Skip to main content

Advertisement

Log in

Genome-wide analyses as part of the international FTLD-TDP whole-genome sequencing consortium reveals novel disease risk factors and increases support for immune dysfunction in FTLD

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Frontotemporal lobar degeneration with neuronal inclusions of the TAR DNA-binding protein 43 (FTLD-TDP) represents the most common pathological subtype of FTLD. We established the international FTLD-TDP whole-genome sequencing consortium to thoroughly characterize the known genetic causes of FTLD-TDP and identify novel genetic risk factors. Through the study of 1131 unrelated Caucasian patients, we estimated that C9orf72 repeat expansions and GRN loss-of-function mutations account for 25.5% and 13.9% of FTLD-TDP patients, respectively. Mutations in TBK1 (1.5%) and other known FTLD genes (1.4%) were rare, and the disease in 57.7% of FTLD-TDP patients was unexplained by the known FTLD genes. To unravel the contribution of common genetic factors to the FTLD-TDP etiology in these patients, we conducted a two-stage association study comprising the analysis of whole-genome sequencing data from 517 FTLD-TDP patients and 838 controls, followed by targeted genotyping of the most associated genomic loci in 119 additional FTLD-TDP patients and 1653 controls. We identified three genome-wide significant FTLD-TDP risk loci: one new locus at chromosome 7q36 within the DPP6 gene led by rs118113626 (p value = 4.82e − 08, OR = 2.12), and two known loci: UNC13A, led by rs1297319 (p value = 1.27e − 08, OR = 1.50) and HLA-DQA2 led by rs17219281 (p value = 3.22e − 08, OR = 1.98). While HLA represents a locus previously implicated in clinical FTLD and related neurodegenerative disorders, the association signal in our study is independent from previously reported associations. Through inspection of our whole-genome sequence data for genes with an excess of rare loss-of-function variants in FTLD-TDP patients (n ≥ 3) as compared to controls (n = 0), we further discovered a possible role for genes functioning within the TBK1-related immune pathway (e.g., DHX58, TRIM21, IRF7) in the genetic etiology of FTLD-TDP. Together, our study based on the largest cohort of unrelated FTLD-TDP patients assembled to date provides a comprehensive view of the genetic landscape of FTLD-TDP, nominates novel FTLD-TDP risk loci, and strongly implicates the immune pathway in FTLD-TDP pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P et al (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249. https://doi.org/10.1038/nmeth0410-248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ahmad L, Zhang SY, Casanova JL, Sancho-Shimizu V (2016) Human TBK1: a gatekeeper of neuroinflammation. Trends Mol Med 22:511–527. https://doi.org/10.1016/j.molmed.2016.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Allen M, Wang X, Burgess JD, Watzlawik J, Serie DJ, Younkin CS et al (2018) Conserved brain myelination networks are altered in Alzheimer’s and other neurodegenerative diseases. Alzheimers Dement 14:352–366. https://doi.org/10.1016/j.jalz.2017.09.012

    Article  PubMed  Google Scholar 

  4. Baker M, Mackenzie IR, Pickering-Brown SM, Gass J, Rademakers R, Lindholm C et al (2006) Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442:916–919. https://doi.org/10.1038/nature05016

    Article  CAS  PubMed  Google Scholar 

  5. Balendra R, Isaacs AM (2018) C9orf72-mediated ALS and FTD: multiple pathways to disease. Nat Rev Neurol 14:544–558. https://doi.org/10.1038/s41582-018-0047-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bit-Ivan EN, Suh E, Shim HS, Weintraub S, Hyman BT, Arnold SE et al (2014) A novel GRN mutation (GRN c.708 + 6_ + 9delTGAG) in frontotemporal lobar degeneration with TDP-43-positive inclusions: clinicopathologic report of 6 cases. J Neuropathol Exp Neurol 73:467–473. https://doi.org/10.1097/NEN.0000000000000070

    Article  CAS  PubMed  Google Scholar 

  7. Boronat A, Gelfand JM, Gresa-Arribas N, Jeong HY, Walsh M, Roberts K et al (2013) Encephalitis and antibodies to dipeptidyl-peptidase-like protein-6, a subunit of Kv4.2 potassium channels. Ann Neurol 73:120–128. https://doi.org/10.1002/ana.23756

    Article  CAS  PubMed  Google Scholar 

  8. Broce I, Karch CM, Wen N, Fan CC, Wang Y, Tan CH et al (2018) Immune-related genetic enrichment in frontotemporal dementia: an analysis of genome-wide association studies. PLoS Med 15:e1002487. https://doi.org/10.1371/journal.pmed.1002487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Buee L, Delacourte A (1999) Comparative biochemistry of tau in progressive supranuclear palsy, corticobasal degeneration, FTDP-17 and Pick’s disease. Brain Pathol 9:681–693

    Article  CAS  PubMed  Google Scholar 

  10. Cacace R, Heeman B, Van Mossevelde S, De Roeck A, Hoogmartens J, De Rijk P et al (2018) Loss of DPP6 in neurodegenerative dementia: a genetic player in the dysfunction of neuronal excitability. Acta Neuropathol (submitted)

  11. Chen J, Bardes EE, Aronow BJ, Jegga AG (2009) ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucl Acids Res 37:W305–W311. https://doi.org/10.1093/nar/gkp427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen Y, Li S, Su L, Sheng J, Lv W, Chen G et al (2015) Association of progranulin polymorphism rs5848 with neurodegenerative diseases: a meta-analysis. J Neurol 262:814–822. https://doi.org/10.1007/s00415-014-7630-2

    Article  CAS  PubMed  Google Scholar 

  13. Chio A, Schymick JC, Restagno G, Scholz SW, Lombardo F, Lai SL et al (2009) A two-stage genome-wide association study of sporadic amyotrophic lateral sclerosis. Hum Mol Genet 18:1524–1532. https://doi.org/10.1093/hmg/ddp059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Clark BD, Kwon E, Maffie J, Jeong HY, Nadal M, Strop P et al (2008) DPP6 localization in brain supports function as a Kv4 channel associated protein. Front Mol Neurosci 1:8. https://doi.org/10.3389/neuro.02.008.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cox LE, Ferraiuolo L, Goodall EF, Heath PR, Higginbottom A, Mortiboys H et al (2010) Mutations in CHMP2B in lower motor neuron predominant amyotrophic lateral sclerosis (ALS). PLoS ONE 5:e9872. https://doi.org/10.1371/journal.pone.0009872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cronin S, Berger S, Ding J, Schymick JC, Washecka N, Hernandez DG et al (2008) A genome-wide association study of sporadic ALS in a homogenous Irish population. Hum Mol Genet 17:768–774. https://doi.org/10.1093/hmg/ddm361

    Article  CAS  PubMed  Google Scholar 

  17. Cruts M, Gijselinck I, van der Zee J, Engelborghs S, Wils H, Pirici D et al (2006) Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442:920–924. https://doi.org/10.1038/nature05017

    Article  CAS  PubMed  Google Scholar 

  18. Daoud H, Valdmanis PN, Dion PA, Rouleau GA (2010) Analysis of DPP6 and FGGY as candidate genes for amyotrophic lateral sclerosis. Amyotroph Lateral Scler 11:389–391. https://doi.org/10.3109/17482960903358857

    Article  CAS  PubMed  Google Scholar 

  19. De Jager PL, Srivastava G, Lunnon K, Burgess J, Schalkwyk LC, Yu L et al (2014) Alzheimer’s disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nat Neurosci 17:1156–1163. https://doi.org/10.1038/nn.3786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. de Majo M, Topp SD, Smith BN, Nishimura AL, Chen HJ, Gkazi AS et al (2018) ALS-associated missense and nonsense TBK1 mutations can both cause loss of kinase function. Neurobiol Aging 71:266 e210–266 e261. https://doi.org/10.1016/j.neurobiolaging.2018.06.015

    Article  CAS  Google Scholar 

  21. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256. https://doi.org/10.1016/j.neuron.2011.09.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Del Bo R, Ghezzi S, Corti S, Santoro D, Prelle A, Mancuso M et al (2008) DPP6 gene variability confers increased risk of developing sporadic amyotrophic lateral sclerosis in Italian patients. J Neurol Neurosurg Psychiatry 79:1085. https://doi.org/10.1136/jnnp.2008.149146

    Article  PubMed  Google Scholar 

  23. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C et al (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43:491–498. https://doi.org/10.1038/ng.806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Diekstra FP, Van Deerlin VM, van Swieten JC, Al-Chalabi A, Ludolph AC, Weishaupt JH et al (2014) C9orf72 and UNC13A are shared risk loci for amyotrophic lateral sclerosis and frontotemporal dementia: a genome-wide meta-analysis. Ann Neurol 76:120–133. https://doi.org/10.1002/ana.24198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dittwald P, Gambin T, Gonzaga-Jauregui C, Carvalho CM, Lupski JR, Stankiewicz P et al (2013) Inverted low-copy repeats and genome instability—a genome-wide analysis. Hum Mutat 34:210–220. https://doi.org/10.1002/humu.22217

    Article  CAS  PubMed  Google Scholar 

  26. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21. https://doi.org/10.1093/bioinformatics/bts635

    Article  CAS  PubMed  Google Scholar 

  27. Ferrari R, Hernandez DG, Nalls MA, Rohrer JD, Ramasamy A, Kwok JB et al (2014) Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurol 13:686–699. https://doi.org/10.1016/S1474-4422(14)70065-1

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ferrari R, Wang Y, Vandrovcova J, Guelfi S, Witeolar A, Karch CM et al (2017) Genetic architecture of sporadic frontotemporal dementia and overlap with Alzheimer’s and Parkinson’s diseases. J Neurol Neurosurg Psychiatry 88:152–164. https://doi.org/10.1136/jnnp-2016-314411

    Article  PubMed  Google Scholar 

  29. Fogh I, D’Alfonso S, Gellera C, Ratti A, Cereda C, Penco S et al (2011) No association of DPP6 with amyotrophic lateral sclerosis in an Italian population. Neurobiol Aging 32:966–967. https://doi.org/10.1016/j.neurobiolaging.2009.05.014

    Article  CAS  PubMed  Google Scholar 

  30. Freischmidt A, Wieland T, Richter B, Ruf W, Schaeffer V, Muller K et al (2015) Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat Neurosci 18:631–636. https://doi.org/10.1038/nn.4000

    Article  CAS  PubMed  Google Scholar 

  31. Geier EG, Bourdenx M, Storm NJ, Cochran JN, Sirkis DW, Hwang JH et al (2018) Rare variants in the neuronal ceroid lipofuscinosis gene MFSD8 are candidate risk factors for frontotemporal dementia. Acta Neuropathol. https://doi.org/10.1007/s00401-018-1925-9

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF et al (2011) Classification of primary progressive aphasia and its variants. Neurology 76:1006–1014. https://doi.org/10.1212/WNL.0b013e31821103e6

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gusareva ES, Carrasquillo MM, Bellenguez C, Cuyvers E, Colon S, Graff-Radford NR et al (2014) Genome-wide association interaction analysis for Alzheimer’s disease. Neurobiol Aging 35:2436–2443. https://doi.org/10.1016/j.neurobiolaging.2014.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hamza TH, Zabetian CP, Tenesa A, Laederach A, Montimurro J, Yearout D et al (2010) Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson’s disease. Nat Genet 42:781–785. https://doi.org/10.1038/ng.642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hara M, Arino H, Petit-Pedrol M, Sabater L, Titulaer MJ, Martinez-Hernandez E et al (2017) DPPX antibody-associated encephalitis: main syndrome and antibody effects. Neurology 88:1340–1348. https://doi.org/10.1212/WNL.0000000000003796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Helgason E, Phung QT, Dueber EC (2013) Recent insights into the complexity of Tank-binding kinase 1 signaling networks: the emerging role of cellular localization in the activation and substrate specificity of TBK1. FEBS Lett 587:1230–1237. https://doi.org/10.1016/j.febslet.2013.01.059

    Article  CAS  PubMed  Google Scholar 

  37. Hsiung GY, Fok A, Feldman HH, Rademakers R, Mackenzie IR (2011) rs5848 polymorphism and serum progranulin level. J Neurol Sci 300:28–32. https://doi.org/10.1016/j.jns.2010.10.009

    Article  CAS  PubMed  Google Scholar 

  38. Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H et al (1998) Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393:702–705. https://doi.org/10.1038/31508

    Article  CAS  PubMed  Google Scholar 

  39. Kim YE, Oh KW, Noh MY, Nahm M, Park J, Lim SM et al (2017) Genetic and functional analysis of TBK1 variants in Korean patients with sporadic amyotrophic lateral sclerosis. Neurobiol Aging 50:170 e171–170 e176. https://doi.org/10.1016/j.neurobiolaging.2016.11.003

    Article  CAS  Google Scholar 

  40. Komuro A, Horvath CM (2006) RNA- and virus-independent inhibition of antiviral signaling by RNA helicase LGP2. J Virol 80:12332–12342. https://doi.org/10.1128/JVI.01325-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Krabbe G, Minami SS, Etchegaray JI, Taneja P, Djukic B, Davalos D et al (2017) Microglial NFkappaB-TNFalpha hyperactivation induces obsessive-compulsive behavior in mouse models of progranulin-deficient frontotemporal dementia. Proc Natl Acad Sci USA 114:5029–5034. https://doi.org/10.1073/pnas.1700477114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lall D, Baloh RH (2017) Microglia and C9orf72 in neuroinflammation and ALS and frontotemporal dementia. J Clin Invest 127:3250–3258. https://doi.org/10.1172/JCI90607

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 45:1452–1458. https://doi.org/10.1038/ng.2802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lant SB, Robinson AC, Thompson JC, Rollinson S, Pickering-Brown S, Snowden JS et al (2014) Patterns of microglial cell activation in frontotemporal lobar degeneration. Neuropathol Appl Neurobiol 40:686–696. https://doi.org/10.1111/nan.12092

    Article  CAS  PubMed  Google Scholar 

  45. Lee EB, Porta S, Michael Baer G, Xu Y, Suh E, Kwong LK et al (2017) Expansion of the classification of FTLD-TDP: distinct pathology associated with rapidly progressive frontotemporal degeneration. Acta Neuropathol 134:65–78. https://doi.org/10.1007/s00401-017-1679-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lenormand C, Bausinger H, Gross F, Signorino-Gelo F, Koch S, Peressin M et al (2012) HLA-DQA2 and HLA-DQB2 genes are specifically expressed in human Langerhans cells and encode a new HLA class II molecule. J Immunol 188:3903–3911. https://doi.org/10.4049/jimmunol.1103048

    Article  CAS  PubMed  Google Scholar 

  47. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760. https://doi.org/10.1093/bioinformatics/btp324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li X, Yang M, Yu Z, Tang S, Wang L, Cao X et al (2017) The tyrosine kinase Src promotes phosphorylation of the kinase TBK1 to facilitate type I interferon production after viral infection. Sci Signal. https://doi.org/10.1126/scisignal.aae0435

  49. Liao C, Fu F, Li R, Yang WQ, Liao HY, Yan JR et al (2013) Loss-of-function variation in the DPP6 gene is associated with autosomal dominant microcephaly and mental retardation. Eur J Med Genet 56:484–489. https://doi.org/10.1016/j.ejmg.2013.06.008

    Article  PubMed  Google Scholar 

  50. Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930. https://doi.org/10.1093/bioinformatics/btt656

    Article  CAS  PubMed  Google Scholar 

  51. Lin L, Murphy JG, Karlsson RM, Petralia RS, Gutzmann JJ, Abebe D et al (2018) DPP6 loss impacts hippocampal synaptic development and induces behavioral impairments in recognition, learning and memory. Front Cell Neurosci 12:84. https://doi.org/10.3389/fncel.2018.00084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu S, Cai X, Wu J, Cong Q, Chen X, Li T et al (2015) Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347:aaa2630. https://doi.org/10.1126/science.aaa2630

  53. Lui H, Zhang J, Makinson SR, Cahill MK, Kelley KW, Huang HY et al (2016) Progranulin deficiency promotes circuit-specific synaptic pruning by microglia via complement activation. Cell 165:921–935. https://doi.org/10.1016/j.cell.2016.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mackenzie IR, Baker M, Pickering-Brown S, Hsiung GY, Lindholm C, Dwosh E et al (2006) The neuropathology of frontotemporal lobar degeneration caused by mutations in the progranulin gene. Brain 129:3081–3090. https://doi.org/10.1093/brain/awl271

    Article  PubMed  Google Scholar 

  55. Mackenzie IR, Neumann M, Baborie A, Sampathu DM, Du Plessis D, Jaros E et al (2011) A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol 122:111–113. https://doi.org/10.1007/s00401-011-0845-8

    Article  PubMed  PubMed Central  Google Scholar 

  56. Martens LH, Zhang J, Barmada SJ, Zhou P, Kamiya S, Sun B et al (2012) Progranulin deficiency promotes neuroinflammation and neuron loss following toxin-induced injury. J Clin Invest 122:3955–3959. https://doi.org/10.1172/JCI63113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A et al (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303. https://doi.org/10.1101/gr.107524.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. McPeek MS, Sun L (2000) Statistical tests for detection of misspecified relationships by use of genome-screen data. Am J Hum Genet 66:1076–1094. https://doi.org/10.1086/302800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Miller ZA, Rankin KP, Graff-Radford NR, Takada LT, Sturm VE, Cleveland CM et al (2013) TDP-43 frontotemporal lobar degeneration and autoimmune disease. J Neurol Neurosurg Psychiatry 84:956–962. https://doi.org/10.1136/jnnp-2012-304644

    Article  PubMed  Google Scholar 

  60. Miller ZA, Sturm VE, Camsari GB, Karydas A, Yokoyama JS, Grinberg LT et al (2016) Increased prevalence of autoimmune disease within C9 and FTD/MND cohorts: completing the picture. Neurol Neuroimmunol Neuroinflamm 3:e301. https://doi.org/10.1212/NXI.0000000000000301

    Article  PubMed  PubMed Central  Google Scholar 

  61. Nalls MA, Pankratz N, Lill CM, Do CB, Hernandez DG, Saad M et al (2014) Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet 46:989–993. https://doi.org/10.1038/ng.3043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein function. Nucl Acids Res 31:3812–3814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nicholson AM, Finch NA, Thomas CS, Wojtas A, Rutherford NJ, Mielke MM et al (2014) Progranulin protein levels are differently regulated in plasma and CSF. Neurology 82:1871–1878. https://doi.org/10.1212/WNL.0000000000000445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nicolas A, Kenna KP, Renton AE, Ticozzi N, Faghri F, Chia R et al (2018) Genome-wide analyses identify KIF5A as a novel ALS gene. Neuron 97(1268–1283):e1266. https://doi.org/10.1016/j.neuron.2018.02.027

    Article  CAS  Google Scholar 

  65. Ning S, Pagano JS, Barber GN (2011) IRF7: activation, regulation, modification and function. Genes Immun 12:399–414. https://doi.org/10.1038/gene.2011.21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. O’Rourke JG, Bogdanik L, Yanez A, Lall D, Wolf AJ, Muhammad AK et al (2016) C9orf72 is required for proper macrophage and microglial function in mice. Science 351:1324–1329. https://doi.org/10.1126/science.aaf1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ohm DT, Kim G, Gefen T, Rademaker A, Weintraub S, Bigio EH et al (2018) Prominent microglial activation in cortical white matter is selectively associated with cortical atrophy in primary progressive aphasia. Neuropathol Appl Neurobiol. https://doi.org/10.1111/nan.12494

  68. Olson JE, Ryu E, Johnson KJ, Koenig BA, Maschke KJ, Morrisette JA et al (2013) The Mayo Clinic Biobank: a building block for individualized medicine. Mayo Clin Proc 88:952–962. https://doi.org/10.1016/j.mayocp.2013.06.006

    Article  PubMed  Google Scholar 

  69. Parkinson N, Ince PG, Smith MO, Highley R, Skibinski G, Andersen PM et al (2006) ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B). Neurology 67:1074–1077. https://doi.org/10.1212/01.wnl.0000231510.89311.8b

    Article  CAS  PubMed  Google Scholar 

  70. Placek K, Baer GM, Elman L, McCluskey L, Hennessy L, Ferraro PM et al (2018) UNC13A polymorphism contributes to frontotemporal disease in sporadic amyotrophic lateral sclerosis. Neurobiol Aging 73:190–199. https://doi.org/10.1016/j.neurobiolaging.2018.09.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pottier C, Bieniek KF, Finch N, van de Vorst M, Baker M, Perkersen R et al (2015) Whole-genome sequencing reveals important role for TBK1 and OPTN mutations in frontotemporal lobar degeneration without motor neuron disease. Acta Neuropathol 130:77–92. https://doi.org/10.1007/s00401-015-1436-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Project Min EALSSC (2018) Project MinE: study design and pilot analyses of a large-scale whole-genome sequencing study in amyotrophic lateral sclerosis. Eur J Hum Genet 26:1537–1546. https://doi.org/10.1038/s41431-018-0177-4

    Article  CAS  Google Scholar 

  73. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575. https://doi.org/10.1086/519795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rademakers R, Eriksen JL, Baker M, Robinson T, Ahmed Z, Lincoln SJ et al (2008) Common variation in the miR-659 binding-site of GRN is a major risk factor for TDP43-positive frontotemporal dementia. Hum Mol Genet 17:3631–3642. https://doi.org/10.1093/hmg/ddn257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J et al (2011) Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134:2456–2477. https://doi.org/10.1093/brain/awr179

    Article  PubMed  PubMed Central  Google Scholar 

  76. Rollinson S, Rohrer JD, van der Zee J, Sleegers K, Mead S, Engelborghs S et al (2011) No association of PGRN 3′UTR rs5848 in frontotemporal lobar degeneration. Neurobiol Aging 32:754–755. https://doi.org/10.1016/j.neurobiolaging.2009.04.009

    Article  CAS  PubMed  Google Scholar 

  77. Rothenfusser S, Goutagny N, DiPerna G, Gong M, Monks BG, Schoenemeyer A et al (2005) The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible gene-I. J Immunol 175:5260–5268

    Article  CAS  PubMed  Google Scholar 

  78. Saito T, Hirai R, Loo YM, Owen D, Johnson CL, Sinha SC et al (2007) Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proc Natl Acad Sci USA 104:582–587. https://doi.org/10.1073/pnas.0606699104

    Article  CAS  PubMed  Google Scholar 

  79. Satoh T, Kato H, Kumagai Y, Yoneyama M, Sato S, Matsushita K et al (2010) LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses. Proc Natl Acad Sci USA 107:1512–1517. https://doi.org/10.1073/pnas.0912986107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Schludi MH, Becker L, Garrett L, Gendron TF, Zhou Q, Schreiber F et al (2017) Spinal poly-GA inclusions in a C9orf72 mouse model trigger motor deficits and inflammation without neuron loss. Acta Neuropathol 134:241–254. https://doi.org/10.1007/s00401-017-1711-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Simon-Sanchez J, Seelaar H, Bochdanovits Z, Deeg DJ, van Swieten JC, Heutink P (2009) Variation at GRN 3′-UTR rs5848 is not associated with a risk of frontotemporal lobar degeneration in Dutch population. PLoS ONE 4:e7494. https://doi.org/10.1371/journal.pone.0007494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sun W, Maffie JK, Lin L, Petralia RS, Rudy B, Hoffman DA (2011) DPP6 establishes the A-type K(+) current gradient critical for the regulation of dendritic excitability in CA1 hippocampal neurons. Neuron 71:1102–1115. https://doi.org/10.1016/j.neuron.2011.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Taipa R, Brochado P, Robinson A, Reis I, Costa P, Mann DM et al (2017) Patterns of microglial cell activation in Alzheimer disease and frontotemporal lobar degeneration. Neurodegener Dis 17:145–154. https://doi.org/10.1159/000457127

    Article  PubMed  Google Scholar 

  84. Tobin WO, Lennon VA, Komorowski L, Probst C, Clardy SL, Aksamit AJ et al (2014) DPPX potassium channel antibody: frequency, clinical accompaniments, and outcomes in 20 patients. Neurology 83:1797–1803. https://doi.org/10.1212/WNL.0000000000000991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tsai PC, Liu YC, Lin KP, Liu YT, Liao YC, Hsiao CT et al (2016) Mutational analysis of TBK1 in Taiwanese patients with amyotrophic lateral sclerosis. Neurobiol Aging 40:191 e111–191 e116. https://doi.org/10.1016/j.neurobiolaging.2015.12.022

    Article  CAS  Google Scholar 

  86. Van Deerlin VM, Sleiman PM, Martinez-Lage M, Chen-Plotkin A, Wang LS, Graff-Radford NR et al (2010) Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nat Genet 42:234–239. https://doi.org/10.1038/ng.536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A et al (2013) From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics 43:11-10–11-33. https://doi.org/10.1002/0471250953.bi1110s43

    Article  Google Scholar 

  88. van der Zee J, Gijselinck I, Dillen L, Van Langenhove T, Theuns J, Engelborghs S et al (2013) A pan-European study of the C9orf72 repeat associated with FTLD: geographic prevalence, genomic instability, and intermediate repeats. Hum Mutat 34:363–373. https://doi.org/10.1002/humu.22244

    Article  CAS  PubMed  Google Scholar 

  89. van der Zee J, Gijselinck I, Van Mossevelde S, Perrone F, Dillen L, Heeman B et al (2017) TBK1 mutation spectrum in an extended european patient cohort with frontotemporal dementia and amyotrophic lateral sclerosis. Hum Mutat 38:297–309. https://doi.org/10.1002/humu.23161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. van Es MA, van Vught PW, Blauw HM, Franke L, Saris CG, Van den Bosch L et al (2008) Genetic variation in DPP6 is associated with susceptibility to amyotrophic lateral sclerosis. Nat Genet 40:29–31. https://doi.org/10.1038/ng.2007.52

    Article  CAS  PubMed  Google Scholar 

  91. van Es MA, Veldink JH, Saris CG, Blauw HM, van Vught PW, Birve A et al (2009) Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis. Nat Genet 41:1083–1087. https://doi.org/10.1038/ng.442

    Article  CAS  PubMed  Google Scholar 

  92. van Rheenen W, Shatunov A, Dekker AM, McLaughlin RL, Diekstra FP, Pulit SL et al (2016) Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis. Nat Genet 48:1043–1048. https://doi.org/10.1038/ng.3622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Venkataraman T, Valdes M, Elsby R, Kakuta S, Caceres G, Saijo S et al (2007) Loss of DExD/H box RNA helicase LGP2 manifests disparate antiviral responses. J Immunol 178:6444–6455

    Article  CAS  PubMed  Google Scholar 

  94. Wang J, Vasaikar S, Shi Z, Greer M, Zhang B (2017) WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucl Acids Res 45:W130–W137. https://doi.org/10.1093/nar/gkx356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucl Acids Res 38:e164. https://doi.org/10.1093/nar/gkq603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang L, Wang S, Li W (2012) RSeQC: quality control of RNA-seq experiments. Bioinformatics 28:2184–2185. https://doi.org/10.1093/bioinformatics/bts356

    Article  CAS  PubMed  Google Scholar 

  97. Watts GD, Wymer J, Kovach MJ, Mehta SG, Mumm S, Darvish D et al (2004) Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet 36:377–381. https://doi.org/10.1038/ng1332

    Article  CAS  PubMed  Google Scholar 

  98. Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X (2011) Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet 89:82–93. https://doi.org/10.1016/j.ajhg.2011.05.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Xue B, Li H, Guo M, Wang J, Xu Y, Zou X et al (2018) TRIM21 Promotes Innate Immune Response to RNA Viral Infection through Lys27-Linked Polyubiquitination of MAVS. J Virol. https://doi.org/10.1128/jvi.00321-18

  100. Yin F, Banerjee R, Thomas B, Zhou P, Qian L, Jia T et al (2010) Exaggerated inflammation, impaired host defense, and neuropathology in progranulin-deficient mice. J Exp Med 207:117–128. https://doi.org/10.1084/jem.20091568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yoneyama M, Kikuchi M, Matsumoto K, Imaizumi T, Miyagishi M, Taira K et al (2005) Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol 175:2851–2858

    Article  CAS  PubMed  Google Scholar 

  102. Zanardini R, Ciani M, Benussi L, Ghidoni R (2016) Molecular pathways bridging frontotemporal lobar degeneration and psychiatric disorders. Front Aging Neurosci 8:10. https://doi.org/10.3389/fnagi.2016.00010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang B, Kirov S, Snoddy J (2005) WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucl Acids Res 33:W741–W748. https://doi.org/10.1093/nar/gki475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all colleagues and staff at the participating centres for their help with recruitment of patients. Specifically, we thank Drs. Etty P. Cortes, Allan Levey, James Lah, Chad Hales, William Hu, Inger Nennesmo, Håkan Thonberg, Huei-Hsin Chiang, Ivy and Jeffrey Metcalf, David Lacomis, Nick Fox, Martin Rossor, Jason Warren, Michael DeTure. We also thank Virginia Phillips, Linda Rousseau, Monica Casey-Castanedes, Pheth Sengdy, Alice Fok, Charlotte Forsell, Anna-Karin Lindström, Veronika Kaltenbrunn, Brigitte Kraft, Vanessa Boll, Chan Foong. This work was supported by the NIH from NIA: P50 AG008702 (LSH, J-PV, EPC); P50 AG025688 (MG and JDG); P30 AG010133 (BG, MF, JG, EDH); P30 AG013854 (EB, MM, SW,CG); R01 AG051848 and P50 AG005131 (RAR); P01 AG017586, P30 AG01024, U01 AG052943 (VVD, MG, DJI, EBL, JQT, ES); P50 AG005133 (JK, OLL), P30 AG012300 (CLWIII, BME); P50 AG005681, P01 AG003991 and U01 AG058922 (NJC, CC); P30 AG019610 (EMR); UO1 AG006786 and RO1 AG041797 (BFB); R01 AG037491 (KAJ); P50 AG016574 (RCP, BFB, RR, DWD, DSK, NRG-R); U01 AG046139 (NE-T); the Longitudinal Evaluation of Familial Frontotemporal Dementia Subjects U01 AG 045390 (BFB); K01 AG049152 (JSY). In addition part of the project was supported by the NIH from NIDCD: R01 DC008552 (RAR); and by the VA: I01 BX003040 (RAR). This research was supported by the University of Pittsburgh Brain Institute (JK, OLL); Carl B. and Florence E. King Foundation, McCune Foundation, Winspear Family Center for Research on the Neuropathology of Alzheimer Disease (CLWIII, BME); Arizona Department of Health Services contract #211002, Arizona Biomedical Research Commission contracts #4001, #0011, #05-901, #1001, the Michael J. Fox Foundation for Parkinson’s Research, Mayo Clinic Foundation and Sun Health Foundation (TGB). This work was supported by the NIH from NINDS: R35 NS097261 (RR); UH3/UG3 NS103870 (RR); U54 NS092089 (BFB, ALB); P01 NS084974 (DWD); R01 NS080820 (N.E-T); P50 NS072187 (ZKW); R01 NS076837 (EDH), P30 NS055077 (MG), U24 NS072026 (TGB); R01 NS085770 (CG). We thank the Mayo Clinic Center of Individualized Medicine for collection and sequencing of the Mayo Clinic Biobank samples. This work was further supported by grants from the Consortium for Frontotemporal dementia (RR), the Bluefield Project to Cure FTD (RR), the Mayo Clinic Dorothy and Harry T. Mangurian Jr. Lewy Body Dementia Program and the Little Family Foundation (BFB). Whole-genome sequencing was in part funded through the Rainwater Charitable Foundation (JSY). The Columbia University Brain Bank is supported by NIH Grant NIH/NIA P50 AG008702 (ADRC). The brain samples from the Netherlands were obtained from the Netherlands Brain Bank, Netherlands Institute for Neuroscience, Amsterdam (open access: www.brainbank.nl). All material has been collected from donors for or for whom a written informed consent for a brain autopsy and the use of the material and clinical information for research purposes had been obtained by the NBB. Whole-genome sequencing of Dutch samples was supported by the “Gieskes-Strijbis foundation” as project “Semantic dementia unraveled” and through the “2bike4alzheimer” initiative by the “Alzheimer Netherlands foundation” as project “WE.09-2017-05” (JCvS, HS, JGJvR, MOM). Tissue samples were supplied by the London Neurodegenerative Diseases Brain bank, which receives funding from the Medical Research Council UK and as part of the Brains for Dementia Research programme, jointly funded by Alzheimer’s Research UK and Alzheimer’s Society (CT, SA-S, AK). JDR is supported by an MRC Clinician Scientist Fellowship (MR/M008525/1), an NIHR Rare Disease Translational Research Collaboration fellowship (BRC149/NS/MH), the Bluefield Project, the MRC UK GENFI Grant (MR/M023664/1), the NIHR UCL/H Biomedical Research Centre, Alzheimer’s Research UK and the Alzheimer’s Society. SM is an NIHR senior investigator and is funded by the UK Medical Research Council and the NIHR UCL/H Biomedical Research Centre. SP-B was supported by the MRC Grant G0701441. The study was in also supported in part by institutional grants from the DZNE for “DZNE Brain Bank” and “Frontotemporal lobar degeneration: From basic mechanisms and target identification to translational and clinical approaches/Clinical Project” (MNPH, PR, JS-S, MS, JP). The work was also supported by the Hans und Ilse Breuer Foundation, Munich Cluster of Systems Neurology (SyNergy), European Community’s Health Seventh Framework Programme under Grant agreement 617198 [DPR-MODELS] (TA, DE, JH, SR). CW was supported by the fortüne program of the University of Tübingen (#2488-0-0). Research was supported by Grants provided by the Swedish research Council (Dnr 521-2010-3134, 529-2014-7504, 2015-02926), Alzheimer Foundation Sweden, Brain Foundation Sweden, Swedish FTD Initiative- Schörling foundation, Swedish Brain Power, Karolinska Institutet doctoral founding, Galma Tjänarinnor, Stohnes Foundation, Dementia Foundation Sweden and the Stockholm County Council (ALF-project). The brain pathology was provided through the Brain Bank at Karolinska Institutet which was financially supported by Karolinska Institutet StratNeuro, Swedish Brain Power, Stockholm County Council core facility funding (CG, LO). This work was also funded through the Canadian Consortium on Neurodegeneration in Aging (ER); in particular from CCNA #137794 (RG-Y, IRM); CIHR Operating Grant #327387 (ECF); #179009 (RG-Y, IRM). GMH, JBK, JRH, OP—The Sydney Brain Bank is funded by Neuroscience Research Australia and the University of New South Wales. The ForeFront Brain and Mind project team a large collaborative research group dedicated to the study of neurodegenerative diseases and funded by the National Health and Medical Research Council of Australia Program Grant (#1132524), Dementia Research Team Grant (#1095127), NeuroSleep Centre of Research Excellence (#1060992), and the ARC Centre of Excellence in Cognition and its Disorders Memory Program (CE10001021). OP is supported by a NHMRC Senior Research Fellowship (#1103258). GMH is supported by a NHMRC Senior Principal Research Fellowship (#1079679).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Rademakers.

Ethics declarations

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pottier, C., Ren, Y., Perkerson, R.B. et al. Genome-wide analyses as part of the international FTLD-TDP whole-genome sequencing consortium reveals novel disease risk factors and increases support for immune dysfunction in FTLD. Acta Neuropathol 137, 879–899 (2019). https://doi.org/10.1007/s00401-019-01962-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-019-01962-9

Keywords

Navigation