Skip to main content
Log in

Positive stool culture could predict the clinical outcomes of haploidentical hematopoietic stem cell transplantation

  • Research Article
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

We aimed to identify the effect of positive stool cultures (PSCs) on the clinical outcomes of patients undergoing haploidentical hematopoietic stem cell transplantation (haplo-HSCT) (n = 332). PSCs were observed in 61 patients (PSC group, 18.4%). Enterobacteriaceae in stool specimens was associated with a higher risk of bloodstream infection, and Candida in stool specimens was related to a higher risk of platelet engraftment failure. The cumulative incidence of infection-related mortality 1 year after haplo-HSCT in the PSC group was higher than that of the patients who showed persistently negative stool cultures (NSC group; 19.2% vs. 8.9%, P = 0.017). The probabilities of overall survival (71.4% vs. 83.8%, P = 0.031) and disease-free survival (69.6% vs. 81.0%, P = 0.048) 1 year after haplo-HSCT for the PSC group were significantly lower than those for the NSC group, particularly for patients who had Candida in their stool specimens. In multivariate analysis, Candida in stool specimens significantly increased the risk of mortality and was associated with poorer survival. Our results showed that PSC influenced the clinical outcomes after haplo-HSCT, particularly those who had Candida in their stool specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lv M, Huang XJ. Allogeneic hematopoietic stem cell transplantation in China: where we are and where to go. J Hematol Oncol 2012; 5(1): 10

    Article  Google Scholar 

  2. Wang Y, Liu QF, Xu LP, Liu KY, Zhang XH, Ma X, Fan ZP, Wu DP, Huang XJ. Haploidentical vs. identical-sibling transplant for AML in remission: a multicenter, prospective study. Blood 2015; 125(25): 3956–3962

    Article  CAS  Google Scholar 

  3. Wang Y, Liu QF, Xu LP, Liu KY, Zhang XH, Ma X, Wu MQ, Wu DP, Huang XJ. Haploidentical versus matched-sibling transplant in adults with Philadelphia-negative high-risk acute lymphoblastic leukemia: a biologically phase III randomized study. Clin Cancer Res 2016; 22(14): 3467–3476

    Article  CAS  Google Scholar 

  4. Wang Y, Wang HX, Lai YR, Sun ZM, Wu DP, Jiang M, Liu DH, Xu KL, Liu QF, Liu L, Wang JB, Gao F, Ou-Yang J, Gao SJ, Xu LP, Huang XJ. Haploidentical transplant for myelodysplastic syndrome: registry-based comparison with identical sibling transplant. Leukemia 2016; 30(10): 2055–2063

    Article  CAS  Google Scholar 

  5. Xu LP, Wu DP, Han MZ, Huang H, Liu QF, Liu DH, Sun ZM, Xia LH, Chen J, Wang HX, Wang C, Li CF, Lai YR, Wang JM, Zhou DB, Chen H, Song YP, Liu T, Liu KY, Huang XJ. A review of hematopoietic cell transplantation in China: data and trends during 2008–2016. Bone Marrow Transplant 2017; 52(11): 1512–1518

    Article  CAS  Google Scholar 

  6. Xu L, Chen H, Chen J, Han M, Huang H, Lai Y, Liu D, Liu Q, Liu T, Jiang M, Ren H, Song Y, Sun Z, Wang J, Wu D, Zhou D, Zou P, Liu K, Huang X. The consensus on indications, conditioning regimen, and donor selection of allogeneic hematopoietic cell transplantation for hematological diseases in China-recommendations from the Chinese Society of Hematology. J Hematol Oncol 2018; 11(1): 33

    Article  Google Scholar 

  7. Huang XJ, Chang YJ. Unmanipulated HLA-mismatched/haploidentical blood and marrow hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2011; 17(2): 197–204

    Article  CAS  Google Scholar 

  8. Fuchs EJ. HLA-haploidentical blood or marrow transplantation with high-dose, post-transplantation cyclophosphamide. Bone Marrow Transplant 2015; 50(S2 Suppl 2): S31–S36

    Article  CAS  Google Scholar 

  9. Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, Bielski C, Rostron T, Cerundolo V, Pamer EG, Abramson SB, Huttenhower C, Littman DR. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife 2013; 2: e01202

    Article  Google Scholar 

  10. Smith MI, Yatsunenko T, Manary MJ, Trehan I, Mkakosya R, Cheng J, Kau AL, Rich SS, Concannon P, Mychaleckyj JC, Liu J, Houpt E, Li JV, Holmes E, Nicholson J, Knights D, Ursell LK, Knight R, Gordon JI. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science 2013; 339(6119): 548–554

    Article  CAS  Google Scholar 

  11. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI. A core gut microbiome in obese and lean twins. Nature 2009; 457(7228): 480–484

    Article  CAS  Google Scholar 

  12. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, Peng Y, Zhang D, Jie Z, Wu W, Qin Y, Xue W, Li J, Han L, Lu D, Wu P, Dai Y, Sun X, Li Z, Tang A, Zhong S, Li X, Chen W, Xu R, Wang M, Feng Q, Gong M, Yu J, Zhang Y, Zhang M, Hansen T, Sanchez G, Raes J, Falony G, Okuda S, Almeida M, LeChatelier E, Renault P, Pons N, Batto JM, Zhang Z, Chen H, Yang R, Zheng W, Li S, Yang H, Wang J, Ehrlich SD, Nielsen R, Pedersen O, Kristiansen K, Wang J. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012; 490(7418): 55–60

    Article  CAS  Google Scholar 

  13. Docampo MD, Auletta JJ, Jenq RR. Emerging influence of the intestinal microbiota during allogeneic hematopoietic cell transplantation: control the gut and the body will follow. Biol Blood Marrow Transplant 2015; 21(8): 1360–1366

    Article  Google Scholar 

  14. Shono Y, van den Brink MRM. Gut microbiota injury in allogeneic haematopoietic stem cell transplantation. Nat Rev Cancer 2018; 18 (5): 283–295

    Article  CAS  Google Scholar 

  15. Huang XJ, Liu DH, Liu KY, Xu LP, Chen H, Han W, Chen YH, Zhang XH, Lu DP. Treatment of acute leukemia with unmanipulated HLA-mismatched/haploidentical blood and bone marrow transplantation. Biol Blood Marrow Transplant 2009; 15(2): 257–265

    Article  CAS  Google Scholar 

  16. Wang Y, Liu DH, Liu KY, Xu LP, Zhang XH, Han W, Chen H, Chen YH, Wang FR, Wang JZ, Sun YQ, Huang XJ. Long-term follow-up of haploidentical hematopoietic stem cell transplantation without in vitro T cell depletion for the treatment of leukemia: nine years of experience at a single center. Cancer 2013; 119(5): 978–985

    Article  Google Scholar 

  17. Huang XJ, Liu DH, Liu KY, Xu LP, Chen H, Han W, Chen YH, Wang JZ, Gao ZY, Zhang YC, Jiang Q, Shi HX, Lu DP. Haploidentical hematopoietic stem cell transplantation without in vitro T-cell depletion for the treatment of hematological malignancies. Bone Marrow Transplant 2006; 38(4): 291–297

    Article  Google Scholar 

  18. Mo XD, Zhang XH, Xu LP, Wang Y, Yan CH, Chen H, Chen YH, Han W, Wang FR, Wang JZ, Liu KY, Huang XJ. Late-onset severe pneumonia after allogeneic hematopoietic stem cell transplantation: prognostic factors and treatments. Transpl Infect Dis 2016; 18(4): 492–503

    Article  CAS  Google Scholar 

  19. Armand P, Kim HT, Logan BR, Wang Z, Alyea EP, Kalaycio ME, Maziarz RT, Antin JH, Soiffer RJ, Weisdorf DJ, Rizzo JD, Horowitz MM, Saber W. Validation and refinement of the Disease Risk Index for allogeneic stem cell transplantation. Blood 2014; 123(23): 3664–3671

    Article  CAS  Google Scholar 

  20. Przepiorka D, Weisdorf D, Martin P, Klingemann HG, Beatty P, Hows J, Thomas ED. 1994 Consensus Conference on Acute GVHD Grading. Bone Marrow Transplant 1995; 15(6): 825–828

    CAS  Google Scholar 

  21. Gooley TA, Leisenring W, Crowley J, Storer BE. Estimation of failure probabilities in the presence of competing risks: new representations of old estimators. Stat Med 1999; 18(6): 695–706

    Article  CAS  Google Scholar 

  22. Huisman C, van der Straaten HM, Canninga-van Dijk MR, Fijnheer R, Verdonck LF. Pulmonary complications after T-cell-depleted allogeneic stem cell transplantation: low incidence and strong association with acute graft-versus-host disease. Bone Marrow Transplant 2006; 38(8): 561–566

    Article  CAS  Google Scholar 

  23. Chen CS, Boeckh M, Seidel K, Clark JG, Kansu E, Madtes DK, Wagner JL, Witherspoon RP, Anasetti C, Appelbaum FR, Bensinger WI, Deeg HJ, Martin PJ, Sanders JE, Storb R, Storek J, Wade J, Siadak M, Flowers ME, Sullivan KM. Incidence, risk factors, and mortality from pneumonia developing late after hematopoietic stem cell transplantation. Bone Marrow Transplant 2003; 32(5): 515–522

    Article  Google Scholar 

  24. Krowka MJ, Rosenow EC 3rd, Hoagland HC. Pulmonary complications of bone marrow transplantation. Chest 1985; 87(2): 237–246

    Article  CAS  Google Scholar 

  25. Chevallier P, Hebia-Fellah I, Planche L, Guillaume T, Bressolette-Bodin C, Coste-Burel M, Rialland F, Mohty M, Imbert-Marcille BM. Human herpes virus 6 infection is a hallmark of cord blood transplant in adults and may participate to delayed engraftment: a comparison with matched unrelated donors as stem cell source. Bone Marrow Transplant 2010; 45(7): 1204–1211

    Article  CAS  Google Scholar 

  26. Mo XD, Yan X, Hu W, Zhang XH, Xu LP, Wang Y, Xu XD, Wang LN, He XX, Yan CH, Chen H, Chen YH, Liu KY, Huang XJ. Perianal infections in the phase before engraftment after allogeneic hematopoietic stem cell transplantations: a study of the incidence, risk factors, and clinical outcomes. Acta Haematol 2018; 139(1): 19–27

    Article  Google Scholar 

  27. Zhao X, Zhao X, Huo M, Fan Q, Pei X, Wang Y, Zhang X, Xu L, Huang X, Liu K, Chang Y. Donor-specific anti-human leukocyte antigen antibodies predict prolonged isolated thrombocytopenia and inferior outcomes of haploidentical hematopoietic stem cell transplantation. J Immunol Res 2017; 2017: 1043836

    PubMed  PubMed Central  Google Scholar 

  28. Zollner-Schwetz I, Auner HW, Paulitsch A, Buzina W, Staber PB, Ofner-Kopeinig P, Reisinger EC, Olschewski H, Krause R. Oral and intestinal Candida colonization in patients undergoing hematopoietic stem-cell transplantation. J Infect Dis 2008; 198(1): 150–153

    Article  Google Scholar 

  29. Nucci M, Anaissie E. Revisiting the source of candidemia: skin or gut? Clin Infect Dis 2001; 33(12): 1959–1967

    Article  CAS  Google Scholar 

  30. Bilinski J, Robak K, Peric Z, Marchel H, Karakulska-Prystupiuk E, Halaburda K, Rusicka P, Swoboda-Kopec E, Wroblewska M, Wiktor-Jedrzejczak W, Basak GW. Impact of gut colonization by antibiotic-resistant bacteria on the outcomes of allogeneic hematopoietic stem cell transplantation: a retrospective, single-center study. Biol Blood Marrow Transplant 2016; 22(6): 1087–1093

    Article  Google Scholar 

  31. Sadowska-Klasa A, Piekarska A, Prejzner W, Bieniaszewska M, Hellmann A. Colonization with multidrug-resistant bacteria increases the risk of complications and a fatal outcome after allogeneic hematopoietic cell transplantation. Ann Hematol 2018; 97(3): 509–517

    Article  CAS  Google Scholar 

  32. Taur Y, Xavier JB, Lipuma L, Ubeda C, Goldberg J, Gobourne A, Lee YJ, Dubin KA, Socci ND, Viale A, Perales MA, Jenq RR, van den Brink MR, Pamer EG. Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin Infect Dis 2012; 55(7): 905–914

    Article  CAS  Google Scholar 

  33. Vossen JM, Heidt PJ, van den Berg H, Gerritsen EJ, Hermans J, Dooren LJ. Prevention of infection and graft-versus-host disease by suppression of intestinal microflora in children treated with allogeneic bone marrow transplantation. Eur J Clin Microbiol Infect Dis 1990; 9(1): 14–23

    Article  CAS  Google Scholar 

  34. Poutsiaka DD, Price LL, Ucuzian A, Chan GW, Miller KB, Snydman DR. Blood stream infection after hematopoietic stem cell transplantation is associated with increased mortality. Bone Marrow Transplant 2007; 40(1): 63–70

    Article  CAS  Google Scholar 

  35. Blennow O, Ljungman P, Sparrelid E, Mattsson J, Remberger M. Incidence, risk factors, and outcome of bloodstream infections during the pre-engraftment phase in 521 allogeneic hematopoietic stem cell transplantations. Transpl Infect Dis 2014; 16(1): 106–114

    Article  CAS  Google Scholar 

  36. Yan CH, Xu T, Zheng XY, Sun J, Duan XL, Gu JL, Zhao CL, Zhu J, Wu YH, Wu DP, Hu JD, Huang H, Jiang M, Li J, Hou M, Wang C, Shao ZH, Liu T, Hu Y, Huang XJ. Epidemiology of febrile neutropenia in patients with hematological disease—a prospective multicentre survey in China. Chin J Hematol (Zhonghua Xue Ye Xue Za Zhi) 2016; 37(3): 177–182 (in Chinese)

    CAS  Google Scholar 

  37. van Bekkum DW, Roodenburg J, Heidt PJ, van der Waaij D. Mitigation of secondary disease of allogeneic mouse radiation chimeras by modification of the intestinal microflora. J Natl Cancer Inst 1974; 52(2): 401–404

    Article  Google Scholar 

  38. Jones JM, Wilson R, Bealmear PM. Mortality and gross pathology of secondary disease in germfree mouse radiation chimeras. Radiat Res 1971; 45(3): 577–588

    Article  CAS  Google Scholar 

  39. Beelen DW, Elmaagacli A, Müller KD, Hirche H, Schaefer UW. Influence of intestinal bacterial decontamination using metronidazole and ciprofloxacin or ciprofloxacin alone on the development of acute graft-versus-host disease after marrow transplantation in patients with hematologic malignancies: final results and long-term follow-up of an open-label prospective randomized trial. Blood 1999; 93(10): 3267–3275

    CAS  PubMed  Google Scholar 

  40. Petersen FB, Buckner CD, Clift RA, Nelson N, Counts GW, Meyers JD, Thomas ED. Infectious complications in patients undergoing marrow transplantation: a prospective randomized study of the additional effect of decontamination and laminar air flow isolation among patients receiving prophylactic systemic antibiotics. Scand J Infect Dis 1987; 19(5): 559–567

    Article  CAS  Google Scholar 

  41. Passweg JR, Rowlings PA, Atkinson KA, Barrett AJ, Gale RP, Gratwohl A, Jacobsen N, Klein JP, Ljungman P, Russell JA, Schaefer UW, Sobocinski KA, Vossen JM, Zhang MJ, Horowitz MM. Influence of protective isolation on outcome of allogeneic bone marrow transplantation for leukemia. Bone Marrow Transplant 1998; 21(12): 1231–1238

    Article  CAS  Google Scholar 

  42. Weber D, Jenq RR, Peled JU, Taur Y, Hiergeist A, Koestler J, Dettmer K, Weber M, Wolff D, Hahn J, Pamer EG, Herr W, Gessner A, Oefner PJ, van den Brink MRM, Holler E. Microbiota disruption induced by early use of broad-spectrum antibiotics is an independent risk factor of outcome after allogeneic stem cell transplantation. Biol Blood Marrow Transplant 2017; 23(5): 845–852

    Article  CAS  Google Scholar 

  43. Shono Y, Docampo MD, Peled JU, Perobelli SM, Velardi E, Tsai JJ, Slingerland AE, Smith OM, Young LF, Gupta J, Lieberman SR, Jay HV, Ahr KF, Porosnicu Rodriguez KA, Xu K, Calarfiore M, Poeck H, Caballero S, Devlin SM, Rapaport F, Dudakov JA, Hanash AM, Gyurkocza B, Murphy GF, Gomes C, Liu C, Moss EL, Falconer SB, Bhatt AS, Taur Y, Pamer EG, van den Brink MRM, Jenq RR. Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice. Sci Transl Med 2016; 8(339): 339ra71

    Article  Google Scholar 

  44. Staffas A, Burgos da Silva M, van den Brink MR. The intestinal microbiota in allogeneic hematopoietic cell transplant and graftversus-host disease. Blood 2017; 129(8): 927–933

    Article  CAS  Google Scholar 

  45. Shallis RM, Terry CM, Lim SH. Changes in intestinal microbiota and their effects on allogeneic stem cell transplantation. Am J Hematol 2018; 93(1): 122–128

    Article  Google Scholar 

  46. Ubeda C, Taur Y, Jenq RR, Equinda MJ, Son T, Samstein M, Viale A, Socci ND, van den Brink MR, Kamboj M, Pamer EG. Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J Clin Invest 2010; 120(12): 4332–4341

    Article  CAS  Google Scholar 

  47. Taur Y, Jenq RR, Perales MA, Littmann ER, Morjaria S, Ling L, No D, Gobourne A, Viale A, Dahi PB, Ponce DM, Barker JN, Giralt S, van den Brink M, Pamer EG. The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Blood 2014; 124(7): 1174–1182

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81802070), China Postdoctoral Science Foundation (No. 2018M631280), the Capital’s Funds for Health Improvement and Research (No. 2018-4-4089), the Key Program of the National Natural Science Foundation of China (No. 81530046), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 81621001), the Science and Technology Project of the Guangdong Province of China (No. 2016B030230003), and the Project of Health Collaborative Innovation of Guangzhou City (No. 201704020214).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Mo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, L., Wang, Q., Zhang, X. et al. Positive stool culture could predict the clinical outcomes of haploidentical hematopoietic stem cell transplantation. Front. Med. 13, 492–503 (2019). https://doi.org/10.1007/s11684-019-0681-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-019-0681-0

Keywords

Navigation