Skip to main content
Log in

Enhanced photoelectrochemical sensing based on novel synthesized Bi2S3@Bi2O3 nanosheet heterostructure for ultrasensitive determination of l-cysteine

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The design of a low-cost and highly efficient photoactive heterojunction material for sensing is still a challenging issue. On the basis of the formation of sheet-like Bi2O3 via coating Bi2S3, a novel Bi2O3@Bi2S3 heterostructure is controllably synthesized via a facile water bath approach. The prepared Bi2O3@Bi2S3 nanosheets show a superior photoelectrochemical (PEC) performance for the detection of l-cysteine (l-Cys), and the photocurrent signal is three and four times higher than those of Bi2S3 and Bi2O3 under visible irradiation, respectively. Also, the heterostructure presents an outstanding linear range for the detection of l-Cys: 0.1–10,000 μM. In addition, the mechanism of improved PEC response of Bi2O3@Bi2S3 nanosheets is investigated according to the estimated energy band positions. Thus, the integration of the novel heterostructure and the photoelectrochemical technique demonstrates a rapid photocurrent response, showing a great effect on the performance of the sensing system and a new PEC method for highly selective and sensitive chemical detection.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4

Similar content being viewed by others

References

  1. Zhu YH, Xu ZW, Yan K, Zhao HB, Zhang JD. One-step synthesis of CuO–Cu2O heterojunction by flame spray pyrolysis for cathodic photoelectrochemical sensing of L-cysteine. ACS Appl Mater Interfaces. 2017;9:40452–60.

    Article  CAS  PubMed  Google Scholar 

  2. Shahrokhian S. Lead phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode. Anal Chem. 2001;73(24):5972–8.

    Article  CAS  PubMed  Google Scholar 

  3. Chwatko G, Bald E. Silver nanoparticles in the presence of Ca2+ as a selective and sensitive probe for the colorimetric detection of cysteine. Talanta. 2000;52(3):509–15.

    Article  CAS  PubMed  Google Scholar 

  4. Ayaz Ahmed KB, Sengan M, Kumar PS, Veerappan A. Highly selective colorimetric cysteine sensor based on the formation of cysteine layer on copper nanoparticles. Sensors Actuators B Chem. 2016;233:431–7.

    Article  CAS  Google Scholar 

  5. Hua L, Han H, Zhang X. Size-dependent electrochemiluminescence behavior of water-soluble CdTe quantum dots and selective sensing of L-cysteine. Talanta. 2009;77(5):1654–9.

    Article  CAS  PubMed  Google Scholar 

  6. Ozoemena K, Westbroek P, Nyokong T. Long-term stability of a gold electrode modified with a self-assembled monolayer of octabutylthiophthalocyaninato-cobalt (II) towards L-cysteine detection. Electrochem Commun. 2001;3(9):529–34.

    Article  CAS  Google Scholar 

  7. Yang S, Li G, Wang Y, Wang G, Qu L. Amperometric L-cysteine sensor based on a carbon paste electrode modified with Y2O3 nanoparticles supported on nitrogen-doped reduced graphene oxide. Microchim Acta. 2016;183(4):1351–7.

    Article  CAS  Google Scholar 

  8. Ye C, Wang MQ, Li LJ, Luo HQ, Li NB. Fabrication of Pt/Cu3(PO4)2 ultrathin nanosheet heterostructure for photoelectrochemical microRNA sensing using novel G-wire-enhanced strategy. Nanoscale. 2017;9:7526–32.

    Article  CAS  PubMed  Google Scholar 

  9. Ye C, Wang MQ, Gao ZF, Zhang Y, Lei JL, Luo HQ, et al. Ligating dopamine as signal trigger onto the substrate via metal-catalyst-free click chemistry for “signal-on” photoelectrochemical sensing of ultralow microRNA levels. Anal Chem. 2016;88:11444–9.

    Article  CAS  PubMed  Google Scholar 

  10. Lv SZ, Zhang KY, Zeng YY, Tang DP. Double photosystems-based ‘Z-Scheme’ photoelectrochemical sensing mode for ultrasensitive detection of disease biomarker accompanying three-dimensional DNA walker. Anal Chem. 2018;90:7086–93.

    Article  CAS  PubMed  Google Scholar 

  11. Luo ZB, Zhang LJ, Zeng RJ, Su LS, Tang DP. Near-infrared light-excited Core−Core−Shell UCNP@Au@CdS upconversion nanospheres for ultrasensitive photoelectrochemical enzyme immunoassay. Anal Chem. 2018;90:9568–75.

    Article  CAS  PubMed  Google Scholar 

  12. Shu J, Tang DP. Current advances in quantum-dots-based photoelectrochemical immunoassays. Chem Asian J. 2017;12:2780–9.

    Article  CAS  PubMed  Google Scholar 

  13. Zhao WW, Xu JJ, Chen HY. Photoelectrochemical bioanalysis: the state of the art. Chem Soc Rev. 2015;44:729–41.

    Article  CAS  PubMed  Google Scholar 

  14. Zhao W, Ma Z, Yu P, Dong X, Xu J, Chen H. Highly sensitive photoelectrochemical immunoassay with enhanced amplification using horseradish peroxidase induced biocatalytic precipitation on a CdS quantum dots multilayer electrode. Anal Chem. 2011;84:917–23.

    Article  CAS  PubMed  Google Scholar 

  15. Huo H, Xu Z, Zhang T, Xu C. Ni/CdS/TiO2 nanotube array heterostructures for high performance photoelectrochemical biosensing. J Mater Chem A. 2015;3:5882–8.

    Article  CAS  Google Scholar 

  16. Wang FX, Ye C, Mo S, Liao LL, Zhang XF, Ling Y, et al. A novel “signal-on” photoelectrochemical sensing for ultrasensitive detection of alkaline phosphatase activity based on TiO2/g-C3N4 heterojunction. Analyst. 2018;143:3399–407.

    Article  CAS  PubMed  Google Scholar 

  17. Kment S, Riboni F, Pausova S, Wang L, Wang L, Han H, et al. Photoanodes based on TiO2 and α-Fe2O3 for solar water splitting–superior role of 1D nanoarchitectures and of combined heterostructures. Chem Soc Rev. 2017;46:3716–69.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang Y, Hao N, Zhou Z, Hua R, Qian J, Liu Q, et al. A potentiometric resolved ratiometric photoelectrochemical aptasensor. Chem Commun. 2017;53:5810–3.

    Article  CAS  Google Scholar 

  19. Wang X, Blechert S, Antonietti M. Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catal. 2012;28:1596–606.

    Article  CAS  Google Scholar 

  20. Wang Y, Hao N, Feng Q, Shi H, Xu J, Chen H. A ratiometric electrochemiluminescence detection for cancer cells using g-C3N4 nanosheets and Ag–PAMAM–luminol nanocomposites. Biosens Bioelectron. 2016;77:76–82.

    Article  CAS  PubMed  Google Scholar 

  21. Li X, Zhang X, Ma H, Wu D, Zhang Y, Du B, et al. Cathodic electrochemiluminescence immunosensor based on nanocomposites of semiconductor carboxylated g-C3N4 and graphene for the ultrasensitive detection of squamous cell carcinoma antigen. Biosens Bioelectron. 2014;55:330–6.

    Article  CAS  PubMed  Google Scholar 

  22. Zhuang JY, Lai WQ, Xu MD, Zhou Q, Tang DP. Plasmonic AuNP/g-C3N4 nanohybrid-based photoelectrochemical sensing platform for ultrasensitive monitoring of polynucleotide kinase activity accompanying DNAzyme-catalyzed precipitation amplification. ACS Appl Mater Interfaces. 2015;7:8330–8.

    Article  CAS  PubMed  Google Scholar 

  23. Lim H, Lee J, Jin S, Kim J, Yoon J, Hyeon T. Highly active heterogeneous Fenton catalyst using iron oxide nanoparticles immobilized in alumina coated mesoporous silica. Chem Commun. 2006;4:463–5.

    Article  Google Scholar 

  24. Sun W, Zhang H, Lin J. Surface modification of Bi2O3 with Fe(III) clusters toward efficient photocatalysis in a broader visible light region: implications of the interfacial charge transfer. J Phys Chem C. 2014;118:17626–32.

    Article  CAS  Google Scholar 

  25. Muruganandham M, Amutha R, Lee G, Hsieh S, Wu J, Sillanpaa M. Facile fabrication of tunable Bi2O3 self-assembly and its visible light photocatalytic activity. J Phys Chem C. 2012;116:12906–15.

    Article  CAS  Google Scholar 

  26. Lai CF, Chang CC, Wen MH, Lin CK, Wu MK. Enhanced efficiency in InGaN-based photovoltaic devices combined with nanocrystalline Bi2O3/P3HT heterojunction structures. Phys Status Solidi A. 2013;210:1133–6.

    Article  CAS  Google Scholar 

  27. Park S, Kim S, Sun GJ, Lee C. Synthesis, structure, and ethanol gas sensing properties of In2O3 nanorods decorated with Bi2O3 nanoparticles. ACS Appl Mater Interfaces. 2015;7:8138–46.

    Article  CAS  PubMed  Google Scholar 

  28. Xie T, Liu C, Xu L, Yang J, Zhou W. Novel heterojunction Bi2O3/SrFe12O19 magnetic photocatalyst with highly enhanced photocatalytic activity. J Phys Chem C. 2013;117:24601–10.

    Article  CAS  Google Scholar 

  29. Lee C, Jeong S, Myung N, Rajeshwar K. Preparation of Au-Bi2O3 nanocomposite by anodic electrodeposition combined with galvanic replacement. J Electrochem Soc. 2014;161:499–503.

    Article  CAS  Google Scholar 

  30. Meng F, Li J, Cushing SK, Zhi M, Wu N. Solar hydrogen generation by nanoscale p–n junction of p-type molybdenum disulfide/n-type nitrogen-doped reduced graphene oxide. J Am Chem Soc. 2013;135:10286–9.

    Article  CAS  PubMed  Google Scholar 

  31. Wang H, Zhang L, Chen Z, Hu J, Li S, Wang Z, et al. Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem Soc Rev. 2014;43:5234–44.

    Article  CAS  PubMed  Google Scholar 

  32. Li H, Zhou Y, Tu W, Ye J, Zou Z. State-of-the-art progress in diverse heterostructured photocatalysts toward promoting photocatalytic performance. Adv Funct Mater. 2015;25:998–1013.

    Article  CAS  Google Scholar 

  33. Wang M, Sun L, Lin Z, Cai J, Xie K, Lin C. p-n Heterojunction photoelectrodes composed of Cu2O-loaded TiO2 nanotube arrays with enhanced photoelectrochemical and photoelectrocatalytic activities. Energy Environ Sci. 2013;6:1211–20.

    Article  CAS  Google Scholar 

  34. Vogel R, Hoyer P, Weller HJ. Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. J Phys Chem. 1994;98:3183–8.

    Article  CAS  Google Scholar 

  35. Zhang B, Ye XC, Hou WY, Zhao Y, Xie Y. Biomolecule-assisted synthesis and electrochemical hydrogen storage of Bi2S3 flowerlike patterns with well-aligned nanorods. J Phys Chem B. 2006;110(18):8978–85.

    Article  CAS  PubMed  Google Scholar 

  36. Bao HF, Li CM, Cui XQ, Gan Y, Song QL, Guo J. Bi2S3 nanostructures: a new photocatalyst. Small. 2008;4:1125–9.

    Article  CAS  PubMed  Google Scholar 

  37. Yao K, Gong WW, Hu YF, Liang XL, Chen Q, Peng LM. Individual Bi2S3 nanowire-based room-temperature H2 sensor. J Phys Chem C. 2008;112:8721–4.

    Article  CAS  Google Scholar 

  38. Luo Y, Chen H, Li X, Gong X, Wang X, Peng X, et al. Wet chemicalsynthesis of Bi2S3 nanorods for efficient photocatalysis. J Mater Lett. 2013;105:12–5.

    Article  CAS  Google Scholar 

  39. Luo W, Li F, Li QD, Wang XP, Yang W, Zhou L, et al. Heterostructured Bi2S3-Bi2O3 nanosheets with a built-in electric field for improved sodium storage. ACS Appl Mater Interfaces. 2018;10:7201–7.

    Article  CAS  PubMed  Google Scholar 

  40. Deng Z, Liu T, Chen T, Jiang J, Yang W, Guo J, et al. Enhanced electrochemical performances of Bi2O3/rGO nanocomposite via chemical bonding as anode materials for lithium ion batteries. ACS Appl Mater Interfaces. 2017;9:12469–77.

    Article  CAS  PubMed  Google Scholar 

  41. Tian L, Tan HY, Vittal JJ. Morphology-controlled synthesis of Bi2S3 nanomaterials via single- and multiple-source approaches. Cryst Growth Des. 2007;8:734–8.

    Article  CAS  Google Scholar 

  42. Gao MR, Yu SH, Yuan J, Zhang W, Antonietti M. Poly (ionic liquid)-mediated morphogenesis of bismuth sulfide with a tunable band gap and enhanced electrocatalytic properties. Angew Chem Int Ed. 2016;128:13004–8.

    Article  Google Scholar 

  43. Ke J, Liu J, Sun HQ, Zhang HY, Duan XG, Liang P, et al. Facile assembly of Bi2O3/Bi2S3/MoS2 np heterojunction with layered n-Bi2O3 and p-MoS2 for enhanced photocatalytic water oxidation and pollutant degradation. Appl Catal B Environ. 2017;200:47–55.

    Article  CAS  Google Scholar 

  44. Zhang JJ, Wang T, Chang XX, Li A, Gong JL. Fabrication of porous nanoflake BiMOx (M = W, V, and Mo) photoanodes via hydrothermal anion exchange. Chem Sci. 2016;7:6381–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work received financial support from the National Natural Science Foundation of China (No. 21675131), the Natural Science Foundation of Chongqing (No. CSTC-2015jcyjB50001), and the Fundamental Research Funds for the Central Universities of China (SWU 114089 and XDJK 2014C136).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Qun Luo or Nian Bing Li.

Ethics declarations

The study was approved by the Ethics Committee of Southwest University, and written informed consent was obtained from all individuals participating in the study prior to the collection of the human urine samples.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 572 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F.X., Ye, C., Mo, S. et al. Enhanced photoelectrochemical sensing based on novel synthesized Bi2S3@Bi2O3 nanosheet heterostructure for ultrasensitive determination of l-cysteine. Anal Bioanal Chem 411, 3059–3068 (2019). https://doi.org/10.1007/s00216-019-01765-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01765-7

Keywords

Navigation