502

    Google Scholar 

  50. McCreath KJ, Howcroft J, Campbell KH, Colman A, Schnieke AE, Kind AJ (2000) Production of gene-targeted sheep by nuclear transfer from cultured somati cells. Nature 405:1066–1069

    Google Scholar 

  51. McGrath J, Solter D (1984) Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37:179–183

    Google Scholar 

  52. Meeker AK, Coffey DS (1997) Telomerase: a promising marker of biological immortality of germ, stem, and cancer cells. Biochemistry 62:1323–1331

    Google Scholar 

  53. Miyashita N, Shiga K, Yonai M et al. (2002) Remarkable Differences in Telomere Lengths among Cloned Cattle Derived from Different Cell Types. Biol Reprod 66:1649–1655

    Google Scholar 

  54. Monk M, Boubelik M, Lehnert S (1987) Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development 99:371–382

    Google Scholar 

  55. Morgan HD, Sutherland HGE, Martin DIK, Whitelaw E (1999) Epigenetic inheritance at the agouti locus in the mouse. Nat Genet 23:314–318

    Google Scholar 

  56. Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393:386–389

    Google Scholar 

  57. Neumann B, Kubicka P, Barlow DP (1995) Characteristics of imprinted genes. Nat Genet 9:12–3

    Google Scholar 

  58. Obata, Y. Kaneko-Ishino T, Koide T et al. (1998) Disruption of primary imprinting during oocyte growth leads to the modified expression of imprinted genes during embryogenesis. Development 125: 1553–1560

    Google Scholar 

  59. Ogonuki N, Inoue K, Yamamoto Y et al. (2002) Early death of mice cloned from somatic cells. Nat Genet 30:253–4

    Google Scholar 

  60. Ogura A, Inoue K, Ogonuki N, Suzuki O, Lee J, Ishino J, Matsuda J (2000) Production of male cloned mice from fresh, cultured, and cryopreserved immature Sertoli cells. Biol Reprod 62:1579–1584

    Google Scholar 

  61. Ogura A, Inoue K, Takano K, Wakayama T, Yanagimachi R (2000) Birth of mice after nuclear transfer by electrofusion using tail tip cells. Mol Reprod Dev 57:55–59

    Google Scholar 

  62. Ohgane J, Wakayama T, Kogo Y et al. (2001) DNA methylation variation in cloned mice. Genesis 30:45–50

    Google Scholar 

  63. Ono Y, Shimozawa N, Ito M, Kono T (2001) Cloned mice from fetal fibroblast cells arrested at metaphase by a serial nuclear transfer. Biol Reprod 64:44–50

    Google Scholar 

  64. Oswald J, Engemann S, Lane N et al. (2000) Active demethylation of the paternal genome in the mouse zygote. Curr Biol 10: 475–478

    Google Scholar 

  65. Perreault SD (1992) Chromatin remodeling in mammalian zygotes. Mutat Res 296:43–55

    Google Scholar 

  66. Peters AH, Mermoud JE, O'Carroll D, Pagani M, Schweizer D, Brockdorff N, Jenuwein T (2002) Histone H3 lysine 9 methylation is an epigenetic imprint of facultative heterochromatin. Nat Genet 30:77–80

    Google Scholar 

  67. Rakyan VK, Preis J, Morgan HD, Whitelaw E (2001) The marks, mechanisms and memory of epigenetic states in mammals. Biochem J 356:1-10

    Google Scholar 

  68. Razin A, Shemer R (1995) DNA methylation in early development. Hum Mol Genet 4:1751–1755

    Google Scholar 

  69. Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293:1089–1093

    Google Scholar 

  70. Reik W, Walter J (2001) Genomic imprinting: parental influence on the genome. Nat Rev Genet 2:21–32

    Google Scholar 

  71. Renard JP, Chastant S, Chesne P et al. (1999) Lymphoid hypoplasia and somatic cloning. Lancet 353:1489–1491

    Google Scholar 

  72. Robertson KD, Ait-Si-Ali S, Yokochi T, Wade PA, Jones PL, Wolffe AP (2000) DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription form E2F-responsive promoters. Nat Genet 25:338–342

    Google Scholar 

  73. Roemer I, Reik W, Dean W, Klose J (1997) Epigenetic inheritance in the mouse. Curr Biol 7:277–280

    Google Scholar 

  74. Shi W, Haaf T (2002) Aberrant methylation patterns at the two-cell stage as an indicator of early developmental failure. Mol Reprod Dev 63:329–34

    Google Scholar 

  75. Shi W, Zakhartchenko V, Wolf E (2003) Epigenetic reprogramming in mammalian nuclear transfer. Differentiation 71:91–113

    Google Scholar 

  76. Shiels PG, Kind AJ, Campbell KH, Waddington D, Wilmut I, Colman A, Schnieke AE (1999) Analysis of telomere lengths in cloned sheep. Nature 399:316–317

    Google Scholar 

  77. Shiota K, Yanagimachi R (2002) Epigenetics by DNA methylation for development of normal and clone animals. Differentiation 69:162–166

    Google Scholar 

  78. Solter D (2000) Mammalian cloning: advances and limitations. Nat Rev Genet 1:199–207

    Google Scholar 

  79. Surani MA (2001) Reprogramming of genome function through epigenetic inheritance. Nature 414:122–128

    Google Scholar 

  80. Surani MA, Barton SC, Norris ML (1986) Nuclear transplantation in the mouse: heritable differences between parental genomes after activation of the embryonic geneome. Cell 45:127–136

    Google Scholar 

  81. Tada T, Obata Y, Tada M, Goto Y, Nakatsuji N, Tan S, Kono T, Takagi N (2000) Imprint switching for non-random X-chromosome inactivation during mouse oocyte growth. Development 127: 3101–3105

    Google Scholar 

  82. Takagi N, Sasaki M (1975) Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature 256:640–642

    Google Scholar 

  83. Tamashiro KLK, Wakayama T, Akutsu H et al. (2002) Cloned mice have an obese phenotype not transmitted to their offspring. Nat Med 8:262–267

    Google Scholar 

  84. Tilghman SM (1999) The sins of the fathers and mothers: genomic imprinting in mammalian development. Cell 96:185–193

    Google Scholar 

  85. Tremblay KD, Saam JR, Ingram RS, Tilghman SM, Bartolomei MS (1995) A parental-specific methylation imprint marks the alleles of the mouse H19 gene. Nat Genet 9:407–413

    Google Scholar 

  86. Turner BM (2000) Histone acetylation and an epigenetic code. Bioessays 22:836–845

    Google Scholar 

  87. Urakawa M, Uruno K, Ideta A, Aoyagi Y (2001) Effects on the development of bovine embryos by nuclear transfer using different culture days of fetal fibroblast. Theriogenology 55:294

    Google Scholar 

  88. Wakayama T, Perry AC, Zuccotti M, Johnson KR, Yanagimachi R (1998) Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394:369–374

    Google Scholar 

  89. Wakayama T, Yanagimachi R (1999) Cloning of male mice from adult tail-tip cells. Nat Genet 22:127–128

    Google Scholar 

  90. Wakayama T, Shinkai Y, Tamashiro KL et al. (2000) Cloning of mice to six generations. Nature 407:318–319

    Google Scholar 

  91. Wakayama T, Yanagimachi R (2001) Mouse cloning with nuclear donor cells of different age and type. Mol Reprod Dev 58:376–383

    Google Scholar 

  92. Wells DN, Misica PM, Tervit HR (1999) Production of cloned calves following nuclear transfer with cultured adult mural granulosa cells. Biol Reprod 60:996–1005

    Google Scholar 

  93. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813

    Google Scholar 

  94. Wolff CF (1759) Theoria Generationis. Dissertation Universität Halle

  95. Wright WE, Piatyszek MA, Rainey WE, Byrd W, Shay JW (1996) Telomerase activity in human germline and embryonic tissues and cells. Dev Genet 18:173–9

    Google Scholar 

  96. Xu GL, Bestor TH, Bourc'his D et al. (1999) Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402:187–91

    Google Scholar 

  97. Yanagimachi (2002) Cloning: experience from the mouse and other animals. Mol Cell Endocrinol 187:241–248

  98. Ying Y, Liu XM, Marble A, Lawson KA, Zhao GQ (2000) Requirement of Bmp8b for the generation of primordial germ cells in the mouse. Mol Endocrinol 14:1053–63

    Google Scholar 

  99. Zakhartchenko V, Alberio R, Stojkovic M et al. (1999) Adult cloning in cattle: potential of nuclei from a permanent cell line and from primary cultures. Mol Reprod Dev 54:264–272

    Google Scholar 

  100. Cui H, Cruz-Correa M, Giardiello FM, Hutcheon DF, Kafonek DR, Brandenburg S, Wu Y, He X, Powe NR, Feinberg AP (2003) Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science 299:1753–1755

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Herrler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrler, A., Zakhartchenko, V., Wolf, E. et al. Epigenetische Kontrolle der Genaktivität. Reproduktionsmedizin 19, 84–92 (2003). https://doi.org/10.1007/s00444-003-0398-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00444-003-0398-y

Schlüsselwörter

Keywords

Navigation