Skip to main content

Advertisement

Log in

Local ablative therapy of oligoprogressive TKI-treated thyroid cancer

  • Short Review
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Metastatic cancer patients generally respond well to treatment with tyrosine kinase inhibitors (TKIs). However, TKI resistance occurs in almost all cases and often leads to a change in treatment. Recent guidelines, including thyroid cancer, raised the possibility of locally treating TKI-resistant oligoprogressive disease, i.e., one or a few progressing lesions in an otherwise treatment-responsive metastatic cancer, thereby obviating the need to change the ongoing TKI. To determine the benefits of this intervention, we reviewed studies on the use of LAT for TKI-treated oligoprogressive cancers. We found that in non-small cell lung cancer at least, LAT prolongs disease control and the duration of exposure to a TKI irrespective of the LAT used. Moreover, we reviewed the local ablative therapies (LATs) that are feasible for the local control of oligoprogressive thyroid cancer. Lastly, we report two illustrative cases of patients with oligoprogressive thyroid cancer treated with two different LATs while on therapy with TKIs. Both LATs extended the duration of disease control and the time of exposure to the ongoing TKI, thereby indicating that LAT is a favorable option for TKI-treated oligoprogressive thyroid cancer. Prospective randomized studies are needed to verify the benefit of LATs in terms of progression-free and overall survival in this increasingly frequent clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Droz JP, Schlumberger M, Rougier P et al (1990) Chemotherapy in metastatic nonanaplastic thyroid cancer: experience at the Institut Gustave-Roussy. Tumori 76(5):480–483

    Article  CAS  PubMed  Google Scholar 

  2. Schiller JH, Harrington D, Belani CP et al (2002) Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med 346(2):92–98. https://doi.org/10.1056/NEJMoa011954

    Article  CAS  PubMed  Google Scholar 

  3. Schmid TA, Gore ME (2016) Sunitinib in the treatment of metastatic renal cell carcinoma. Ther Adv Urol 8(6):348–371. https://doi.org/10.1177/1756287216663979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sapuppo G, Tavarelli M, Russo M et al (2018) Lymph node location is a risk factor for papillary thyroid cancer-related death. J Endocrinol Invest 41(11):1349–1353. https://doi.org/10.1007/s40618-018-0865-5

    Article  CAS  PubMed  Google Scholar 

  5. Haugen BR, Alexander EK, Bible KC et al (2016) 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 26(1):1–133. https://doi.org/10.1089/thy.2015.0020

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hanna N, Johnson D, Temin S et al (2017) Systemic therapy for stage iv non-small-cell lung cancer: American Society of Clinical Oncology Clinical Practice Guideline Update. J Clin Oncol 35(30):3484–3515. https://doi.org/10.1200/JCO.2017.74.6065

    Article  CAS  PubMed  Google Scholar 

  7. Escudier B, Potra C, Schmidinger M et al (2016) Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 27(suppl 5):58–68. https://doi.org/10.1093/annonc/mdw328

    Article  Google Scholar 

  8. Novello S, Barlesi F, Califano R et al (2016) Metastatic non-small-cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 27(suppl 5):1–27. https://doi.org/10.1093/annonc/mdw326

    Article  Google Scholar 

  9. Winkler GC, Lovsin Barle E, Galati G et al (2014) Functional differentiation of cytotoxic cancer drugs and targeted cancer therapeutics. Regul Toxicol Pharmacol 70(1):46–53. https://doi.org/10.1016/j.yrtph.2014.06.012

    Article  CAS  PubMed  Google Scholar 

  10. Camidge DR, Pao W, Sequist LV (2014) Acquired resistance to TKIs in solid tumours: learning from lung cancer. Nat Rev Clin Oncol 11(8):473–481. https://doi.org/10.1038/nrclinonc.2014.104

    Article  CAS  PubMed  Google Scholar 

  11. Westover D, Zugazagoitia J, Cho BC et al (2018) Mechanisms of acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors. Ann Oncol 29(suppl 1):10–19. https://doi.org/10.1093/annonc/mdx703

    Article  Google Scholar 

  12. Lin JJ, Shaw AT (2016) Resisting resistance: targeted therapies in lung cancer. Trends Cancer 2(7):350–364. https://doi.org/10.1016/j.trecan.2016.05.010

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gandara DR, Li T, Lara PN Jr et al (2014) Acquired resistance to targeted therapies against oncogene-driven non-small-cell lung cancer: approach to subtyping progressive disease and clinical implications. Clin Lung Cancer 15(1):1–6. https://doi.org/10.1016/j.cllc.2013.10.001

    Article  CAS  PubMed  Google Scholar 

  14. Morgan RL, Camidge DR (2018) Reviewing RECIST in the era of prolonged and targeted therapy. J Thorac Oncol 13(2):154–164. https://doi.org/10.1016/j.jtho.2017.10.015

    Article  PubMed  Google Scholar 

  15. Castellanos EH, Horn L (2016) Re-Evaluating progression in an era of progress: a review of first- and second-line treatment options in anaplastic lymphoma kinase-positive non-small cell lung cancer. Oncologist 21(6):755–761. https://doi.org/10.1634/theoncologist.2015-0396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mazzeo S, Cervelli R, Elisei R et al (2018) mRECIST criteria to assess recurrent thyroid carcinoma treatment response after radiofrequency ablation: a prospective study. J Endocrinol Invest 41(12):1389–1399. https://doi.org/10.1007/s40618-018-0886-0

    Article  CAS  PubMed  Google Scholar 

  17. Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247. https://doi.org/10.1016/j.ejca.2008.10.026

    Article  CAS  PubMed  Google Scholar 

  18. Oxnard GR, Morris MJ, Hodi FS et al (2012) When progressive disease does not mean treatment failure: reconsidering the criteria for progression. J Natl Cancer Inst 104(20):1534–1541. https://doi.org/10.1093/jnci/djs353

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wells SA Jr, Asa SL, Dralle H et al (2015) Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid 25(6):567–610. https://doi.org/10.1089/thy.2014.0335

    Article  PubMed  PubMed Central  Google Scholar 

  20. Motzer RJ, Jonasch E, Agarwal N et al (2017) Kidney cancer, Version 2.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw 15(6):804–834. https://doi.org/10.6004/jnccn.2017.0100

    Article  Google Scholar 

  21. Park K, Yu CJ, Kim SW et al (2016) First-line erlotinib therapy until and beyond response evaluation criteria in solid tumors progression in asian patients with epidermal growth factor receptor mutation-positive non-small-cell lung cancer: the ASPIRATION Study. JAMA Oncol 2(3):305–312. https://doi.org/10.1001/jamaoncol.2015.4921

    Article  PubMed  Google Scholar 

  22. Goto Y, Tanai C, Yoh K et al (2017) Continuing EGFR-TKI beyond radiological progression in patients with advanced or recurrent, EGFR mutation-positive non-small-cell lung cancer: an observational study. ESMO Open 2(4):e000214. https://doi.org/10.1136/esmoopen-2017-000214

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tudor RA, D’Silva A, Tremblay A et al (2017) Beyond disease-progression: clinical outcomes after EGFR-TKIs in a cohort of EGFR mutated NSCLC patients. PLoS One 12(8):e0181867. https://doi.org/10.1371/journal.pone.0181867

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hellman S (1994) Karnofsky memorial lecture. Natural history of small breast cancers. J Clin Oncol 12(10):2229–2234

    Article  CAS  PubMed  Google Scholar 

  25. Hellman S, Weichselbaum RR (1995) Oligometastases. J Clin Oncol 13(1):8–10

    Article  CAS  PubMed  Google Scholar 

  26. Weickhardt AJ, Scheier B, Burke JM et al (2012) Local ablative therapy of oligoprogressive disease prolongs disease control by tyrosine kinase inhibitors in oncogene-addicted non-small-cell lung cancer. J Thorac Oncol 7(12):1807–1814. https://doi.org/10.1097/jto.0b013e3182745948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Triggiani L, Alongi F, Buglione M et al (2017) Efficacy of stereotactic body radiotherapy in oligorecurrent and in oligoprogressive prostate cancer: new evidence from a multicentric study. Br J Cancer 116(12):1520–1525. https://doi.org/10.1038/bjc.2017.103

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kelly P, Ma Z, Baidas S et al (2017) Patterns of progression in metastatic estrogen receptor positive breast cancer: an argument for local therapy. Int J Breast Cancer 2017:1367159. https://doi.org/10.1155/2017/1367159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wray J, Hawamdeh RF, Hasija N et al (2017) Stereotactic body radiation therapy for oligoprogression of metastatic disease from gastrointestinal cancers: a novel approach to extend chemotherapy efficacy. Oncol Lett 13(3):1087–1094. https://doi.org/10.3892/ol.2016.5540

    Article  PubMed  Google Scholar 

  30. Pacini F, Basolo F, Bellantone R et al (2018) Italian consensus on diagnosis and treatment of differentiated thyroid cancer: joint statements of six Italian societies. J Endocrinol Invest 41(7):849–876. https://doi.org/10.1007/s40618-018-0884-2

    Article  CAS  PubMed  Google Scholar 

  31. Antonelli A, Ferrari SM, Fallahi P (2018) Current and future immunotherapies for thyroid cancer. Expert Rev Anticancer Ther 18(2):149–159. https://doi.org/10.1080/14737140.2018.1417845

    Article  CAS  PubMed  Google Scholar 

  32. Sherman EJ, Dunn LA, Ho AL et al (2017) Phase 2 study evaluating the combination of sorafenib and temsirolimus in the treatment of radioactive iodine-refractory thyroid cancer. Cancer 123(21):4114–4121. https://doi.org/10.1002/cncr.30861

    Article  CAS  PubMed  Google Scholar 

  33. Schneider TC, de Wit D, Links TP et al (2015) Beneficial effects of the mtor inhibitor everolimus in patients with advanced medullary thyroid carcinoma: subgroup results of a phase II trial. Int J Endocrinol 2015:348124. https://doi.org/10.1155/2015/348124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rusthoven KE, Kavanagh BD, Burri SH et al (2009) Multi-institutional phase I/II trial of stereotactic body radiation therapy for lung metastases. J Clin Oncol 27(10):1579–1584. https://doi.org/10.1200/JCO.2008.19.6386

    Article  PubMed  Google Scholar 

  35. Fode MM, Hoyer M (2015) Survival and prognostic factors in 321 patients treated with stereotactic body radiotherapy for oligo-metastases. Radiother Oncol 114(2):155–160. https://doi.org/10.1016/j.radonc.2014.12.003

    Article  PubMed  Google Scholar 

  36. Campo M, Al-Halabi H, Khandekar M et al (2016) Integration of stereotactic body radiation therapy with tyrosine kinase inhibitors in stage IV oncogene-driven lung cancer. Oncologist 21(8):964–973. https://doi.org/10.1634/theoncologist.2015-0508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lo SS, Fakiris AJ, Chang EL et al (2010) Stereotactic body radiation therapy: a novel treatment modality. Nat Rev Clin Oncol 7(1):44–54. https://doi.org/10.1038/nrclinonc.2009.188

    Article  PubMed  Google Scholar 

  38. de Baere T, Auperin A, Deschamps F et al (2015) Radiofrequency ablation is a valid treatment option for lung metastases: experience in 566 patients with 1037 metastases. Ann Oncol 26(5):987–991. https://doi.org/10.1093/annonc/mdv037

    Article  PubMed  PubMed Central  Google Scholar 

  39. de Baere T, Tselikas L, Woodrum D et al (2015) Evaluating cryoablation of metastatic lung tumors in patients-safety and efficacy: the ECLIPSE trial-interim analysis at 1 year. J Thorac Oncol 10(10):1468–1474. https://doi.org/10.1097/JTO.0000000000000632

    Article  PubMed  Google Scholar 

  40. Bhattacharya IS, Hoskin PJ (2015) Stereotactic body radiotherapy for spinal and bone metastases. Clin Oncol (R Coll Radiol) 27(5):298–306. https://doi.org/10.1016/j.clon.2015.01.030

    Article  CAS  Google Scholar 

  41. Wang XS, Rhines LD, Shiu AS et al (2012) Stereotactic body radiation therapy for management of spinal metastases in patients without spinal cord compression: a phase 1-2 trial. Lancet Oncol 13(4):395–402. https://doi.org/10.1016/S1470-2045(11)70384-9

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bernstein MB, Chang EL, Amini B et al (2016) Spine stereotactic radiosurgery for patients with metastatic thyroid cancer: secondary analysis of phase I/II trials. Thyroid 26(9):1269–1275. https://doi.org/10.1089/thy.2016.0046

    Article  PubMed  Google Scholar 

  43. Cazzato RL, Auloge P, De Marini P et al (2018) Percutaneous image-guided ablation of bone metastases: local tumor control in oligometastatic patients. Int J Hyperthermia 5:1–7. https://doi.org/10.1080/02656736.2018.1508760

    Article  Google Scholar 

  44. Deschamps F, Farouil G, Ternes N et al (2014) Thermal ablation techniques: a curative treatment of bone metastases in selected patients? Eur Radiol 24(8):1971–1980. https://doi.org/10.1007/s00330-014-3202-1

    Article  CAS  PubMed  Google Scholar 

  45. Covey AM, Sofocleous CT (2008) Radiofrequency ablation as a treatment strategy for liver metastases from breast cancer. Semin Intervent Radiol 25(4):406–412. https://doi.org/10.1055/s-0028-1102996

    Article  PubMed  PubMed Central  Google Scholar 

  46. Shady W, Petre EN, Gonen M et al (2016) Percutaneous radiofrequency ablation of colorectal cancer liver metastases: factors affecting outcomes—a 10-year experience at a single center. Radiology 278(2):601–611. https://doi.org/10.1148/radiol.2015142489

    Article  PubMed  Google Scholar 

  47. Jackson WC, Tao Y, Mendiratta-Lala M et al (2018) Comparison of stereotactic body radiation therapy and radiofrequency ablation in the treatment of intrahepatic metastases. Int J Radiat Oncol Biol Phys 100(4):950–958. https://doi.org/10.1016/j.ijrobp.2017.12.014

    Article  PubMed  Google Scholar 

  48. Paul SB, Sharma H (2014) Role of transcatheter intra-arterial therapies for hepatocellular carcinoma. J Clin Exp Hepatol 4(suppl 3):112–121. https://doi.org/10.1016/j.jceh.2014.03.048

    Article  Google Scholar 

  49. Kudo M, Arizumi T (2017) Transarterial chemoembolization in combination with a molecular targeted agent: lessons learned from negative trials (Post-TACE, BRISK-TA, SPACE, ORIENTAL, and TACE-2). Oncology 93(suppl 1):127–134. https://doi.org/10.1159/000481243

    Article  PubMed  Google Scholar 

  50. Henriques de Figueiredo B, Godbert Y, Soubeyran I et al (2014) Brain metastases from thyroid carcinoma: a retrospective study of 21 patients. Thyroid 24(2):270–276. https://doi.org/10.1089/thy.2013.0061

    Article  PubMed  Google Scholar 

  51. Johung KL, Yeh N, Desai NB et al (2016) Extended survival and prognostic factors for patients with ALK-rearranged non-small-cell lung cancer and brain metastasis. J Clin Oncol 34(2):123–129. https://doi.org/10.1200/JCO.2015.62.0138

    Article  CAS  PubMed  Google Scholar 

  52. Aoyama H, Shirato H, Tago M et al (2006) Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial. JAMA 295(21):2483–2491

    Article  CAS  PubMed  Google Scholar 

  53. Magnuson WJ, Lester-Coll NH, Wu AJ et al (2017) Management of brain metastases in tyrosine kinase inhibitor-naive epidermal growth factor receptor-mutant non-small-cell lung cancer: a retrospective multi-institutional analysis. J Clin Oncol 35(10):1070–1077. https://doi.org/10.1200/JCO.2016.69.7144

    Article  CAS  PubMed  Google Scholar 

  54. Shukuya T, Takahashi T, Naito T et al (2011) Continuous EGFR-TKI administration following radiotherapy for non-small cell lung cancer patients with isolated CNS failure. Lung Cancer 74(3):457–461. https://doi.org/10.1016/j.lungcan.2011.04.007

    Article  PubMed  Google Scholar 

  55. Conforti F, Catania C, Toffalorio F et al (2013) EGFR tyrosine kinase inhibitors beyond focal progression obtain a prolonged disease control in patients with advanced adenocarcinoma of the lung. Lung Cancer 81(3):440–444. https://doi.org/10.1016/j.lungcan.2013.05.019

    Article  PubMed  Google Scholar 

  56. Takeda M, Okamoto I, Nakagawa K (2013) Clinical impact of continued crizotinib administration after isolated central nervous system progression in patients with lung cancer positive for ALK rearrangement. J Thorac Oncol 8(5):654–657. https://doi.org/10.1097/JTO.0b013e31828c28e7

    Article  CAS  PubMed  Google Scholar 

  57. Yu HA, Sima CS, Huang J et al (2013) Local therapy with continued EGFR tyrosine kinase inhibitor therapy as a treatment strategy in EGFR-mutant advanced lung cancers that have developed acquired resistance to EGFR tyrosine kinase inhibitors. J Thorac Oncol 8(3):346–351. https://doi.org/10.1097/JTO.0b013e31827e1f83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gan GN, Weickhardt AJ, Scheier B et al (2014) Stereotactic radiation therapy can safely and durably control sites of extra-central nervous system oligoprogressive disease in anaplastic lymphoma kinase-positive lung cancer patients receiving crizotinib. Int J Radiat Oncol Biol Phys 88(4):892–898. https://doi.org/10.1016/j.ijrobp.2013.11.010

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hasegawa T, Sawa T, Futamura Y et al (2015) Feasibility of rebiopsy in non-small cell lung cancer treated with epidermal growth factor receptor-tyrosine kinase inhibitors. Intern Med 54(16):1977–1980. https://doi.org/10.2169/internalmedicine.54.4394

    Article  CAS  PubMed  Google Scholar 

  60. Yoshida T, Yoh K, Niho S et al (2015) RECIST progression patterns during EGFR tyrosine kinase inhibitor treatment of advanced non-small cell lung cancer patients harboring an EGFR mutation. Lung Cancer 90(3):477–483. https://doi.org/10.1016/j.lungcan.2015.09.025

    Article  PubMed  Google Scholar 

  61. Ni Y, Bi J, Ye X et al (2016) Local microwave ablation with continued EGFR tyrosine kinase inhibitor as a treatment strategy in advanced non-small cell lung cancers that developed extra-central nervous system oligoprogressive disease during EGFR tyrosine kinase inhibitor treatment: a pilot study. Medicine (Baltimore) 95(25):e3998. https://doi.org/10.1097/MD.0000000000003998

    Article  CAS  Google Scholar 

  62. Chan OSH, Lee VHF, Mok TSK et al (2017) The role of radiotherapy in epidermal growth factor receptor mutation-positive patients with oligoprogression: a matched-cohort analysis. Clin Oncol (R Coll Radiol) 29(9):568–575. https://doi.org/10.1016/j.clon.2017.04.035

    Article  CAS  Google Scholar 

  63. Qiu B, Liang Y, Li Q et al (2017) Local therapy for oligoprogressive disease in patients with advanced stage non-small-cell lung cancer harboring epidermal growth factor receptor mutation. Clin Lung Cancer 18(6):369–373. https://doi.org/10.1016/j.cllc.2017.04.002

    Article  CAS  Google Scholar 

  64. Li X, Qi H, Qing G et al (2018) Microwave ablation with continued EGFR tyrosine kinase inhibitor therapy prolongs disease control in non-small-cell lung cancers with acquired resistance to EGFR tyrosine kinase inhibitors. Thorac Cancer 9(8):1012–1017. https://doi.org/10.1111/1759-7714.12779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Straka C, Kim DW, Timmerman RD et al (2013) Ablation of a site of progression with stereotactic body radiation therapy extends sunitinib treatment from 14 to 22 months. J Clin Oncol 31(23):401–403. https://doi.org/10.1200/JCO.2012.47.7455

    Article  Google Scholar 

  66. Roberto M, Falcone R, Mazzuca F et al (2017) The role of stereotactic body radiation therapy in oligometastatic colorectal cancer: clinical case report of a long-responder patient treated with regorafenib beyond progression. Medicine (Baltimore) 96(48):e9023. https://doi.org/10.1097/MD.0000000000009023

    Article  Google Scholar 

Download references

Acknowledgements

We thank Jean Ann Gilder (Scientific Communication srl., Naples, Italy) for writing assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Porcelli.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Ethical approval

This article does not contain studies with human participants or animals performed by any of the authors.

Informed consent

The patients provided written informed consent for research participation and for the publication of indirectly identifiable data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porcelli, T., Sessa, F., Luongo, C. et al. Local ablative therapy of oligoprogressive TKI-treated thyroid cancer. J Endocrinol Invest 42, 871–879 (2019). https://doi.org/10.1007/s40618-019-1001-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-019-1001-x

Keywords

Navigation