Skip to main content
Log in

A Lagrangian description of the higher-order Painlevé equations

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

We derive the Lagrangians of the higher-order Painlevé equations using Jacobi’s last multiplier technique. Some of these higher-order differential equations display certain remarkable properties like passing the Painlevé test and satisfy the conditions stated by Juráš, thus allowing for a Lagrangian description.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. A. Kudryashov, “The First and Second Painlevé Equations of Higher Order and Some Relations between Them,” Phys. Lett. A 224, 353–360 (1997).

    Article  MathSciNet  Google Scholar 

  2. A. N. W. Hone, “Nonautonomous Henon-Heiles Systems,” Phys. D (Amsterdam) 118, 1–16 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  3. N. A. Kudryashov, “On Transcendents Defined by Nonlinear Ordinary Differential Equations,” J. Phys. A: Math. Gen. 31, L129 (1998).

    Article  MathSciNet  Google Scholar 

  4. N. A. Kudryashov and M. B. Soukharev, “Uniformization and Transcendence of Solutions for the First and Second Painlevé Hierarchies,” Phys. Lett. A 237(4–5), 206–216 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  5. U. Mugan and F. Jrad, “Painlevé Test and the First Painlevé Hierarchy,” J. Phys. A: Math. Gen. 32, 7933 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  6. N. A. Kudryashov, “Some Fourth-Order Ordinary Differential Equations Which Pass the Painlevé Test,” J. Nonlinear Math. Phys. 8, 172–177 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  7. U. Mugan and F. Jrad, “Painlevé Test and Higher Order Differential Equations,” J. Nonlinear Math. Phys. 9(3), 1–29 (2002).

    MathSciNet  Google Scholar 

  8. N. A. Kudryashov, “Two Hierarchies of Ordinary Differential Equations and Their Properties,” Phys. Lett. A 252, 173–179 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Shimomura, “A Certain Expression for the First Painlevé Hierarchy,” Proc. Japan Acad. Ser. A 80, 105–109 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Shimomura, “Poles and α-Points of Meromorphic Solutions of the First Painlevé Hierarchy,” Publ. RIMS 40, 471–485 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  11. T. Aoki, “Multiple-Scale Analysis for Higher-Order Painlevé Equations,” RIMS B 5, 89–08 (2008).

    Google Scholar 

  12. M. Y. Mo, “Twistor Reductions of the KdV Hierarchy,” J. Geom. Phys. 59, 234–245 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Dai and L. Zhang, “On Troquée Solutions of the First Painlevé Hierarchy,” J. Math. Anal. Appl. 368, 393–399 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Boutroux, “Recherches sur les transcendantes de M. Painlevé et l’étude asymptotique des équations différentielles du second ordre,” Ann. Sci. Ecole Norm. Sup. 30(3), 255–375 (1913).

    MathSciNet  Google Scholar 

  15. P. Boutroux, “Recherches sur les transcendantes de M. Painlevé et l’étude asymptotique des équations différentielles du second ordre (suite),” Ann. Sci. Ecole Norm. Sup. 31(3), 99–159 (1914).

    MathSciNet  Google Scholar 

  16. T. Claeys and M. Vanlessen, “The Existence of a Real Pole — Free Solution of the Fourth Order Analogue of the Painlevé I Equation,” Nonlinearity 20, 1163–1184 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Claeys and M. Vanlessen, “Universality of a Double Scaling Limit near Singular Edge Points in Random Matrix Models,” Comm. Math. Phys 273, 499–532 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Mazzocco and M. Y. Mo, “The Hamiltonian Structure of the Second Painlevé Hierarchy,” Nonlinearity 20, 2845–2882 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  19. C. G. J. Jacobi, “Sul principio dell’ultimo moltiplicatore, e suo uso come nuovo principio generale di meccanica,” Giornale Arcadico di Scienze, Lett. Arti 99, 129–146 (1844).

    Google Scholar 

  20. C. G. J. Jacobi, “Theoria novi multiplicatoris systematic aequationum differentialium vulgarium applicandi,” J. Reine Angew. Math. 27, 199–268 (1844).

    Article  MATH  Google Scholar 

  21. M. C. Nucci and P. G. L. Leach, “The Method of Ostragradsky, Quantization, and a Move toward a Ghost-Free Future,” J. Math. Phys. 50, 113508 (2009).

    Article  MathSciNet  Google Scholar 

  22. B. S. Madhava Rao, “On the Reduction of Dynamical Equations to the Lagrangian Form,” Proc. Benaras Math. Soc. (N.S.) 2, 53–59 (1940).

    MathSciNet  Google Scholar 

  23. G. Darboux, Lecon sur la théorie générale des surfaces (Gauthier-Villars, Paris, 1894), Vol. 3.

    Google Scholar 

  24. H. Helmholtz, J. Reine Angew. Math. 100, 137 (1887).

    Google Scholar 

  25. J. Lopuszanski, The Inverse Variational Problem in Classical Mechanics (World Scientific, Singapore, 1999).

    Book  MATH  Google Scholar 

  26. M. E. Fels, “The Inverse Problem of the Calculus of Variations for Scalar Fourth-Order Ordinary Differential Equations,” Trans. Am. Math. Soc. 348, 5007–5029 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Juras, “The Inverse Problem of the Calculus of Variations for Sixth- and Eighth-Order Scalar Ordinary Differential Equations,” Acta Appl. Math. 66(1), 25–39 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  28. J. Douglas, “Solution to the Inverse Problem of the Calculus of Variations,” Trans. Am. Math. Soc. 50, 71–128 (1941).

    Article  Google Scholar 

  29. I. Anderson and G. Thompson, “The Inverse Problem of the Calculus of Variations for Ordinary Differential Equations,” Mem. Am. Math. Soc. 98(473) (1992).

  30. I. Anderson, www.math.usu.edu/fgmp/.../IntroVariationalBicomplex.pdf

  31. M. C. Nucci and A. M. Arthurs, “On the Inverse Problem of Calculus for Fourth-Order Equations,” Proc. R. Soc. A doi: 10.1098/rspa.2009.0618.

  32. P. Guha and A. Ghose Choudhury, “On Lagrangians and Hamiltonians of Some Fourth-Order Nonlinear Kudryashov ODEs,” Commun. Nonlin. Sci. Numer. Simul. 16, 3914–3922 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  33. P. Guha, Ghose Choudhury A., A. S. Fokas, “Hamiltonians and Conjugate Hamiltonians of Some Fourth-Order Nonlinear ODEs,” Preprint.

  34. N. A. Kudryashov, “Double Bäcklund Transformations and Special Integrals for the KII Hierarchy,” Phys. Lett. A 273, 194–202 (2000).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Kudryashov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghose Choudhury, A., Guha, P. & Kudryashov, N.A. A Lagrangian description of the higher-order Painlevé equations. Comput. Math. and Math. Phys. 52, 746–755 (2012). https://doi.org/10.1134/S0965542512050089

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542512050089

Keywords

Navigation