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A B S T R A C T

Graphics Processing Units (GPUs) can now be found in nearly every PC and
smartphone. Initially designed for 3D graphics, they evolved into general pur-
pose accelerators, able to outperform CPUs on many tasks. The architecture
of GPUs is optimized for massively parallel applications. This reduces the
required control logic but also results in lower performance in applications
with irregular control flow. The energy per instruction is often lower in GPUs
than in CPUs, but due to their high throughput, discrete GPUs can still use
200 W and more. GPU performance is limited by power consumption, as the
power dissipation at higher speeds would exceed the cooling abilities. Better
energy efficiency does not only extend battery life and reduce power bills but
also enables higher performance.

To increase the energy efficiency, we measure and model the energy con-
sumption of existing GPUs. A custom GPU power measurement infrastructure
and an architectural power simulator called GPUSimPow are described and
evaluated. Due to the lower control overhead in GPUs, accurately modeling
the power consumption of the memory interface and execution units is im-
portant. Regular architectural simulators do not model the data-dependent
energy consumption but assume that energy consumption per operation does
not depend on the data. We show that this assumption is not true, but that
GPU power consumption can vary by more than 60% with different data and
present two data-dependent power models.

Afterwards, we focus on architectural enhancements to improve the en-
ergy efficiency. Two techniques focus on the memory interface: A novel
approximation technique reduces the DRAM refresh energy and an optimized
encoding scheme reduces the power consumption of the external interface
between GPU and DRAM by up to 6%. We continue with enhancements to
improve the energy efficiency of the GPU cores. We evaluate an alternative
to the conventional SIMT GPU architecture called temporal SIMT (TSIMT)
and extend it to spatiotemporal SIMT. Temporal SIMT makes the execution
of code with irregular control flow more efficient but can reduce the perfor-
mance of applications by decreasing the ability of the GPU to tolerate memory
latency. Spatiotemporal SIMT provides a good combination of conventional
SIMT and TSIMT. In both architectural variants so-called Scalarization can
be used to remove redundant operation. We show that spatiotemporal SIMT
with Scalarization improves the energy-delay product by 26.2% compared to
conventional GPUs.
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Z U S A M M E N FA S S U N G

Graphics Processing Units (GPUs) sind heute Teil nahezu jedes PCs oder
Smartphones. Ursprünglich für 3D Grafik entwickelt, wurden sie zu allge-
mein nutzbaren Beschleunigern weiterentwickelt, die viele Aufgaben schneller
als CPUs erfüllen. Ihre Architektur ist optimiert für massiv parallele Anwen-
dungen. Dies reduziert die nötige Kontrollogik, aber senkt auch die Rechen-
leistung bei uneinheitlichem Kontrollfluss. Pro Instruktion verbrauchen GPUs
oft weniger Energie als CPUs, aber durch ihren hohen Durchsatz, können
sie trotzdem 200 Watt und mehr verbrauchen. Die Rechenleistung wird
dabei von der elektrischen Leistungsaufnahme beschränkt, weil bei höhren
Geschwindigkeiten die Kühlung überfordert würde. Eine höhere Energie-
effizienz führt daher nicht nur zu einer verlängerten Batterielaufzeit und
geringeren Energiekosten, sondern ermöglicht auch höhere Rechenleistung.

Um die Energieeffizienz zu erhöhen, messen und modelieren wir zunächst
den Energieverbrauch existierender GPUs. Eine speziell angepasste Meßinfra-
struktur und ein architekturelles Powermodell namens GPUSimPow werden
vorstellt und getestet. Der geringe Kontrolloverhead in GPUs macht die
genaue Modellierung der Energie von Speicherinterface und Ausführungsein-
heiten besonders wichtig. Gewöhnliche Architektursimulatoren modellieren
keinen datenabhängigen Energieverbrauch, sondern nehmen einen konstan-
ten Energieverbauch pro Operation an. Wir zeigen, das diese Annahme nicht
zutrifft und der Energieverbrauch der GPU sich durch andere Daten um mehr
als 60% erhöhen kann und präsentieren zwei datenabhängige Powermodelle.

Anschließend zeigen wir Verbesserungen der GPU Architektur zur Er-
höhung der Energieeffizienz. Zwei Techniken setzen am Speicherinterface an:
Eine neuartige Näherungstechnik reduziert den Energieverbrauch des DRAM
Refresh und ein optimiertes Kodierungsverfahren reduziert die Energie der
Schnittstelle zwischen GPU und DRAM um bis zu 6%. Danach verbessern
wir die Energieeffizient der GPU Kerne. Wir untersuchen “temporal SIMT”
(TSIMT), eine Alternative zu konventionellen SIMT GPU Kernen und er-
weitern es sie zu “spatiotemporal SIMT” (STSIMT). TSIMT ermöglicht eine
effektivere Ausführung von Programmcode mit uneinheitlichem Kontrollfluss,
reduziert aber auch die Möglichkeiten der GPU Speicherlatenzen zu tolerieren.
STSIMT ist eine gute Kombination von konventionellen SIMT mit TSIMT. In
beiden Architekturvarianten kann Skalarisierung verwenden werden, um
redundante Operationen zu vermeiden. Die Kombination von STSIMT mit
Skalarisierung kann das Energie-Verzögerungs-Produkt um 26.2% gegenüber
einer konventionellen GPU verbessern.
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1
I N T R O D U C T I O N

Today GPUs can be found in nearly every personal computer as well as
in devices such as smartphones, gaming consoles or tablets. GPU stands
for Graphics Processing Unit, but their usage is not limited to graphics
anymore, instead, GPU serve as general purpose Turing-complete computing
devices. They are able to outperform CPUs on many tasks. CPUs and GPUs
complement each other and are now often integrated into a system on a
chip (SoC).

This chapter provides an introduction for the thesis. We start with a
high-level overview of the architecture of GPUs and their programming
model. We then provide a short history of GPUs and their usage for non
3D graphics applications, the so-called general purposed GPU computing
or short GPGPU. The thesis continues with an overview of current usages
of GPGPU computing. We then explain the issues caused by GPU power
consumption and why measuring and modeling the GPU power consumption
is important and continue with a discussion of architectural enhancements
for improved energy efficiency. The main research questions of this thesis are
formulated in Section 1.7. We conclude this introduction with an overview of
the structure of this thesis.

1.1 gpu architecture and programming model

GPUs complement CPUs because their architecture focuses on the effective
execution of algorithms that are embarrassingly parallel and offer high levels
of data parallelism. High performance CPUs use large parts of their area
and power budget for complex control logic that enables OutOfOrder exe-
cution and for large caches. These design choices enable high performance
execution of single-threaded code, but due to the complex logic and high
power consumption, only a few of these cores fit on the silicon die. Embar-
rassingly parallel algorithms execute well on GPUs, as they do not require
high single threaded performance. GPUs remove large caches and simplify
the control logic and add a higher number of cores and very wide SIMD
(Single Instruction Multiple Data) execution units per core. This results in
a slow execution speed of each thread but if a high number of threads runs
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Figure 1.1: CPU vs. GPU Peak Performance

in parallel, GPUs can reach a very high throughput, one or even two orders
of magnitude above CPUs. This difference in peak performance can also be
seen in Figure 1.1. It compares the peak performance of high performance
NVIDIA GPUs with high performance Intel CPUs over time. The difference
in peak performance is not due to better process technology nor clock speed.
NVIDIA GPUs typically are one or two process nodes behind Intel CPUs and
clock speeds are significantly lower. Despite executing their instruction using
SIMD execution units, GPUs are typically programmed using SPMD (Single
Program Multiple Data) programming models. This programming model is
often easier to use for programmers than directly using very large masked
SIMD instruction but allows GPUs to amortize the cost of instruction fetch,
decoding and scheduling over groups of threads called warps (NVIDIA) or
wavefronts (AMD). If all threads in a warp follow the same control flow, the
full throughput of the SIMD execution units can be utilized. If the control
flow of the threads within a warp differs, the control flow is serialized and
the execution units are only partially active. This is also called control flow
divergence and results in a reduced throughput. NVIDIA coined the term
SIMT (single instruction multiple threads) for this programming model that
executes using SIMD execution units but mostly looks like programming
independent scalar threads to the programmer. The execution model is effi-
cient as long as control flow divergence is rare, however, with more complex
and irregular applications running on GPUs the control flow often becomes
divergent and performance, as well as power efficiency, is reduced. As kernels
executed on the GPU get increasingly more complex, this problem becomes
more important.

The high performance of GPUs in many applications would not be possible
without the development of special high bandwidth memories. GPUs use
special memory technologies such as GDDR5/5X and HBM/HBM2 that focus
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Figure 1.2: 3D Graphics Pipelines

on very high bandwidth while accepting their higher cost and smaller density
compared to mainstream CPU memory technologies such as DDR3 and DDR4.

1.2 (gp)gpu history

GPUs evolved out of fixed function 3D graphics accelerators. The top of
Figure 1.2 shows a simplified, typical 3D pipeline. 3D geometry as triangles
is ingested into the pipeline at the start, the geometry is then rotated and
translated to a specific viewpoint. Lighting information is calculated and
a perspective transform is applied. Clipping removes triangles and parts
of triangles that are outside of the viewing area. Rasterization breaks the
triangles down into individual pixels. Finally, texturing applies a wrapped
image ("texture") to these pixels. In the first 3D accelerators only parts of
this pipeline were present. Evans and Sutherland’s Picture System [1] from
1974 employed a vector display that used the electron beam to directly draw
lines to the screen and was used to draw wire-frame graphics only. Lighting,
Rasterization, and Texturing were not required in such a system. SGI’s IRIS
systems were early systems that implemented nearly the whole pipeline,
albeit without texturing. These early systems employed complex designs
using many chips. The geometry engine was built from one the first VLSI
chips. Twelve of these chips were combined to implement 4 × 4 matrix
multiplication, clipping and scaling to the display coordinates [2]. SGI’s IRIS
systems were also very influential in regards to the programming interface
to the 3D hardware. They introduced the IRIS GL API which would later
evolve into the OpenGL standard. These early systems were very expensive
high-end systems or workstations. In 1989 Namco released their "System 21"
arcade system board [3] that employed hardware accelerated polygonal 3D
graphics for entertainment in video game arcades. In the 1990s accelerated 3D
graphics arrived in mainstream PCs and video game consoles. One of the first
successful 3D accelerator for PCs was the 3Dfx "Voodoo" accelerator. It focused
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on texture mapping and used the PC CPU for calculating the perspective
transformation and set up the triangle rasterization engine on each triangle.
Similar to the old high-end 3D accelerators a multi-chip design was employed.
One chip was used for texturing while the other chip handled the framebuffer
and the PCI interface. NVIDIA’s Geforce 256 included hardware support for
transform and lighting [4]. NVIDIA coined the term "Graphics Processing
Unit" (GPU) for this design launched in late 1999 [5]. It combined transform
and lighting, triangle setup and texturing into a single chip. However, these
first GPUs had little in common with today’s GPGPU as they were restricted
fixed-function units, designed for a single task. Demand for more realistic
graphics resulted in more flexibility being added in the next few generations
of GPUs. NVIDIA’s Geforce 3 GPUs supported vertex- and pixel shaders:
Small programs running on the GPU to control the transformation of the scene
and the shading of each pixel. In the beginning, these shaders were severely
limited in their capabilities. Only short shaders with a few instructions
were possible and the control flow was restricted. Later generations lifted
these restrictions. These early GPUs also employed different hardware units
(shaders) for vertex and pixel calculations. Vertex transformation and lighting
calculation were performed using floating point arithmetic while pixel shaders
often used lower accuracy fixed-point arithmetic. The Xbox 360 was the first
gaming console utilizing unified shaders that are used to execute both pixel
and vertex shaders [6]. Research showed that this leads to higher performance
and better area efficiency and adds the flexibility to efficiently render scenes
with varying pixel and vertex shader workload balances [7].

As early as 2004 people started applying GPUs to regular computing tasks
such as sorting numbers or linear algebra tasks using APIs intended for 3D
graphics [8]. The use of GPUs for general-purpose computing purposes is
often called general-purpose computing on graphics processing units or short
GPGPU. APIs tailored towards GPGPU such as Brook for GPUs, NVIDIA’s
CUDA and OpenCL from Khronos Group helped to kick-start a wide adoption
of GPUs for computing [9], [10].

GPUs were especially successful as accelerators for high-performance com-
puting. At the end of 2010 three out of first seven supercomputers with more
than 1 petaflops utilized GPUs [11]. GPUs performed well especially in terms
of energy efficiency and at the end of 2011, almost all the Top 30 slots of the
Green 500 list of the most power efficient supercomputers used GPUs [12].

GPUs are now ubiquitous, not just in HPC, desktop PCs and laptops but
also in smartphones, tablets and gaming consoles. Even on these low power,
mobile platforms GPUs are not only employed for rendering 3D graphics but
also to perform GPGPU workloads such as neural network interference [13],
[14], face recognition [15] or image processing [16].
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1.3 gpgpu applications

GPU have also been popular for the so-called "mining" of cryptocurrencies,
as they greatly increased the hashrate compared to CPUs. Before the avail-
ability of FPGA and ASIC based mining devices, GPU quickly replaced CPUs
for bitcoin mining [17]. Newer cryptocurrencies such as Ethereum employ
proof-of-work function specifically engineered to be GPU friendly [18]. The
popularity of GPU mining resulted in strong demand for GPUs and pushed
up AMD’s share price [19].

An even more important market for GPUs is artificial intelligence (AI) and
in particular, "deep learning". In 2009 Raina et al. demonstrated a speedup
of 70× by using GPU for training a large scale deep neuronal network [20].
Various artificial intelligence frameworks such as Theano [21], Tensorflow [22],
Torch [23] and Caffe [24] support GPU acceleration. In 2013 Coates et al.
showed how to train very large network using 12 GPUs while previously
training a similar network at the same speed required 16000 CPU cores [25]. In
parts of the training, each GPU exceeded 1 TFlops in application performance.
Mayor cloud computing platforms such as Amazon Webservices, Google
Cloud Platform, and Microsoft Azure now offer virtual machines with GPUs
and often advertise GPUs for artificial intelligence applications [26]–[28].
AMD offers GPUs specifically aimed at the AI market [29] and NVIDIA
added special execution units called tensor cores to some of their GPUs that
provide even higher throughput for some linear algebra operations common
in AI [30].

1.4 gpu power consumption

Especially in these battery-powered devices, power consumption is an im-
portant topic for the design of GPUs. High GPU energy consumption would
cause a short battery life. At the same time, energy conservation applies and
the energy consumed by the GPU is turned into heat. This heating is often an
issue, even when battery life is not a concern. Many mobile GPU containing
devices have relatively direct contact to the skin of its user and must limit
their surface temperatures to 45◦C or less [31]. This limits the possible power
consumption of the GPU even further. GPU performance is limited by the
maximum possible power dissipation is not limited to mobile devices. Even
the performance of discrete desktop GPUs with an elaborate active cooling
system is often limited by the maximum possible power dissipation. The
used semiconductor technology would allow the use of higher frequencies
but running at these frequencies would cause the GPU to quickly exceed
the maximum allowed temperature. GPUs now often employ "boost clocks"
several 100 Mhz above their base frequency. These boost clocks allow the
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GPU to run at a higher frequency if the workload has a low average power
consumption. This happens, e.g.: if the workload is concentrated into short
peaks with gaps in between where the GPU is able to cool down again or if
the workload does not fully utilize the GPU. Another issue directly linked
to power consumption is power delivery. Current desktop GPUs can easily
use more than 250 W and at the same time they utilize core voltages only
slightly above 1 V. This can result in currents of 200 A and more. At these
extremely high currents even tiny resistances can easily cause significant
voltage drops [32].

1.5 gpu power measurement and modeling

In order to understand the power consumption of GPUs, we need to measure
and model the power consumption. Discrete GPUs are plugged into a com-
puter system and they receive power via the PCIe slot and also via additional
power cables. In this thesis, we developed power measurement testbeds that
allow us to measure the power consumption of GPUs.

We can, however, only measure existing GPUs and can only measure the
power consumption of the whole GPU, but cannot measure the power con-
sumption of individual GPU components within an application. However,
to improve the power efficiency we need to be able to estimate the power
efficiency of modified (and potentially improved) GPU designs and gain
insight into the power consumption of the individual components. This thesis
presents an architectural power simulator along with two improvements. The
power simulator allows us to estimate the power consumption of a GPU
workload. The configuration of the GPU can be determined using a configu-
ration file. Performance and energy benefits of architectural enhancements
can estimated by implementing the proposed changes in the simulator.

1.6 gpu architectural enhancements for energy efficiency

Measuring and modeling the energy consumption of GPUs is the first step to
increase the energy efficiency of GPUs. But what concrete architectural en-
hancements are possible for improving the energy efficiency? Many proposals
can improve the performance of GPUs, but cause an even stronger increase of
the power consumption and reduce the energy efficiency of the GPU.
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1.7 research questions

In this thesis, we aim to answer to following research questions:

(A) How can we measure the power consumption of GPUs and kernels
running on GPUs?

(B) How can we estimate the power consumption using an architectural
simulator?

(C) Can architectural enhancements improve the energy efficiency of GPUs?

Each of these three broad main research questions, generates multiple more
detailed questions. For power measurements, we need to answer to following
questions:

(A1) How can we acquire high quality GPU power measurements?
(A2) How can power measurements be combined with application level event

information?

In terms of power estimation and modeling, our main questions are:

(B1) Can an architectural simulator predict the power consumption of a GPU
from its architectural level configuration?

(B2) How to design microbenchmarks to measure the power consumption of
individual GPU components?

(B3) How can microbenchmarks and power measurements be used to dis-
cover unpublished architectural details?

Regarding architectural enhancements, we ask our self the following ques-
tions:

(C1) Which GPU components can we change to improve the power consump-
tion?

(C2) Can enhancements that improve performance, but also increase power
consumption still result in gains in energy efficiency?

(C3) What kind of architectural enhancements will increase the applicability
of GPUs for new applications and still improve energy efficiency?

We provide detailed answers to these questions in the individual chapters
of this thesis and a summary in Chapter 12
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1.8 thesis structure

After this introduction, the thesis starts in Chapter 2 with a detailed look at
GPU architecture with a focus on NVIDIA GPUs. Chapter 3 continues with
an overview of the related work.

We aim to improve the power efficiency of GPUs, but before we can start
to improve the power efficiency, we first need to understand the power
consumption of existing GPUs. We need to be able to measure it and have
models that allow us to break down the power consumption into individual
parts. In Chapter 4, we describe the requirements for our measurement
infrastructure, as well as the development of custom hardware for fast and
accurate measurements of the power consumption of both GPUs and System
on Chips (SoCs) containing (mobile) GPUs. The chapter also describes, how
the raw measurement data can be processed, in order to measure the energy
consumption of events such as GPU kernel executions.

Chapter 5 describes the development and validation of the initial GPUSim-
Pow power model. It is based on a combination of architectural modeling as
well as measurement-based models. The measurement infrastructure from the
previous chapter is used to validate the model as well as for the development
of some models.

In Chapter 6, we refine the model by taking data values into account. In
this chapter, we show that processed data values significantly influence the
power consumption of the GPU and describe a model to accurately estimate
the power consumption of the ALUs based on the processed data.

Another refinement is presented in Chapter 7. Here we present an extension
to the GPUSimPow model that also considers the effect of data values during
memory access.

Armed with the knowledge gained by investigating and modeling the
power consumption of GPUs, we developed various optimizations to the
GPU architecture that aim to improve the energy efficiency. We start with
two chapters describing how the memory and memory interface could be
made efficient. Chapter 8 describes an improved encoding scheme for the
data transfer between GPU and DRAM, that is able to reduce the power
consumption of the interface by up to 6%. The next Chapter describes a
technique that reduces the refresh power of DRAM using approximation.
This is especially important for mobile applications as refresh power is even
consumed while CPU and GPU are in a sleep state.

After we have proposed multiple optimizations of the memory interface
we look at the main GPU architecture and try to improve its power efficiency.
We start by making the execution of divergent workloads more efficient. In
Chapter 10 of this thesis, we look at an alternative GPU architecture called
spatiotemporal SIMT, that is able to execute code with branch divergence
both faster and more efficiently.



1.8 thesis structure 9

Chapter 11 explains an additional technique called Scalarization. The use
of SIMD units and an SPMD programming model often leads to redundant
calculations as the threads of a warp often perform calculations with identical
inputs and outputs. This leads to a higher power consumption as a calculation
is performed 32 times instead of once when each warp consists of 32 threads
and it also leads to an inefficient use of the register files, as the results need
to be stored for each thread instead of storing the results just once per warp.
Scalarization aims to reduce these redundant calculations and stored values.
The chapter presents a novel algorithm to identify scalar instructions as
well as scalar values in regular GPU kernels automatically and details how
Scalarization can easily be integrated into spatiotemporal SIMT and evaluates
the performance as well as energy efficiency benefits of Scalarization on this
GPU architecture.

Finally, the thesis concludes with Chapter 12. An overview of the results of
this thesis is provided, conclusions are drawn and an outlook into research
directions for the future is provided.

After this overview of the thesis structure, this chapter ends and we continue
the thesis with an overview of GPU architecture in the next chapter.





2
G P U A R C H I T E C T U R E

This chapter provides an overview of current GPU architecture. It focuses on
the GPU architectures used by NVIDIA and AMD, as those are the two biggest
vendors of discrete desktop GPUs. Less information is available regarding the
architecture of embedded mobile GPUs. However, small versions of NVIDIA’s
Kepler and Maxwell GPU cores were employed in the Tegra SoCs. Different
vendors and programming standards employ different terms for the same
parts of GPU architecture. This thesis mostly follows the terminology used by
NVIDIA’s CUDA programming model. This chapter starts in Section 2.1 with
a discussion of the programming model employed for (GP)GPU programming.
Section 2.2 continues with a top level overview of NVIDIA and AMD GPUs.
The core data path and the GPU register file is discussed in Section 2.3. In
the following Section 2.4, the GPU memory interface within each core is
examined. Section 2.5 delves into warp scheduling and the warp control unit.
The DRAM interface is explored in Section 2.6. Finally, a short summary is
provided in Section 2.7.

2.1 programming model

GPUs are programmed either with 3D graphics APIs or GPGPU computing
APIs. Common 3D graphics APIs are OpenGL (ES), DirectX or Vulkan. Recent
version of these API also contain interfaces for GPGPU computing. GPGPU
computing uses APIs such as OpenCL or CUDA. In this thesis, we focus on
GPGPU computing.

OpenCL and CUDA offer a single program multiple data (SPMD) program-
ming model. In this programming model, the same program is executed on
multiple data items, if possible in parallel. As the programming model allows
for parallel execution of the different data items but does not require parallel
execution, the same program can be executed on different GPUs with different
numbers of parallel execution units and the parallelism can be adjusted to
match the capabilities of the hardware. CUDA is limited to NVIDIA GPUs,
however, OpenCL is an open standard supported on a wide range of GPUs,
GPUs, FPGAs and other accelerators. The support of multiple architectures
in OpenCL comes at a price: OpenCL is often more limited in capabilities

11



12 gpu architecture

Block
6

Block
4

Block
2

Block
0

Block
7

Block
5

Block
3

Block
1

Thread

12

Thread

8

Thread

4

Thread

0

Thread

13

Thread

9

Thread

5

Thread

1

Thread

14

Thread

10

Thread

6

Thread

2

Thread

15

Thread

11

Thread

7

Thread

3
Warp 0

Warp 1

Warp 2

Warp 3

Grid Block

Figure 2.1: Thread Hierarchy in CUDA and OpenCL

than CUDA, because it needs to be efficiently executable on a wider range
of architectures and thus can only implement features that can be executed
efficiently on all supported platforms.

Both OpenCL and CUDA avoid explicitly launching single threads. Instead,
a grid1 of threads is launched. This concept is further illustrated in Figure 2.1.
The grid is composed out of smaller blocks. The total number of threads
launched per grid is blocks × threads per block. The threads within one block
are running in parallel on the same GPU core. The threads from different
blocks, however, can be executed in parallel or sequentially depending on the
available GPU resources. To execute the threads within each block GPUs use a
combination of data level parallelism (DLP) and thread level parallelism (TLP).
Each block is broken down into groups of threads called warps. NVIDIA
uses 32 threads per warp and AMD uses 64 threads per warp in their GCN
architecture and calls them wavefronts.

These warps are executed using SIMD execution units. Despite execution
on SIMD units, each thread in the warp is (almost) able to follow its own
control flow as if they would be completely independent threads. NVIDIA
and AMD GPUs, however, maintain only one program counter (PC) per
warp and use predicated execution, an active mask and a special stack to
maintain the illusion of independent thread within each warp. NVIDIA calls
this execution model Single Instruction, Multiple Threads (SIMT). Figure 2.2
provides a short example of divergent branch execution with SIMT: On the left,
the figure shows a small CUDA example, the middle shows the corresponding
control flow graph and on the right, the active mask is displayed. The first
line is executed on all threads, the active mask is thus one for all threads.

1Grid is CUDA terminology, NDRange is the equivalent term in OpenCL
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if (threadid.x == 1)
{

a=b+c;
} else
{

a=b-c;
}
result[threadid.x]=a;

1

2

3

4

1 1 1 1

0 1 0 0

1 0 1 1

1 1 1 1

Step PC / Mask Stack Comment
1 1 / 1111 empty Divergent Branch
2 2 / 0100 [3 / 1011]
3 4 / 0100 [3 / 1011] Reconvergence Point
4 3 / 1011 empty
5 4 / 1011 empty Reconvergence Point
6 4 / 1111 empty

Figure 2.2: SIMT execution with Reconvergence Stack

When the branch is executed, first the taken path is executed [33] and the
not taken path is pushed to the reconvergence stack [34]. When node 2 is
executed, only thread 1 uses the taken path, and only thread 1 is enabled in
the active mask. Node 4 is called the reconvergence point. It is the immediate
post-dominator of our branch node 1. A post-dominator of a specific node
is a node where every path that passed through the node is also guaranteed
to pass by [35]. Node 4 is also the immediate post-dominator of node 1, the
first node that is a dominator of node 1. When the control flow from node
2 reaches the reconvergence point at node 4, it switches the current PC and
active mask to one stored on the top of the reconvergence stack. Node 3
is then executed on all threads but thread 1 and when the reconvergence
point is reached again, execution continues for all threads. While the SIMT
execution relies on hardware support, it relies on compiler support as well.
The reconvergence points are identified at compile time and some branches
are replaced by predicated instructions.

AMD uses a slightly different approach: Instead of maintaining a dedicated
hardware stack, the stack is stored in regular registers. Always executing
taken branch first can require up to one entry per thread in the stack for
nested branches. AMD reduces the number of stack entries needed by always
executing the path with fewer (or equal) active threads first [36]. With this
optimization, each time a new stack entry is pushed to the stack, the number
of active threads is at least halved. When only a single thread is active,
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divergent branches are not longer possible and no deeper reconvergence stack
entries can be created. After the GPU has executed the path with fewer active
first and has reached the reconvergence point, the stack entry is removed.
Remembering the already executed path is not required and thus does not
require a reconvergence stack entry. As AMD uses a warp size of 64 threads,
this limits the maximum number of stack entries to log264 = 6 which is
significantly lower than the 64 entries that would be required without this
optimization.

2.2 top-level architecture

A high-level overview of a typical GPU architecture is shown in Figure 2.3.
Several cores, in this example six, are connected to a crossbar that links the
cores to the memory controller and PCIe controller. Each core contains a
small L1-cache and each memory controller contains a part of the L2-Cache.
Both NVIDIA and AMD report thousands of cores in their documentation,
e.g.: Geforce GTX1080 GPU is reported to have 2560 “CUDA Cores” and the
Radeon RX Vega 64 spots 4096 “stream processors”. However, these cores do
not feature the elements normally expected in a core, e.g.: they do not have
their own control logic or caches. Each of these “cores” is a single precision
floating point ALU. Together with the clock frequency can be used to calculate
peak single precision flops. In this thesis core refers to what NVIDIA calls
“streaming multiprocessor” or AMD calls “compute unit” (CU): Mostly self-
contained cores with multiple floating ALUs configured as one or multiple
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SIMD execution units, the required interface to the memory interconnect
and various caches. AMD’s RX Vega 64 contains 64 of these compute units
and NVIDIA’s GTX1080 contains 20 “streaming multiprocessors” (SM). Each
SM contains 128 single precision floating point ALUs and each of the CUs
contains 64 floating point ALUs in their SIMD units.

Outside the of the cores, a global block scheduler distributes new work to
the cores if both additional work and enough resources on the core are avail-
able. GPGPU-sim models this scheduler as a simple round-robin scheduler,
however, the actual behaviour is slightly more complex and has advantages
in terms of locality [37], [38]. The PCIe controller allows DMA transfers and
direct access from the host PC memory to the GPU DRAM. It also enables the
host PC to submit new work to the GPU and query the execution status of
already submitted work.

2.3 gpu core datapath & register file

A simplified GPU data path is shown in Figure 2.4. While CPUs often used
multi-ported memory for register file to allow fetching several operands in the
same cycle, GPUs often used several register banks with only one or two ports
each. Typical GPUs are required to store the register content of a high number
of threads. Often hundreds or thousands of threads per core. As each thread
typically uses 16 to 128 32-bit registers, this results in a requirement of several
MB or at least hundreds kB storage in the register files. The total amount
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of storage in the register files of a GPU can reach more than 10 MB [40].
Typically, GPUs do not use a fixed number of architectural registers but can
configure the numbers of registers per thread within a certain range such as
32 to 128 registers. While the total amount of registers per core is fixed, this
flexibility allows developers to trade a higher number of registers per threads
for a lower number of active threads or vice versa. It is often assumed that
code with a higher number of active threads (also called occupancy) enables
higher performance. However, in some applications using more registers
per thread can enable code that exhibits more ILP. This can lead to a higher
performance, even with a smaller number of active threads [41]. Autotunning
can be used to find the optimal trade-off between the number of registers per
thread and the number of concurrent threads [42].

As multi-ported memory requires large amounts of area per storage bit,
GPUs simulate multi-ported memory by using several banks of memory with
only one or two ports each and sequentially fetch the required operants over
multiple cycles. Several possible variants of this technique are explained an
NVIDIA patent [43]. An operand collector collects the operands required for
each instruction over several cycles and stores them until all operands for
one instruction are available. When all operands are collected, the instruction
will be issued to the execution unit. In the example shown in Figure 2.4 four
register file banks are used. A routing network, e.g. a crossbar, connects
the register file banks to the operands collectors. The number of register file
banks and the ports per register file determine, how many operands can be
read and written from the register file in each cycle. This requires that the
operands are evenly distributed to all register file banks. Different schemes
with various advantages and disadvantages exist to map registers from the
individual threads to different register file banks. As the GPU register file only
simulates multi-ported memory but is not a truly multi-ported register file, all
mapping schemes can yield an effective register file bandwidth significantly
below the peak register file bandwidth, if the requested operands are not
evenly distributed to the banks.

As the register file uses a significant part of the area and power budget
of a GPU, many authors have described improvements to reduce the area
and/or power consumption of the register file. Wing-Kei et al. proposed the
use of a hybrid SRAM-DRAM register file [44], other authors proposed the
use of STT-RAM [45] or racetrack memory [46]. Gebhart et al. proposed the
use of multi-levels of compiler managed register file caches [47] and unifying
the register file with the first level cache and shared memory [48]. NVIDIA’s
Volta architecture uses small compiler managed register caches [49]. Lee et al.
proposed the use of compression to increase the effective size of the register
file [50].

In the figure, two execution units are shown, an integer arithmetic unit
and a floating arithmetic unit. Several common executions units are not
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shown in the figure. A load/store unit provides the interface to the memory
interface, it will be discussed in Section 2.4. GPUs commonly also provide
execution units, often called special function units (SFU), for more complex
functions such as trigonometric functions, reciprocals or square root. These
SFUs were designed for use in graphical applications and are fast but often do
not provide full single precision accuracy. They are used via special intrinsics
or via a -use_fast_math compiler flag that trades accuracy for speed. As
these instructions are not used as often as basic arithmetic instructions, the
throughput of these units is often significantly lower than the throughput of
the regular floating point units. As GPU workloads are typically heavy in
floating point operations, GPUs often offer a higher single precision floating
point throughput than integer throughput. The ratio of double precision
throughput to single precision varies strongly between different GPUs. Some
models aimed at high performance computing offer a 1:2 ratio 2 while other
models aimed at the graphics market offer a meager 1:32 ratio 3.

Figure 2.5 shows a simplified version of the datapath used in NVIDIA’s
Fermi architecture. In Fermi every core contains two warp schedulers each
responsible for one-half of all warps assigned to the core. Each of the warp
schedulers has its own register file and some execution units that are only
usable for the warps assigned to that warp scheduler, but the SFU unit is
shared between the two warp schedulers and both schedulers can submit

2e.g.: Tesla P100, V100

3e.g.: GTX1070, GTX1080
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instructions to this shared SFU. In NVIDIA’s Kepler architecture we also
notice a similar kind of mix of execution units that partially shared and
partially exclusive to a part of the warp. In NVIDIA’s Maxwell architecture
the amount of shared execution units is reduced but each core contains four
warp schedulers. Shared units in Maxwell are limited to memory and texture
access, which makes it easier for the compiler to schedule the instructions as
it removes the non-determinism caused by the interaction of several warps
schedulers sharing the same execution units. Some parallels can also be drawn
to AMD’s Bulldozer CPU architecture that is composed of multiple modules
and each module implements two cores and shares the FPUs between two
cores.

2.4 memory interface

A high level overview of a GPU Load/Store (LDST) unit is shown in Figure 2.6.
An address generation unit (AGU) generates one address per active thread
in the warp. Normal DRAM requests are sent to the address coalescing
logic which tries to bundle these requests into DRAM transactions. If the
threads try to access nearby accesses the number of DRAM transactions is
much smaller than the number of active threads, as each DRAM transaction
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typically loads or stores at least 32 consecutive bytes at a time. This depends
on the width of each DRAM channel (usually 32 or 64-bit per channel) and
the burst size of the employed DRAM technology. The coalesced requests are
then submitted to the L1 data cache within the core or a special constant cache
that caches memory values that are constant during the kernel execution and
can only be changed before the kernel is launched. If values are not contained
in the respective local cache they are forwarded through the interconnection
network to the memory controller that is responsible for the addressed part
of the memory and are fetched from DRAM or L2 cache. Shared memory
accesses are sent to a bank conflict serialization logic. Shared memory is
a small internal memory used for exchanging data that is shared between
the different threads. As the shared memory is a local part of each GPU
core, it offers energy efficient, high bandwidth and low latency storage. The
shared memory is local to each GPU core, so long wires are not required to
connect the memory and because it can only be accessed by locally running
threads and is not mapped into the address space of threads running on
different cores, no cache coherency or MMU is required. Because it can only
be accessed by threads running within the same core, it is only useful for
facilitating intra-block cooperation of the threads. In some NVIDIA GPUs,
the shared memory reuses parts of the L1 cache and allows programmers to
choose different configurations such as 16 KB shared memory plus 48 KB of
L1, 32 KB+32 KB or 48 KB shared and 16 KB L1.

Shared memory instruction allows each thread in a warp to access a differ-
ent location in the shared memory. Depending on the SIMD width of each
GPU core a naive implementation would require a multi-ported memory
with 8 to 32 ports. As this is not feasible within a reasonable area, a similar
architecture to the register file is used: Multiple single ported banks are used
and requests are serialized over several cycles if required. This is shown in
Figure 2.7. A conflict checker compares the bank addresses of the incoming
requests and selects a bank conflict-free subset to send to the address crossbar.
If not all requests could be handled in the same cycle, this is repeated in
the next cycle until the requests from all threads were executed. An address
crossbar is used to direct the address from each thread to the SRAM banks.
A data crossbar is used to direct the data from or to the SRAM banks to the
right thread. Performance counters exposed by the NVIDIA profiler show
that the generation of the additional request is implemented using a replay
mechanism. Instructions are resent to the load-store unit until the requests of
all active threads could be handled.
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2.5 warp control unit

The Warp Control Unit (WCU) shown in Figure 2.8 is responsible for schedul-
ing and managing the warps. It is a key part of the GPU architecture. Within
one warp, GPUs issue the instructions strictly in program order. GPUs can,
however, dynamically switch between different warps. This scheme often pro-
vides a high tolerance against long memory latencies. The scheme also partly
explains the large register files. Little’s law, shown below, links throughput,
latency and concurrency [51], [52].

mean concurrency = mean latency × throughput

A high memory throughput, together with a high latency means that many
concurrent memory accesses are required. With the current GPU architecture,
many concurrent memory accesses requires many concurrent threads, as every
thread can only trigger a few concurrent transactions. If many concurrent
threads are required, then thread context storage is also required for all of
them.

The warp fetch schedule logic selects a warp with space in the instruction
buffer and fetches one or multiple instructions from the instruction cache into
the instruction buffer. As it only fetches the instructions but does not schedule
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the execution the logic does not need to evaluate whether data dependencies
of the instruction are met or not. It simply looks at the instruction buffer
and if a slot is empty and the warp is not yet finished, it fetches the next
instruction for the warp that owns the empty slot of the instruction buffer.

The warp issue scheduler is responsible for issuing warps from the in-
struction buffer to the execution unit. Before the instruction is issued, the
scheduler checks that the instruction is ready to be issued or if conflicts with
in-flight instructions prevent the instruction from being issued at the moment.
If multiple instructions are ready for issue, the warp issue scheduler can use
a simple round-robin scheme or more sophisticated techniques, e.g.: some
proposed schedulers optimize for better memory locality [53], [54]. Lee and
Wu propose a scheduler that reduces tail effects [55]. Xu and Annavaram
propose a scheduler to optimize power gating [56].

Many NVIDIA GPUs use scoreboards for checking which instructions are
ready for scheduling, newer NVIDIA GPUs use a combination of schedul-
ing hints generated by the compiler and scoreboarding for long latency
operations [57]. AMD GCN GPUs also do not fully check all instruction
dependency and force the compiler to insert NOPs or reorder instructions
in some cases. In other cases, a special wait instruction needs to be used. It
checks the number of outstanding long latency memory requests and waits if
above a compiler-determined threshold [36]. These compiler-aided schemes
reduce the hardware required for dependency checking and improve the
energy-efficiency.
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2.6 dram interface

With thousands of threads active at the same time and often very large
working sets, large caches are ineffective for GPUs. GPUs also feature very
high arithmetic throughput. Due to these factors GPUs need significantly
higher bandwidths than CPUs. At the same time GPUs usually do not need as
much memory capacity as CPUs: Rarely used data can quickly be uploaded
via PCI express when required. GPU memory is typically not used to cache
disk content or large databases.

Due to these reasons GPU memory interface typically have different charac-
teristics than CPU memory interfaces. Figure 2.9 shows the peak bandwidth
of various CPU and GPU memory interfaces. The bandwidth provided by
GPU is significantly higher. Even the slowest and oldest GPU provides a sig-
nificantly higher memory bandwidth than the newest and fastest CPU listed
in the chart. The fastest GPU in chart features almost 8 times the memory
bandwidth of the fastest CPU. Figure 2.10 lists the bandwidth per data pin,
it can be seen that the higher bandwidth is partly provided through the use
of faster signaling standards. NVIDIA’s GTX1080 uses a GDDR5X interface
at 10 Gbps, while the Core i7-8600 uses DDR4 at 2.66 Gbps. The signaling
employed by the GPU is almost 4 times faster.

A wider interface explains the remaining gap in the peak bandwidth: The
interface used by the CPU is 128-bit wide, while the GPU uses a 256-bit
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wide interface. But the CPU memory interface also has many advantages:
The CPU can use up to 64 GB of memory and memory can be extended
or replaced using memory modules, while the GPU has 8 GB of GDDR5X
directly soldered to the PCB and memory cannot be extended or replaced.
GDDR5 [58] and GDDR5X [59] are also significantly more expensive per
storage byte than DDR4 [60].

Connectors such as the DIMM sockets used by CPUs create crosstalk and
EMI [61]. CPUs commonly allow the connection of multiple memory chips to
each data pin, however, the resulting multi-drop bus the parasitic capacitances
of connectors can distort the signal [61]. Soldering memory to the PCB instead
of using sockets and using point-to-point connections instead of multi-drop
bus provides a better signal quality and thus allows for higher data rates.
However, it also prevents memory upgrades and high memory capacity.

However, despite the high bandwidth in absolute terms, GPU memory
bandwidth is often a significant bottleneck, as we also need to consider
the very high computational throughput of GPUs. Figure 2.11 shows the
flops per byte for various GPUs and CPUs. For both CPUs and GPUs, peak
performance is growing faster than memory bandwidth. Applications on
both CPUs and GPUs must compute many floating point operations per byte
to avoid being limited by memory bandwidth. NVIDIA’s GTX1080 needs
to perform 25.6 or more floating point operations per byte in order to avoid
being limited by memory bandwidth. Despite having only 1/8 of the memory
bandwidth, the Core i7-8600 only needs 19.8 flops per byte.

To solve this bandwidth shortage some GPUs employ high bandwidth
memory (HBM) [62]. HBM and its successor HBM2 use a silicon interposer
and through silicon vias (TSV) to include the DRAM in the same package as
the GPU and offer a very wide interface [63]. The very wide interface possible
due to the interposer and TSVs allows reducing the per pin bandwidth to
reduce the power consumption and simplify the required drivers, receivers
and clocking circuits while still providing a bandwidth increase. AMD’s
Radeon R9 Fury X GPU uses a 4096-bit wide interface to provide 512 GB/s
bandwidth while running at just 1 Gbps per pin. GDDR5 interface width is
typically limited to a maximum of 512-bit, with 256-bit wide interfaces being
more common. NVIDIA’s (very expensive) Tesla V100 reaches 900 GB/s using
HBM2 and a 4096-bit wide interface [64].

Beside increasing the actual memory bandwidth, compression and tile-
based rendering are often used techniques for increasing the effective band-
width, mainly for 3D rendering. Tile-based rendering was originally proposed
for parallel rendering but is also highly useful for reducing the required mem-
ory bandwidth [65]. Both lossless and lossy compression techniques have
been used to reduce the required bandwidth. Textures are often stored using
lossy compression algorithms [66], [67]. Z-Buffers often use a hierarchical
compressed storage to reduce the required bandwidth and allow the early
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z-rejection of blocks of pixels [68], [69]. However, while the use of memory
compression is common for 3D rendering, compression is usually not used
in GPGPU applications. In a paper, co-authored by the author of this thesis,
Lal et al. proposed E2MC as a memory compression technique for GPG-
PUs [70]. As already mentioned above, Lee proposed a compressed register
file [50], Vijaykuma et al. propose a clever hardware/software solution, where
unused compute resources are used to provide memory compression [71].
Pekhimenko et al. describe a compression technique that aims to reduce
the interface energy by reducing the number of bit toggles [72]. Rhu et al.
propose a specialized DMA based compression for deep learning, one of the
most common GPGPU applications [73].

2.7 summary

This chapter provided an overview about current GPU architecture. We
described the programming models employed by GPGPU APIs such as CUDA
and OpenCL. We explained how threads are bundled together into warps and
how branching is enabled while threads are executed on SIMD execution units.
We illustrated how the GPU architecture focus differs from CPU architecture
by focusing on throughput instead of latency. The use of multiple warps
and warp scheduling to compensate for memory and arithmetic latency was
described as well as the large GPU register files, shared memory and the
high bandwidth external memory interfaces used by GPUs. The next chapter
provides a survey of related work for the entire thesis.
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R E L AT E D W O R K

This chapter reviews work related to this thesis. We start with additional intro-
ductions into GPU architecture in Section 3.1. Section 3.2 lists related work for
GPU power measurements and Section 3.3 continues with architectural GPU
power modeling. Section 3.4 takes a look at work linked to data-dependent
power modeling. The second half of the chapter proceeds with literature
related to the architectural enhancements proposed in Chapters 8 to 11. Sec-
tion 3.5 reviews papers related to the proposed memory interface power
reduction encoding. We then cover work related to our refresh power reduc-
tion technique in Section 3.6. After these two memory-related sections, the
next Section continues with (Spatio-)Temporal SIMT related research. The
related work chapter finishes with Section 3.8 related to Scalarization.

3.1 gpu architecture

In addition to the introduction found in Chapter 2, many books and papers
provide further insight into GPU architecture. While we cannot list them all
here, we selected a list of works we found especially valuable for the readers
of this thesis. Kirk and Hwu’s book provides a good history of GPUs as well
as a great introduction into CUDA programming [74]. The 5th edition of
Hennesey and Patterson’s classic book was updated with an excellent chapter
on "Data-Level Parallelism in Vector, SIMD, and GPU Architectures" that
helps to put GPUs into perspective [75].

The GPGPU-Sim manual describes the GPU architecture modeled by the
popular simulator and can be understood as a best guess description of
NVIDIA’s Tesla and Fermi architecture GPUs [37].

Both NVIDIA and AMD provide many white papers on the architecture of
their GPUs (e.g.: [57], [76]–[78]), however, these descriptions often lack detail
and target programmers instead of architects.

AMD provides many details for their GCN architecture GPUs as part of
their "GPU Open" initiative and their support for open source GPU driver
development. Information released by AMD includes a complete documenta-
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tion of the instruction set of their latest GPUs as well as an overview of the
architecture of the whole GPU and the individual GPU cores in particular [36].

3.2 power measurement

Some related work [79], [80] employed commercial wall-plug power meters.
These meters are inserted between the PC power supply and the power outlet.
They measure the power consumption of the whole PC, instead of measuring
only the power consumption of the GPU. Hong and Kim [79] assume the
GPU power can be calculated by measuring the power of the entire PC under
load and subtracting the power of the PC in idle state. This assumption
yields high inaccurate results, because the power used by the remaining PC
components is usually not constant and the measurement results will include
power supply losses. Large bypass capacitors inside the power supply prevent
the accurate measurement of power for kernels which run fewer than 50 ms.

Ma et al. [80] tried to solve the first issue by using a second ATX power
supply powering only the GPU but this approach ultimately suffers partially
from these issues as well because the GPU also receives parts of their power
supply from the PCIe slot and these supplies are provided by the same ATX
power supply that also powers the mainboard, CPUs, memory and other
non-GPU components.

Other papers [81]–[83] use improved measurement methodologies but still
exhibit multiple limitations. These published methodologies either fail to
measure all power sources, e.g. do not measure the power provided via
the graphics card slot [81], measure only current and assume constant volt-
ages [82], or use low sampling frequencies that prevent them from measuring
short-term power variations [81], [83].

Burtscher et al. explain how power sensors included in some GPUs can
be used to measure the power consumption, however, these sensors lack the
resolution and sampling rate of the measurement testbed presented in this
thesis[84].

3.3 architectural gpu power modeling

For general GPU power modeling, the available body of previous work was
rather small, when the work in Chapter 5 was initially published. On the one
hand, there have been approaches such as the ones from Hong and Kim [79]
or Ma et al. [83] which are based entirely on measured data. While this type
of power model is able to deliver superior accuracy for the architecture it was
built from, it lacks the capability to make accurate predictions about GPUs
with other architectural parameters and designs. On the other hand, several
researchers have built purely analytic power models, such as Ramani et al. [85]
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and Wang [86]. While such approaches generally show a strong correlation
between different simulated and hardware GPU architecture configurations,
they typically cannot provide reasonable absolute accuracy due to the lack
of either industrial or measured anchor data. Our power simulator improves
upon all these prior approaches by combining both empirical and analytical
component models to create a system that is both architecturally flexible
and shows reasonable absolute accuracy. A similar approach to ours has
previously been used to estimate CPU power consumption by the well-known
McPAT tool [87].

As already explained in the previous section, many GPU power modeling
papers made strong assumptions about the hardware they measure, leading
to inaccurate measurement methodologies. After this work was initially pub-
lished, several other papers presented similar studies. Leng et al. presented
their power simulator GPUWattch [88]. Just like GPUSimPow, it combines
gpgpu-sim with a power model based on an extended version of McPAT.
It also uses a good GPU power measurement, similar to the measurement
testbed used for GPUSimPow and a clear improvement compared to the older
papers listed above. GPUWattch also relies on analytical models for modeling
the energy consumption of many GPU components. The two simulators differ
in how they employ microbenchmarks. GPUWattch provides power models
for all main GPU components based on CACTI, McPAT or Synopsys Power
Compiler. It then uses microbenchmarks in a refinement stage to rescale
the outputs of the power models. For increased accuracy the outputs of the
analytical models are multiplied with the refinement factors estimated in the
refinement stage. The use of these factors has been criticized to render results
of the analytical model to be "mathematically irrelevant" [89]. GPUSimPow
does not use a refinement stage but instead models some components using
models calibrated with microbenchmark based measurements. Lim et al.
also describe a power simulator for GPUs based on an extended McPAT and
gpgpu-sim [90]. The authors list a different focus of the paper as the main dif-
ference to GPUWattch. Diop et al. describe a power model for heterogeneous
processors containing GPUs [91].

Since its release, several papers have used GPUSimPow for estimating area
and/or power consumption of GPUs. Libuschewski et al. used GPUSimPow
inside a multi-objective energy optimization framework to estimate the energy
used by a mobile GPU in a mobile biosensor application [92] as well as for
design space exploration for mobile GPGPUs [93]. Sankaranarayanan et al.
used GPUSimPow to evaluate the energy benefits of a modification to the
GPU memory hierarchy they propose [94]. Nath et al. employed GPUSimPow
to estimate the static power consumption of various GPU configurations to
build a model of DVFS in GPUs [95]. Dhar and Chen used GPUSimPow for
estimating the area of a GPU core and its static power consumption [96].
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3.4 data-dependent power modeling

Many popular architectural power simulators for CPUs and GPUs ignore the
data values processed by the datapath. McPAT’s CPU core power model [87],
for example, counts various register reads, uses of integer and floating point
ALUs, integer multiplies, register renaming, but neither the exact instruction
type nor any statistics about the processed data values are used to predict the
power consumption.

GPUWattch [88] and GPUSimPow [97] are power simulators for GPUs.
Both simulators are based on gpgpu-sim and extend it with a McPAT-based
GPU power model. These architectural simulators count activity factors for
various GPU units and use them to estimate the power consumption of the
GPU. Counted activities are integer or floating point instructions, register
reads and writes, memory accesses, etc. None of the used activity factors
measures how often datapath lines switch between 0 and 1.

One exception to ignoring data values is the original Wattch power simu-
lator [98]. Wattch contains a DYNAMIC_AF option in its source code that
collects activity factors based on average population count of the processed
values, but this is only used for some internal buses and memories but not
for the ALU. In fact, the Wattch source code contains the comment: "FIXME:
ALU power is a simple constant, it would be better to include bit AFs and
have different numbers for different types of operations". The Wattch authors
apparently recognized that this was a weak point in their simulator. For a
CPU power simulator where control logic dominates the datapath, using such
a simple model might still be acceptable, but accelerators such as GPUs try
to keep the control logic small and simple and use large parts of their power
and area budget for execution units and register files. In Chapter 6, we will
show that for these accelerators more accurate power models are required.

Kim, Austin, Mudge and Grunwald [99] also recognize that architectural
power simulators ignore values and memory addresses in their power estima-
tion. They describe how an architectural simulator for CPUs that considers
values could be built and developed a prototype based on SimpleScalar but
did not validate their model.

Adhinarayanan measures and models the data depend interconnection
power on an AMD GCN GPU with OpenCL [100]. Our work uses a NVIDIA
Fermi GPU with CUDA and also measures the external interface.

Some related work exists for microprocessors. Sarta, Trifone and Ascia
propose a data dependent power model for a simple DSP with a 2-stage
pipeline [101]. They find that operands strongly influence the energy con-
sumption and also employ linear least square fitting. Kerrison and Eder [102]
model the energy consumption of a hardware multi-threaded microprocessor.
They consider the overhead of switching from one instruction to another and
the influence of data values on energy consumption.
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3.5 optimal dbi encoding

Hollis [103] described the DBI DC and DBI AC schemes and recognized that
both the number of transmitted zeros and the number of signal transitions
are important for the power consumption of the memory interface. The
slight increase of the signal transitions in DBI DC and the slight increase of
transmitted zeros in DBI AC was also described in the same paper. Hollis
proposes to combine DBI AC and DC by switching between DBI DC and
DBI AC encoding modes. The proposed DBI ACDC scheme encodes the
first byte of a group of bytes using DBI DC and then encodes the remaining
bytes using DBI AC. We found that this scheme indeed provides a slight
improvement compared to pure DBI AC. However, the encoding proposed in
this thesis outperforms the DBI ACDC scheme. In this thesis, we assume that
all lines transmitted ones prior to transmitting the evaluated burst. Due to
this boundary condition, DBI AC performs identically to DBI ACDC in our
evaluation.

Chang et al. [104] propose schemes that aim to reduce both zeros and transi-
tions per burst. However, instead of finding the minimal energy encoding for
each burst, they propose heuristic schemes that find good but not necessary
optimal encodings.

In a patent, Hollis [105] proposes a technique to target both signal transition
and zeros. This technique uses additional signal lines and requires a different
and more complex decoding process than regular DBI schemes.

Ihm et al. propose an analog circuit for DBI DC encoding [106]. Analog
implementation could also reduce the overhead of the technique proposed in
Chapter 8 and DBI encoding seems to be well suited for analog implementa-
tion as rare inaccurate encoding decision are unlikely to causes application
errors.

Stan and Burleson [107] provide theoretical background on DBI encoding,
however, they only consider the reduction of signal transition and do not
consider the reduction of zeros.

Narayanan et al. [108] describe additional coding schemes that can reduce
the number of signal transitions beyond DBI, but require an even higher
number of lines and more complex encoding and decoding.

Kim et al. describe DBI DC in GDDR4 and show how it reduces simultane-
ous switching output noise [109].

Pekhimenko et al. describe a toggle-aware compression scheme for GPU [72].
This scheme reduces signal transition by choosing data representations with
reduced toggling.
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3.6 sparkk

Among others, Jamie Liu et al. [110] recognized that most DRAM rows do not
contain high leakage cells and thus can tolerate lower refresh rates. Most cells
retain their data for a much longer time than the short regular refresh period,
that is required for error-free storage [111]. They proposed a mechanism
named RAIDR to refresh these rows at a lower rate. Because different refresh
periods cannot be achieved with the conventional DRAM internal refresh
counters, they add a refresh counter to the memory controller. This refresh
counter runs at the rate necessary to meet bit-error free operation, includ-
ing rows that contain cells with high leakage. The memory controller then
generates activate and precharge commands to manually refresh the rows.
Manual refresh cycles are skipped if the memory controller determines that
they are not necessary. The manual refresh by the memory controller needs
slightly more power per refresh operation than the standard auto refresh as
the row addresses need to be transmitted to memory. But the authors show
that the power saved by the reduced refresh frequency outweighs the power
consumed by the more complex refresh signaling. The idea of a memory
controller managed refresh and memory controller internal row counter is
also used in Chapter 9. In RAIDR, the memory controller uses bloom filters
to classify row addresses into different refresh bins. Depending on a row’s
refresh bin, the memory controller issues an actual refresh command only
every fourth, second or every time the refresh counter reaches it. This scheme
results in rows getting refreshed at 256, 128 or 64 ms periods depending on
their refresh binning. Our proposal extends RAIDR by introducing additional
refresh bins for approximate data.

Song Liu et al. propose Flikker [112], a memory area with reduced refresh
periods for non-critical data. They propose a modified DRAM to enable longer
refresh periods on a part of the DRAM. The authors of RAIDR recognized
that their work can be combined with the Flikker proposal of Liu et al. Our
approach can be seen as an extension of Flikker. It provides an additional
reduction of refresh activity for non-critical data. Different from the storage
area proposed by Liu et al. this storage area uses varying refresh periods for
different bits based on their importance.

Ware and Hampel proposed threaded memory modules [113]. In a threaded
memory module, a DRAM rank is split into multiple subranks. The sub-
ranks have separated chip select (CS) lines but otherwise share the address
and control signals. The CS line controls whether the DRAM chip reacts
to transmitted commands or ignores them. By providing multiple CS lines
instead of a single CS signal per rank, commands can be issued to a subset
of the DRAM rank. Ware and Hampel list various advantages, such as finer
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granularity transactions, higher performance and lower power consumption.
Our proposal also relies on subranks, but uses them to provide bits with
different energy/error rate trade-offs simultaneously.

Sampson et al. worked on approximate storage in multi-level cells in Flash
or PCM [114]. They recognized that storage bits from one cell have different
levels of reliability and errors can be minimized with their striping code. This
striping code is very similar to the permutation proposed in Chapter 9.

After this work was initially published several additional related articles
were published. Raha et al. performed an experimental study and found that
the quality of the different DRAM pages differs significantly, they propose to
sort the pages into different quality levels and allocate data according to their
error tolerance [115]. Ranjan et al. suggested an approximate STT-MRAM
with different configurable quality levels for different bit groups [116]. Jung et
al. showed that it is often possible to omit the refresh completely [117]. Chen
et al. suggested to use different supply voltages for the various bits with an
approximate SRAM [118].

3.7 temporal simt and spatio-temporal simt

Work related to temporal SIMT can be grouped into two categories: First, work
describing temporal SIMT, second, studies focusing on efficient execution of
branch divergent codes.

temporal simt The general idea of temporal SIMT execution is described
in an NVIDIA patent by Krashinsky [119], but the details provided are
insufficient to derive an implementation and furthermore no performance
evaluation is included. In the academic world, TSIMT has also been mentioned
by Keckler et al. in a paper that describes that moving data across the chip is
more energy-consuming than actual computation [120]. This paper introduces
the Echelon GPU architecture that offers TSIMT execution as well as many
other features. The authors mention the potential benefits of TSIMT for
branch divergent applications, but does not present an implementation or an
evaluation of Echelon.

branch divergence A large body of work has been performed on how
to improve GPU performance when there is control divergence. Many tech-
niques such as Dynamic Warp Formation [121], Thread Block Compaction [122]
and Large Warp Microarchitecture [123] reorder threads from multiple warps
into fewer warps with more active threads per warp. All these techniques
keep the spatial SIMD property: All lanes execute the same instruction at the
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same time, but differ in when and how threads are reordered. Furthermore,
because these techniques reorder threads between warps, memory divergence
can increase and correctness problems for applications that rely on warp-level
synchronization can arise.

Another, related technique called Simultaneous Branch and Warp Interweaving
(SBWI) was introduced by Brunie et al. [124]. They proposed enhancements
to the GPU’s microarchitecture to a) co-issue instructions from two different
branch paths and b) co-issue instructions from different warps to the same
SIMD unit. Interestingly, this architecture shares a property with TSIMT,
namely that the different lanes do not need to share the same instruction. In
SBWI, however, only two different instructions can be executed at the same
time, while in TSIMT each lane can execute a different instruction.

A common disadvantage of the techniques described above is that they can
only improve performance when the active mask meets certain conditions.
One of the reasons for these conditions is that the individual contexts of
the threads that run on the GPU are stored in a specific part of the GPU’s
register file [125]. As a result, it is generally not possible to freely swizzle
and re-group threads for execution. TSIMT takes a different approach that
avoids this problem almost entirely at the expense of higher issue throughput
requirements.

Vaidya et al. proposed an architecture in which 16-wide SIMD instructions
are executed over multiple cycles on 4-wide SIMD units [126]. Two techniques
are proposed to accelerate execution when only a subset of threads is active:
Basic Cycle Compression (BCC), where SIMD subwords are skipped if no
thread is active, and a more costly but also more powerful technique called
Swizzled Cycle Compression (SCC) that employs crossbars to permute the
operands prior to compaction to enable a more efficient compaction.

Lee et al. group different possibilities for data parallel accelerators into
five different groups: MIMD, Vector-SIMD, Subword-SIMD, SIMT and Vector-
Thread (VT) [127]. TSIMT can be seen as another variant. The programming
model is MIMD, but the execution units are similar to density-time vector
lanes [128]. The lanes share the same instruction fetch and decode frontend
but are not bundled in groups that execute the same instructions at the same
time as in the architectures classified as Vector-SIMD and SIMT. On the other
hand, the TSIMT-lanes are also not as independent as the lanes in the VT
architecture. The control logic in each lane is limited to a register storing
a single instruction, control logic for the sequential register fetch and the
density-time execution of the stored instruction, while in VT each lane is able
to fetch its own instructions and can use a shared control processor.
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3.8 scalarization

Lee et al. discussed Scalarization as well mentioned TSIMT [129]. They devel-
oped a Scalarizing compiler for SIMT architectures and evaluated architecture
independent metrics such as the percentage of scalar instructions but did
not evaluate performance. They also described potential GPU architectures
exploiting scalarized code, such as SIMT datapaths with an additional scalar
unit, SIMT datapaths with scalars in a single SIMD lane, and TSIMT datapaths.
The authors recognized that Scalarization and TSIMT match each other well,
but, as mentioned before, no actual implementation or evaluation is provided.

A similar analysis has been performed by Collange et al. [130]. Like the
previous study, Collange implemented compiler support for Scalarization,
but in a just-in-time form using GPUOcelot [131]. The author presented the
Scalarization metrics of the resulting code, i.e. dynamic instruction counts of
scalar and vector instructions, but no performance analysis is presented.

Coutinho et al. transform GPU kernels to an SSA-based intermediate repre-
sentation called μ-SIMD, afterward they analyze the divergence of the program
in its μ-SIMD representation [132]. They recognized that instructions could
sometimes be scalarized, even during divergent control flow, if their output
registers are not alive at the immediate post-dominator of the potentially
divergent branch. However, they do not perform register allocation and thus
only report how many of the registers in SSA form could be scalarized, but do
not report how many registers of which type are actually needed after register
allocation. The Scalarization algorithm presented in Chapter 11 directly works
on the representation of GPU kernels used by NVIDIA and does not require
a transformation to an SSA-based representation and back. In Chapter 11

register allocation is performed on the scalarized code and we discuss the
modifications to register allocation that are required for scalarized code.

Xiang et al. studied the problem of Scalarization as well and also consider
uniform values across warps [133]. They introduce a hardware Scalarization
mechanism for intra-warp uniform instructions. This mechanism, however,
does not allow a higher occupancy. A scalar register file based architecture
is also presented, but does not enable higher occupancy but only reduces
energy consumption. Scalars are processed using the same 8 element wide
SIMD execution units as vector instructions, but scalar operations are finished
in 1 cycle instead of 4. While this improves performance, it leaves 7 out of 8

ALUs unused during the execution of scalar instructions.
Finally, Kim et al. studied the relationship of the different values processed

by a warp [134]. They named this value structure and identified several
important classes such as uniform vector where all elements contain the same
value and affine vectors where all elements share a simple affine relationship
to block- and thread-ids. The authors focus on an architecture named fine-
grained SIMT (FG-SIMT) that is closer to purely compute-focused SIMT
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accelerators than to GPUs. They propose microarchitectural mechanisms to
exploit uniform and affine values, including an affine register file as well as
dedicated affine execution units. The proposed mechanisms were evaluated on
a conventional NVIDIA-like GPU architecture, but the authors state explicitly
that the lack of public knowledge about GPGPU architectures prevents them
from performing more than a preliminary design space exploration. Instead,
they focused on an evaluation using a VLSI implementation of an FG-SIMT
design.

After this review of related work, the next chapter presents the power
measurement infrastructure used within this thesis.



4

G P U P O W E R M E A S U R E M E N T

To improve the energy-efficiency of GPUs, we first need to comprehend the
energy consumption of current GPUs. One of the first steps for gaining
insight into the energy consumption of GPUs is measuring it. Together
with microbenchmarks, measurements can be used to narrow down the
energy consumption of specific parts of the GPUs or specific activities that
the GPU performs. These results can then be a part of a power model
that predicts the power consumption of the GPU based on activity factors
estimated using an architectural simulator. The accuracy of the predictions
of this simulator can be compared against energy measurements of the same
benchmarks running on an actual GPU. In this chapter, the design of two
different measurement testbeds is described. The first testbed was designed
to enable energy measurements of discrete GPUs and the second testbed
was designed to alleviate some limitations of the old testbed and also allow
energy measurements of embedded SoC platforms. As these testbeds were
designed for the LPGPU and follow up LPGPU2 projects, we refer to them as
the LPGPU1 and LPGPU2 testbeds, respectively.

In the following sections, we first describe in detail how the analog power
measurements are performed and then describe the software for the LPGPU1

testbed. Finally we describe the LPGPU2 testbed.

4.1 power measurement concept

We measure power by measuring the voltage, as well as the current provided
to the GPU or an SoC with integrated GPU. The measured voltages and
currents are multiplied by the software to calculate the power supplied to the
device.

The testbeds measure current indirectly by measuring the voltage drop
caused by the current over a shunt small resistor. This is shown in Figure 4.1.
Measuring the current using a shunt provides a wide analog measurement
bandwidth. The wide bandwidth allows measuring direct current as well as
quickly changing currents. Both slow and long events can be measured, such
as the static power consumption as well as short kernels. The shunt is inserted

37
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Figure 4.1: High Side Shunt GPU Power Measurement Scheme, Two Voltages
U1 and U2 are measured to calculate the GPU power consumption
PGPU

into the positive voltage rail ("high-side measurement") to prevent distortions
of the ground-level [135], [136]. In this measurement topology, a small voltage
drop (e.g.: 100 mV) across the shunt needs to be measured while the much
larger common mode voltage (e.g.: 12 V) needs to be rejected. Without
excellent common mode rejection, small fluctuations in the supply voltage
could cause significant errors in the current measurements. The required
common mode rejection can be achieved with either matched high precision
resistors or special instrumentation amplifiers or current sense amplifiers
that contain internal highly matched resistors. For the LPGPU1 testbed, we
designed a signal conditioning circuit based on the Analog Devices AD8210

current sense amplifier [137]. For the LPGPU2 testbed, a similar AD8218

amplifier was used [138].

4.2 lpgpu1 testbed

The LPGPU1 measurement testbed is used to measure the power consumption
of GPUs and other PCIe cards. An overview of the LPGPU1 testbed is
shown in Figure 4.2. The testbeds consist of four main hardware parts:
An USB analog to digital converter (ADC), a riser card that inserts current
measurement resistors between card and mainboard, PCIe power extension
cables with added measurement resistors and signal conditioning boards.
Power is measured by measuring voltages and currents of all power rails
connected to card. Using P = UI the consumed power can be calculated. An
important part of the testbed not shown in the block diagram, is the software
that supports the measurements. The software collects the raw data from the
ADC and as well as from the GPU profiler and calculates how much energy
is consumed in each kernel executed on the GPU.
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4.2.1 Analog to Digital Conversation

To perform analog to digital conversion, we selected a “commercial off-the-
shelf” (COTS) NI USB-6210 analog to digital converter [139]. This converter
offers 8 analog differential inputs, 16-bits of resolution and a maximum sample
rate of 250 kHz. One internal analog digital converter is shared between all
input channels. Large discrete GPUs receive power from four different inputs:
a 3.3 V rail as well as a 12 V from the PCIe slot, as well as two PCIe power
connectors with 12 V. For all four voltage rails we need to measure the current
and because the voltages are not exactly 3.3 V and 12 V but fluctuate slightly
under load, also the voltages. This reduces our maximum sample rate to
250 kHz/8 = 31.25 kHz.

National Instruments provides Linux drivers as well as an SDK for this
ADC. However, these closed source drivers are only supporting older kernel
versions [140]. Packages are only supplied for a few Linux distributions. The
drivers are also not fully stable and fail to measure occasionally. A complete
restart of the system was sometimes required to make new measurements
possible. These issues were resolved in the LPGPU2 testbed by replacing
the NI USB-6210 with our own complete measurement circuit, firmware and
drivers.

Figure 4.3: Adex PEXP16-EX-CSR riser card with GPU and current shunts
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Figure 4.4: PCIe Power Cable with inserted shunt resistor and sensing wires

4.2.2 Insertion of Current Shunts

Discrete PCIe GPUs receive power from different power supplies. Up to 75 W
can be supplied directly via the PCIe slot. This slot power is enough for
small desktop GPUs. Larger GPUs require more power and have one to three
power connectors to receive extra power via PCIe power cables. 6-pin power
connectors can supply up to 75 W per cable, 8-pin connectors supply up to
150 W per cable. GPUs can use different power supplies simultaneously, e.g: A
GPU that uses 200 Watt might draw 60 W from the PCIe slot and 140 W from
an 8-pin PCIe power cable. As GPU vendors can implement different schemes
to divide their power requirements between the different supplies, all supplies
need to be measured in order to measure the total power consumption of
the GPU. Therefore, a shunt resistor needs to be inserted into every voltage
rail. As we did not want to modify the GPU or the motherboard we used
a special riser card. This card is inserted between motherboard and GPU.
We use an Adex PEXP16-EX-CSR riser card [141], as shown in Figure 4.3.
It adds current sensing resistors into the power supply rails. We need to
connect to both sides of the resistors to measure both the voltage drop over
the resistor and the voltage to ground. The regular 3.3 V and the 12 V power
rails need to be measured. The board provides big vias to the on-board shunt
resistors (marked red in the picture). A connection to a cable can easily be
soldered to these vias.

Modified PCIe power extension cables are used to measure the power going
into the GPU via the external power connectors. The modified cables are
shown in Figure 4.4. For measuring the current, a shunt resistor is inserted
into a PCIe extension power cable. We used a 20 mΩ shunt resistor with
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Figure 4.5: Analog signal condition board

10 W rating from Dale. The shunt resistors are inserted into the positive
voltage lines, and on each side of the resistor a sensing line is added to the ca-
ble. These two sensing lines are then connected to the signal processing board.

4.2.3 Signal conditioning

Without additional circuits, the NI-USB6210 ADC is able to measure analog
voltages between −10 V to 10 V [139] . Our measurement setup needs to
measure signals that can be outside of that range (e.g.: 12 V DC). In addition
and as already explained above, the voltage drop across the current mea-
surement resistor is very small, e.g.: a current of 5 A causes a voltage drop
of just 50 mV across a 10 mΩ shunt. The voltage drop needs to be shifted
into the operating range of the ADC and requires analog amplification for
accurate measurements. An AD8210 amplifier is used to perform both steps.
It removes the common mode voltage and amplifies the voltage difference
between its two input ports by 20×. It also enables the addition of small
common voltage. This option is used to add a small voltage offset. This avoids
issues with the output stage of the amplifier, as output voltages very close
to 0 V would be distorted due to the internal circuit design of the amplifier.
The voltage offset is then later subtracted. A simple resistive voltage divider
is used to scale the voltage into a range usable by the ADC. High precision
resistors are used to avoid accuracy issues. The cables between the shunt
resistors and the signal processing board were twisted. This twisted-pair
cabling provided a significant reduction of electromagnetic noise. Differential
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Figure 4.6: Completed Power Measurement System

connections between signal processing board and the ADC are employed to
reduce the influence of noise. Our voltage divider was built from 1% resistors
and has a gain accuracy of ±1.7% and no offset error. The AD8210 has a
gain accuracy of ±0.5% and an offset error of ±1 mV at its output. At 12 V,
the offset error translates to an error of up to 60mW in power measurements.
The error range of signal conditioning and measurement is thus ±1.5% for
currents and ±1.7% for voltages. In the relevant −5 to 5 V range, the DAQ
has a specified gain accuracy of 0.0085% and an offset error of 0.1 mV. Not
taking the small offset errors into account, overall, our system thus measures
power within ±3.2%.

Each board contains the signal conditioning circuit for one voltage rail.
GPUs using the only power from the PCIe slot have two voltage rails and
thus require the use of two of these boards, GPUs using power from the slot
and one external PCIe power connector need three of these boards, and GPUs
using two external power connectors need four of these boards.

Figure 4.5 shows one of the analog signal condition boards. The terminals
on the left of the board are connected to one of the shunt resistors. The
terminals on the right provide the connection to the ADC and also 5 V power.
Finally, Figure 4.6 shows the complete system including signal condition, riser
card, PCIe power cables and ADC.
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4.2.4 Software

An essential part of the measurement testbed is the software that drives the
measurements. The ADC delivers raw samples of our voltages and currents.
As its first step, the software converts these raw samples into proper units
such as Volt and Ampere. It then calculates power and energy from these
currents and voltages. For analyzing the power consumption of the GPU,
while running a specific software, these almost raw measurements are not
very useful. For such an analysis, we want to know how much energy was
consumed by the execution of specific commands such as the execution of
GPU kernel or memory transfers between GPU and host. To calculate how
much energy each command used, we employ profiling functions offered by
CUDA and OpenCL to receive a list of relevant commands and their timings.
CUDA provides a command line profiler that can be activated by setting
specific environmental variables before executing an application. After the
application was executed, the profiler creates a small text file that contains a
list of executed kernels and data transfers as well as the start and end time
of these actions. To gain this type of information from unmodified OpenCL
applications more work was required. While applications can use OpenCL
APIs to record the start and end times of these actions, this typically requires
modifying applications to request the information from the API and record
the returned information into a file. Modifying applications requires access
to the source code of the applications and would have required a significant
amount of work for every single application to be measured. We, therefore,
developed a different solution: An interposer library is inserted between the
real OpenCL API and the application and automatically adds requests for
profiling information to the intercepted API calls and writes the received
data to a file similar to the CUDA command line profiler. For OpenCL
profiling the testbed currently uses an improved interceptor library developed
by Guilherme Calandrini based on a prototype interceptor by the author of
this thesis.

The CUDA command line profiler or the OpenCL interposer provide us
with start and end times of the relevant commands on the GPU and the ADC
provides power samples, but to complete a meaningful power profile from
the information we need to go one step further. The profiling information
uses one clock source while the ADC uses a different clock source. We
need to perform a very exact synchronization of these two clock sources. To
allow synchronization, we first launch a special application before our main
application under measurement. This special application performs multiple
kernel launches with high GPU activity and pauses with low GPU activity.
This causes a similar pattern in the GPU power consumption as shown in the
first graph in Figure 4.7. The profiler provides us with the exact start and
end times of our kernels. We then use this information to build a "power
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Figure 4.7: Alignment of Profiler and Sample Clock using Correlation

template" that shows the expected power consumption pattern as shown in
the second graph of the Figure. We then calculate the correlation between
our measurements and the power template with various different potential
alignments. The alignment with the highest correlation between measured
power and power template provides us with the most likely offset between
the profiler clock and the sample clock. This offset can then be used to convert
profiling information to the sampling clock and vice versa.

We can now calculate the energy and power consumption of specific kernel
launches or data transfers: We convert the start and end time of the action
to sample clocks and then sum up the energy consumption during this time
interval. To calculate the average power consumption, we divide the energy
consumption by the duration.

This basic measurement setup worked well for actions longer than a few
ms together with total measurement duration of up to two minutes. Several
improvements were required for longer measurement durations and shorter
kernels. When measuring for longer durations, it becomes noticeable that the
profiler clock and our sample clock are running at slightly different rates, due
to oscillator tolerances. We found that there is a difference in the rates of a
few parts per million between sample clock and profiler clock. This difference
in the clock rates matches well with the typical accuracy of regular crystal
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(c) End without clock drift compensation
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(d) End with clock drift compensation

Figure 4.8: Measurements with and without clock drift compensation

oscillator as they are used on the GPU and in the ADC. Because the initial
offset between sample and profiler clock drifts away with a speed of around 1
sample per second of measurement. When performing longer measurements
our conversion between sample and profiler clock is no longer accurate, and
we would measure the power consumption slightly too early or too late.

For this reason, we implemented a correction algorithm in our tool. When
this algorithm is activated, the software tries to estimate rate difference
between the two clocks and corrects it. At the start of each kernel execution,
there is usually a strong increase in power consumption, this feature is used
to estimate the rate difference. The algorithm scans a window around the
expected start of each kernel for an increase in power consumption. If the
strongest increase is found earlier or later than expected the estimated rate
is adjusted accordingly. A low pass filter on the estimated rate is used to
prevent rate adjustments purely based on measurement noise. We found that
correction algorithm works well: With the correction algorithm, the power
data from 15 minutes and longer measurements agree with reference data
from short measurement durations and the estimated start and end times of
the kernel align well with power consumption patterns, while the drifting is
easily noticeable without this algorithm. Figure 4.8 shows the improvement
provided by our clock drift compensation algorithm. Figures 4.8a and 4.8b
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Figure 4.9: Power measurement of very short kernel

show a kernel launch at the beginning of our measurement. The black bars
mark the kernel end and start times according to the profiler. In both cases,
the conversion from profiler clock to sample clock was successful and the
start and end marks are well aligned with the higher power consumption of
the GPU caused by the kernel. This picture changes in Figure 4.8c, here we
show a launch of the same kernel, but almost 2 minutes later and without
drift compensation. The small differences in the clock rate of profiler and
sample clock have caused our profiler marks to be placed too soon. Our
testbed would then underestimate the energy consumed by this kernel as part
of the energy of kernel is consumed past the end mark and the start mark
is placed too early, causing the tool to record idle power instead of kernel
power. Activating the clock drift compensation solves this issues. Figure 4.8d
shows a measurement similar to the measurement in Figure 4.8c but with
drift compensation enabled. Now start and end marks are perfectly aligned
with the power consumption.

Measurements of very short kernels remains challenging. Figure 4.9 shows
a measurement of a kernel with less than 1 ms runtime. Instead of the nearly
rectangular shape of the power measures as previously seen in Figure 4.8, on
this scale the power supply circuits smooth the power consumption over a
longer period of time and we can see a "ringing" effect in response to the load
change after the kernel ends. A significant part of the power is consumed
prior to our measurement window and even tiny offsets in the kernel start
and end times can change the measurement results significantly.
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Figure 4.10: Microbenchmark shows increasing leakage with increasing tem-
perature
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Another encountered measurement issue is the leakage power consumption.
CMOS leakage power depends on temperature [142]. Our measurement
results in Figure 4.10 show this effect. For this figure we executed the same
kernel with same parameters and data many times. The dynamic power
consumption of this kernel should thus be constant, however, the total power
consumption of the GPU changes from less than 155 W to more than 165 W, as
the temperature of GPU increases from 55 ◦C to more than 80 ◦C. This is not
a measurement error per se, however, it can lead to measurement errors when
we want to compare the power consumption of two kernels, but the kernels are
executed at different GPU temperatures. Fortunately, the GPU temperature
changes slowly over time. We can compare the power consumption of two
different kernel by executing them at nearly the same time, as this also ensures
that the temperature (and thus also the leakage power) of the GPU will be
very similar. When we want to compare the dynamic power consumption
of a large set of different kernels, we can interleave our measurements with
measurements of a common "baseline" kernel and subtracting the power
of the previous baseline kernel run from each of the real measurements.
This way we can compare measurement results generated at different GPU
temperatures. An alternative would be to measure the temperature and
subtract the estimated leakage.

4.3 lpgpu2 testbed

In this section, the LPGPU2 testbed and its improvements and other changes
are described. We first describe the new hardware of the LPGPU2 testbed and
then describe the design of the employed firmware and the new software that
allows measurements on embedded Android platforms.
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Figure 4.11: LPGPU2 Testbed Block Diagram
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Figure 4.12: LPGPU2 Measurement Testbed Prototype, Analog board at the
top, Digital board below

4.3.1 LPGPU2 Testbed Hardware

This section describes the hardware of the testbed as well as the microcon-
troller firmware running on the hardware. The testbed hardware is shown
in Figure 4.12. Figure 4.11 shows a block diagram of the main hardware of
the LPGPU2 testbed. First, the analog signal is prepared for analog to digital
conversion with a signal conditioning stage, then converted to digital signals
by an analog-digital converter. A microcontroller receives the signals using an
SPI bus and transmits them to the host PC via USB. The testbed consists of
two custom designed PCBs, the top PCB contains the analog signal processing
circuits as well as the shunt resistors while the lower PCB contains the digital
part of the measurement hardware. This modular concept allows a replace-
ment or redesign of either part of the system without requiring changes to
the other part. An annotated photograph of the analog measurement board is
shown in Figure 4.13. The analog PCB contains screw mounts for the power
supply cables, two shunt resistors, two sense amplifiers for power measure-
ment with the required large common mode range and passive components
for filtering and scaling the signal. After this signal conditioning, the analog
signals are transmitted to the lower PCB using the connector in the left. The
digital measurement board, shown in Figure 4.14, converts the analog signals
to digital signals and continuously transmits them to a microcontroller using
an SPI bus. The microcontroller buffers the data and transmits the data to the
host PC via a USB port. As a microcontroller, we selected an STM32F103CB
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microcontroller [143]. It uses a 32-bit ARM Cortex-M3 architecture, can run
at up to 72 Mhz and contains the required SPI and USB interfaces as well
as a powerful DMA controller that allows us to offload large parts of the
data transfer to the DMA controller and ensure that all samples are recorded.
Microchip’s MCP3912 was selected as an analog-digital converter (ADC) [144].
It offers high resolution measurements on 4 input channels. This allows
us to measure two voltages and two currents at exactly the same time and
also measure power consumption on platforms with multiple power sources
such as discrete PC GPUs. If more than two channels are required, multiple
measurement adapters can be used. The MCP3912 also allows high sampling
rates at up to 125 kHz.

4.3.2 LPGPU2 Testbed Firmware Programming and Calibration

When its firmware is initially programmed into the LPGPU2 testbed, a cal-
ibration procedure is performed on every LPGPU2 testbed. This reduces
the systematic error caused by variations of the analog components. The
hardware used for the programming and calibration procedure is shown
in Figure 4.15. Spring-loaded contacts provide a connection to the power
measurement terminals and the pins required for flash programming. Using
a USB relay board a number of known 0.1% resistors is connected to the
board to provide known currents. At the same time the voltage is measured
using a highly accurate Voltcraft VT650 benchtop multimeter1. The ground
truth measurements are used to calculate calibration factors for each device.
The calibration factors are stored in the firmware of each device and can be
retrieved via USB and used by the measurement software to convert the raw
measurements of the ADC into currents and voltages while taking the effect
of analog component variations into account.

4.3.3 Microcontroller Firmware

The microcontroller firmware is responsible for communicating with the host
PC via USB and streaming the data from the analog-digital converter to
the PC. Before the actual power measurement starts the firmware needs to
initialize the internal registers of the ADC. Then, the DMA controller of the
microcontroller is programmed to continuously read the data from the ADC
at a fixed rate into a circular buffer. The microcontroller provides the clock
to the ADC and adjusts the SPI transfer rate according to the sample rate to
receive the samples exactly at the sample rate. Because of this exact match
between sample rate and data transfer rate, the software does not require
checking, if new samples are available, but will automatically receive every

1±12.5 mV in the used measurement range
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Figure 4.15: LPGPU2 calibration setup
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new sample exactly once. The DMA controller triggers interrupts, when the
current write pointer reaches the midway or end point of the circular buffer.
The firmware must then quickly copy the data to a different location before it
will be overwritten. At the same time, it formats the data into small 64 byte
packets and adds a frame counter to the raw data. This enables the detection
of buffer overrun events.

While the data transfer between ADC and microcontroller runs continu-
ously, the data transfer on the USB interface happens in bursts. This requires
a complex buffer management, as shown in Figure 4.16 and explained later
in this paragraph. The data transmission via USB is managed by the USB
controller in the host PC. The USB controller requests new data and the mi-
crocontroller needs to react to these requests. When the PC wants a new data
packet, the microcontroller must respond either with a new packet or with
a special "NAK" message, if no full data packet is available yet, or a special
stall packet, that signals an error. This concept is shown in Figure 4.17. This
process is performed partly in hardware, as the USB device needs to react
immediately to the data request received from the PC. Packets that should be
sent to the PC via USB need to be stored within a tiny 512 byte buffer. As this
buffer is not large enough to store data packets while the PC is not requesting
data, data cannot be copied directly from the circular DMA buffer to the
USB buffer. A larger main packet buffer is used inside the microcontroller
SRAM to store packets from the circular DMA while they are waiting for USB
transmission. Slots for four 64 byte packets are kept within the USB buffer.
This way the firmware can transfer data to one packet slot to the USB buffer
while the hardware transmits a data packet from a different slot. Once the
transfer is finished the firmware only needs to change the address of the next
packet to the next slot that contains a valid, not yet transferred packet.
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4.3.4 Host Software

The measurement hardware is connected to a host computer via USB. A
C++ program runs on the host computer which uses libusb to capture the
continuous stream of measurements [145]. It then converts the measurements
into floating point values and calculates power from voltages and currents. To
synchronize the recorded performance counter data and other events with the
power measurements, the same technique is used that was already employed
in the LPGPU1 testbed: At the start of the measurement, a special program is
executed on the device that generates a series of power consumption spikes.
The start and end times of these power consumption spikes are recorded and
turned into a power template. Then the alignment process uses the correlation
between measured power and power template to find the offset between the
sampling clock and the device clock.

4.3.5 Android Software

The LPGPU1 testbed was measuring the power consumption of discrete
GPUs in high performance PCs. In this setting, we were able to use the
same computer to record and process our samples that was also running the
applications. We were only interested in GPU power consumption so a slightly
higher CPU power consumption due to the measurement did not matter. In
the LPGPU2 testbed, however, we are measuring the power consumption of
embedded SoCs which include both the CPU and the GPU. Extra CPU power
consumption would show up in our measurements as well, so we need to
minimize it. The amount of memory is very limited, so we cannot reserve
large memory buffers to store our samples during the measurement. For this
reason, our LPGPU2 testbed works differently: An extra host PC is used to
collect and process the measurement data. Only a lightweight process runs
on the embedded SoCs and collects performance counter data. The host PC
and the embedded system are connected via USB and the "Android Debug
Bridge" is used to forward data from the performance counter collector to
the host PC and for the host PC to automatically launch applications on the
embedded system.

4.3.6 Summary

This chapter described our LPGPU1 and LPGPU2 measurement testbeds. It
explained how power is measured by measuring currents and voltages and
highlighted the analog signal condition challenges solved by the testbed cir-
cuits. It also explained how our measurement software is able to combine the
analog measurements with the event traces to generate a power profile. This
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power profile provides the user with precise measurements of the energy con-
sumption of individual kernels. The chapter explained the synchronization
and clock drift compensation algorithms developed to enable the power profil-
ing. The chapter also explained the LPGPU2 testbed, the firmware developed
for the testbed and its USB connection. We also illustrated how performance
counter data from embedded devices is forwarded to the measurement host
and how this data is combined with the power measurements. In the next
chapter, we use our power measurement testbed to build and validate a GPU
power simulator called GPUSimPow.
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A R C H I T E C T U R A L G P U P O W E R M O D E L I N G

The work presented in this chapter was previously published: J. Lucas, S.
Lal, M. Andersch, et al., “How a single chip causes massive power bills
GPUSimPow: A GPGPU power simulator,” in Proc. IEEE Int. Symp. on
Performance Analysis of Systems and Software (ISPASS), ©2013 IEEE, 2013.

With processor designs becoming ever more complex and chip manufactur-
ing processes becoming harder to control, the inability of computer architects
to produce working prototypes of their designs for testing is a more pressing
problem than ever before. With chips rapidly approaching (and, nowadays,
touching) the power wall, the conventional design space of processor architec-
ture has been extended by another dimension: Energy consumption.

Over the past years, it has become apparent that the chips consuming the
most energy by far are modern Graphics Processing Units. With GPUs turn-
ing into major devices for general purpose computations, so-called general-
purpose computation on GPUs (GPGPU), this trend has only accelerated as
more and more parties are striving to drive GPU performance up. The inabil-
ity to manufacture chips to evaluate architectural design choices, however,
remains, as does the looming power wall.
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Figure 5.1: GPUSimPow Block Diagram
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So how do the design of new GPU architectures, the inability to manufacture
chips just for testing, and the requirement to not only estimate a chip’s
performance, but also its power during development come together? On the one
hand, if we disregard power and only consider performance, this question
has been answered by several researchers over the past years: GPU architects
now must rely on building cycle-accurate architectural simulators in high-
level languages and evaluate novel designs using these simulators. On the
other hand, there are several accepted tools and frameworks to model and
estimate power consumption for CPUs such as Wattch [98]. To the best of
our knowledge, however, no one ever combined architectural GPU simulators
with power models to create GPU power simulators before.

We seek to mitigate this issue by introducing GPUSimPow, a power simu-
lation framework for contemporary GPGPU architectures. GPUSimPow is
able to estimate multiple characteristics of a hypothetical GPU architecture
such as chip area, gate leakage, and peak dynamic power, as well as pre-
cisely simulate the power consumed during execution of GPGPU workloads.
With this power simulator, computer architects can evaluate design choices
early from a power perspective, and GPGPU programmers gain an effective
way to investigate their GPGPU codes, so-called kernels, to optimize power
consumption from a software perspective. To make GPUSimPow flexible
enough that architectural design choices can easily be carried out while still
maintaining reasonably high accuracy of the power predictions compared
to real hardware, we model the components of the GPU architecture in two
ways: Regular components such as memories are modeled analytically using
the well-known McPAT [87] tool (which, by itself, integrates CACTI6.5 [146]).
Irregular components such as address generation units (AGUs) or special-
function units (SFUs), on the other hand, are modeled empirically by acquiring
measurement data on real hardware. To obtain accurate measurements, we
propose a specialized measurement testbed.

In summary, we make the following contributions:

• We develop the GPUSimPow power simulator that is able to generate
area, power and runtime power estimations for contemporary GPGPU
micro-architectures and GPGPU kernels.

• We propose a novel measurement methodology to be able to accu-
rately measure GPU power consumption on real hardware down to the
individual kernel.

GPUSimPow was developed jointly by the author of this thesis, Sohan Lal
and Michael Andersch. Text and figures by Sohan Lal and Michael Andersch
were included in this thesis with their permission to provide a full overview
and evaluation of the GPUSimPow simulator. Sohan Lal developed most of
the activity factor extraction from the gpgpu-sim performance simulator. In
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addition, he was responsible for the GDDR5 power model, the shared memory
power model as well as the adaptation of various caches models from McPAT
to GPUSimPow. Michael Andersch developed the power models for the Load-
Store Unit including the address generation unit as well as models for the
texture cache and warp control unit including the warp scheduler. The author
of this thesis developed the power models for the register files, the empirical
performance models for the execution units, core and cluster power, adapted
the McPAT NoC power model as well as the measurement infrastructure used
in this chapter for the calibration of the empirical models and the accuracy
evaluation of the power simulator.

This chapter is organized as follows: In Section 5.1, we introduce our
power simulator, describe its structure and the simulated architecture. Then,
Section 5.2 presents the measurement setup we used to estimate component
power and validate the simulator results, as well as the rest of our experimen-
tal setup for simulator runs. Section 5.3 presents the simulator results and
compares them with power measurements on real hardware.

Work related to this chapter was already presented in Chapter 3, Section 3.3.
A short summary is presented in Section 5.4. Conclusions related to this
chapter are drawn, at the end of thesis, in Chapter 12.

5.1 the gpusimpow tool

In this section, we present our power simulation framework called GPUSim-
Pow. An overview of GPUSimPow’s structure is given in Section 5.1.1. In
Section 5.1.2 we are providing information about the power model and its link
to the performance simulator. The baseline architecture details are explained
in Section 5.1.3. Finally, Section 5.1.4 gives details on how the empirical parts
of the model have been derived.

5.1.1 Overview

GPUSimPow is a power simulator for GPGPU workloads, i.e. given a con-
figuration of a particular GPU architecture and a GPGPU kernel written in
CUDA [147] or OpenCL [148], GPUSimPow is capable of producing both
architectural information such as static power, peak dynamic power, and area,
as well as runtime dynamic power for the kernel at hand. The simulator is
designed to be flexible regarding the architecture that is simulated to allow
architects to utilize the simulator as a high-level tool to explore the GPU
architecture design space. Therefore, the key parameters of the simulated
architecture are supplied using a simple XML-based interface. For example,
GPUSimPow is able to coherently simulate an architecture with a varied
number of cores.
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5.1.2 Power Model

In general, power for switching circuits is described by the well-known
Eq. 5.1 [87].

Ptotal = αCVdd∆V fclk + Vdd IShort-circuit + Vdd Ileakage (5.1)

The first term is the dynamic power that is spent charging and discharging
capacitive loads when the circuit switches state. An important factor for this
chapter is the activity factor α that describes the percentage of the circuit’s
capacitance being charged during switching. The second term of Eq. 5.1 is
the short-circuit power being consumed when both pull-up and pull-down
networks in a CMOS circuit are on for a short amount of time. Thus, the total
power consumed by a circuit during switching is the sum of the dynamic and
short-circuit power terms. Finally, the third term of Eq. 5.1 is the static power
consumed due to leakage current through the transistors, where leakage
consists of two distinct types: Subthreshold leakage, where a transistor that
is switched off leaks current between its source and drain, and gate leakage,
where current leaks through the transistor’s gate terminal.

Structurally, GPUSimPow consists of two main parts, visualized in Fig-
ure 5.1: First, a cycle-accurate GPGPU simulator that simulates the given
kernel and thereby generates utilization information and activity factors α for
all components of the GPU architecture, and second, a chip representation
with a power model for each component that uses the activity information
from the simulator to produce power numbers for a particular kernel. From
the chip representation, statistics about area and peak, leakage, and short-
circuit power are inferred as well.

For the cycle-accurate GPGPU simulator, we employ a modified version
of the most recent GPGPU-Sim [149] that has been altered to produce access
counts and other activity information for all parts of the simulated architecture.
GPGPU-Sim has been developed for an architecture that is not equal but
comparable to many current off-the-shelve GPUs such as NVIDIA’s Fermi [76]
or AMD’s GCN [78]. Further details about the architecture are given in the
next section.

The chip representation and power model are provided by a heavily mod-
ified variant of McPAT [87] we name GPGPU-Pow. McPAT integrates three
different modeling tiers hierarchically to provide a flexible and highly accurate
power model for CPUs: The architectural tier, where a processor is broken
down into major components such as cores, caches, and memory controllers,
the circuit tier, where the architectural components are mapped to basic circuit
structures such as arrays or clocking networks, and the technology tier, which
provides the physical parameters, such as current densities and capacitances,
of the circuits. Besides this hierarchy, a unique advantage of McPAT is its
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combination of analytical and empirical models for the individual components.
We embrace both the hierarchical as well as the combined nature of McPAT
and develop a McPAT-based model for GPUs. On the one hand, this requires
many modifications to McPAT, as multiple components that are present in
the CPU architecture model such as register alias tables cannot be reused
for GPUs, and various core components of GPU architectures, such as stacks
to handle thread divergence, are not present in CPUs. On the other hand,
using McPAT enables us to utilize all the integrated low-level technological
information, e.g. to scale the GPU power model for a specific manufacturing
process node, we can use the ITRS roadmap scaling techniques within McPAT.

5.1.3 Modeled Architecture

The GPU micro-architecture we designed our power model for is comparable
to the one given in GPGPU-Sim to ensure a good “fit” between GPGPU simu-
lator and power model. Generally, it is a single-instruction multiple-thread
(SIMT) architecture that uses a stack-based divergence handling mechanism,
well representative of many current GPUs.

On the highest level, a GPU chip in our model consists of a memory
controller (MC), a Network-on-Chip (NoC), a PCIe controller (PCIeC), and a
collection of cores. Besides the actual chip, we model the GDDR5 graphics
DRAM as well. For NoC, MC, and PCIeC, we re-used the highly configurable
models already present in McPAT and adjusted their parameters to fit the
different requirements of a GPU. The internal structure of a core consists of a
Warp Control Unit (WCU), a highly banked register file, a set of SIMD execution
units (INT, FP, SFU), and a load/store unit (LDSTU). In the following, each of
these components, as well as our GDDR model, are briefly introduced.

Warp Control Unit

The WCU represents the front-end of a single core. As such, the WCU is
responsible for keeping the execution back-end, i.e. the functional units and
the load/store hardware, supplied with instructions at all times. Thus, the
WCU handles thread management (i.e. formation of warps from threads
and the relation of per-thread control flow under warp constraints), warp
scheduling, warp instruction fetching, decoding, dependency resolution, and
renaming. An overview of our WCU model is depicted in Figure 5.2.

The information needed for each warp to fetch instructions and manage
the warp threads is contained in a single multi-ported RAM table, the Warp
Status Table (WST). The WST contains one entry for each in-flight warp the
core can handle. To select a warp to fetch an instruction for, a rotating-priority
(round-robin) warp scheduler is modeled. Such schedulers consist of a set of
inverters, a wide priority encoder, and a phase counter. These components
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Figure 5.2: High-level Overview of Warp Control Unit. (Figure reproduced
from Chapter 2 for the reader’s convenience.)
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have been modeled from appropriate circuit plans [150] using McPAT’s circuit
and technology layers. After instructions have been fetched from the I-Cache,
they are decoded. For this, we re-use the instruction decoder hardware models
already present in McPAT.

As is common for most GPGPU applications on modern GPU architectures,
the individual in-flight threads often execute different dynamic instruction
paths. The grouping of threads into SIMD bundles (warps) implicitly forces
the thread PCs to have the same value at all times, however. If this is not
the case due to the threads branching into different dynamic execution paths,
the execution of threads in a single warp but with different PCs is serialized.
To achieve this serialization and keep track of the thread IDs that have to
execute certain branch outcomes, the hardware uses a stack memory called the
reconvergence stack [151]. For each individual in-flight warp, the hardware
maintains a separate stack. In our model, a stack consists of tokens, each of
which contains an execution PC, a reconvergence PC, and an active mask for
that warp and code block.

Once an instruction has been decoded, the WCU places the instruction into
an instruction buffer (IB) slot. The instruction resides in its buffer slot until
it is ready to execute, that is, if its register dependencies have been resolved
(in scoreboarded architectures) or the previous instruction from the same
warp has been committed (in blocking barrel-processing architectures). The
instruction buffer is a cache-like structure that is tagged by the warp ID and
has an associativity greater than one, i.e. each instruction can be buffered in
one of several slots tagged by its parent warp ID.

For resolving register dependencies, GPUs (e.g. NVIDIA Fermi) use simple
approaches based on scoreboarding [152]. In our models, a scoreboard is a
cache-like table tagged by the warp ID.

Register File

The GPU register file model is based on an NVIDIA patent [153] and built
from multiple single ported RAM banks. Operands are collected over multiple
cycles to simulate a multi-ported register file. Different threads will have their
registers stored in different banks. This scheme increases the area density of
the register file. A crossbar is used to connect the different register banks to a
set of operand collector units which are two-ported four-entry register files.

Execution Units

The basic unit of execution flow in the SIMT core is the warp. The GPU
has a set of SIMD execution units which execute the warp threads in lock
step. For example, the SIMT core in the NVIDIA GT240 has eight fully
pipelined floating point units (FPUs), eight pipelined integer units (IUs) and
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AGU
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Figure 5.3: High-level Overview of Load/Store Unit (Figure reproduced from
Chapter 2 for the reader’s convenience.)

two special function units (SFUs) to execute transcendental instructions such
as sine, cosine, reciprocal, and square root. In our power model, we used
the area numbers published by Sameh et al. [154] for FPUs, the results of
Caro et al. [155] for power and area of the SFUs with scaling for the desired
process technology, and our own measurements for power of integer units
and floating point units (see Section 5.1.4).

Load/Store Unit

The load-store unit (LDSTU) is functionally responsible for handling instruc-
tions that read or write any kind of memory. In the power model, the LDSTU
encapsulates the top-tier memory structures of the core, i.e. L1/SMEM, the
constant caches and the L2 caches. In a future variant of the model, the
LDSTU will contain the texture caching subsystem, i.e. texture caches and
texture mapping units, as well. An overall overview of the LDSTU is depicted
in Figure 5.3.

As the figure shows, a memory access instruction for an entire warp is first
passed to the address generators. Given base addresses as well as strides and
offsets, the address generation unit (AGU) generates one memory address per
thread in the warp. Given reasonable warp sizes of 32/64 threads in modern
architectures, this requires very high bandwidth address generation units
that supply the later stages of the memory subsystem with 32/64 memory
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addresses each cycle. We model the complete AGU as an array of parallel high-
bandwidth sub-AGUs (SAGU), each of which is able to generate 8 memory
addresses per cycle [156]. Given the memory address bundle for all threads
in the warp, the address bundle is further analyzed depending on the type of
memory the instruction accesses.

If the instruction accesses constant memory, the addresses are checked
for equality. The number of generated constant cache / constant memory
accesses is equal to the number of different addresses in the address bundle,
e.g. if all addresses are equal, the memory access can be serviced with a
single constant memory request, allowing for high-bandwidth operation.
The constant memory segment is cached in an entire hierarchy of constant
caches [157].

If the instruction accesses global memory, it is first coalesced before being
passed to the L1/L2 caches and/or DRAM. The coalescing system is modeled
after a corresponding NVIDIA patent [158] and consists of an input queue,
output queue, pending request table, and a finite state machine. The goal of
coalescing is to service the addresses requested by the memory access in as
few memory requests as possible. As our research revealed, CACTI cannot be
used to model buffers with few but very large entries such as the pending
request table and input queue of the coalescer. Instead, we compute the total
amount of bits which must be held in the coalescing system at any time and
model the required storage using D-FlipFlops.

In several modern GPUs, shared memory (SMEM) and the L1 data cache
are portions of the same physical memory structure. The distribution of
physical memory to L1 and SMEM is configurable. Therefore, we model L1

and SMEM as an integrated physical memory structure and convert accesses
to SMEM and L1 hits to accesses to that memory structure. The physical
memory consists of multiple banks to be able to supply multiple accessing
threads with data at a high rate. Besides the physical memory banks, the
SMEM/L1 consists of interconnects for addresses and data, both modeled as
crossbars, and a bank conflict checking unit [159]. The L2 cache is shared over
the entire GPU and connected to the cores through the NoC.

Global Memory

The global memory in GPUs has high bandwidth but long latency. The
current generation of GPUs such as Fermi use either DDR3 SDRAM or
GDDR5 SGRAM chips to implement the global memory. The power consumed
by typical DDR or GDDR chips can be divided into background, activate,
read/write, termination, and refresh power [160]. We extract numbers for
each of these components from industry data sheets [161].
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5.1.4 Deriving Power Empirically

Using our custom power measurement setup described in Section 5.2.1, we
were able to build an empirical, measurement-based model for the INT and FP
execution units by running custom microbenchmarks to estimate the energy
per INT/FP operation. As described earlier in Section 5.1.3, todays GPUs
use a SIMT approach to execute multiple threads at the same time on SIMD
hardware.

We can use this SIMT-style of execution to our advantage by enabling
different numbers of execution units while keeping the activity of all other
units, except for the register files, constant. This way, we can estimate power
for the execution units with reasonably high accuracy. For both integer and
floating point operations, we launch one thread block for each core and use
512 threads per block to ensure all cores and targeted execution units are busy.
We used unrolling to make the loop overhead of our testing loops negligible.
In the loop nest of our integer test code, we are simulating Linear Shift
Feedback Registers while for the floating point case we are using Mandelbrot
set iterations. In both cases, we are alternately configuring the test kernels
to use 31 enabled threads per warp and 1 enabled thread per warp. With 31
instead of 32 active threads, both configurations use divergent branches, cause
the same activity of the reconvergence stack and have the same execution time.
We then calculate the energy difference between these two kernel launches
and divide the result by the number of executed instructions, number of
cores and difference in execution units enabled to arrive at an estimate for the
energy used by a single execution unit executing a single instruction.

Our measurements show that integer instructions are using approximately
40 pJ while floating point instructions are using about 75 pJ per instruction.
NVIDIA reports 50 pJ per floating point instruction [120]. The power model
of the execution units is based on our measurements.

While we developed all component models to the best of our knowledge,
there are areas of GPU architecture where publicly available information is es-
pecially scarce, such as the raster operations pipelines (ROPs) or fixed-function
video decode hardware, which consume power due to leakage even if they are
not used in GPGPU applications. While we cannot model such components
accurately because of the lack of information, we know nonetheless that these
components are part of the chip. To be able to account for the amount of
power they contribute, we used our measurement equipment to build em-
pirical models of “base power” for cores and core clusters (called TPCs1 or,
more recently, GPCs2 in NVIDIA terminology). These base power numbers
are derived by measuring core/cluster power and subtracting the power of all

1“Thread Processing Cluster”
2“Graphics Processing Clusters”



5.2 experimental methodology 67

 15

 20

 25

 30

 35

 0.5  1  1.5  2  2.5  3

Po
w

er
 [W

]

Time [s]

Total Power

Figure 5.4: Power measurement results of a GT240 card running the same
kernel 12 times with increasing number of thread blocks. The
GT240 features 12 cores distributed evenly over 4 core clusters.
[97] © 2013 IEEE

components we know about. An example of a measurement used to estimate
cluster power is shown in Figure 5.4. The figure shows that increasing the
number of thread blocks used for computation gradually increases the power,
up to a certain limit when the entire chip is occupied (not shown). More
interestingly, the figure shows that up to 4 blocks, adding another thread
block to the computation increases power by a larger margin than beyond
4 blocks. The reason for this is the way the hardware scheduler distributes
thread blocks: Until the entire chip is occupied, blocks are distributed first not
only to unoccupied cores but also to unoccupied clusters, i.e. when a second
thread block is added after the first one, it is placed on a core in another
cluster than the first one. As we see in the figure, the activation of such a core
cluster consumes 0.692 W additional power. Once all clusters are activated, in
this case after the fourth block, adding more thread blocks increases power
only by the power of the additional core. On another note, the figure also
illustrates how the activation of the very first core/cluster consumes even
more power than for the remaining clusters. This extra power (3.34 W) can be
attributed to the activation of the global scheduler which distributes thread
blocks to cores.

5.2 experimental methodology

To validate our GPUSimPow power models for contemporary GPUs, we must
compare the simulator output to the power consumption of real hardware for
various GPGPU workloads. Thus, in this section, we present our experimental
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Table 5.1: Overview over the various GPGPU benchmarks used for experi-
mental evaluation. [97] © 2013 IEEE

Name #Kernels Description Origin
backprop 2 Multi-layer perceptron training Rodinia
heartwall 1 Ultrasound image tracking Rodinia
kmeans 2 k-means clustering Rodinia

pathfinder 1 Dynamic programming path search Rodinia
bfs 2 Breadth-first search Rodinia

hotspot 1 Processor temperature estimation Rodinia
matmul 1 Matrix-matrix multiplication CUDA SDK

blackscholes 1 Black-Scholes PDE solver CUDA SDK
mergesort 4 Parallel merge-sort CUDA SDK
scalarprod 1 Scalar product of two vectors CUDA SDK
vectoradd 1 Addition of two vectors CUDA SDK

methodology, i.e. our test setup to measure power consumption both for
validation of the simulator output as well as to infer power models for some
of the irregular components. Besides the test setup, we also describe our test
system configuration and the benchmark suite we used for evaluation.

5.2.1 Measurement Equipment

Our LPGPU1 testbed described in Section 4.2 was used to validate the simula-
tor against real GPUs.

Table 5.2: Summary of the key features of the GPU architectures used in
experimental evaluation. [97] © 2013 IEEE

Feature GT240 GTX580

#Cores 12 16

#Threads per core 768 1536

#FUs per core 8 32

Uncore clock 550 MHz 815 MHz
Shader-to-Uncore 2.47× 2×
#Warps in-flight 24 48

Scoreboard × X
L2-$ size × 768KByte

Process node 40nm 40nm

5.2.2 System Configurations

For evaluating the output of the power simulator, we chose two real GPUs, the
NVIDIA GT215 chip on a GeForce GT240 graphics card and the GF110 chip
on a GeForce GTX580. Core parameters for both chips are given in Table 5.2.
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The GT215 GPU is based on the GT200 Tesla design from 2009 and provides
a good insight into many key features of modern GPUs. An initial advantage
of using a GT200-based architecture is that the GPGPU-Sim simulator shows
the highest correlation to real hardware for such architectures. The GF110

is based on the more recent Fermi architecture from 2010. The GT240 is a
low-end card while the GTX580 is high-end enthusiast market card.

Table 5.3: Summary of our experimental setup. [97] © 2013 IEEE
Feature Measurement Simulation

OS Ubuntu 10.10 Ubuntu 10.10

Kernel 2.6.35-22 2.6.35-22

NVIDIA driver 304.43 -
CUDA version 3.1 3.1

GPGPU-sim base version - 3.1.1
McPAT base version - 0.8

We performed both measurements and simulations for a series of kernels
selected from recent GPGPU benchmark suites (see next Section 5.2.3) for
each of the two GPUs presented in Table 5.2. For each kernel and GPU,
we recorded hardware dynamic and static power, simulated dynamic and
static power, and simulated as well as hardware execution time. Table 5.3
details the parameters of our experimental environment used to acquire the
results. To estimate hardware static power, we ran the same benchmark at
stock frequency and at a 20% lower frequency. Then, we performed linear
extrapolation from the two data points to estimate the power the chip would
consume at a frequency of 0 Hz. As Eq. 5.1 shows, there is no dynamic power
consumption at 0 Hz and therefore, the result of the extrapolation must be
equal to the static power of the chip. Unfortunately, using this methodology
was only possible on the GT240 card, as the NVIDIA Linux drivers do not
yet support changing the clock speed for the GTX580. Therefore, we estimate
hardware static power for the GTX580 by measuring the idle power between
two kernel executions and multiplying it by the ratio between idle power and
static power we found on the GT240.

5.2.3 Benchmarks

The benchmarks whose kernels are used in our evaluation are shown in Ta-
ble 5.1. As the table reveals, all benchmarks originate either from the popular
Rodinia benchmark suite [162] or from the CUDA SDK [147]. These 11 bench-
marks span not only a variety of application domains but, as Section 5.3.2 will
show, an equally wide variety of algorithmic (and thus, dynamic power) char-
acteristics. As our analysis focuses on the power consumed by the graphics
card and GPU, we are only interested in the GPGPU kernels contained in each
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Figure 5.5: Measurement and simulation results for all benchmarks. Bars
with the same benchmark name but different number, e.g. bfs1

and bfs2, correspond to different kernels of the same benchmark.
Each bar shows the total runtime power, i.e. the sum of static and
dynamic power. [97] © 2013 IEEE

benchmark. The second column of Table 5.1 shows the number of different
kernels in each benchmark. In some benchmarks, there are kernels with very
short execution times (less than 500µs). Because these kernels are too short
for reliable measurements, we modified such benchmarks to execute the same
kernels 100 times.

5.3 results

In this section, we present the simulation results for the benchmarks described
in the previous section and compare these results to measurements. In
Section 5.3.1, we describe the results from a per-benchmark perspective. Then,
in Section 5.3.2, we show how modeling the GPU on the architectural level
enables code developers and chip architects to generate power profiles that
break down the power to the individual components on the chip.
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5.3.1 Simulated and Measured Power

For each individual benchmark, we measured the total power consumed by
the cards during the execution of each of the benchmark’s kernels. For kernels
that are executed multiple times during one benchmark run, we calculated
arithmetic averages of all relevant power numbers. In the end, the power
numbers we obtain are simulated and measured dynamic power and runtime
for each kernel as well as simulated and measured static power for the GPU. As
static power is consumed regardless of the circuit’s switching activity, it is
the same for each kernel. Table 5.4 shows the results from the static power
and area estimation for both GPUs. The estimated chip areas are slightly
smaller than the actual chip areas. However, our simulator provides a very
good match for the static power consumption of both GPUs.

Table 5.4: Static Power and Area for GT240 and GTX580 [97] © 2013 IEEE
Static [W] Area [mm2]

GT240

Simulated 17.9 105

Real 17.6 133

GTX580

Simulated 81.5 306

Real 80 520

The results of our experiments on the GT240 card are shown in Figure 5.5a.
The figure shows total measured and simulated power for all benchmark
kernels. Each total power bar in the figure is divided into a static power
part common to all kernels and a kernel-specific dynamic power amount.
Using the static power measurement technique explained in Section 5.2.2, we
estimate the static power for GT240 to be 17.6 W. The card seems to do some
power gating to reduce static power while no kernels are being executed.
If no kernel was executed the card is using around 15 W, while for some
milliseconds before and after the execution of a kernel the card consumes
19.5 W. About 90% of the power consumed by the card in this state thus
seems to be static power. The GTX580 is using 90 W in the same state, so we
estimate its static power to be 80 W.

In general, the figure shows a strong similarity between the measure-
ment and simulation results for most benchmarks. For all benchmarks but
BlackScholes and scalarProd the simulator overestimates the power
used by the card. When averaging errors, we always average the absolute
value of errors, so that under- and overestimates do not cancel out. On average
the simulation is 11.7% off from the real power consumed by the GPU, we
call this average relative error. The maximum relative error of 35.4% occurs
in the third mergeSort kernel. This is likely a measurement artifact. The
execution time of the kernel is short (1 ms) and the benchmark could not
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easily be changed to call it multiple times because the kernel does in-place
processing of its data.

In nearly every benchmark kernel, the simulator slightly overestimates
the true power consumed by the chip. This trend is mostly caused by the
estimation of dynamic power, while the simulation result of static power is
just 0.3 W (1.7%) larger than the real hardware power. Not considering static
power, the average relative error in runtime dynamic power is 28.3%.

Figure 5.5b shows the results of our experiments using the GTX580 GPU.
A strong similarity between measurements and simulations be seen again.
Our empirically derived models also work well on this card even though they
were obtained using the GT240 card. The average relative error for GTX580

is 10.8%. scalarProd is the kernel with the largest relative error (25.2%)
on GTX580. The average relative error for the runtime dynamic power on
GTX580 is 20.9%. GPUSimPow estimates the static power of GTX580 to be
81.5 W which almost completely matches our measurement result from the
real hardware (80 W). As already explained in Section 5.2 we could not use
measurements at different clock speeds on GTX580 to estimate the static
power. As a result of this limitation, we used a different method to estimate
the hardware static power. The better match of hardware static power with
simulated static power could be a result of a more accurate static power
estimate from GPUSimPow or it could be caused by the different hardware
static power estimation methodology we used for GTX580.

5.3.2 Power Profiling

While relatively accurate estimations of dynamic and total power for the
execution of a particular benchmark are helpful tools, in some cases, the
distribution of power consumption over the hardware components on the GPU
matters. As GPUSimPow contains hardware models for the internals of each
core, interface and controller on the GPU, it automatically produces detailed
power statistics for these internals. Therefore, it is possible to generate a power
profile for a particular benchmark kernel that breaks the overall power down
to individual components with the desired level of accuracy. Table 5.5 shows
such a power profile for the blackscholes benchmark. Please note that this
table does not include the power consumed by the external DRAM (4.3 W).

In the top part of the table, both static and dynamic power for the top-level
components on the GPU is shown. It can be seen that by far the largest
fraction of total power is, as one would expect, consumed by the GPU cores
(82.2%). Previous researchers have reported similarly high percentages, for
example in [163], the authors employed a simple, high-level power model
to estimate the total core power to be 70% of the entire chip. According to
the output of GPUSimPow, the next-most power after the cores themselves is
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Table 5.5: Blackscholes benchmark power breakdown on GT240 for the indi-
vidual components on the entire GPU (top) and a single GPU core
(bottom). [97] © 2013 IEEE

Static [W] Dynamic [W] Percent

GPU

Overall 17.934 19.207 100

Cores 15.393 15.132 82.2
NoC 1.484 1.229 7.3

Memory Controller 0.497 1.753 6.1
PCIe Controller 0.539 0.992 4.1

Core

Overall 1.283 1.031 100

Base Power 0 0.199 8.6
WCU 0.042 0.089 5.65

Register File 0.112 0.173 12.3
Execution Units 0.0096 0.556 24.43

LDSTU 0.234 0.014 10.7
Undiff. Core 0.886 0 38.3

consumed by the network on chip (7.3%), followed by the memory controllers
(6.1%) for memory access and PCIe interfacing (4.1%). Note that some other
top-level GPU structures such as the global scheduler and video decoder
hardware are not modeled in detail and are therefore included in the (per-
core) undifferentiated core and base power.

Increasing the level of detail, it is possible to look at the power consumed
by the individual parts of a single core (bottom of Table 5.5). Overall, the core
consumes 2.31 W. As the table reveals, surprisingly, the largest fraction of
the total power is attributed to the core base power and undifferentiated core
(8.6% and 38.3%). While the former includes all the per-core components we
can only model empirically due to lack of information (see Section 5.1.4), the
latter includes a per-core fraction of the global GPU components that can only
be modeled empirically. Naturally, as we have no detailed models for undif-
ferentiated components, we cannot generate any activity factors for them in
GPGPU-Sim and thus the entire power consumption for the undifferentiated
core is attributed as static power. Taking base power and undifferentiated core
aside, the most power is consumed by the execution units (24.43%). After the
execution hardware, the next-most power is used in the register file (about
12.3%). This number has been confirmed by previous research [163]. As
one might expect from a SIMD architecture, the smallest part of the core
power is consumed by the fetch and decode frontend, warp management,
and schedulers (5.65%). GPUSimPow enables even more detailed analysis,
e.g. investigating the power consumed by the different memories in the
warp control unit or investigating the power impact of code sections with
branch divergence on each hardware unit in detail. Further details of the per
component power consumption can be found in a paper coauthored by the
author of this thesis [164].
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5.4 summary

In this chapter we presented the GPUSimPow power simulation framework.
We illustrated the design of the various analytical models of the simulator
as well as the measurement based models. We validated the simulator by
comparing the simulator to two different GPUs and found an average relative
error of 10.8% for the GTX580 GPU as well as an average relative error of
11.7% for the GT250 GPU. Our simulator allows us to estimate the energy con-
sumption of short kernels and enables us to estimate the power consumption
of individual GPU components. However, the GPUSimPow energy model
only considers the number of instructions and their type but not the pro-
cessed data. In the next chapter, we use a microbenchmark to show that the
processed data can change the power consumption by more than 60% and
present a power model to consider this data-dependent power consumption.



6
D ATA - D E P E N D E N T A L U P O W E R M O D E L I N G

The work presented in this chapter was previously published: J. Lucas and
B. Juurlink, “ALUPower: Data Dependent Power Consumption in GPUs,”
in IEEE Modeling, Analysis and Simulation of Computer and Telecommuni-
cation Systems (MASCOTS), ©2016 IEEE, 2016.

In the previous section we described our basic architectural power model
GPUSimPow. This power model estimates the energy consumption of the
GPU by counting various architectural events such as reading a value from
the register file, scheduling and decoding an instruction or accessing the
DRAM. However, while these architectural events are easy to count, they do
not consider the data values used in these operations. In this chapter, we
describe an improvement to our model, that allows us to also consider these
data values when modeling the energy consumption of the ALU and the
register file.

CMOS circuits dissipate dynamic power when they charge or discharge
gates and wires. The power consumption of a circuit depends on how often
each of the millions of gates and wires in the circuit change state. This activity
of the circuit does not only depend on the circuit itself, but also on the data
the circuit processes. RTL power simulators such as PowerMill [165] use test
vectors to estimate activity factors for all signals.

Often, higher level simulators are required. Architectural power simulators
are typically used in early design phases when circuit details are not yet
known. Complex circuits consisting of thousands of gates are often abstracted
into simple power macro models [166], [167]. Abstracting away individuals
signals provides a tremendous reduction of simulation time and allows archi-
tectural power simulators to estimate power consumption for workloads that
are out of the reach of circuit or RTL power simulators. Many of these high-
level power modeling techniques do not model the data dependency of the
power consumption [168]. To the best of our knowledge, no currently publicly
available architectural simulator for GPUs takes the dependency of execution
power consumption on actual data values processed into account. Modeling
the energy consumption of the GPU datapath is important as it consumes
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Figure 6.1: Power Consumption of FMUL test kernel with three different
input vectors on GTX580 [39] © 2016 IEEE

significant parts of total energy consumption. Leng et al. [88] estimate that
on average 44.9% of the GPU power is consumed by execution units, register
files and pipelines. Our measurements reveal large changes of more than
100 W in total power consumption depending on the data values processed
by the datapath. We executed a small test kernel on an NVIDIA GTX580 GPU
with three different input vectors. The results of this experiment are shown in
Figure 6.1. The test kernel reads input vectors from DRAM and then executes
FMUL operations on these inputs. First, the power consumption of an all
zeros test vector is measured. Executing the test kernel on this input keeps
the floating point ALUs and most parts of the datapath idle. On this input,
the GPU consumes 155 W. Then we use random input vectors, where each
thread works on different values and on average half of the floating point
multipliers input bits flip each cycle, this results in an increase of 77 W. Finally
we execute the test kernel with an input vector of all zeros and all ones, where
all input bits switch each cycle. In this case the total power consumption is
102 W; 65.8% higher than with all zero values.

We observe that the energy consumption of the three kernel runs differs
substantially, even though all three kernels execute exactly the same number
of instructions, the execution order has not changed nor the bandwidth
consumed. Only the data values processed are different. The activity factors
used by simulators such as GPUWattch [88] or our own GPUSimPow [97]
for all three kernel executions would be completely identical. As a result,
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the predicted power consumption would also be identical. Therefore, not
taking data values into account results in large prediction errors for the power
consumption of this microbenchmark. Microarchitectural modifications such
as different schedulers that change the order of execution might change the
energy consumption of arithmetic units significantly, but these changes cannot
be evaluated using current simulators.

By developing an accurate yet light-weight power model of real GPUs, we
enable many new kinds of microarchitectural optimizations. Even techniques
that might increase the runtime or the number of operations could be benefi-
cial, if they can provide a significant reduction in the average number of bit
flips in the arithmetic unit.

This chapter is structured as follows. An overview of related work has
already been provided in Chapter 3, Section 3.4. Section 6.1 explains relevant
architectural details of the Fermi GPU datapath as well as their influence on
the design of our microbenchmarks. Section 6.2 describes how the actual
measurements were performed and how our test vectors were generated.
Before looking at the details of ALU Power consumption on the Fermi GPU,
in Section 6.3.1 we employ a portable CUDA microbenchmark to show that
data values impose a strong influence on GPU power consumption, even on
the cards using the latest Maxwell architecture [77] and embedded GPUs.
Section 6.3.2 explains how the register file and data values influence the power
consumption even if the input values supplied to the functional units are
constant. The following Section 6.3.3 provides an overview of the results of
our measurements. Section 6.4 builds the ALUPower power model for GPU
ALUs using the measured values and provides an initial discussion of its
accuracy. In Section 6.5 the accuracy of the power model is evaluated and
compared to the constant energy per instruction models employed by current
GPU architectural simulators. Conclusions for this chapter can be found in
Section 12.1.

6.1 measuring gpu alu energy

Measuring the energy consumed by the GPU datapath requires knowledge
about its structure and on how microbenchmarks can be designed that trigger
specific test patterns at the functional units and register files without large
unwanted and unpredictable side effects. This section focuses on the datapath
details of the Fermi architecture. A general introduction to the architecture of
NVIDIA GPUs can be found in [76], [149] and in Chapter 2.

Figure 6.2 shows a simple GPU datapath with register files and integer and
floating point arithmetic units. Many GPUs hide the latency of memory access
and functional units by switching execution between multiple warps [5]. They
also use very wide SIMD units. Because of these design choices, GPUs require
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Figure 6.2: GPU register file and datapath (Figure reproduced from Chapter 2

for the reader’s convenience.) [39] © 2016 IEEE

huge register files. The GTX580 GPU employed in this chapter contains
register files with a total capacity of 2 MB. Conventional multi-ported register
files enable high-performance CPUs to fetch many operands in a single cycle
but consume large amounts of energy and die space even for register files
of just a few kBs. In order to enable large register files, NVIDIA GPUs split
their register file into several banks of single-ported SRAM [153]. Single-
ported SRAM is more area and energy efficient than multi-ported RAM.
Operand collectors connected via a routing network to the register bank fetch
the operands in several cycles. If operands are distributed evenly over the
banks, this organization can approach the performance of a conventional
multi-ported register file. In our example, we show four register file banks.

The datapath of the Fermi architecture is even more complex (Figure 6.3).
Each core (called streaming multiprocessor by NVIDIA) contains two warp
schedulers. Each warp scheduler has its own register file. One of the warp
schedulers executes all even warps, while the other warp scheduler executes
all odd warps. Some execution units are exclusively connected to one warp
scheduler, while others are accessible by both schedulers. Integer performance
is half the floating point performance and the integer units are potentially
shared as well or are just smaller units with lower throughput.

Unfortunately, we cannot build a power model by directly measuring the
energy consumption of a single ALU while it performs a single instruction.
Two main reasons prevent such an approach to GPU ALU power modeling.
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The first one is that the energy consumed in the execution of one instruction
does not only depend on the instruction itself and its operands but also
depends on the previously executed instruction and previous operands. A
meaningful model must, therefore, measure the power consumption of pairs
of instructions and pairs of input operands. The second reason is that we
cannot isolate the ALU from other components of the GPU and measure only
the power consumed by a single ALU. Isolated measurements of the power
consumption of a single ALU are only possible using detailed circuit simula-
tions or special test chips manufactured for such purpose. Both would require
access to a wealth of proprietary design files and other secret information only
GPU designers have access to. Estimating GPU ALU energy consumption
using self-developed RTL descriptions of such an ALU would allow using
circuit and RTL level power tools and measuring the energy in isolation. The
energy estimations produced by such a model could be much higher than
commercial GPU ALUs because they lack the many person-years of manual
optimization performed on them, or they could also underestimate the ac-
tual energy consumption because they would likely lack some functionality
available in commercial GPU ALUs.

The energy consumption of the ALUs can be estimated, without being able
to measure only the ALU itself, by measuring the GPU power consumption
twice. While changing the input operands to the ALU and keeping all other
activities of the GPU constant, the energy consumption of the ALU can be
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� �
1 (...) // calculate test vector address in R2
2 // load test vectors into registers
3 LD.E R4,[R2+0x00]
4 LD.E R5,[R2+0x04]
5 (...) // load loop counter in R2
6 !Label loop
7 FMUL R4,R5,R6
8 (...) // 63x more FMUL
9 IADD R2,R2,-1

10 ISETP.EQ P0, P7, R2, RZ
11 @!P0 BRA !loop
12 EXIT� �

Figure 6.4: Microbenchmark Code in Fermi Assembly [39] © 2016 IEEE

calculated. As each operation uses only a tiny amount of energy, for precise
measurements we need to repeat the operation many times and also execute
the operation on many identical ALUs in parallel. This way differences
in energy consumption that are within the pJ range per operation can be
measured using energy measurements in the mJ to J range.

Measuring the GPU power consumption requires kernels that mostly exe-
cute a specific pair of instructions with a specific pair of inputs and nothing
else. Writing such a code in a high level language such as CUDA or OpenCL
would cause the optimizer in the compiler to spot that the code executes
many redundant operations and eliminate most of the test code. Even if the
test code is written using an intermediate language such as SPIR, HSAIL or
PTX, optimizers in the driver can still remove parts of the test code or reorder
instructions. Both would prevent valid measurements of the GPU power
consumption. For this reason, the test code needs to be written in the actual
ISA of the GPU and should run without changes on the GPU. Unfortunately,
most GPU manufacturers do not support that developers write code directly
in the actual ISA of their GPUs. NVIDIA provides a disassembler for the
ISA, but does not provide an assembler nor a description of the instruction
set. The disassembler allowed Yunqing to reverse engineer an assembler for
Fermi called asfermi [169]. Not all instructions are supported yet, but enough
instructions are supported to test the most important functional units: integer
arithmetic, logic and basic floating point operations such as FADD and FMUL.
Our test code first loads the test vectors from DRAM into registers and then
executes instruction pairs in a loop with aggressive unrolling. Unrolling
ensures that the GPU mostly executes our test instruction pair and that the
energy and time spent on executing loop handling code is negligible.
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Figure 6.5: Execution of Warps on GPU Functional Units [39] © 2016 IEEE

Figure 6.4 shows a short version of our microbenchmark. First, we load
the test vectors into registers and then we execute a long unrolled loop. Only
one set of registers is used. Fermi GPUs use 32 threads per warp, but use
only 16 wide functional units to execute each warp. First, the first half of
the warp is executed, then in a second cycle, the second half of the threads
is executed. This is illustrated in Figure 6.5, but for brevity, only 3 of the
16 units are shown. By loading different test vectors into the first and the
second half of the warp, we can stimulate the functional unit with different
test vector pairs and measure how much energy is consumed due to the
transition. As the two halves of the warp are always executed together we
could even execute multiple identical warps at the same time and would still
get the same transitions, no matter how the warp scheduler schedules the
warps. We, however, used only one active warp at a time to avoid additional
interference at the register file.

6.2 experimental methodology

We executed our test code on an NVIDIA Geforce GTX580 card based on
NVIDIA’s Fermi architecture. A short overview of its parameters is provided
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Table 6.1: GPU configuration in experimental evaluation. [39] © 2016 IEEE
Parameter Value Parameter Value
GPU cores (SMs) 16 Integer units / core 16

Warp Scheduler /
Core

2 Float units / core 32

Core clock 1.5 Ghz Memory clock 2 Ghz

in Table 6.1. By using a Fermi architecture card the test code could be written
using asfermi. To measure the energy consumption, a power measurement
test-bed similar to the ones used in GPUSimPow [97] and GPUWattch [88]
was used. The NVIDIA CUDA command line profiler was used to gather
kernel start and end times. Before the main test code was executed, a few
test kernels were executed to generate a known series of power consumption
spikes. These spikes were used to calculate the offset between the profiler
clock and the sample clock. The power samples and the start and stop times
from the profiler were then used to calculate the energy consumption of each
executed kernel.

As we want to quantify the dynamic power of executing an instruction with
different inputs, for every input vector we executed our measurement kernel
twice: Once with the test vector and once with a baseline vector of all zeros.
We assume that this all-zeros test vector triggers the minimum number of
signal transitions and allows us to measure static power and the power used
for fetching and scheduling the instructions. In both cases, we execute the
same number of instructions in the same order. DRAM memory transactions
triggered by our kernel are equal in both runs and are insignificant as our
code runs from cache and only a few kilobytes of code and test vectors are
loaded from DRAM on each kernel execution. Even though our baseline
vector is the same for all measurements, we execute it again for every new test
vector. This is required because the leakage power consumption depends on
the temperature of the GPU. By executing both the test vector and the baseline
test vector at nearly the same time and each only for a few milliseconds, the
large thermal inertia of the GPU ensures that the temperature of GPU and
thus the temperature dependent leakage power is almost constant in both
measurements. All differences in energy consumption between the two kernel
executions should, therefore, be due to the different input vectors.

We tested our measurement equipment and microbenchmarks by measuring
the energy consumption of 10 values 100 times each for all configurations. A
high repeatably of the measurements was observed and we found an average
standard derivation of only 0.9 pJ for repeated measurements of the same
data point. Even this small measurement error will, however, add to our
prediction error, as we cannot predict the noise.

A simple metric to characterize the value pairs in our test vector set is the
Hamming distance; the number of bits that differ between two words. Initially,
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we tried using random test vectors but discovered that almost all random
test vectors had medium Hamming distances and vectors with low or high
Hamming distance were rare. We then improved our test vector generation.
The Hamming distance of 32-bit values is between 0 and 32. With two
inputs and one output test vectors, 33 × 33 × 33 combinations of Hamming
distances could exist. We tried to find 10 samples for each combination. As
the output Hamming distance depends on the inputs for some combinations
no test vectors or only a smaller number of test vectors could be found.
For most instructions, we started with an initial set of around 220, 000 test
vectors. This test vector set turned out to be too large, since it resulted in
measurement duration of several days without noticeable improvement in
accuracy compared to smaller sets. We then randomly selected two disjoint
sets of 50, 000 values each from our initial set of test vectors. One set was
used for fitting the coefficients, and the other set for initial validation.

6.3 experimental results

In this section we first perform an experiment to validate that data dependent
energy consumption is not exclusive to Fermi GPUs. Then we perform more
detailed measurements on Fermi GPUs, at first results obtained with static
input values and then we present measurement results with changing test
vectors.

6.3.1 Data-Dependent Power Consumption on Fermi and Maxwell

As explained in the last section, the assembler available for Fermi allows
us to perform detailed measurements of Fermi GPUs, but we wanted to
verify that our hypothesis, i.e. that data values strongly influence the power
consumption of GPUs, is also true on more recent GPUs. For this reason,
we designed a special microbenchmark that can be written in a high level
language such as CUDA or OpenCL. The microbenchmark does not allow the
detailed measurements required to build an ALU power model, but measuring
its power consumption substantiates our hypothesis. The microbenchmark
evaluates 32 linear feedback shift registers (LFSR) in parallel using a bit-
sliced implementation. Figure 6.6 shows a 5-bit LFSR and the bit-sliced
implementation. In this implementation, the state of each LFSR is not stored
in a single register, but instead the state of LFSR 0 is stored in the bits at
position 0 of registers r0 to r4, the state of LFSR 1 is stored in the bits at
position 1 of the same registers, and so on. Shifting instructions are not
used but instead, the mapping between logical LSFR bits to physical registers
rotates each cycle to account for the shifting. After unrolling, this results in a
long chain of xor instructions in a loop.
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Figure 6.6: Bit-sliced Linear Feedback Shift Register [39] © 2016 IEEE

LFSRs are often used as pseudo-random generators, but have a special
property that we exploit for our microbenchmark: An LFSRs with an initial
state of all zeros stays in that state constantly, while any other initial state
generates a pseudo random sequence. Controlling the initial state of the
LFSRs allows us to adjust the number of bits that flip during the execution of
this microbenchmark. If all our 32 LFSRs are loaded with all zeros, the power
consumption should be low as the xor input will be constantly zero. If all
LFSRs are loaded with a non-zero initial state the power consumption should
be higher as the inputs will change. In Figure 6.6 LFSRs 2 and 3 are loaded
with all zero bits and stay in the locked up state, while the state of LFSR 0
and 1 is changing in every cycle. As this code is written in pure CUDA we
can execute it on the GTX580, but can also use a GTX750Ti card that employs
NVIDIA’s more recent Maxwell architecture.

Figure 6.7 shows the results of this experiment. The energy consumption
displays an almost completely linear relationship with the number of active
LFSRs on both cards. The total energy consumption of GPU is not shown
in the diagram but in both cards the change between 0 LFSRs active and all
32 LFSRs active amounts to around 30% of average total energy consump-
tion (GTX580: 28.8%, GTX750Ti: 31.2%). We scaled the working set size
with the number of cores: the smaller GTX750Ti card only executes 5/16 the
work of the bigger GTX580 card, but the GTX750Ti card with its Maxwell
architecture is still almost 5 times as energy efficient. After the work in
this chapter was initially published, we also ported this microbenchmark to
OpenCL and executed it on a PowerVR G6430 GPU in an embedded SoC.
The results of this experiment are shown in Figure 6.8. In this experiment the
static power consumption was not subtracted as in the previous experiment.
This experiment confirms that significant data-dependent power consumption
is relevant on many platforms and is not limited to discrete NVIDIA GPUs.
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Figure 6.7: ALU energy consumption of GTX580 and GTX750Ti depending
on the number of active LFSRs [39] © 2016 IEEE

It can also be shown to exist on mobile embedded GPUs from a different
vendor.

6.3.2 Impact of Register File

We initially assumed that, if we execute the same instructions over and over
again using constant inputs, the signals and gates of the GPU datapath should
stay in a constant state and their power consumption should not change
depending on which constant inputs are used. The measurements revealed,
however, that this assumption is not true and that the energy consumption of
the GPU datapath depends on the constants used and also on the warp that
is executing the instruction. The results of these measurements, for even and
odd warps, are shown in Figure 6.9a and 6.9b. We assume that the differences
between even and odd warps are caused by differences in the physical layout
of the execution units and register files or by different operand collector
schedules. In this experiment, we measure the energy consumption of the
GPU with various constant inputs relative to the energy consumption with all
zeros as input. Negative values indicate that the operation with these inputs
uses less energy than the same operation with all zeros as input. We picked
test vectors with different Hamming distances between the operands and
with different number of set bits in the operand, also known as population
count (POPC). In Figure 6.9, below the energy measurements, we show the
properties of the test vectors: on the top the Hamming distance between the
two inputs, followed by the population count of the first operand (called a)
and the second operand (called b). There is also a large difference depending
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Figure 6.8: ALU energy consumption of PowerVR G6430 in Nexus Player
depending on the number of active LFSRs

on the registers used to store the input values. As explained earlier NVIDIA
GPUs use banked registers and we found that the power consumption is
higher if the register number of registers a and b modulo 4 matches. This
is shown in the triangle marked line with higher energy consumption. The
three unmarked lines show experiments where the test vectors are fetched
using different register banks. This makes it likely that 4 register banks are
used and the higher power consumption happens when both operands need
to be fetched sequentially from the same bank. On the other hand, if different
banks are used each bank can stay in a constant state. This presents a power
optimization opportunity for the compiler: During register allocation, the
compiler should avoid fetching values with large Hamming distances from
the same register bank.

Even if there are no differences between the first and second operand, a
difference in power consumption exists depending on how many bits are set.
In even warps, some input vectors use less power than our all zero base line.
This can happen if some wires or gates are charged to 1 first and need to
be recharged only if a 0 is transmitted but can stay constant otherwise. The
energy consumed by the four different register banks is almost identical in our
measurements. The same effects but smaller and with opposite sign happen
in the odd warps. We also notice that in even warps set bits on input port b
consumed less energy than those on port a. For many instructions input ports
a and b can be swapped. Using this information the compiler could swap the
input ports based on input statistics for a small power reduction.
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Figure 6.9: Register file energy consumption for LOP.AND [39] © 2016 IEEE



88 data-dependent alu power modeling

6.3.3 Energy Consumption per Instruction

After these initial experiments, we measured the energy for each instruction
with pairs of test vectors. These results are employed in the next section
to develop a model and evaluate the power model, but first, we look at the
average power consumption of each instruction and how much their energy
consumption differs with different input values.

The average energy consumption of AND, OR, XOR and IADD is very
similar with 60.9, 60.9, 60.7 and 61.5 pJ, respectively. 95% of the AND instruc-
tions use between 28.3 and 91.5 pJ. OR and IADD instructions share a similar
upper end with 97.5% of the instruction below 91.4 and 94.4 pJ, respectively.
Upper bound for XOR is slightly lower at 81.3 pJ. Lower bounds are similar
for OR, XOR and IADD with 28.8 and 30.6, 29.6 pJ, respectively. FADD on
average uses 94.0 pJ while the average for FMUL is 95.3 pJ. 95% of the FADD
instructions use between 36.8 to 135.0 pJ, while FMUL instructions consume
between 49.3 to 131.5 pJ. IMUL is the instruction with the highest average
power consumption (165.6 pJ) as well as the largest interval (76.7 to 218.3 pJ).

6.4 alu energy model

Based on our previous findings we selected 6 parameters, one coefficient for
every parameter, and one constant offset. The following equation describes
how energy estimates are predicted by our model:

E(a0, b0, a1, b1) = c0 + c1HD(a0, a1) + c2HD(b0, b1)

+ c3HD(o0, o1) + c4HD(a0, b0) + c5HD(a1, b1)

+ c6(POPC(a0) + POPC(a1) + POPC(b0) + POPC(b1)) (6.1)

In this equation a0 and b0 are the inputs of the first executed instruction and
a1 and b1 are the inputs of the second executed instruction. o0 is the output
of the first instruction and o1 is the result of the second instruction. Four
parameters are Hamming distances (HD) between the input operands. Param-
eters HD(a0, a1) and HD(b0, b1) represent changes to the input wires. These
parameters reflect the energy consumed by the wiring to the functional unit.
The parameters HD(a0, b0) and HD(a1, b1) are designed to catch interference
between two operands from different input ports of the functional unit. This
either happens in the internal logic of the functional unit or in the register
file. In addition, our model uses the Hamming distance of the two different
outputs (HD(o0, o1)), and based on our findings from the register file also
one parameter for the population count of the inputs. For this parameter,
we do not differentiate between the inputs and add together the population
counts (POPC) of all four input values. The coefficients c0 to c6 depend on
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Figure 6.10: Predicted Energy vs. Actual Energy for LOP.AND (Even Warps)
[39] © 2016 IEEE

the instruction type, even or odd warp, and the register banks used by input
registers.

One limitation of this model is that it does not model state changes within
functional units due to different operations. For example, OR and AND will
likely be executed by the same functional unit. Even if their inputs and the
output do not change, changing the executed operation will likely change
parts of the internal state, which will consume additional energy. Modeling the
energy consumption of these internal state changes is considered future work.
ALUPower estimates energy consumed. To estimate power the architectural
simulator must accumulate the energy estimates and divide the accumulated
energy by the collection period. Because ALUPower is a linear model, the
energy does not have to be evaluated each time an instruction is executed, but
the input parameters can be accumulated and the energy can be calculated at
the end of each evaluation period. Hamming distances can be calculated very
quickly, especially when hardware population count instructions are available
such as the x86 popcnt instruction.

We used linear minimal least squares fitting on our measured data points
to determine the values of the coefficients c0 to c6. One set of coefficients was
calculated for each instruction and for each of the four different combinations
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Figure 6.11: Predicted Energy vs. Actual Energy for IADD (Even Warps)
[39] © 2016 IEEE

of even or odd warp and input registers from the same bank or from different
banks. To evaluate our model we measured the energy consumption of
another set of test vectors disjoint from our initial set. Then our coefficients
were used to predict the energy consumption of these new test vectors. After
these steps, for each test vector the actual, as well as the predicted energy
consumption, is available. Heat maps are used to show how many samples we
found for each combination of predicted and measured energy. The heat-map
for the LOP.AND instruction is shown in Figure 6.10. In a perfect model
together with perfect noiseless measurements, all points would fall on the
diagonal dashed white line. For samples that are above the diagonal the
predicted energy is higher than measured energy, while for samples below
the diagonal the predicted energy is lower than the actually measured energy.
Samples that are further from the diagonal have a larger prediction error. The
prediction error stems from a different source: limitations of the power model,
but also measurement noise. Samples in the center of the heat-map are more
common because test vectors with few or many bit flips are relatively rare
compared to test vectors with average bit flip statistics. If measurement noise
and the test vector distribution is taken into account, the model’s predictions
of the AND instruction are very close to optimal. As discussed in Section 6.2,
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Figure 6.12: Predicted Energy versus Actual Energy for IMUL (Even Warps)
[39] © 2016 IEEE

Table 6.2: IMUL test vectors from each category [39] © 2016 IEEE
0 sign bit flips 1 sign bit flips 2 sign bit flips
Op 1 Op 2 Op 1 Op 2 Op 1 Op 2
3 × 5 2 × 1 3 × 5 −2 × 1 3 ×−5 −2 × 1
−2 ×−8 −1 ×−4 −2 × 8 −1 ×−4 −2 ×−8 −1 ×−4
1 ×−2 7 ×−3 1 ×−2 7 × 3 1 ×−2 −7 × 3

even with a perfect model, electrical noise would cause an average prediction
error of 0.9 pJ and our prediction error for AND is just slightly larger at
1.3 pJ. Heat-maps for the two other logic operations OR and XOR show very
similar results and are therefore not shown. Figure 6.11 shows the prediction
heat-map for the IADD instruction and again the predictions are very accurate,
even though IADD is more complex than simple logic operations. No internal
circuit details such as the state of the carry chain are modeled, but the energy
model still performs very well.

Figure 6.12 shows the results of our initial model for the IMUL instruction.
Here we notice a different picture: Instead of a line close to the diagonal three
clouds of samples can be observed, two of them above the diagonal, one below.
We extracted some test vectors from each cloud and searched for a property
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(a) No sign bit flips
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(b) One sign bit flips
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(c) Both sign bits flips

Figure 6.13: Predicted Energy vs. Actual Energy for IMUL for each category
(Even Warps) [39] © 2016 IEEE
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Figure 6.14: Predicted Energy vs. Actual Energy for IMUL using classification
(Even Warps) [39] © 2016 IEEE

that can be used to classify the test vectors. The important difference between
the samples are the sign bits of their test vectors. We classified each IMUL test
vector into three categories and fitted different coefficients for each category.
Table 6.2 shows example test vectors to clarify the categories: If all sign bits
stay constant this results in the lowest power consumption. The results of our
prediction for this category is shown in Figure 6.13a. The highest power con-
sumption appears if only one of the sign bits flips (Figure 6.13b). Very likely
the reason for the behaviour is the flipped sign of the output. If both input
sign bits flip, then the output sign does not change. In our measurements, this
results in a slightly lower power consumption than if only one sign bit flips as
shown in Figure 6.13c. This property has been integrated into our model by
using three different sets of coefficients for the IMUL instruction. Figure 6.14

shows the results of the integrated model. A scatter plot instead of a heat
map is used to also display the classification of each data point. Most points
are close to the diagonal now, albeit not as close as the points for the simpler
logic and IADD instructions.
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Figure 6.15: Predicted Energy vs. Actual Energy for FMUL (Even Warps)
[39] © 2016 IEEE
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Figure 6.16: Predicted Energy vs. Actual Energy for FADD (Even Warps)
[39] © 2016 IEEE
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Results for the floating point multiply and add operation are shown in
Figure 6.15 and 6.16. For these two operations, our model is not as accurate
as for integer and logic instructions but much better than our first version
of the IMUL model. The heat maps seem to indicate that there might be a
property of the test vectors that influences the energy consumption that is not
incorporated in our model. We tried to improve the accuracy of the model for
floating point instructions by considering the exponent values (for example, if
the exponents of the FADD differ a lot, the output will be close to one of the
inputs), but this did not improve the prediction accuracy. In order to provide
an even more accurate energy model of the floating point unit, additional
insight into the design of this specific execution unit is required.

Table 6.3: Coefficients for Odd Warps, same register file bank, Coefficients in
pJ

Coeff. c0 c1 c2 c3 c4 c5 c6 Avg.
Energy

1 HD(a0, a1) HD(b0, b1) HD(o0, o1) HD(a0, b0) HD(a1, b1) POPC -
LOP.AND 17.97 0.82 0.93 1.00 0.06 0.52 -0.09 64.10
LOP.OR 5.18 0.82 0.93 1.00 0.07 0.52 0.11 64.16
LOP.XOR 12.32 0.87 0.99 0.72 0.10 0.54 0.01 64.09
IADD 13.97 0.87 0.98 0.71 0.06 0.51 0.01 65.02
IMUL
no sign

43.09 1.97 3.32 0.38 0.15 0.57 0.06 169.16

IMUL
one sign

135.22 1.57 1.97 0.13 0.14 0.59 0.00 169.16

IMUL
both sign

120.55 1.05 1.00 -0.05 -0.37 0.08 0.05 169.16

FMUL 43.42 1.15 1.28 0.18 0.10 0.58 -0.03 94.07
FADD 45.94 1.52 1.41 0.31 0.01 0.42 -0.17 92.73
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Table 6.4: Coefficients for Even Warps, same register file bank, Coefficients in
pJ

Coeff. c0 c1 c2 c3 c4 c5 c6 Avg.
Energy

1 HD(a0, a1) HD(b0, b1) HD(o0, o1) HD(a0, b0) HD(a1, b1) POPC -
LOP.AND 14.64 0.63 0.95 0.99 0.06 0.12 -0.01 56.34
LOP.OR 4.54 0.63 0.95 0.98 0.07 0.11 0.15 56.27
LOP.XOR 10.38 0.68 0.99 0.76 0.09 0.13 0.07 56.68
IADD 11.65 0.67 0.99 0.74 0.06 0.11 0.07 57.53
IMUL
no sign

43.45 1.77 3.33 0.38 0.08 0.11 0.12 161.61

IMUL
one sign

134.20 1.36 1.98 0.14 0.11 0.16 0.06 161.61

IMUL
both sign

117.75 0.85 1.01 -0.05 -0.34 -0.29 0.11 161.61

FMUL 42.46 1.07 1.35 0.17 0.08 0.17 0.14 96.49
FADD 45.80 1.56 1.39 0.31 -0.01 0.04 -0.04 94.67

Table 6.5: Coefficients for Odd Warps, different register file bank, Coefficients
in pJ

Coeff. c0 c1 c2 c3 c4 c5 c6 Avg.
Energy

1 HD(a0, a1) HD(b0, b1) HD(o0, o1) HD(a0, b0) HD(a1, b1) POPC -
LOP.AND 12.26 1.34 0.76 0.92 -0.01 0.28 -0.06 60.38
LOP.OR 3.01 1.34 0.76 0.92 -0.01 0.28 0.08 60.47
LOP.XOR 8.36 1.38 0.80 0.72 0.01 0.29 0.01 60.02
IADD 9.66 1.39 0.80 0.70 -0.02 0.27 0.01 60.82
IMUL
no sign

41.97 2.49 3.13 0.37 -0.03 0.24 0.07 165.00

IMUL
one sign

132.21 2.08 1.78 0.14 0.02 0.30 0.01 165.00

IMUL
both sign

114.88 1.56 0.81 -0.06 -0.41 -0.12 0.06 165.00

FMUL 39.56 1.66 1.09 0.17 0.01 0.32 -0.02 89.94
FADD 42.06 1.71 1.53 0.30 -0.08 0.18 -0.16 88.65

Table 6.6: Coefficients for Even Warps, different register file bank, Coefficients
in pJ

Coeff. c0 c1 c2 c3 c4 c5 c6 Avg.
Energy

1 HD(a0, a1) HD(b0, b1) HD(o0, o1) HD(a0, b0) HD(a1, b1) POPC -
LOP.AND 5.90 1.53 0.98 0.86 0.01 0.06 0.03 62.65
LOP.OR 1.58 1.53 0.98 0.85 0.01 0.05 0.10 62.64
LOP.XOR 4.29 1.55 1.00 0.76 0.01 0.04 0.07 62.03
IADD 5.37 1.56 1.01 0.73 -0.02 0.03 0.07 62.77
IMUL
no sign

41.51 2.67 3.33 0.37 -0.13 -0.10 0.12 166.82

IMUL
one sign

130.04 2.25 1.98 0.14 -0.03 0.02 0.06 166.82

IMUL
both sign

109.04 1.73 1.01 -0.06 -0.33 -0.29 0.11 166.82

FMUL 36.68 1.94 1.35 0.17 0.01 0.07 0.12 100.51
FADD 39.87 2.03 1.78 0.30 -0.08 -0.04 -0.03 100.12
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The coefficients used in our model and the average energy per instruction
are shown in Table 6.3. Coefficients for odd and even warps are different
as odd and even warps are managed by different schedulers and layout
differences cause differences in energy consumption. The coefficients for
input registers from the different banks are shown in Table 6.5 and 6.6. The
coefficients for input registers from different register banks are very similar.
The main difference to the coefficients from Tables 6.3 and 6.4 are smaller
coefficients for HD(a1, b1), which is due to the reduced interference of the
operands in the register file, as discussed in Section 6.3.2.

6.5 accuracy

After developing the energy model and performing an initial visual evaluation,
we calculate the root mean square error (RMS error) for every instruction and
compare it to the previously used constant energy models. These models
do not consider data values but assume a constant energy consumption for
each instruction. For these models, we assume that every instruction uses
the average amount of energy for that instruction type, as this minimizes
the average error of a constant energy model. Figure 6.17 shows the root
mean square error for the constant-energy and ALUPower energy models.
Our data-dependent ALUPower model is significantly more accurate for all
instructions. The geometric mean of the RMS error is 85.6% smaller than the
error of current architectural power models for GPUs. The largest accuracy
improvement is for AND instructions, where ALUPower provides 91.9% more
accurate predictions. Even for the FADD instruction our energy model is
60.5% more accurate. The constant energy model has different coefficients
for different instruction types and odd/even warps, while GPUWattch and
GPUSimPow [88], [97] only differentiate between integer and floating point
instruction. These even simpler models would perform even worse than the
constant energy model employed here.

Test vectors that consume large amounts of energy in the real GPU ALU
should also consume large amounts in the model, i.e. measurements and
predictions should be strongly correlated. Figure 6.18 shows the Pearson
correlation coefficient of measurements and our predictions. A correlation
coefficient of 0 implies no correlation, while 1.0 would be perfect correlation.
Since the constant energy model does not consider the data values at all,
its predictions are not correlated at all to actual power consumption and
its correlation coefficient is 0 for all instructions. The ALUPower energy
model exhibits a high average correlation of 0.976 between the actual energy
consumption and the prediction. The OR instruction shows the highest corre-
lation of 0.996, while the FADD and FMUL instructions show a correlation of
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Figure 6.17: RMS Error of Constant-Energy and ALUPower [39] © 2016 IEEE
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Figure 6.18: Pearson Correlation Coefficient [39] © 2016 IEEE

0.917 and 0.948, respectively. The predictions for IMUL have a correlation of
0.987.

The error results so far were calculated with test vectors with similar
statistical properties to the test vectors used to perform the linear least square
fitting of the model. The high accuracy on these test vectors could have been
the result of overfitting. To validate that our model works well even with
different test vector sets, we executed several Rodinia [162] GPU benchmarks
and benchmarks included with the simulator on a modified gpgpu-sim[149].
For every tested instruction, gpgpu-sim was modified to extract value pairs
used in thread 0 of each block and write them to a file. We randomly
picked 1000 disjoint test vectors for each instruction, measured their power
consumption on the actual GPU and compared them to the predictions. The
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Figure 6.19: RMS Error of Constant-Energy and ALUPower (Validation
Dataset) [39] © 2016 IEEE

results of this experiment are shown in Figure 6.19. On this set of test
vectors, ALUPower has an average RMS error of 7.8 pJ, instead of 2.7 pJ on
the generated test vectors. However, the error of the constant-energy model
has increased from 19.0 pJ to 31.8, pJ. So the RMS error of the constant energy
model increases even more than that of ALUPower. In this data set small
unsigned integer values are much more common than in the generated data
sets. For this reason, especially the constant energy model for IMUL predicts
significantly worse.

6.6 summary

In this chapter, we have presented the ALUPower power model. While older
models do not take data values into account, when estimating the energy
consumption of instructions, our model uses population count and Hamming
distances to enable significantly more accurate predictions. We designed
custom microbenchmarks to measure the power consumption using an GPU
assembler. We show that data-dependent power consumption exists on a
wide range of GPUs including embedded platforms. We demonstrated that
ALU power consumption depends on factors such as register allocation and
warp scheduler. Our model improves the accuracy of the energy estimations
by 85.6% over older models and shows a strong correlation of 0.976 to our
measured results from a real GPU. After this chapter has presented ALUPower,
a data dependent power model for the GPU ALU and register files, the next
chapter reveals MEMPower, a data dependent power model for the memory
subsystem.





7

D ATA - D E P E N D E N T M E M O RY M O D E L I N G

GPUs focus on applications with high computational requirements and sub-
stantial parallelism that are insensitive to latency [170]. Large caches are inef-
fective for GPUs due to the execution of thousands of parallel threads [171].
These factors cause GPUs and many GPU applications to require memory
interfaces that provide significantly higher DRAM bandwidth than what is
required and provided for regular CPUs. GPUs usually achieve the high
memory bandwidth by using special graphics DRAM memories with lower
capacity but wider and faster interfaces, such as GDDR5. These high through-
put memory interfaces consume a significant amount of power. Modeling
their power consumption accurately is thus important for architectural GPU
power simulators.

In the previous chapter, we have shown that data values influence the
energy consumption of GPU ALU operation significantly. While executing the
same sequence of instructions the power consumption changed from 155 W
to 257 W, when the processed data values were changed. In this chapter,
we demonstrate that energy cost of memory transaction also is influenced
significantly by the data values written to the DRAM or read from the DRAM.
MEMPower provides predictions that consider the data values used in a
transaction as well as the location of the transaction.

Most current discrete GPUs employ GDDR5 or GDDR5X memories [58], [59].
Both memory types employ pseudo open drain signaling (POD) [172]. In POD
signaling, additional current flows when transmitting a zero, while no current
flow happens when transmitting a one. To improve energy consumption as
well as to limit the number of simultaneously switching outputs, both types
memories use data bus inversion (DBI) [103], [109]. DBI encoding transmits
data inverted if that results in a lower energy consumption and uses an extra
signal line to allow the receiver to reverse the inversion of the data, if required.
The POD signaling, together with DBI encoding, is a source of data dependent
energy consumption of the memory interface.

CMOS circuits consume dynamic power when their internal circuit nodes
are recharged to a different state. How much energy is consumed, depends on
the load capacitance of this node and the voltages. Bus wires providing long

101
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Table 7.1: GPU configuration in experimental evaluation.
Parameter Value Parameter Value
GPU cores (SMs) 16 Integer units / core 16

GPCs 4 Float units / core 32

Core clock 1.5 Ghz Memory clock 2 Ghz
CUDA 6.5 Driver 343.36

on chip distance routing are usually structures with high load capacitance.
External off-chip interfaces, also contain large loads in their drivers, receivers,
wires as well as parasitic package capacitances. How often each of the wires
is recharged, depends on the data and the encoding of the data transmitted
over the wire. The recharging of wires and other circuit nodes partly explains,
why the energy cost of memory transaction depends on the transmitted data.
The capacitance of a bus wire increases with increased length of the wire. For
this reason, we also want to reveal information about the physical layout of
the GPU to estimate distances.

Memory transactions are generated within the GPU cores (called streaming
multiprocessors (SMs) by NVIDIA). In the GTX580 GPU the SMs are organized
into graphics processor clusters (GPCs) [173]. Each GPC contains 4 SMs. The
GTX580 uses a full GF100 die with all four 4 SMs activated in each of the 4
GPCs.

This chapter is structured as follows: Section 7.1 describes our experimental
setup including our microbenchmarks. The following Section 7.2 shows
how latency measurements can be used to discover the mapping between
memory addresses and memory channels. It also describes the properties of
the mapping and insights gained from latency measurements. Section 7.3
introduces the design of the data dependent energy model and evaluates
the accuracy of the model. Section 7.4 provides a short summary and some
conclusions for this chapter. Additional conclusions are provided at the end
of this thesis in Chapter 12, Section 12.1.

7.1 experimental setup

For our experiments, we used an NVIDIA GTX580 GPU with a full GF100

chip using the Fermi architecture [173]. A short overview of its parameters is
provided in Table 7.1. This GPU was selected for two main reasons:

1. GPGPU-Sim currently does not support more recent GPU architectures.
Energy was measured using the GPU power measurement testbed that
has been described in Chapter 4.

2. The work presented in the last chapter resulted in a data-dependent
power model for the ALUs of this GPU. This chapter adds the missing
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memory power model to enable the creation of an architectural power
model of the GTX580 GPU, that includes both ALU and memory data
dependent power.

In order to measure the power consumption of memory transaction, we
developed custom microbenchmarks. These microbenchmarks execute the
tested memory transaction millions of times. This allows us to measure
the small energy used per transaction. In order to measure only the data
dependent energy of each transaction we measure every transaction twice:
Once with the test vector and once with a baseline vector of all ones. Then
the energy consumed by the baseline vector is subtracted to calculate the
energy difference caused by the specific test vector. Both measurements are
performed at nearly the same time to ensure that the GPU temperature stays
approximately constant in both measurements to avoid errors. Without this
step, GPU temperature variations could result in different amounts of static
(leakage) power.

The microbenchmarks use inline PTX assembler to generate special load
and store instructions that mostly bypass the L2 cache (ld.global.cv.u32
and st.wt.u32). Even with these instructions, using the nvprof profiler,
we detected that multiple accesses to the same address, issued at nearly the
same time, are still combined at the DRAM. Our microbenchmark was then
redesigned to avoid this issue by making sure that the different SMs are not
generating accesses to the same location at nearly the same time. The profiler
was used to verify that our microbenchmark generates the expected number
of memory transactions. Each measurement was performed 128 times and
averaged. The order of the measurements was randomized.

7.2 memory layout

According to NVIDIA the GTX580 features 6 different memory channels [173].
CUDA allows us to allocate space in the GDDR5 but does not provide any
control over which memory channels are used for the allocation. We suspected
that the different memory channels might have different properties in terms
of energy consumption due to different PCB layout of the memory channels
as well as internal layout GF100 differences. To use all available memory
bandwidth allocations are typically spread over all memory channels, so
that all the capacity can be used and all memory bandwidth can be utilized.
However, when we want to measure a specific memory channel we need
to identify where a specific memory location is actually allocated. As no
public API is available to query that information, we hypothesized that the
differences in physical distance between the GPU cores and the memory
channels would also result in slightly different latencies when accessing
the memory. CUDA offers a special %smid register that can be used to
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identify the SM executing the code and a %clock register that allows very
fine-grained time measurements. We used these two features to measure the
memory latency of reading from each location from each SM. We measure the
latency of each location 32 times and averaged our measurements to reduce
measurement noise. For each location, this results in a 16 element latency
vector, where each element of the vector shows the average memory read
latency from that SM to the memory location. We detected that the latency to
the same memory location is indeed different from different SMs and different
memory locations show different latency patterns. We noticed that the latency
pattern stays constant for 256 consecutive naturally aligned bytes. This means
the granularity of the mapping from addresses to memory channels is 256
bytes, and we only need to perform our latency measurements once for each
256 byte block to identify the location of the whole block.

As the memory latency is not completely deterministic but changes slightly,
e.g. due to background framebuffer accesses running in parallel to the
measurement, all the latency vectors are slightly different. We solved this
issue using k-means clustering [174]. We initially tried to map our latency
vectors into six clusters corresponding to the six memory controllers listed in
NVIDIA’s descriptions of the GF100 [173]. This, however, failed to provide a
plausible mapping of the memory locations, but mapping the latency vectors
into twelve clusters was successful.

When we assume twelve clusters, all latency vectors are located close to one
of the twelve centroids and the second closest centroid is much farther away.
The number of points that gets assigned to each cluster is also approximately
equal. When we access only locations mapped to one centroid, we achieve
approximately 1/12 of the bandwidth achieved, when all locations from all
channels are used. This pattern also continues if we selected larger subsets
of the centroids, e.g. selecting locations from two clusters results in 1/6 of
the bandwidth. The nvprof profiler also provides additional hints that the
identified mapping is correct: Many DRAM counters are provided twice,
one counter for something called subpartition 0 and another counter for
subpartition 1. If we access only locations from a single cluster, we notice
that only one of these two performance counters is incremented significantly,
while the other counter stays very close to zero. This indicates all locations in
each of the clusters are part of the same subpartition.

Lopes et al. list six L2 Cache banks with two slices each for GTX580 [175].
The GTX580 has a 384-bit wide memory interface. Six 64-bit wide channels
together with the 8n prefetch of GDDR5 would result in a fetch-granularity
of 64 bytes per burst. Memory access patterns that only access 32 consecutive
bytes and do not touch the next 32 bytes would always overfetch 32 bytes
per transaction and would result in an effective bandwidth of less than
half the peak bandwidth. However, our experiments showed better than
expected performance for 32 byte fetches. An additional hint at 32 byte
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Figure 7.1: 1 MB Memory block with recovered memory channel mapping,
each pixel is equivalent to a 256 byte block

transaction is also provided by the NVIDIA profiler, where many DRAM
related performance counters are incremented by one per 32 bytes. This
indicates that the GTX580 can fetch 32 bytes at a time, which is consistent
with twelve 32-bit channels. From these findings, we estimate that the GTX580

uses six memory controllers with two subpartitions in each controller and one
32-bit wide channel per subpartition.

As twelve is not a power of two, the GTX580 cannot simply use a few
address bits to select the memory channel. Round-robin mapping of addresses
to memory channels is conceptually simple but would require a division of
the addresses by twelve.

Figure 7.1 provides a graphical representation of the recovered memory
mapping of 1 MB block of memory. Each pixel represents a 256 byte block,
each of the 64 lines represents 64 × 256B = 16kB. The memory mapping
seems to be structured, but does not use any simple round robin scheme.
With this mapping twelve consecutive 256B blocks, on average, use 10.6
different memory channels. A simple round robin scheme would likely result
in some applications having biased memory transaction patterns that favor
some memory channels over others, which would result in a performance
reduction. The mapping is likely the output of a simple hash function, that
makes it unlikely for applications to use a biased memory access patterns
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Figure 7.2: GF100 Organization

by chance. Sell describes a similar scheme used by Xbox One X Scorpio
Engine [176].

We also analyzed the latency vectors to reveal more information about the
internal structure of the GPU. DRAM Latency without load varies between
400 cycles and 430 cycles. We first notice that all SMs in the same GPC have
nearly the same latency the memory channels. The first SM in each GPC
seems to have the lowest latency. The other SMs are approximately 2,6 and
8 cycles slower. This additional latency within the GPC does not depend on
the memory channels addressed. It is also identical for all four GPCs. This
indicates an identical layout of all four GPCs and a shared connection of all
SMs of a GPC to the main interconnect. The latency of four memory channels
is lowest at GPC1. This is also true for GPC2 and GPC3. There are no memory
channels where GPC0 provides the lowest latency. We suspect that is the
result of a layout such as shown in Figure 7.2. This also matches well with
the PCB layout of a GTX580 where DRAM chips are located on 3 of the four
sides of the GF100 and the PCIe interface can be found at the bottom.

7.3 data-dependent energy consumption

As already described in the introduction, we expect two main reasons for data
dependent energy consumption:
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Table 7.2: DRAM Latency
GPC0 GPC1 GPC2 GPC3

Added Latency vs. GPC1

3.6 - 3.6 7.5
3.9 - 3.8 7.5
7.4 - 3.7 11.2

11.3 - 5.7 15.1
Added Latency vs. GPC2

3.6 3.8 - 0.0
3.8 3.8 - 0.1
9.4 3.8 - 5.8

11.2 2.0 - 7.6
Added Latency vs. GPC3

4.0 7.6 4.0 -
3.9 7.7 3.9 -
3.9 9.5 5.9 -
3.8 9.6 5.7 -

1. Special signaling lines such as the GDDR5 DQ lines with additional
energy consumption at a certain signal level.

2. State changes of wires and other circuit nodes.

Our model should allow a fast and simple evaluation, for this reason, we
selected a simple linear model. Every memory transaction is mapped to
a small vector that describes the relevant properties of the block. A dot
product of this vector with a coefficient vector results in the estimated energy
consumption for this transaction. The coefficient vector is calculated in a
calibration process.

The following properties of the block are used to estimate the energy con-
sumption. We model signal level related energy consumption by including
the population count of the block. The population count is the number of
set bits. We also need to estimate the amount of recharging of internal wires
and circuitry caused by the transaction. Memory transactions travel through
several units and various connection until they finally reach the DRAM. A
simplified diagram is shown in Figure 7.3. We know that the transaction
travels through a 32-bit wide interface between DRAM and memory con-
troller. Unless a reordering of bits is performed, we know which bits will
be transmitted through the same wire and could cause switching activity

SM GPC L2

DRAM
Ctrl.

DRAM
? ? ? 32

Figure 7.3: Memory Datapath
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Figure 7.4: Store Access Prediction Accuracy vs. α

on these wires, e.g: bits 0, 32, 64, ... are transmitted on the same DQ line,
bits 1,33,65, ... are transmitted on the next DQ line, etc. While we know
the width of the DRAM interface itself, the width of the various internal
interconnections is unknown. We assume the internal link width are powers
of two and are at least byte wide. The coefficients for all potential link sizes
are first added to the model. During the calibration of the model, the best
subset of coefficients is selected, and we indirectly gain knowledge about the
internal interconnections. Because GDDR5 memory can use DBI encoded
data, an extra version of each of the previously described coefficients is added
to our model. This second version assumes DBI encoded data.

A synthetic set of test vectors was generated to calibrate the model. The
calibration test vectors are designed to span a wide range of combinations
in terms of toggles at various positions and in terms of population count.
We measured the real energy consumption of our test vectors. Initially, the
model uses a larger number of coefficients and some of these likely have no
corresponding hardware structure in the GPU. This causes a significant risk
of overfitting the coefficients to our calibration measurements. We avoid this
issue by using LASSO regression as an alternative to regular least square
fit [177]. Instead of fitting the calibration data as closely as possible LASSO
also tries to reduce the number of used coefficients and reduces their size.
The hyperparameter α controls the trade off between number and size of the
coefficients and prediction error with the calibration set.

In addition to the set of calibration vectors, we generated another set of test
vector to validate our model. The validation vectors are generated to mimic
real application data. The vectors use various integer and floating-point data
types, a mixture of random distributions with different parameters was used
to generate realistic data. Real application data is often also highly correlated,
some test vectors used a Gaussian process to provide correlated data.

Figure 7.4 shows the prediction error at various values of α. α = 0.007
results in the smallest error in the validation set for store transaction. Smaller
values of α overfit the calibration set, while larger values discard important
coefficients. Table 7.3 shows the coefficients, it should be noted that the
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Figure 7.5: MEMPower energy prediction for store access

Figure 7.6: MEMPower energy prediction for read access
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Table 7.3: 128B Transaction Coefficients
Store

Coefficient DBI Value (nJ)
Const No 7.536

Pop Cnt. No -3.046

Pop Cnt. Yes -0.487

Toggle 1 No 0.013

Toggle 1 Yes 0.020

Toggle 2 No 0.004

Toggle 2 Yes 0.017

Toggle 4 No 0.930

Toggle 4 Yes 0.059

Toggle 8 No 0.782

Toggle 8 Yes 0.000

Toggle 16 No 2.272

Toggle 16 Yes 0.014

Toggle 32 No 9.341

Toggle 32 Yes 0.140

Toggle 64 No 5.150

Toggle 64 Yes 0.044

Load
Coefficient DBI Value (nJ)

Const No 9.175

Pop Cnt. No -3.908

Pop Cnt. Yes -0.582

Toggle 1 No 0.020

Toggle 1 Yes -0.043

Toggle 2 No 0.019

Toggle 2 Yes -0.043

Toggle 4 No 1.677

Toggle 4 Yes -0.007

Toggle 8 No 0.445

Toggle 8 Yes -0.036

Toggle 16 No 1.039

Toggle 16 Yes -0.049

Toggle 32 No 7.434

Toggle 32 Yes 0.043

Toggle 64 No 9.917

Toggle 64 Yes 1.901

coefficients were calculated per 512 bitflips for numerical reasons. None of
the DBI coefficients are used, which indicates that the GPU is not using DBI
encoding for stores. The largest coefficient corresponds to a 32 byte wide link.
Coefficients for 4 and 8 byte wide links are small. Narrow 1 or 2 byte wide
links are not employed. The large coefficient for a 64 byte wide link could
be linked to SM internal power consumption, as the SMs use 16 wide SIMD
units with 32-bits per unit.

The heatmap in Figure 7.5 shows the prediction accuracy of our model
for 128 byte store transactions. If the model would offer perfect prediction
all points would be on the dashed white line. However, all our predictions
are very close to the line which indicate a great prediction accuracy. Our
RMS error is 0.39 nJ and the relative error is just 3.1%. Smaller transactions
use different coefficients, results are not shown here because of the limited
space. But one interesting result is that register values from disabled threads
influence the energy consumption. Likely these register values are still
transmitted through parts of the interconnect but marked as inactive. Taking
data values into account instead of assuming a constant average energy per
transaction improves the prediction error from an average error of 1.7 nJ to a
error of just 0.39 nJ.

Figure 7.6 shows the prediction accuracy of our load model. In general, the
model achieves a good prediction accuracy of 9.1% but tends to underestimate
the energy required for cheaper transactions. Our load kernel achieves a
significantly lower bandwidth than the store kernel as it will not send the
next load transaction before the last transaction returned, while stores will
be pipelined. The lower bandwidth results in a reduced signal to noise ratio
of the measurements. The load coefficients printed in Table 7.3 indicate that
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Figure 7.7: MEMPower energy prediction for store access for all transaction
sizes

Figure 7.8: MEMPower energy prediction for read access for all transaction
sizes
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Figure 7.9: Normalized Memory Channel Energy Consumption

load transaction are employing DBI encoding. Error improves from 2.3 nJ to
1.43 nJ.

Our previous model is limited to transactions that use a full 128B trans-
action, we extended our model to also handle different transaction sizes, by
training the model with different coefficients for each possible mask. Fig-
ures 7.7 and 7.8 show the prediction accuracy for memory transactions of
all sizes and patterns. Energy consumption is more varied when these dif-
ferent access patterns are also considered. Write prediction error improves
from 3.3 nJ to 0.8 nJ, prediction error for read transactions improves from
2.9 nJ to 1.6 nJ. Relative average RMS is 12.0% for writes and 13.1% for read
transactions.

We combined the microbenchmarks with the memory channel identification
technique from Section 7.2 to check for energy differences between different
memory channels and SMs. We tested the first SM from each GPC and
used simplified test vectors to check for changes of our most important
coefficients. The normalized results are shown in Figure 7.9. We detected
only small differences between the different SMs, however, the blue coefficient
for switching activity on a 4 byte wide bus shows a large variance between
different memory channels. Memory transactions to channels 8 to 11 are
significantly cheaper than memory transactions on Channels 0 to 3 and 5 to
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7. Memory transactions on Channels 3 and 4 are more expensive. As these
results are consistent for all four GPCs, these differences are likely the result
of slightly different PCB layout of the different memory channels instead of
chip internal routing.

7.4 summary

This chapter continued our work on data dependent power models for GPUs.
We have demonstrated how we can improve the accuracy of our power predic-
tions by considering data values. We have shown that latency measurements
can be used to identify the memory channel used for a memory transaction
and how different memory channels differ slightly in their energy cost. We
show how the LASSO algorithm can be used to improve the quality of the
coefficients and increase the accuracy. MEMPower improves the average pre-
diction accuracy by 37.8% for 128B loads and by 77.1% for stores compared
to a non-data dependent model. With this chapter the power modeling part
of this thesis ends and the next chapter starts the architectural enhancements
part. In this chapter we have learned about data bus inversion (DBI) and in
the next chapter we describe an improved DBI encoding that is able to reduce
the interface power by up to 6%.
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S AV I N G D R A M I N T E R FA C E P O W E R

The work presented in this chapter was previously published: J. Lucas,
S. Lal, and B. Juurlink, “Optimal DC/AC data bus inversion coding,” in
Design, Automation and Test in Europe, DATE, EDAA, 2018.

GDDR5 and DDR4 memories use data bus inversion (DBI) coding to reduce
termination power and decrease the number of output transitions. Two main
strategies exist for encoding data using DBI: DBI DC minimizes the number
of outputs transmitting a zero, while DBI AC minimizes the number of signal
transitions. We show that neither of these strategies is optimal and reduction
of interface power of up to 6% can be achieved by taking both the number of
zeros and the number of signal transitions into account when encoding the
data. We then demonstrate that a hardware implementation of optimal DBI
coding is feasible, results in a reduction of system power and requires only
an insignificant additional die area.

Up to 50% of the power used by the memory is consumed by the external
interconnect [179]. GDDR4/5/5X [58], [59], [180], as well as DDR4 [60]
memories, use a pseudo open drain (POD) electrical interface [172]. While
the previously used SSTL interfaces terminate to a voltage at 0.5VDDQ, the
POD interface is terminated to VDDQ. In a terminated SSTL interface, DC
current is always flowing, transmitting a zero or a one just changes the path
of the current flow. In the POD interface, also illustrated in Figure 8.1, DC
current through the termination resistors is only flowing when transmitting a
zero. Transmitting ones does not cause DC current through the termination.
Memory using POD signaling reduces the termination current by employing
data bus inversion (DBI) [181]. For every 8 DQ (data) lines, a ninth DBI line is
added. Transmitting a zero on this line signals that the 8 DQs lines contain
an inverted data byte, while a one on the DBI wire indicates transmission
of the non-inverted byte. The simplest DBI scheme is called DBI DC and
simply counts the number of zeros in each byte and transmits the byte in its
non-inverted form if it contains 4 or fewer zeros. If the byte contains 5 or
more zeros, the byte will be inverted. A byte with 5 zeros, will contain 3 zeros
after inversion, however, the DBI bit will contain an additional zero indicating
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Figure 8.1: Pseudo open drain (POD) interface
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Figure 8.2: Optimal DBI encoding as a shortest path problem

the inversion. This scheme guarantees that never more than 4 zeros per byte
are transmitted.

In addition to the interface energy consumed by DC termination current,
transitions from zero to one or one to zero consume dynamic power by
charging and discharging of load capacities. The importance of the load
capacities can also be seen in the design of the POD output driver: A regular
open drain output would rely solely on the resistor to VDDQ to generate high
output state, but the pseudo open drain output actively drives the output
high to provide a faster recharging of the load and thus also a faster signal
transitions than what could be achieved by the termination pull-up alone.
Instead of reducing the number of transmitted zeros, the DBI signaling can
also be used to reduce the number of signal transitions. In the DBI AC scheme,
each transmitted byte is inverted, if the inversion reduces the number of signal
transitions.

In this chapter, we present a novel DBI encoding scheme. It finds a mini-
mum energy DBI encoding of a burst if given the ratio between the energy for
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transmitting a zero and the energy per transition. The chapter is organized as
follows: Related work has already been presented in Chapter 3, Section 3.5.
We start the chapter with introducing our optimal encoding algorithm and a
simplified variant. Then in Section 8.2 we explain how power was modeled
and explain a hardware design that is able to perform the new DBI encoding
at the required data rates. In the following section, we present our experimen-
tal results. A Summary and some conclusions related to the chapter can be
found in Section 8.4 as well as at the end of the thesis in Chapter 12.

8.1 optimal encoding

To reduce the power consumption, every burst should be transmitted using
as little energy as possible. Each burst of 8 bytes can be encoded using 28

different DBI patterns. A naive algorithm would search through all possible
encoding options and pick the cheapest one. But the cheapest encoding option
can be found much more efficiently as we can reformulate the problem as a
shortest path problem on a directed graph with non-negative weights. This is
illustrated in Figure 8.2. The topology of the graph only depends on burst
length. Two nodes exist for each byte, one node represents the transmission
of the byte in its non-inverted representation, while the other node represents
the inverted transmission of this byte. The cost of transmitting each byte
depends only on the previous byte as well as the byte itself. Only two different
previous bytes can exist, either the previous byte was inverted or not. The
weight of the edges represents the cost of encoding each byte based on the
previous byte. The shortest path from the start to the end node is the encoding
with the minimum total energy. Three factors control the weights of the edges:
The data that should be transmitted and the coefficients α and β. The α
coefficient configures the cost of each signal transition, while the β coefficient
sets the cost of each transmitted zero bit. As the shortest path does not change
by a uniform scaling of the edge weights, we can freely scale the coefficients
as long as the ratio α

β does not change. This allows us to use small integer
coefficients without a significant loss of encoding efficiency. Our top example
shows the shortest path and edge weights for α = β = 1. This choice of α
and β in the example implies that the energy cost of transmitting a zero is
identical to the energy cost of a transition. If we vary the coefficients without
changing the data, we find 5 other Pareto optimal encoding options. The DBI
DC algorithm finds an encoding with 26 zeros, but 42 transitions. The DBI
AC algorithm finds the encoding with 22 transitions but 43 zeros. But neither
of these two previous algorithms are able to identify the three encodings
with a more balanced trade-off between zeros and transitions. If we assume
α = β = 1, then the optimal encoding has energy cost of 28 + 24 = 52, while
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Figure 8.3: Energy per Burst using different DBI schemes

DBI DC choose an encoding with a cost of 26 + 42 = 68 and DBI AC selects
an encoding with a cost of 43 + 22 = 65.

We simulated the different DBI encoding schemes on 10000 random bursts.
We varied the cost α per signal transition from 0 to 1 and set the cost β = 1− α.
The result is shown in Figure 8.3. DBI DC behaves identically to optimal
DBI (DBI OPT) encoding when the AC cost is 0. This is no surprise as DBI
OPT with α = 0 and β = 1 is identical to DBI DC. DBI DC works almost as
well as the optimum encoding until the AC cost reaches 0.15. Similar results
can be seen for DBI AC. As expected DBI AC performs identically to DBI
OPT when the DC cost is 0 and the performance stays close until the DC
cost reaches 0.15. DBI DC finds the one encoding with the lowest number of
zeros, every other encoding will use at least one zero more. At α = 0.10, the
cost of zeros is much higher than the cost of transitions. In order to gain an
advantage over DBI DC, for each additional zero the number of transitions
would need to be reduced by more than 9, this is rarely possible. The same
concept applies to DBI AC and large values of α.

Both DBI AC and DBI DC perform worse than unencoded (RAW) data,
when used together with high DC cost or AC cost, respectively. DBI AC
encoding is cheaper than DBI DC encoding starting from α = 0.56. The
biggest advantage of optimal DBI encoding is also offered at this point, where
the average cost per burst is 2 points or 6.75% lower than with DBI AC or DBI
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Figure 8.4: Energy per Burst for different DBI schemes, shaded area shows
loss of efficiency from fixed coefficients

DC. The shaded area in Figure 8.3 shows the advantage of DBI OPT encoding
compared to the best conventional encoding scheme (DBI DC or AC).

One problem with DBI OPT encoding is the accuracy required for the
coefficients. However, as we already saw with DBI AC and DBI DC, the
coefficients do not need to be very accurate to still enable almost perfect
encoding results. We fixed α = β = 1 and named this encoding scheme DBI
OPT (Fixed). Figure 8.4 shows the results. The shaded area indicates the
small reduction of performance due to the fixed coefficient. The encoding
with fixed coefficients performs better than previous scheme from an AC cost
of 0.23 to 0.79. The maximum energy reduction from this encoding is nearly
identical at 6.58%.

8.2 experimental setup

8.2.1 Power Model

We estimated the energy consumption with a model derived from the CACTI-
IO model presented by Jouppi et al. [179], [182]. We unified all load capacities
into a single load capacity and reformulated the equations from power to
energy per activity.
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Ezero is the energy consumed by transmitting a single zero.

Ezero =
V2

DDQ

Rpullup + Rpulldown

1
f

(8.1)

Etransition is the energy consumed by a single transition from zero to one or
one to zero.

Etransition =
1
2

VDDQVswingcload (8.2)

Vswing is the signal swing, it is calculated from the output resistance of the
pulldown driver (Rpulldown) and on-die termination resistor. (Rpullup)

Vswing = VDDQ
Rpullup

Rpullup + Rpulldown
(8.3)

The total interface energy per burst is calculated as follows:

Eburst = nzerosEzero + ntransitionsEtransition (8.4)

cload is the total load capacity. We tested a wide range of values from 1 pF to
8 pF total load. It should be the sum of the effective capacities of the driver in
the CPU or GPU, the capacities of the memory devices added to the DQ lines,
the capacity of the transmission line connecting memory and CPU/GPU. If
a system uses DIMM or similar sockets the extra load of those should also
be considered. Amirkhany et al. state a 1.3 pF load for a GDDR5 output
driver [183]. CACTI-IO assumes 2 pF for an DDR4 output driver and 1 pF
per memory device [179]. Vuong lists a maximum capacity of 1.3 pF for
DDR4 [184]. IBIS files from Micron also list similar values per DDR4 input.
DIMM sockets and the PCB trace can add a few additional pF.

8.2.2 Hardware

To validate that the proposed DBI encoding can be done at the required data
rates and add only a small overhead to a CPU or GPU using this scheme, we
developed a hardware implementation. Our proposed hardware architecture
is shown in Figure 8.5. Each byte of the burst is processed by one processing
block. Each block receives two minimum costs: cost(i) is the minimum cost
of transmitting bytes 0 to i − 1 with the last byte transmitted in non-inverted
encoding, while cost_inv(i) is the minimum cost of transmitting those bytes
with the last byte inverted. If we consider the problem as a shortest path
problem, cost(i) is the cost of the shortest path from the start to the node of the
ith byte and cost_inv(i) is the cost of the shortest path to the corresponding
inverted node. Each of the processing blocks receives the byte itself as well as
the exclusive-or of this byte and the previous byte. Within each processing
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block, two population count units (POPCNT) count the number of set bits
in each of the two inputs on the top. dc_cost0 is the cost of transmitting the
current byte without inversion, i.e., the number of zero bits multiplied with
the cost β of each zero. dc_cost1 is the DC cost of transmitting the current
byte inverted. In this case, the extra zero transmitted on the DBI signal also
needs to be considered, which results in the +1 term. Two options also exist
for the number of signal transitions: Either both the previous byte and the
current byte are transmitted in the same way (ac_cost0) or the DBI bit changed
between the two bytes (ac_cost1). Now the cost of four different encoding
options can be calculated (from the top to the bottom):

1. Previous byte was not inverted, current byte also not inverted.

2. Previous byte was inverted, current byte is not inverted.

3. Previous byte was not inverted, current byte is inverted.

4. Previous byte is inverted, current byte also inverted.

The relationship to the graph is also shown in Figure 8.6. To calculate the cost
of reaching a node via one edge, we need to consider the cost of the edge as
well as the minimum cost of reaching the source node of the edge. Two edges
lead to each node and we compare their cost and store which of the edges
provided the cheapest path. The cheapest path is then forwarded to the next
block.

At the last block, we compare which of the two end nodes provides the
shortest overall path. This path is backtracked to find the DBI pattern using
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Table 8.1: Synthesis Results (32nm)
Scheme Area

(µm2)
Static

Power
(µW)

Dynamic
Power

(µW)

Burst
Rate

(GHz)

Total
(µW)

Energy
per Burst

(pJ)

DBI DC 275 105 111 1.5 216 0.14

DBI AC 578 170 250 1.5 420 0.28

DBI OPT
(Fixed Coeff.)

3807 257 2233 1.5 2490 1.66

DBI OPT (3-
Bit Coeff.)

16584 5200 3600 0.5 8800 17.6

the muxes below the blocks. This is the same technique that is also used in
the Dijkstra’s algorithm to reconstruct the shortest path.

We described our designs in VHDL and synthesized the designs using
Synopsys Design Compiler Ultra K-2015.06-SP4 together with the Synopsys
32nm generic libraries in order to estimate the required die area, power and
throughput. We synthesized two variants of our proposed design: One design
used configurable 3-bit coefficients for α and β, while the other design fixes
α = β = 1. The fixed coefficients remove multipliers from the design and
reduce the bit width of the data path. We added 8 pipeline stages to the
output of our design and used the retime option of the synthesis tool to
move the registers to an appropriate location. Current GDDR5X uses up to
12 Gbps data rate per pin. Our design encodes 8 bytes per clock cycle, thus
a clock frequency of 1.5 GHz is required to meet the required throughput
using a single encoding unit. Whether this design adds additional latency,
depends on the design of the memory controller, often it should be possible to
perform the encoding in parallel with other memory controller tasks. If extra
latency is added, this can still be acceptable for GPUs: GPUs already have
memory subsystems with hundreds of cycles of latency and their performance
is relatively insensitive to additional latency [185].

8.3 results

Table 8.1 shows the results of our synthesis. DBI DC, DBI AC and DBI OPT
with fixed coefficients could meet the 1.5 GHz timing, equivalent to a data
rate of 12 Gbps. DBI OPT with 3-Bit configurable coefficients was significantly
slower and could only run at 500 MHz (equivalent to 4 Gbps). It also required
4.5× more area than the design with fixed coefficients and used 10.6× more
energy per encoded burst than the design with fixed coefficients. Due to the
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Figure 8.7: Interface energy per burst normalized to unencoded transmission
for various DBI encoding schemes

lower frequency, 3 units are required to reach the same throughput, increasing
the area requirements even further.

Figure 8.7 displays the interface energy per burst normalized to the cost
of transmitting the data without any DBI encoding using POD135 (used by
GDDR5X) and 3 pF load. However, results for DDR4 with POD12 are almost
identical. DBI DC performs better than DBI OPT (Fixed) until 3.8 Gbps.
DBI DC assumes that energy of zeros dominates, while DBI OPT (Fixed)
assumes that energy per zero and energy per transition are identical, and
until 3.8 Gbps, DBI DC assumptions are closer to the truth. DBI AC assumes
transition energy dominates and DBI AC would require a significantly higher
frequency than 20 Gbps to perform better than the DBI OPT (Fixed) scheme.
The maximum gain from this optimized encoding can be found around 14
Gbps.

The previous Figure 8.7 does not include the energy required for encoding.
If we also consider the energy for encoding, the picture changes. DBI OPT
encoding with configurable coefficients encodes the data only slightly better
than the fixed coefficient version, however, it uses significantly more energy
for encoding each burst. For this reason, it always consumes more power
than the DBI DC and DBI AC schemes. However, further optimization of the
hardware might change this. We used a relatively old 32nm process node for
estimating the power consumption and an optimized implementation in a
more recent process could provide a significant power reduction, that could
make configurable coefficients beneficial.

Figure 8.8 shows the energy per burst for DBI OPT with fixed coefficients
normalized to the best conventional DBI encoding. Higher capacitive load
reduces the frequency where the highest reduction of energy is achieved. At
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3 to 8 pF load, the energy is reduced between 5 − 6% at the operating points
with the highest gains.

8.4 summary

This chapter presented optimal data bus inversion encoding. It showed that
link power consumption can be reduced by up to 6% with an improved
data bus inversion scheme. Optimal DBI encoding finds the lowest energy
encoding for each transmitted burst by reducing both the number of zeros
and the number of signal transitions. We have shown that finding this optimal
encoding is identical to solving a specific shortest path problem. A hardware
implementation of DBI encoding was presented that is able to encode at the
required data rates. We have shown that optimal DBI encoding is beneficial
for energy consumption, even when considering the energy consumed by
the encoding. Optimal DBI encoding does not change the performance, but
increases the energy efficiency. In the next chapter, we will present a technique
called Sparkk. It uses the approximative computing paradigm to reduce the
number of DRAM refresh cycles and thus also the energy consumed by
refresh.
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The work presented in this chapter was previously published: J. Lucas, M.
Alvarez-Mesa, M. Andersch, et al., “Sparkk: Quality-scalable approximate
storage in DRAM,” in The Memory Forum, 2014.

DRAM memory stores its contents in leaky cells that require periodic
refresh to prevent data loss. The refresh operation does not only degrade
system performance but also consumes significant amounts of energy in
mobile systems. Relaxed DRAM refresh has been proposed as one possible
building block of approximate computing. Multiple authors have suggested
techniques where programmers can specify which data is critical and cannot
tolerate any bit errors and which data can be stored approximately. However,
in these approaches, all bits in the approximate area are treated as equally
important. We show that this produces suboptimal results and higher energy
savings or better quality can be achieved if a more fine-grained approach is
used. Our proposal is able to save more refresh power and enables a more
effective storage of non-critical data by utilizing a non-uniform refresh of
multiple DRAM chips and a permutation of the bits to the DRAM chips. In
our proposal bits of high importance are stored in a high quality storage
bits and bits of low importance are stored in low quality storage bits. The
proposed technique works with commodity DRAMs.

Refresh is projected to consume almost 50% of total DRAM power only a
few generations ahead [110]. For mobile devices, DRAM refresh is already a
big concern. At the same time, the DRAM capacity of modern smartphones
and tablets lags just slightly behind regular PCs. Complex multimedia appli-
cation are now used on phones and often use large parts of their DRAM usage
to store uncompressed audio or picture data. DRAM refresh must be per-
formed even if the CPU is in sleep mode. This makes reducing refresh energy
important for battery life. Short refresh periods such as 64 ms are required
for error-free storage. Most bit cells can hold their data for many seconds,
but to ensure error-free storage all cells are refreshed at a rate sufficient for
even the most leaky cells. But not all data requires an error-free storage, some
types of data can accept an approximate storage that introduces some errors.

127
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This provides an opportunity to reduce the refresh rate. Uncompressed media
data is a good candidate for approximate storage. However not all media
data suitable for approximate storage is equally tolerant to the errors caused
by the storage.
In this chapter, we propose a lightweight modification called Sparkk to DRAM-
based memory systems that provides the user with an approximate storage
area in which accuracy can be traded for reduced power consumption. We
show how data and refresh operations can be distributed over this storage
area to reach better quality levels than previously proposed techniques with
the same energy or the same quality with less energy. Our technique allows
an analog-like scaling of energy and quality without requiring any change to
the DRAM architecture. This technique could be a key part of an approximate
computing system because it enlarges the region of operation where useful
quality levels can be achieved.

This chapter is organized as follows: First we describe the concept of
approximative storage in Section 9.1. In Section 9.2 we discuss the key
ideas behind our proposed Sparkk storage and its integration into the DRAM
controller. Prior to the evaluation, our theoretical model of Sparkk is described
in Section 9.3. In Section 9.4 we evaluate the properties of Sparkk. Finally, we
provide a short summary in Section 9.5. Additional conclusions related to
Sparkk can be found in Chapter 12.

9.1 approximative storage

Reducing the energy consumption is a topic of ever increasing importance.
By relaxing the normal correctness constraints, approximate computing opens
many possibilities for energy reduction. Many applications can tolerate small
errors and still provide a great user experience [187].
This does not only apply to the correctness of calculations but also applies
to the storage of data values. Often a bit-exact storage is not required and
small deviations do not hurt. The amount of variation applications can
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tolerate depends on the application [187]. We, therefore, argue that a practical
approximative storage system should be able to provide different quality
levels. This allows programmers or tools to find a good trade-off between
power consumption and quality. Even within a single application, many
different storage areas with vastly different quality requirements can exist.
Previous work often used binary classifications such as critical and non-critical
data [187][112]. This binary classification, however, limits the usefulness of
approximative storage. With only a single quality level for approximate
storage, applications cannot choose the best accuracy and power consumption
trade-off for each storage area, but are forced to pick a configuration that
still provides acceptable quality for the data that is most sensitive to errors.
One proposal for approximative storage is Flikker [112]. Flikker reduces the
refresh rate for a part of the DRAM to provide a memory area with reduced
energy consumption but also errors caused by the reduced refresh rate.

9.2 sparkk

In this section, first, the key ideas behind the our proposed Sparkk storage
are described. Then, it is explained how the DRAM controller manages the
refresh of these storage areas.

9.2.1 Sparkk Storage

Our proposed extension to Flikker [112] and RAIDR [110] is based on two key
observations:

1. Even within a single storage area, not all bits are equally critical.

2. Most memory systems require multiple DRAM chips (or multiple dies
in a single package) to reach the required bandwidth and capacity.

Applications mostly use and store multi-bit symbols such as bytes. A bit error
in the most significant bit of a byte changes the value of the byte by 128, while
a bit error of the least significant bit will only change the value by one. Many
applications can tolerate errors that change the least significant bit but will
provide an unacceptable quality if the most significant bit fails often.
Regular DDR3 chips have 4, 8 or 16 bit wide interfaces, but most CPUs use
wider interfaces. Building a 64-bit wide DRAM interface with regular DDR3

requires at least four 16-bit wide chips or eight 8-bit wide chips. Chip select
signals are normally used to control multiple ranks that share the same data
lines. The chip select signals for all DRAM chips of a single rank are usually
connected together. Only the whole rank can be enabled or disabled. Thus
a command is always executed on the whole rank. We propose that the
memory controller provides separate CS signals for every chip of the DRAM.
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This way commands can be issued to a subset of the DRAM chips of a rank.
While many additional uses are possible [113], Sparkk uses this to gain finer
grained control over the refresh. With this modification to the traditional
interface, different DRAM chips of a rank do not need to share the same
refresh profile, as refresh commands can be issued selectively to DRAM chips.
Using manual refresh does not work together with self-refresh, as during
self-refresh mode the interface to the memory controller is disabled and self-
refresh is performed autonomously by the DRAM chip. Requiring one CS line
per subrank can also be problematic in systems with many subranks. These
problems can be solved by making changes to the DRAM refresh signaling.
This, however, requires modifications to the DRAM chips. The exact details
of such a scheme remain future work.

Different refresh periods for the same row of different DRAM chips of one
rank can make multiple storage bits with different quality levels available
simultaneously. But without additional modifications to the usual memory
system, this does not solve the problem: Some high quality storage bits
would be used to store low-importance bits and vice versa. It is, therefore,
necessary to permute the data bits so that high-importance bits are stored in
high-quality storage bits and low quality storage bits are only used for bits of
low importance.
Figure 9.1 shows how four bytes can be mapped to a 32-bit wide memory
interface built from four DRAM chips. The red dashed lines show a com-
monly used mapping between application bits and DRAM bits. The green
lines show the proposed mapping: The two highest significance bits from
all four bytes transmitted per transfer are mapped into DRAM chip 3. The
two smallest significance bits are all mapped into DRAM chip 0. Bit errors
in DRAM chip 3 now have a much higher impact on the stored values. They
will change the stored values by 64, 128 or 192, while bit errors in DRAM chip
0 will only cause small errors in range of 1-3. Data types with more than 8
bits per value have even larger differences in significance between the bits. To
find a good trade-off between the number of refresh operations and quality,
more refresh cycles need to be allocated for the refresh of DRAM chip 3 than
for DRAM chip 0. Which bits are important varies between data types; here,
an example is shown for bytes. We propose to add a permutation stage to the
memory controller that provides a few permutations selected for the most
common data types. The used permutation could be controlled by the type
of instruction used for access, additional page table flags or a few extra high
address bits of the physical address. Permutations are not limited to blocks
equal to the width of the memory interface: It is also possible to permute the
bits within one burst or one cache line. With a 32-bit wide DDR3 interface one
burst is 256-bit long, so it may be used to map four 64-bit values to DRAM
chips in a way that minimizes errors.



9.2 sparkk 131

9.2.2 Controlling the refresh

Aside from the permutation, an effective way for the memory controller to
decide whether a row needs to be refreshed is also required. Unfortunately,
the solution used by RAIDR cannot be adapted for this task. In RAIDR,
the memory controller uses bloom filters to decide which rows need to be
refreshed more often. These bloom filters are initialized with the set of rows
that contain high leakage cells. A bloom filter can produce false positives,
but refreshing some rows more often than needed does not hurt but only
causes additional power usage. For schemes such as Sparkk or Flikker, a
bloom filter cannot be used: Areas falsely binned as approximate would cause
data corruption in critical memory locations and a bloom filter containing all
non-approximate rows would use large amounts of memory.
A different solution is required. The authors of Flikker proposed a single
boundary in memory space between critical and non-critical data. While this
solution is simple, it does not offer enough flexibility as it does not allow
for multiple approximate storage areas with different quality levels at the
same time. It should be possible to run multiple applications each using
multiple approximative storage areas at different quality levels. A practical
approximate storage system should thus offer the ability to configure multiple
memory areas with different quality levels. This way, a trade-off between
power and accuracy can be chosen for each area. Using our proposal, it is
also possible to turn off refresh completely for unused bits, e.g. if 16-bit data
types are used to store 12-bit data. It is also possible to build an approximate
storage that guarantees that errors directly caused by the memory stay within
configured bounds: More significant bits can be configured to be refreshed at
the rate required for error free operation. Only less significant bits are then
stored approximately.

Fortunately, we can exploit the characteristics of the refresh counter to build
a flexible mechanism that enables the handling of hundreds or thousands
of memory areas with different refresh characteristics with a very simple
hardware unit and low storage requirements. Every time the refresh counter
switches to the next row, the memory controller must decide if a refresh
operation should be triggered in the memory and, if so, on which subranks.
The refresh counter in the memory controller counts through the rows in a
monotonic and gap-less fashion. A mechanism that provides retrieval of the
refresh characteristics of arbitrary addresses is therefore not required. At
every point in time, it is only necessary to have access to the refresh properties
of the current block and information about the end of the current block. We
propose to store the refresh properties in an ordered list. Each entry contains
the address of the end of the current area and information about the refresh
properties of this block. When the refresh counter address and the end of the
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block address match, we advance to the next entry in the table. Figure 9.2
shows the proposed hardware unit. The unit uses a small single ported
memory to store the list of memory areas. The exact storage requirements
depend on the number of DRAM chips per rank, the maximum number of
DRAM rows and the maximum refresh period at which a DRAM chip still
provides at least some working storage bits. Normally less than 100 bits are
required per memory area. Because of the list structure, each storage area can
be composed of any number of consecutive rows. For each area, the refresh
period of each DRAM chip can be freely configured to any multiple of the
base refresh rate.

The refresh settings table stores phase and period information for each
DRAM chip. Every time a new area is accessed, the controller determines
which memory chips should be refreshed within this area: The phase counters
for each memory chip are decremented and a counter reads zero, the chip
is refreshed and the phase is reset to the value of the period information. A
special period value can be used to indicate to omit refresh completely, this be
can be another useful feature for some applications: Reading or writing data
from a row also causes a refresh of the data. A GPU that renders a new image
into a framebuffer every 16.6 ms does not need to refresh the framebuffer.
The access pattern guarantees refresh, even without explicit refresh cycles.

table entry

next block phase periodrefresh addr

=

+1

next

next

Figure 9.2: Refresh settings table
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Different software interfaces to such a storage system are possible: It can
be part of a system that is designed from top to bottom for approximate
computing and uses specialized languages, specialized instruction sets and
specialized hardware such as proposed by Esmaeilzade et al. [188]. In such
a system specialized load and stored instructions could select different per-
mutations for each access based on the data type. A compiler aware of these
permutation rules could create data structures containing a mix of data types.
Even with such a specialized instruction set, refresh settings can only be
selected on a per-page granularity. Applications that organize data in arrays
of structures thus often need to make problematic trade-offs if the structure
members have different accuracy requirements. If applications operate on
structures of arrays as it is popular with GPU or DSP applications or data such
as pictures or audio, the interface to software can be much simpler: Regular
languages such as C, C++ or OpenCL can be used and approximate memory
areas may simply be allocated using a specialized malloc. The application
must provide information about size, data type and quality requirements to
the specialized malloc. The operating system then calculates refresh settings
for meeting the quality requirements, reserves memory and inserts the ap-
propriate entries into the refresh list. If enough space is not available in the
refresh list to allocate a new block with a new refresh list entry, the operating
system can always choose to provide better than requested storage quality.
Adjacent list entries can be merged by choosing the maximum refresh rate
from each of the two merged blocks. One important limitation of the memory
management of approximate storage blocks should be noted: Approximately
stored memory blocks should not be moved from one approximate location to
another, as this will cause an accumulation of errors. In two different blocks,
different bit cells will fail at a selected refresh rate and bit errors already
added to the data will not disappear by moving these bits into new bit cells.
In some cases, it might be required to reserve error headroom to allow for
data movement. Another possibility to allow data reallocation is to ask the
application to restore data to an error-free state by, for example, recalculating
the data or reloading it from a compressed file.

9.3 modeling of sparkk

We model the expected number of non-functional DRAM cells at a given
refresh period using data for a 50 nm DRAM provided by Kim and Lee [111].
Our model assumes that non-functional cells will statically stick to either
zero or one on readout. We model cells as equally likely to stick to zero
or one. If we also assume that zeros and ones are equally common in the
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stored data, then half of the non-functional cells will still return correct results.

Pbytechange(k) =
7

∏
i=0

{
Pbit f lip(i) if biti in k = 1
1 − Pbit f lip(i) if biti in k = 0

(9.1)

As shown in Equation 9.1, the peak signal to noise ratio(PSNR) can be
estimated by first calculating the probabilities of the 255 possible changes to a
byte, based on the probabilities of changes to the individual bits. Pbit f lip(i) is
the probability of a bitflip in bit i. As already mentioned, this is estimated
using the data from Kim and Lee [111]. Pbytechange(k) is the probability of the
change of a byte by mask k, e.g. Pbytechange(129) is the probability of a byte
with a bitflip in bit 7 and bit 0 and all other bits without storage errors.

MSE =
255

∑
k=1

k2Pbytechange(k) (9.2)

These probabilities are then weighted by their square error to calculate
the mean square error (MSE) as presented in Equation 9.2. This is slightly
simplified and assumes that additional bit flips always increase the error. This
is true, if a single bit per byte flips, but not necessarily true if multiple bits
in a single byte flip., e.g.: If 128 should be stored and bit 7 flips, the absolute
error is 128, but if bit 5 flips as well, the error is reduced to 96. On the other
hand, if 0 should be stored and bit 7 flips the error is 128 and if bit 5 flips
as well, the error increases to 160. We found that this effect is negligible in
practice. This simplification makes it possible to pick good refresh settings
for a given quality without knowledge of the data statistics.

PSNR = 10 log10

(
2552

MSE

)
(9.3)

From the mean square error, the PSNR can be calculated, using the well
known equation 9.3. To compare Sparkk with Flikker, the harmonic means of
the per chip/subrank refresh rates are calculated. Refresh schemes with an
identical harmonic mean trigger the same number of refresh operations per
chip/subrank.

Before we can estimate the benefits from Sparkk, it is necessary to find
suitable refresh settings that maximize quality at a given energy. With Sparkk,
the rows of one approximate storage area within every DRAM subrank can
be refreshed at multiples of the base refresh rate of 64 ms. Thus a suitable set
of multiples of the base refresh rate must be found. We used hill climbing to
find our refresh settings: Starting from the base refresh period, the refresh
periods of single DRAM chips is gradually increased until a solution is found
that meets the average refresh requirements. At each step of the process
and for each DRAM subrank, we calculate how the error rate and average
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Figure 9.3: PSNR for Flikker and Sparkk with 2, 4, 8 DRAM chips

refresh energy would change, when the refresh period would increase by
64 ms. We select the DRAM subrank with the best ratio of newly introduced
error and energy saved by the prolonged refresh and increase its refresh rate
by 64 ms. We continue this process until our average refresh rate requirements
are satisfied.

To enable a visual evaluation of Sparkk, we simulated the effect of the
approximate storage on image data. Our model was used to estimate how
many bits of each significance would flip at a given average refresh period.
Then, this number of bits of each type was randomly selected and flipped.
Kim and Lee assumed that the retentions times are randomly distributed
over the cells [111]. Rahmati et al. verified this assumption experimentally
and did not find any specific patterns in the retention times of the measured
DRAM [189]. There might be patterns regarding which bits tend to stick to
zero or one if their retention time is not met. We assume that there are no
such patterns and that both stuck-at cases have the same likelihood. If a real
DRAM shows patterns, an address based scrambler could be used to prevent
visible patterns caused by the internal DRAM array architecture.

9.4 evaluation

Figure 9.3 shows the expected PSNR as predicted by our stochastic model for
Sparkk and Flikker. This model predicts the mean PSNR over an infinite set
of samples. The PSNR in single samples can be better or worse, depending on
the exact distribution of weak bitcells within the used DRAM rows and stored
data, but large derivations from the expected PSNR are unlikely. At all tested
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Figure 9.4: Effect of variable refresh on failure probability for individual bits
for Sparkk with 4 DRAM chips

refresh rates, Sparkk performs better than Flikker. Even Sparkk with just two
subranks provides benefits over Flikker. Sparkk with 4 subranks provides
almost all the benefits of Sparkk with 8 subranks.
Figure 9.4 displays how Flikker and Sparkk distribute the errors over the bits
on memory interface with 4 subranks. In Flikker, all bits have the same error
rate. In Sparkk, the subrank storing Bits 0 − 3 is refreshed at a lower rate
than in Flikker, the subrank with bit 4 & 5 is refreshed at approximately the
same rate as in Flikker and the subrank with the two most important bits is
refreshed at a higher rate than in Flikker.
To test if the PSNR also provides a good estimate of subjective quality, we
generated pictures simulating the effects of Sparkk and Flikker. These pictures
can be seen in Figure 9.5. For Sparkk a configuration with 8 subranks was
used. The average refresh rate in both cases was 8 seconds. The image
saved in the Flikker storage shows many easy-to-spot bit errors of the most
significant bit. The Sparkk storage shows only a few of those errors and
despite the extremely long refresh period, the image still seems to have an
acceptable subjective quality for some applications such as texturing. The
background of the Sparkk stored picture looks grainy which is the result of
the high number of bit errors in the less important bits.
Sparkk is able to reduce the number of refresh operations on the DRAM arrays
at a given quality level. This reduces the power required for the chip internal
refresh operation. However, Sparkk requires a more complex refresh signaling
and the additional energy consumed by this could potentially mitigate the
energy advantage in some use cases. While we proposed one refresh signaling



9.5 summary 137

scheme that can be used using unmodified DRAMs, with modifications to the
DRAM many other schemes are possible and likely more efficient. It remains
an open research question how much energy could be saved exactly.

9.5 summary

In this chapter we presented Sparkk, a modification to conventional DRAM
based storage. It uses the concept of approximative storage to reduce the
refresh rate, while still enabling high storage quality. It allows a flexible
configuration of the storage quality. Compared to previous work, we were
able to increase the quality in terms of signal to noise ratio by 10 dB or reduce
the required refresh rate by 50%. In this and the previous chapter we looked
at two architectural enhancements for improving the energy efficiency of the
memory subsystem, Optimal AC/DC DBI encoding and Sparkk, and in the
next two chapters we will look at architectural enhancements of the GPU core
to enhance both performance and energy efficiency.



138 saving dram refresh power

(a) Flikker

(b) Sparkk 8

Figure 9.5: Pictures stored in DRAM with 8 seconds average refresh
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S PAT I O - T E M P O R A L S I M T

The work presented in this chapter was previously published: J. Lucas, M.
Andersch, M. Alvarez-Mesa, et al., “Spatiotemporal SIMT and Scalariza-
tion for improving GPU efficiency,” ACM Transactions on Architecture and
Code Optimization, Sep. 2015. DOI: 10.1145/2811402.

One of the main design decisions in GPUs has been the ganging of execution
threads into batches named warps and in particular the sequencing of these
warps onto an array of execution units in a single-instruction multiple-data
(SIMD) fashion. This way of performing SIMD execution is supported by a
hardware stack to manage divergent thread control flow, and the resulting
execution paradigm has become widely known as single-instruction multiple-
thread (SIMT) execution. While SIMT amortizes control hardware over many
execution units, research over the past years has shown that this approach
yields poor SIMD utilization under control divergence, i.e. when some or
most of the threads in a warp are inactive, thus not performing any useful
work [121].

In this chapter, we evaluate an alternative approach to the classical spatial
SIMT. It has been proposed to base GPU cores on temporal SIMT (TSIMT),
which is a different way of mapping individual threads to execution units [120].
Figure 10.1a compares the spatial and temporal approaches intuitively. In the
figure it is shown how four warps (W0 - W3) consisting of 4 threads each
are executed, once for spatial and once for temporal SIMT. On the left-hand
side, spatial SIMT operates in a classical SIMD fashion: All threads in a warp
execute the same instruction and thus the instruction word is broadcast to all
execution units every clock cycle. On the right-hand side, temporal SIMT is
shown as a transpose of the spatial SIMT mapping of warps and threads to
datapath units. Here, each warp is executed on only one specific lane, and the
threads corresponding to the warp are sequenced onto the scalar execution
unit in that lane cycle by cycle. As such, TSIMT is reminiscent of a single lane
vector processor [129].

Beside divergent branches another situation where SIMT architectures waste
execution cycles is when all threads in a warp not only execute the same
instruction, but do so on identical data as well. In this case, it would be
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(a) Mapping of warps and threads to execution units in both spatial and temporal
SIMT.
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(b) Comparison of conventional and TSIMT execution for control-divergent code.

Figure 10.1: Conventional SIMT vs. TSIMT. Different colors are used to sym-
bolize different warps on the core. In this comparison, warps are
assumed to be 4-wide and cores are assumed to have 4 execution
units / 4 TSIMT lanes.
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more efficient to execute the instruction only once instead of once per thread,
thereby freeing execution resources. By doing so the SIMD instruction is
turned into a scalar instruction, and therefore this technique is known as
Scalarization. Besides releasing execution resources, Scalarization also reduces
the pressure on the register file. This requires, however, that scalar values
are stored in such a way that all threads of a warp can access the value. In
a conventional GPU this requires additional broadcast networks and often
specialized dedicated scalar register files as well. In TSIMT GPUs, on the
other hand, tiny modifications to the existing register file suffice and the
register file space can be used for both scalar and vector values. We explore
Scalarization on TSIMT GPUs in further detail in Chapter 11.

While the basic idea of TSIMT has been sketched in a patent [119] and
has been briefly described as an additional idea in two papers [120], [129], a
microarchitectural implementation and detailed performance analysis have
not been presented before. To fill this gap, we introduce a GPU design based
on TSIMT and perform a detailed analysis of its advantages and shortcomings.

Although TSIMT can improve the performance of control divergent work-
loads, it can, as we will show in the analysis of simulation results, suffer from
load balancing issues. As a way to have both the control divergence mitigation
of TSIMT and improve the load balancing, we also propose and evaluate an
architecture that combines the traditional spatial SIMT with TSIMT, and we
refer to it as spatio-temporal SIMT (STSIMT).

More concretely, this chapter makes the following contributions:

• We present a detailed microarchitecture design and implementation of
temporal SIMT for GPGPUs.

• We evaluate the TSIMT approach in detail and show that it is able to
provide large performance benefits for control divergent GPU codes in
μ-benchmarks, but suffers from significant load balancing problems in
real applications.

• We propose two optimizations to the basic TSIMT microarchitecture
that reduce the load balancing problem.

• We introduce and evaluate an STSIMT architecture that combines spa-
tial and temporal SIMT and demonstrate that it exhibits performance
improvements compared to both spatial and temporal SIMT.

• We evaluate power, energy consumption and energy efficiency of the
architectures presented.

In Chapter 11 we make additional contributions, related to (S)TSIMT com-
bined with Scalarization.
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This chapter is organized as follows. Section 10.1 introduces and describes
our TSIMT-based GPU design. Performance evaluation results are discussed
in Section 10.2. A short summary is provided in Section 10.3. Conclusions are
drawn as part of Chapter 12.

10.1 a temporal simt gpu architecture

These sections describe the proposed TSIMT μ-architectures. As TSIMT-
based GPUs are still GPUs, most parts of the μ-architecture are identical
to conventional GPUs. A overview of conventional GPU micro-architecture
was provided in Chapter 2. Everything outside the GPU cores is unchanged:
interconnect, memory controllers, PCIe interfaces and CTA scheduler. Many
structures inside the GPU core are also unchanged: instruction fetch and
decode, caches, scoreboards and the reconvergence stack. In the following
sections, we will thus concentrate on the elements that are modified in TSIMT
GPUs compared to conventional GPUs.

10.1.1 TSIMT Cores and Lanes

The basic building block of TSIMT GPU cores is the TSIMT lane. A block dia-
gram is depicted in Figure 10.2a. Such a lane consists of four key components:
An instruction register able to store a single warp instruction, a slice of the
core’s register file, an operand collector, private to the lane, and one-thread-
wide execution resources for integer, floating point, and memory instructions.
Operationally, a TSIMT lane receives a warp instruction along with the cor-
responding thread active mask from the core’s warp scheduler and stores
them into dedicated instruction and mask registers. The instruction register
is used to hold the instruction in place while the lane back-end sequences
through the warp’s threads, thereby decoupling the lane from the scheduler
while the lane is executing. Together with additional routing logic, a similar
instruction register was employed by Braak et al. to build reconfigurable
processing pipelines using the GPU execution units [191], [192].

Figure 10.2b indicates how TSIMT lanes are used to construct cores with
arbitrary throughput. In a TSIMT core, multiple lanes operate independently
and in parallel processing the instruction words stored in their instruction
registers. The overall number of threads and warps held in the core are evenly
divided over all TSIMT lanes, e.g. in a core with 8 lanes holding 64 warps
at most, every lane will statically hold 8 of the warps. Warps cannot switch
between lanes as the thread context associated with a warp is stored in the
register file within the warp’s lane. This subdivides the core’s warp pool into
separate pools for every lane. In the core’s front-end, an instruction fetch unit
accesses the instruction cache and fetches as well as decodes instructions into
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Figure 10.2: Block diagrams visualizing the organization of a TSIMT lane and
the construction of TSIMT GPU cores from TSIMT lanes. In the
figure, lanes are one-wide, and cores are constructed from 8 lanes
and have an overall occupancy of 16 warps at maximum.
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an instruction buffer (IB). The instruction buffer uses dedicated slots for each
warp. A single warp scheduler (WS) for the whole core utilizes a scoreboard
to monitor which instructions in the IBs have their dependencies fulfilled and
are ready to issue. The WS also monitors when TSIMT lanes complete the
execution of an instruction and, therefore, require a new instruction word to
be sent to the lane’s instruction register.

The execution resources are warp-wide (i.e. 32-thread-wide) in conven-
tional spatial SIMT. In a TSIMT execution architecture, on the other hand,
each TSIMT lane is one-wide, meaning that one thread instruction can be exe-
cuted every cycle. There is, however, an entire spectrum of GPU architectures
possible in between spatial and temporal SIMT, that combine both execution
paradigms. Such spatio-temporal SIMT architectures operate like TSIMT ar-
chitectures, but each lane contains sufficient execution resources to execute
instructions of multiple threads in a single clock cycle. For example, with a
warp size of 32, one can construct a 4-way-spatial 8-way-temporal SIMT archi-
tecture where each TSIMT lane contains 4-wide execution resources. In this
microarchitecture, a TSIMT lane sequences the 32-wide warp onto its 4-wide
execution resources in 8 consecutive clock cycles. The performance trade-offs
of STSIMT as an evolution of basic TSIMT are discussed in Section 10.2.7.

STSIMT is not completely new, single lane implementations without com-
paction have been used in existing GPU architectures such as NVIDIA
Tesla [193]. Tesla uses STSIMT to construct SIMT cores with lower throughput
while maintaining a large warp size. For example, in Tesla, 32-wide warps
are sequenced onto an 8-wide SIMD datapath over 4 clock cycles. One key
difference to STSIMT as proposed here is that existing approaches do not
implement compaction and are therefore unable to provide any benefit for the
execution of divergent applications. As in both TSIMT and STSIMT lanes are
usually busy for more than a single cycle, multiple lanes can share a single
frontend for instruction issue and decode. Tesla, however, does not exploit
this property of STSIMT. We use a baseline architecture similar to Tesla for
the experimental evaluation in Section 10.2.

10.1.2 Control Divergence

The TSIMT concept can efficiently provide large performance benefits when
executing control-divergent codes. Consider Figure 10.1b for example. It
shows how a conventional GPU core with 4 execution units and a TSIMT-
based core with 4 lanes execute instructions from 8 different warps, where
each warp is coded with a different color. For the sake of conciseness, warps
are assumed to consist of 4 threads each. The warp instructions executed are
control divergent, i.e., some threads do not participate in the execution and
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are inactive. For explanatory purposes, each warp instruction is shown with
a different active mask, although such situations are rare.

The figure shows that the conventional GPU architecture always requires
one clock cycle on all 4 ALUs to execute a warp instruction, regardless of the
instruction’s active mask. Threads that are switched off and the respective
ALUs are left unused for the clock cycle. In this example, the conventional
GPU completes 15 thread instructions in 8 clock cycles for an overall IPC
of 16/8 = 2.0. On the TSIMT-based core, on the other hand, compaction is
performed: Warp instructions with some inactive threads are executed in
fewer cycles than the warp width. In fact they are executed in the minimum
possible number of clock cycles, e.g. a warp with 2 active threads utilizes one
ALU for exactly 2 clock cycles. As such, no execution resources are wasted.
Overall, in this hypothetical example, the TSIMT core completes the 15 thread
instructions in 6 clock cycles, corresponding an overall IPC of 16/6 = 2.67.
We remark that the IPC in the TSIMT case would approach the ideal IPC of 4
if more work was available, as TSIMT lanes 0 (on the left) and 3 (on the right)
are ready to receive new instructions after 3 clock cycles.

In spatio-temporal SIMT architectures, some compaction ability of TSIMT
is lost. As an example, consider an STSIMT architecture where each TSIMT
lane contains 4-wide execution resources. In this case, compaction only
works for warp active masks with aligned bundles of 4 consecutive inactive
threads (e.g. 111100001111...). Warp instructions with active masks that switch
more often between active and inactive threads (e.g. 101010...), irregular
(e.g. 100111010...) or unaligned (e.g. 1000011110000...) cannot be compacted.
Therefore, STSIMT architectures lose compaction ability compared to TSIMT
architectures but exhibit larger latency hiding ability within each lane as the
core’s warp pool is partitioned over fewer lanes if the overall execution width
of the core remains constant.

10.1.3 Instruction Issue

In essence, TSIMT decouples instruction issue bandwidth from instruction execution
bandwidth. In conventional GPUs, the instruction issue bandwidth is coupled
with the execution bandwidth. If a SIMT GPU needs four cycles to execute
a warp, it will only need to supply one new instruction every four cycles. If
some improvement made it possible to execute instructions with a smaller
number of active threads faster in the execution units, speed would not
improve, because instructions could not be issued faster. In this chapter,
we assume a front end that is able to issue one instruction per clock cycle.
This provides a 4 times higher instruction issue bandwidth than needed
for perfectly convergent code. The SIMT GPU can use this additional issue
bandwidth to execute instructions on SPs, SFUs and LDST units concurrently
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to exploit ILP. The total number of issued instructions is always the same in
SIMT, TSIMT and STSIMT, only the peak issue rate increases in TSIMT. Each
warp instruction needs to be issued only once, no matter how many threads
are active. Executing the operation over multiple cycles on all active threads of
the warp does not require additional issue cycles but is performed locally in
the TSIMT lane. In conventional SIMT threads from each warp are executed in
lock-step and explicit synchronization can be omitted when data is exchanged
between threads of the same warp. Contrary to some other techniques for
improving the performance of divergent applications such as thread block
compaction [122], where threads can get reassigned to a different hardware
warp and programmers cannot expect that threads from same initial warp
keep executing in lockstep, in TSIMT lockstep execution of threads of the
same warp is preserved and no modifications are necessary to kernels.

10.1.4 Memory Access Coalescing

With respect to memory coalescing, a TSIMT architecture is largely unchanged
from a conventional GPU architecture. When a lane executes a warp-wide
memory instruction, it generates one thread memory address per clock until
all memory addresses requested by the warp instruction are known. Then,
the entire bundle is passed onto the coalescing hardware in the load-store unit
that reduces the requests to the minimum number of memory transactions.
Finally, the transactions access the L1 cache and, potentially, the lower levels
of the memory hierarchy. If the L1 cache or the load-store unit are stalled, then
stall signals are propagated back to the warp scheduler which will, therefore,
be unable to issue memory instructions until the stall is resolved. Using
instruction replay the coalescing hardware can be simplified by reusing major
parts of the core [194], which is also currently used in NVIDIA GPUs [195].
Our simulator is based on GPGPU-Sim which, however, currently does not
model instruction replay. For this reason, we decided to model all architectures
without instruction replay.

10.1.5 Shared Memory

While global memory request coalescing in TSIMT and SIMT is similar,
shared memory instructions are handled differently by TSIMT GPUs. In
a conventional GPU, threads within a warp must access different memory
banks to prevent serialization due to bank conflicts. In TSIMT, on the other
hand, threads within the same warp never produce bank conflicts as they are
executed in consecutive cycles. Instead, warps on different lanes that try to
access shared memory simultaneously may produce inter-warp bank-conflicts.
Despite these differences the hardware needed for the shared memory is
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almost identical for TSIMT and SIMT. Each lane sends up to one address to
the shared memory, the addresses are checked for conflicts and a crossbar
connects several SRAM banks to the input and output ports of the lanes. In
TSIMT some ports of the shared memory are often not used because the lane
connected to that port is currently executing an arithmetic instruction, this
can reduce the number of shared memory bank conflicts that occur. The
lockstep execution of the warps in SIMT, on the other hand, often causes all
lanes to execute a shared memory instruction at the same time, which makes
conflicting accesses more likely.

10.1.6 Latency Hiding

In conventional GPU architectures, the multitude of active warps residing on
a core or warp scheduler is used to hide the latency of currently executing
instructions. A rather large number of warps is required to hide the latency
of deep pipelines or long-latency memory operations [157]. In our TSIMT
architecture, warps and the execution back-end of the core are partitioned
into a number of TSIMT lanes. This means that while the pipeline depth and
memory latency remain unchanged, the number of warps available for latency
hiding within each lane decreases considerably (i.e. by a factor equal to the
number of lanes per core). This does not necessarily impact performance
negatively though, as a single instruction contributes significantly more la-
tency hiding ability in a TSIMT GPU core than to a conventional one: In a
conventional GPU, having one independent warp instruction available for
execution corresponds to one clock cycle of latency hiding. In the TSIMT core,
on the other hand, a single independent warp instruction keeps a TSIMT lane
busy for up to 32 clock cycles, depending on its active mask.

10.1.7 Register File

TSIMT register files use the same basic design idea as the register files of
conventional GPUs: Instead of using costly multiported memories, multiple
single ported SRAM banks are used [48], [196]. These register banks are
connected using a crossbar to an operand collector. The operand collector
fetches the operants over multiple cycles. In TSIMT instead of using a single
very wide register file with one 32-bit entry for each thread of a warp, each
lane implements one small 32-bit wide register file. In a conventional SIMT
register file only a whole warp wide register entry can be addressed. Even if
just a single thread is active and we are only interested in the operand for that
thread, a whole 1024-bit wide entry (32-bits for each of the 32 threads of warp)
would be fetched. In TSIMT only the operands of active threads are fetched.
Using individual register file lanes rather than a single monolithic register
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file gives more flexibility with the placement of the components and helps
to keep distances between register file and execution units small. However,
it also divides the register file into multiple parts. The register file in each
lane stores the registers for warps assigned to that lane. Other lanes cannot
execute instructions from these warps as there is no connection between the
lanes that would allow operands from register file of one lane to be passed
to an execution unit located in a different lane. The register file of each lane
provides only enough bandwidth for executing instructions at full speed in
one lane. For this reason, adding additional connections to allow the execution
of warps on other lanes would not increase performance, as the execution
units would stall because one register file lane cannot supply operands fast
enough to keep multiple lanes running at full speed. All registers required by
one warp must fit into a single lane as it is not possible to store some registers
of the warp in one lane and some registers of the warp in the register file of a
different lane. No additional warp can be allocated if all lanes together have
sufficient free register resources for one or multiple additional warps, but no
lane alone can provide enough space for an additional warp.

The operand collector reads and writes the operands in multiple cycles from
multiple banks. Reads and writes of multiple instructions are overlapped.
In TSIMT we can use this structure to fetch the operands for the different
active threads. This multi-cycle operand fetch avoids the need for an area
and power-hungry multiported register file. However, depending on the
register allocation and divergence pattern, load balancing problems between
the register banks can appear and cause stalls.

Two optimizations related to the register file allocation are explored in this
chapter: First, register resources are freed on warp exit instead of block exit
and second, partially filled warps only allocate registers for each active thread
instead of the entire warp. We use TSIMT+ to refer to an optimized version
of TSIMT that implements these two optimizations.

The first optimization makes it possible to launch new thread blocks sooner:
In the conventional GPU, as modeled by GPGPU-Sim, register resources are
managed at the thread block level. Registers allocated to a warp can only be
reused after the entire thread block has finished executing. This potentially
leaves many register resources unused for extended periods of time. With the
optimization, warp resources are freed as soon as a warp finishes execution.
Consequently, new blocks are launched as soon as sufficient resources are
available. A similar approach has been described for conventional SIMT
GPUs by Xiang et al.[197]. Other than their solution, however, our solution
only permits the launch of a new block if sufficient resources are available to
launch a full thread block.

The second optimization can increase occupancy if thread block sizes are
not divisible by the warp size. For example, if a thread block size of 112
is requested in a regular GPU, registers for 128 threads are allocated. Our
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Table 10.1: Area estimates for different possible register file implementations
at 40nm

GPU Register File using a single 256-bit wide lane
Component Width Size/Ports Area (mm2) Number Total Area (mm2)
SRAM 256-bit 8192 Byte 0.0296 8 0.2365

Crossbar 256-bit 8x8 2.0302 1 2.0302

Total 2.2667

GPU Register File using 8 independent 32-bit wide lanes
Component Width Size/Ports Area (mm2) Number Total Area (mm2)
SRAM 32-Bit 1024 Byte 0.0036 64 0.2279

Crossbar 32-bit 8x8 0.0333 8 0.2664

Total 0.4943

optimization allocates only the registers for 112 threads, i.e. the restriction
to allocate registers with warp size granularity is removed. In the case of
112 threads, three full warps of 32 threads and one half filled warp would
be allocated. When the next block is allocated, another half filled warp is
allocated to the lane where the half filled warp from the first block resides.
This optimization is not possible in the register files of conventional GPUs as
it is enabled by the ability of TSIMT register files to address registers with a
per-thread granularity. The register files of conventional GPUs can only be
addressed with a per-warp granularity, because of this limitation partially
filled warps leave some register file space unusable in conventional GPUs.

10.1.8 Area

We expect that the die area required by a TSIMT GPU should be close to the
area required by a SIMT GPU with an otherwise identical configuration. As
already explained in Section 10.1, most structures are unchanged from a SIMT
GPU. On die storage is almost unchanged: Only a few additional bits for the
instruction register and the storage of the active mask are required per TSIMT
lane.

The number of bits in the register file stays the same, however, they are
distributed over a higher number of narrower banks. [198] estimated an 18.7%
increase in register file area, but we think this is an overestimate. We used
CACTI 6.5 to estimate the area of the SRAM banks and crossbars used in
the GPU register file. We tested two potential designs: First, a monolithic
256-bit wide register file and second, a register file with 8 narrow 32-bit wide
lanes with independent decoders and crossbars. We show the results of this
estimation in Table 10.1. The second option is more flexible and smaller at
the same time. Even the SRAM banks are slightly smaller, but especially
the crossbar is reduced in area: the narrow input and output ports greatly



150 spatio-temporal simt

reduce the distances between the different ports. Splitting the register file
into lanes, results in an interleaved implementation of the register file that
reduces the length of required wiring. The additional flexibility offered by the
second design is required for TSIMT, but the second design can also be used
to implement the register file of a conventional GPU. As a conventional GPU
does not require all the flexibility offered by this design, slightly less area
is likely needed as some parts of the address decoders could be shared by
multiple lanes. The large area predicted for the first design is likely a result
of a weakness of CACTI 6.5. Yifan He, Yu Pu, et al. found 128-bit wide dual
port memory to be best in terms of energy efficiency and speed [199], [200].

10.2 experimental evaluation

In this section, the proposed TSIMT GPUs are experimentally evaluated using
a GPU simulator. It is organized as follows: Section 10.2.1 describes the
experimental platform as well as the benchmarks employed. Section 10.2.2
evaluates the properties of the TSIMT core using a synthetic microbench-
mark. In Section 10.2.3 TSIMT is evaluated using real benchmarks, afterwards
Section 10.2.4 explores load balacing issues we discovered in TSIMT. Sec-
tion 10.2.5 describes how optimization to the resource allocation can reduce
these issues and in Section 10.2.6 the performance effects of different design
tradeoffs are examined. Section 10.2.7 evaluates STSIMT.

10.2.1 Experimental Platform and Benchmarks

For microarchitecture simulations, we utilized the cycle-level GPU simula-
tor GPGPU-Sim 3.2.1 [149] and extended it to support TSIMT. Table 10.2
shows our used GPU configuration. We selected a similar configuration as
the configuration used in [122], however, these results are still not directly
comparable, because Fung et al. used a much older version of GPGPU-Sim.
For the evaluation, we selected a large set of benchmarks listed in Table 10.3
from multiple widely-known sources such as the popular Rodinia benchmark
suite [162] and the GPGPU-Sim repository [149]. We also included a version of
breadth-first search using the virtual warp-centric programming model [201].

The benchmarks are selected to contain both very control-divergent kernels
as well as almost and fully coherent kernels to be able to see the performance
impact of TSIMT on both types of applications. The SIMT bars in Figure 10.3
quantify the degree of divergence by showing the average SIMD efficiency
for each benchmark without compaction. For each warp instruction, SIMD
efficiency is defined as the ratio of active threads to the maximum number
of threads per warp. The maximum SIMD efficiency that can be achieved is
therefore 1.0. To arrive at the average SIMD efficiency for the entire kernel,
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Table 10.2: GPU configuration used for experimental evaluation.
Parameter Value Parameter Value
GPU cores 30 SP units / core 8

Memory channels 8x 64-bit SFU units / core 2

Core clock 1300 Mhz L1 D-cache / core 32 KB
Interconnect clock 650 Mhz L1 I-cache / core 4 KB

Memory clock 800 Mhz L2 cache 1 MB
Shared mem. / core 64 KB Max. warps / core 32

Max. blocks / core 16 Process Node 40nm

Table 10.3: GPGPU benchmarks used for experimental evaluation.
Abbr. Description Kernels Domain Blocks

per Grid
Threads
per Block

Source

AES AES Encryption 1 Cryptography 257 256 [149]
BFS Breadth-first search 2 Graph Algorithms 1954 512 [162]
BWC BFS warp centric 1 Graph Algorithms 977 128 [201]
BP Back Propagation 2 Pattern Recognition 4096 256 [162]
CP Coulombic potential

calculation
1 Physics Simulation 256 128 [149]

DG Discontinuous
Galerkin solver

3 Physics Simulation 268, 268,
603

84, 112,
256

[149]

GAU Gaussian Elimination 2 Linear Algebra 1,2704 512,16 [162]
HOTSP HotSpot 1 Physics Simulation 1849 256 [162]
IDCT H.264 IDCT 2 Video Compression 252,231,

100, 130

192 [202]

LIB Libor stock option cal-
culation

2 Computational
Finance

64 64 [149]

LPS 3D Laplace Solver 1 Physics Simulation 100 128 [149]
LUD LU decomposition 3 Linear Algebra 1-155 16,32,256 [162]
MC H.264 Motion Com-

pensation
2 Video Compression 8160 64 [203]

MGST Merge sort 4 Sorting 256,4,
4,2048

512,256,
256,128

[204]

MUM DNA sequence align-
ment

2 Bioinformatics 196, 316 256,256 [162]

NN Nearest Neighbors 1 Data Mining 168 256 [162]
NW Needleman wunsch 2 Bioinformatics 1-128 16 [162]
PR Parallel reduction 2 Parallel Algorithm 64,1 256,32 [204]
RAY Raytracing 1 Computer Graphics 512 128 [149]
STO StoreGPU 1 Database 1-260 2-64 [205]
VIS Visibility Calculation 1 Game AI 24 256 AiGD
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Figure 10.3: Effective SIMD efficiency for conventional SIMT.
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the per-instruction SIMD efficiency is averaged over all executed instructions.
Figure 10.3 groups the benchmark kernels into two categories separated by
the blue dashed line. Divergent benchmarks are shown left of the line, these
kernels have an average SIMD efficiency of less than 85%. The remaining
kernels to the right of the line are called coherent benchmark kernels.

10.2.2 Synthetic Benchmark Analysis

To demonstrate the performance of a TSIMT-based GPU architecture in an
isolated fashion, we developed a microbenchmark that enables us to precisely
control both the warp active masks and the overall number of active warps (i.e.
occupancy). We executed this microbenchmark both on a conventional GPU
core and on a TSIMT GPU core, while varying the number of active threads
per warp and occupancy, and measured core IPC. For this experiment, the
core’s configuration is as described in Table 10.2 (execution throughput of 8
thread instructions, warp size of 32 threads). The results of these experiments
are shown in Figures 10.4a and 10.4b. Both figures show the IPC achieved as
a function of the number of active threads per warp for different numbers of
active warps. (1 (W1) up to 32 (W32)).

In the conventional GPU (Figure 10.4a), the effect of reducing branch
divergence is a corresponding linear increase in IPC (with an increase in
active threads per warp). The maximum per-core IPC of 8 is only achieved
when the execution is coherent, i.e. there is no control divergence. The number
of active warps has no effect on performance, provided it exceeds 4. The
measurements for 4, 8 and 16 active warps are hidden behind the results of 32
active warps, as 4 warps are sufficient to provide full performance. Additional
warps are not needed to tolerate the latency of the arithmetic pipeline but
help to tolerate memory latency. As having many warps is important for
hiding instruction latency on GPUs, the effect of having a small number of
available warps is directly linked to the type of instructions executed. As our
microbenchmark utilizes math instructions with relatively short latency, only
the pipeline latency must be hidden. This effect is observed in the figure,
where configurations with 1 and 2 active warps are unable to fully hide the
latency and cannot reach full performance.

The microbenchmarking results on the TSIMT architecture (Figure 10.4b)
are vastly different. We begin by looking at the effect of the number of active
threads per warp in the full-occupancy configuration with 32 active warps.
The figure shows that the maximum IPC of 8 is reached much sooner than on
the conventional GPU at only 8 active threads per warp. Below this number
performance increases linearly with the number of threads. This behavior is
caused by insufficient instruction issue bandwidth: On a GPU configuration
with 8 TSIMT lanes and an instruction issue bandwidth equal to that of the
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baseline GPU (i.e. one warp instruction per clock), the scheduler will be
busy for exactly 8 clock cycles before it can re-issue to the same lane again.
Therefore, each lane must be able to at least hide a number of clock cycles
equal to the number of lanes per core with execution. To hide 8 clock cycles,
a lane requires a warp instruction with at least 8 active threads. If there are
fewer than 8 threads active per instruction, the lane completes the instruction
before the warp scheduler can issue a new instruction to it.
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Figure 10.4: Synthetic Benchmark for performance characteristics of regular
SIMT and TSIMT-based GPUs



10.2 experimental evaluation 155

0 5 10 15 20 25 30
Active Threads per Warp

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Sp
ee

du
p

W1 W2 W4 W8 W16 W32

Figure 10.5: Microbenchmarking results showing the speedup of TSIMT over
regular SIMT for different combinations of active warps and
threads per warp.

Next, we consider the effect of the number of active warps on TSIMT GPU
performance. Figure 10.4b shows that a small number of active warps has
a stronger impact on the performance of the TSIMT-based GPU than on the
conventional GPU. In fact, having only a few warps available on the core
enforces an upper bound on the achievable performance within that core. The
figure demonstrates that this upper bound is equal to the number of available
warps, e.g. with 4 active warps, the maximum achievable core IPC is 4. This
can be explained by the warp allocation scheme in the TSIMT architecture:
As the warp set is statically partitioned across all TSIMT lanes, having fewer
than 8 active warps on the core means that some TSIMT lanes will not have
any warps allocated to them. As a result, TSIMT cores can never reach full
performance if the number of warps is so small that some lanes remain empty.

Comparing the results for SIMT and TSIMT reveals that TSIMT provides
only relatively small speedups, when the average number of active threads
per warp is high. Even severe slowdowns by 50% are possible in case less
than 8 warps are available. On the other hand, speedups between 2.5× and
4× are possible if 8 or more warps are available and 12 or fewer threads per
warp are enabled.
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Figure 10.6: TSIMT GPU Speedup compared to the baseline

Additional insights can be gained by considering the speedup over regular
SIMT. The speedup is shown in Figure 10.5. The speedup peaks close to four
with 16 and 32 warps and 8 active threads per warp. For smaller numbers of
active threads, TSIMT is unable to provide additional speedup as the warp
scheduler cannot issue new instructions to the lanes any faster. In configura-
tions with large numbers of active threads but small numbers of active warps,
TSIMT exhibits slowdowns over regular SIMT. In the microbenchmark, the
largest possible slowdown is equal to 0.5, as regular SIMT performance also
decreases with only one or two active warps due to the inability to hide the
pipeline latency. The slowdown of TSIMT over regular SIMT can be larger for
real-world kernels, however, as such kernels normally contain some amount
of ILP, which increases the ability of SIMT GPUs to hide the pipeline latency,
even if only 1 or 2 warps are active. For TSIMT, on the other hand, ILP
does not increase the performance when only a single warp is active. While
ILP provides more independent instructions to the warp scheduler, these
instructions can only be executed on the lane that is already busy. Lanes
without any active warps remain idle. For this reason, benchmarks with only
a few active warps per SM can experience drastic slowdowns with TSIMT. In
the worst case (1 active warp, no control divergence, large amounts of ILP),
TSIMT can never achieve more than one eighths of SIMT’s performance.

10.2.3 Full Benchmark Analysis

Figure 10.6 depicts the speedup of a TSIMT-based GPU over the conventional
GPU. The benchmarks on the horizontal axis are sorted by increasing average
SIMD efficiency. The dotted line separates the divergent (left-hand side) from
the coherent (right-hand side) benchmarks. For both types of benchmarks,
the geometric mean is shown as well.

As the figure reveals, a straight implementation of TSIMT does not perform
as well as one might expect. There are cases where TSIMT provides substan-
tial performance benefits, but the overall effect from TSIMT is an average
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performance loss of 7.3%, both for the divergent as well as for the coherent
benchmarks. A significant performance improvement is obtained, e.g., for
the GAU_1 kernel, but a severe slowdown is incurred in other kernels such
as LUD_1 or the (coherent) DG_1 kernel. Some coherent benchmarks show
increased performance due to the changed shared memory handling. As
explained in Section 10.1.5 TSIMT can reduce the number of shared memory
bank conflicts. Interestingly, the five most divergent kernels (LUD_0, MUM_0,
MUM_1, NW_0, NW_1) experience either no change or a performance loss
on TSIMT. Looking at the SIMD efficiency provides a first hint of the possible
performance improvements. As Figure 10.3 reveals, even most divergent
benchmarks have SIMD efficiencies of more than 50%, and only LUD_0,
MUM_1, MUM_0, NW_0 and NW_1 have SIMD efficiencies below this level.
As discussed already in the last section, kernels with high SIMD efficiency
usually cannot benefit from TSIMT.
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(a) DG_0 benchmark on unoptimized TSIMT
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(b) DG_0 benchmark on optimized TSIMT
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(c) DG_0 benchmark on TSIMT without lane lock

Figure 10.7: IPC over time for each TSIMT lane.
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10.2.4 Load Balancing Issues

While investigating the matter we discovered that the limited performance
improvements of TSIMT were due to load balancing issues. To illustrate these
issues, we developed a tool that generates graphs that show IPC over time for
each lane of one core. One of these graphs is shown in Figure 10.7a for the
DG_0 kernel. It can be seen that lanes 6 and 7 are completely empty, while
lanes 2 and 5 frequently run out of work. DG_0’s block size of 84 threads
largely explains this behavior: A block of 84 threads is mapped to 2 full warps
and 1 partially filled warp with 20 active threads. Furthermore, because of
the high register requirements of this kernel, each core only holds at most
2 blocks simultaneously. The full warps are mapped to lanes 0, 1, 3, and 4
while lanes 2 and 5 execute the partially filled warps. Because the warps are
only partially filled, they execute and finish much faster than the full warps.
But this does not result in any performance advantage: The lanes must stay
idle until the complete block is finished.

To gather even more insight into the effects of load balancing we recorded
how many lanes on average had warps allocated to them and how many of
these lanes had usable warps. Lanes can have warps allocated to them, but can
still stall because all its warps are currently waiting for long latency memory
operations. We recorded this information in the "lanes active" columns of
Table 10.4. Static means that at least one warp is allocated to the lane. However,
some of these lanes are still stalled, because all warps allocated to them are
waiting for long latency memory operations. The dynamic column shows how
many lanes on average have at least one warp available, that is not stalled
by a long latency operation. This can also be considered to be the average
effective width of the TSIMT core. In 19 out of 37 benchmarks more than 7
lanes on average have warps allocated to them, however, only 2 kernels have
more than 7 lanes with usable warps. Some kernels such as BFS_0 or DG_2

have warps allocated to almost all lanes, but only a small number of lanes can
be active because almost all warps are not available for scheduling since they
are waiting for long latency memory operations.
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10.2.5 Register Allocation Optimizations

As explained in Section 10.1.7 two optimizations of TSIMT register resource
allocation can potentially improve the performance: First, resource dealloca-
tion on warp instead of block exit and second, allocating registers only for
active threads instead of allocating register for the entire warp.

Figure 10.7b again shows IPC over time per TSIMT lane for an execution of
DG_0 with these optimizations. Most lanes are now busy at the start of the
kernel. But at the end of the kernel a strong tail effect is visible: only 1 of the
8 lanes are still busy.

The performance of these optimizations is shown in Figure 10.6. The overall
effect of these optimizations is a slightly better performing version of TSIMT,
called TSIMT+, with 6.0% performance loss compared to the SIMT baseline
and a 1.4% improvement over unoptimized TSIMT. For most benchmarks,
the optimizations have no effect, but some particularly problematic cases
(MGST_3, DG_0 and DG_1) show speedups between 5% and 10%. Unfortu-
nately, in some benchmarks, the optimizations lead to extended tail effects,
thereby causing slight slowdowns compared to TSIMT.
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Table 10.4: Benchmark Scheduling Statistics
Kernel Issue Conflicts Lanes active Warps

1 2 ≥ 3 Dynamic Static
AES_0 9.34% 1.45% 1.23% 4.70 7.66 7.66

BFS_0 8.92% 1.79% 0.75% 1.14 7.69 26.68

BFS_1 15.44% 4.45% 3.12% 3.06 6.84 15.25

BP_0 7.59% 2.05% 3.06% 6.72 7.97 23.14

BP_1 7.62% 0.81% 0.40% 7.02 7.97 15.16

BWC_0 5.11% 0.29% 0.03% 2.50 7.81 25.14

CP_0 4.95% 0.07% 0.01% 6.55 6.71 17.68

DG_0 7.18% 0.33% 0.01% 3.89 4.95 4.95

DG_1 10.17% 0.73% 0.04% 4.76 5.93 10.15

DG_2 10.45% 1.61% 0.27% 1.85 7.82 27.81

GAU_0 12.46% 1.78% 0.37% 1.11 1.61 2.41

GAU_1 17.87% 3.58% 0.80% 3.80 7.55 14.29

HOTSP_0 10.24% 2.12% 1.34% 5.34 7.72 7.72

IDCT_0 5.14% 1.14% 1.07% 4.65 7.47 19.89

IDCT_1 3.14% 0.44% 0.32% 4.86 7.67 20.47

LIB_0 1.44% 0.01% 0.00% 3.24 4.08 4.08

LIB_1 1.86% 0.02% 0.00% 2.87 4.11 4.11

LPS_0 16.61% 3.92% 1.42% 4.47 6.43 10.09

LUD_0 0.00% 0.00% 0.00% 0.13 0.33 0.33

LUD_1 0.00% 0.00% 0.00% 0.23 0.38 0.38

LUD_2 13.58% 1.78% 0.31% 4.92 7.05 20.95

MC_0 11.47% 1.17% 0.13% 7.47 7.86 19.31

MC_1 6.94% 0.45% 0.04% 5.14 7.85 20.73

MGST_0 7.04% 0.69% 0.28% 6.62 7.60 15.18

MGST_1 5.42% 0.73% 0.57% 0.87 2.57 2.57

MGST_2 10.13% 1.93% 1.09% 1.95 2.59 2.59

MGST_3 13.59% 2.03% 0.46% 5.22 7.77 28.56

MUM_0 7.26% 0.97% 0.31% 2.37 7.36 20.80

MUM_1 9.01% 1.05% 0.47% 1.08 5.98 8.91

NN_0 9.51% 1.31% 0.67% 6.53 7.06 21.11

NW_0 2.70% 0.05% 0.00% 0.23 2.54 2.54

NW_1 2.91% 0.06% 0.00% 0.20 2.55 2.55

PR_0 3.87% 0.08% 0.02% 1.95 7.92 16.77

PR_1 0.00% 0.00% 0.00% 0.13 0.33 0.33

RAY_0 8.91% 1.24% 0.31% 6.14 7.50 7.50

STO_0 2.43% 0.99% 1.05% 2.24 4.89 4.89

VIS_0 23.60% 6.71% 1.86% 0.66 3.03 3.03
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10.2.6 TSIMT Design Tradeoffs

Another potential bottleneck in TSIMT can be the instruction issue bandwidth.
Multiple lanes can finish execution of their current warp instruction in the
same cycle, but the frontend can only supply a new instruction to a single
lane each cycle. If two or more lanes request new instructions at the same
time, all but one lane will stall because the frontend cannot supply a new
instruction fast enough. To discover how common these stall cycles are, we
recorded how often they happen on average and show this information in
the "Issue Conflicts" columns of Table 10.4. The table shows how often 1, 2
or 3 or more instructions could not be issued as soon as they were ready for
issue and their lane was ready to accept them, but the instruction frontend
was busy with issuing an instruction to a different lane. In on average 7.9%
of the cycles two lanes are waiting for instructions. This can also be seen
as a temporary reduction of the average effective number of lanes. In some
benchmarks such as VIS_0, GAU_1, BFS_1 and LPS_1 in more than 20% of
the cycles one or more lanes are stalled because the frontend cannot supply
instructions fast enough.

In the previous section, we already noticed that load balancing issues
between different lanes hurt the performance of TSIMT. Additionally, we
cannot exploit ILP in TSIMT as all instructions, even if independent, need to
be executed in the same lane. To determine how much these issues reduce
the performance of TSIMT, we also simulated an unrealistic configuration
of TSIMT, where all warps can issue instructions to all lanes. The overall
effect of removing the locking of warps to a specific lane is a performance
improvement of 7.6% compared to SIMT and of 16.4% over TSIMT.

A more realistic approach than removing the lane locking for improving the
TSIMT load balancing is to reduce the warp size. We simulated a configuration
with warp size of 16 and found that overall the performance improves by
1.4% over SIMT. Reducing the warp size improves the load balancing as
more warps are available and the GPU can exploit ILP within a warp for
additional performance. However, reducing the warp size increase the load of
the frontend. With a warp size of 16, instruction fetches need to be amortized
over a smaller number of threads. But the reduction of warp size can also
have positive effects on divergent memory accesses. The results show that on
average smaller warps are better than TSIMT with 32-wide warps.
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Figure 10.8: Speedup for STSIMT with different lane width

10.2.7 Spatio-Temporal SIMT

While the optimizations presented in Section 10.2.5 help some applications,
they do not resolve the main problem of TSIMT: Severe performance reduc-
tions when only a few warps are available and/or load balancing issues
between the lanes. As described in Section 10.1, spatio-temporal SIMT re-
duces the impact of these problems, as the warp pool is partitioned across a
smaller number of lanes: With only four or two lanes, it becomes much more
likely that each lane receives at least one active warp and that the work is
distributed equally over all lanes. At the same time it also reduces the latency.

Figure 10.8 shows the performance of regular SIMT, TSIMT and STSIMT
with two and four ALUs per lane. The number of lanes was adjusted to
keep the number of functional units (FUs) identical in all configurations,
i.e. TSIMT has 8 lanes with one FU each, STSIMT2 has 4 lanes with 2 FUs
each, and STSIMT4 has 2 lanes with 4 FUs each. In the results, we observe
improvements over the conventional SIMT architecture for both two and four
wide STSIMT. The maximum speedup is observed in the STO benchmark
where regular TSIMT experiences a 15% slowdown compared to the baseline
while STSIMT4 shows a 51% speedup. Due to the low active warp count, the
STO benchmark was not performing well on TSIMT. On average, STSIMT4

performs about 6% faster than the baseline on the divergent benchmark set
and 10% faster than TSIMT. For the coherent benchmarks, STSIMT4 is 12.6%
faster than TSIMT and 5.9% faster than the baseline. The very short GAU_0

benchmark exhibits an unusual behavior: It runs much faster despite having
almost no divergence. This happens because a large part of the divergent
instructions in this benchmark are very slow division instructions that are
responsible for tail effects. The convergent instructions are mostly simple and
fast instructions, with little influence on the total runtime of the kernel.
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10.3 summary

In this chapter we presented TSIMT and the STSIMT extension. We proposed
several optimizations: We showed how optimized instruction scheduling and
better management of register file resources can significantly reduce tail effects.
We explored the performance of TSIMT with a microbenchmark to show the
relationship between TSIMT IPC, active warps and branch divergence. We
show that while optimized TSIMT offers speedups on some benchmarks, on
average TSIMT results in a lower performance than regular SIMT, as a low
number of active warps often results in significant performance reductions
for TSIMT and most benchmarks have a high SIMD efficiency and gain little
from TSIMT. For these workloads, STSIMT4 provides better performance and
performs about 6% faster on average than regular SIMT, and some benchmarks
improve their performance by more than 40%. In the next chapter, we will
look at how we can optimize performance and energy efficiency of TSIMT
and STSIMT by removing redundant computations with a technique called
Scalarization.
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The work presented in this chapter was previously published: J. Lucas, M.
Andersch, M. Alvarez-Mesa, et al., “Spatiotemporal SIMT and Scalariza-
tion for improving GPU efficiency,” ACM Transactions on Architecture and
Code Optimization, Sep. 2015. DOI: 10.1145/2811402.

Previous work [129], [130], [133] has shown that in SIMT architectures
several threads often redundantly perform the same calculation on the same
vector operands. Such situations are common because in many cases it is
easier and faster to recalculate results in different threads than to calculate the
results only once and to broadcast them to all threads. Redundant calculation
not only wastes execution throughput, it also wastes storage as well as energy
since copies of the calculated values have to be stored for every thread.

Redundant calculations can be removed by applying a technique called
Scalarization [129], [133]. In this technique, a static compiler algorithm is used
to identify instructions that always use the same operands in all active threads
of a warp. Likewise, it also identifies registers that always store the same
value in all threads of a warp. These instructions are then only executed once
per warp instead of once per thread, also the identified registers are stored
once per warp instead of once per thread. The hardware cost of integrating
Scalarization in the proposed TSIMT architectures are much lower compared
to regular GPUs, because since most of the execution resources can be reused
for the scalar and vector datapaths. Furthermore, we improve upon the
Scalarization algorithm proposed in [129] by allowing Scalarization, even with
divergent control flow.

In this chapter, we present the following contributions, related to TSIMT
and Scalarization:

• We show how Scalarization can be integrated in the proposed TSIMT
architecture in a way that requires less hardware than its integration in
conventional SIMT GPUs.

• We present an improved Scalarization algorithm.

• We show that STSIMT with Scalarization improves the energy-delay
product (EDP) by more than 25% compared to the SIMT baseline.
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The chapter is organized as follows: First in Section 11.1 we describe
the hardware changes required to support Scalarization on (S)TSIMT based
GPUs. Section 11.2 outlines the compiler algorithm used to identify Scalar
instructions and the registers that contain them. Section 11.3 explains how
the Scalarization algorithm was integrated into our simulation framework.
In Section 11.4 we evaluate the Scalarization algorithm on a wide range of
benchmark and discuss static properties of the kernels after Scalarization.
In Section 11.5 Scalarization is combined with TSIMT and we discuss the
performance benefits of Scalarization. We continue our evaluation of Scalar-
ization in Section 11.6 by estimating the power usage and energy efficiency
of TSIMT+Scalarization. Section 11.7 concludes the chapter with a short
summary.

11.1 hardware support for scalarization

Vector processors usually combine a scalar execution units with wide vector
units [206]. This combination can also be found in many accelerators, e.g.:
[200], [207]–[209]. In these accelerators and in conventional SIMT GPU archi-
tectures, implementing support for Scalarization requires separate execution
units and register files for scalar values and a broadcast network to transport
values from the scalar register file to the vector execution units. AMD’s
GCN architecture is an example of such an architecture [78]. It combines
scalarization and a spatial SIMT GPU. In a TSIMT based GPU, however, we
may use the same ALU and register file for both scalar and vector operations.
The additional logic required for scalarization is limited to small changes: An
additional addressing mode in the register file is needed for scalar registers.
Scalar registers can be packed more densely as we only need to store one
value per warp instead of one value per thread. Beside this difference in
register file addressing, execution of scalar instructions is handled just like ex-
ecution of regular vector instructions with a single active thread. This reduces
not only the additional hardware required for scalarization, but also enables
more flexibility: As opposed to conventional GPU architectures, where the
separate scalar ALUs stay idle when no scalar instructions are available from
the currently active warps, in TSIMT GPUs with scalarization one type of
ALU is used for both scalar and vector instructions. This enables flexible
adjustment to any ratio of vector and scalar instructions.

11.2 compiler scalarization algorithm

We present a new Scalarization algorithm for code analysis, that is able
to identify instructions that are guaranteed to use the same inputs in all
active threads of a warp. It also identifies which registers always store scalar
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Figure 11.1: Scalarization Algorithm

values. The algorithm is shown in Figure 11.1. The algorithm starts by
optimistically marking all registers and all instructions as scalar (Step 1).
Then, instructions reading the thread local memory or the threadid register are
marked as non-scalar (Step 2). Instructions reading non-scalar registers are
also marked as non-scalar (Step 3). Registers written by non-scalar instructions
are also marked non-scalar (also Step 3). In Step 4 registers with control flow
dependencies on vector values are marked as vector. The main difference
of our algorithm compared to [129] lies in this stage: In the algorithm from
Lee et al. all registers and instructions are marked as non-scalar where
convergent(=non-divergent) control flow cannot be guaranteed. We found
that their criterion is safe but too strict. If convergent control flow cannot be
guaranteed, we can still scalarize as long as the register goes dead before the
reconvergence point. This way only a single version of the register per warp
can exist at the same time and a scalar register can be used. If the register
would be alive beyond the reconvergence point, its value in different thread
could differ due to the divergent control flow of the threads.

After Step 4 we check if any new vector registers or instructions have been
found, if yes we repeat steps 3 to 5, if nothing changes we have found all
vector registers and instructions. All instructions and registers that are still
marked scalar are guaranteed to be uniform for the whole warp and can
benefit from the Scalarization capabilities of the hardware.

11.3 implementation of the scalarization algorithm

The experimental evaluation presented in Section 11.3 uses GPGPU-Sim
3.2.1 [149] extended with our enhancements. By default, this GPU simulator
does not simulate a real instruction set of any GPU but simulates NVIDIA’s
PTX intermediate code instead. PTX uses a generic ISA with an unlimited
number of virtual registers. In real systems, the PTX code is mapped by
the driver to the actual ISA of the employed GPU. We implemented the
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presented Scalarization algorithm in the PTX loader of the simulator. After
parsing the PTX code and identifying the basic blocks and recovergence
points, the algorithm explained in Section 11.2 identifies scalar instructions
and registers as well as vectors instructions and registers. In a real system,
the driver would subsequently map the PTX code to the actual ISA of the
GPU. This mapping includes register allocation. Unfortunately GPGPU-Sim,
is not able to simulate this part of the mapping process but instead simulates
an unlimited register file and queries NVIDIA’s ptxas tool to inquire the
number of registers required per thread after register allocation. This partial
information about the results of register allocation is used by the simulator to
restrict the maximum occupancy. This simulation shortcut of GPGPU-Sim is
problematic as not only the number of registers needed per thread influences
the performance but the register mapping also. Register allocation changes
the timing of the register fetch and additional pipeline stalls may happen
due to write-after-read hazards, that were not present in the PTX code prior
to register allocation. GPGPU-Sim is also able to simulate PTXPlus code,
that closely resembles the ISA of NVIDIA’s Tesla architecture, however, as
NVIDIA’s Tesla architecture does not support Scalarization and scalarizing
works with PTX code, all simulations in this chapter use PTX instead of
PTXPlus.

To solve the issues with PTX we added a register allocator to GPGPU-Sim.
A standard register allocator based on graph-coloring [210] was implemented.
It first determines which virtual registers are alive at each instruction. Then an
interference graph is constructed, in which every vertex represents a virtual
register. The edges connect all virtual registers that are alive at the same
time. Then all vertexes are colored so that no vertex is connected to another
vertex of the same color. Each color represents a physical register. As GPUs
support an adjustable number of registers per thread, we try to color using
the smallest number of colors possible. As this is an NP-hard problem, we
employ a heuristic [211]. To support Scalarization this algorithm is executed
twice: Once for allocating vector registers and once for scalar registers.

An important change from the standard register allocation algorithm de-
scribed above is required while constructing the interference graph: Ad-
ditional edges need to be added to the graph to account for interferences
between different threads from the same warp. Scalar registers are shared by
all threads of a warp. For this reason, the control flow of warp and the effect
of the reconvergence stack need to be considered. When threads execute a
divergent branch a scalar register can be alive on one branch direction but
dead on the other branch direction. When such a branch is executed, scalar
registers that were considered dead from the perspective of a single thread
can be “resurrected” when the control flow reaches the reconvergence point.
This would, however, fail if the space occupied by the scalar register had
been reused in the branch path, where it is dead. All scalar registers that are
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alive at the first instruction after a potentially divergent branch must also be
considered alive at all instructions of the other side of the branch.

11.4 scalarization results

We executed our new Scalarization algorithm on the kernels described in
Section 10.2.1. We verified that our algorithm works correctly and does
not scalarize non-scalar registers or instructions by adding checks to the
simulator. Many of the used GPU benchmarks also performed correctness
checks on the output and did not detect errors. Figure 11.2 shows the number
of registers required per warp, before and after Scalarization. Figure 11.3
shows how many executed instructions were scalarized by our algorithm.
Without Scalarization, the kernels required an average of 24.2 vector registers
per thread. After Scalarization 17.6 vector registers and 9.0 scalar registers
are required on average per thread. While the sum of scalar+vector registers
is slightly higher than the number of registers without Scalarization, each
scalar register is allocated only once per warp instead of once per thread.
This reduces the register file space needed per warp significantly: With 32
thread wide warps, the kernels require an average of 773.2 registers per warp
without Scalarization, but with Scalarization, only 571.1 registers are needed
per warp. With our new algorithm Scalarization reduces register file space
required per warp by 26.1%. If we restrict the algorithm to scalarize only
when convergent control flow can be guaranteed, as was proposed in [129],
then less Scalarization is possible and 695.0 registers are required per warp.
Likewise, the number of instructions that could be scalarized is also lower:
With our algorithm 31.1% of the static instructions are classified as scalar
and 30.3% of the executed instructions are scalar instructions, but with the
restriction to convergent control flow only 12.9% of the instructions could be
scalarized and 13.5% of executed instructions could be scalarized.

All benchmarks but one execute at least 6% scalar instructions. Only the
STO benchmark executes almost no scalar instructions (0.4%). The GAU_0

kernel has the highest percentage of scalar instructions executed with 64.2%,
the fraction of scalar instruction identified is slightly lower at 57.1%. LIB_1

has the highest number of static scalar instructions at 66.1%, but the fraction
of executed scalar instructions is only 48.8%. Compared to the previous
restricted Scalarization algorithm our algorithm scalarizes more than double
the number of instructions and the number of registers is reduced by 17.8%.
This Scalarization algorithm is well suited for code with complex control flow,
as it makes Scalarization possible where convergent control flow cannot be
guaranteed.
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Figure 11.2: Registers per Warp
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and algorithm restricted to convergent control flow

11.5 tsimt+scalarization

We combined Scalarization with TSIMT, and performed the experiments again.
Figure 11.4 compares the performance achieved with SIMT with a GCN-
style Scalarization (SIMT_SCALAR), TSIMT+, TSIMT+ with Scalarization
(TSIMT_SCALAR) and the best spatio-temporal SIMT configuration without
Scalarization (STSIMT4) and with Scalarization (STSIMT4_SCALAR). SIMT
without Scalarization is employed as a baseline.

The geometric average of the speedup achieve by TSIMT+ due to Scalar-
ization to the optimized TSIMT configuration is 16.1%. Gains from applying
Scalarization to STSIMT4 are slightly lower with a 13.0% higher performance
than in STSIMT4 without Scalarization. The highest Scalarization speedup of
4.2× over TSIMT+ can be seen in the BP_0 kernel. Three reasons explain the
very high speedup of this kernel: First, a high ratio of 56% scalar instructions.
Second, many scalar instructions are low throughput SFU instructions, while
the vector instructions are mostly high throughput instructions. Third, the
performance differences reorder the memory accesses and this improves the
DRAM efficiency significantly from 12% to 42%. In MC_1, on other hand,
Scalarization causes a slowdown of almost 40%. In this case, scalarization
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allows placing 4 instead of 3 warps in a lane. This increased occupancy is
normally beneficial, but in some rare cases such as in this kernel, the higher
occupancy causes the number of shared memory bank conflicts to increase
by more than 10× and also decreases locality, which results in 65% more
read misses in the L1 data cache. Some kernels show almost no change in
performance. In many cases this is connected to a low fraction of scalar
instructions such as in STO_0, PR_0, IDCT_0 and IDCT_1. Some kernels such
as BFS_1 use many scalar instructions but still do not profit from Scalarization.
This happens if the performance of the GPU kernel is not limited by compute
throughput but by another bottleneck. The BFS benchmark, for example, is a
graph benchmark and is limited mostly by memory bandwidth and latency
rather than compute throughput.

We also evaluated Scalarization on a conventional GPU. Similar to AMD’s
GCN architecture, an entire scalar datapath including an additional scalar
register file and scalar execution units as well as a broadcast network to
transmit scalar values back to the vector datapath was added to the simu-
lated architecture. This additional hardware overhead is significant, which
needs to be considered when comparing it to TSIMT+Scalarization. On
kernels with little divergence, conventional SIMT+Scalarization performs
slightly better (+1.3%) than STSIMT4+Scalarization. On benchmarks with
higher divergence, however, STSIMT4 with Scalarization performs better than
SIMT+Scalarization (+4.2%). Benchmarks that show high performance gains
from Scalarization on one architecture such as BP_0, MGST_3, HOTSP_0

and AES_0 show high performance gains from Scalarization across all ar-
chitectures. Benchmarks such as PR_0 or NW_1 that do not benefit from
Scalarization on a conventional GPU do not profit from adding Scalarization
to TSIMT either.
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11.6 power and energy

We extended GPGPU-Sim to allow power modeling of TSIMT as well as
SIMT GPUs. Figure 11.5 shows the power estimates of this power model
for different variants of TSIMT. Despite lower performance on average the
power consumption of TSIMT+ is approximately the same as that of regular
SIMT (101% of SIMT power). These configurations are thus less energy effi-
cient than regular SIMT. The architecture with STSIMT4 provides higher per-
formance (5.6% shorter runtime) dissipating only slightly higher power (1.8%
higher power), but lower energy consumption (−4.1%) and thus improve
energy efficiency (EDP reduced by 9.5%). Scalarization results in signifi-
cant performance gains (+9.3% over baseline TSIMT, +20% with STSIMT4).
Because Scalarization improves the utilization of resources it increases the
power consumption (5.9% for TSIMT, 5.6% for STSIMT4), but overall energy
consumption is decreased because of the shorter execution time (−8.3% for
TSIMT, −16.4% for STSIMT4). EDP is improved by 10.1% for regular TSIMT
with Scalarization and by 26.2% for STSIMT4 with Scalarization. These results
show that by combining STSIMT and Scalarization the energy efficiency can
be improved significantly.
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11.7 summary

In this chapter, we presented our Scalarization algorithm and the integration of
Scalarization with TSIMT and STSIMT. We illustrated how accurate analysis
of control flow and register lifetime can identify more scalar instructions
and registers. We explained, how scalarized instructions can be executed
using the same execution units also used for vector instructions and how
scalar and vector registers can share the same register file. We showed how
STSIMT4+Scalarization improves performance by 4.2% and improves the
energy efficiency, as measured by the energy-delay-product, by 26.2%. With
this chapter all our proposed and evaluated architectural enhancements have
been presented and in our next and final chapter, we will draw conclusions
and present ideas for future work.





12
C O N C L U S I O N S & F U T U R E W O R K

In this last chapter, we draw conclusions and present future work. We start
with conclusions directly related to the individual chapters of this thesis
in Section 12.1. The answers to our research questions from Chapter 1 are
summarized in Section 12.2. We then conclude the chapter (and the thesis) in
Section 12.3 with more general findings and directions for further research.

12.1 conclusions

Chapter 4 presented our power measurement testbeds. They provided in-
valuable help for the research presented in this thesis. Their high sampling
rate allowed us to measure the power consumption of short events. This
allowed us to validate the accuracy of the GPUSimPow power simulator
with regular short kernels. As an architectural simulator gpgpu-sim has a
high overhead, simulating kernels is slow and feasible only for kernels that
the real hardware can execute within several ms. Wallplug power meters
would have required kernel runtimes of several seconds, and internal power
meters as included on some GPUs would still only provide enough time
resolution to measure kernels 150 ms or longer accurately. The high time
resolution was not only required for measuring short existing kernels with
fixed length but also helped with the measurements of our microbenchmarks
for empirical, data-dependent power models. These data-dependent power
models presented in Chapters 6 and Chapters 7 required energy measure-
ments for a huge set of testvectors. With the high time resolution of our
measurement test beds, we could measure the energy consumption of several
testvectors each second. Even at this speed our measurements were running
for multiple weeks. Collecting the large set of measurements would not
have been possible within a reasonable time frame without the high time
resolution of the testbeds. The 16-bit or even 24-bit resolution provided by
the testbeds was also important for this thesis. The calibration of many of our
power models relied on difference measurements. Microbenchmarks were
designed to only change the behaviour of one specific GPU component, while
keeping all other components identical. This required accurately measuring
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small differences, well below 1 Watt in power consumption, while the GPU
is consuming between 50 to 250 Watts. The high resolution of the testbeds
allowed accurate measurements of these small differences. We discovered
that when performing these measurements many small details matter: Leak-
age power changes significantly with temperature, difference measurements
between similar kernels only produce meaningful results, when performed
at nearly the same GPU die temperature. Twisting analog signal lines in the
testbed reduces electrical noise from external electromagnetic interference in
the measurements and improved the accuracy of the power model. Even the
tiny differences of several parts per million in the clock sources of ADC and
GPU can add up to large timing differences during longer measurements.
These timing difference can cause large measurement errors in short kernels.
Our software clock wander correction allowed us to correct the clockspeed
differences and keep measurements accurate.

Modern GPGPU designs are pervading many areas of research and industry
because of the massive compute power they offer. While the development of
such designs is trying to drive performance further, GPU chips are increasingly
limited by the power they consume and dissipate as heat. With this problem
of the power wall, the design of new GPGPU architectures has become even
more complex than before as consumed power is now an additional variable
in the design space.

In Chapter 5, we have demonstrated a novel power simulation framework
entitled GPUSimPow. With GPUSimPow, programmers and computer archi-
tects can accurately estimate the static and dynamic power consumed by a
given GPGPU architecture when executing a particular kernel without building
the actual chip. As our evaluations on a set of well-known benchmarks have
shown, the average relative error of our power simulation results compared
to measurements on real hardware is 11.7% for GT240 and 10.8% for GTX580.
The simulator is also able to generate the distribution of power consumption
over the hardware components of the GPU, and also of the different compo-
nents of each core. These power profiles can be used to drive architecture
or application power optimization. However, as a power breakdown for
a selected benchmark revealed, a large fraction of the simulated power is
currently attributed to components that are not modeled in detail, i.e. “undif-
ferentiated transistors”. Additional research could add accurate models of
these components, however, as we have shown in Chapters 6 and 7, providing
data dependent models for ALUs and memory is also very important for
increasing the accuracy of the simulator.

The GPUSimPow simulator is a helpful tool for both processor architects
and GPGPU programmers to gain valuable insights into where power is
consumed in the GPU.
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In Chapter 6 the design and calibration of ALUPower, an energy model
for GPU ALUs, was presented and its accuracy was evaluated. The main
contributions can be summarized as follows:

• We developed the ALUPower energy macro model for GPU ALUs based
on measurements of commercial high performance GPUs.

• ALUPower improves the prediction accuracy by 85.6% over previous
ALU energy models and exhibits an average correlation of 0.976 to
measured results on real GPUs.

• We demonstrated the large (≥ 30%) influence of data values on the
energy consumption on both Fermi and Maxwell GPUs.

• We identified several potential energy optimizations for code running
on GPUs, such as optimized register allocation or swapping operands
to reduce energy consumption.

• ALUPower enables the development of new architectural optimizations
to GPUs and similar architectures.

In the future, we intend to integrate the ALUPower energy model into
GPUSimPow. This will enable the development of additional optimizations of
the GPU architecture that cannot be evaluated properly using current GPU
simulators, such as special warp or register fetch schedulers that are aware
of values and try to execute instructions with similar inputs consecutively
to reduce the power consumption. ALUPower can also be useful for mod-
eling different GPU architectures as its coefficients can be scaled based on
process node and voltage. Our LSFR benchmark can be used to calculate the
scaling factor or, if an assembler is available, the microbenchmarks can be
ported and new coefficients can be determined. DVFS and boost clocking
schemes also benefit from more accurate energy predictions using hardware
counters for input statistics such as average Hamming distances. Without
a data dependent power model such as ALUPower, GPU architects aiming
at reducing GPU ALU energy consumption are limited to techniques that
reduce the number of executed instructions. ALUPower enables optimizations
that reduce the energy consumption by reordering instructions to execute
instructions with similar values consecutively on the same functional unit. It
also enables a fair evaluation of techniques such as new warp schedulers that
reorder instructions for different reasons, as reordering instructions can some-
times increase the energy consumption. Conventional power models leave
GPU architects oblivious, while ALUPower makes them aware of these effects.

In Chapter 7, we continued the development of data-dependent GPU energy
models with the MEMPower energy model for GPU memory transactions.
Our contributions can be summarized as follows:
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• We presented a novel technique to identify in which memory channel a
specific memory address is located.

• Our microbenchmarks uncovered previously unknown architectural
details of GF100-based GPUs.

• We show that memory channels are not completely identical, but differ
in latency and energy consumption.

• The MEMPower model improves the energy predictions accuracy by on
average 37.8% for loads compared to non-data dependent models and
provides a 77.1% improvement on our validation set for stores.

At peak bandwidth data dependent changes to energy can influence the
total power consumption of the GTX580 GPU by more than 25 Watt or
around 10% of the total power. Future Work in this area includes software
and hardware techniques to reduce the energy consumption. Common but
expensive data patterns could be recoded to patterns with reduced energy
consumption. As memory transactions are significantly more expensive
than simple ALU operations, even software solutions could be beneficial.
Programmer control over data allocation could allow rarely used data to be
placed in memory channels with costlier memory access and often used data
in memory channels with reduced energy consumption.

After modeling the power consumption of the memory, in Chapter 8 and
Chapter 9 we looked at architectural changes to reduce the power consump-
tion of the memory and its interface.

Chapter 8 presented a novel data bus inversion (DBI) encoding scheme. It
reduces the link power consumption by up to 6%. It has been shown that the
problem of finding a DBI encoding with the smallest link energy is equivalent
to finding the shortest path in a graph. A hardware design that performs
the encoding at the required data rates using an insignificant extra area and
energy was presented. Additional optimization to reduce the hardware over-
head including partially analog implementation are possible. A design with
fixed coefficients provides a very good trade-off between the energy required
for encoding and the saved link energy. It can be used without changing
existing DDR4, GDDR5 and GDDR5X memories to reduce the interface energy
during writes and could be integrated into future memories to also reduce
read interface energy.
Chapter 9 proposed Sparkk, an effective approximate storage using commod-
ity DRAMs. It achieves more than 10dB PSNR improvement over Flikker at
the same average refresh rate or reaches the same quality at less than half the
refresh rate of Flikker. We also proposed a simple, small and flexible hardware
unit to control how the memory controller refreshes multiple configurable
memory areas for approximate storage.
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In Chapter 10, a microarchitecture implementation of temporal SIMT (TSIMT)
was presented, as well as TSIMT optimizations, and a rigorous performance
evaluation of temporal SIMT GPUs. TSIMT aims to improve the performance
of control divergent GPGPU workloads by executing warps over time instead
of over space as regular spatial SIMT GPUs do.

A microbenchmark analysis has shown that TSIMT offers significant per-
formance benefits compared to spatial SIMT, provided there are sufficient
warps are available. When evaluated with complete benchmarks, however,
the basic TSIMT approach generally achieves lower performance compared
to spatial SIMT. A detailed performance analysis has revealed that TSIMT
suffers from lane load balancing and occupancy issues and microarchitecture
optimizations have been presented to improve this for some benchmarks.

In addition, we have proposed and evaluated a more general solution,
called spatio-temporal SIMT (STSIMT) that offers the control divergence
mitigation of TSIMT while significantly reducing the high occupancy and load-
balancing requirements of TSIMT. Using a particular configuration of STSIMT,
an average speedup of 8% was achieved for control divergent benchmarks
and 6% on average for all benchmarks.

In Chapter 11 Scalarization was combined with TSIMT. The hardware cost
of this combination is much lower than a SIMT GPU with Scalarization, while
being more flexible. It improves performance by 16% over regular SIMT. We
also showed that a previously published scalarization algorithm employs
overly restrictive rules, and presented a scalarization and register allocation
algorithm, that is well suited for extracting scalar instructions from kernels
with divergent control flow. By applying this algorithm double the number of
instructions could be scalarized and 26.1% fewer registers were required per
warp.

It has also been shown that several of the proposed designs provide sig-
nificant power and energy advantages. The most energy-efficient design (ST-
SIMT4 with Scalarization) improves the energy delay product by 26.4% on
average.

Future work includes new methods for reducing lane load imbalance such
as flexible warp sizes and GPUs that can dynamically switch between SIMT
and TSIMT operation modes. Further code and microarchitecture optimiza-
tions are possible to increase the performance of TSIMT architectures. More-
over, current benchmarks are not targeted at and optimized for TSIMT and
therefore often incur a performance reduction. If the programmer is targeting
a TSIMT-based execution architecture, divergent code can be implemented in
a more straightforward way and still be executed with high performance by
the GPU. Future work could demonstrate the advantages of TSIMT-optimized
code.
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12.2 answers to our research questions

In this Section, we summarize the answers to our research questions from
Chapter 1. Our main questions were:

(A) How can we measure the power consumption of GPUs and kernels
running on GPUs?

(B) How can we estimate the power consumption using an architectural
simulator?

(C) Can architectural enhancements improve the energy efficiency of GPUs?

Question (A) was answered by the LPGPU and LPGPU2 power measure-
ment testbeds presented in Chapter 4. Chapter 5 explained the design of an
architectural power simulator for GPUs and Chapters 6 and 7 explained how
more accurate, data-dependent models can be built. Together, these chap-
ters answer Question (B). Chapters 8 to 11 explained various architectural
enhancements that can improve the energy efficiency of GPUs and answer
Question (C).

Additional questions regarding power measurements were:

(A1) How can we acquire high quality GPU power measurements?
(A2) How can power measurements be combined with application level event

information?

In Chapter 4 we explained how power measurements using a shunt to-
gether with analog signal conditioning and an ADC with a high sampling
rate and resolutions leads to high quality power measurements, answering
Question (A1). In the same chapter, we also explained our synchronization
scheme and how it can be used to combine profiling results with our measure-
ments. This generates combined power profiles, that list energy consumption
for every executed kernel. This scheme provides the answer to Question (A2).

We also asked the following questions regarding power modeling:

(B1) Can an architectural simulator predict the power consumption of a GPU
from its architectural level configuration?

(B2) How to design microbenchmarks to measure the power consumption of
individual GPU components?

(B3) How can microbenchmarks and power measurements be used to dis-
cover unpublished architectural details?

Our power simulator GPUSimPow presented in Chapter 5 answers Ques-
tion (B1). It enables us to predict the power consumption of new GPUs by
changing a configuration file. Many GPU components can be configured via
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the configuration file and their power is predicted using analytical power
models. This allows us to predict how the power consumption would change,
if e.g.: we change the number of cores, the size of the register file or change
the memory interface. Chapters 5 to 7 used custom microbenchmarks to mea-
sure the power consumption of different GPU components and describe their
design. A common theme of these microbenchmarks is the use of differential
measurements and the use of specific architectural details to allow targeted
changes to the activity of specific GPU components. This answers Ques-
tion (B2). Chapter 6 showed how power measurements were used to discover
the number of register banks. In Chapter 7 we discovered the number of mem-
ory channels using a special microbenchmark. This answers our Question (B3).

Architectural enhancements also generated more questions:

(C1) Which GPU components can we change to improve the power consump-
tion?

(C2) Can enhancements that improve performance, but also increase power
consumption still result in gains in energy efficiency?

(C3) What kind of architectural enhancements will increase the applicability
of GPUs for new applications and still improve energy efficiency?

In response to Question (C1) we developed four different techniques pre-
sented in Chapters 8 to 11. The technique described in Chapter 8 improves
the power consumption of the memory interface and Chapter 9 targets the
DRAM refresh. Chapters 10 and 11 show how we can reorganize the GPU
core to reach higher performance and better energy efficiency. Our results
from Chapters 6 and 7 indicate that additional power savings might be
possible, if we can optimize the warp scheduling to reduce the data depen-
dent power consumption of the ALUs or develop a special data encoding to
reduce the power consumption of the memory interface. Our Question (C2)
was answered in Chapter 11. In this chapter we have shown how STSIMT4

together with Scalarization introduces a slight increase in power consumption,
but provides an even higher increase in performance. Together this results
in an gain in power efficiency. Our power simulator developed in Chapter 5

allowed us to perform this evaluation and showed the EDP improvement of
26.2%. The TSIMT architecture from Chapter 10 and its improvements are
also the answer to Question (C3). These architectures allow GPUs to be used
efficiently for executing algorithms that require many divergent branches and
thus increase the applicability of GPUs.
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12.3 future work

Future GPUs could add additional performance counters or even on-chip
power measurement capabilities to enable highly accurate power estima-
tion or measurement without lengthy architectural simulations and allow
programmers to easily improve the energy efficiency of their applications.

Even further improvements to energy efficiency of GPUs might be found
using techniques such as approximation, compression, data-value aware
transforms such as special instruction scheduling or register allocation. And
while these techniques could lead to large improvements in performance and
efficiency, they all require additional information about the processed data
that is not available in common currently available programming interfaces
for GPUs. Part of this information might be gained using profiling, other parts
likely require annotation by the programmer, e.g.: profiling cannot declare
values to be safe to approximate or provide strict upper and lower value
bounds, but profiling might be used to gather hard to annotate information
about average value distribution, covariances and similar measures useful for
value-aware instruction scheduling and compression.

Recently some GPUs have used 3D-stacked memory such as HBM and
HBM2 [63], [64], [212]. These memory technologies are expensive but are able
to provide a large increase in memory bandwidth and reduce the interface
energy. While currently used to replace regular GDDR5/5X DRAM without
changing the GPU core architecture, these new memory technologies will
likely influence core design and programming models in the future. Due to
Little’s law and the latency of the memory interface, higher bandwidth at a
similar latency means that even more requests need to be in-flight at a time,
or the high memory bandwidth cannot be used. With the current execution
model, this would require even more warps active at the same and thus even
larger register files.

We expect that techniques such as decoupled access/execute [213], [214]
and dynamic management of the register file will be implemented in future
GPUs and allow more in-flight memory transactions without requiring even
larger register files [215]. GPUs aimed at HPC and AI application might also
offer DMA capabilities to shared memory or locked cache blocks to trigger
large memory transactions from a single warp and reduce the number of
concurrent warps required to fully utilize the memory throughput.

The idea of Scalarization can also be extended to not just cover instruc-
tions within the same warp but efficiency can be improved further by also
scalarizing instructions that are identical in the whole thread block or the
current grid. Currently Scalarization removes redundant computations in
instructions where all active threads in the warp operate on exactly the same
input values. In these cases the instruction of only one of the threads needs
to be executed because it is representative for the whole warp. This concept
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could be extended to cover cases where a few threads can represent the whole
warp, e.g.: instructions that perform different computations in odd and even
threads, but all odd threads perform exactly the same calculation and all
even threads perform the same calculation. In this example, an extension to
Scalarization could allow the GPU to only perform two calculations per Warp,
instead of one calculation per active thread in the warp.

The current programming model that creates a one, two, or three-dimensional
array of threads at kernel launch without allowing dependencies between
thread blocks is useful for applications such as linear algebra or image pro-
cessing but can be problematic for more irregular applications such as video
decoding or graph processing. Here we also see room for future improve-
ment. Relatively simple dependency patterns exist between different image
parts during video decoding and a programmable thread block scheduler
could wait with starting new threads blocks until other blocks that calculate
dependencies are finished.

While recent versions of CUDA and OpenCL support kernel launches from
within another kernel, this feature is currently often not beneficial due to
the high overhead of the current implementations [216], [217]. Especially
CUDA dynamic parallelism can require the GPU to swap out the current
execution context to DRAM to free resources to allow the kernel launch. More
limited APIs for dynamic creation of warps might improve the situation by
adding additional constraints such as local creation on the same GPU core
and pre-reserved resources. Wang et al. propose the addition of lightweight
thread block launches [218]. This proposal could also be used as an alternative
to the programmable thread scheduler mentioned above.

With these and similar architectural changes, the energy efficiency can be
improved and GPUs could be used efficiently for an even wider range of
computations. Being able to move more computations from energy-hungry
Out-Of-Order CPUs to low-power GPUs is likely going to improve the energy-
efficiency and performance of the whole system. New applications will
become possible, even in energy constrained mobile environments.
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