Skip to main content

Advertisement

Log in

Differential sensitivity of T lymphocytes and hematopoietic precursor cells to photochemotherapy with 8-methoxypsoralen and ultraviolet A light

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

The combination of 8-methoxypsoralen (8-MOP) and long wave ultraviolet radiation (UV-A) has immunomodulatory effects and might abolish both graft-vs-host and host-vs-graft reactions after allogeneic hematopoietic stem cell transplantation. In the present study, we have confirmed the sensitivity of T lymphocytes to 8-MOP treatment plus UV-A exposure as evidenced by the abrogation of the alloreactivity in mixed lymphocyte cultures as well as the inhibition of the response to phytohemagglutinin A. However, the clonogenic capacity of the bone marrow hematopoietic progenitors was inhibited with UV-A doses lower than the doses needed to inhibit T-lymphocytes alloreactivity. Moreover, long-term bone marrow cultures showed that 8-MOP plus UV-A treatment had detrimental effects on the more immature bone marrow stem cells. These data were confirmed when murine bone marrow graft was treated with 8-MOP, exposed to UV-A, then transplanted into semiallogeneic recipient mice. The treated cells could not maintain their clonogenic capacity in vivo resulting in death of all animals. Taken together, these data show that ex vivo 8-MOP plus UV-A treatment of the marrow graft cannot be used to prevent post-bone marrow transplantation alloreactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Socie G, Stone JV, Wingard JR, Weisdorf D, Henslee-Downey PJ, Bredeson C, Cahn JY, Passweg JR, Rowlings PA, Schouten HC, Kolb HJ, Klein JP (1999) Long-term survival and late deaths after allogeneic bone marrow transplantation. Late effects working committee of the international bone marrow transplant registry. N Engl J Med 341:14–21

    Article  PubMed  CAS  Google Scholar 

  2. Sodani P, Gaziev D, Polchi P, Erer B, Giardini C, Angelucci E, Baronciani D, Andreani M, Manna M, Nesci S, Lucarelli B, Clift RA, Lucarelli G (2004) New approach for bone marrow transplantation in patients with class 3 thalassemia aged younger than 17 years. Blood 104:1201–1203

    Article  PubMed  CAS  Google Scholar 

  3. Rao K, Amrolia PJ, Jones A, Cale CM, Naik P, King D, Davies GE, Gaspar HB, Veys PA (2005) Improved survival after unrelated donor bone marrow transplantation in children with primary immunodeficiency using a reduced-intensity conditioning regimen. Blood 105:879–885

    Article  PubMed  CAS  Google Scholar 

  4. Devetten MP, Vose JM (2004) Graft-versus-host disease: how to translate new insights into new therapeutic strategies. Biol Blood Marrow Transplant 10:815–825

    Article  PubMed  Google Scholar 

  5. Martin PJ, Hansen JA, Buckner CD, Sanders JE, Deeg HJ, Stewart P, Appelbaum FR, Reginald C, Fefer A, Witherspoon RP, Kennedy MS, Sulivan KM, Flounoy N, Storb R, Thomas ED (1985) Effects of in vitro depletion of T-cells in HLA identical allogeneic marrow grafts. Blood 66:664–672

    PubMed  CAS  Google Scholar 

  6. Maraninchi D, Blaise D, Rio B, Leblond V, Dreyfus F, Gluclman E, Guyotat, Pico JL, Mi-chalet M, Ifrah N (1987) Impact of T-cell depletion on outcome of allogeneic bone marrow transplantation for standard-risk Ieukemias. Lancet 2:175–178

    Article  PubMed  CAS  Google Scholar 

  7. Marmont AM, Horowitz MM, Gale RP, Sobocinski K, Ash RC, van Bekkum DW, Champlin RE, Dicke KA, Goldman JM, Good RA (1991) T-cell depletion of HLA-identical transplants in leukemia. Blood 78:2120–2130

    PubMed  CAS  Google Scholar 

  8. Keever CA, Small TN, Flomenberg N, Heller G, Pekle K, Black P, Pecora A, Gillio A, Kernan NA, O'Reilly RJ (1989) Immune reconstitution following bone marrow transplantation: comparison of recipients of T-cell depleted marrow with recipients of conventional marrow grafts. Blood 73:1340–1350

    PubMed  CAS  Google Scholar 

  9. Soiffer RJ, Bosserman L, Murray C, Cochran K, Daley J, Ritz J (1990) Reconstitution of T-cell function after CD6-depleted allogeneic bone marrow transplantation. Blood 75:2076–2084

    PubMed  CAS  Google Scholar 

  10. Haddad E, Landais P, Friedrich W, Gerritsen B, Cavazzana-Calvo M, Morgan G, Bertrand Y, Fasth A, Porata F, Cant A, Espanol T, Muller S, Veys P, Vossen J, Fischer A (1998) Long-term immune reconstitution and outcome after HLA-nonidentical T-cell-depleted bone marrow transplantation for severe combined immunodeficiency: a European retrospective study of 116 patients. Blood 91:3646–3653

    PubMed  CAS  Google Scholar 

  11. Lewin SR, Heller G, Zhang L, Rodrigues E, Skulsky E, Marcel R, van den Brink M, Trudy N, Kernan NC, O'Reilly R, Ho DD, Young JW (2002) Direct evidence for new T-cell generation by patients after either T-cell-depleted or unmodified allogeneic hematopoietic stem cell transplantations. Blood 100:2235–2242

    PubMed  CAS  Google Scholar 

  12. Tiberghien P, Herve P (1992) Perspectives in marrow graft T-cell depletion in allogeneic matched related bone marrow transplantation. Transf Sci 13:443–454

    Article  CAS  Google Scholar 

  13. Schots R, Van Riet I, Ben Othman T, Trullemans F, De Waele M, Van Camp B (2001) The impact of partial T cell depletion on overall transplant-related toxicity, graft function and survival after HLA-identical allogeneic bone marrow transplantation in standard risk adult patients with leukemia. Bone Marrow Transplant 28:917–922

    Article  PubMed  CAS  Google Scholar 

  14. Keever-Taylor CA, Bredeson C, Loberiza FR, Casper JT, Lawton C, Rizzo D, Burns WH, Margolis DA, Vesole DH, Horowitz M, Zhang MJ, Juckett M, Drobyski WR (2001) Analysis of risk factors for the development of GVHD after T cell-depleted allogeneic BMT: effect of HLA disparity, ABO incompatibility, and method of T-cell depletion. Biol Blood Marrow Transplant 7:620–630

    Article  PubMed  CAS  Google Scholar 

  15. Deeg HJ (1992) Modification of allo-interactions and marrow transplantation by ultra-violet light. Semin Hematol 29:95–101

    PubMed  CAS  Google Scholar 

  16. Lindahl-Keissling K, Safwenberg L (1971) Inability of UV-irradiated lymphocyte to stimulate allogeneic cells in mixed lymphocyte culture. Int Arch Allergy 1:670–678

    Google Scholar 

  17. Hudson JC, Lawer M, Pamphilon DH (1994) Ultraviolet irradiation for the prevention of graft versus host disease and graft rejection. Bone Marrow Transplant 14:511

    PubMed  CAS  Google Scholar 

  18. Oluwole SF, Engelstod K, James T (1993) Prevention of graft versus host disease and bone marrow rejection: kinetics of induction of tolerance by UVB modulation of accessory cells and T-cells in the bone marrow inoculum. Blood 81:1658

    PubMed  CAS  Google Scholar 

  19. Gowing H, Braakman E, Hagenbeek A, Lawler M, McCann SR, Pamphilon DH, Marten AC (1998) Influence of ultraviolet-B irradiation on engraftment, graft-versus-host-disease and graft-versus-leukemia effect in a rat model for allogeneic bone marrow transplantation. Bone Marrow Transplant 21:801–807

    Article  PubMed  CAS  Google Scholar 

  20. Greenfeld JI, Chabot JA, Oluwole SF, Hardy MA (1996) The mechanism of UVB prevention of graft versus host disease. J Surg Res 60:137–141

    Article  PubMed  CAS  Google Scholar 

  21. Deeg JH, Bazar L, Sigaroudinia M, Cottler-Fox M (1989) Ultraviolet B light inactivates bone marrow T-lymphocytes but spares hematopoietic precursor cells. Blood 73:369–371

    PubMed  CAS  Google Scholar 

  22. Noizat Pirenne F, Greenfeld JI, Hardy MA, Oluwole SF, De Franchimont P (1996) UVB irradiation of human marrow: potential for donor specific tolerance. J Surg Res 61:267–274

    Article  PubMed  CAS  Google Scholar 

  23. Wolnicka-Glubisz A, Rijnkels JM, Sarna T, Beijersbergen van Henegouwen GM (2002) Apoptosis in leukocytes induced by UVA in the presence of 8-methoxypsoralen, chlorpromazine or 4,6,4′-trimethylangelicin. J Photochem Photobiol 68:65–72

    Article  CAS  Google Scholar 

  24. Horio T, Okamoto H (1982) The mechanisms of inhibitory effects of 8-methoxypsoralen and long-wave ultra-violet light on experimental contact sensitization. J Invest Dermatol 78:402–405

    Article  PubMed  CAS  Google Scholar 

  25. Kripke NL, Morison WL, Parrish JA (1983) Systemic suppression of contact hyper sensitization in mice by psoralen plus UV-A radiation (PUVA). J Invest Dermatol 8:97–102

    Google Scholar 

  26. Morison WL, Parrish JA, Bloch KJ, Krugler JI (1981) In vitro effects of PUVA on lymphocyte function. Br J Dermatol 104:405–413

    Article  PubMed  CAS  Google Scholar 

  27. Moscicki RA, Morison WL, Parrish JA, Bloch KJ, Calvin RB (1982) Reduction of the functions of circulating helper–inducer T-cells identified by monoclonal antibodies in psoriatic patients treated with long-term psoralen ultraviolet-A radiation (PUVA). J Invest Dermatol 79:205–208

    Article  PubMed  CAS  Google Scholar 

  28. Dallamico R, Rossetti F, Zulian F, Montini G, Andreetta B, Messina C, Baradi E, Montesco MC, Dini G, Locatelii F, Argiolu F, Zacchello G (1997) Photopheresis in patients with drug-resistant chronic graft-versus-host-disease. Br J Haematol 97:848–854

    Article  PubMed  CAS  Google Scholar 

  29. Greinix HT, Volc-Platzer B, Kalhs P, Fisher G, Rosenmayr A, Keil F, Honigsmann H, Knobler RM (2000) Extracorporeal photochemotherapy in the treatment of severe steroid-refractory acute graft-versus-host disease: a pilot study. Blood 96:2426–2431

    PubMed  CAS  Google Scholar 

  30. Greinix HT, Volc-Platzer B, Knobler RM (2000) Extracorporeal photochemotherapy in the treatment of severe graft-versus-host disease. Leuk Lymphoma 36:425–434

    Article  PubMed  CAS  Google Scholar 

  31. Salvaneschi L, Perotti C, Zecca M, Bernuzzi S, Viarengo G, Giorgiani G, Del Fante C, Bergamaschi P, Maccario R, Pession A, Locatelli F (2001) Extracorporeal photochemotherapy for treatment of acute and chronic GVHD in childhood. Transfusion 41:1299–1305

    Article  PubMed  CAS  Google Scholar 

  32. Messina C, Locatelli F, Lanino E, Uderzo C, Zacchello G, Cesaro S, Pillon M, Perotti C, Del Fante C, Faraci M, Rivabella L, Calore E, De Stefano P, Zecca M, Giorgiani G, Brugiolo A, Balduzzi A, Dini G, Zanesco L, Dall'Amico R (2003) Extracorporeal photochemotherapy for paediatric patients with graft-versus-host disease after haematopoietic stem cell transplantation. Br J Haematol 122:118–127

    Article  PubMed  CAS  Google Scholar 

  33. Ullrich SE (1991) Photo-inactivation of T-cell function with psoralen and UV-A radiation suppresses the induction of experimental murine graft versus-host disease across major histocompatibility barriers. J Invest Dermatol 6:303–308

    Article  Google Scholar 

  34. Burgess AW, Wilson HA, Metcalf D (1977) Stimulation by human placental conditioned medium of hemopoietic colony formation by human marrow cells. Blood 49:573–583

    PubMed  CAS  Google Scholar 

  35. Garther S, Kaplan HS (1980) Long-term culture of human bone marrow cells. Proc Natl Acad Sci U S A 77:4756–4759

    Article  PubMed  Google Scholar 

  36. Jiang Z, Adams GB, Hanash AM, Scadden DT, Levy RB (2002) The contribution of cytotoxic and noncytotoxic function by donor T-cells that support engraftment after allogeneic bone marrow transplantation. Biol Blood Marrow Transplant 8:588–596

    Article  PubMed  Google Scholar 

  37. Raziuddin A, Longo DL, Mason L, Ortaldo JR, Benett M, Murphy WJ (1998) Differential effects of the rejection of bone marrow allografts by the depletion of activating versus inhibiting Ly-49 natural killer cell subsets. J Immunol 160:87–94

    PubMed  CAS  Google Scholar 

  38. Raziuddin A, Bennett M, Winkeler-Pickett R, Ortaldo JR, Longo DL, Murphy WJ (2000) Synergistic effects of in vivo depletion of Ly-49A and Ly-49G2 natural killer cell subsets in the rejection of H2(b) bone marrow cell allografts. Blood 95:3840–3844

    PubMed  CAS  Google Scholar 

  39. Cohen JL, Trenado A, Vasey D, Klatzmann D, Salomon BL (2002) CD4(+)CD25(+) immunoregulatory T Cells: new therapeutics for graft-versus-host disease. J Exp Med 196:401–406

    Article  PubMed  CAS  Google Scholar 

  40. Cohen J, Salomon B (2005) Therapeutic potential of CD4(+) CD25(+) regulatory T cells in allogeneic transplantation. Cytotherapy 7:166–170

    Article  PubMed  CAS  Google Scholar 

  41. Gowing H, Lawer M, Hagenbeek A, McCann SR, Pamphilpn DH, Hudson J, Weelden HV, Braakman E, Martens CM (1996) Effect of ultraviolet-B light on lymphocyte activity at doses at which normal bone marrow stem cells are preserved. Blood 87:1635–1643

    PubMed  CAS  Google Scholar 

  42. Kraemer K, Levis WR, Caso JC, Tarone RE (1981) Inhibition of the mixed Leukocyte reaction by 8-methoxypsoralen and long-wave ultraviolet radiation. J Invest Dermatol 7:235–239

    Article  Google Scholar 

  43. Edelson R, Jacobs D, Brin M, Khochevar I (1977) Lymphocyte sensitivity to 8-methoxypsoralen and ultra-violet A. Clin Res 25:281 A (abstr)

    Google Scholar 

  44. Truitt RL, Johnson BD, Hanke C, Talib S, Hearst JE (1999) Photochemical treatment with S-59 psoralen and ultraviolet A light to control the fate of naive or primed T lymphocytes in vivo after allogeneic marrow transplantation. J Immunol 163:5145–5156

    PubMed  CAS  Google Scholar 

  45. Berger CL, Canter C, Welscg J (1985) Comparison of synthetic psoralen derivatives and 8-MOP in the inhibition of lymphatic proliferation. Ann N Y Acad Sci 446:80–90

    Article  Google Scholar 

  46. Spielberg H, June CH, Blair OC, Nystrom-Rosander C, Cereb N, Deeg HJ (1991) UV irradiation of lymphocyte triggers an increase in intracellular Ca2+ mobilization. Evidence for UV and nifedipine sensitive Ca2+ channels. Exp Hematol 19:742–748

    PubMed  CAS  Google Scholar 

  47. Schacter B, Lederman MM, Levine MJ, Elmer JJ (1983) Ultra-violet radiation inhibits human natural killer activity and lymphocyte proliferation. J Immunol 130:2484–2487

    PubMed  CAS  Google Scholar 

  48. Amici LA, Gasparro FP (1995) 5-Methoxypsoralen photoadduct formation: conversion of monoadducts to crosslinks. Photodermatol Photoimmunol Photomed 11:135–139

    PubMed  CAS  Google Scholar 

  49. Bevilacqua PM, Edelson RL, Gasparro FP (1991) High performance liquid chromatography analysis of 8-methoxy-psoralen monoadducts and cross-links in lymphocytes and keratinocytes. J Invest Dermatol 97:151–155

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Mabed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mabed, M., Coffe, C., Racadot, E. et al. Differential sensitivity of T lymphocytes and hematopoietic precursor cells to photochemotherapy with 8-methoxypsoralen and ultraviolet A light. Ann Hematol 85, 17–24 (2006). https://doi.org/10.1007/s00277-005-0009-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-005-0009-9

Keywords

Navigation