Skip to main content
Log in

Evidence for an antagonistic action of tabernanthine on hypoxia-induced changes in brain serotonin levels

  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Summary

The effects of tabernanthine on serotonin (5-HT) levels were determined in several brain areas of rats exposed to various simulated altitudes (1800, 5200, 7000 m). The 5-HT synthesis inhibitor, para-chlorophenylalanine (PCPA), was used to dissociate the effects occurring at synthesis and release levels. Tabernanthine antagonized the decrease in hypothalamic 5-HT levels induced by a 7000 m hypoxia and also suppressed the decrease in PCPA-induced depletion observed at 5200 and 7000 m in the hypothalamus, the striatum and the rest of the brain. It was assumed that tabernanthine stimulates different steps of 5-HT metabolism. These effects, revealed by hypoxia, are related to other peripheral and central properties of this drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Boismare F, Le Poncin-Lafitte M, Rapin JR (1980) Blockade of different enzymatic steps in the synthesis of brain amines and memory (CAR) in hypobaric hypoxic rats treated or untreated by l-DOPA. Aviat Space Environ Med 51:126–128

    Google Scholar 

  • Brown RM, Kehr W, Carlsson A (1975) Functional and biochemical aspects of catecholamine metabolism in brain under hypoxia. Brain Res 85:491–509

    Google Scholar 

  • Brown RM, Snider SM, Carlsson A (1974) Changes in biogenic amine synthesis and turnover induced by hypoxia and/or foot shock stress. II. The central nervous system. J Neural Transm 35:293–305

    Google Scholar 

  • Cretet E, Prioux-Guyonneau M, Jacquot C, Sentenac H, Wepierre J (1980) Effect of tabernanthine on the turnover time of brain catecholamines in normal and hypobaric hypoxic rats. Naunyn-Schmiedeberg's Arch Pharmacol 313:119–123

    Google Scholar 

  • Cruzon G, Green AR (1970) Rapid method for determination of 5-hydroxytryptamine and 5-hydroxyindole-acetic acid in small regions of rat brain. Br J Pharmacol 39:653–655

    Google Scholar 

  • Curzon G, Kantamaneni BD, Tricklebank MD (1981) A comparison of an improved o-phthalaldehyde fluorimetric method and high pressure liquid chromatography in the determination of brain 5-hydroxyindoles of rats treated with l-tryptophan and p-chlorophenylalanine. Br J Pharmacol 73:555–561

    Google Scholar 

  • Davis JN, Carlsson A (1973a) Effect of hypoxia on tyrosine and tryptophan hydroxylation in unanesthetized rat brain. J Neurochem 20:913–915

    Google Scholar 

  • Davis JN, Carlsson A (1973b) The effects of hypoxia on monoamine synthesis level and metabolism in rat brain. J Neurochem 21:783–790

    Google Scholar 

  • Davis JN, Giron LT, Stanton E, Maury W (1979) The effect of hypoxia on brain neurotransmitter systems. Adv Neurol 26:219–223

    Google Scholar 

  • Forchetti CM, Meek JL (1981) Evidence for a tonic GABAergic control of serotonin neurons in the median raphe nucleus. Brain Res 206:208–212

    Google Scholar 

  • Gibson GE, Peterson C, Sansone J (1981) Decrease in amino acid and acetylcholine metabolism during hypoxia. J Neurochem 37:192–201

    Google Scholar 

  • Hajo H, Dupont Ch, Wepierre J (1981) Action de la tabernanthine sur différents paramètres cardiovasculaires chez le Rat et le Chien. J Pharmacol (Paris) 12:441–454

    Google Scholar 

  • Hedner T (1978) Central monoamine metabolism and neonate oxygen deprivation. Acta Physiol Scand Suppl 460:34

    Google Scholar 

  • Iversen LL, Glowinski J (1966) Regional studies of catecholamines in rat brain. J Neurochem 13:655–669

    Google Scholar 

  • Miller FP, Cox RH, Snodgrass WR, Maickel RP (1970) Comparative effects of p-chlorophenylalanine, p-chloroamphetamine and p-chloro-N-methylamphetamine on rat brain norepinephrine, serotonin and 5-hydroxyindole-3-acetic acid. Biochem Pharmacol 19:435–442

    Google Scholar 

  • Mocaër-Cretet E (1981) Hypoxie hypobare et neuromédiateurs. Effets pharmacologiques et biochimiques centraux de la tabernanthine. Thesis Pharm: Paris XI, 129:180

    Google Scholar 

  • Mocaër-Cretet E, Hajo N, Dupont Ch, Jacquot C, Wepierre J (1980): Modification de l'activité comportementale de la tabernanthine chez la Souris en normoxie et en hypoxie hypobare. J Pharmacol (Paris) 11:330

    Google Scholar 

  • Prioux-Guyonneau M, Cretet E, Jacquot C, Rapin JR, Cohen Y (1979) The effects of various stimulated altitudes of the turnover of norepinephrine and dopamine in the central nervous system of rats. Pflügers Arch 380:127–132

    Google Scholar 

  • Prioux-Guyonneau M, Mocaër-Cretet E, Redjimi-Hafsi F, Jacquot C (1982) Changes in brain 5-hydroxytryptamine metabolism induced by hypobaric hypoxia. Gen Pharmacol 13:251–254

    Google Scholar 

  • Raymond-Hamet M, Vincent D (1960) Sur quelques effets pharmacologiques de trois alcaloides du Tabernanthe Iboga Baillon, Ibogamine, Ibolutéine et Tabernanthine. CR Soc Biol 154:2223–2227

    Google Scholar 

  • Saligaud C, Moore N, Boulu R, Plotkine M, Leclerc JL, Prioux-Guyonneau M, Boismare F (1981) Hypobaric hypoxia: central catecholamines levels, cortical PO2 and avoidance response in rats treated with apomorphine. Aviat Space Environ Med 52:166–170

    Google Scholar 

  • Scatton B, Ziukovic B, Dedek J, Lloyd KG, Constanti-Dinis J, Tissot R, Bartholini G: γ-aminobutyric acid (GABA) receptor stimulation. III. Effect of progabide (SL 76002) on norepinephrine, dopamine and 5-hydroxytryptamine turnover in rat brain areas. J Pharmacol Exp Ther 220:678–688

  • Thomann G, Servin A, Besancon M, Garcet S (1975) Effets d'un complexe alcaloïdique de Vinca minor apocynacées (L.J. 533) sur le comportement et le taux de noradrénaline cérébrale de la souris en hypoxie aiguë. J Pharmacol (Paris) 6:291–300

    Google Scholar 

  • Valette G, Leclair MF (1977) Effets des alcaloïdes du Tabernanthe Iboga H. Bn. sur les réponses des organes isolés aux catécholamines et rôle des échanges de calcium. Cas de la tabernanthine. C. R. Acad Sci (Paris) 285:591–594

    Google Scholar 

  • Zetler G (1964) Einige pharmakologische Eigenschaften von 12 natürlichen und 11 partialsynthetisch abgewandelten Indolalkaloiden aus tropischen Apocynaceen des subtribus Tabernaemontaninae. Arzneim Forsch Drug Res 11:1277–1286

    Google Scholar 

  • Zetler G, Singbartl G, Schlosser L (1972) Cerebral pharmacokinetics of tremor producing harmala and iboga alkaloids. Pharmacology 7:237–248

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mocaër-Cretet, E., Prioux-Guyonneau, M., Redjimi, F. et al. Evidence for an antagonistic action of tabernanthine on hypoxia-induced changes in brain serotonin levels. Naunyn-Schmiedeberg's Arch. Pharmacol. 326, 287–290 (1984). https://doi.org/10.1007/BF00501431

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00501431

Key words

Navigation