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1 | Introduction

Many representations of planar graphs and their relatives are inspired by real-life situations.
In this work, we study representations of planar graphs with prescribed face areas which
are inspired by cartograms. A cartogram is a distorted map where the size of the regions
(territories, countries, etc.) are proportional to some statistical parameter such as the
population, the total birth, the gross national product, or some other special property.
Figure 1.1 depicts a cartogram of Germany where the districts of the federal states are
resized according to their population. In particular, cities such as Hamburg and Berlin
are magnified compared to their geographic size, and territorial states such as Bavaria or
Brandenburg diminish.

Figure 1.1: A population cartogram of Germany [Stoepel, 2010, CC BY-SA 3.0].

Cartograms have a fairly long history; there exist examples from the 19th century.
According to Tobler [Tobler, 2004] the term cartogram appeared first in 1870. Moreover,
he gives the reference of a cartogram that depicts the results of the German elections in
1903 [Haack and Wiechel, 1903]. Additionally, one can easily believe that in ancient maps
little explored regions were represented disproportionally small, while religious or cultural
centers were magnified.
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2 1 Introduction

Cartograms have several natural abstractions. Most commonly, proportional contact
representations have been studied: The geography defines a plane contact graph where
vertices correspond to the regions and the edges represent the neighborhood relations.

Given a graph and an assignment of areas, a proportional contact representation is a set
of interiorly disjoint polygons whose contact graph is the given graph and additionally the
areas of the polygons are equal to the assigned numbers. Figure 1.2 illustrates two examples
of proportional contact representations with orthogonal polygons; one with orthogonal
polygons of different complexity and one with rectangles.

Figure 1.2: Proportional contact representations.

For proportional contact representations of triangulations, the polygonal complexity
sufficient to represent all area assignments was studied intensively. In a series of pa-
pers [Kawaguchi and Nagamochi, 2007, de Berg et al., 2009, Biedl and Velázquez, 2011],
the polygonal complexity has been improved from 40 sides, to 34 sides, and to 12 sides.
Finally, Alam et al. [Alam et al., 2013] showed that 8-sided orthogonal polygons are always
sufficient, which is known to be optimal.

For the special case of dissections of rectangles into rectangles, so called rectangular
layouts, Eppstein et al. [Eppstein et al., 2012] characterized the area-universal rectangular
layouts by an easily checkable property: A rectangular layout is area-universal if and only
if it is one-sided.

For various other models of cartograms and their state of the art, we refer to the recent
survey by Nusrat and Kobourov [Nusrat and Kobourov, 2016]. According to them, more
than 70 papers have been published in the field of cartograms only within the last decade.

Instead of considering contact representations, we may also interpret the boundaries
of the regions in a cartogram as a plane graph. The values of the statistical data are
then associated with the faces and we look for a drawing in which the face areas equal
the prescribed values. It is well known that every plane graph has a straight-line drawing
[Wagner, 1936, Fáry, 1948, Stein, 1951]. Consequently, we may even seek for a realizing
straight-line drawing. This concept of straight-line drawings with prescribed face areas was
first introduced by Ringel [Ringel, 1990].

It is worth to note that proportional contact representations and realizing drawings
are dual models in the following sense: In the first setting, areas are assigned to vertices
whereas in the second setting, areas are assigned to faces of a given plane graph. In both
settings, however, the graph captures the geometry or other neighborhood relations.
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1.1 The Concept and the State of the Art

The thesis focuses on the following problem: Given a plane graph G and a positive real
number for each inner face of G, we ask for an equivalent straight-line drawing of G where
the area of each face equals the assigned number; such a drawing is called realizing. We are
mainly dealing with an even more demanding property: A plane graph is area-universal if
every area assignment to the inner faces has a realizing straight-line drawing.

To introduce the reader to the concept of area-universal graphs, we consider the class
of stacked triangulations, which are also known as Apollonian networks or plane 3-trees.
A stacked triangulation can be constructed from a triangle by repeatedly choosing an
inner face and subdividing it into three triangles by inserting a new vertex of degree 3,
for examples consider Figures 1.3 and 1.4(a). For the complete graph K4 on four vertices,
which is also a stacked triangulation, area-universality is easy to see: Recall that the area of
a triangle is proportional to the product of the lengths of a base segment and its respective
height. Thus, for a fixed outer face of correct total area, each inner triangle is realized when
the inner vertex is placed on a particular line parallel to its outer edge. Placing the inner
vertex on the intersection point of two lines, the area of the third triangle is also realized
due to the correct sum. For an illustration consider Figure 1.3. By repeatedly using the
area-universality of K4, we obtain the following result:

Observation 1.1 ([Biedl and Velázquez, 2013]). Stacked triangulations are area-universal.

Figure 1.3: The complete graph K4 and an illustration of a realizing drawing.

Besides the area-universality of stacked triangulations, two further interesting facts were
known in the beginning of this thesis. As mentioned before, Ringel [Ringel, 1990] initiated
the study of realizing drawings. He was interested in drawings where all face areas are of
the same size. He called this property equiareal and showed that not all plane graphs are
equiareal. His result implies that the plane octahedron graph, depicted in Figure 1.4(c),
is not area-universal. Moreover, Ringel conjectured that plane cubic graphs are equiareal.
This was proved by Thomassen [Thomassen, 1992]. Indeed, Thomassen showed an even
stronger statement, namely that every plane cubic graph is area-universal. To the best of
our knowledge, this was the state of the art of published results in 2013.

Furthermore, there have been some student projects on questions of realizing drawings.
In a Predoc-Course in Berlin on ‘Optimization Methods in Discrete Geometry’ under
the supervision of Günther Ziegler, Sabariego and Stump [Sabariego and Stump, 2006]
investigated equiareal triangulations. Unaware of Ringel’s work, they reproved the fact that
the stacked octahedron is not equiareal with the same method and studied the question
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(a) A stacked triangulation. (b) A plane cubic graph. (c) The octahedron graph.

Figure 1.4: Illustration of the state of the art. A checkmark indicates that the depicted
graph is area-universal whereas a cross indicates that it is not.

whether all 4-connected triangulations are equiareal. However, they also encountered the
problem that computer tools and, in particular, computer algebra systems fail already for
fairly small instances.

In her bachelor thesis, Anna Bernáthová [Bernáthová, 2009] disproved the unpublished
conjecture of Jan Kratochvíl that every triangulation with minimum degree exceeding 3 is
not area-universal. She showed that the triangulation on seven vertices is area-universal.
Additionally, she wrote a program in order to find realizing drawings and presented some
triangulations with area assignments for which her program did not find solutions.

In conclusion, even though studying plane graphs and face areas seems to be a very
natural and interesting problem, area-universal graphs are not yet well understood. The
aim of this thesis is to shed some more light onto the world of area-universal graphs. From
the various open problems, we approach the following selected set of research questions.

Non-area-universal graph classes As every known non-area-universal graph contains
the octahedron graph as a subgraph, we wonder if the octahedron graph is the only
obstruction for area-universality. In particular, whether a graph is area-universal if
and only if it contains the octahedron graph as a subgraph?

Area-universal graph classes Besides the plane cubic graphs, what other graph classes
are area-universal? Are plane bipartite graphs area-universal? Are there other
sufficient criteria for area-universality? Are graphs with high vertex connectivity
area-universal? Can area-universality be characterized by local properties? Does
area-universality depend on the embedding of a planar graph or is it independent? In
other words, is area-universality a property of a plane or the planar graph?

Further properties of realizing drawings Can we ask for even more properties of re-
alizing drawings? For instance, can we prescribe the outer face or ask for convex
faces? More specifically, do plane 3-connected cubic graphs also have convex realizing
drawings? What about plane bipartite graphs?

Relaxing the straight-line property Given the fact that not all plane graphs are area-
universal, how much do we have to relax the straight-line property in order to
guarantee the existence of realizing drawings for each area assignment of every plane
graph?

Computational complexity What is the computational complexity of deciding the re-
alizability of a given area assignment? What is the computational complexity of
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deciding the area-universality of a plane graph? Is a graph area-universal if all area
assignments consisting of 0 and 1 are realizable?

Equiareality Are there interesting equiareal graph classes? For instance, are 4-connected
triangulations equiareal? Is equiareality a property of plane or planar graphs?

In the remainder of this introduction, we want to reveal some results which we encoun-
tered in the framework of this thesis. Among them, we present some surprising properties
of area-universal graphs.

1.2 Selected Results

We develop techniques to prove and disprove area-universality: By a compactness argument,
a triangulation is area-universal if and only if all non-negative area assignments are realizable.
This streamlines many arguments for disproving area-universality. In particular, we present
a new proof to show that the octahedron graph is not area-universal. Our proof relies on a
simple counting argument that can also be used to show that no Eulerian triangulation
is area-universal. A triangulation is Eulerian if and only if all vertex degrees are even.
Figure 1.5(a) depicts an Eulerian triangulation together with a coloring of its faces. Assigning
a value of 0 to the white faces and a value of 1 to the gray faces, the resulting area assignment
of the Eulerian triangulation has no realizing drawing. This result already answers our first
question in the negative: There exist non-area-universal graphs which do not contain the
octahedron as a subgraph. Moreover, the result has several interesting consequences. For
instance, there is no hope for constant factor approximations of realizing drawings even in
the set of 4-connected triangulations.

Adding some geometric arguments, a similar reasoning can be applied to show that
the 5-connected icosahedron graph, depicted in Figure 1.5(c), is not area-universal.
Consequently, there exist highly connected graphs which are not area-universal.

Relaxing the straight-line property, we show that the 1-subdivision of every plane
graph is area-universal. In other words, for each area assignment of a plane graph there
exists a realizing drawing where each edge has at most one bend. For the subclass of plane
bipartite graphs, even half of the bends are sufficient. For an example of a 1-subdivision
of the octahedron graph with a non-realizable area assignment consider Figure 1.5(b).

(a) An Eulerian triangulation. (b) The 1-subdivision of the
octahedron.

(c) The icosahedron graph.

Figure 1.5: Illustration of some considered graph classes.
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As it turns out, the area-universality of a triangulation can be characterized by a
polynomial equation system which encodes the area of each face. Based on this fact, we
develop a sufficient criterion to prove area-universality for triangulations with special vertex
orders. Combining our knowledge of Eulerian triangulations with this method, we can fully
characterize the area-universality of accordion graphs: An accordion graph can be obtained
from the plane octahedron graph by an operation which we call diamond addition. By
this operation, an edge of the central triangle of the octahedron is subdivided by several
vertices and additional edges are introduced such that the new vertices have vertex degree 4.
Figure 1.6 shows the octahedron graph and three further accordion graphs obtained by
the diamond addition operation. We say an accordion is even if it has an even number

Figure 1.6: The accordion graphs on six, seven, eight, and nine vertices.

of vertices; otherwise it is odd. Obviously, even and odd accordion graphs are structural
very similar. However, they have some surprising distinction. As a matter of fact, even
accordion graphs are Eulerian and hence not area-universal whereas we prove that odd
accordion graphs are area-universal. This shows how sensitive area-universality is to small
local changes. In this sense, area-universality might be a global property.

Interestingly, if our method shows the area-universality for one embedding of a planar
graph T , then all embeddings of T are area-universal as well. Combining these two methods
of proving and disproving area-universality, we study small 4-connected triangulations. Up
to this date, we do not know an example of a planar graph where the area-universality
depends on the embedding, i.e., where one embedding is area-universal while another
embedding is not. In other words, in our list of graphs all plane graphs belonging to the
same planar graph are either all area-universal or not – or have unknown status.

An interesting example is the planar triangulation on nine vertices depicted in Figure 1.7;
it has three different plane graphs. One of them, namely the plane graph in Figure 1.7(a),

(a) (b) (c)

Figure 1.7: Three plane triangulations on nine vertices belonging to the same planar graph.
While the plane graphs in (a) and (b) are not area-universal, it is unknown whether the
plane graph in (c) is area-universal.



1.2 Selected Results 7

has an area assignment consisting of 0’s and 1’s which is not realizable; for simplicity we
call such an area assignment a 01-assignment. Interestingly, computer search asserts that
all 01-assignments of the other two plane graphs are realizable. However, the graph in
Figure 1.7(b) is not area-universal since it has a non-realizable 012-assignment, whereas we
do not know whether or not the last plane graph in Figure 1.7(c) is area-universal. Note
that the plane graph in Figure 1.7(b) asserts that it is not enough to test 01-assignments in
order to check for area-universality.

As we have just discussed, even for a small graph it may be tricky to decide its area-
universality. This suggests that the computational complexity of area-universality
is hard. While many geometric problems are complete for the ∃R [Matoušek, 2014,
Mnëv, 1988], i.e., as hard as deciding if a polynomial equation system has a real solution, the
nature of area-universality seems to be different. The definition of area-universality suggests
that the computational complexity of deciding whether a plane graph is area-universal is
complete for the complexity class ∀∃R. This complexity class naturally generalizes ∃R,
analogous to the polynomial time hierarchy. Area-universality may turn out to be the first
natural geometric problem which is complete for this class. While we do not provide a
complete answer to the computational complexity of area-universality, we introduce first
tools to prove ∀∃R-hardness and show that problems related to area-universality are ∃R-
and ∀∃R-hard; among them the analogous questions in three dimensions. These results
on the computational complexity are joint work with Michael Dobbins, Tillmann Miltzow,
and Paweł Rzążewski.

Additionally, we investigate several options to impose further restrictions on realizing
drawings. Firstly, we study convex realizing drawings. Our interest in convexity is
motivated by two facts. On the one hand, convexity is a very visually appealing property.
On the other hand, realizing drawings of cubic graphs (and also bipartite graphs seem
to) have a high degree of freedom. Therefore, one has little starting points to construct
realizing drawings. Thus, further properties may reduce the degrees of freedom and be
useful in order to find alternative proofs. However, convexity does not seem to be the right
direction as we show that realizing drawings of 3-connected bipartite and cubic graphs do
not always exist. Nevertheless, we present some graphs which are convex area-universal,
i.e., they have a convex realizing straight-line drawing for every area assignment. As an
example, we present four proofs of this fact for the cube graph depicted in Figure 1.8(a).

(a) The cube graph. (b) A stacked cube graph.

Figure 1.8: Illustration of the cube graph and a stacked cube graph.

Indeed, the cube graph allows for even more shape restrictions of its realizing drawings,
namely, it is also strongly area-universal. We say a plane graph is strongly area-universal,
if for every area assignment and fixed outer face of correct total area, there exists a realizing
drawing. Note that an area-universal graph with an triangular outer face is also strongly
area-universal due to affine linear transformations. We have already used this idea for
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Observation 1.1. Therefore, the property of strong area-universality can be very useful
in order to recursively construct new area-universal graphs from graphs that are already
known to be area-universal. In particular, consider a stacked cube graph which is obtained
from two cube graphs by identifying an inner 4-face on one copy with the outer 4-face of
the other copy as depicted in Figure 1.8(b). Since the cube graph is strongly area-universal,
the stacked cube graph is area-universal as well.

Among other things, we use the concept of strong area-universality to tackle the
conjecture that plane bipartite graphs are area-universal. By reductions to area-universal
triangulations, we establish area-universality for large classes of plane quadrangulations.
In particular, we prove the area-universality of all plane quadrangulations with up to 13
vertices. The research on quadrangulations is joint work with William Evans, Stefan Felsner,
and Stephen Kobourov.

As the last selected result, we announce the butterfly graph, depicted in Figure 1.9, as
the first non-area-universal graph that does not contain a non-area-universal triangulation
as a subgraph. Consequently, we found a further type of obstruction. In several respects,
the butterfly graph enables us to show that 4-connected triangulations behave similar to
3-connected triangulations in field of area-universal graphs.

Figure 1.9: The butterfly graph.

1.3 Outline

This thesis is structured as follows: In Chapter 2, we introduce the basic notions and
discuss properties of area-universal graphs. In particular, we introduce area-universality
preserving operations and several characterizations of area-universality. These tools will be
used repeatedly throughout this thesis.

In Chapter 3, we study area-universality of maximal planar graphs, i.e., triangulations.
We present both, methods to prove and disprove area-universality. Firstly, we show that
no Eulerian triangulation is area-universal. Secondly, prove area-universality for some
triangulations with a special vertex order called a p-order. Combining these two techniques,
we are then able to fully understand the area-universality of accordion graphs. Additionally,
we use these tools to determine whether small triangulations are area-universal or not; in
particular, we characterize all triangulations on up to ten vertices with a p-order.

We then proceed to study quadrangulations in Chapter 4. Even though we do not
provide a full answer to the very promising conjecture that all quadrangulations are area-
universal, we establish the area-universality of large classes of quadrangulations. From our
results it follows that a minimal counter example to the conjecture has at least 14 vertices.

Given that not all plane graphs are area-universal, we investigate how many bends are
sufficient to realize each area assignment of every plane graph. In Chapter 5, we show that
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the 1-subdivision of every planar graph is area-universal. This result can be strengthened
for plane bipartite graphs in the following sense: For every plane bipartite graph, there
exists an area-universal subdivision where at most half of the edges have exactly one bend
and all other edges have no bend.

In Chapter 6, we study more restricted concepts of area-universality. We start with
convex realizing drawings in Section 6.1, and present a 3-connected quadrangulation and
a 3-connected cubic graph which are not convex area-universal. Consequently, convex
realizing drawings seem to be to much to ask for. In Section 6.2, we discuss some interesting
facts of equiareality. In particular, we show that equiareality is a property of plane graphs
rather than planar graphs and that all plane 4-connected triangulations on up to ten vertices
are equiareal.

Chapter 7 deals with the computational complexity of area-universality. We present
hardness proofs of several variants of area-universality. Among them, we consider the
analogous questions in three dimensions, a partial extension problem and a variant where
we relax the planarity condition. The introduced tools might be of independent interest to
show hardness of other geometric problems.

In Chapter 8, we present the air pressure method which has previously been used in the
context of area-universal rectangular layouts and seems promising to show area-universality
of cubic graphs or other graph classes. We show how the ideas can be transferred to our
setting. We conclude this thesis with our favorite set of open questions and ideas for further
projects related to the study of plane graphs and faces areas in Chapter 9.



2 | The Toolbox

The aim of this chapter is to reveal basic properties of area-universal plane graphs in general
and triangulations in particular. We introduce several characterizations of area-universality
and present graph operations that preserve area-universality. Many of the presented tools
are repeatedly used throughout this thesis. We start with general statements for plane
graphs in Section 2.1 and proceed with particular properties of triangulations in Section 2.2.

2.1 Plane Graphs

All graphs considered in this thesis are finite and simple, i.e., they contain neither loops nor
parallel edges. Our notation and terminology is mostly standard. For instance, we denote
the vertex set of a graph by V , its edge set by E and the number of vertices by n. Any
graph-theoretic term not defined here is explained in [West, 2001].

Since we are interested in drawings of plane graphs, we first clarify the considered
types of drawings. In a straight-line drawing of a graph, vertices are represented by
points in the plane and edges by segments. Such a drawing can be encoded by the vertex
coordinates in the plane, i.e., for a plane graph on n vertices, the 2n coordinates can be
represented by a point in the Euclidean space R2n. We call this vector of vertex coordinates
a vertex placement. From a vertex placement, we easily recover the straight-line drawing by
connecting the two endpoints of every edge by a segment.

In a planar drawing, no two edges intersect except in common vertices. Figure 2.1(a)
depicts a planar straight-line drawing of the octahedron graph. Note that in a planar
drawing all face areas are positive. As it turns out, it is worthwhile to be slightly more

A B

C

c

ba

(a) crossing-free, planar

a b
c

A B

C

(b) crossing-free, degenerate

a b

c

A B

C

(c) not crossing-free

Figure 2.1: Straight-line drawings of the octahedron graph with different properties. In (b),
the area of face abc vanishes. In (c), the edges ab and Ac have a proper crossing.

10
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generous and consider crossing-free drawings which also account for vanishing face areas.
Therefore, we extend the set of drawings by the degenerate drawings, i.e., all drawings
which can be obtained as the limit of a sequence of planar drawings. More specifically
for straight-line drawings, we allow degeneracies which are usually forbidden: edges may
have zero length, i.e., adjacent vertices may be mapped to the same point, vertices may
lie in a non-incident edge if they belong to the boundary of a common face and the union
of two edges are allowed to form a segment. Two intersecting segments whose union is
not a segment form a proper crossing. We call the resulting set of straight-line drawing
crossing-free since no two edges properly cross. Figure 2.1(b) displays a crossing-free
drawing of the octahedron which is not planar since the edges ab and ac are intersecting
in interior points; however their union forms a segment. Note that for triangulations, a
crossing-free drawing is degenerate if and only if the area of at least one face vanishes.

As usual, we say a graph is planar if it has a planar drawing. By a plane graph, we
refer to a graph with a fixed planar drawing. A planar drawing partitions the plane into
path-connected regions, which we call faces. By F , we denote the set of faces of G. In a
plane graph G, there exists a unique unbounded face, which we call the outer face of G.
All other faces are inner faces of G. We denote the set of inner faces by F ′. Likewise, we
call a vertex or edge outer if it is incident to the outer face and inner otherwise.

A planar drawing also determines the rotation system, i.e., a cyclic ordering of incident
edges around each vertex. We consider two crossing-free drawings of a planar graph as
equivalent if the outer faces and the rotation systems coincide in both drawings. Thus, the
above definitions of inner and outer do not depend on a specific drawing of a plane graph
but remain the same for all equivalent drawings.

For a plane graph G, we denote the set of vertex placements, corresponding to straight-
line crossing-free drawings equivalent to G, by D(G); we also write D if G is clear from the
context. From now on and for the sake of simplicity, we usually omit the terms crossing-free
and straight-line; however, we ask the reader to think about such drawings unless stated
otherwise.

An area assignment of G is a function A : F ′ → R>0, where R>0 denotes the set of
positive real numbers. The total area of A, denoted by ΣA, is the sum of all assigned areas,
i.e., ΣA :=


f∈F ′ A(f). The function area : F ′ ×D → R>0 measures the area of a face f

in a specific drawing D of G. A drawing D ∈ D(G) realizes an area assignment A of G if
for all inner face f ∈ F ′ it holds that area(f,D) = A(f). We also say D is A-realizing.
Furthermore, we call an area assignment A realizable if there exists an A-realizing drawing
in D(G). We are now ready for the crucial definition of area-universality:

Definition. A plane graph G is area-universal if every area assignment is realizable.

We now start to examine interesting properties. For any positive real number α > 0
and every area assignment A, let αA denote the α-scaled area assignment of A where for
all inner faces f ∈ F ′ it holds that αA(f) := α · A(f).

▶ Lemma 2.1. Let G be a plane graph with an area assignment A. For every α ∈ R>0, G
has an αA-realizing drawing if and only if it has an A-realizing drawing.

Proof. Let α1, α2 ∈ R>0. We show how to transform an α1A-realizing drawing D1 into an
α2A-realizing drawing D2 of G. To obtain D2 from D1, scale one axis of the plane by α2/α1.
This is a linear transformation where the determinant of the associated matrix is α2/α1.
Consequently, all face areas are scaled by this factor and D2 is an α2A-realizing drawing. ◀
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The following corollary is an immediate consequence.

■ Corollary 1. Let c ∈ R>0. A plane graph is area-universal if and only if all area
assignments with a total area of c are realizable.

Our next lemma concerns the fact that we may delete edges and vertices from an area-
universal graph while maintaining area-universality. This has also already been observed in
[Biedl and Velázquez, 2013].

▶ Lemma 2.2. Every plane subgraph G′ of a plane area-universal graph G is area-universal.

Proof. Let A′ be an area assignment of G′. We construct an area assignment A of G. Each
face f of G′ corresponds to a collection of faces Cf in G. We define A such that for each
face f in G′, the area assigned to the faces in Cf sums to A′(f). Since G is area-universal,
we may consider an A-realizing drawing D of G. Restricting D to G′ yields an A′-realizing
drawing of G′. ◀

Combining Lemma 2.2 with the area-universality of stacked triangulations, which
we established in Observation 1.1, yields the area-universality of several graph classes.
Therefore, we introduce subclasses of stacked triangulations.

An outerplane graph is a plane graph where all vertices are incident to the outer face.
For an example, consider Figure 2.2(a). A graph is series-parallel if it can be reduced to K2,
the complete graph on two vertices, by the following two operations: replacing a vertex of
degree 2 and its two incident edges by a single edge between its neighbors (series reduction
rule) and replacing a double edge by a single edge (parallel reduction rule). Figure 2.2(b)
displays an example of a series-parallel graph. A plane Halin graph can be constructed by
connecting the leaves of a plane tree with a cycle. In order to obtain a simple graph, the
plane tree must have at least one vertex of degree (at least) three, see also Figure 2.2(c).

(a) An outerplane graph. (b) A series-parallel graph. (c) A Halin graph.

Figure 2.2: Examples of subgraphs of stacked triangulations.

In fact, these three graph classes are subgraphs of stacked triangulations. For this
reason, Lemma 2.2 and Observation 1.1 imply their area-universality.

■ Corollary 2. Subgraphs of stacked triangulations are area-universal. In particular,
outerplane graphs, series-parallel graphs, and Halin graphs are area-universal.

Proof. Since stacked triangulations are area-universal by Observation 1.1, Lemma 2.2
implies the area-universality of all subgraphs of stacked triangulations. It remains to show
that the stated graph classes are subgraphs of stacked triangulations. Planar graphs with
treewidth at most k are exactly subgraphs of planar k-trees [Arnborg et al., 1987]. Since
series-parallel graphs have treewidth at most 2 [Wald and Colbourn, 1983] and Halin graphs
have treewidth 3 [Bodlaender, 1988], the claim follows. ■
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Figure 2.3 illustrates the containment relations of plane partial 3-trees. Note that Halin
graphs and outerplanar graphs are incomparable with respect to set inclusion: While Halin
graphs contain K4-minors, e.g. contract all inner vertices to a single vertex and all outer
vertices to three vertices, series-parallel graphs can be characterized as K4-minor-free graphs
[Dirac, 1952].

plane graphs

stacked triangulations

Halin

outer-
plane

series-parallel
stacked

triangulations

subgraphs of

Figure 2.3: Containment relations of subgraphs of stacked triangulations; since this is not a
cartogram, the areas do not indicate the relative sizes of these classes.

Moreover, note that Halin graphs are 2-outerplane, i.e., after removal of the outer
vertices, all remaining vertices lie on the outer face. One could think that k-outerplanarity
and area-universality are linked. However, we will see that some 2-outerplane graphs, for
instance the octahedron graph, are not area-universal.

The following lemma generalizes Lemma 2.2. Besides inserting edges and vertices, we
can also perform face-maintaining edge contractions to obtain an area-universal graph.
An edge contraction is face-maintaining if the number of faces remains, i.e., for a face of
degree d at most d − 3 edges are contracted. In other words, every face must remain at
least a triangle as otherwise its area vanishes in a straight-line drawing.

▶ Lemma 2.3. Let G be a plane graph which can be transformed into an area-universal
plane graph G′ by inserting vertices, inserting edges, and performing face-maintaining edge
contractions. Then G is area-universal.

Proof. Let A be a fixed but arbitrary area assignment of G. A face f of G corresponds to
a non-empty collection of faces Cf in G′. We define A′ such that for each face f of G it
holds that

A(f) =


f ′∈Cf

A′(f ′).

Since G′ is area-universal, there exists an A′-realizing drawing D′ of G′. Deleting all vertices
and edges of G′ which are not in G yields a (degenerate) drawing D of G. By definition
of A′, D is A-realizing. ◀

We provide a further operation preserving area-universality. It is based on graph
decomposition. To do so, we need a stronger concept of area-universality.

Definition. A plane graph G is strongly area-universal if for every area assignment A
of G and every fixed polygonal placement of the outer face with area ΣA, there exists
an A-realizing drawing of G within the prescribed outer face.
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Informally, if a graph is strongly area-universal then we can choose our favorite outer
face of correct total area and find a realizing drawing with this outer face. As an illustration
of this concept, we consider the unique plane quadrangulation with five vertices depicted in
Figure 2.4(a). For simplicity, we denote it by Q5. It can be understood as a 4-face with a
subdivided diagonal.

(a) The plane quadrangulation Q5. (b) Illustration of the proof of Proposition 2.4.

Figure 2.4: The plane quadrangulation Q5 is strongly area-universal.

▶ Proposition 2.4. The plane quadrangulation Q5 is strongly area-universal.

Proof. Let A be an area assignment of Q5 and q be a quadrangle of area ΣA whose corners
are identified with the outer vertices of Q5. Starting at a non-neighbor, move the inner
vertex v on a curve connecting its two non-neighbors within q and observe the continuous
change of the face areas incident to v. Since the area is 0 and ΣA at the extremes, the
intermediate value theorem guarantees a position for v on the curve such that both inner
faces have correct area. The gray curve in Figure 2.4(b) serves as an illustration. ◀

Strongly area-universality is beneficial if a graph decomposes into several strongly
area-universal graphs, see also Figure 2.5. From a plane graph G with a simple cycle C, we
obtain two plane graphs Gi and Ge by decomposing along C: Gi consists of the subgraph
of G induced by C and its interior, while Ge consists of the subgraph of G induced by C
and its exterior. Reversely, we obtain G from Gi and Ge by identifying the outer face of Gi
with an inner face of Ge of same degree.

▶ Lemma 2.5. Let G be a plane graph, and let Gi and Ge be obtained by decomposing G
along a simple cycle C of G. If Ge is area-universal and Gi strongly area-universal, then G
is area-universal. Moreover, if Ge is strongly area-universal, then G is also strongly area-
universal.

+

Ge

Gi

G

C C

Figure 2.5: Decomposing G along C yields two plane graphs Ge and Gi. If Ge is area-
universal and Gi strongly area-universal, then G is area-universal.
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Proof. Let A be an area assignment of G. For i ∈ {i,e}, Ai denotes the induced area
assignment of Gi. Note that the interior of C is a face f of Ge. In particular, it holds that
Ae(f) = ΣAi. Since Ge is area-universal, there exists an Ae-realizing drawing De of Ge.
Since Gi is strongly area-universal, we find an Ai-realizing drawing Di of Gi whose outer
face coincides with the polygon representing f in De. Thus, identifying De and Di along f
yields an A-realizing drawing of G. If Ge is strongly area-universal, then this property
immediately passes over to G. ◀

Combining Proposition 2.4 with Lemma 2.5, we obtain area-universality for 2-degenerate
quadrangulations. A graph is k-degenerate if every subgraph has a vertex of degree at
most k.

▶ Proposition 2.6. Every 2-degenerate quadrangulation is strongly area-universal.

Proof. A 2-degenerate quadrangulations can be constructed from a plane 4-cycle by iterative
insertion of a degree 2-vertex, acting as a subdivided diagonal, into a 4-face. Therefore, in
every step we insert the inner vertex of Q5 in a 4-face of correct area. Thus, Proposition 2.4
and Lemma 2.5 imply the claim. ◀

2.2 Triangulations

Not surprisingly area-universality of maximal planar graphs, namely triangulations, is
slightly easier to grasp than for general plane graphs. Here we present three characterizations
of their area-universality which we exploit in our further analysis. For some of the properties,
we only need that some face, for instance the outer face, is a triangle. In these cases, we
state the observations as general as possible. Clearly, these properties particularly hold for
triangulations.

The first observation follows directly from the fact that triangles are affine equivalent.
It enables us to prescribe the outer face of a triangulation without loss of generality.

▶ Lemma 2.7. Let G be a plane graph with a triangular outer face and let A be a realizable
area assignment. Then there exists an A-realizing drawing for every outer face of area ΣA.

Proof. Any A-realizing drawing of G can be transformed by an affine linear transformation
into a drawing with a given outer face. If the area of the two triangles are equal, the
determinant of the associated matrix is 1, and the areas are maintained. ◀

For later reference, we note that combining Lemma 2.7, Observation 1.1 and Lemma 2.2
yields the following result.

▶ Lemma 2.8. Let G be a plane graph and G+ the plane graph where a vertex of degree 3
is inserted in a triangle of G. Then G is area-universal if and only if G+ is area-universal.

Moreover, it follows immediately from Lemma 2.7 that

▶ Proposition 2.9. A plane graph G with a triangular outer face is area-universal if and
only if G is strongly area-universal.

This fact enables us to restrict our attention to 4-connected triangulations when studying
area-universality. A 4-connected component of a graph is a maximal 4-connected subgraph.
We say a triangle t of a plane graph G is separating if at least one vertex of G lies inside t
and at least one vertex lies outside t. In other words, t is not facial and therefore, when
decomposing G along t, neither Ge nor Gi is isomorphic to t.
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▶ Lemma 2.10. A plane graph G with a separating triangle t is area-universal if and only
if the plane graphs Ge and Gi, obtained by decomposing G along t, are area-universal.

Proof. If G is area-universal, then by Lemma 2.2, every subgraph is area-universal. Thus,
in particular Ge and Gi are area-universal.

Suppose now that Ge and Gi are area-universal. Since Gi has a triangular outer face, it
is even strongly area-universal by Proposition 2.9. Clearly, identifying Ge and Gi along t
yields G. Therefore, by Lemma 2.5, G is area-universal. ◀

G

+

Gi

Ge

Figure 2.6: Decomposing a graph along a separating triangle.

It is well-known and easy to see that a triangulation is 4-connected if and only if it has
no separating triangle. With this fact at hand, we obtain the following characterization.

▶ Proposition 2.11. A plane triangulation T is area-universal if and only if every
4-connected component of T is area-universal.

Proof. By Lemma 2.2, it is only interesting to consider the reverse direction which we
show by induction. Note that the small triangulations on three and four vertices are
area-universal and have no 4-connected components. Suppose that T is not area-universal.
If T is 4-connected, then it certifies a 4-connected component which is not area-universal.
Thus, we suppose that T has a separating triangle t. Let Te and Ti denote the triangulations
obtained by decomposing along t. By Lemma 2.10, at least one of Te and Ti is not area-
universal. Clearly, Te and Ti are triangulations and have less vertices than T . Thus, by
induction, there exists a 4-connected component C of Te or Ti which is not area-universal.
The separating triangle guarantees that C is also a component of T . ◀

Remark. Note that a stacked triangulation has no 4-connected component. Thus, Propo-
sition 2.11 offers an alternative proof for the area-universality of stacked triangulations.

The fact that we may choose the outer face of a triangulation, namely Lemma 2.7, has
further nice consequences. Recall that D denotes the vertex placements of all equivalent
straight-line drawings of a plane graph G. Now, we restrict the set of drawings a little
further. Let f be a triangular face of G and △ be a triangle whose corners are identified
with the vertices of f . Then D|f→△ denotes the subset of vertex placements where face f
coincides with △. By Lemma 2.7, we may fix the outer face fo without loss of generality.
This has fruitful consequences.

▶ Lemma 2.12. For a plane graph G with a triangular outer face fo and a triangle △, the
set of vertex placements D|fo→△ is compact.

Proof. Since D contains the degenerate drawings, which are by definition the limit of plane
drawings, D is a closed subset of the Euclidean space R2n. Due to the fixed outer face, all
vertex coordinates are bounded. Therefore, D|fo→△ is compact. ◀
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With the help of this fact, we obtain a very handy lemma which characterizes area-
universality for plane graphs with a triangular outer face, e.g., for triangulations. To do
so, we understand an area assignment as a vector in R|F ′|. Recall that an area assignment
assigns positive real numbers to the inner faces. A non-negative area assignment is a
function A : F ′ → R≥0, i.e., every inner face is assigned to a non-negative real number. For
a fixed graph, let A denote the set of non-negative area assignments with a total area of c,
for any fixed c ∈ R>0. We consider A as a subset of R|F ′|.

▶ Proposition 2.13. Let G be a plane graph with triangular outer face. Then A ∈ A
is realizable if and only if every open neighborhood of A in A contains a realizable area
assignment.

Proof. Suppose A ∈ A is realizable, then clearly A itself is in every of its open neighborhoods
and serves as a certificate of a realizable area assignment.

Suppose in every open neighborhood of A, there exists a realizable area assignment.
Hence, we may construct a sequence of realizable assignments (Ai)i∈N converging to A. For
each Ai, we pick a realizing drawing Di. By Lemma 2.7, we may assume that the outer
face fo coincides in all drawings Di and is a fixed triangle △ of area ΣA. Consequently, the
sequence (Di)i∈N is contained in D|fo→△ and, thus, bounded by Lemma 2.12. Therefore, by
the Bolzano-Weierstrass theorem, the sequence (Di)i∈N contains a converging subsequence
with limit D. By the compactness, D is contained in D|fo→△ and thus yields a crossing-free
drawing of G. By definition of D, for every inner face f it holds that

area(f,D) = lim
i→∞

area(f,Di) = lim
i→∞

Ai(f) = A(f).

Consequently, D is A-realizing. ◀

Proposition 2.13 implies immediately that every non-realizable area assignment has a
neighborhood of non-realizable area assignments. This gives the following fact.

■ Corollary 3. If a plane graph with triangular outer face has a non-negative area
assignment that is not realizable, then it also has a (positive) non-realizable area assignment.

Intuitively speaking, Proposition 2.13 is particularly useful when we want to show the
realizability of an area assignment A with some unlikely but bad properties. Then, instead
of considering A, it is sufficient to show the existence of a realizable area assignment in
every neighborhood of A. In particular, area-universality is guaranteed by the realizability
of a dense subset of A. We will exploit this fact in the next chapter.

Restricting to triangulations, we may strengthen some of the above observations. Let T
be a plane triangulation and f some triangle of T . As discussed in Lemma 2.12, if f is
the outer face and △ a triangle, then D|f→△ is compact. For our purposes in Chapter 3,
we need a slightly more general statement. For a positive real value c ∈ R>0, let Dc|f→△

denote the subset of D|f→△ where additionally the total area in each drawing does not
exceed c.

▶ Lemma 2.14. Let T be a plane triangulation, f a face of T , △ a triangle of positive
area, and c ∈ R>0. Then the set of vertex placements Dc|f→△ of T is compact.
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Proof. First note that closedness follows from the fact that we allow for degenerate drawings.
Second, we show that Dc|f→△ is bounded. By assumption f coincides with a triangle △.
Since △ has positive area, its three sides are pairwise not parallel. If f is the outer face,
then clearly all inner vertex coordinates are bounded by △. Hence, it remains to consider
the case that f is an inner face.

We show that all vertices lie inside a bounded region which consists of the intersection
of three half spaces. Consider Figure 2.7. For each side s of △, let ℓs denote the line such

`s

s
f

Figure 2.7: Illustration of Lemma 2.14 and its proof.

that the segment s and any point of ℓs form a triangle of area c that intersects △. Moreover,
let Hs denote the half space defined by ℓs that contains △. We claim that any drawing D
in Dc|f→△ lies in Hs. Suppose a vertex v of T lies outside Hs, then the triangle t′ formed
by s and v is contained in D since the outer face is triangular and thus convex. However,
the area of t′ exceeds c. Therefore all vertices lie within the intersection of the three half
spaces Hs. ◀

Following the same argument, Lemma 2.14 enables us to prove the following stronger
version of Proposition 2.13 for triangulations. Let T be a triangulation and Ac denote the
set of all area assignments of T with total area at most c. For a fixed face f of T , the
subset of area assignments of Ac where f is assigned to the area a is denoted by Ac|f→a.

▶ Proposition 2.15. Let T be a plane triangulation with an area assignment A, f a face
of T with a := A(f) > 0, and c ≥ ΣA. Then A is realizable if and only if every open
neighborhood of A in Ac|f→a contains a realizable area assignment.

The proof of Proposition 2.15 goes along the same line as Proposition 2.13. At the
appropriate place, we use the fact that for a realizable area assignment A′ ∈ Ac|f→a, there
exists an A′-realizing drawing in Dc|f→△ where f is fixed to a triangle △ of area a = A(f).

Note the sequence argument used in Propositions 2.13 and 2.15 does not work for all
plane graphs. The boundedness of the drawings is crucial as the example in Figure 2.8
illustrates: For a sequence of ε > 0 with ε → 0, consider a sequence of realizing drawings
where the face of area ε is a regular triangle. Then the edge length of the regular triangle
goes to 0 as ε → 0 and the left vertex tends to −∞. Thus, the limit does not exist.

ε1

Figure 2.8: A sequence of realizing drawings with ε → 0 where the right triangle is regular
does not yield a realizing drawing for ϵ = 0.
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2.3 Characterization by Polynomial Equations

In this section, we show that the realizability of an area assignment for a plane graph can
be characterized by a polynomial equation system. As we will later see, this implies that
area-universality can be decided with the help of a boolean formula over the reals.

A plane graph G induces an orientation of the vertices of each face. For a face f with
vertices v1, . . . , vk we say v1, . . . , vk are in counter clockwise order on f if they appear in this
order on a walk on the boundary of f in counter clockwise direction. Otherwise v1, . . . , vk
are in clockwise order on f . Figure 2.9 illustrates both, a clockwise and a counter clockwise
triangle.

v1 v2

v3

(a) v1v2v3 is a counter clockwise face.

v1 v3

v2

(b) v1v2v3 is a clockwise face.

Figure 2.9: Orientation of faces.

Let D be a straight-line drawing of G. We denote the coordinates of a vertex vi in D
by (xi, yi). Given a counter clockwise triangle t with vertices v1, v2, v3, we can compute its
area in D by the following determinant:

2 · area(t,D) = det


x1 x2 x3

y1 y2 y3

1 1 1

 =: Det(v1, v2, v3). (2.1)

Note that using the clockwise order of v1, v2, v3 instead of the counter clockwise order has
the effect of switching the sign, i.e., Det(v1, v2, v3) = −Det(v3, v2, v1). This formula can be
generalized for simple polygons.

▶ Proposition 2.16 ([Meister, 1769]). Let v1, . . . , vn be the vertices of a simple polygon P
in counter clockwise order, then the area A of P can be computed by

2 ·A(P ) =
n−1
i=2

Det(v1, vi, vi+1). (2.2)

The formula in (2.2) is called the shoelace formula and was first described by Meis-
ter [Meister, 1769]. It is also referred to as the Gauss’s area formula. The formula is
obvious for a convex polygon, see also Figure 2.10: Consider the star triangulation of the
polygon with center v1. Then, the formula states that the area of the triangles sum up
to the area of the polygon. The interesting part is that v1 must not be the center of a
crossing-free triangulation. For completeness, we present a proof of Proposition 2.16.
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v1

v2
v3

v4
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v4

v5
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Figure 2.10: Visualization of the shoelace formula and its proof.

Proof of Proposition 2.16. We show a slightly more general statement. Namely that v1 can
be replaced by any point in the plane, without loss of generality the origin 0. Then the
formula reads as follows:

2 ·A(P) =
n

i=1

Det(0, vi, vi+1)

Consider a point p inside P and the ray 0p. For an illustration consult Figure 2.10. The
ray intersects the boundary several times; each time it either enters or leaves P in an
alternating fashion. In fact, every intersection point of the ray with the boundary of P that
lies after p certifies a triangle 0vivi+1 containing p. This triangle contributes one summand
in the formula. The determinants of these triangles alternate in sign. Since the ray ends
outside P and p is inside, the first and last intersection point have positive sign. Thus p is
contained in an odd number of triangles; in particular the number of even triangles exceed
the number of odd triangles by one.

Likewise, a point p outside P is contained in even number of triangles with alternating
sign. Introducing all segments 0vi, the plane is split into several cells by the segments
and P ; all points of one cell behave alike and can be considered as equivalent. Thus by the
above argument, the formula accounts exactly for the area of a cell contained in P . ◀

In a realizing drawing of an area assignment A of a plane graph G, each inner face
fulfills a prescribed area, i.e., an equation as in (2.2). Clearly, the existence of a realizing
drawing implies a real solution for these equations. We now show that such a real solution
corresponds to a vertex placement that yields a realizing drawing.

▶ Proposition 2.17. Let G be a plane graph with a non-negative area assignment A.
Then there exists a system E of polynomial equations of polynomial size which has a real
solution if and only if A is realizable.

Proof. In a fixed drawing D of G, the variables (xi, yi) represent the coordinates of vi
and N(vi) denotes the set of adjacent vertices. The outer face is denoted as fo. Recall that
A is realizable if there exists a vertex placement (x1, y1, . . . , xn, yn) encoding a crossing-free,
straight-line, and equivalent drawing of G where the area of face each inner face f is A(f).
By definition, two drawings of G are equivalent if they have the same outer face and rotation
system. Hence, we ensure these properties by the following three conditions:

(i) The face areas are realized (Area).
(ii) All pairs of independent edges are crossing-free (CrossFree).
(iii) The rotation system remains the same (RotSys).
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By Area, CrossFree, and RotSys, we denote the predicates ensuring the three properties.
Note that these properties imply that the outer face is preserved: Consider the region of
the plane in a crossing-free straight-line drawing which is covered by the polygonal region
belonging to the inner faces of G. Note that each inner edge cannot bound this region as it
is covered from both sides by its two incident faces. Thus the region must be bounded by
the edges of the outer face.

We define a quantifier-free boolean formula E ′, consisting of polynomial equations and
inequalities which are linked by disjunctions or conjunctions. (With the usual tricks, we
may afterwards turn E ′ into an equation system E .) We define E ′ as follows:

E ′(G,A) :=

 
f∈F ′

Area(A(f), f)


∧
 

e,e′∈E

CrossFree(e, e′)

∧
 

v∈V
RotSys(v)


.

The predicate Area is already defined by the Equation (2.2). It remains to describe
CrossFree and RotSys. Let us start with the CrossFree predicate. For notational
convenience, we denote the edges by e = uv and e′ = rs and the coordinates of a vertex
v by (vx, vy). Recall that a point p is strictly left of an oriented line through the points
a and b if and only if Det(p, a, b) > 0. We denote the oriented line through the points x
and y by ℓ(x, y). It is easy to see that the two segments e = uv and e′ = rs have no proper
crossing if and only if at least one of the following conditions hold:

(i) Points r and s are on the same side of ℓ(u, v) ⇐⇒ Det(r, u, v) · Det(s, u, v) ≥ 0.

(ii) Points u and v are on the same side of ℓ(r, s) ⇐⇒ Det(u, r, s) · Det(v, r, s) ≥ 0.

Figure 2.11(a) illustrates property (i); since r and s are on the same side of ℓ(u, v), the
two segments have no proper crossing. As indicated, each of the conditions (i) and (ii) can
easily be described as a product of determinants and thus each CrossFree condition is a
disjunction of these two products.

Next, we describe the RotSys predicate. For this it is important to distinguish whether
or not v is a reflex vertex of one of its incident faces. First assume v is not a reflex
vertex as illustrated in Figure 2.11(b). Let (v1, . . . , vd) denote the vertices around v in
counter clockwise order. We enforce the condition that vi+1 is left of the line ℓ(v, vi), for
i = 1, . . . , (d− 1) and v1 left of ℓ(v, vd).

In case that v is a reflex vertex of one of its faces, exactly one of the conditions is
negated, namely the one corresponding to the reflex angle at v. Figure 2.11(c) illustrates
this case. We make a disjunction of all d variants. We also need to force the winding

(ux, uy)

(vx, vy)

(rx, ry)

(sx, sy)

(a) Two non-crossing segments.

v

v1

v2

v3

vd

v4

(b) For every face, v is convex.

v1v2

vd

v

(c) For one face, v is reflex.

Figure 2.11: Illustration of the predicates CrossFree and RotSys.
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number around v to be 1, i.e., the cyclic sequence of angles between consecutive neighbors
of v sums to 2π. For this, we use the disjunction over each s, t ∈ {1, . . . , d} not necessarily
distinct such that s ̸= t+ 1 (mod d) of the following conditions. The first coordinate of
each of the vectors (vs − v), (vs+1 − v), . . . , (vt − v) is strictly positive, and that the first
coordinate of each of the vectors (vt+1 − v), . . . , (vs−1 − v) is non-positive, where all indices
are in the integers mod d. This divides the neighbors of v into two contiguous intervals, one
that is strictly to the right of v and another that is to the left or vertically aligned with v.

In this way, we have described the formula E ′ completely. Due to the predicates Area,
CrossFree, and RotSys a real solution of E ′ yields a realizing drawing. Note that the
size of E ′ is polynomial in n. We transform E ′ into an equation system E with the following
set of tricks: Let p(x) and q(x) denote two real polynomials.

p(x) ≥ 0 ⇐⇒ (p(x) = 0 ∨ p(x) > 0)

p(x) > 0 ⇐⇒ ∃z ∈ R : p(x) · z2 = 1

(p(x) = 0 ∨ q(x) = 0) ⇐⇒ p(x) · q(x) = 0

(p(x) = 0 ∧ q(x) = 0) ⇐⇒ (p(x))2 + (q(x))2 = 0)

This finishes our proof. ◀

Remark. Later, we use this fact to show that the computational problem of deciding
whether a given plane graph is area-universal lies in ∀∃R; see Proposition 7.1 in Chapter 7.

We will now discuss the fact that for inner triangulations, the polynomial equation
system of Proposition 2.17 can be simplified. In particular, the predicate Area is sufficient.

2.3.1 Triangulations

As seen in Proposition 2.17, there is a close connection of area-universality and polynomial
equation systems: For every plane graph G with area assignment A there exists a polynomial
equation system E such that A is realizable if and only if E has a real solution. Recall that
an essential part of the equation system is given by the determinant equations, defined
in Equation (2.1), which describe the areas of the faces. We now show that for inner
triangulations these equations suffice.

An inner triangulation is a 2-connected plane graph where every inner face is a triangle.
Given a face area assignment A for an inner triangulation T , we seek for a drawing where
every inner face has a prescribed area. By Lemma 2.1, we may scale the area assignment as
wished and consider for a counter clockwise face f with vertices v1, v2, v3 the area equation

Det(v1, v2, v3) = A(f). (2.3)

Every area assignment has a natural extension from the set of inner faces F ′ to the set of
all faces F . In a realizing drawing the area of the (complement of the) outer face equals
the total area. Therefore, we define A(fo) := ΣA. For a set of faces F̃ ⊂ F , we define the
area equation system of F̃

aeq(T,A, F̃ )

consisting of one area equation as defined in Equation (2.3) for each face f ∈ F̃ .
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Clearly, the vertex placement of an A-realizing drawing of T yields a real solution of
aeq(T,A, F̃ ). We will show that for inner triangulations the converse also holds true for
any set F̃ ⊂ F with |F̃ | = |F | − 1. For general graphs, this is not always true; however,
as seen in Section 2.3, a correct crossing-free embedding can be guaranteed by additional
equations. The main tool to prove Theorem 4 is the following very neat and useful lemma.1

Here we present two proofs, one of which is due to [Angelini et al., 2016].

▶ Lemma 2.18. Let D be a vertex placement of an inner triangulation T where the
orientation of each inner face in D coincides with the orientation in T . Then D represents
a straight-line drawing of T .

Proof 1. Given a vertex placement D of a triangulation T , every inner face is represented
by a triangle in the plane. We want to argue that these triangles are interiorly disjoint. We
are interested in the region T covered by the triangles corresponding to a set of inner faces
in F ′. Let ∂T denote the boundary of T and observe that every inner edge of T is covered
by its two triangles from both sides, see also Figure 2.12. Hence the boundary ∂T must
be formed by the outer edges and vertices of T . Let v1, v2, . . . , vk denote the vertices of
the outer face fo in counter clockwise orientation. Now, we show that the covered area
of T corresponds to the area of the sum of the triangles: Recall that Det(u, v, w) denotes
the determinant of the homogeneous coordinates of u, v, w as defined in Equation (2.1).
Moreover, det(u, v) denotes the determinant of the 2-dimensional coordinates of u and v.

2 · area(fo, D) =

k−1
i=2

Det(v1, vi, vi+1) =

k−1
i=1

det(vi, vi+1)

=
k−1
i=1

det(vi, vi+1) +


e=(u,v) inner


det(u, v) + det(u, v)


=


(u,v,w)∈F ′

Det(u, v, w) = 2 ·

f∈F ′

area(f,D)

In the second line, we add the terms (det(u, v) + det(u, v)) which are canceling each other
since (det(u, v) = − det(u, v)). Figure 2.12 illustrates that every inner edge appears twice -
once in each direction - and every outer edge appears once in counter clockwise orientation.
Therefore, we may group the edges such that they appear once for each face in counter
clockwise orientation. This shows that the covered area of T corresponds to the area of the
sum of the triangles. Consequently, the triangles cannot overlap and the vertex placement
yields a crossing-free straight-line drawing. ◀

Proof 2. This proof is due to [Angelini et al., 2016]. We consider a function ϕ : R2 → N,
where ϕ(x) counts the number of triangles of G in which a point x is contained. As argued
above, the region covered by the inner triangles must be bounded by outer edges of T , i.e.,
we have ϕ(x) = 0 at infinity. Furthermore, due to the correct orientation of all triangles,
ϕ(x) does not change when x crosses an inner edge. Thus, the function ϕ(x) changes only
by 1 when it crosses an outer edge. Since it holds that ϕ(x) = 0 at infinity, it follows that
ϕ(x) = 1 inside the covered region (except on edges and vertices). It follows that D is a
straight-line drawing of T . ◀

1Various graph theorist consider this fact to be folklore. Nevertheless it turned out to be quite difficult
to find an appropriate reference. In particular, the presented proof in [Angelini et al., 2016] is hidden in
continuous text. I would be happy to be pointed to further references.
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u

v

a b

c

Figure 2.12: Illustration of proof 1 of Lemma 2.18.

We are now ready to prove the theorem.

■ Theorem 4. Let T be an inner triangulation with a non-negative area assignment A
and some face f . Then A is realizable if and only if the equation system aeq(T,A, F − f)
has a real solution.

Proof of Theorem 4. The proof consists of two directions. If A is realizable, then the
vertex placement of an 1/2A-realizing drawing is a real solution of the equation system
aeq(T,A, F − f).

So suppose the equation system aeq(T,A, F − f) has a real solution. This solution
yields a vertex placement D satisfying the (scaled) area assignment and preserving the
orientation of all but one face f . It remains to show that the drawing is crossing-free.

If f is the outer face, then all inner faces have the correct orientation and Lemma 2.18
implies that D is an equivalent straight-line drawing of T . Thus, we suppose that f is an
inner face. In the proof of Lemma 2.18, we have seen that for the outer face fo it holds that

area(fo, D) =

f∈F ′

area(f,D).

Moreover, by definition and since fo ̸= f , it holds in D that area(fo, D) = A(fo) := ΣA.
Therefore, by basic algebra area(f,D) evaluates to A(f). Consequently, D is a real solution
for aeq(T,A, F ) and Lemma 2.18 guarantees that D induces a crossing-free straight-line
drawing. ■
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In this chapter, we establish several interesting facts on area-universality of triangulations.
We introduce tools to prove and disprove area-universality. In Section 3.1, we show that all
Eulerian triangulations and the icosahedron graph are not area-universal. In Section 3.2,
we develop a method to prove area-universality for certain triangulations. In particular, we
use these tools to characterize the area-universality of some graph classes, including the
accordion graphs mentioned in the introduction, as well as to classify small triangulations.

3.1 On Non-Area-Universal Triangulations

As maximal plane graphs, triangulations are natural candidates for non-area-universal
graphs. In the beginning of our studies, the only known non-area-universal graphs were the
octahedron graph and all graphs containing it as a subgraph. In this section, we present
further non-area-universal triangulations. In response to our question in the introduction,
this shows that the octahedron is not the only obstruction to area-universality. Additionally,
among the presented triangulations, there are 4- and 5-connected graphs. Thus, high vertex
connectivity does not imply area-universality. The results of this section also appear as an
extended abstract in [Kleist, 2016] and as a full version in [Kleist, 2018a].

3.1.1 Eulerian Triangulations

We mentioned already that the octahedron graph, which is an Eulerian triangulation, is
not area-universal [Ringel, 1990]. Two proofs for this fact are known; both of which use
similar non-realizable area assignments illustrated in Figure 3.1. Before we present a new
proof, we review the two known proofs. Ringel [Ringel, 1990] considered the octahedron

(a) Ringel’s stacked octahedron is not equiareal.

0 0

0

a
< a

a

a

(b) This area assignment is not realizable.

Figure 3.1: Illustration of the two known proofs that the octahedron is not area-universal.
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graph with two additional vertices of degree 3. This graph is depicted in Figure 3.1(a) and
we refer to it as Ringel’s stacked octahedron. Ringel shows that the area equation system of
the inner faces, as defined in Equation (2.3), has no real solution when all face areas are
asked to have the same size. Since a real solution is a necessary condition for each realizing
drawing, its non-existence proves that Ringel’s stacked octahedron is not equiareal. Hence,
Lemma 2.8 implies that the octahedron graph is not area-universal.

A different proof relies on a classical geometric result concerning the area of a triangle
inscribed into a triangle: We say a triangle x1x2x3 is inscribed into a triangle v1v2v3,
when vertex xi is placed on the side vivi+1, respectively, where vi+3 := vi. The inscription
partitions the triangle into four smaller triangles, namely in the central triangle x1x2x3 and
three triangles of type vixixi+2, i ∈ [3]. We denote their areas by a, b, c, d as depicted in
Figure 3.2(a). Studying the relations of these areas, Debrunner [Debrunner, 1956] observed
the following relation, which was first proved by Bager [Bager, 1957].

▶ Proposition 3.1. Inscribing a triangle x1x2x3 in the triangle v1v2v3 partitions it
into four triangles of areas a, b, c, d. For the area d of the central triangle it holds that
d ≥ min{a, b, c}.

Proposition 3.1 implies the non-area-universality of the octahedron graph as follows:
When the area of the three triangles incident to the outer segments is supposed to vanish,
each inner vertex is forced to lie on an outer segment. In this way, we obtain a triangle
inscribed into a triangle. Then, any area assignment with d < min{a, b, c} is not realizable
by Proposition 3.1. Figure 3.1(b) illustrates such an area assignment of the octahedron.
The idea of this proof originates from Alam et al. [Alam et al., 2012]; they have used Propo-
sition 3.1 to show that proportional contact representations may require non-convex shapes.
For completeness, we present a nice geometric proof from Esther Szekeres [Szekeres, 1967].

v3

v1 v2x1

x2

x3

a

b c

d

(a) The triangle x1x2x3 inscribed into v1v2v3.

p1 p2

p3

p4 p5

v3

v1 v2x1

x2

x3 y

z

(b) Depiction of the construction.

Figure 3.2: Illustration of Proposition 3.1 and its proof.

Proof of Proposition 3.1. Consider the six ratios of type vixi : vivi+1 and xivi+1 : vivi+1

for i ∈ [3]. Without loss of generality we may assume that v1x1 : v1v2 is a smallest ratio
among these six ratios. We construct five helper points p1, . . . , p5 as follows: Let p1 be a
point on v1v3 such that x1p1 and v2v3 are parallel. Furthermore, we construct pi+1 after pi
such that pipi+1 is parallel to v1v2 if i ∈ {1, 4}, v1v3 if i = 2, and v2v3 if i = 3. The
construction is depicted in Figure 3.2(b). Since v1x1 : v1v2 is a smallest ratio, x2 and x3 lie
on the segments p2p5 and p1p4, respectively. Choose y such that v1x1yx3 is a parallelogram.
Then, the triangles v1x1x3 and x1yx3 have the same area. Moreover, there exists a point z
on x1x2 such that yz is parallel to x1x3. The triangle x1zx3 has the same area as the
triangle v1x1x3 and is contained in the triangle x1x2x3. This shows the claim. ◀
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In contrast to both proofs, we use a simple counting argument to show that the
octahedron graph is not area-universal. Interestingly, this argument can be extended to
prove that no plane Eulerian triangulation is area-universal. A graph is Eulerian if it has
an Euler cycle, i.e., a cycle using each edge exactly once. As Euler showed, all vertices in an
Eulerian graph have an even degree. For connected graphs even degree is indeed necessary
and sufficient. Consequently, a triangulation is Eulerian if and only if all vertex degrees are
even. We will use the fact that the dual graph of a plane Eulerian triangulation is bipartite,
and hence has an inner face 2-coloring. An inner face 2-coloring of a plane triangulation is
a coloring of the inner faces with white and black such that every inner edge is incident to
a white and a black face; Figure 3.3 depicts such a coloring for the octahedron. In fact,
Eulerian triangulations are characterized by the existence of an inner face 2-coloring.

▶ Proposition 3.2. A plane triangulation has an inner face 2-coloring if and only if it is
Eulerian.

Proof. If T is Eulerian, its dual graph is bipartite and thus it has an inner 2-face coloring.
Suppose, for a contradiction, that there exists a triangulation T with an inner face 2-coloring
that is not Eulerian. Then T has exactly two outer vertices u and v of odd degree, since
all inner vertices have even degree and the number of vertices with odd degree must be
even. Deleting the edge (u, v) results in an Eulerian inner triangulation with 3n− 7 edges.
However, as shown by Tsai and West [Tsai and West, 2011, Lemma 3.2], the number of
edges of an Eulerian inner triangulation is divisible by three. This yields a contradiction
and thus, shows the claim. ◀

■ Theorem 5. No plane Eulerian triangulation on n ≥ 4 vertices is area-universal.

Proof. Let T be an Eulerian triangulation on n ≥ 4 vertices with an inner face 2-coloring.
We denote the set of white faces by W and the set of black faces by B. A triangulation
with n vertices has 2n−5 inner faces. Without loss of generality, we assume that |W | > |B|
and therefore, |W | ≥ n− 2. Figure 3.3 illustrates the proof for the octahedron graph. We
show that the following non-negative area assignment A of T is not realizable:

A(f) :=

0 if f ∈ W,

1 if f ∈ B.

Figure 3.3: An inner face coloring of the octahedron graph depicting a non-realizable
area assignment; white faces are assigned to 0 and black faces to 1. In every flat angle
assignment, two white faces are assigned to the same inner vertex.
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For the purpose of contradiction, suppose that T has an A-realizing drawing D. We
show that D has two contradicting properties.

Firstly, every white face has an angle of size π; we call such an angle a flat angle: Note
that every inner edge is incident to a black face and thus has positive length in D; otherwise,
the area of the black face is not realized. Additionally, the area of a white face vanishes
only if one of its vertices lies on the opposite, non-incident edge. Due to the positive edge
lengths, the vertex lies in the interior of the non-incident edge. Consequently, one angle of
every white face in D is flat.

Secondly, the number of white flat angles is bounded by the number of inner vertices:
In D, we assign (the flat angle of) every white face to the vertex with the flat angle and
obtain a flat angle assignment. In Figure 3.3, a flat angle assignment for the octahedron
graph is indicated by the red arrows. Since the boundary of the outer face is a triangle with
positive area, only inner vertices may have flat angles. Moreover, every vertex is incident
to a black face by the inner face 2-coloring. Suppose there exists an inner vertex v in D
which has two flat angles. Then, no space remains to realize the area of any black face
incident to v. Therefore, in D every inner vertex has at most one flat angle and the number
of white flat angles is bounded by the number of inner vertices.

Since T has at least n − 2 white faces and n − 3 inner vertices, the number of white
faces exceeds the number of inner vertices and we obtain a contradiction. Therefore, A is
not realizable and Corollary 3 guarantees the existence of a non-realizable (positive) area
assignment. Thus T is not area-universal. ■

Theorem 5 and its proof have several nice implications. First of all, note that in the
proof of Theorem 5, we only use the fact that the black faces are assigned to positive real
numbers. Therefore, the following stronger statement holds true:

▶ Proposition 3.3. Any non-negative area assignment of an Eulerian triangulation with
an inner face 2-coloring where each white face is assigned to 0 and each black face to some
positive real number is not realizable.

Moreover, the proof of Theorem 5 implies that we cannot hope for drawings realizing
the areas up to a constant factor. For a real c > 1, we say a straight-line drawing D of G is
c-approximating of an area assignment A if for each inner face f it holds that

1/c · A(f) ≤ area(f,D) ≤ c · A(f).

In fact, no Eulerian triangulation has a c-approximating drawing for every area assignment.

■ Corollary 6. For every c > 1, every Eulerian triangulation T on at least n ≥ 4 vertices
has an area assignment A such that no drawing of T is c-approximating A.

Proof. We consider an inner face 2-coloring of T . For every k ∈ N, let Ak denote the area
assignment of T where each white face is assigned to 1/k and each black face to 1. Suppose
every Ak has a drawing Dk which is c-approximating Ak. We may assume that the outer
face of T in Dk is a right triangle where two outer vertices coincide for all Dk. Then the
sequence (Dk)k∈N is bounded and by the Bolzano-Weierstrass theorem, it has a converging
subsequence with limit D. In Dk, the area of a white face is at most c/k and of a black face
at least 1/c. Consequently, in D, the area of each white face is 0 and of each black face
positive. However, such a drawing of T does not exists as discussed in Proposition 3.3. ■
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Remark. As a consequence of Corollary 6, c-approximations of equiareal drawings do
also not exist for triangulations: For every c, there exists a rational area assignment of
the octahedron graph without a c-approximating drawing. By scaling, we obtain a non-
realizable integer area assignment A. Then, in every face f we insert a stacked triangulation
with A(f) vertices; this subdivides f into 3 · A(f) faces. The resulting triangulation T that
has no c-approximating equiareal drawing.

3.1.2 Icosahedron Graph

Since every Eulerian triangulation (with at least four vertices) has a vertex of degree four,
the graphs of Theorem 5 are at most 4-connected. Adding some geometric arguments, we
can use similar ideas to show that the 5-connected icosahedron graph is not area-universal.
We start with the geometric argument.

Let ABCD be a quadrangle and let E be a point on the segment CD. Together with
the segments AE and BE we call this configuration a seesaw with base AB. A seesaw is
base-bounded if there exists a pair of parallel lines ℓA and ℓB through A and B, respectively,
such that the seesaw lies (not necessarily strictly) between the lines ℓA and ℓB . Figure 3.4(a)
depicts a base-bounded seesaw in which the base is horizontal and the two lines are vertical;
thus, the x-coordinates of C and D are bounded by the x-coordinates of A and B. We call
a seesaw equiareal if the triangles AED, ABE, and BCE have the same positive area.

A B

C

D
E

`A `B

(a) A base-bounded seesaw.
A B

C

D
E

y

x

`A `B

T

T ′

(b) AED is smaller than AxE.

Figure 3.4: Illustration of Lemma 3.4 and its proof.

▶ Lemma 3.4. No base-bounded seesaw is equiareal.

Proof. For a contradiction, suppose that there exists a base-bounded equiareal seesaw.
Without loss of generality, we assume that AB is horizontal and that E lies above AB.

Note that E lies strictly between ℓA and ℓB; otherwise the triangle AED or BCE has
area 0. Due to the symmetry, we may assume that D does not lie above C as depicted in
Figure 3.4(b). Let x denote the intersection point of the segment AB and the line parallel
to ℓA through E; let y be the intersection point of ℓA and the horizontal line through E.
Since E lies strictly between ℓA and ℓB, x lies strictly between A and B. Therefore, the
triangle T := AxE is strictly contained in ABE and has the same area as T ′ := AEy. By
assumption D is not to the left of ℓA and not above E and therefore D is contained in T ′.
Consequently, it holds that

area(ABE) > area(T ) = area(T ′) ≥ area(AED).

This is a contradiction to the equiareality of the seesaw and therefore proves the claim. ◀
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As a side remark, we mention that Lemma 3.4 yields an alternative proof for the
fact that the octahedron is not area-universal. Combining the argument of the proof of
Theorem 5 and Lemma 3.4 yields the following result.

▶ Proposition 3.5. The octahedron graph has no drawing where the gray faces have area 1,
the central face has area 0, and the remaining faces either have area 0 or 1.

Proof. In every flat angle assignment, the flat angle of the central face is assigned to
some inner vertex v. If v is incident to two white faces, then both flat angles are assigned
to v. This yields a contradiction as already seen in Theorem 5. Otherwise v is incident to
three white faces of area 1. This yields a base-bounded seesaw which is not equiareal by
Lemma 3.4. ◀

We have already seen in Theorem 5 that the area assignment where the three white
faces have area 0 is not realizable. Figure 3.5 illustrates the other three types of area
assignments.In fact, these area assignments are exactly all non-realizable 01-assignments
of the octahedron, i.e., an 01-assignments of the octahedron is realizable if it is not one
of the area assignments in Proposition 3.5. In particular, every area assignment with two
adjacent faces of area 0 is realizable since the contraction of the common edge results in a
(stacked) triangulation with 5 vertices, and thus in an area-universal graph.

0

1

11

Figure 3.5: Non-realizable area assignments of the octahedron based on Lemma 3.4.

Now, we turn our attention to the icosahedron.

■ Theorem 7. The icosahedron graph is not area-universal.

Proof. We will show that there is no straight-line drawing of the icosahedron in which the
white faces in Figure 3.6 vanish and the total area is distributed evenly among all black
faces. Then Corollary 3 guarantees the existence of a positive area assignment that is not
realizable. Note that there are three edges which are adjacent to two white faces; namely
the red edges in Figure 3.6.

Figure 3.6: The icosahedron with a face coloring depicting a non-realizable area assignment;
from left to right, no, one, two and three edges are contracted.
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For a contradiction, we suppose that there exists a realizing drawing D. For a white face
incident to a red edge, there exists two possibilities in D: either the red edge is contracted
or one of its angles is flat. Thus, we distinguish four cases according to how many of the
red edges are contracted: In case i, we contract exactly i edges with i ∈ {0, 1, 2, 3}. Then,
the remaining white faces must have a flat angle. Moreover, note that every inner vertex is
incident to a black face and thus may only be incident to at most one flat angle. Therefore,
we say a flat angle assignment is valid if no two faces are assigned to the same vertex. In
each case, we either find a base-bounded seesaw or no valid flat angle assignment.

Case 0: If no edge is contracted, then there are ten white faces and nine inner vertices.
By the pigeonhole principle, there exists no valid flat angle assignment.

Case 1: The contraction of one edge results in a graph with eight white faces and eight
inner vertices. Hence, in any valid flat angle assignment each inner vertex has exactly one
flat angle. We label the vertices as depicted in Figure 3.7. In particular, v1, v3, v4, v5, v6
are assigned by a unique white face. In total, there are two different flat angle assignments,
where the vertices v2, v7, v8 are either assigned in clockwise or counter clockwise direction.
Since these two flat angle assignments are mirror images of each other, we consider without
loss of generality the one illustrated in Figure 3.7(a).

v2v6

C

A B

v8

v7

v4

v1

v5 v3

(a) The up to symmetry unique flat angle
assignment in Case 1.

v1

v5

s1

v2

v4

v6

v7 s2

v3

T1

T ′
2h

v8

C

A B

(b) A drawing respecting the flat angle as-
signment; it contains a seesaw with base v5A.

Figure 3.7: Illustration of Case 1 of the proof of Theorem 7.

To obtain a contradiction, we consider a realizing drawing D within the triangle ABC
with vertices (0,0), (1,0), (0,1) where the collinearities from the flat angle assignment
are respected and all remaining faces have the same area. For a vertex vi, we denote
its coordinates in D by (xi, yi). We will show that D contains a base-bounded seesaw.
Specifically, a straight-line drawing of the subgraph induced by the vertices A, v1, v6, v7, v5
yields a seesaw with base v5A, as highlighted in violet in Figure 3.7(b). If y5 ≥ y7, then a
pair of horizontal lines certifies that the seesaw is base-bounded and Lemma 3.4 yields a
contradiction. Therefore, it remains to show that y5 ≥ y7.

For a contradiction, we suppose that y5 < y7. First note that, since v4 lies on the
segment v8v3, the (artificial) segment v5v3 intersects segment Cv4. Moreover, v5 and v3 lie
on the outer segments AC and BC, respectively. Hence, all inner vertices are contained in
the quadrangle Q := ABv3v5. Since y5 < y7 by assumption, it follows that y5 < y3.

Next, we show that y3 < 1/2. Consider the two black faces incident to v3, namely
T1 := v4v3C and T2 := v3v2B. Due to the flat angle assignment, v4 lies on the segment v2v3
and the triangle T ′

2 := v3v4B is strictly contained in the triangle T2. Consequently, it
holds that area(T1, D) = area(T2, D) > area(T ′

2, D). When we consider the segments s1
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and s2 on BC as the base segments of T1 and T ′
2, respectively, then their heights coincide.

Therefore, area(T1, D) > area(T ′
2, D) implies directly that s1 > s2, and hence, y3 < 1/2.

Since the quadrangle Q strictly contains seven facial triangles, it covers at least 7/9 of
the area in D. The area of Q can be expressed as the sum of the triangles Av3v5 with
base length y5 and height x3 and ABv3 with base length 1 and height y3. With the facts
that y5 < y3 < 1/2 and x3 = 1− y3, we obtain the following chain of inequalities:

7/9 ≤ 2 · area(Q) = y5x3 + y3 < 1/2 · (1− y3) + y3 = 1/2 · (1 + y3) < 3/4.

Since this is a contradiction, we have that y5 ≥ y7. This finishes Case 1.

Case 2: The contraction of two edges results in a graph with a unique flat angle
assignment as shown in Figure 3.8(a). This flat angle assignment leads to a drawing as in
Figure 3.8(b), which contains two seesaws. Due to its symmetry, we assume without loss
of generality that y5 ≥ y3. Hence, v6 induces a seesaw with base Av5 in the quadrangle
Av1v7v5; the base-boundedness is certified by a pair of horizontal lines. By Lemma 3.4, the
base-bounded seesaw is not equiareal and we obtain a contradiction.

v4

v1

v5

A B

v3

C

v6 v2

v7

(a) The unique angle assignment when two
edges are contracted.

v5 v3

C

A Bv1

v2
v6

v7

v4

(b) A drawing respecting the flat angle as-
signment; it contains two seesaws.

Figure 3.8: Illustration of Case 2 of the proof of Theorem 7.

Case 3: Contraction of three edges leads to a super graph of the octahedron graph as
depicted in the rightmost image of Figure 3.6. This graph has four white faces and three
inner vertices adjacent to white faces. Hence, there exists no valid flat angle assignment. ■

This finishes the section on non-area-universal graphs. We now turn our attention
to realizing drawings. In particular, we learned that high connectivity does not imply
area-universality. In the next section, we will see that it neither implies non-area-universality.
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3.2 Proving Area-Universality of Triangulations

In this section, we prove area-universality of triangulations with special vertex orders. We
present a sufficient criterion for area-universality that only requires the investigation of one
area assignment. The method is based on Theorem 4, where a real solution of the area
equation system characterizes the realizability of an area assignment of a triangulation.
We use the developed machinery to present area-universal families of triangulations. In
particular, we characterize the area-universality of accordion graphs, which we mentioned in
the introduction. Additionally, we analyze the area-universality of small triangulations on
up to ten vertices in Section 3.3. The results of this section also appear in [Kleist, 2018b].

The idea. We explain the general idea of our method by an example. Suppose we are
interested in finding a realizing drawing of a given area assignment A for the depicted
triangulation T in Figure 3.9(a). By Lemma 2.7, we may arbitrarily place the three outer
vertices v1, v2, v3 in a triangle of correct area. We set v1 = (0, 0), v2 = (1, 0), v3 = (1/2,ΣA).
To realize the area of v1v2v4, the vertex v4 is placed on a horizontal line of correct distance
to v1v2. Figure 3.9(b) illustrates the placement of the first four vertices. The x-coordinate x4

v3

v2v1

v4

v5

(a) A plane triangulation T .

v3

v2v1

v4

(b) Placement of v1, v2, v3, v4.

v3

v2v1

v5

v4

(c) Placement of a next vertex.

Figure 3.9: Illustration of the idea.

of v4 is the variable of our one-degree-of-freedom mechanism. The idea is to construct
an (almost) realizing vertex placement for every choice of x4. To do so, we insert one
vertex after the other at a unique position in dependence of x4. More specifically, choose
an x4 and consider v5. The vertex v5 has three neighbors, namely v1, v3, and v4, all of
which are already placed, see also Figure 3.9(c). There is a unique position for v5 to realize
the prescribed areas of the two incident triangles v1v5v3 and v1v4v5: For each of the two
triangles, the vertex v5 must lie on a specific line and thus, it is placed in their intersection
point. Since the intersection point may lie outside of v1v2v3, we do not ensure that the
vertex placement yields a crossing-free drawing. Note that T has a vertex order v5, . . . , vn
such that every vertex has at least three neighbors with a smaller index. Thus, for vi, we
may follow the same procedure and place it such that two new face areas are realized. In
particular, by placing each vertex vi, we satisfy two equations of aeq(T,A, F ′). In the end,
all but two equations are satisfied and we obtain an almost realizing vertex placement. By
Theorem 4, realizing one additional face area yields an A-realizing drawing. Thus, finding
an A-realizing drawing reduces to the question whether there exists a value for x4 such
that, in the end, the remaining two face areas are as prescribed. For area-universality, we
wonder: Is there a good position for x4 for every area assignment?
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To explore the described idea, we consider planar triangulations with the following
property: We say an order of the vertices (v1, v2, . . . , vn) together with a set of specified
neighbors pred(vi) ⊂ N(vi) for each vertex vi, so called predecessors, is a p-order if the
following conditions are satisfied:
– pred(vi) ⊂ {v1, v2, . . . , vi−1}, i.e., the predecessors of vi have an index < i,
– pred(v1) = ∅, pred(v2) = {v1}, pred(v3) = pred(v4) = {v1, v2}, and
– for all i > 4: |pred(vi)| = 3, i.e., vi has exactly three predecessors.

Note that pred(vi) specifies a subset of preceding neighbors. Moreover, a p-order is defined
for a planar graph independent of a drawing. We usually denote a p-order by P and state
the order of the vertices. The predecessors are then implicitly given by pred(vi). Note
that v1v2v3 and v1v2v4 form triangles by definition. Figure 3.10 illustrates a p-order of the
triangulation in Figure 3.9(a).

i pred(vi)
1 ∅
2 {v1}
3 {v1, v2}
4 {v1, v2}
5 {v1, v3, v4}
6 {v3, v4, v5}
7 {v3, v4, v6}
8 {v2, v4, v7}
9 {v2, v7, v8}

v3

v2v1

v4

v5

v6 v7

v9
v8

eP

Figure 3.10: A plane 4-connected triangulation with a p-order P. In the almost 3-
orientation OP exactly one edge eP , highlighted in red, is not oriented (Lemma 3.6).
In an almost realizing vertex placement constructed with P, all face areas are realized
except for the two faces incident to eP (Lemma 3.13).

With this definition at hand, we state the outline of the proof idea as follows:

For a plane triangulation T with a p-order (v1, v2, . . . , vn) and an area assignment A,
we pursue the following one-degree-of-freedom mechanism:

• Place the vertices v1, v2, v3 at positions realizing the area equation of the
face v1v2v3. Without loss of generality, we set v1 = (0, 0) and v2 = (1, 0).

• Insert v4 such that the area equation of the face v1v2v4 is realized; this is fulfilled
if y4 equals A(v1v2v4) while x4 ∈ R is arbitrary. The value x4 is our variable.

• Place each remaining vertex vi with respect to its predecessors pred(vi) such that
the area equations of the two incident face areas are respected; the coordinates
of vi are *nice* (rational) functions of x4.

• Finally, all area equations are realized except for two special faces fa and fb.
Moreover, the face area of fa is a *nice* (rational) function f of x4.

• If f is *super nice* (almost surjective), then there is a vertex placement D
respecting all face areas and orientations, i.e., D is a real solution of aeq(T,A, F ).

• By Theorem 4, D guarantees the realizability of A.
• If this holds for enough area assignments, then T is area-universal.
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3.2.1 Properties of p-orders

A p-order P of a plane triangulation T induces an orientation OP of the edges: For a
predecessor w of vi, we orient the edge from vi to w. We call OP the almost 3-orientation
induced by P since most of the vertices have an outdegree of 3. Usually, we use almost
3-orientations to illustrate p-orders as in Figure 3.10. Note that not all edges are oriented.

Recall that by Proposition 2.11, a triangulation is area-universal if and only if all of
its 4-connected components are area-universal. Hence, we may restrict our attention to
4-connected triangulations. Naturally, these triangulations have a minimum degree of 4.
The 4-connectedness in not essential for our method; however, at several occasions, it is
more convenient and gives a cleaner picture.

▶ Lemma 3.6. Let T be a planar triangulation with a p-order P specified by (v1, v2, . . . , vn).
Then the almost 3-orientation OP is acyclic and has a unique unoriented edge eP . Moreover,
if T has minimum degree 4, then eP is incident to vn.

Proof. By definition of OP if an edge (vi, vj) is oriented from vi to vj , then i > j. Hence
the orientation is acyclic. In particular, no edge is oriented in two directions.

The number of unoriented edges follows by double counting the edges of T . On the one
hand, by Euler’s formula, the number of edges in a triangulation is |E| = 3n− 6. On the
other hand, the number of oriented edges E⃗ is given by the sum of the outdegrees.

|E⃗| =
n

i=1

outdeg(vi) = 0 + 1 + 2 + 2 + 3(n− 4) = 3n− 7.

Hence, |E| − |E⃗| = 1 and thus there is exactly one edge eP without an orientation. Observe
that the last vertex vn in P has indegree 0. If T has minimum degree 4, then eP is incident
to vn; otherwise vn is a vertex of degree 3. ◀

Lemma 3.6 implies immediately that the p-order encodes all but one edge of the planar
graph. If T is 4-connected, the missing edge is incident to vn and we obtain the following:

Observation 3.7. Any p-order of a 4-connected planar triangulation encodes the planar
triangulation.

For a plane triangulation T with a p-order (v1, v2, . . . , vn), we denote the subgraph of T
induced by the set of vertices {v1, v2, . . . , vi} by Ti for i ∈ [n].

▶ Lemma 3.8. A planar triangulation T has a p-order if an only if there exists an edge e
such that T − e is 3-degenerate.

Proof. If T has a p-order P given by (v1, v2, . . . , vn), then T − eP is 3-degenerate since, by
the edge count of Lemma 3.6, every vertex vi in Ti − eP , i ∈ [n], has degree at most 3.

If e is an edge such that T−e =: T ′ is 3-degenerate, we construct a p-order reversely. We
set vi, i > 4, as a vertex of degree at most 3 in T ′−{vi+1, . . . , vn}. If T is 4-connected, then
by the edge count of Lemma 3.6 every vertex vi, i > 4, has degree 3 in Ti − e; these three
neighbors of vi specify its predecessors. If T is 3-degenerate, T is a stacked triangulation.
Then, the predecessors of vi are its neighbors in Ti. ◀

Lemma 3.8 implies that not every triangulation has a p-order; specifically, a triangula-
tion T with minimum degree 5, e.g. the icosahedron graph. After deletion of any edge e,
T − e has minimum degree 4 and is thus not 3-degenerate. Consequently, T has no p-order.
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Now, we focus on triangulations with fixed drawings, i.e., plane triangulations. Recall
that a drawing induces an orientation of each face.

Convention. We will follow the convention of stating inner faces counter clockwise and
the outer face clockwise. This convention enables us to switch between different plane
graphs of the same planar graph without changing the order of the vertices.
▶ Lemma 3.9. Let T be a plane 4-connected triangulation with a p-order P specified by
(v1, v2, . . . , vn). For i ≥ 4,

• Ti has one 4-face and otherwise only triangles,
• Ti+1 can be constructed from Ti by inserting vi+1 in the 4-face of Ti, and
• the three predecessors of vi can be named (pf, pm, pl) such that pfpmvi and pmplvi are

(counter clockwise inner and clockwise outer) faces of Ti.

Proof. We prove this statement by induction. For the induction base, note that T4 has
three faces: the triangle v3v2v1, the triangle v1v2v4, and the 4-face v1v4v2v3. Figure 3.11(a)
depicts T4 for the case that v3v2v1 is the outer face. By 4-connectedness, v3 and v4 do not
share an edge. With this notation, the inner faces are oriented counter clockwise and the
outer face is oriented clockwise – independent of the choice of the outer face.

v3

v2v1

v4

(a) Induction base: T4

pf

pl

vi+1
pm

vfvm

vi

(b) Induction step where vi+1

is inserted in an inner 4-face.

pfpm

pl

vi+1

(c) Induction step where vi+1

is inserted in an outer 4-face.

Figure 3.11: Illustration of Lemma 3.9 and its proof.

Now we consider the induction step and insert vi+1 in Ti. Since T is 4-connected, the
vertex vi+1 can only be placed in the unique 4-face f of Ti. Clearly, any three vertices
of f are consecutive on the boundary cycle of f . Hence, the predecessors of vi+1 form a
path of length three along f . We define pm as the middle vertex of this path. Naming the
remaining predecessors by pf and pl, pfpmvi+1 and pmplvi+1 are (not necessarily correctly
oriented) triangles in Ti+1. Since T is 4-connected, these triangles of Ti+1 are faces in T
and thus also in Ti+1. Furthermore, pfvi+1plw forms a 4-face of Ti+1 where w is the vertex
of f which is not in pred(vi+1).

For the correct orientation we distinguish two cases: If f is an inner face, we define pf
as the counter clockwise first vertex (of the path of predecessors in f) and pl as the counter
clockwise last vertex. Figure 3.11(b) illustrates this definition for the case that f is an inner
face. Otherwise, f is the outer face and we define pf as the clockwise first vertex and pl
as the clockwise last vertex. This case is displayed in Figure 3.11(c). Then, pfpmvi+1 and
pmplvi+1 are counter clockwise faces in Ti+1 if and only if they are inner faces of T . ◀

Remark. Note that for every (non-equivalent) plane graph T ′ of T , the three predecessors
(pf, pm, pl) of vi in T ′ and T coincide.
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The second property of Lemma 3.9 implies that there exist exponentially many distinct 4-
connected planar triangulations with a p-order. Note that we prove the stronger statement
of different planar triangulations; each of these may have up to linearly many plane
triangulations.

▶ Proposition 3.10. The number of 4-connected planar triangulations on n vertices with
a p-order is Ω(1/n · 2n).

Proof. First, we show that a 4-connected triangulation T on n vertices has at most 3n · 2n−1

different p-orders. We consider every p-order in the reverse order (vn, ..., v1). As a planar
graph, T has at most 3n edges which may serve as the unique unoriented edge. Its deletion
yields a 4-face. By Lemma 3.9, in every p-order the vertex vi, i ≥ 5, is incident to a 4-face
in Ti. Removing vi from Ti yields a graph Ti−1 that has again a unique 4-face. By Lemma 3.8,
vi is a vertex of degree 3. Consequently, all neighbors of vi in Ti are the predecessors of vi.
Let f = x1y1y2x2 be a 4-face of Ti. Consider Fig-
ure 3.12 and observe that two adjacent vertices
of degree 3 on f certify a separating triangle, un-
less n ≤ 5: Since all other faces of Ti are triangles,
every pair of adjacent vertices has a common neigh-
bor outside of f . If xi has degree 3, the common
neighbor of xiyi and x1x2 coincides; we call it z.
Thus, zy1y2 is a separating triangle unless Ti con-
tains only these five vertices. Therefore, by the
4-connectivity, the 4-face in Ti has at most two
vertices of degree 3 and thus there are at most
two choices for vi when i > 5. For i = 5, the
choices are upper bounded by the four vertices of
the 4-face and for i ≤ 4, by another four options;
two for v1, v2 and two for v3, v4.

x1

y1

y2

x2z

Figure 3.12: Two adjacent ver-
tices of degree three in a 4-face
certify a separating triangle.

Consequently, for a specific unoriented edge, the number of p-orders does not exceed
2n−5 · 4 · 4 = 2n−1. This makes a total of at most 3n · 2n−1 different p-orders for a
triangulation.

In order to build a 4-connected triangulation with a p-order v1, v2, . . . , vn, we specify
the middle predecessor vm of vi for 5 ≤ i ≤ n from the 4-face of Ti−1. By Lemma 3.9,
the remaining two predecessors of vi are the two neighbors of vm in the 4-face. Thus, we
have four choices for vm in each step i > 5. For i = 5, neither v3 nor v4 can serve as the
middle predecessor since this results in a separating triangle. Thus, we obtain at least
2 · 4n−5 different p-orders. By the above observation at most 3n · 2n−1 belong to the same
triangulation. Hence there are Ω(1/n · 2n) 4-connected planar triangulation with a p-order
on n vertices. ◀

We are now ready to construct almost realizing vertex placement.

3.2.2 Construction of Almost Realizing Vertex Placements

Let T be a plane triangulation with an area assignment A. We consider the extension of A
to the set of all faces F . To account for our convention of stating the outer face in clockwise
order, we define the area assignment of the outer face fo as

A(fo) := −ΣA.
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Then det(fo) evaluates to ΣA. Moreover, without mentioning it any further, we consider
usually 1/2A-realizing drawings in order to not deal with the factors. That is, if we say
a triangle has area a, it will have area 1/2a. However, as long as we scale all face areas
consistently it has no further implications by Lemma 2.1.

We say a vertex placement D of T is almost realizing the area assignment A if there
exist two faces fa and fb such that D satisfies the equation system aeq(T,A, F̃ ) of the
set F̃ := F \ {fa, fb}. In particular, we insist that the orientation and area of each face,
except for fa and fb be correct, i.e., the corresponding determinant has the correct sign and
value. Note that an almost realizing vertex placement may not correspond to a crossing-free
straight-line drawing. Nevertheless, we want to obtain an A-realizing drawing from an
almost realizing vertex placement. Theorem 4 guarantees that the vertex placement is an
A-realizing drawing of T if additionally the area of fa is respected since then, the equation
system aeq(T,A, F − fb) is fulfilled. In other words, the following statement characterizes
when an almost realizing vertex placement is also a realizing drawing.

Observation 3.11. Let T be a plane triangulation with an area assignment A and let D be
an almost realizing vertex placement where all faces except fa and fb are realized. Then D
yields an A-realizing drawing if and only if the face fa has area A(fa) in D.

For triangulations with p-orders, we construct almost realizing vertex placements based
on the following lemma.

▶ Lemma 3.12. Let a, b ≥ 0 and let qf, qm, ql be three vertices with a non-collinear
placement in the plane. Then there exists a unique placement for vertex v such the counter
clockwise triangles qfqmv and qmqlv fulfill the area equations for a and b, respectively.

v

qf

qm

ql

a

b

`b

`a

(a) If ql, qm, ql are not collinear, then the
intersection point of ℓa and ℓb is the unique
position of v realizing the face areas a and b.

qf
qm

ql

(b) If ql, qm, ql are collinear, then there may
be either no or infinitely many positions for v
realizing the face areas a and b.

Figure 3.13: Illustration of Lemma 3.12 and its proof.

Proof. To realize the areas, v must be placed on a specific line ℓa and ℓb, respectively, as
depicted in Figure 3.13(a). Note that ℓa is parallel to the segment qfqm and ℓb is parallel
to the segment qmql. Consequently, ℓa and ℓb are not parallel and their intersection point
yields the unique position for vertex v. The coordinates (x, y) of v are specified by the two
area equations

Det(qf, qm, v)
!
= a

Det(qm, ql, v)
!
= b.
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Solving them for (x, y) yields the following expressions, where we denote the coordinates
of qi by (xi, yi):

x = xm +
a(xl − xm)− b(xm − xf)

xf(ym − yl) + xm(yl − yf) + xl(yf − ym)
(3.1)

y = ym +
a(yl − ym)− b(ym − yf)

xf(ym − yl) + xm(yl − yf) + xl(yf − ym)
(3.2)

This finishes the proof of the lemma. ◀

Note that if ℓa and ℓb are parallel and do not coincide, then there is no position for v
realizing the face areas of the two triangles. If the lines are parallel and coincide, then all
points on the line are realizing the two face areas, as depicted in Figure 3.13(b). Based on
Lemma 3.12, we obtain our key lemma.

Before we are able to state it, we introduce the concept of algebraically independent area
assignments. A set of real numbers {a1, a2, . . . , ak} is algebraically independent over Q if for
each polynomial p(x1, x2, . . . , xk) with coefficients from Q, different from the 0-polynomial,
it holds that p(a1, a2, . . . , ak) ̸= 0. We say an area assignment A of a plane graph G is
algebraically independent if the set {A(f)|f ∈ F ′} is algebraically independent over Q.
Note that then for all f0 ∈ F ′ it holds that {A(f)|f ∈ F ′ \ f0} ∪ {ΣA} is algebraically
independent. For a plane graph G, let A denote the set of area assignments with a fixed
total area which is algebraically independent over Q. We denote the subset of A consisting
of all algebraically independent area assignments by AI .

▶ Lemma 3.13. Let T be a plane 4-connected triangulation with a p-order P (v1, v2, . . . , vn).
Let fa and fb denote the two faces incident to the unoriented edge eP in OP , F̃ := F \{fa, fb},
and f0 := v1v2v3. Then, for area assignment A ∈ AI there exist a finite set B(A) ⊂ R, ratio-
nal functions xi(·,A), yi(·,A), and f(·,A), and a triangle △ such that for all x4 ∈ R \B(A),
there exists a vertex placement D(x4) of T with the following properties:

(i) f0 coincides with the triangle △,
(ii) the vertex placement D(x4) is almost realizing, i.e., it is a real solution of aeq(T,A, F̃ ),
(iii) every vertex vi has the coordinates


xi(x4,A), yi(x4,A)


, and

(iv) the area of face fa in D(x4) is given by f(x4,A).

Proof. Consider a fixed but arbitrary algebraically independent area assignment A ∈ AI .
We think of A as an abstract area assignment, where the prescribed areas are still variables.
The idea of the proof is simple. Given a placement of the vertices v1, . . . , vi−1 we place vi
with the help of Lemma 3.12. To do so, we need to guarantee that the predecessors are not
collinear.

Without loss of generality, we assume that the first two triangles read as v3v2v1 and
v1v2v4 such that this order in counter clockwise for inner and clockwise for outer faces. For
simplicity, we can think of f0 as being the outer face. However, the construction works in
all settings.

We place v1 at (0, 0), v2 at (1, 0) and set y3 := −A(f0); here it turns out to be convenient
that we have defined the area of the outer face fo as A(fo) := −ΣA. We use the freedom to
specify x3 at a later state. This guarantees property (i). Furthermore, for a := A(v1v2v4)
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we place v4 at (x4, a). Consequently, the face area of the triangle v1v2v4 is realized for all
choices of x4.

For property (ii), we show that for all but finitely many values of x4, we obtain an
almost A-realizing vertex placement D(x4). By Lemma 3.9, the three predecessors of vi can
be named (pf, pm, pl) such that pfpmvi and pmplvi are counter clockwise inner or clockwise
outer faces of T . By Lemma 3.12, the vertex coordinates of vi follow directly from its three
predecessors pf, pm, pl in the p-order – unless they are collinear. Note that the predecessors
are collinear if and only if the denominators of Equations (3.1) and (3.2) vanish.

Assume for now, that we are considering an unproblematic position for x4 such that
no triple of predecessors becomes collinear. For i = 5, . . . , n, we place vi according to
Lemma 3.12 and realize two new faces. Together with the realized face area of the triangles
v1v2v4 and v1v2v3, the total number of realized faces is 2(n− 4) + 2 = 2n− 6, i.e., all but
two face areas are realized and D(x4) is an almost realizing vertex placement. Let B(A)
denote the set of all x4 where a triple of predecessors becomes collinear. We postpone to
show that B(A) is finite. It is sufficient to show that the denominator of each vertex is not
the 0-polynomial. We prove this simultaneously with property (iii).

Now, we show (iii). For each vertex vi, we wish to represent its coordinates (xi, yi)
in D(x4) by rational functions with a common denominator. Specifically, we aim for
polynomials N x

i ,N
y
i ,Di in x4, which are different from the 0-polynomial, such that

xi =
N x

i

Di
and yi =

N y
i

Di
.

We show the existence of such a representation by induction. Hence assume that we have
such a representation of v1, . . . , vi−1. Note that by our placement of the first vertices we
can define Di := 1 for all i ∈ [4].

Consider a vertex vi with i > 4. By Lemma 3.9, we denote the three predecessors
of vi by pf, pm, pl such that the triangles pfpmvi and pmplvi are counter clockwise inner or
clockwise outer faces of T ; we call the prescribed face areas of the two triangles ai and bi,
respectively. Equations (3.1) and (3.2) of Lemma 3.12 yield the coordinates of vertex vi
in D(x4). As we will also aim for the fact that the representation is crr-free, we are already
here a little more careful; two polynomials are crr-free if they have no common real roots.

For the later argument, it is convenient to consider v5 explicitly. By 4-connectedness,
neither v3 nor v4 are the middle predecessor of v5. Thus, by symmetry, we may assume
that the predecessors of v5 are pred(v5) = {v1, v4, v3}. Equations (3.1) and (3.2) simplify to

x5 =
a5x4 + b5x3
y3x4 − ax3

and y5 =
aa5 + b5y3
y3x4 − ax3

. (3.3)

Note that for x3 = 0, the denominators of x5 and y5 would vary in a crr-free representation.
Thus, for x3 ̸= 0, we define N x

5 := a5x4 + b5x3, N y
5 := aa5 + b5y3, D5 := y3x4 − ax3.

Clearly, none of them is the 0-polynomial. Moreover, due to the 4-connectedness none of
the following vertices have v1 as a predecessor. Consequently, N y

2 is the only 0-polynomial
which may belong to a predecessors of vi for i > 5.

Next we consider the induction step for vertex vi with i > 5. Equations (3.1) and (3.2)
of Lemma 3.12 yield the coordinates of vertex vi in the almost realizing vertex place-
ment. By assumption, Df · Dm · Dl is not the 0-polynomial, since none of its factors is
the 0-polynomial. Therefore, we may expand the right term by Df · Dm · Dl. Using the
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representations xj = Nx
j/Dj and yj = N y

j/Dj for j ∈ {f,m,l} yields the following identities:

xi =
N x

m

Dm
+

Dm(aiN x
l Df + biN x

f Dl)− (ai + bi)N x
mDfDl

D̃i

(3.4)

yi =
N y

m

Dm
+

Dm(aiN y
l Df + biN y

f Dl)− (ai + bi)N y
mDfDl

D̃i

(3.5)

where D̃i := N x
f (N y

mDl −N y
l Dm) +N x

m(N y
l Df −N y

f Dl) +N x
l (N y

f Dm −N y
mDf). (3.6)

Note that the denominators of xi and yi are identical and the numerators are symmetric
in the x- and y-coordinates of their predecessors, respectively. Hence, for ◦ ∈ {x, y}, we
define N ◦

i to unify the notation.
We wish to argue that D̃i is not the 0-polynomial. Note that every N y

j with j ∈ {f,m,l}
appears in at most two summands of D̃i. Thus, the fact that there is only one polynomial,
namely N y

2 , which might be the 0-polynomial guarantees that one summand of D̃i does not
vanish. Here we use the fact that v1 is no predecessor of any vi with i > 5 and that the
polynomials N x

i ,N
y
i ,Di are not the 0-polynomial for i > 3.

We now expand to find the desired representations of xi and yi. The denominator is the
least common multiple of Dm and D̃i, none of which are the 0-polynomial. In particular,
we define Ei and Fi to be two crr-free polynomials such that

DmEi = D̃iFi. (3.7)

In Equations (3.4) and (3.5), we expand the left summand by Ei and the right summand
by Fi. Then the coordinates of vertex vi can be expressed by

N ◦
i := FiDm(aiN ◦

lDf + biN ◦
fDl) +N ◦

m(Ei − (ai + bi)DfDlFi) (3.8)

Di := DmEi = D̃iFi (3.9)

Thus, each coordinate of vi is a rational function in x4, where the coefficients are polynomials
in A. Due to the algebraically independent area assignment, the coefficients cannot vanish
and Di is not the 0-polynomial. Using the fact that Df · Dm · Dl is not the 0-polynomial,
any N ◦

j with j ∈ {f,m,l} which is not the 0-polynomial, certifies that N ◦
i is not the

zero polynomial. Recall that only for one j ∈ {f,m,l}, namely if j = 2, N y
j may be the

0-polynomial. This proves properties (ii) and (iii).

Moreover, (iii) immediately implies (iv): The area of face fa can be expressed as the
determinant of its three vertex coordinates. Thus, if the vertex coordinates are rational
functions in x4, so is the area of face fa. ◀

As stated in Lemma 3.13 (iv), for every area assignment, the area of face fa in D(x4)
can be expressed as a rational function f(x4,A). We call f the (abstract) last face function
of T and interpret it as a rational function in x4 where the coefficients depend on A. Due
to the algebraic independence, it holds that:
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Observation 3.14. For all A ∈ AI , the degree of the numerator polynomials of the last
face function f(x4,A) coincide. Likewise, the degree of the denominator polynomials agree.

Thus, we define the degrees of the last face function f(x4,A) with respect to some fixed
algebraic independent area assignment A. Let d1(f) and d2(f) denote the degree of the
numerator and denominator polynomial of f in x4, respectively. In fact, the degrees do
not only coincide for all algebraically independent area assignments, but also for different
embeddings of the plane graph.

Let G be some plane graph of the planar graph G∗. By [G] we denote the set (of
equivalence classes) of all plane graphs of G∗.

▶ Proposition 3.15. Let T be a plane 4-connected triangulation with a p-order P. Then
for every plane graph T ′ ∈ [T ], the last face functions f and f′ constructed by Lemma 3.13
with respect to P have the same degrees, i.e., di(f) = di(f

′) for i ∈ [2].

Proof. We assume that v1v2v3 is the clockwise outer face of T and w1w2w3 is the clockwise
outer face of T ′. Then v1v2v3 is a counter clockwise inner face of T ′ and w1w2w3 is a counter
clockwise inner face of T . Compared to T , the orientation of the faces v1v2v3 and w1w2w3

in T ′ changes; while the orientation of all other faces remains: This is easily seen when
considering the drawings on the sphere, which are obtained by one-point compactification
of some point in the outer face. Due to the 3-connectedness and Whitney’s uniqueness
theorem, the drawings T and T ′ on the sphere are equivalent [Whitney, 1933]. Moreover,
in the drawing on the sphere v1v2v3 and w1w2w3 are counter clockwise. Then choosing
one face as the outer face and applying a stereographic projection of the punctured sphere
where a point of the outer face is deleted, results in a drawing in the plane where all faces
remain counter clockwise while the outer face becomes clockwise.

v1

v2

v3

w2

w3w1

w3w1

w2

v1

v2

v3

x

x

T T ′

Figure 3.14: Illustration of Proposition 3.15 and its proof.

Let A be an algebraically independent area assignment of T . The outer face v1v2v3
is assigned to the total area −ΣA and w1w2w3 to some value c. For T ′, we consider
the area assignment A′ where all area assignments remain but w1w2w3 obtains the total
area −ΣA and v1v2v3 some value c. Clearly, A′ is algebraically independent since A is.
Fortunately, the negative sign accounts for the fact that the orientation changes. Thus,
when constructing realizing drawings by Lemma 3.13, T and T ′ are treated by the very
same procedure. Therefore, f′ can be obtained from f by swapping all occurrences of c
and −ΣA. Consequently, the degrees of the denominator and numerator polynomials of
the last face functions f and f′ coincide. ◀

If our method is sufficient to prove area-universality of one plane graph T , then Propo-
sition 3.15 allows us to show area-universality for all plane graphs of [T ].
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Let A denote the set of all area assignment with a total sum c, where c is transcendental.
As the penultimate ingredient, we show that the subset of algebraically independent area
assignments AI is dense in A.

▶ Lemma 3.16. AI is dense in A.

Proof. We prove this claim by induction and show that the set of algebraically independent
k-tuples is dense. We build our proof upon the fact that the algebraic closure of a countable
field is countable [Rotman, 2015, p. 343, Cor. B-2.41].

For the induction base, we consider k = 1. Since the algebraic closure of Q is countable,
its complement R \Q is dense in R.

Now we consider the induction step from k − 1 to k. In order to show that the
algebraically independent k-tuple are dense, it suffices to show that for each a in Rn

and each ε-ball B of a, there exists an algebraic independent b in B. By induction
hypothesis, we find a (k − 1)-tuple (b2, . . . , bk) with algebraically independent entries, that
is arbitrarily close to (a2, . . . , ak). Let K denote the algebraic closure of Q(b2, ..., bn),
the smallest field containing Q and {b2, . . . , bk}. As a rational function field over Q, the
field Q(b2, ..., bn) is countable. Thus, since the algebraic closure of a countable field is
countable, K is countable. Consequently, in each open neighborhood of a1, there exists
a b1 in the complement of K. Therefore, in each ε-ball of a = (a1, . . . , an) there exists an
algebraic independent b = (b1, . . . , bn). ◀

3.2.3 Almost Surjectivity and Area-Universality

In this subsection, we present a sufficient condition to guarantee area-universality. Let A
and B be sets. A function f : A → B is almost surjective if all but finitely many values
of B are attained, i.e., there exists a finite set B1 ⊂ B such that f(A) = B \ B1. The
central theorem states that almost surjectivity implies area-universality.

■ Theorem 8. Let T be a plane 4-connected triangulation with a p-order P. If the last
face function f constructed by Lemma 3.13 is almost surjective for all area assignments
in AI , then T is area-universal.

Proof. By Corollary 1, it suffices to show that an arbitrary but fixed area assignment A ∈ A
of T is realizable. Due to Proposition 2.13 and the fact that AI is dense in A by Lemma 3.16,
we may assume without loss of generality that A is contained in AI .

Let (v1, . . . , vn) be the order of the p-order and f0 be the triangle formed by v1, v2, v3.
As before let A+ := A2ΣA|f0→A(f0) denote the set of area assignments of T whose total area
does not exceed 2ΣA and in which the face f0 is assigned to A(f0). Since A is algebraically
independent, it holds that A(f0) > 0. By Proposition 2.15, A is realizable if every open
neighborhood of A in A+ contains a realizable area assignment.

Let fa and fb denote the faces incident to eP and al := A(fa), bl := A(fb). Lemma 3.13
guarantees the existence of a finite set B such that for all x4 ∈ R \ B, there exists an almost
A-realizing vertex placement D(x4). Recall that the area of fa and fb is not necessarily
realized in D(x4). By Observation 3.11, we aim for an almost realizing vertex placement
where additionally the area of fa is realized.

By assumption, f is almost surjective. Thus for every ε with 0 < ε < 1, there
exists x̃ ∈ R such that al ≤ f(x̃) ≤ al + ε. Since B is finite, we can also find x̃ ∈ R \ B
with al ≤ f(x̃) ≤ al + ε. Therefore, the face fa has an area between al and al + ε in the
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almost realizing vertex placement D(x̃) of A. (If fa and fb are both inner faces, then the
face fb has an area between bl − ε and bl. Otherwise, if fa or fb is the outer face, then the
total area changes and face fb has an area between bl and bl + ε.) Thus, for some A′ in the
ε-neighborhood of A in A+, D(x̃) is a real solution of aeq(T,A′, F \ {fb}) and Theorem 4
ensures that A′ is realizable. Consequently, in every neighborhood of A in A+ there exists
a realizable area assignment and hence, by Proposition 2.15, A is realizable. It follows that
T is area-universal. ■

In order to prove the area-universality of our considered graphs, we use the following
sufficient condition for almost surjectivity. We denote the degree of a polynomial p by |p|. Let
p, q : R → R be real polynomials and Q the set of real roots of q. We say the polynomials
p and q are crr-free if they do not have common real roots. For a rational function
f(x) := p(x)

q(x) , we define the max-degree of f as the maximum degree of the numerator and
denominator polynomial, i.e., max-deg(f) := max{|p|, |q|}. Moreover, we say f is crr-free
if p and q are.

▶ Lemma 3.17. Let p, q : R → R be real polynomials and Q the set of real roots of q. If
the rational function f : R\Q → R, f(x) = p(x)

q(x) is crr-free and has odd max-degree, then f
is almost surjective.

Proof. Let c ∈ R\{0} and consider g : R → R, g(x) := p(x)−cq(x). The leading coefficients
of the polynomials p and c · q cancel for at most one choice of c. For all other values, the
degree of g is |g| = max{|p|, |q|} and by assumption odd. Consequently, as a real polynomial
of odd degree, g has a real root x̃. If q(x̃) ̸= 0, then

g(x̃) = 0 ⇐⇒ f(x̃) = c.

Suppose q(x̃) = 0. Then, q(x̃) = 0 = g(x̃) = p(x̃). Hence x̃ is a zero of both p and q.
However, this is a contradiction to the assumption that p and q are crr-free. ◀

Combining Lemma 3.17 with Theorem 8, we obtain our final result:

■ Corollary 9. Let T be a plane triangulation with a p-order P. If the last face function f
of T is crr-free and has odd max-degree for one algebraically independent area assignment,
then every plane graph in [T ] is area-universal.

Proof. If the last face function f of T has odd max-degree for some A ∈ AI , then this
holds true for all area assignments in AI by Observation 3.14. Consequently, Lemma 3.17
guarantees that the last face function f(·,A) is almost surjective for all A ∈ AI . Thus,
Theorem 8 implies the area-universality of T .

For every other plane graph T ′ ∈ [T ], the last face function f′ has also odd max-degree
by Proposition 3.15. Here we used the fact that f′ can be obtained from f by exchanging two
algebraically independent numbers. By the same reasoning, f′ is also crr-free. Thus, f′ is
crr-free and has odd max-degree and the above argument shows that T ′ is area-universal. ■

In order to apply Corollary 9, we need to understand the last face function. In particular,
we must trace the coordinate polynomials and their degrees.
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3.2.4 Analyzing the Coordinates and their Degrees

Throughout this section, let T be a plane 4-connected triangulation with p-order P specified
by (v1, v2, . . . , vn) and A an algebraically independent area assignment. We use Lem-
ma 3.13 to obtain an almost realizing drawing D(x4) and Lemma 3.17 to guarantee almost
surjectivity of the last face function f. Thus, we are interested in the max-degree of f.

As shown in Lemma 3.13, we can represent the coordinates (xi, yi) of each vertex vi
and the last face function by rational functions. Specifically, we have a representation of xi
and yi by polynomials N x

i ,N
y
i ,Di in x4 such that

xi =
N x

i

Di
and yi =

N y
i

Di
.

Due to Lemma 3.17, we also aim for the fact that N x
i and N y

i are crr-free with Di

and are interested in their degrees. Recall that we denote the degree of a polynomial p
by |p|. Moreover, we say that a polynomial p(x1, . . . , xk) depends on xj if and only if
p(x1, . . . , xj , . . . , xk) ̸= p(x1, . . . , 0, . . . , xk). Equations (3.8) and (3.9) show that

Observation 3.18. For i ∈ {4, . . . , n}, N ◦
i depends on ai and bi, whereas Di does not.

In order to study their degree, we define d◦i := |N ◦
i | − |Di|.

▶ Lemma 3.19. Let vi be a vertex with the three predecessors pf, pm, pl in P. For the
vertex coordinates of vi in D(x4), it holds that the (not necessarily crr-free) polynomials
N ◦

i ,Di, D̃i, defined in Equations (3.6), (3.8) and (3.9), have the following degrees:

|N ◦
i | = |Dm|+ |Df|+ |Dl|+ |Fi|+max


d◦l, d

◦
f, d

◦
m +max{|Ei| − |Df| − |Dl| − |Fi|, 0}


|Di| = |Dm|+ |Ei| = |D̃i|+ |Fi|

|D̃i| = |Df|+ |Dm|+ |Dl|+max

dxf +max{dym, dyl}, dxm +max{dyl, dyf}, dxl +max{dyf, dym}


Proof. We need to determine the degrees of the polynomials in Equations (3.6), (3.8)
and (3.9). Here we use the fact that for all polynomials p, q different from the 0-polynomial
it holds |p · q| = |p|+ |q|. With the convention that |0| = −∞, the above identity also holds
for the 0-polynomial. Moreover, unless |p| = |q| and the leading coefficients are canceling,
it holds that |p+ q| = max{|p|, |q|}. Since the area assignment is algebraically independent,
cancelation of leading coefficients does not occur. ◀

However, in order to apply Lemma 3.17, we also need that N x
i and N y

i are crr-free
with Di. In order to guarantee this, we are interested in sufficient conditions.

▶ Lemma 3.20. Let ◦ ∈ {x, y}. Suppose N ◦
j and Dj are crr-free for all j < i. Then, N ◦

i

and Di have a common zero z if and only if the following properties hold
- z is a zero of Ei

- z is independent of ai and bi
and additionally

(i) z is a zero of at least two of {Df,Dm,Dl} or
(ii) z is a zero of both of {N ◦

lDm −N ◦
mDl,N ◦

fDm −N ◦
mDf}.

Due to their technicality, we have moved the proofs of Lemma 3.20 and of the two
following lemmas to Section 3.2.5. We continue to study a more specific situation.
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Stacking on same angle Recall that, by Lemma 3.9, vertex vi is inserted in the 4-face
of Ti−1. In this section, we analyze the situation that in the p-order several vertices are
repeatedly inserted in the same angle. In particular, we say vertices vi+1 and vi+2 are
stacked on the same angle if their first and last predecessors are identical and the middle
predecessor of vi+2 is vi+1. Specifically, vi+1 and vi+2 have predecessors (pf, vi, pl) and
(pf, vi+1, pl), respectively. Figure 3.15 illustrates two vertices which are stacked on the
same angle.

pl

vi
vi+1

vi+2

pf

Figure 3.15: Vertices vi+1 and vi+2 are stacked on the same angle.

▶ Lemma 3.21. If vi+1 and vi+2 are stacked on the same angle in the p-order P and if
the polynomials N ◦

i+1 and Di+1 are crr-free, then it holds that

Ei+2 = Ei+1 − (ai+1 + bi+1)DfDlFi+1

Fi+2 = Fi+1.

For the proof of Lemma 3.21, we refer to Section 3.2.5. For the degrees of the coordinate
polynomials of vi+2, we obtain the following expressions.

▶ Lemma 3.22. If vi+1 and vi+2 are stacked on the same angle in the p-order P, and if
the polynomials N ◦

i+1,Di+1, and N ◦
i+2, Di+2 are crr-free, then for ◦ ∈ {x, y}, it holds that

|N ◦
i+2| = |Di+1|+M + d◦i+1

|Di+2| = |Di+1|+M

with M := max{|Ei+1|, |Df|+ |Dl|+ |Fi+1|)}. In particular, it holds that d◦i+2 = d◦i+1.

The proof of Lemma 3.22 is presented in Section 3.2.5.
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3.2.5 Proofs of the Degree-Lemmas

In this section, we present the pending proofs of the previous section.
▶ Lemma 3.20. Let ◦ ∈ {x, y}. Suppose N ◦

j and Dj are crr-free for all j < i. Then, N ◦
i

and Di have a common zero z if and only if the following properties hold
- z is a zero of Ei

- z is independent of ai and bi
and additionally

(i) z is a zero of at least two of {Df,Dm,Dl} or
(ii) z is a zero of both of {N ◦

lDm −N ◦
mDl,N ◦

fDm −N ◦
mDf}.

Proof. The proof consists of two directions. For both recall the formulas for N ◦
i and Di given

in Equations (3.8) and (3.9). Suppose that N ◦
i and Di have a common zero z. We think

of z as an algebraic function of (a, a5, b5, . . . , ai, bi). By Observation 3.18, the variables ai
and bi do not occur in Di. Consequently, z does not depend on ai and bi, and is thus
algebraically independent of ai and bi. Since Di = DmEi, by Equation (3.9), z is a zero of
at least one of Dm or Ei. We distinguish three cases.

Case 1: If z is a zero of both, Dm and Ei, then Equation (3.8) simplifies to

N ◦
i [z] = −(ai + bi)(N ◦

mDfDlFi)[z] = 0.

By the assumption of being crr-free, z is neither a zero of N ◦
m nor Fi. Hence, z is a zero

of DfDl. In conclusion, z is a zero of Ei, Dm as well as Df or Dl (or both). In other words,
condition (i) is fulfilled.

Case 2: If z is a zero of Dm and not of Ei, then Equation (3.8) reads as

N ◦
i [z] = (N ◦

m(Ei − (ai + bi))DfDlFi)[z] = 0.

Since z, ai, bi are algebraically independent, N ◦
i [z] vanishes on each summand. However, z

is not a zero of Ei by assumption of Case 2 and z is not a zero of N ◦
m since Dm and N ◦

m are
crr-free. Thus, we arrive at a contradiction and this case does not occur.

Case 3: If z is a zero of Ei and not of Dm, z is not a zero of Fi; since Ei and Fi are crr-free.
Consequently, Equation (3.8) implies (Dm(aiN ◦

lDf + biN ◦
fDl)− (ai + bi)N ◦

mDfDl)[z] = 0.
Reordering for ai and bi results in

aiDf(DmN ◦
l −N ◦

mDl) + biDl(DmN ◦
f −N ◦

mDf)

[z] = 0

As argued above, z, ai, and bi are algebraically independent, and thus z is a zero of both
summands. If z is a zero of Df, then it is also a zero of DlDmN ◦

f . However, by assumption
and crr-freeness, it is not a zero of DmN ◦

f , and thus it is a zero of Dl. Likewise, if z is a
zero of Dl then it follows that z is also a zero of Df. Hence, (i) is satisfied.

Thus, in the following we may assume that z is not a zero of DfDl, but of both
polynomials (N ◦

lDm −N ◦
mDl) and (N ◦

fDm −N ◦
mDf). This is condition (ii).

It remains to show the reverse direction. Since z is a zero of Ei, it follows that z is a
zero of Di. By construction of our cases, z is a zero of N ◦

i . Alternatively, it is easy to check
that z is also a zero of N ◦

i as given in Equation (3.8) in all cases. Consequently, z is a zero
of both N ◦

i and Di. ◀
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▶ Lemma 3.21. If vi+1 and vi+2 are stacked on the same angle in the p-order P and if
the polynomials N ◦

i+1 and Di+1 are crr-free, then it holds that

Ei+2 = Ei+1 − (ai+1 + bi+1)DfDlFi+1

Fi+2 = Fi+1.

Proof. Note that the irreducibility of Ei+1 and Fi+1 directly implies the irreducibility of
Ei+2 and Fi+2: Since Fi+2 = Fi+1, every zero of Fi+2 is a zero of Fi+1. Therefore, z is a
zero of Ei+2 and Fi+2 if and only if z is a zero of Ei+1 and Fi+1. It remains to show that

Ei+2Di+1 = Fi+2D̃i+2.

To do so, we will show that D̃i+1 is a factor of D̃i+2. By Equation (3.6), we obtain the
following formula for D̃i+2:

D̃i+2 =N x
i+1(N y

l Df −N y
f Dl) +N y

i+1(N
x
f Dl −N x

l Df) +Di+1(N x
l N y

f −N x
f N y

l )

The last summand is clearly divisible by Di+1 and, hence by D̃i+1. Therefore we focus on
the first two summands, in which we replace N ◦

i+1 with the help of Equation (3.8) by

N ◦
i+1 = Fi+1Di(ai+1N ◦

lDf + bi+1N ◦
fDl) +N ◦

i Ei+2.

Replacing N ◦
i+1 by the above expressions and using Equation (3.6) for D̃i+1, we obtain:

N x
i+1(N y

l Df −N y
f Dl) +N y

i+1(N
x
f Dl −N x

l Df)

=(Fi+1Di[ai+1N x
l Df + bi+1N x

f Dl] +N x
i Ei+2)(N y

l Df −N y
f Dl)

+(Fi+1Di[ai+1N y
l Df + bi+1N y

f Dl] +N y
i Ei+2)(N x

f Dl −N x
l Df)

=DfDlDiFi+1(N y
l N x

f −N y
f N x

l )(ai+1 + bi+1)

+ Ei+2(N x
i (N y

l Df −N y
f Dl) +N y

i (N
x
f Dl −N x

l Df))

=DfDlDiFi+1(N y
l N x

f −N y
f N x

l )(ai+1 + bi+1)

+ Ei+2(D̃i+1 −Di(N x
l N y

f −N x
f N y

l ))

We remove the term Ei+2D̃i+1 which clearly divisible by D̃i+1. In the remainder we factor
out (N x

f N
y
l −N x

l N
y
f )Di and recall the definitions of Ei+2 and Di+1. It remains

DfDlDiFi+1(N x
f N y

l −N x
l N y

f )(ai+1 + bi+1) + Ei+2(−Di(N x
l N y

f −N x
f N y

l ))

= (N x
f N y

l −N x
l N y

f )Di(DfDlFi+1(ai+1 + bi+1) + Ei+2)

= (N x
f N y

l −N x
l N y

f )DiEi+1 = (N x
f N y

l −N x
l N y

f )Di+1
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By definition, Di+1 divisible by D̃i+1. The remainder consists of three summands, namely
(N x

l N
y
f −N x

f N
y
l ) + Ei+2 + (N x

f N
y
l −N x

l N
y
f ). Note that the first and last summand of

the remainder are canceling. Consequently, the remainder is Ei+2, i.e., D̃i+2 = D̃i+1Ei+2.
This directly implies that Fi+1D̃i+2 = Fi+1D̃i+1Ei+2 = Di+1Ei+2 and therefore finishes the
proof. ◀

▶ Lemma 3.22. If vi+1 and vi+2 are stacked on the same angle in the p-order P, and if
the polynomials N ◦

i+1,Di+1, and N ◦
i+2, Di+2 are crr-free, then for ◦ ∈ {x, y}, it holds that

|N ◦
i+2| = |Di+1|+M + d◦i+1

|Di+2| = |Di+1|+M

with M := max{|Ei+1|, |Df|+ |Dl|+ |Fi+1|)}. In particular, it holds that d◦i+2 = d◦i+1.

Proof. Recall that, by definition d◦i+2 = |N ◦
i+2|− |Di+2|. Consequently, if the degree of N ◦

i+2

and Di+2 are as claimed, it follows directly that d◦i+2 = d◦i+1. For ◦ ∈ {x, y}, we define
m◦ := |Df|+ |Dl|+ |Fi+1|+max{d◦l, d◦f}. Together with Lemma 3.19, the degrees can be
expressed as follows:

|N ◦
j+1| = |Dj |+max


m◦, d◦j +M


|Dj+1| = |Dj |+ |Ej+1|

This implies the following formula for d◦j+1:

d◦j+1 = −|Ej+1|+max

m◦, d◦i +M


Recall that by Lemma 3.21, Ei+2 = Ei+1 − (ai+1 + bi+1)DfDlFj and Fi+2 = Fi+1. Con-
sequently, it holds that |Ei+2| = M and with the above formula it follows for the degree
that |Di+2| = |Di+1|+ |Ei+2| = |Di+1|+M , as claimed.

For the numerator, we replace d◦i+1 in N ◦
i+2:

|N ◦
i+2| = |Di+1|+max


m◦, d◦i+1 +M


= |Di+1|+max


m◦,M − |E|+max


m◦, d◦i +M


= |Di+1|+M − |E|+max


m◦, d◦i +M


= |Di+1|+M + d◦i+1

By definition of M , M − |E| is non-negative and hence, the outer-maximum in line 2 is
attained for the second term. The last term in the third line is exactly d◦i+1. Hence the
numerator degree |N ◦

i+2| has the claimed form. This finishes the proof. ◀
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3.2.6 Applications

We now use the developed method in order to prove area-universality of some graph classes.
Several of the graph families rely on an operation which we call diamond addition. Let G
be a plane graph and e an inner edge incident to two triangular faces consisting of e and
the vertices u1 and u2, respectively. By applying a diamond addition of order k on edge e,
we obtain the graph G′ from G by subdividing edge e with the vertices v1, . . . , vk, and
inserting the edges (vi, uj) for all pairs i ∈ [k] and j ∈ [2]. Figure 3.16 illustrates a diamond
addition of order 3.

u1

e

u2

u1

u2

v1 v2 v3

G G′

Figure 3.16: A diamond addition of order 3 on edge e which introduces the three new
vertices v1, v2, v3.

Accordion graphs

Here we are considering a very curious graph class that we mentioned already in the
introduction, namely the accordion graphs. We show that every second graph in this class
is area-universal whereas the others are not. It shows that area-universal and non-area-
universal graphs may be structural very similar and how sensitive area universality is to
small local changes.

These graphs can be obtained by diamond additions on the octahedron graph: Choose
one edge of the central triangle of the plane octahedron graph as the special edge. In
Figure 3.17, the special edge of the octahedron is highlighted in orange. The accordion
graph Kℓ is the plane graph obtained by a diamond addition of order ℓ on the special edge
of the plane octahedron graph. We speak of an even accordion if ℓ is even and likewise, of
an odd accordion if ℓ is odd. Figure 3.17 illustrates the accordion graphs K0, K1, and K2.

Figure 3.17: The accordion graphs K0, K1, and K2; The middle graph, K1, is an odd
accordion, while K0 and K2 are even accordions.
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Note that K0 is the octahedron itself and K1 is the unique plane 4-connected triangulation
on seven vertices. Moreover, observe the following facts. First of all, due to its symmetry,
all planar not necessarily equivalent drawings of Kℓ are equivalent, i.e., [Kℓ] = Kℓ. Secondly,
all but two vertices of an accordion have degree four: Consult Figure 3.16 to observe that
by a diamond addition on edge e of order k, the degrees of u1 and u2 increase by k while
all other vertex degrees remain. Consequently, all vertices of an even accordion have even
degree. Thus, an even accordion is an Eulerian triangulation, and hence not area-universal
by Theorem 5. In contrast, we show that every odd accordion is area-universal.

■ Theorem 10. An accordion graph is area-universal if and only if it is an odd accordion.

Proof. As mentioned above, an even accordion graph is an Eulerian triangulation, and
hence not area-universal by Theorem 5.

It remains to consider odd accordion graphs, all of which have a p-order. We use the
p-order P depicted in Figure 3.18(a). We consider an arbitrary but fixed algebraically inde-
pendent area assignment A and construct an 1/2A-almost realizing vertex placement D(x4)
in a right triangle where the outer vertices are placed as follows: v1 at (0, 0), v2 at (1, 0), v3
at (1,ΣA), and v4 at (x4, a) with a := A(v1v2v4). Consider also Figure 3.18(b). As before,
we denote the two face areas incident to vi and its predecessors by ai and bi for i ≥ 5.

. . .

a

a5
a6

a7 an

b5

b6 b7 bn

v4

v5

v6
v7

vn

bl

al

v1 v2

v3

. . .

(a) A p-order P of an accordion graph.

v4

v1 v2

v3

v5
v6 vn. . .

(x4, a)

= (1, 0)= (0, 0)

= (1,ΣA)

(b) An almost realizing vertex placement in which
the green faces are realized.

Figure 3.18: Illustration of Theorem 10 and its proof.

Note that for all vertices vi with i > 5, the three predecessors of vi are

pf = v3, pm = vi−1 and pl = v4.

In other words, all vertices vi with i > 4 are stacked on the same angle. Consequently, for
all i > 5, it holds that |N ◦

f | = |Df| = |Dl| = 0 and dxf = dyf = 0, and dxl = 1, dyl = 0.
For v5, we have already evaluated the crr-free vertex coordinates in Equation (3.3).

Using the fact that x3 = 1, we obtain the following degrees:

|N x
5 | = 1, |N y

5 | = 0, |D5| = |E5| = |D̃5| = 1.
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This implies that dx5 = 0 and dy5 = −1. Here we used the fact that, since Dm = 1, it holds that
F5 = 1 and D5 = E5 = D̃5. Defining M := max{|E5|, |Df|+ |Dl|+ |F5|} = max{1, 0} = 1,
we obtain for vi, i > 5, with the help of Lemma 3.22:

|N x
i+1| = |Di|+M + dx5 = |Di|+ 1

|N y
i+1| = |Di|+M + dy5 = |Di|

|Di+1| = |Di|+M = |Di|+ 1.

Consequently, it holds that |N x
i | = |Di| which is odd if and only if i is odd. Hence, in

particular for odd accordions, it holds that |N x
n | = |Dn| is odd. To guarantee an almost

surjective last face function, we show that the polynomials are crr-free.

❋ Claim 3.23. For all i ≥ 5, it holds that N ◦
i and Di are crr-free.

We show this by induction on i. The induction base is settled for i = 5. Suppose, for a
contradiction, that N ◦

i and Di, share a common real root. Then, we are either in case (i)
or (ii) of Lemma 3.20. The fact that Df = Dl = 1 excludes case (i).

Thus, we are in case (ii). To arrive at the final contradiction, we work a little harder.
Since Df = Dl = 1, there exists z which is a zero of both N ◦

lDm −N ◦
m and N ◦

fDm −N ◦
m.

This implies that either Dm[z] = 0 or N ◦
l [z] = N ◦

f [z]. In the first case, Dm[z] = 0, it follows
that N ◦

m[z] = 0. This is an immediate contradiction to the fact that Dm and N ◦
m are crr-free.

Thus it remains to consider the latter case, namely that N ◦
l [z] = N ◦

f [z]. For ◦ = y, we
immediately obtain a contradiction since N y

l = a < ΣA = N y
f .

For ◦ = x it follows that z = 1 since N x
l = x, N x

f = 1. Moreover, by Lemma 3.20, z is
a zero of Ei. Consequently, it suffices to show that Ei[1] ̸= 0. In order to analyze the zeros
of Ei, we define for i ∈ {5, . . . , n}

αi := a+
i−1
j=5

(aj + bj).

Recall that E5[x] = (ΣA)x − a by Equation (3.3). Thus, by Lemma 3.21, it holds for
i ∈ {5, . . . , n− 1} that

Ei+1[x] = Ei[x]− (ai + bi) = E5[x]−
i

j=5

(aj + bj) = (ΣA)x− αi+1. (3.10)

Since αi < ΣA, it follows Ei[1] ̸= 0 that for all i ≥ 5. Consequently, N ◦
i and Di are crr-free.

Finally, we consider the last face function f for the triangle of v2, v3, vn. Its face area is
given by

f(x) := det(v2, v3, vn) = ΣA(1− xn) = ΣA

1− N x

n

Dn


.

Since |N x
n | and |Dn| are odd, the max-degree of f is odd. Thus, Lemma 3.17 assures that f

is almost surjective. By Corollary 9, the area-universality of the odd accordion follows. ■
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Now, we generalize the characterization of accordion graphs to double stacking graphs.
Unfortunately, it will be a little more intricate to guarantee crr-freeness.

Double stacking graphs

A double stacking graph can be obtained by two disjoint diamond addition on different
inner edges of the plane octahedron graph. Denote the vertices of the plane octahedron
by ABC and uvw as depicted in Figure 3.19. The double stacking graph Hℓ,k is the plane
graph obtained from the plane octahedron by applying one diamond addition of order ℓ− 1
on Au and one diamond addition of order k − 1 on vw. We label the vertices of Hℓ,k by
A,B,C, v, 1, 2, . . . ℓ and 1′, 2′, . . . , k′ as illustrated in Figure 3.19. Consequently, a double
stacking graph has (ℓ + k + 4) vertices. Note that Hℓ,1 is isomorphic to the accordion
graph Kℓ−1. In particular, the octahedron graph is a double stacking graph for ℓ = k = 1.

v

1 2 ... `

1′
2′

...

k′

C

A B

v

C

A B

u w

Figure 3.19: A double stacking graph.

■ Theorem 11. A plane graph in [Hℓ,k] is area-universal if and only if ℓ · k is even.

Proof. We start to consider Hℓ,k. Note that the degree of all but four vertices is exactly
four; namely, the degree of B and ℓ is k + 3, the degree of v and C is ℓ+ 3. Thus, if both ℓ
and k are odd, then Hℓ,k is Eulerian and thus not area-universal by Theorem 5. Since
the degree depends on the planar graph, all plane graphs in [Hℓ,k] are Eulerian and not
area-universal if ℓ · k is odd.

Assume that ℓ · k is even. In order to show the area-universality of Hℓ,k, we consider
the p-order (A,B,C, v, 1, . . . , ℓ, 1′ . . . , k′) in which k′C is the unique undirected edge. For
an algebraically independent area assignment A, we define a := A(ABv) and place v3
at (1,ΣA) and v4 at (x4, a). Observe that the vertices 1, 2, . . . ℓ have the predecessors C and
v and are locally identical to an accordion graph. Consequently, by the analysis in the proof
of Theorem 10, the coordinates of vertex ℓ can be expressed by crr-free polynomials N ◦

ℓ

and Dℓ with the degrees
|N x

ℓ | = |N y
ℓ |+ 1 = |Dℓ| = ℓ.

Since Dv = 1 and C1′ = E1′Dv = D̃1′F1′ by definition, see Equation (3.7), it follows that
E1′ = D̃1′ and F1′ = 1. As we will see it holds that |E1′ | = |D̃1′ | = ℓ; this implies that

max{|E1′ | − |Dℓ| − |DB| − |F1′ |, 0} = max{ℓ− ℓ− 0− 0, 0} = 0.
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a

a1
a`

b1

b`
a1′ bk′

v

1

`

k′

b1′

B

C

1′
ak′

. . . . .
.

A

(a) A p-order of a double stacking graph.

v

1

` k′

1′

A B

C

= (1, 0)= (0, 0)

= (1,ΣA)

(b) An almost realizing vertex placement.

Figure 3.20: Illustration of Theorem 11 and its proof.

Note that dxB = 0, dyB = −∞, dxv = 1, dyv = 0, dxℓ = 0, and dyℓ = −1. Lemma 3.19 yields
the following degrees:

|N x
1′ | = |Dℓ|+max


dxℓ , d

x
B, d

x
v + 0


= ℓ+max


0, 0, 1 + 0


= ℓ+ 1

|N y
1′ | = ℓ+max


dyℓ , d

y
B, d

y
v + 0


= ℓ+max


− 1,−∞, 0 + 0


= ℓ

|D1′ | = |D̃1′ |+ |F1′ | = ℓ

|D̃1′ | = |Dℓ|+ |Dv|+ |DB|+max

dxℓ +max{dyv, d

y
B}, d

x
v +max{dyB, d

y
ℓ}, d

x
B +max{dyℓ , d

y
v}


= ℓ+ 0 + 0 +max

0 + max{0,−∞}, 1 + max{−∞,−1}, 0 + max{−1, 0}


= ℓ

We will later show that these polynomials are crr-free. Now, we proceed to compute
the degrees of the vertex coordinates. Defining M := max{|E1′ |, |Dℓ| + |DB| + |F1′ |)} =
max{ℓ, ℓ+ 0 + 0)} = ℓ and by Lemma 3.22, it follows for j > 1

|N x
j′ | = |D1′ |+ (j − 1) ·M + dx1′ = j · ℓ+ 1

|N y
j′ | = |Dj′ | = |D1′ |+ (j − 1) ·M = j · ℓ.

Assume for now, that the resulting polynomials are crr-free. As our last face we choose
the triangle k′BC. Then the last face function f evaluates to

f(x) := det(k′, B,C) = 1− xk′ = 1−
N x

k′

Dk′
.

For the last vertex k′, the degree of the numerator, namely k · ℓ+ 1, exceeds the degree of
the denominator k · ℓ and is odd since ℓ · k is even. Consequently, f has odd max-degree
and is almost surjective by Lemma 3.17. Consequently, Theorem 8 shows that Hℓ,k and
every other plane graph in [Hℓ,k] is area-universal.
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It remains to guarantee that the polynomials are crr-free.

▶ Lemma 3.24. For all j ≥ 1, it holds that N ◦
j′ and Dj′ are crr-free.

We prove this claim by induction and start with settling the base for j = 1 using
Lemma 3.20. Suppose by contradiction that N ◦

1′ and D1′ share a common zero z. The fact
that Dl = Dm = 1 excludes case (i). Thus, case (ii) holds and, since Dl = Dm = 1, z is
a zero of the simplified polynomials (N ◦

l − N ◦
m) and (N ◦

f − N ◦
mDf). Recall that N x

l = 1
and N y

l = 0. Thus for ◦ = y, it follows that z is a zero of N y
l and thus also of N y

m.
However, N y

m = a > 0 yields a contradiction. For ◦ = x, N x
l = 1 and N x

m = x imply
that z = 1. Consequently, it holds that N x

f [1]−Df[1] = 0. Recall that in our case f = ℓ.
By Observation 3.18, N x

f = N x
ℓ depends on aℓ while Df does not. Consequently, N x

f [1]
and Df[1] are polynomials in A; due to the algebraic independence they cannot coincide.

Now, we come to the induction step and suppose, for a contradiction, that N ◦
j′+1

and Dj′+1 share a common real root z. By Lemma 3.20 we distinguish two cases. In
all cases z is zero of Ej′+1. By Lemma 3.21, we know that for j ∈ [k − 1] it holds that
Ej′+1 = Ej′ − (aj′ + bj′)Dℓ. Together with E1′ = a(N x

ℓ −Dℓ) + (1− x)N y
ℓ , we obtain

Ej′+1 = aN x
ℓ + (1− x)N y

ℓ −


a+

j
k=1

(ak′ + bk′)


Dℓ.

We claim that z does not depend on aj′ and bj′ . Then, it follows from the algebraic
independence, that z is a zero of both aN x

ℓ + (1− x)N y
ℓ and Dℓ.

To prove this claim we distinguish the cases suggested by Lemma 3.20. Recall that the
predecessor indices f,m,l of j′ + 1 are given by ℓ, j′, 2. If case (i) of Lemma 3.20 holds,
then z is a zero of Dℓ and Dj′ since D2 = 1. Then clearly z does not depend on aj′ and bj′

since Dℓ does not.
If case (ii) of Lemma 3.20 holds, then z is a zero of N ◦

2Dj′ −N ◦
j′D2 and N ◦

ℓ Dj′ −N ◦
j′Dℓ.

We distinguish two cases for ◦ ∈ {x, y}. For ◦ = y, it holds that N y
2 = 0 and D2 = 1.

Thus, it follows that N y
j′ [z] = 0 and (N y

ℓ Dj′)[z] = 0. Since N y
j′ and Dj′ are crr-free by the

induction hypothesis, it holds that N y
ℓ [z] = 0. Then as a zero of N y

ℓ , z does neither depend
on aj′ nor on bj′ .

For ◦ = x, N x
2 = 1 and D2 = 1 imply that N x

j′ [z] = Dj′ [z] and Dj′ [z](N x
ℓ −Dℓ)[z] = 0.

Since Dj′ [z] ̸= 0, as otherwise N x
j′ and Dj′ are not crr-free, it holds that N x

ℓ [z] = Dℓ[z].

Using the last fact, Ej′+1[z] simplifies to (1− z)N y
ℓ [z]−

j
k=1(ak′ + bk′)


Dℓ[z] = 0. This

implies that

N x
ℓ [z] = Dℓ[z] =

1j
k=1(ak′ + bk′)

(1− z)N y
ℓ [z]

Since neither N x
ℓ nor Dℓ depend on ak′ and bk′ , these three polynomial do not coincide

at z for small variations of ak′ . Thus for a dense set of algebraically independent area
assignments, these three polynomials share no common real root. Consequently, we can
assume that z does not depend on aj′ and bj′ and thus z is a zero of both (aN x

ℓ +(1−x)N y
ℓ )

and Dℓ. However, we show that this is not the case.

❋ Claim 3.25. Dℓ and (aN x
ℓ + (1− x)N y

ℓ ) are crr-free.
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Suppose z is a zero of Dℓ and aN x
ℓ + (1− x)N y

ℓ . Recall that by Equation (3.10) and
since Di+1 = Ei+1Di it follows for i ∈ [ℓ] for i ∈ [ℓ] it holds that

Ei = x− αi and Di =
i

j=1

Ej =
i

j=1

(x− αj).

Therefore, the zero set of Di is given by {αi | i ∈ [ℓ]}. We define

Gj [x] := aN x
j [x] + (1− x)N y

j [x]

and aim to show by induction on j ∈ [ℓ] that for all i ≤ j: Gj [αi] ̸= 0. Note that the
claim is equivalent to Gℓ[αi] ̸= 0 for all i ≤ ℓ. For the induction base, Equation (3.3) shows
that N x

1 = a1x + b1 and N y
1 = a1a + b1. Consequently, it holds that G1[α1] = G1[a] =

a1a+ b1 ̸= 0. By Equation (3.8), for i ∈ [ℓ−1], the numerator polynomials can be expressed
by N ◦

j = Dj(ajN ◦
v + bj) +N ◦

j Ej+1. This yields

Gj [αi] = a

Dj(ajN x

v + bj) +N x
j Ej+1


[αi] + (1− αi)


Dj(ajN y

v + bj) +N y
j Ej+1


[αi]

= Dj [αi] · (aaj + bj(1 + a− αi)) + Ej+1[αi] ·

aN x

j [αi] + (1− αi)N y
j [αi]


If i ≤ j, then the first summand vanishes since Dj [αi] = 0. The second summand does not
vanish by induction and the fact that Ej+1[αi] = αi − αj+1 < 0. For i = j + 1, the second
term vanishes since Ej+1[αj+1] = 0 and the first term does not vanish since both factors do
not. Consequently, it holds that Gℓ[αi] ̸= 0. This finishes the proof of the claim and the
theorem. ■

Note that we have presented two infinite families, the area-universal family of odd
accordion graphs – or more generally of (even product) double stacking graphs – and the
non-area-universal family of Eulerian graphs. With the gained knowledge, we draw the
following conclusions easily.

■ Corollary 12. For every n ≥ 7, there exists a 4-connected triangulation on n vertices
that is area-universal.

Proof. The double stacking graph Hℓ,k has ℓ+ k + 4 vertices and is area-universal if and
only if ℓ · k is even by Theorem 11. Thus, depending on the parity of n, either H2,n−6

or H1,n−5 has n vertices and is area-universal. ■

■ Corollary 13. For every n ≥ 8, there exists a 4-connected triangulation on n vertices
that is not area-universal.

Proof. If n is even, then H1,n−5 is not area-universal by Theorem 11. For n = 9, the
result will follow from Theorem 14. For odd n ≥ 11, we construct a 4-connected Eulerian
triangulation on n vertices: We start with the octahedron where an octahedron is stacked
into the central face. Applying an diamond addition of order n − 9 on one edge of the
separating triangle results in a 4-connected Eulerian triangulation. ■
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3.3 Small Triangulations

We now investigate the area-universality of small triangulations. Somewhat surprisingly,
deciding the area-universality of small graphs is already quite difficult. The classification of
small triangulation was conducted in collaboration with Henning Heinrich in the framework
of his master thesis [Heinrich, 2018]. As shown in Theorem 4, the realizability of an
area assignment can be decided by a quadratic equation system. Using the program
Bertini, which solves equation systems numerically, Heinrich tested the realizability of
all area assignments with 0 and 1, which we also call 01-assignments, for all 4-connected
triangulations with at most ten vertices. In order to disprove the realizability of an area
assignment we usually present arguments similar to the ones used in Section 3.1.1, i.e., we
use a generalized counting argument. Combining this with our tools from Section 3.2, we
are able to classify all triangulation with a p-order on up to ten vertices. In Section 3.3.4,
we give a conclusion of what we can learn from small instances.

Throughout this section, we depict and encode area assignments by face colorings. A
white face represents an assigned area of 0 and a gray face an assigned area of 1. We call
such an area assignment a white/gray area assignment. A few times, we need more than
two values, because of what we use several shades of gray, where a darker shade corresponds
to a larger area assignment. In the following analysis, we repeatedly use the following two
facts when proving non-area-universality.
▶ Lemma 3.26. Let T be a plane triangulation with a white/gray area assignment where
each inner vertex is adjacent to a gray face. If the number of white faces exceeds the number
of inner vertices by k, then in a realizing drawing at least k edges are contracted.

Proof. Since every inner vertex is incident to a gray face, it may realize at most one flat
angle and at least some edge must be contracted. Clearly, a contracted edge edge must
be incident to two white faces. By contracting one edge incident to two white faces, the
number of white faces decreases by two and the number of inner vertices by one. Thus, in
the resulting graph, the number of white faces exceeds the number of inner vertices by k−1.
By induction, at least k edges must be contracted in order to obtain a graph where the
number of white faces does not exceed the number of inner vertices. ◀

In the remainder we call an edge incident to two white faces a contractible edge. To
arrive at a contradiction, we will argue that none of the contractible edges is contracted in
a realizing drawing. The following property is a helpful argument.
▶ Lemma 3.27. Let T be a plane triangulation with an area assignment A and let C be a
simple cycle of T . If some face in the interior of C is assigned to a positive area in A, then
in every A-realizing drawing of T at most |C| − 3 edges are contracted.

Proof. Since a triangle is the smallest polygon of positive area, the interior of C must be
bounded by at least three edges. ◀

To study the triangulations on up to ten vertices, we introduce the following notation.
Usually, every planar graph has several plane graphs which are not equivalent. For α ∈
{a, b, c, . . . }, we write G10α to refer to a planar graph on ten vertices. When referring to
a plane graph, we add i to represent the ith plane graph G10α,i in the ordering of our
figures. Moreover, we represent the set of all plane graphs by [G10α] or [G10α,i]. In our
figures, we indicate area-universality by a checkmark and non-area-universality by a cross.
Additionally, for non-area-universal graphs a non-realizable area assignment is depicted by
a face coloring.
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3.3.1 Triangulations on up to Eight Vertices

By Proposition 2.11, we may restrict our attention to 4-connected triangulations. As we
will see, all of these triangulations on up to eight vertices are either Eulerian triangulations
or accordion graphs. Consequently, they can be fully characterized by our results in the
previous sections, namely by Theorems 5 and 10.

The octahedron graph is the smallest 4-connected triangulation and has six vertices.
Therefore, all triangulations on up to five vertices are area-universal. As discussed in
Section 3.1.1, the octahedron graph is Eulerian and hence not area-universal by Theorem 5.

On seven vertices there also exists exactly one 4-connected triangulation, namely the
right graph depicted in Figure 3.21. As mentioned before, it is the odd accordion graph K1

and therefore area-universal by Theorem 10.

Figure 3.21: The unique plane 4-connected triangulations on six and seven vertices.

There are three plane 4-connected triangulations on eight vertices; for a depiction see
Figure 3.22. They belong to the two planar graphs G8a and G8b. The plane graph G8a,1, see
left graph in Figure 3.22, is Eulerian, and therefore, it is not area-universal by Theorem 5.
As already indicated by the notation G8b,1 and G8b,2, depicted in the middle and right
of Figure 3.22, are different embeddings of the same planar graph. Note that G8b,1 is
isomorphic to the double stacking graph H2,2. Consequently, Theorem 11 guarantees the
area-universality of all plane graphs in [H2,2] = [G8b,1].

8a 8b

Figure 3.22: The three plane 4-connected triangulations on eight vertices.

In a nutshell, we can formulate our findings as follows:

▶ Proposition 3.28. Let T be a triangulation on up to eight vertices. Then T is area-
universal if and only if T does not contain an Eulerian triangulation as a subgraph.

Proof. If T contains an Eulerian triangulation, then by Theorem 5 and Lemma 2.2, T is
not area-universal.

Now assume T does not contain an Eulerian triangulation as a subgraph. By Proposi-
tion 2.11, T is area-universal if and only if all of its 4-connected components are. As our
analysis shows, the only non-area-universal triangulations on up to eight vertices are the
two Eulerian triangulations on six and eight vertices. Consequently, T is area-universal. ◀

We now continue our classification for triangulations on nine and ten vertices.
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3.3.2 Triangulations on Nine Vertices

Figure 3.23 presents the 4-connected triangulations on nine vertices. The 13 plane triangu-
lations belong to the four different planar graphs, which we refer to by G9a,G9b,G9c and G9d.
As explained before, we denote one of these plane graphs by G9α,i where i refers to the ith
plane graph in Figure 3.23. For instance, there exist the plane graph G9b,i for all i ∈ [4].

9c

9d

9a 9b

Figure 3.23: The 4-connected triangulations on nine vertices.

Note that the plane graphs of [G9d], which we introduced in the introduction, are
the smallest triangulations without p-orders. The following theorem classifies the area-
universality of 4-connected triangulations on nine vertices except for G9d,3.

■ Theorem 14. For the plane 4-connected triangulations on nine vertices it holds:
(i) The plane triangulation G9a,1 is area-universal.
(ii) All plane triangulations in [G9b] are area-universal.
(iii) All plane triangulations in [G9c] are not area-universal.
(iv) The plane triangulations G9d,1 and G9d,2 are not area-universal.

We remark that the non-area-universality of G9c,5 has also been shown by Manfred
Scheucher answering our question posed at EuroCG 2017 [Scheucher, 2017].

Proof. The plane triangulation G9a,1 is the odd accordion graph K3 and thus area-universal
by Theorem 10. The plane triangulation G9b,1 is isomorphic to the double stacking graph H2,3.
Therefore, the plane graphs in [G9b] are area-universal by Theorem 11.

With the exception of G9d,3, we show that the remaining plane graphs G9c,i and G9d,i are
not area-universal. We unify the argument for G9c,i and i ∈ {1, 2, 3, 4}. For a contradiction,
we suppose that the white/gray area assignment A, depicted in Figure 3.24, has a realizing
drawing D. The number of white faces in A exceeds the number of inner vertices by two
and each vertex is incident to both white and gray faces. Consequently, Lemma 3.26 ensures
that D has at least two contracted edges. Moreover, it has three contractible edges; we
color one orange and the other two cyan as shown in Figure 3.24. Contracting the orange
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9c

Figure 3.24: The five plane graphs of G9c are not area-universal.

edge results in the Eulerian triangulation on eight vertices with an inner face 2-coloring as
in the proof of Theorem 5. Therefore, it is not realizable. Consequently, the orange edge is
not contracted in D but both of the cyan edges are. However, the two cyan edges and two
edges incident to the cyan vertex form a 4-cycle C. Since the interior of C has positive area,
not both cyan edges are contracted in D by Lemma 3.27. Thus, we obtain a contradiction
proving that G9c,i, i ∈ {1, 2, 3, 4}, is not area-universal.

The white/gray area assignment of G9c,5 given in Figure 3.24 has seven white face, six
inner vertices and two contractible edges. By Lemma 3.26, a realizing drawing contains a
contracted edge. By symmetry, it suffices to consider one of the two contractible edge. Its
contraction results in the graph depicted in Figure 3.25(a) which contains the octahedron.
The induced area assignment of the octahedron is the (0, 1, 3)-assignment displayed in
Figure 3.25(a).

0

1

1 1

0

0 3

(a) Contraction of one edge in G9c,5

induces a (0, 1, 3)-assignment of the
octahedron.

(b) G9d,1

αα

α
β

α
α

α

(c) G9d,2

Figure 3.25: Illustration of the proof that G9c,5, G9d,1, and G9d,2 are not area-universal.

The following lemma shows that this area assignment of the octahedron is not realizable.
It gives a more general statement on a (0, α, β, γ)-assignment displayed in Figure 3.26(a).
Here, we are interested in the case α = β = γ.

γ

α β

α+ β + γ

v1 v2

v

0 0

0

(a) The (0, α, β, γ)-assignment.

(0, y1) (x2, 1− x2)
(x, 12 )

α+ β + γ

α β

(0, 0) (1, 0)

(0, 1)

(b) Structure of a realizing drawing.

Figure 3.26: Illustration of Lemma 3.29 and its proof.
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▶ Lemma 3.29. The (0, α, β, γ)-assignment of the octahedron graph is not realizable if

γ(α+ β + γ) < 8αβ.

In particular, it is not realizable for α = β = γ.

Proof. Consider Figure 3.26 and suppose without loss of generality that 4(α+ β + γ) = 1.
Suppose, for a contradiction, that there exists an A-realizing drawing D within the right
triangle with corners (0, 0), (1, 0), and (0, 1). Moreover, there exists a unique flat angle
assignment forcing three collinear triples.

Let f denote the face of area β, we show that aeq(T,A, F − f) has no real solution.
In D, vertex v is placed on the line y = 1

2 . For each vertex, one coordinate remains to be
determined; we denote the variables by x, y1, x2 as depicted. The remaining equations of
aeq(T,A, F − f) read as follows:

det(A, v, v1) = 2α =⇒ y1 =
2α

x

det(v1, v2, C) = 2γ =⇒ x2 =
2γ

1− y1

det(v1, v, v2) = 0 =⇒ −y1(x− x2)− x2(x+ 1/2) + x = 0

Replacing the variables y1 and x2 in the third equation with the help of the first two
equations, we obtain the equality:

0 = (2γ − 1)x2 + x(4α+ γ)− 4α(α+ γ)

⇐⇒ x =
1

2− 4γ


4α+ γ ±


γ(γ + 8α(4α+ 4γ − 1))


.

Therefore, x is a real number if and only if γ + 8α(4α+ 4γ − 1) ≥ 0. Using the fact that
4(α + β + γ) = 1, we obtain the necessary condition that γ ≥ 8α(4β). For an arbitrary
total area, the constraint translates to γ(α+ β + γ) ≥ 8αβ. This shows the claim. ◀

Finally, we turn our attention to the plane graphs of G9d. We start to show that G9d,1 is
not area-universal. Note that in the white/gray area assignment displayed in Figures 3.23
and 3.25(b), the number of white faces exceeds the number of inner vertices by two and
that every inner vertex is incident to a gray face. By Lemma 3.26 at least two contractible
edges are contracted. Figure 3.25(b) displays the contractible edges in cyan. Note that
every pair of contractible edges forms a 4-cycle whose interior has positive area. Hence,
by Lemma 3.27, at most one contractible edge is contracted in a realizing drawing. This
contradiction shows that G9d,1 is not area-universal.

For the plane graph G9d,2, computer search asserts that all area assignments consisting
of 0 and 1 are realizable [Heinrich, 2018]. However, the area assignment depicted in
Figure 3.25(c) is not realizable for α = 2β. Unfortunately, we have no geometric argument
to show this. However, Mathematica ensures that there is no real solution of the equation
system aeq(T,A, F ′). Thus, by Theorem 4, G9d,2 is not area-universal. ■

The last observation on G9d,2 shows that it is not sufficient to consider 01-assignments.

■ Corollary 15. Area-universality cannot be tested by checking every 01-area assignment.
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10a

10c

10g

10e

10d

10f

10b

Figure 3.27: The 4-connected triangulations on ten vertices with a p-order.
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3.3.3 Triangulations on Ten Vertices

There exist 47 plane 4-connected triangulations on ten vertices. They belong to ten different
planar graphs. Seven of these have a p-order; we call them G10α for α ∈ {a, b, . . . , g}. Their
33 plane graphs are displayed in Figure 3.27. The remaining three planar graphs, which we
call G10α with α ∈ {i, j, k}, have no p-order and Figure 3.33 presents their 14 plane graphs.
The following theorem fully characterizes the area-universality of the triangulations with
p-orders.

■ Theorem 16. For the plane 4-connected triangulations on ten vertices with a p-order
the following holds:

(i) The plane graph of [G10a] is not area-universal.
(ii) All plane graphs of [G10b] are not area-universal.
(iii) All plane graphs of [G10c] are area-universal.
(iv) All plane graphs of [G10d] are not area-universal.
(v) All plane graphs of [G10e] are not area-universal.
(vi) All plane graphs of [G10f ] are area-universal.
(vii) All plane graphs of [G10g] are area-universal.

Proof. As indicated by the inner face 2-coloring in Figure 3.27, the planar graphs G10a and
G10b are Eulerian triangulations and thus not area-universal by Theorem 5. Since G10c,1 is
the double stacking graph H2,4, Theorem 11 shows that all plane triangulations in [G10c,1]
are area-universal.

Next, we show that no plane graph G10d,i is area-universal. In order to have less
contractible edges and thus fewer cases to analyze, we assign the light gray faces in
Figure 3.27 to an area of small ε > 0; as before white faces are assigned to an area of 0
and gray faces to 1. In fact, the area assignment where light faces have area 0 remains
not realizable by Corollary 3. We start to show that G10d,1 is not area-universal: The
number of white faces exceeds the number of inner vertices. Hence, by Lemma 3.26, in a
realizing drawing an edge is contracted. Indeed, there exists a unique contractible edge.
Its contraction yields the graph depicted in Figure 3.28(a) which contains the octahedron
graph with a (0, 1, ε)-assignment. By Theorem 5 and Corollary 3, this area assignment is
not realizable for small enough ε > 0. Consequently, G10d,1 is not area-universal.

After coloring the outer face of G10d,1 gray, this argument is applicable for all plane
graphs of [G10d] in which the outer face corresponds to a gray face of G10d,1, namely for the
graphs G10d,i with i ∈ [4]. To see this, consider the octahedron subgraph after contraction
of the contractible edge. In the induced area assignment only two faces play a special role;
one has area 2ε and the other face contains three gray faces one of which may be the outer
face. By Proposition 3.3 and Corollary 3, this area assignment is not realizable if a gray face

1

ε
0

1

1 1

0

ε 0

(a) G10d,1 (b) G10d,i for i ∈ {2, 3, 4}

Figure 3.28: Non-area-universality of G10d,i for i ≤ 4.
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is an outer face. [In case, you want to convince yourself by hand, consult Figure 3.28(b).]
It remains to analyze the plane graph G10d,5. Consider the depicted white/gray area

assignment in Figure 3.29(a). It has eight white faces and seven inner vertices. Therefore,
by Lemma 3.26, at least one edge must be contracted; we color one cyan and the other
orange. Contracting either one of the possible edges, we obtain a (0, 1, 3)-assignment of the
octahedron as depicted in Figures 3.29(b) and 3.29(c). Lemma 3.29 guarantees that this
area assignment of the octahedron is not realizable. Therefore, G10d,5 is not area-universal.
This finishes our analysis of G10d.

(a) G10d,5

0

1

1 1

3

0 0

(b) Contraction of the cyan edge.

0

1

1 1

0

0 3

(c) Contraction of the orange edge.

Figure 3.29: The plane graph G10d,5 after contraction of a contractible edge.

Now, we turn our attention to G10e. The plane graphs G10e,1 and G10e,2 can be handled
by the same argument. The area assignments depicted in Figures 3.30(a) and 3.30(b) have
six contractible edges. We color two of them orange, two cyan and two blue as illustrated.
Suppose, for a contradiction, that there exists a realizing drawing D. Since the number
of white faces exceeds the number of inner vertices by three, at least three edges must be
contracted in D by Lemma 3.26. Note that the orange and cyan edges from a 4-cycle with
positive area. Thus at most one of these edges is contracted in D. Consequently, both blue
edges are contracted in D. However, their contraction results in an inner face 2-coloring of
the Eulerian triangulation on eight vertices and we obtain the final contradiction. Thus,
neither G10e,1 nor G10e,2 are area-universal.

(a) G10e,1 (b) G10e,2 (c) G10e,3

Figure 3.30: No plane graph of G10e is area-universal.

The area assignment of G10e,3 allows for three contractible edges; two of which we color
orange and one of which we color cyan, see also Figure 3.30. Contraction of the cyan
edge results in the non-realizable area assignment of G9c,5. Therefore, the cyan edge is not
contracted in a realizing drawing D. Since the number of white faces exceeds the number
of inner vertices by two, both orange edges are contracted in D. However, the orange edges
form a 4-cycle together with the non-incident outer vertex which is highlighted in orange.
Since the interior of the 4-cycle has positive area, this yields contradiction and shows that
G9c,5 is not area-universal. Consequently, no plane graph in [G9c] is area-universal.
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Now, we consider the plane graphs of G10f . First, we show that G10f,1 is area-universal
with the p-order depicted in Figure 3.31. We place v3 at (1, 1) and use a computer algebra
system to determine the degrees of the crr-free vertex coordinates, see Table 3.1.

v4

v5
v6

v7

v8

v9

v10

v1 v2

v3

Figure 3.31: A p-order of G10f,1.

Table 3.1: Degrees of vertex coordinates.

i |N x
i | |N y

i | |Di|
4 1 0 0
5 1 0 1
6 2 1 2
7 3 2 2
8 5 4 5
9 8 7 7
10 13 12 12

Choosing the triangle v2v3v10 as the last face, the last face function evaluates to

f(x4) := det(v2, v3, v10) = 1− x10 = 1− N x
10

D10
.

Since |N x
10| = 13 > 12 = |D10| and |N x

10| is odd, and the last face function f is almost
surjective by Lemma 3.17. Thus, Corollary 9 implies the area-universality of G10f,i for all i.

Finally, it remains to consider G10g and we start with G10g,8 with the p-order displayed
in Figure 3.32. We place v3 at (1, 1) and use a computer algebra system to compute the
degrees of the crr-free polynomials. The results are summarized in Table 3.2.

v4

v5

v6

v7

v8
v9

v10

v1 v2

v3

Figure 3.32: A p-order of G10g,8.

Table 3.2: Degrees of vertex coordinates.

i N x
i N y

i Di

4 1 0 0
5 1 0 1
6 2 1 1
7 3 2 3
8 5 4 4
9 8 7 7
10 11 10 10

With triangle v2v3v10 as the last face, we obtain the last face function

f(x4) := det(v2, v3, v10) = 1− x10 = 1− N x
10

D10
.

Since |N x
10| = 11 > 10 = |D10|, the last face function f has odd max-degree and is almost

surjective by Lemma 3.17. Thus, Corollary 9 implies the area-universality of the plane
graphs of G10g,i for all i. This finishes our analysis of the 4-connected triangulations with a
p-order on ten vertices. ■
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Observe that our developed methods enabled us to completely characterize the area-
universality of all 4-connected triangulations with a p-order on up to ten vertices. Unfortu-
nately, this is not the case for the triangulations without a p-order. There exist 14 plane
4-connected triangulations on ten vertices without a p-order. They belong to the three
planar graphs G10h,G10i, and G10j . For an illustration consider Figure 3.33. Heinrich’s
computer search asserts that all of these plane graphs are 01-universal, that is all of their
01-assignments are realizable [Heinrich, 2018]. However, we have no tool to prove their
area-universality nor did we find other non-realizable assignments.

¿Question ? : Which of the 4-connected triangulation on ten vertices without a p-order
are area-universal?

10h

10i

10j

Figure 3.33: Plane graphs on ten vertices without a p-order. Their status is open.

Remark. It is easy to check that these triangulations have no p-order by considering the
vertices of degree four. In Figure 3.33, the vertices of degree four are highlighted in red for
one plane graph of each class. Recall that, by Lemma 3.8, triangulations with a p-order have
an edge such that its removal results in a 3-degenerate graph. Thus, for the existence of a
p-order in a 4-connected triangulation T , it is necessary that T contains two neighboring
vertices of degree 4. This immediately shows that G10h and G10i have no p-order. Moreover,
G10j has a unique candidate edge, namely the one incident to the two vertices of degree
four. However, removing it and its neighbors, results in a graph with minimum degree four.
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3.3.4 Summary of Gained Insights from Small Triangulations

We summarize our findings and end with conclusions drawn from our characterization
of small triangulations. First of all, it is evident that we found no example where two
embeddings of the same planar graph behave differently, i.e., we do not know of a graph
where one embedding is area-universal and another is not. This enforces the following
question:

¿Question ? : Is area-universality a property of planar graphs rather than plane graphs?

For graphs with p-orders, we have indeed seen that if the last face function is almost
surjective for one plane graph then this holds true for all embeddings. Therefore, if some
embedding of a planar graph fulfills the conditions of Corollary 9, the area-universality
of all embeddings follows. Consequently, an example, showing that area-universality is a
property of plane graphs, either belongs to a planar triangulation without a p-order, or to a
planar graph such that the last face function of all p-orders is not almost surjective – even
though at least one embedding is area-universal.

Studying the area-universality of G9d,2, we learned that area-universality cannot be
tested by checking all 01-area assignment. Recall that Heinrich [Heinrich, 2018] tested all
01-assignments by numerically solving the area equation systems with Bertini. However,
G9d,2 has an 012-assignment which is not realizable.

Conclusion. 01-universality does not imply area-universality.

Interestingly, computer search suggests that every plane triangulations on ten vertices
with a p-order is 01-universal. However, this does not hold in general since we proved the
non-area-universality of G9d,1 with the help of a non-realizable 01-assignment in Theorem 14.
Moreover, we can say that the p-order is no indicator of area-universality since there exists
area-universal and non-area-universal graphs with a p-order.

Furthermore, as shown in Corollary 12 and Corollary 13 for all n there exists a 4-
connected triangulation which is area-universal as well as one that is not area-universal.
We say a graph is near 3-degenerate, if there exists an edge, such that after its deletion the
graph is 3-degenerate. Thus, the following fact holds:

Conclusion. None of the following is a sufficient criterion for area-universality of plane
graphs, not even for triangulations:

• high-connectivity (4 and 5)
• parity of the number of vertices
• near-3-degeneracy

Interestingly, all known area-universal graphs are near 3-degenerate, that is, there exists
an edge, such that after its deletion the graph is 3-degenerate. This holds true for subgraphs
of stacked triangulations, plane cubic graphs, double stacking graphs, as well as graphs
with p-orders. Therefore, we wonder if near-3-degeneracy is a necessary condition for
area-universality.

¿Question ? : Are all area-universal graphs near-3-degenerate?

To answer this question in the negative, new tools must be developed.
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3.3.5 Excursus to Near-Triangulations

Up until now, every non-area-universal graph contains a non-area-universal triangulation
as a subgraph. In this section, we make a small excursus to inner triangulations. An inner
triangulation is a plane 2-connected graph in which every inner face is a triangle. Deleting
an outer edge of a triangulation, results in a near-triangulation, i.e., an inner triangulation
where the outer face has degree four. Here we discuss the following question:

¿Question ? : Is every near-triangulation without separating triangles area-universal?

We are able to answer the question in the negative with the help of a relative of G9c,4.
In fact, we may remove one edge from G9c,4 and the resulting graph remains to be not
area-universal.

▶ Proposition 3.30. The graph G9c,4 has an edge e such that G9c,4−e is not area-universal.

Proof. Figure 3.34(a) depicts the plane graph G9c,4 with one deleted edge. We show that the
illustrated white/gray area assignment of this graph G is not realizable. For a contradiction,
suppose there exists a realizing drawing. Note that the area assignment has two symmetric
contractible edges. By contracting the right contractible edge, we obtain the graph G′ and
the area assignment displayed in Figure 3.34(b). Since it contains an octahedron graph
with a non-realizable area assignment by Theorem 5, no edge is contracted in D. Thus,
due to the six white triangular faces and six inner vertices, there exists a unique flat angle
assignment. Figure 3.34(c) illustrates a drawing respecting the flat angles. It is easy to see,
that the white convex quadrilateral has vanishing area if and only if the vertices on the
outer segments are placed on the top outer vertex. However, this placement corresponds to
the contraction of the contractible edges. This is a contradiction and shows that G9c,4 − e
is not area-universal. ◀

(a) The plane G9c,4 − e. (b) G9c,4 − e after contraction
contains the octahedron.

(c) A drawing of G9c,4−e with
realized flat angles.

Figure 3.34: Illustration of Proposition 3.30 and its proof.

With this example at hand, the non-equivalent plane graph of G9c − e where the 4-face
is the outer face is of special interest. Figure 3.35(a) depicts this graph, which we refer
to as the butterfly graph. The butterfly graph is either area-universal providing us with a
certificate that area-universality is a property of plane graphs or it is not area-universal and
thus, answering the above question in the negative. As it turns out, the butterfly graph is
not area-universal. In particular, this is the first non-area-universal planar graph which is
not a triangulation – or does not contain a non-area-universal triangulation as a subgraph.

▶ Proposition 3.31. The butterfly graph is not area-universal.

Proof. Let A denote the white/gray area assignment depicted in Figure 3.35(a). First, we
argue that an A-realizing drawing has no contracted edge. Note that every contractible
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(a) The butterfly graph. (b) The butterfly graph with one contracted
outer edge.

Figure 3.35: Illustration of Proposition 3.31 and its proof.

edge of the butterfly graph is an outer edge. By symmetry, it is sufficient to consider one
outer edge. Contracting the right outer edges results in the graph depicted in Figure 3.35(b).
This induces a {0, 1, 3}-assignment of the octahedron graph which is not realizable by
Lemma 3.29. At this point, we do offer a nice geometric proof that the area assignment
is not realizable. However, it is easy to check with a computer algebra system that the
equation system aeq(T,A, F ′) has no real solution. Thus, the area assignment is not
realizable by Theorem 4. ◀

In fact, the butterfly graph is a smallest non-area-universal near-triangulation. To
see this we show that 3-degenerate near-triangulations are area-universal. Recall that a
graph is 3-degenerate if and only if it has an ordering of its vertices v1, v2, . . . , vn such
that vi has degree at most three in the subgraph induced by v1, v2, . . . , vi. Moreover, a
triangulation is 3-degenerate if and only if it is a stacked triangulation. Consequently, we
have seen already that 3-degenerate triangulations are area-universal in Observation 1.1.
This property generalizes to 3-degenerate near-triangulations.

■ Theorem 17. Every plane 3-degenerate near-triangulation T is area-universal.

Proof. We show that every area assignment A of T is realizable. To do so, we first argue
that we may assume that T has no separating triangle: Suppose that T contains a separating
triangle t. Let Ti and Te denote the two plane graphs obtained by decomposing T along t.
Then Ti is a stacked triangulation and thus area-universal by Observation 1.1. Thus,
Lemma 2.10 states that T is area-universal if and only if Te is area-universal. Consequently,
we assume that T has no separating triangle.

Since T is 3-degenerate, there exists an ordering of the vertices v1, v2, . . . , vn where vi
has degree at most 3 in Ti, the subgraph of T induced by the vertices {v1, . . . , vi}.

❋ Claim 3.32. A face of Ti is either a triangle or the outer face.

Proof. The claim follows from a double counting argument. Let f be an inner face of Ti

with degree d. The interior of f in T is an inner triangulation T ′ with an outer face of
degree d. Thus, T ′ has 3n′ − 3 − d edges. Since no inner edge of T ′ belongs to Ti, the
interior of T ′ can be constructed by inserting vertices of degree at most 3. Therefore, T ′

has at most 3(n′ − d) + d = 3n′ − 2d edges. This holds true only if d ≤ 3. ◀

The claim implies that the neighbors of vi in Ti appear consecutive on the boundary of
some face in Ti−1; otherwise Ti has an inner face which is not a triangle. Moreover, since T
contains no separating triangle, it follows immediately that vi is an outer vertex in Ti. We
call the plane graph depicted in Figure 3.36(a) the diamond. For our construction, we make
use of the following fact.
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(a) The diamond graph.

v4

(b) Case: T3 is a triangle.

v4

(c) Case: T3 is a path.

Figure 3.36: Illustration of the proof of Claim 3.33.

❋ Claim 3.33. T4 is a diamond and for each i ≥ 5, vi has three neighbors in Ti.

Proof. By Euler’s formula, a near triangulation has 3n− 7 edges. We associate each edge
with the smallest i such that vi is incident to it. Clearly, the last n− 3 vertices in the vertex
ordering contribute at most 3(n − 3) edges. Thus, T3 has two or three edges. Suppose
that T3 is a triangle. By the edge count, there exists a unique vertex vj which has degree
two in Tj while all other vertices vi with i > 3, have degree three in Ti. If j ̸= 4, then v4
has degree three and T4 is isomorphic to K4. However, K4 yields a separating triangle and
thus a contradiction. Consequently, it holds that j = 4 and therefore, T4 is the diamond
graph. This situation is depicted in Figure 3.36(b).

Now suppose that T3 is a path with two edges. Then, by the edge count, each vertex vi
with i > 3, has degree three in Ti. Since T is simple, the middle predecessor of v4 is the
vertex of degree two in T3. Thus, we obtain that T4 is the diamond graph. This case is
illustrated in Figure 3.36(c). ◀

We are now ready to construct a realizing drawing of T . The idea of the proof is
simple. We place T4 wisely in the plane and argue that we can insert vi without introducing
crossings and such that the two incident triangles in Ti are realized.

For the initial placement of T4, we may assume, without loss of generality, that the
vertices v1, v2, v3 induce a path. We place the vertices of T4 such that they form a non-
convex quadrangle Q4 with a reflex angle at v4. Consider also Figure 3.37(a). Moreover,
we guarantee that the area of the triangle v1v4v3 exceeds ΣA; for instance by placing the
vertices as follows: v1 = (0,ΣA), v2 = (0, 0) and v3 = (3, 0). This placement of the vertices
guarantees that during our further construction the three predecessors of vi are not collinear.
The boundary of the outer face of T4 defines the quadrangle Q4.

v1

v2 v3

ΣA
v4

(a) Placement of T4.

pf

pm
pl

p

c

v

(b) pm is a convex corner.

v

pf

pm

pl

(c) pm is a reflex corner.

Figure 3.37: Illustration of the construction.

For placing vi+1, suppose that we are given a realizing drawing of Ti which is bounded
by a non-convex quadrilateral Qi with a big reflex angle. We say that the reflex angle of Qi

is big if the triangle consisting of the reflex corner and its two neighbors exceeds the area



3.3 Small Triangulations 71

of all faces that do not belong to Ti but to T . Since Qi has 3 convex corners and one reflex
corner, no three corners are collinear.

Denote the three neighbors of vi+1 in Ti+1 by pf, pm, pl such that they appear in
clockwise orientation on the boundary of Ti (and Qi), as depicted in Figures 3.37(b)
and 3.37(c). Clearly, the three neighbors of vi+1 are consecutive on the boundary of Qi. As
in Lemma 3.12, we place vi+1 in the unique position realizing the area of its two incident
inner triangles. Here we use the fact that the three predecessors of vi+1 are not collinear.
We define Qi+1 as the quadrangle Qi where pm is replaced by vi+1. We have to ensure that
the produced drawing of Ti+1 is crossing-free and that Qi+1 is a non-convex quadrilateral
with a big reflex angle. Therefore, we distinguish two cases.

Figure 3.37(b) illustrates the case when pm is a convex corner of Qi. Then vertex vi+1

is placed in the intersection of the half spaces which are defined by the segments pfpm and
pmpl and their outside with respect to Qi, respectively. Let c denote the corner of Qi which
does not coincide with a predecessor of vi+1. Clearly, the line through pf and pl separates c
and v. Therefore, Qi+1 is crossing-free. To show that the reflex angle is still big, it suffices
to consider the case that vi+1 is adjacent to the vertex with the reflex angle; otherwise the
area of the big angle remains. Without loss of generality, we consider the situation depicted
in Figure 3.37(b). Note that vi+1 is placed outside of the triangle cpfpm. Let p denote the
intersection point of cpm and pfvi+1. Then already the triangle cpfp, which is contained in
the triangle cpfvi+1, exceeds the area of all faces that do not belong to Ti+1 but to T .

If pm is a reflex corner of Qi, then vertex vi+1 is placed within the triangle pfpmpl.
Moreover, the area of the big angle decreases by exactly the area of the two new triangles.
Thus, Qi+1 is a non-convex quadrangle with a big reflex angle which is bounding a realizing
drawing of Ti+1. ■

Now, we are ready to prove our claim.

▶ Proposition 3.34. The butterfly graph is a smallest non-area-universal near-triangulation.

Proof. By the average degree, every near-triangulation on less than seven vertices is 3-
degenerate. However, the smallest near-triangulation which is not 3-degenerate has eight
vertices and is depicted in Figure 3.38. As indicated, it is a subgraph of the double stacking
graph H2,2 and thus area-universal by Theorem 11. For the four near triangulations on
nine vertices, it holds that one is a subgraph of H2,2, one is the non-area-universal butterfly
and two have open status. ◀

openopen

Figure 3.38: The smallest near-triangulations that are not near-3-degenerate.
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This chapter is based on joint work with William Evans, Stefan Felsner, and Stephen
Kobourov. The results will most likely also appear as [Evans et al., 2018]. We study
the area-universality of plane quadrangulations, i.e., maximal plane bipartite graphs. In
particular, we tackle the following interesting and challenging conjecture:

Conjecture. Every plane bipartite graphs is area-universal.

While we do not completely settle this conjecture, we develop methods to prove area-
universality via reductions to the area-universality of related graphs. This allows us to
establish area-universality for large classes of plane quadrangulations. Our methods are
strong enough to prove area-universality of all plane quadrangulations with up to 13 vertices.

We have already introduced operations that preserve area-universality in Chapter 2.
In Section 4.1, we use one of these operations, the edge contraction, to show the area-
universality of grid graphs and large classes of angle graphs. In Section 4.2, we study strong
area-universality, i.e., area-universality within a prescribed outer face, and present strong
area-universal graph families. Moreover, we prove area-universality when a graph can be
composed into strong area-universal graphs. In Section 4.3, we use the developed tools to
show that all quadrangulations with at most 13 vertices are area-universal. Note that we
study convex drawings of quadrangulations in Section 6.1.

4.1 Area-Universal Quadrangulations via Edge Contractions

In this section, we discuss some implications of the edge contractions of Lemma 2.3. For
the readers convenience, we repeat it here:

▶ Lemma 2.3. Let G be a plane graph which can be transformed into an area-universal
plane graph G′ by inserting vertices, inserting edges, and performing face-maintaining edge
contractions. Then G is area-universal.

Also recall that an edge contraction is face-maintaining if the number of faces remains,
that is at most all but three edges of a face are contracted. We say that a set of edges
of a plane graph is face-independent if it contains at most one edge per face. If G is a
triangle-free plane graph, then every face-independent set of edges is face-maintaining.

In fact, for every quadrangulation there exists a face-maintaining edge contraction to
an inner triangulation. Clearly, this inner triangulation is not necessarily area-universal.

72
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▶ Proposition 4.1. Every plane quadrangulation Q has a face-maintaining edge contraction
to an inner triangulation where the outer face has degree 3 or 4.

The proof is based on the following lemma. We call a matching of a graph near perfect
if it misses at most one vertex.

▶ Lemma 4.2. For a simple plane quadrangulation Q, its dual graph Q∗ has a perfect
matching if n is even and a near perfect matching if n is odd. In the latter case, there exists
a near perfect matching that misses the outer face of Q.

Proof. Let V , E, and F be the vertices, edges, and faces of Q. Recall that in a quadrangu-
lation with n vertices, Euler’s formula implies that Q has 2n − 4 edges, and n− 2 faces.
The proof is based on Tutte’s characterization of graphs with perfect matchings: Q∗ has
a perfect matching if and only if for each set of faces S ⊂ F , the number of connected
components with an odd number of vertices in Q∗[F − S] is at most |S|. Here Q∗[F − S]
denotes the subgraph of Q∗ induced by F − S.

First we consider the case that Q has an even number of vertices. Let S ⊂ F be a
subset of faces in Q and consider the incidence graph of components in Q∗[F − S] and
vertices S in Q∗. If S = ∅, then there exists exactly one component consisting of all n− 2
faces. Since n is even, there is no odd component.

Now consider a set S ̸= ∅. Observe that every non-empty set of faces has at least
4 boundary edges. Since Q is simple and bipartite, every cycle is at least of length 4.
Therefore, in the incidence graph, the degree of every component is at least 4 and the
degree of every face at most 4. Double counting the edges of the incidence graph yields
the inequality 4|S| ≥ 4|C|. Consequently, the number of components is at most |S|. In
particular, the number of odd components is bounded by |S|.

Now we consider the case that Q has an odd number of vertices. Let f◦ ∈ F be the
outer face. We claim that Q∗[F − f◦] has a perfect matching. We show that for every
subset of faces S ⊂ F containing f◦, the number of odd components in Q∗[F −S] is strictly
smaller than |S|. By the above double counting argument, the number of components is
still at most |S|. It therefore remains to consider the case of equality where all components
are odd. Clearly, the components and S partition of the set of faces. For k := |S|, let
C1, C2, . . . , Ck be the components. Then it holds that

k
i=1

|Ci|+ |S| = n− 2.

By assumption, |Ci| is odd for every i. Note that independent of the parity of k, the left
hand side has an even number of odd summands and is therefore an even number. This
contradicts to the fact that n− 2 is odd. ◀

With this lemma, we prove the proposition as follows.

Proof of Proposition 4.1. By Lemma 4.2, Q∗ has a near perfect matching M∗. Let M
denote the edges dual to M∗ in Q. Note that every face of Q is incident to at most one edge
of M . Hence, M is a set of face-independent edges. Moreover, with the possible exception
of the outer face, every face is incident to at least one edge of M . Consequently, contracting
the edges of M yields an inner triangulation where the outer face has degree 3 if n is even
and 4 if n is odd. ◀
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4.1.1 Table Cartograms

As a first application of Lemma 2.3, we show an alternative proof for the area-universality
of grid graphs. The grid G(m,n) is the Cartesian product Pm × Pn of paths Pm and Pn

on m and n vertices, respectively. Figure 4.1(a) illustrates the grid G(9, 6). Evans et al.
[Evans et al., 2017] showed area-universality of grid graphs in the context of table cartograms
where additionally the outer face is required to be a rectangle. Our new proof does not
yield a rectangular outer face. However, it is very simple.

▶ Proposition 4.3. The grid graph G(m,n) is area-universal.

Proof. Figure 4.1 illustrates the proof for the case that n even. We contract the edges of
every second column of G(m,n) to a super vertex. The super vertices are labeled by 1, . . . , k
from left to right. Then, we add vertices and edges to enhance the resulting graph to a
triangulation G as depicted in Figure 4.1(b).

m

n

(a) The grid graph G(m,n) for n = 6
and m = 9.

A B

C

1 2 3 4

1′

2′

3′

...

(b) A planar 3-tree ‘containing’ G(m,n).

Figure 4.1: Illustration of the proof of Proposition 4.3.

In particular, we add three new vertices A,B,C and insert the edges (i, B), (i, C) and
(i, i+1) such that (i, i+1, C) form triangles containing the vertices of a column. Adding one
additional edge incident to C, the graph in the interior of a triangle (i, i+1, C) is a stacked
triangulation: The vertices can be inserted from top to bottom. Moreover, observe that the
induced subgraph of A,B,C, 1, . . . , k is a stacked triangulation which can be constructed
by inserting the vertices in the order 1, . . . , k.

It remains to consider the interior of triangles A1C and kBC. If n is odd, the trian-
gle kBC is a face. Otherwise, we treat it symmetrically to A1C. We enhance the interior
of A1C to a stacked triangulation by inserting edges from all inner vertices to A and one
extra edge to C. Thus, G is a stacked triangulation and therefore area-universal.

Consequently, every grid graph can be transformed into a subgraph of an area-universal
graph by face-maintaining edge contractions and Lemma 2.3 implies that grids are area-
universal. ◀
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4.1.2 Angle Graphs of Triangulations

The angle graph of a plane graph G is the graph Q with vertex set consisting of the vertices
and faces of G and edges corresponding to face-vertex incidences. If G is 2-connected,
then Q is a quadrangulation. Clearly, the angle graph is bipartite where the two bipartition
classes are given by the vertices V and the faces F of G. Here we consider angle graphs of
triangulations. For an example, consider the stacked triangulation in Figure 4.2(a) and its
angle graph Figure 4.2(c).

For a plane graph G and its angle graph Q, we often consider the union (graph) G+Q,
consisting of the union of the vertex and edge sets of G and Q, respectively. Note that the
union is again a plane graph: Indeed, the vertex set of G+Q coincides with the vertex set
of Q. Hence, G+Q can be understood as the quadrangulation Q where the edges between
the vertices of one bipartition class, namely V , are inserted.

We will repeatedly construct realizing drawings of Q with the help of a drawing of G+Q.
To do so, we introduce the notion of a refined area assignment. Let G1 be a subgraph of G2.
Then, every face of f of G1 corresponds to a collection of faces Cf in G2. We say an area
assignment A1 of G1 is refined by an area assignment A2 of G2 if A1(f) =


s∈Cf

A2(s).
Reversely, we also say A2 of G2 refines A1 of G1.

T

(a) A triangulation T .

T +Q

(b) The union T +Q.

Q

(c) The angle graph Q of T .

Figure 4.2: The angle graph Q of a triangulation T and their union T +Q. Since T is a
stacked triangulation and thus area-universal, Q is area-universal by Proposition 4.4; Q is
the unique quadrangulation with 11 vertices and minimum degree 3.

▶ Proposition 4.4. The angle graph Q of an area-universal triangulation T is area-
universal.

Proof. We show that the union T +Q is area-universal: The graph T +Q can be seen as T
where a vertex of degree 3 is inserted in every face. By Lemma 2.8 and the area-universality
of T , T +Q is area-universal. Consequently, Q is the subgraph of an area universal graph
and thus area-universal by Lemma 2.2. ◀

Remark. The very same approach shows that angle graphs of equiareal triangulations are
equiareal. However, the argument does not generalize from area-universal triangulations to
other area-universal graphs since we use the fact that every face of the quadrangulation
corresponds to exactly two faces in the union.

As a straight-forward consequence of Proposition 4.4, angle graphs of stacked trian-
gulations are area-universal. For an example consider Figure 4.2. We can also show
area-universality of angle graphs of some non-area-universal triangulations. For instance,
the angle graph of the octahedron is depicted in Figure 4.3(a), and its area-universality is
quite easy to see.
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▶ Proposition 4.5. The angle graph Q of the octahedron graph G is area-universal.

Proof. The graph Q can be transformed to an area-universal graph by four face-maintaining
edge contractions and insertion of four edges as depicted in Figure 4.3(b). The resulting
graph is the stacked triangulation illustrated in Figure 4.3(c). A vertex with label i can be
inserted in a triangle if all vertices with smaller labels are already inserted. Consequently,
Lemma 2.3 implies the area-universality of Q. ◀

(a) Angle graph of octahedron. (b) Inserted and contracted
edges.

1

2
3

2
3 3

3

(c) A stacked triangulation.

Figure 4.3: Illustration of Proposition 4.5 and its proof.

More generally, it suffices for the triangulation to be close to area-universal. As we
will see in Chapter 5, every plane graph has an area-universal subdivision. For a plane
graph G, the minimum number of inserted subdivision vertices such that the subdivided
graph becomes area-universal is the subdivision number of G, denoted by s(G). If G is
area-universal, then clearly s(G) = 0. We will see that the octahedron graph has subdivision
number 1 (Proposition 5.4). Therefore, the following theorem generalizes Proposition 4.4.

■ Theorem 18. If T is a plane triangulation with subdivision number s(T ) ≤ 1, then its
angle graph Q is area-universal.

Proof. Figure 4.4 illustrates this proof for the octahedron graph. Let e be an edge of T such
that subdividing e yields the area-universal graph T◦. Our strategy is as follows: Given an
area assignment A of Q, we define a refining area assignment A′ of the union U := Q+ T◦.
Then, there exists a unique area assignment A◦ of T◦ such that A′ refines also A◦. With
the help of an A◦-realizing drawing of T◦, which exists since T◦ is area-universal, we find
an A′-realizing drawing D′ of U . Deleting T◦ from D′ yields an A-realizing drawing of Q.

T◦

(a) The subdivision T◦.

qe
f1

f2
0

U

0

0 0

(b) The union U := T◦ +Q.

Q

(c) The angle graph Q of T .

Figure 4.4: Illustration of the proof of Theorem 18 when T is the octahedron graph.
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For the definition of A′, note that every face of Q corresponds to two faces in U . Let qe
denote the face of Q that is split by the subdivided edge e in U . We denote the two
faces adjacent to e in T by f1 and f2. For all faces q in Q except the four faces q1, q2, q3,
and q4 sharing an edge with qe, we arbitrarily partition the area A(q) between the two
corresponding faces in U . For qi, i ∈ [4], assign the area A(qi) to the triangular face of U
which is neither incident to f1 nor to f2 as illustrated in Figure 4.5. This defines the area
assignment A′. We define A◦ as the area assignment of T◦ that is refined by A′ of U .

0 0

00

A(q1) A(q2)

A(q4) A(q3)

q1 q2

q4 q3

qe

A(q4) A(q3)

qe

A(q1) A(q2)

f1

f2

q1 q2

q4 q3

Figure 4.5: Faces in U in the neighborhood of the subdivided edge e.

Let D◦ be an A◦-realizing drawing of T◦. Since each vertex f ∈ F − {f1, f2} of U
acts as a vertex of degree 3 stacked into a face of T◦, we can insert them in D◦ such that
they realize the areas of A′ by Lemma 2.8. For an A′-realizing drawing of U it remains
to insert f1 and f2. Due to the definition of A′, the red edges in Figure 4.5 incident to f1
and f2 must be contracted in every A′-realizing drawing of U . Consequently, we insert f1
and f2 at the end vertex of the red edges, respectively. This yields an A′-realizing drawing
of U . Since A′ refines A, deleting the edges of T◦ yields an A-realizing drawing of Q. ■

In fact, the proof of Theorem 18 can be applied in more general settings. It is not hard
to see that the same argument works if the subdivision vertices are isolated, i.e., in the dual
graph T ∗ the set of faces incident to a subdivision vertex induces a matching.

■ Corollary 19. Let T be a triangulation with an area-universal subdivision T◦ that has
isolated subdivision vertices. Then the angle graph Q of T is area-universal.

Moreover, we can allow for diamond additions of arbitrary order.

■ Theorem 20. Let T be a triangulation obtained from an area-universal graph T ′ by
several disjoint diamond additions of an arbitrary order. Then the angle graph Q of T is
area-universal.

Proof. We consider a diamond addition of order k applied on an edge (u,w) of T ′. Let T ′
◦

denote the triangulation T ′ where the edge (u,w) is subdivided by k vertices as in T ; in
other words the edge (u,w) is replaced by a path P with k+1 edges. Let A and B denote the
two common neighbors of u and w in T ′, respectively. We consider the union U := Q+ T ′

◦
and define H as the restriction of U to the interior of AuBw. Figure 4.6(a) depicts H for a
diamond addition of order 3.

Given an area assignment A of Q, we construct an area assignment A′ of T ′ and an area
assignment AU of U that refines both A and A′. Observe that every face q of Q is either a
face of U or corresponds to two faces of U . In the latter case, we partition the prescribed
area of q equally between its two faces in U and obtain the area assignment AU of U . We



78 4 Quadrangulations
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(a) The graph H for a diamond ad-
dition of order 3 and AH .
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(b) A tent graph Tk.
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. . .a0 a1 ak+1

`

(c) An A-realizing drawing of
Tk.

Figure 4.6: Illustration of Lemma 4.6 and its proof.

will make use of the equal partition for faces incident to P . We denote AU restricted to H
by AH . We define A′ of T ′ as the area assignment refined by AU , where we identify P and
(u,w) for the containment relation. From an A′-realizing drawing D′ of T ′, we construct an
AU -realizing drawing of U as follows: Firstly, we add all face vertices not adjacent to P by
Lemma 2.8; recall that they act as vertex of degree 3 in a triangle. Secondly, we reinsert H .

We show the realizability of AH by considering the top and bottom half of H inde-
pendently. A tent graph Tk is a plane graph with outer face v, x0, x1, x2, . . . , xk+1 and
inner vertices y0, y1, . . . , yk where yi is incident to xi, xi+1 and v. Figure 4.6 illustrates T4.
Observe that decomposing H along P results in two tent graphs Tk.

▶ Lemma 4.6. Every area assignment A of a tent graph Tk has an A-realizing drawing
within each triangle that has area ΣA and corners v, x0, xk+1. Moreover, the length of every
segment xixi+1 is proportional to the area of the incident triangle.

Proof. We denoted the assigned areas of Tk by ai and bi, respectively, as depicted in
Figure 4.6(c). We position xi on the segment x0xk+1 such that

bi
∥xi+1 − xi∥

=


i bi

∥xk+1 − x0∥
.

Then, in a realizing drawing the vertices yi lie on a line ℓ parallel to the segment x0xk+1. We
place yi with the following procedure. Defining y−1 as the intersection of the segment vx0
with the line ℓ, we suppose that yi−1 is placed already when we consider yi for i ≥ 0. Move yi
rightwards on the line ℓ starting at yi−1 and observe the area of the face vyi−1xiyi. Clearly,
it starts at 0 and increases continuously. The intermediate value theorem guarantees a
position, where the area equals ai. We place yi at the corresponding position and continue
with yi+1. Due to the correct total area, the area of ak+1 is realized if all other face areas
are correct. Thus, we obtain an A-realizing drawing of Tk. ◀

We use Lemma 4.6 to reinsert each of the two tent graphs of H . By definition of A◦, the
subdivision vertices on (u,w) are placed consistently for the top on bottom part. Here we
use the fact the assigned areas were split equally into two. Since AU refines A, we obtain
an A-realizing drawing of Q by deleting the edges of T ′

◦. ■
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With a more careful analysis, we may also handle special configurations when a triangle
of T is incident to more than one subdivision vertex.

■ Theorem 21. Let T be a triangulation with a face f◦ such that subdividing each edge
incident to f◦ (at most once) yields an area-universal graph T◦. Then the angle graph Q
of T is area-universal.

Proof. For simplicity and with slight abuse of notation, we denote the face corresponding
to f◦ in T◦ also by f◦ and the three faces incident to subdivision vertices by f1, f2, f3 as
illustrated in Figure 4.7(a). In the following, we show how to deal with exactly three
subdivision vertices since inserting an extra subdivision vertex never harms the area-
universality.

f1

f◦

f2f3
a b

c

0

A◦

(a) Neighborhood of f◦ in T◦ and A◦.

f◦

f2f3

f1
0 0

0
0 0

0
0 0

0

a b

c

A′

(b) Neighborhood of f◦ in Q+ T◦ and A′.

Figure 4.7: Illustration of the proof of Theorem 21 for three subdivision vertices.

For an area assignment A of Q, we construct an area assignment A◦ of T◦. Then from
an A◦-realizing drawing D◦ of T◦, we construct an A-realizing drawing of Q. In the first
step, we define an area assignment AU of the union Q+T◦ =: U . Note that every face of Q
corresponds to two faces in U . Except for the faces incident to f◦, we arbitrarily partition
the area A(q) of each face q of Q between its two faces in U . For the faces incident to f◦,
we assign their area to the subface of U not incident to f◦ as depicted in Figure 4.7(b).

In the second step, we define the area assignment A◦ of T◦ such that AU of U refines A◦
of T◦. Since T◦ is area-universal, there exists an A◦-realizing drawing D◦ of T◦. Observe
that most face-vertices of Q act as vertices of degree 3 in a triangle of U . Hence, these
vertices do not influence the area-universality of U by Lemma 2.8 and we may easily insert
them in D◦ such that they realize the area of AU . For an AU -realizing drawing of U , it
remains to insert the face vertices f1, f2, f3 and f◦. By definition of AU , we place f1, f2, f3
such that the edges which are highlighted in red in Figure 4.7(b) are contracted. In order
to place f◦ in D◦, we work a little harder.

Given a polygon P , we say a point p sees another point q if the segment pq is contained
in P . Note that f◦ is incident to three (black) vertices from T and three (white) subdivision
vertices. Given a straight-line drawing of T◦, we say a point of f◦ is a black center if it sees
the three black vertices.

▶ Lemma 4.7. In every A◦-realizing drawing D◦ of T◦, the polygon f◦ has a black center.

Proof. Consider any triangulation of f◦ in D◦. Figure 4.8 depicts the interesting cases. If
the triangulation contains a white-black diagonal, then the incident white vertex is a black
center; it is adjacent to two black vertices by outer vertices and to the last by the diagonal.
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Figure 4.8: Triangulations of f◦ for finding a black center in f◦.

There exist exactly two triangulations which do not contain a white black-diagonal, namely
the triangulations consisting of white-white or black-black diagonals. In the case of a
ack-black diagonals, any black vertex is a black center.

In the case of white-white diagonals, we use the fact that f◦ has area 0. Since all
triangles of the triangulation have no area, the corresponding vertex triples are collinear.
We distinguish two cases: If two white vertices coincide, then the point of coincidence is
a black center: Each white vertex is adjacent to two black vertices. Together two white
vertices cover all three black vertices. If no two white vertices coincide, then the central
triangle needs a flat angle. Let v denote the white vertex where the flat angle of the central
face is realized. We claim that v is a black center: Clearly, it sees its adjacent two black
vertices. Moreover, there exist two collinear triples sharing two distinct points, namely the
white triple and the triple disjoint from v. Thus all four vertices are collinear. ◀

Lemma 4.7 guarantees that the polygon f◦ in D◦ has a black center at which we place
the face-vertex f◦ of Q. Since AU of U refines A of T , we obtain an A-realizing drawing
of Q by deleting the edges of T◦. ■

Remark. To show the area-universality of the angle graph Q of a triangulation T with
subdivision number s(T ) ≤ 2, we need to consider the relative placement of the subdivision
vertices. If the two subdivision vertices are independent, Corollary 19 guarantees the
area-universality of Q. It remains to consider the cases where the two subdivision vertices
share a common neighbor v and have incident neighboring faces. Figure 4.9 displays these
cases. If the two subdivision vertices are incident to a common face, then Theorem 21 shows
the area-universality of Q. If v has degree 4, then Proposition 4.8 shows that the middle
graph of Figure 4.9 is strongly realizable. Unfortunately, this method seems hopeless if v
has higher degree.

0 0

0 0

Figure 4.9: Three cases of two dependent subdivision vertices and their angle graphs.
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▶ Proposition 4.8. Every area assignment A of the graph G, depicted in Figure 4.10(a),
where the faces incident to outer edges have area 0, has a realizing drawing within any
quadrangle q of area ΣA.

Proof. We denote the outer vertices by A,B,C,D and the non-zero face areas by a, b, c, d as
shown in Figure 4.10(a). By symmetry of G, we may assume that q contains the diagonal AC.
We distinguish two cases. If the areas b and d do not exceed the triangles ABC and CDA,
respectively, we partition a and c into areas a1, a2 and c1, c2 such that a1/c1 = a2/c2
and x := area(ABC)− b = a1 + c1 with 0 ≤ x ≤ a+ c. Then we apply Lemma 4.6 to the
resulting left and right tent graph. Due to the same ratio, the inner vertex v is placed in
the same point.

b d

a

c

C

A

B D

0 0

0 0

v

(a) Strong realizability for v
of degree 4.

b

a1 a2

c1 c2

d

C

A

B D

(b) Case 1: b and d are small.
C

A

B Db1

a

d1

d2

c

0

0

b2

(c) Case 2: b or d are big.

Figure 4.10: Strong realizability for v of degree 4.

Now, we consider the case that b or d exceed the area of ABC or BDA, respectively.
By symmetry, we assume that b exceeds the area of triangle ABC. This case is illustrated
in Figure 4.10(c) and reduces to a stacked triangulation: First of all, we identify the left two
vertices with A and C, respectively, and define b1 = area(ABC) and b2 := b− b1. Then v
must be placed within ACD. Inserting the artificial edge (v,D) and the three edges of the
triangle ACD, results in a stacked triangulation with outer face ACD. Consequently, we
can realize the areas b2, a, c, d as wished. ◀

When combined with knowledge from Chapter 5, the above results imply the area-
universality of the following classes of angle graphs.

■ Corollary 22. The angle graph Q of a plane triangulation T is area-universal if
• T is a stacked triangulation,
• T is 4-connected and has at most ten vertices, or
• any (possibly a different) embedding of T is a double stacking graph, i.e., T ∈ [Hℓ,k].

Proof. Since stacked triangulations are area-universal as seen in Observation 1.1, Proposi-
tion 4.4 implies the area-universality of its angle graphs. Corollaries 34 and 35 show that
triangulations with at most nine vertices and all plane graphs in [Hℓ,k] have subdivision
number at most 1. Consequently, Theorem 18 implies that their angle graphs are area-
universal. Moreover, plane 4-connected triangulations on ten vertices can be obtained by
at most two disjoint diamond additions as shown in Lemmas 5.13 and 5.14. Thus, their
area-universality follows from Theorem 20. ■
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4.2 On Strongly Area-Universal Quadrangulations

In this section, we study strongly area-universal quadrangulations. Note that for n > k,
the area of a convex n-gon strictly exceeds the area of a contained k-gon. Therefore, we
immediately obtain that the graph depicted in Figure 4.11 is not strongly area-universal.

Observation 4.9. Not all plane bipartite graphs are strongly convex area-universal.

In particular, if the outer face is a regular hexagon, the left quadrangle can never
contain more that 2/3 of the total area. Consequently, every area assignment a, b where the
quadrangle has area a > 2/3 is not realizable in a regular hexagon with total area 1.

Figure 4.11: This plane bipartite graph is not strongly area-universal.

▶ Proposition 4.10. If a plane quadrangulation G has an area assignment A such that
every realizing drawing has a convex outer face, then there exists a plane quadrangulation H
that is not area-universal.

Proof. Suppose we are given a quadrangulation G and an area assignment A such that
every A-realizing drawing has a convex outer face. Then, we construct H as follows: Let G1

and G2 be two copies of G. Choose two outer vertices of G belonging to the same bipartition
class of G and identify their twin in G1 and G2, respectively. The resulting graph is depicted
in Figure 4.12. If G was 3-connected, we additionally inserting a cube graph in the central
face of H such that H is also 3-connected.

G G

Figure 4.12: Construction of a non-area-universal quadrangulation Q from a graph G with
an area assignment that needs a convex outer face.

Assigning a positive area to the central face and A to each copy of G, we claim that H
has no realizing drawing. Suppose, by contradiction, that there exists a realizing drawing.
Due to the positive area of the central face, at most one copy of G in H has a convex outer
face, without loss of generality assume G1 has convex outer face. Thus G2 has an A-realizing
drawing where the outer face is not convex. A contradiction. ◀



4.2 On Strongly Area-Universal Quadrangulations 83

4.2.1 Angle Graphs of Wheels

Now, we consider angle graphs of wheels, which are also known as pseudo-double wheels.
The pseudo-double wheel Sk is a plane graph with 2k + 2 vertices and consists of a cycle
with vertices v1, v2, . . . v2k and a vertex v adjacent to all vertices on the cycle with odd
index and a vertex w adjacent to all vertices on the cycle with even index. Depending
on their index we call the vertices of the cycle odd or even. Figure 4.13(a) displays S5.
From the definition (and the Jordan curve theorem), it is immediate that all embeddings
of the underlying planar graph of Sk are equivalent. Note that the pseudo-double wheel
with (2k+2) vertices is the angle graph of the wheel graph Wk which consists of a cycle Ck

with an additional vertex incident to vertices of Ck. Figure 4.13(b) illustrates this fact.
The smallest pseudo-double wheel S3 is also known as the cube graph.

v4

v1

v2k

v

w

v6

v3 v5 v7
. . .

v8
v2

(a) A pseudo-double wheel.

v2k−1

v2k

v3

v5

v7

v2

v4 v6

..
.

w

v

v1

(b) A wheel and its angle graph.

Figure 4.13: Pseudo-double wheels are angle graphs of wheels.

In this section, we show that the cube graph and more generally, that all pseudo-double
wheels are strongly area-universal.

■ Theorem 23. The pseudo-double wheel Sk, k ≥ 3, is strongly area-universal.

Clearly, we can combine Lemma 2.5 and Theorem 23 in order to construct other strongly
area-universal graphs. A graph is a stacked pseudo-double wheel if there exists a set of
faces such that decomposition along these faces yields several pseudo-double wheels. A
generalized stacked pseudo-double wheel can be decomposed into pseudo-double wheels and
copies of Q5, which is strongly area-universal by Proposition 2.4. By definition, a stacked
pseudo-double wheel is a generalized stacked pseudo-double wheel. For an example of a
stacked cube graph consider Figure 4.14.

= +

Figure 4.14: This graph is a stacked cube graph and strongly area-universal by Corollary 24.

■ Corollary 24. Every generalized stacked pseudo-double wheel is strongly area-universal.
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To prove Theorem 23, we first study a subgraph of Sk, namely the plane graph c(Sk),
called the core, which is obtained by deleting v0. Figure 4.15 illustrates the core of S5. For
simplicity, we define A := v2 and B := v2k.

▶ Lemma 4.11. Let c(Sk) be the core of a plane pseudo-double wheel with an area
assignment A. Let q be a quadrangle of area ΣA containing the diagonal AB whose corners
are identified with the vertices A,w,B, v. Then, c(Sk) has an A-realizing drawing within q.

v

w

A B
b1 b2 bk. . .

a1 ak−1. . .

(a) The core c(Sk) of Sk.
w

0 0

b11

b21

b11
b21

=
b1i
b2
i

b12

b22

b1k

b2k
. . .

. . .

v

(b) Drawing in case (i).
w

a11 a12

a22

a1
1

a2
1
=

a1
i

a2
i

a12 . . .

. . .

v

(c) Drawing in case (ii).

Figure 4.15: Illustration of the proof of Lemma 4.11.

Proof. We distinguish two cases. We call the faces of c(Sk) incident to w, the bottom faces
and the faces incident to v the top faces of c(Sk). We denote the face areas by ai for the
top and by bi for the bottom faces and distinguish two cases. Consider also Figure 4.15(a).

Case (i): If


i bi > area(△AwB), we position the even vertices on the segment AB.
Note that adding the edges of consecutive even vertices and Av and Bv (and deleting w)
results in a tent graph. We partition the face area bi of each bottom face into b1i and b2i
such that the ratio b1i/b2i coincides for all i and


i b

2
i = area(△AwB). By Lemma 4.6, the

tent graph has a realizing drawing within the triangle vAB. Due to the same ratio, the
vertex placement on AB also realizes the area for triangles incident to w. Figure 4.15(b)
visualizes the realizing drawing of c(Sk).

Case (ii): If


i ai > area(△vAB), we position the odd vertices on the segment AB.
Note that the graph in the bottom triangle is a tent graph. Therefore, we partition
the area ai of a top faces into a1i and a2i such that the ratio a1i/a2i coincides for all i
and


i a

1
i = area(△vAB). As in case (i), we use Lemma 4.6 to find a realizing drawing

of the tent graph. Figure 4.15(c) visualizes the realizing drawing of c(Sk). ◀

We use Lemma 4.11 to settle three out of four cases of Theorem 23.

Proof of Theorem 23. For an area assignment A of Sk, we consider an arbitrary but fixed
quadrangle q of area ΣA whose corners are identified with v1v2wv2k. We distinguish two
cases depending on the shape of q.

In case 1, q contains the segment v2v2k. We distinguish two subcases based on the
assigned areas a and b of the faces incident to v1 relative to the area of the triangle v1v2v2k.

In case 1(i), it holds that a + b ≤ area(v1v2v2k) and Figure 4.16(a) visualizes the
resulting layout. We position v such that the triangles v1v2v and v1vv2k realize a and b,
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v1

v2k

v

w

v2

v3 v2k−1
a b

(a) Case 1(i): top faces are small.

v1

v

w

v3
v2k−1

a b

v2kv2

(b) Case 1(ii): top faces are big.

Figure 4.16: Realizing drawings in case 1, when the segment v2v2k is contained in q. Both
subcases reduce to Lemma 4.11.

respectively. Hence, we may position the vertex v3 anywhere on the segment vv2; and
likewise v2k−1 anywhere on vv2k−3. Since the remaining graph corresponds to the core Sk,
we use Lemma 4.11 to realize it in the quadrangle vv2wv2k.

In case 1(ii), we have a+ b > area(v1v2v2k) and Figure 4.16(b) illustrates the realizing
drawing. We position v on the segment v2v2k such that v3 and v2k−1 lie on a line parallel
to the segment v1v2k−3. Moreover we realize the area of the two faces with outer edges as
triangles by placing v3 and v2k−1. Note that graph induced by the vertices in the interior
of vv3wv2k−1 corresponds to the core of a smaller pseudo-double wheel. Consequently,
Lemma 4.11 yields a realizing drawing.

In case 2, q contains the segment v1w. We call the faces incident to v2 the left faces
and the faces incident to v2k the right faces. We say the left (right) faces are small if the
sum of their assigned areas is at most the area of the triangle v1v2w (v1wv2k). Otherwise,
we call the left (right) faces big. Note that either the left or right faces must be small. By
symmetry, we assume without loss of generality, that the left faces are small. Then we
realize the left faces by triangular faces, by positioning v3 accordingly.

In case 2(i), the right faces are small. We contract the edge vv1 and realize the right
faces with triangular faces by placing v2k−1. Denoting the areas of the inner faces by xi as
illustrated in Figure 4.17(a), there exists an 4 ≤ i ≤ 2k − 1 such that

a+ c+

i−1
j=4

xj ≤ area(v1v2w) and
2k−1
j=i+1

xj + b+ d ≤ area(v1wv2k).

The exact layout depends on whether xi is the area of a top or bottom face f of the core.
For a top face, the unique odd vertex of f is placed at w; for a bottom face, the unique
even vertex of f is placed at v. Afterwards we insert the remaining vertices. For j < i, we
iteratively insert vj such that it realizes the face face area xj by triangular face with a flat
angle at vj+1 from left to right. For j > i, we follow the same strategy but in decreasing
order.

In case 2(ii), the right faces are big. Place v2k−1 on v1w such that the area of the
quadrangle v1v3v2k−1v2k exceeds b but is not enough to also realize all the faces of the core,
i.e., the striped faces incident to v in Figure 4.17(b). After artificially subdividing wv2k−1,
the remaining graph can be handled by Lemma 4.11 with outer face vv3wv2k−1. ■
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(a) Case 2(i): right faces are small.

d

a

c

b

v

v2k−1
v3 v2kv2

w

v1

(b) Case 2(ii): right faces are big.

Figure 4.17: Realizing drawings in case 2, when the segment v1w is contained in q.

4.3 Small Quadrangulations

We conclude the chapter on small quadrangulations by showing that the developed methods
are strong enough to prove area-universality for quadrangulations with up to 13 vertices.
We also use our insights on area-universal triangulations gained in Chapter 3.

■ Theorem 25. Every quadrangulation on at most 13 vertices is area-universal.

Proof. Firstly, by Lemma 2.5 and the area-universality of Q5 shown in Proposition 2.4, we
can restrict our attention to quadrangulations with minimum degree 3.

Observation 4.12. A minimal quadrangulation that is not area-universal has minimum
degree 3.

Thus, the smallest quadrangulation of interest is the cube graph on eight vertices.
Figure 4.18 displays the planar quadrangulations on up to 13 vertices with minimal degree 3.
Since all embeddings of pseudo-double wheels are equivalent, Theorem 37 proves their
(strong) area-universality. It remains to consider the planar quadrangulations which are
not pseudo-double wheels; specifically, one quadrangulation on eleven, two on twelve, and
three on thirteen vertices, cf. Figure 4.18. We show that all of these quadrangulations are
subgraphs of area-universal graphs, and thus area-universal by Lemma 2.5.

The quadrangulation T on 11 vertices is a subgraph of a stacked triangulation. This
can be seen by inserting all edges between two white vertices sharing a face. The new edges
induce the stacked triangulation on five vertices; each black vertex is stacked into one of
these faces. Consequently T is a stacked triangulation. Since every embedding of T is
area-universal by Observation 1.1, the same follows for its subgraph.

For the three planar quadrangulations on 12 vertices, the first is the pseudo-double
wheel S5; the second graph is a stacked cube graph and thus area-universal by Corollary 24.
The remaining quadrangulation on 12 vertices and the first two on 13 vertices are subgraphs
of an area-universal double stacking graph with some additional vertices of degree 3 stacked
into triangular faces. Thus, their area-universality follows from Lemma 2.2 and Theorem 11.
In Figure 4.18 the vertices which remain after iterative removal of degree 3 vertices are
highlighted in red. The graph on 12 vertices reduces to the double stacking graph H2,2; the
two graphs on 13 vertices to the odd accordion K1 = H1,2. The last quadrangulation on 13
vertices is a generalized stacked cube graph and thus area-universal by Corollary 24. ■
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n = 8 n = 10 n = 11

n = 12

n = 13

S3 (cf. Figure 3)S4

S5

Figure 4.18: The planar quadrangulations on up to 13 vertices with minimum degree 3;
only one representative for each set of plane graphs belonging to the same planar graph
is illustrated. A single checkmark indicates the area-universality and a double checkmark
indicates the strong area-universality of all embeddings of the depicted graph.



5 | Drawings with Bends

In this section, we relax the straight-line property and aim for realizing each area assignment
of every plane graph. As discussed in Section 3.1, this is impossible with straight-line
drawings. Therefore, we study realizing drawings with bended edges.

In Section 5.1, we consider general plane graphs and show that one bend per edge is
sufficient. Afterwards, in Section 5.2, we improve this result for plane bipartite graphs by
constructing realizing drawings where only half of the edges have a bend. Together with
parts of Section 3.1, the results of these two sections can also be found in [Kleist, 2016,
Kleist, 2018a]. Finally, in Section 5.3, we study the bend number of small triangulations.

5.1 Plane Graphs

By relaxing the straight-line property, we now present realizing drawings for each area
assignment of every plane graph. In a polyline drawing of a graph, every edge is represented
by a polygonal chain and a point where an edge changes its directions is called a bend.
Interpreting the bend as a subdivision vertex, the polyline drawing corresponds to a straight-
line drawing of a subdivision of the graph. In this sense, the notions of planar, crossing-free
and realizing drawings immediately translate to polyline drawings. Moreover, we call a
polyline drawing of a plane graph a k-bend drawing if each edge has at most k bends. In
this section, we show that one bend per edge is sufficient to guarantee realizing drawings.

■ Theorem 26. Let G be a plane graph and A : F ′ → R>0 an area assignment of G.
Then, there exists a non-degenerate 1-bend drawing of G realizing A.

Proof. Without loss of generality, we assume that G is a plane triangulation: If G is not
a triangulation, there exists a triangulation T such that G is an induced subgraph. For
each face of G, partition the assigned area between its subfaces in T and obtain the area
assignment A′ of T . Given an A′-realizing 1-bend drawing of T , delete the artificial vertices
and edges. The result is an A-realizing 1-bend drawing of G.

We construct the final drawing of G in four steps (see definitions below):
1. Take a ⊥-contact representation C which yields a rectangular layout L.
2. Obtain a weak equivalent rectangular layout L′ realizing the areas.
3. Define a degenerate drawing D⊥.
4. Construct a non-degenerate drawing D∗

⊥ from D⊥.
The steps are visualized for the octahedron graph in Figure 5.1.

In the first step, we construct a ⊥-contact representation C of G. A ⊥-shape is the union
of a horizontal and vertical segment such that the lower end of the vertical segment lies in
the horizontal segment. We call this point of intersection the heart of the ⊥-shape. Each of

88
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Figure 5.1: Construction of a realizing 1-bend drawing in four steps.

the other three ends of the segments is an end of the ⊥-shape. A ⊥-contact representation
of a graph G = (V,E) is a family of ⊥-shapes {⊥v : v ∈ V } where ⊥u and ⊥v intersect if
and only if (u, v) ∈ E. Moreover, if ⊥u and ⊥v intersect then the intersection must consist
of a single point which is an end of either ⊥u or ⊥v.

■ Theorem 27 ([de Fraysseix et al., 1994]). Every plane triangulation has a ⊥-contact
representation such that each inner face is represented by a rectangular region.

Following the ideas of de Fraysseix et al. [de Fraysseix et al., 1994], C can be constructed
as described in detail by Alam et al. [Alam et al., 2013, Section 3.1]. Observe that the
⊥-shapes of three outer vertices may be pruned to segments such that the outer face
is the complement of a rectangle. Moreover, note that every horizontal segment has a
unique vertical segment touching it from above. The segments of the ⊥-shapes of inner
vertices partition the outer rectangle into finitely many rectangles; such a partition is
called a rectangular layout. By Theorem 27, C yields a rectangular layout L in which every
rectangle r corresponds to a face fr of G. In a generic rectangular layout no four rectangles
meet in one point. In this case, we may define a segment of L as a maximal segment
belonging to the boundary of the rectangles. Indeed, C can be constructed such that all
horizontal and vertical segments of C have their private supporting line. Therefore, the
segments of C are segments of L and are interiorly disjoint.

In the second step, we want to achieve correct areas in a weakly equivalent layout. Two
rectangular layouts are weakly equivalent if there exist bijections between their horizontal
and vertical segments, respectively, which preserve the ends on-relation, i.e., a segment s
ends on a segment t in one layout if and only if the same holds for their images in the other
layout. We make use of the following theorem.

■ Theorem 28 ([Eppstein et al., 2012]). For every rectangular layout with area assign-
ment a on the inner rectangles, there exists a weakly equivalent rectangular layout realizing
the areas of a.

For this theorem several variants and proofs are known; we refer to [Wimer et al., 1988,
Eppstein et al., 2012, Felsner, 2014]. For each rectangle r corresponding to the face fr, we
set a(r) := A(fr). By Theorem 28, we obtain a weakly equivalent rectangular layout L′

in which the area of each rectangle r is a(r). Due to the weak equivalence of L and L′,
the layout L′ can be viewed as a ⊥-contact representation C′, which now realizes the areas.
The weakly equivalent layout L′ is unique and may have four rectangles meeting in a point.
This corresponds to the fact that two segments of L end in the same point of a segment
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in L′ from different sides. For our further construction, we consider these two segments as
two segments of L′.

In the third step, we obtain a 1-bend drawing of G from C′, which may be degenerate.
We define the drawing D⊥ with the help of C′ as follows:

• Place each vertex v in the heart of ⊥v; for a pruned ⊥-shape, the heart is the bottom
or left endpoint of the segment.

• An edge e = (u, v) is supported by the segments of C ′ in the following way: Since the
two vertices u and v share an edge, ⊥u and ⊥v have a point of contact c in which a
vertical and a horizontal segment meet. We draw the edge e from the heart of ⊥u

along a segment of ⊥u to the contact point c and then along a segment of ⊥v to the
heart of ⊥v, see Figure 5.2. The edge e has c as its unique bend point.

u

v

c

Figure 5.2: Definition of D⊥.

u

p
p′

v

Figure 5.3: A parallel shift from p to p′.

Note that two edges may intersect along segments but never form a proper crossing.
Hence the properties of a degenerate drawing of G are fulfilled. By construction, each edge
consists of a horizontal and a vertical segment and, hence, has at most one bend.

Observation 5.1. D⊥ is a degenerate 1-bend drawing of G realizing A.

For the fourth step, it remains to remove the degeneracies of D⊥. For an edge e, we
interpret its bend point pe as a vertex of degree 2, and refer to the two incident edges of pe
as its horizontal and vertical segments. As part of the degeneracies, bend points intersect
non-incident edges. We handle this issue by parallel shifts. A parallel shift of a bend point p
in a drawing D yields a (degenerate) drawing D′ of G in which only the position of p and
its edges changed: Let p and p′ denote the positions of the bend in D and D′, respectively,
and let u and v denote its the two neighbors. A (degenerate) drawing D′ of D is obtained
by a parallel shift of p if the segment pp′ is parallel to the segment uv. For an illustration
consider Figure 5.3. A bend point p is shiftable in D if there exists a parallel shift of p.
For instance, the topmost blue bend in Figure 5.4(a) is not shiftable since every shift of it
results in a proper crossing.

Observation 5.2. A parallel shift of a bend point keeps all face areas invariant.

The contact representation C′ induces a coloring and an orientation of the inner edges:
each edge corresponds to a contact point of two segments of two ⊥-shapes. Orient the edge
such that it is an outgoing edge for the vertex belonging to the segment whose endpoint is
the contact point. Color the edge red, blue, or green, depending on the type of end which
belongs to the contact point: Red for the top end of the vertical segment, blue for the left
endpoint of a horizontal segment, and green for the right endpoint of a horizontal segment.
Such a coloring and orientation is called a Schnyder wood of G.

We analyze the structure of the neighborhood for a vertex v in D⊥, see Figure 5.4(a).
By construction, v has three outgoing edges such that all incoming edges partially run on
one of these outgoing edges. (There may a unique red incoming red edge for each vertex
without a bend.) As noted before, in C ′ every horizontal segment has a unique vertical
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not shiftable

shiftable

(a) The structure of the neighborhood of a
vertex in the degenerate drawing D⊥.

(b) The structure of the neighborhood of a
vertex in the final 1-bend drawing.

Figure 5.4: The structure of the neighborhood of a vertex in D⊥ and in the final drawing.

segment touching it from above and the point of contact corresponds to the heart of the
⊥-shape. By definition of D⊥, a vertex is placed in this contact point. Thus, in D⊥ every
horizontal segment has no segment touching it from above. Therefore, the bend point of
the lowest green and blue incoming edges is shiftable upwards. Due to the fact that every
rectangle has positive area, some space is guaranteed. Therefore, we can parallel shift the
bend point such that its edges are free of degeneracies. In particular, the bend point does
not intersect non-incident edges anymore. Consequently, the bend point of the second
lowest incoming edge of v becomes shiftable. We iterate this process for all v such that all
blue and green bend vertices are free of degeneracies. Afterwards, only red bend points are
involved in degeneracies.

For every vertex, we consider the incoming red edges, which may have a left or a right
bend with respect to the orientation. Consider the rightmost right bend point (and likewise
the leftmost left bend point). Its horizontal segment has no segment touching it from below
since it is rightmost (leftmost) and the vertical segment are free of degeneracies, since by the
first step there is no green or blue bend point on a red segment. Consequently, the rightmost
right bend (leftmost left) vertex is shiftable to the bottom. We shift it parallel downwards
such that no new degeneracies are introduced. Hence, the number of degeneracies decreased.
Moreover, this process achieved that the second rightmost (leftmost) bend point becomes
shiftable. By iterating, we remove all degeneracies. Finally, we obtain a 1-bend drawing
of G realizing the areas prescribed by A. ■

5.1.1 Bounding the Bend Number

Knowing that one bend per edge is always sufficient, we wonder how many bends may be
necessary to realize an area assignment of a plane graph? By the bend number of a plane
graph G, b(G) in short, we denote the minimum number of bends which is always sufficient
and sometimes necessary to realize any given area assignment of G.

Phrased differently, Theorem 26 establishes area-universality for 1-subdivisions of plane
graphs. In particular, it implies that for every plane graph, there exists an area-universal
subdivision. The (area-universal) subdivision number of a plane graph G, s(G) in short,
is the minimum number of subdivision vertices which need to be inserted such that the
subdivision of G is area-universal. If G is area-universal, then s(G) = 0. Clearly, the bend
number is upper bounded by the subdivision number. However, equality of both parameters
is not clear since for the bend number the bended edges can be chosen with respect to the
area assignment whereas for the subdivision number the bended edges must coincide for all
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area assignments. Theorem 26 assures that

▶ Proposition 5.3. For every plane graph G = (V,E) it holds that 0 ≤ b(G) ≤ s(G) ≤ |E|.

For a graph class G, we define the bend and subdivision number as the maximum
number attained by some graph of the class, i.e.,

b(G) := max
G∈G

b(G) and s(G) := max
G∈G

s(G).

Consequently, Theorem 5 and Theorem 26 yield that for the class Gm of plane graphs with
m edges it holds that s(Gm) ∈ Θ(m).

■ Corollary 29. For the class Gm of plane graphs with m edges, it holds that

⌊m/12⌋ ≤ b(Gm) ≤ s(Gm) ≤ m.

Proof. The upper bound follows from Theorem 26. For the lower bound consider ⌊m/12⌋
disjoint copies of the octahedron graph and insert m−12⌊m/12⌋ edges to obtain a graph Gm

on m edges. Since the octahedron graph is not area-universal by Theorem 5, it follows that
there exists an area assignment of Gm where each copy of the octahedron graph has at
least one bend in every realizing polyline drawing. Thus, b(Gm) ≥ ⌊m/12⌋. ■

We note here that the lower bound of Corollary 29 cannot be improved with the
octahedron.

▶ Proposition 5.4. The plane octahedron graph G has bend and subdivision number 1.

Proof. Since, by Theorem 5, G is not area-universal, it clearly holds that 1 ≤ b(G) ≤ s(G).
It remains to show that s(G) ≤ 1. We claim that subdividing an edge of the central triangle
results in an area-universal graph G◦. Figure 5.5 illustrates this subdivision. Inserting two

Figure 5.5: An area-universal subdivision G◦ of the octahedron.

further edges results in the accordion graph K1, which is area-universal by Theorem 10.
Thus, as a subgraph of an area-universal graph, G◦ is area-universal by Lemma 2.2. ◀

For the curious reader, we would like to mention that the bounds of Corollary 29 also
hold when we restrict the class of plane graphs to triangulations. Note here that the number
of edges in a triangulation is always a multiple of 3.

▶ Lemma 5.5. For every k ≥ 24, there exists a plane triangulation Gm on 3k =: m edges
such that

⌊m/12⌋ ≤ b(Gm) ≤ s(Gm).
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Proof. Before we construct Gm, we show that there exists an Eulerian triangulation on n
vertices for every n ≥ 8. (In fact, there exists one if and only if n ∈ {3, 6} or n ≥ 8.) Given
an Eulerian triangulation on n vertices, a diamond addition of order 2 on any inner edge
results in an Eulerian triangulation on n+ 2 vertices. Starting with the octahedron graph,
we obtain Eulerian triangulations on 2n vertices for every n ≥ 3. Moreover, we can take
two copies of the octahedron graph and identify the boundary of some inner face of one
copy with the outer face of the other copy. This yields an Eulerian triangulation on nine
vertices. Thus there exists Eulerian triangulations on 2n+ 1 vertices for n ≥ 4.

Now, we construct Gm. Let G denote the plane octahedron graph. For simplicity, we
first consider the case that m = 12ℓ for some ℓ ≥ 6. We start our construction with an
Eulerian triangulation on ℓ+ 2 vertices and consider an inner face 2-coloring with ℓ white
faces. Then, we insert a copy of the octahedron graph G into every white face f of T by
identifying three outer vertices of G with the vertices of f . This yields a graph H consisting
of ℓ octahedron graphs which are pairwise edge-disjoint. Therefore, H has 12ℓ = m edges.

By Theorem 5, the octahedron graph G is not area-universal. Hence, there exists an area
assignment A0 which has no realizing straight-line drawing. Let A be an area assignment of
H such that the restriction to any copy of G results in A0; the remaining faces of H obtain
some arbitrary value. Thus in every A-realizing polyline drawing D of G, each copy of
the octahedron graph has at least one edge with a bend. Since the octahedron graphs are
edge-disjointness, at least ℓ of the 12ℓ edges have a bend and the claim holds for m = 12ℓ.

For every m which is not a multiple of 12, we consider the largest ℓ such that 12ℓ < m
and construct H for m′ = 12ℓ as before. We then stack as many degree 3 vertices into black
faces as needed to obtain a graph with m edges. Here we use the fact that m− 12ℓ is a
multiple of 3, since m = 3k. ◀

For quite some time we wondered whether the class of 4-connected triangulations on m
edges has the same behavior or if the following holds true:

¿Question ? : For the class of 4-connected triangulations T , does there exist a constant c
such that b(T ) ≤ s(T ) ≤ c?

Recently, we encountered the non-area-universal butterfly graph depicted in Fig-
ure 3.35(a). With this example at hand, we can answer the question in the negative
and show that the subdivision number may also be linear in the number of edges.

▶ Proposition 5.6. For every m = 3k, k ≥ 14, there exists a plane 4-connected triangu-
lation Tm on m edges such that

⌊m/21⌋ ≤ b(Tm) ≤ s(Tm).

Proof. Let G be the butterfly graph. For simplicity, we first consider the case that m = 21n
for some n ≥ 2. We start our construction with the plane quadrangulation Qn on 2n+ 2
vertices whose dual graph is a cycle. Figure 5.6(a) depicts Qn. Since the dual graph of Qn

is bipartite, we may 2-color the faces of Qn with black and white such that neighboring
faces have different colors. Without loss of generality, we may assume that the outer face is
white. Note that the number of white and black faces is n.

In every black face of Qn, we insert a copy of G. In every white face of Qn, we insert
an edge connecting the two vertices of degree 2 in Qn. Clearly, the resulting graph H is a
triangulation. Since G has no separating triangle and no chords, it is easy to check that H
has no separating triangle. Thus H is a 4-connected triangulation.
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(a) The quadrangulation Qn.

GG G

(b) The triangulation H. (c) The butterfly graph.

Figure 5.6: A lower bound construction for the class of 4-connected triangulations.

Since we added n copies of G, H has 2n+ 2 + 5n = 7n+ 2 vertices and 21n = m edges.
Since G is not area-universal by Proposition 3.31 and every two of the n copies of G in H
are edge-disjoint, it holds that s(H) ≥ n = 1

21 ·m.
For every m which is not a multiple of 21, we consider the largest n such that 21n < m,

i.e., n := ⌊m/21⌋ and construct H as before. Then, we apply a diamond addition of order
(m−21n)/3 on the edge inserted in the outer face of Qn. In this way we obtain a graph H ′

with m edges such that s(H ′) ≥ n = ⌊m/21⌋ > 1
21 ·m− 1. This proves the claim. ◀

Consequently, the class of 4-connected triangulations also has a linear bend number.

■ Corollary 30. For the class Tm of plane 4-connected triangulations on m edges, it holds

⌊m/21⌋ ≤ b(Tm) ≤ s(Tm) ≤ m.

Likewise, Corollary 30 can also not be improved with the help of the butterfly graph.

▶ Proposition 5.7. The butterfly graph G has b(G) = s(G) = 1.

Proof. We show that subdividing an outer edge e of the butterfly graph graph results in
an area-universal subdivision. Figure 5.7(a) illustrates this subdivision. We start to study
the near-triangulation G′ depicted in Figure 5.7(b) which we obtain by deleting e and
inserting e′. Observe that G′ is 3-degenerate: A vertex with label i in G′ has degree at

(a) An area-universal subdivi-
sion of the butterfly graph.
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(b) The 3-degenerate near-tri-
angulation G′.

B
CA

E

D

(c) Inserting e in a realizing
drawing of G′.

Figure 5.7: Illustration of Proposition 5.7 and its proof.

most 3 after removal of all vertices with smaller labels. Consequently, by Theorem 17, G′ is
area-universal. Given a realizing drawing for G′, we delete e′ and insert e with at most one
bend. In the construction of a realizing drawing in Theorem 17, we may choose the reflex
outer vertex such that e is not incident to it. Then, the outer vertex C of G′ enclosed by e
is a convex corner with convex neighbors as depicted in Figure 5.7(c) and we can easily
add e with one bend such that it has a face area of any given size. ◀
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5.2 Plane Bipartite Graphs

In this section, we improve the upper bound on the number of bends that always suffice
for plane bipartite graphs. We show that at most half of the edges need a bend. Indeed,
we can place the bends on the same edges independent of the area assignment. Hence, we
obtain a bound on the subdivision number.

■ Theorem 31. Let G = (X ∪ Y,E) be a plane bipartite graph. Then, s(G) ≤ |E|/2.

Proof. First, we consider the case that G is a quadrangulation and show that an arbitrary
but fix area assignment A has an A-realizing 1-bend drawing of G with at most |E|/2 bends.
Moreover, we place the bends on the same edges independent of A. The proof consists of
four steps, illustrated in Figure 5.8. The main difference to the proof of Theorem 26 lies in
Step 1. Moreover, Steps 3 and 4 are a little more intricate. The procedure is as follows:

0. (Augment G to a quadrangulation.)
1. Take a segment contact representation C yielding a rectangular layout L.
2. Obtain a weak equivalent rectangular layout L′ realizing the areas.
3. Define a degenerate drawing D on L′ .
4. Construct a non-degenerate drawing D∗ from D by parallel shifts.

2 3 40 1

C L′G D D∗

Figure 5.8: Construction of a 1-bend drawing realizing the prescribed areas in four steps.

In the first step, we take a segment contact representation of G = (X ∪ Y,E). This is a
family {sv|v ∈ X ∪ Y } of horizontal and vertical segments where sv and su intersect if and
only if (u, v) ∈ E. Moreover, each non-empty intersection consists of a single point which is
an endpoint of at least one of the segments.

■ Theorem 32 ([de Fraysseix et al., 1991, Hartman et al., 1991]). Every plane quadran-
gulation has a segment contact representation such that each inner face is represented by a
rectangle.

Let C be a segment contact representation of G. We assume that the vertices of X are
represented by vertical segments. The segments of C partition a rectangle into rectangles,
and hence, C yields a rectangular layout L. In the second step, we obtain a weakly equivalent
rectangular layout L′ realizing the areas by Theorem 28; let C′ denote the corresponding
segment contact representation. In the third step, we define a degenerate drawing D from C′.
The challenge is to place the vertices such that, firstly, we insert the bends on the same
edges, secondly, we save one bend per vertex, and thirdly, we can remove the degeneracies
by parallel shifts. We distinguish two cases depending on the minimal degree δ of G. Note
that in a quadrangulation δ is 2 or 3.
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Case 1: δ(G) = 3. Since every segment has only two endpoints but at least three contacts,
every segment has an inner contact point. For a vertical segment sv, an inner contact point
is right if it is the endpoint of a horizontal segment touching sv from the right. Otherwise, it
is left. Likewise, we distinguish inner top and bottom contact points of horizontal segments.
We construct D from C′ as follows:

• A vertex v ∈ X is placed on topmost right inner contact point of the segment sv if it
exists; otherwise v is placed on the topmost left inner contact point.

• A vertex v ∈ Y is placed on leftmost bottom inner contact point of the segment sv if
it exits; otherwise v is placed on the leftmost top inner contact point.

• An edge e = (v, w) ∈ E is drawn from v along sv to the contact point of sv and sw,
and then along sw to w.

Note that with this definition the vertices are placed on the same contact points independent
of the area assignment. This allows us to obtain an area-universal subdivision of G. By
placing a vertex on an inner contact point of its segment, the corresponding edge has no
bend. Hence, we save one bend per vertex and the number of bends is at most |E| − |V |.

Observation 5.8. D is a degenerate 1-bend drawing of G realizing A with at most |E|−|V |
bends.

In the fourth step, we remove the degeneracies by parallel shifts of bend points. By
the placement of the vertices, a vertical segment sv has no right bend point above v and a
horizontal segment sv has no bottom bend point left of v. This property is our invariant 40.
For a vertex v ∈ X (v ∈ Y ) with a vertical (horizontal) segment sv, we partition the inner
bend points into three sets: B1(sv), the set of right (bottom) bend points on sv, B2(sv),
the set of left (top) bend points on sv which are below (right of) v, and B3(sv), the set of
remaining bend points, i.e., left (top) bend vertices on sv which are above (left of) v, see
also Figure 5.9(a). For a segment sv and all i ∈ {1, 2, 3}, a bend point b ∈ Bi(s) is smaller
than b′ ∈ Bi(s) if b is closer to v in D than b′. We remove the degeneracies in three steps.
For i ∈ [3], Step 4i is defined as follows:
Step 4i: For each v ∈ X ∪Y , do: while Bi(sv) is not empty, choose the smallest b ∈ Bi(sv),
parallel shift b, and delete b from Bi(sv).

If Step 4i is completed successfully, then invariant 4i holds, namely that every segment
has no bend points in Bj(sv) for 0 ≤ j ≤ i. Indeed invariant 4i is necessary in order to
perform Step 4i+1. Clearly, invariant 43 guarantees a non-degenerate 1-bend drawing of G
which realizes A and has at most |E| − |V | bends. Hence it remains to show that the
smallest b ∈ Bi(sv) is shiftable if invariant 4i−1 holds. Consider a vertex v ∈ X with vertical
segment sv and the smallest b ∈ B1(sv), see Figure 5.9(b). By invariant 40, the horizontal
edge of b is free of bottom contact points. Since b is the smallest in B1(sv), the vertical edge

∅

B1B2

B3

B1

B2B3

∅

(a) Definition of D and Bi. (b) Illustration of Step 41 and Step 42.

Figure 5.9: Illustration of Step 3 and Step 4 in Case 1 of the proof of Theorem 31.



5.2 Plane Bipartite Graphs 97

of b is free of right contact points. Therefore, b is shiftable bottom-rightwards. Moreover,
after shifting and deleting b, the new smallest bend point becomes shiftable. The argument
for v ∈ Y is analogous. More generally, for i ∈ {1, 2, 3}, the smallest bend point b ∈ Bi(sv)
is shiftable since both of its edge are free of bend points to one side; for one edge this is
guaranteed by the invariant 4i−1, for the other edge by the fact that b is the smallest bend
point in b ∈ Bi(sv).

Case 2: δ(G) = 2. If it exists, choose an inner vertex of degree 2 and remove the segment sv
in C′. This results in a quadrangulation where two faces are unified to one new face. Assign
the sum of the two face areas to the new face. Delete inner vertices of degree 2 until all inner
vertices are of degree at least 3. This yields a graph G′ with area assignment A′. Proceed
with G′ as in Case 1 with some extra care. If one or several outer vertices have degree 2,
we place them on distinct positions on their segments; for instance in clockwise order.
Moreover, we make the parallel shifts small enough, such that the following special property
is fulfilled in an A′-realizing drawing of G′: up to a tiny ε with nε ≪ Amin, each face f of G′

contains an axis-aligned rectangle with area A′(f)− ε, where Amin := minf∈F ′(G)A(f).
We use the special property to reinsert the degree 2 vertices in reverse order of deletion

and obtain a sequence of drawings (G′
k)k. We use the invariant that G′

k is a non-degenerate
drawing where each face area is realized by an axis-aligned rectangle up to kε. Consider
the (k+1)th vertex v of degree 2 and the face f in Gk where v must be inserted. Assume f
has area a1+a2 and must be split into two faces f1 and f2 of area a1 and a2. By assumption,
it holds that a1, a2 ≥ Amin and f contains an axis-aligned rectangle R of area a1 + a2 − kε.
Assume that v ∈ X. By the intermediate value theorem, there exists a vertical segment s
within R such that s dissects f into two parts of area a1 and a2, respectively. Place v on
one endpoint of s and a bend point b on the other endpoint of s as illustrated in Figure 5.10.
Note that the areas of f1 and f2 are realized by a rectangle up to kε. In order to remove
the degeneracies, use parallel shifts of v and b which are small enough to guarantee that fi
contains a rectangle of area ai − (k + 1)ε. This ends our treatment of Case 2.

s

Figure 5.10: Insertion of an inner vertex of degree 2 in Case 2.

If G is not a quadrangulation, then we consider a quadrangulation Q with G as an
induced subgraph. For each face in G, we partition its area assignment among its subfaces
in Q and obtain A′. Clearly, an A′-realizing 1-bend drawing of Q induces an A-realizing
1-bend drawing of G. However, the number of bends may exceed |E|/2. Therefore, we ensure
to save one bend per vertex by placing the vertices on inner contact points which belong to
edges of G. To do so, delete all segments belonging to artificial vertices in C. If necessary,
remove vertices of low degree iteratively as in Case 2. Afterwards, place vertices, remove
degeneracies and reinsert vertices of G with low degree as in Case 1 and Case 2. Note that
degree 1 vertices may also appear, but can easily be reinserted.

A planar bipartite graph has at most (2|V | − 4) edges. Therefore, the number of edges
with bends is at most |E| − |V | ≤ |V | − 4 and without bends at least |V |. Consequently, in
all cases the number of bends is less than |E|/2. ■
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If in the third step of the last proof, the vertices are placed in fortunate positions, one
can save some additional bends. In particular, every corner of the outer rectangle has two
first contact points, one on each incident segment; if in both of these a vertex is placed, then
one bend can be saved. For the cube graph this allows to save four bends and shows that
the cube graph as a partial 3-tree is not only area-universal but also convex area-universal,
i.e., every area assignment has a realizing drawing with convex faces.

▶ Proposition 5.9. The cube graph is convex area-universal.

a d

b c

e

(a) The cube graph with an
area assignment A.

2a

2b

2ce

2d

(b) A rectangular layout real-
izing A′.

a

b

ce

d

b

a d

c

(c) A convex straight-line
drawing realizing A.

Figure 5.11: Illustration of the proof of Proposition 5.9

Proof. Let A be an area assignment of the cube graph as illustrated in Figure 5.11(a).
Then A′ denotes the area assignment where the areas of the four boundary faces are doubled
with respect to A. Theorem 31 guarantees the existence of an A′-realizing 1-bend drawing
realizing and Figure 5.11(b) illustrates a corresponding layout L′. Observe that already the
drawing D defined from L′ in the third step of the proof of Theorem 31 is non-degenerate.
Moreover, as illustrated in Figure 5.11(c), every outer edge has exactly one bend and all
inner edges are segments. Replacing the outer edges by segments halves the area of the
boundary faces and thus gives an A-realizing straight-line drawing with convex faces. ◀

We study the concept of convex area-universality closer in Section 6.1. In particular,
we will see several alternative proofs of the convex area-universality of the cube graph.
However, before we do so, we investigate the bend number of small triangulations.

5.3 Small Graphs

In this section, we study the bend and subdivision numbers of small triangulations. We will
see that they have fairly small subdivision numbers. In particular, 4-connected triangulations
on up to ten vertices have a subdivision number of at most 1 with one exception. To
obtain our bounds, we show a fruitful connection between diamond additions and the
subdivision number. We start with an obvious fact which we already used in Proposition 5.4
to determine the bend number of the octahedron graph.

▶ Proposition 5.10. Let G be a plane graph such that applying a diamond addition of
some order on an edge e of G results in an area-universal graph G′, then s(G) ≤ 1.

Proof. We show that inserting one subdivision vertex on e in G results in an area-universal
graph G◦. Clearly, as a subgraph of G′, G− e is area-universal. Note that decomposing G◦
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along the shortest cycle enclosing the subdivided edge e results in the area-universal
graph G − e and the strongly area-universal graph Q5. Thus, Lemma 2.5 implies the
area-universality of G◦. ◀

The reverse direction is of similar flavor, but a little more intricate.

■ Theorem 33. Let G be a plane graph obtained from an area-universal graph G′ by one
or several disjoint diamond additions whose orders sum to k, then s(G) ≤ k.

Proof. Let A be an area assignment of G. We show how to obtain an A-realizing drawing
with at most k bends. We place the bends on the same edges, independent of the area
assignment and thus obtain a bound on the subdivision number. Each face f of G′

corresponds to a collection Cf of faces of G. We consider an area assignment A′ of G′

such that A′(f) :=


s∈Cf
A(s), i.e., A refines A′. Since G′ is area-universal, there exists

an A′-realizing drawing D′.
We now aim to add the vertices introduced in one of the diamond additions. Let

e = (u,w) be an edge in G′ on which a diamond addition is applied. Without loss of
generality, we suppose that e is horizontal in D′. We name the vertices, which are to be
inserted on e, by v1, . . . , vℓ from left to right. For notational convenience, we define v0 := u,
vℓ+1 := w and denote the area of the incident top left and bottom left triangle of vi by ai
and bi, respectively. Since D′ is A′-realizing, the triangle uwA has area a :=


i ai and the

triangle wuB has area b :=


i bi.

v1 v2 v3
a1 a2 a3

b1 b2 b3

u we
diam(e)

a4

b4 h

a

b
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B

u w

A

B

v4v0

Figure 5.12: Illustration of Theorem 33 for a diamond addition of order 3.

Let bmin := minj{bj} the minimal area of a bottom triangle. We define h to be a line in
D′ strictly below and parallel to e such that a triangle formed by e and a point on h has
area less than bmin. This is possible since the area assignment is positive. We insert the
vertices from left to right. For i ∈ [ℓ], lets assume vi−1 is placed on e. Then in order to place
vi, we move a point p on e and stop when the triangle vi−1pA has area ai. The existence of
such a point p follows from continuity of the area of vi−1pA and the intermediate value
theorem. We place vi at p.

In order to realize bi, we place bend points wi of edge viB on h. (To unify notation,
we also insert a helper point w0 on the intersection of the segment Bv0 and the line h.)
For i ∈ [ℓ], lets assume wi−1 is placed on h. We move a point q on h and stop when the
5-gon vi−1wi−1Bqvi has area bi. For the existence of a point q we use the fact that the area
of a triangle vi−1viq never exceeds bi by construction of the line h. Then the existence of
such a point q follows from the intermediate value theorem.

By this construction, all areas ai, bi are realized for i ≤ ℓ. The last triangles obtain
the remaining area, which is correct due to the correct total area of the top and bottom
triangle in G, i.e., a−

ℓ
i=1 ai = aℓ+1 and b−

ℓ
i=1 bi = bℓ+1. This finishes the proof. ■
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Theorem 33 is particularly interesting since almost all small triangulations can be
obtained by few diamond additions from area-universal graphs. In particular, for plane
triangulations with at most nine vertices, we immediately obtain a very small subdivision
number. To do so, we need the following lemma.

▶ Lemma 5.11. Every plane 4-connected triangulation T with n ≤ 9 vertices can be
obtained by one diamond addition from an area-universal graph.

Proof. Note that all plane 4-connected triangulations on at most eight vertices are either
area-universal or accordion graphs. Thus, we can concentrate on the triangulations on
nine vertices. We showed in Theorem 14 that G9a and G9b are area-universal. Therefore, it
remains to consider the plane graphs of G9c and G9d.

We show that the plane graphs of G9c, can be obtained from the accordion K1 with
an additional vertex of degree three is stacked into some face; we denote this graph by G.
Thus G is area-universal by Theorem 10 and Lemma 2.8. Note that G9c has two pairs of
adjacent vertices of degree four, namely the red and orange vertices in Figure 5.13. Since
no orange and red vertex share a face, at least one pair consists of inner vertices for G9c,i.
Reversing a diamond addition by deleting an orange (or red) vertex and inserting an edge
as indicated, namely such that its partner has degree 3, results in G. Consequently, each
plane graph G9c,i can be obtained from some embedding of G by one diamond addition.

G9c,3 G9d,2

Figure 5.13: Illustration of the proof of Lemma 5.11.

Now, we show that G9d,i can be obtained from the double stacking graph H2,2 which is
area-universal by Theorem 11: Note that G9d has three non-adjacent vertices of degree 4,
which are highlighted in red in Figure 5.13. Thus, every plane graph G9d,i has at least one
inner vertex v of degree 4. Reversing the diamond addition by deleting v and inserting
any diagonal, results in the double stacking graph H2,2. This is illustrated for the very
symmetric plane graph G9d,2 in Figure 5.13. ◀

This lemma has several nice implications for the small bend number and also for the
equiareality of small graphs. Here, we combine it with Theorem 33.

■ Corollary 34. For a plane 4-connected triangulation T on at most 9 vertices it holds
that b(T ) ≤ s(T ) ≤ 1.

Proof. By Lemma 5.11, T can be obtained from an area-universal graph by one diamond
addition. Consequently, Theorem 33 implies the bound on the subdivision number. ■

Moreover, and not surprisingly, we can use Proposition 5.10 or Theorem 33 to show
equiareality of double stacking graphs. For later reference we use the following simple
observation: By definition of Hℓ,k, applying an diamond addition of order 1 on an appropriate
edge of Hℓ,k results in Hℓ+1,k. In any case, there exist at least two appropriate edges which
do not share a common face. Consequently, for every H in [Hℓ,k] at least one of these edges
is an inner edge. This shows the following:
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Observation 5.12. For ℓ ≥ 2, a plane graph H in [Hℓ,k] can be obtained by one diamond
addition from a graph in [Hℓ−1,k]. Symmetrically, if k ≥ 2 from a graph in [Hℓ,k−1].

This observation has the following consequence.

■ Corollary 35. For every plane graph H in [Hℓ,k], it holds b(H) = s(H) ≡ ℓ · k (mod 2).

Proof. By Theorem 11, H is area-universal if and only if ℓ · k is even. Consequently, for ℓ · k
even it holds that b(H) = s(H) = 0 and otherwise 1 ≤ b(H) ≤ s(H). Thus, it remains to
show that s(H) ≤ 1 if ℓ and k are both odd. By Observation 5.12 and Theorem 11, H can
be obtained form an area-universal graph by one diamond addition. Thus, Theorem 33
implies the claim.

[Alternatively, applying one diamond addition to H results in an area-universal graph
and Proposition 5.10 implies the claim.] ■

We now want to show that 4-connected triangulations on ten vertices also have small
bend numbers. In particular, we show that

■ Theorem 36. For a plane 4-connected triangulation T with ten vertices it holds that
b(T ) ≤ s(T ) ≤ 2. Specifically, for all graphs other than G10i, it holds that b(T ) ≤ s(T ) ≤ 1.

To do so, we first study how to obtain these graphs from area-universal triangulations
by diamond additions and distinguish triangulation with and without p-order. By a reverse
diamond addition, we remove an inner vertex of degree 4, together with its incident edges
and insert one of the diagonals in the resulting 4-face.

▶ Lemma 5.13. The plane 4-connected triangulations on ten vertices with a p-order can
be obtained by one diamond addition from an area-universal graph.

Proof. The 4-connected triangulation on ten vertices with a p-order are illustrated in
Figure 3.27. The statement is vacuous for area-universal graphs. Recall that Theorem 16
assures that all plane graphs of G10c, G10f , and G10g are area-universal. Moreover, G10a,1

and G10b,1 are double stacking graphs and thus, Observation 5.12, can be obtained by one
diamond addition from an area-universal graph.

It thus remains to consider G10d and G10e. The proof is illustrated in Figure 5.14. In
both graphs, there exist two pairs of adjacent vertices of degree four, namely the red and
orange vertices in Figure 5.14. Since no orange and no red vertex share a face, either
both red or both orange vertices are inner vertices. Deleting any of these four vertices and
inserting one edge such that their partner has degree 3, results in an plane graph of G8b

where additionally, the partner is a vertex of degree 3 stacked into some face. The cyan
vertex has odd degree and guarantees that is a plane graph in [G8b]. Since G8b = [H2,2]
consists of area-universal graphs by Theorem 11, the claim follows for every plane graph
of G10d and G10e. ◀

G10d G10e

Figure 5.14: G10d,i and G10e,i can be obtained by one diamond addition from some G8b,j .
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Unfortunately, the situation for the triangulations without p-orders is more diverse.

▶ Lemma 5.14. The plane 4-connected triangulation G on ten vertices without a p-order
can be obtained from an area-universal graph by at most

• two disjoint diamond additions of order 1 if G = G10h,1,
• two disjoint diamond additions of order 1 if G ∈ G10i,
• one diamond addition of order 1 if G ∈ G10j.

Moreover, unless G10h,2 or G9d,3 are area-universal, G10h,2 cannot be obtained from an
area-universal graph by diamond additions.

Proof. In most cases, the considered graph is obtained by diamond additions from some
embedding of the double stacking graph on eight vertices, namely H2,2 = G8b,1. Recall that
there exist exactly two different planar 4-connected triangulations on eight vertices, namely
the Eulerian triangulation and the planar graph of H2,2. Hence, a vertex of odd degree
certifies a plane graph of [H2,2]; all of which are area-universal by Theorem 11.

As Figure 5.15(a) illustrates, G10h,1 can be obtained from a plane graph of [H2,2] by
two diamond additions. We delete the two red vertices with a reverse diamond addition;
the cyan vertex certifies an odd vertex degree. This shows the claim for G10h,1.

The graph G10h,2 has a unique inner vertex of degree 4; this vertex is displayed in red
in Figure 5.15(c). However, its removal either leads to G9d,3, which has open status, or
to G9d,1, which is not area-universal. Thus, it cannot be obtained from an area-universal
graph unless G9d,3 or G10h,2 itself are area-universal.

(a) G10h,1 (b) G10h,2 (c) G10i (d) G10j

Figure 5.15: Illustration of Lemma 5.14 and its proof.

For G10i, consider the three red vertices highlighted in Figure 5.15. Since no two of them
share a face, at least two are inner vertices in every embedding. We apply a reverse diamond
addition on two inner red vertices as depicted. Again, this results in a triangulation of [H2,2]
as one of the three cyan vertices certifies an odd degree.

For G10j , consider the three colored vertices in red and orange of degree 4. In every
embedding at least one of them is an inner vertex, since the orange vertex shares no face
with any of the two red vertices. If the orange vertex is inner, then a reverse diamond
addition as illustrated results in a graph from [H2,3] = [G9b,2], see also Figure 3.23. If one of
the red vertices is inner, then we apply a reverse diamond addition such that the other red
vertex has degree 3. Its removal produces a graph of [H2,2] since the cyan vertex guarantees
an odd degree. ◀

Lemmas 5.13 and 5.14 enable us to show that plane triangulations with ten vertices
have small subdivision number.

■ Theorem 36. For a plane 4-connected triangulation T with ten vertices it holds that
b(T ) ≤ s(T ) ≤ 2. Specifically, for all graphs other than G10i, it holds that b(T ) ≤ s(T ) ≤ 1.



5.3 Small Graphs 103

Proof. Theorem 33 together with Lemma 5.13 and Lemma 5.14 guarantee that the subdivi-
sion number is bounded by 1 for all plane 4-connected triangulations on ten vertices except
for G10h and G10i.

It remains to show that for all i, it holds that s(G10h,i) ≤ 1. We claim that the
subdivision of G10h,1, depicted in Figure 5.16, is area-universal. Deleting the subdivision
vertex and inserting the other diagonal e of the remaining 4-face results in the plane
graph G10f,5, which is area-universal by Theorem 16. Given a realizing drawing of G10f,5, we
delete e and use Proposition 2.4 to insert the subdivided edge. Since Theorem 16 guarantees
that every embedding of G10f is area-universal, this argument also works for G10h,2. ■

Figure 5.16: This subdivision of G10h,1 is area-universal; since G10f,5 is area-universal.

We have just seen that the small triangulations have a very small bend number. In
particular, all small graphs with a p-order have a subdivision number bounded by 1. Recall
that every triangulation T with a p-order is near-3-degenerate, i.e., there exists an edge e
such that T − e is 3-degenerate. We wonder if this holds in general:

¿Question ? : Is the subdivision number of triangulations with p-orders bounded by 1?
By a constant? Or even more general, is the subdivision number of a plane graph G which
is 3-degenerate bounded by a constant?

Indeed, for one embedding of a near-3-degenerate triangulation this holds true: Let T be
a plane graph with an outer edge e such that T − e is 3-degenerate. Then, by Theorem 17,
the graph T − e is area-universal. Since T can be obtained from Q5 and Te, Proposition 2.4
implies that subdividing e in T yields an area-universal plane graph.
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In this chapter, we examine several concepts related to area-universality. We have already
studied shape restriction in the context of strongly area-universality. In Section 6.1, we
investigate convex realizing drawings which are visually very appealing. Unfortunately,
they do not always exist neither for plane cubic graphs nor for quadrangulations. However,
we present families which allow for convex realizing drawings. In Section 6.2, we consider
equiareal drawings in which all faces have the same area. We introduce operations that
preserve equiareality and show that all 4-connected triangulations on up to ten vertices
have an equiareal drawing. In Section 6.3, we are liberal and also allow negative areas in
the area assignments. We show that every plane cubic graph has a realizing drawing, which
is not necessarily crossing-free.

6.1 Convex Area-Universality

A drawing of a planar graph is convex if each face is the bounded by a convex polygon.
As a visually appealing property of drawings, convexity has been studied extensively in
graph drawing. Most classically, Tutte’s spring embeddings [Tutte, 1963, Tutte, 1960]
guarantee convex drawings for every 3-connected planar graph. In this section, we seek for
convex realizing drawings, i.e., given an area assignment A of a plane graph G, we seek an
A-realizing drawing of G which is also convex.

Definition. A plane graph is convex area-universal if for all area assignments there exists
a convex realizing drawing.

Since every triangle is convex, straight-line drawings of a triangulations are convex.
Thus, it holds that:

Observation 6.1. A triangulation is area-universal if and only if it is convex area-universal.

In this sense, convex area-universality generalizes the area-universality of triangulations
to plane graphs. Clearly, we must restrict our study to graphs which allow for convex
drawings. Here, we consider two graph classes which are sparser than triangulations and
therefore have some potential to be convex area-universal: 3-connected cubic graphs and
quadrangulations. However, we will show that it is too much to ask for convex area-
universality in both cases. Nevertheless, we are able to present some convex area-universal
graph classes.

In fact, we have already seen that the cube graph, which is cubic and bipartite, is convex
area-universal. Here we present two more elementary proofs.

104
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▶ Proposition 5.9. The cube graph is convex area-universal.

Proof. We denote the outer vertices of the cube by vi and the inner vertices by wi for i ∈ [4],
and the areas of an assignment A by a, b, c, d, e. Figure 6.1(a) illustrates the labeling.

Proof 1: Choose a triangle △ of area ΣA and place the outer vertices v1, v2, v3 on the three
corners and v4 on the segment v1v3. Figure 6.1(b) depicts the resulting realizing drawing.
Position w2 such that the face areas a and b are realized by triangular faces with a flat
angle at w1 and w3. Then place w3 and v4 on the segments w2v3 and v1v3, respectively,
such that the area c is realized by the triangle w3v3v4. Lastly, w1 and w4 can be positioned
such that the remaining area is split into d and e as needed.

v1

v2

v4

v3

w1 w4

w2 w3

a

b

cd

e

(a) The cube graph.

v1

v2

v4

w2

w1

w4

w3

v3

(b) A convex realizing drawing
within a triangle.

w1 w4

w2 w3

v1

v2

v4

v3

(c) A convex realizing drawing
within a rectangle.

Figure 6.1: Illustration of the convex area-universality of the cube.

Proof 2: Figure 6.1(c) presents the resulting layout of this proof. Consider a rectangle of
area ΣA. It holds that a+ c ≤ 1/2ΣA or b+ e ≤ 1/2ΣA. By symmetry of the cube graph,
we may assume that the first inequality holds and that v1v2 is a vertical segment as in
Figure 6.1(c). Then we realize the areas a and c by triangular faces with corners w2 and w3.
By our assumption, the x-coordinate of w2 is at most the x-coordinate of w3. Moreover,
for both vertices, we can choose any y-coordinate in order to realize a and c. Thus, we
move w2 and w3 to the same y-coordinate such that the area b is realized by a trapezoid.
Then there exists a horizontal segment which partitions the remaining area into d and e.
We place w1 and w4 at the intersections of the segment and the existing edges. Note that
all faces are trapezoids and thus convex. ◀

We now generalize this result into two directions. First of all, the cube graph is convex
area-universal for every fixed outer face. Secondly, this does not only hold for the cube
graph but for all pseudo-double wheels, the angle graphs of wheels. Afterwards we will see
that, in general, it is too much to ask for convex realizing drawings of quadrangulations.

6.1.1 Strongly Convex Area-Universal Quadrangulations

In this section, we give an example of a strongly convex area-universal graph family. We say
a graph is strongly convex area-universal if for every area assignment A and every convex
outer face f◦ with total area ΣA, there exists an A-realizing drawing within f◦.

Recall that a pseudo-double wheel Sk has 2k + 2 vertices and consist of a cycle with
vertices v1, v2, . . . v2k and a vertex v adjacent to all vertices on the cycle with odd index
and a vertex w adjacent to all vertices on the cycle with even index, see Figure 6.2(a). We
have seen in Section 4.2.1 that pseudo-double wheels are the angle graphs of wheels and
that the cube graph is the pseudo-double wheel S3.
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■ Theorem 37. The pseudo-double wheel Sk, k ≥ 3, is strongly area-universal.

Proof. For a given area assignment A, we denote the areas incident to the outer edges
by a, b, c, d and the remaining areas by x4, x5, . . . , x2k−1 with x2k−1 = c as depicted in
Figure 6.2(a). Let q be a convex quadrangle of area ΣA and corners A,B,C,D identified
with the outer vertices of Sk. Observe that at least one of the two inequalities hold:

a+ b ≤ area(ABC) or c+ d ≤ area(ACD).

By symmetry, we assume without loss of generality that the first inequality holds. Hence,
we may place v3 in the triangle ABC such that the areas a and b are realized by the
triangles v1v2v3 and v2wv3. Now we distinguish two cases. The two resulting layouts are
illustrated in Figure 6.2.

v1

v2k

w

A

C

B D

v

v2
v4 v6v3 v5 v7 . . .v8

a

b c

d

x4 x6 x8

x5 x7

(a) Pseudo-double wheel Sk.

v

v3

a

b

d

v4

x4

c

v8

v7

v6

v5

v9x8
x6

x5
x7

(b) Realizing drawing in case 1.

vv3

a

b

v9

v8
v6

v4

v7v5

d

x4

cx8
x6

x5

x7

(c) Realizing drawing in case 2.

Figure 6.2: Illustration of the proof of Theorem 37.

In case 1, it holds that d ≤ area(Av3D). Figure 6.2(b) visualizes the resulting drawing.
Then, we realize the area d by a triangle AvD. We split the remaining quadrangle vv3CD
into two parts by the diagonal vC and determine i ∈ [2k − 1] such that

i−1
j=4

xj ≤ area(vv3C) and
2k−1
j=i+1

xj ≤ area(vCD).

By construction, v4 and v2k−1 must be placed on a specific segment. Placing vj , we realize
the area xj by a triangle for all j < i. Specifically, xj is realized by the triangle uvj−1vj
where u := v if j is even and u := w if j is odd. The angle at vj+1 is straight and thus vj+1

can be places anywhere on the segment uvj . Likewise for all j > i, we realize the area xj
by the triangle uvjvj+1 with u := v if j is even and u := w if j is odd, by positioning vj
accordingly. It remains the quadrangle vvi−1wvi+1 of area xi. Vertex vi is placed at v if i
is odd and at w if i is even.

In case 2, it holds that d > area(Av3D). Figure 6.2(c) visualizes the resulting drawing.
We place v at v3 and v4 at w. We place v2k−1 such that the area c and d are realized. In
decreasing order, we place vi such that xi is realized by the triangle uvivi+1 with u := v
if i is even and u := w if i is odd. (Alternatively, inserting the edges (v, v2j) and (w, v2j+1)
yields a stacked triangulation within vwv2k.) ■
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6.1.2 Quadrangulations are not Convex Area-Universal

In this section we discuss the following question:

¿Question ? : Are 3-connected quadrangulations convex area-universal?

The restriction to 3-connectedness stems from the fact that not all 2-connected quad-
rangulations allow for convex drawings; whereas Tutte’s spring embeddings [Tutte, 1963]
guarantee convex drawings of 3-connected planar graphs. Even though we hoped for a
positive result, we answer the question in the negative.

■ Theorem 38. There exists a 3-connected quadrangulation which is not convex area-
universal.

Proof. We show that the 3-connected quadrangulation Q, depicted in Figure 6.3(b), has
an area assignment which does not allow for a convex drawing in any (even non-convex)
outer face. Our construction is based on a non-realizable area assignment of the octahedron
graph. As before we encode the area assignment with a white/gray face coloring of the
octahedron illustrated in Figure 6.3(a). Theorem 5 and Corollary 3 guarantee that the
following area assignment is not realizable.

▶ Proposition 6.2. For small enough ε > 0, the octahedron graph has no drawing where
the white faces have area of at most ε and the gray faces have area of at least 1.

1 εε

ε

1 1
ε

(a) A non-realizable area assignment of the
octahedron graph.

(b) The quadrangulation Q and its black sub-
graph Q′.

Figure 6.3: Illustration of Theorem 38 and its proof.

We will give an area assignment of Q such that a convex realizing drawing of Q induces
a realizing drawing of this non-realizable area assignment of the octahedron. To do so, we
first consider the black subgraph Q′ of Q depicted in Figure 6.3(b); it is a 1-subdivision of
the octahedron graph together with a framing quadrangle and three additional edges. We
call the two classes of the vertex bipartition the squared and circled vertices.

▶ Lemma 6.3. For small enough ε > 0, Q′ has no drawing where the white faces have
area ε, the gray faces have area 1, and each white face is convex.

Proof. For a contradiction suppose that there exists a drawing D with the above properties.
By convexity, a segment between two squared vertices of a white face f is contained in f .
Therefore, these segments and the square vertices yield a drawing D′ of the octahedron,
illustrated in Figure 6.3(b) by the red dotted graph, in which the area of each white face is
at most ε and of each gray face at least 1. However, D′ contradicts Proposition 6.2. ◀



108 6 Related Concepts

Finally, we enhance Q′ to the 3-connected triangulation Q by carefully inserting edges
and vertices such that the (red dotted) segments between two squared vertices are still
contained in a white face if it is convex. In particular, the new edges are only joined to
squared vertices. Dividing the areas of the white and gray regions arbitrarily yields area
assignment of Q such that any convex realizing drawing contradicts Lemma 6.3. ■

Remark. Since we did not use the shape of the outer face in the proof of Theorem 38, Q
does not have a realizing drawing of the considered area assignment where each inner face
is convex.

Remark. The construction of Q in the proof of Theorem 38 is based on the octahedron
graph. Since the analogous result of Proposition 6.2 holds for any Eulerian triangula-
tion by Theorem 5, the same idea allows to construct further non-convex area-universal
quadrangulations from any Eulerian triangulation.

6.1.3 Cubic Graphs are not Convex Area-Universal

Clearly, one can wonder about convex area-universality for further graph classes. In this
section we consider convex realizing drawings of plane cubic graphs. However, we show the
analogous result of Theorem 38, i.e., convex drawings do not exist in general.

■ Theorem 39. There exists a 3-connected plane cubic graph that is not convex area-
universal.

Proof. Let G denote the plane cubic graph and A the area assignment depicted in Fig-
ure 6.4(a). Suppose, for a contradiction, that there exists a convex A-realizing drawing D
of G. By convexity and the fact that the faces incident to outer edges have area 0, each
inner vertex must be placed on an outer edge in D. Note that the neighbor of an outer
vertex must be placed on two outer segments simultaneously and hence it coincides with
the outer vertex. Consequently, we obtain a hexagon inscribed in a triangle as depicted in
Figure 6.4(b).

0

0 0

0

1 1

1

(a) The cubic graph G with area assignment A. (b) A hexagon inscribed in a triangle.

Figure 6.4: This cubic graph has no convex drawing realizing the prescribed face areas.

Hence, it remains to place two vertices per outer segment. The central hexagonal face is
minimal if the two vertices coincide. Therefore, the problem reduces to finding a realizing
drawing of the octahedron graph with an non-realizable white/gray area assignment as in
the proof of Theorem 5. ■
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6.2 Equiareality

There exist various concepts for visually appealing graph drawings. Several commonly used
quality measures concern the lengths of edges. For instance, uniformity of edge lengths is
a desirable quality and has been studied for planar graphs in the context of matchstick
graphs [Harborth, 1994, Kurz and Pinchasi, 2011, Abel et al., 2016]. A matchstick graph
is a graph that has a planar straight-line drawing where all edges are of the same length.
The name originates from the fact that a matchstick graphs can be represented by placing
non-crossing matchsticks in the plane.

In a similar flavor, we consider drawings where all inner faces are of the same size. This
concept was introduced by Ringel [Ringel, 1990].

Definition. A plane graph is equiareal if there exists a drawing where all inner faces have
the same area.

Clearly, every area-universal graph is equiareal. Figure 6.5 presents several equiareal
drawings. They indicate that these drawings are quite aesthetic and seem to reflect
symmetries nicely. The drawings have been produced by computer experiments with the
airpressure method. For an introduction to the airpressure method consider Chapter 8.

Figure 6.5: Some equiareal drawings of 4-connected near-triangulations.

Our first observation concerns the fact that equiareality is indeed a property of plane
graphs rather than planar graphs. Recall that no such example is known for area-universality.

▶ Proposition 6.4. Equiareality is a property of plane graphs.

Proof. The two plane graphs G and G′ depicted in Figures 6.6(a) and 6.6(b) are different
embeddings of the same planar graph. We claim that one is equiareal while the other is not.
On the one hand, an equiareal drawing G is given in Figure 6.6(c). Thus G is equiareal.
On the other hand, Ringel [Ringel, 1990] showed that G′ is not equiareal as we discussed
in Section 3.1.1. ■

Recall that the non-area-universality of the graphs relied on the fact that some faces have
large area while others have small area. By splitting faces of large area into several faces,
the non-area-universal graphs yield examples of further non-equiareal graphs. However, this
face splitting is forbidden when we restrict to the class of 4-connected graphs. Naturally,
we wonder:

¿Question ? : Is every 4-connected triangulation equiareal?
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(a) G is equiareal. (b) G′ is not equiareal.

1: ( 0 , 0 )
2: (81, 0 )
3: ( 0 ,81)
4: (27, 9 )
5: ( 9 ,30)
6: (54,18)
7: (21,43)
8: ( -9,99)

(c) An equiareal drawing of G.

Figure 6.6: Equiareality is a property of plane graphs.

For a start, we discuss an equiareal preserving operation. As seen in the previous
section diamond addition sometimes maintains area-universality. Here we observe a similar
behavior for equiareality. To do so, we consider two diamond additions as disjoint if the
subdivided triangles are different.

■ Theorem 40. Let G be a plane graph which is obtained from an area-universal graph G′

by one or several disjoint diamond additions. Then G is equiareal.

Proof. We construct an equiareal drawing of G with the help of a special realizing drawing
of G′. Let E⋄ denote the set of edges of G′ on which a diamond addition is applied in order
to obtain G. Let e ∈ E⋄. Let t1 and t2 be the two faces incident to e and σ the order
of the diamond addition applied on e. We define an area assignment A of G′ such that
A(t1) = A(t2) = σ + 1. In this way, we prescribe the area of each face incident to an edge
of E⋄. Since the diamond additions are disjoint, no face is incident to two edges of E⋄. For
all remaining inner faces f of G, we define A(f) = 1.

t1

t2

1 1 1 1

1 1 1 1

σ + 1

σ + 1

Figure 6.7: Illustration of Theorem 40 and its proof for a diamond addition of order three.
The edge e is partitioned into 4 segments of equal length.

Since G′ is area-universal there exists an A-realizing drawing D′ of G′. We perform the
diamond addition on D′ in order to obtain a drawing of G in the following manner: We
partition each edge e ∈ E⋄ in σ+1 segments of equal length and place the σ vertices on the
endpoints of these segments. Figure 6.7 illustrates this construction. Consequently, each of
the two triangles t1 and t2 is partitioned into σ + 1 triangles of equal size. Therefore, each
face of G′ has area 1 and we have an equiareal drawing of G. ■
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We can apply Theorem 40 to show equiareality of double stacking graphs. This implies
that there exist 4-connected equiareal triangulations on n vertices for every n.

■ Corollary 41. Every plane triangulation in [Hℓ,k] is equiareal.

Proof. Let H be a plane graph in [Hℓ,k] with ℓ · k > 1. By Observation 5.12, H can be
obtained by one diamond addition from a graph in [Hℓ−1,k] if Hℓ−1,k exists or otherwise
from a graph in [Hℓ−1,k]. Theorem 11 ensures the area-universality of all graphs in [Hℓ,k]
when ℓ · k is even. Therefore, H is either already area-universal, and thus also equiareal, or
can be obtained by one diamond addition from an area-universal graph. In the latter case,
Theorem 40 ensures its equiareality. ■

Moreover, Theorem 40 provides us with a simple proof that a non-equiareal 4-connected
triangulation has at least eleven vertices.

■ Corollary 42. Every plane 4-connected triangulation T with n ≤ 10 is equiareal.

Proof. For n ≤ 9, the claim follows from Lemma 5.11 and Theorem 40. For n = 10, the
claim follows from Lemmas 5.13 and 5.14 and Theorem 40 except for the plane graph G10h,2

which is illustrated in Figure 6.8(a).
Most likely, G10h,2 cannot be obtained from an area-universal graph by disjoint diamond

additions. Therefore, we give an explicit equiareal drawing which is depicted in Figure 6.8(b):
Starting from a realizing drawing for the illustrated (1, 2, 5)-assignment of the octahedron,
we insert a vertex of degree 3 in the face of area 5 which splits the area into two triangles
of area 2 and one triangle of area 1. In Figure 6.8(b) this vertex is highlighted in orange.

(a) The plane graph G10h,2.

2

1

5 1
2

1 1

(b) An equiareal drawing of G10h,2 constructed from a
(1, 2, 5)-assignment of the octahedron graph.

Figure 6.8: The plane graph G10h,2 and an equiareal drawing of it.

The insertion results in four faces of area 2. Applying two diamond additions by
inserting the vertices on the midpoints of their edge, we obtain a realizing drawing of G10h,2.
The vertices added in the last step are colored in cyan in Figure 6.8(b). ■

Finally, we discuss the equiareality of the triangulation on 13 vertices depicted in
Figure 6.9(a). We mentioned in the introduction that Sabriego and Stump investigated
the question whether all 4-connected triangulations are equiareal. In particular, they tried
to heuristically find a 4-connected triangulations which is not equiareal. They tested one
plane graph of every planar triangulation on up to 13 vertices (and some with 14 vertices).
For the triangulation on 13 vertices, which is depicted in Figure 6.9(a), their heuristic did
not find a close to equiareal drawing. Therefore, they wondered whether it is not equiareal.
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However, with our developed machinery, it is easy to see that the triangulation is equiareal.

▶ Proposition 6.5. The plane triangulation T depicted in Figure 6.9(a) is equiareal.

Proof. Note that T can be obtained by two disjoint diamond additions from the graph
T ′ depicted in Figure 6.9(b). Since T ′ is the accordion graph K1 on seven vertices where
a vertex of degree 3 is stacked into one face, T ′ is area-universal by Proposition 3.28.
Consequently, T can be obtained from an area-universal graph by several disjoint diamond
additions and is thus equiareal by Theorem 40. ◀

(a) A plane triangulation on 13 vertices. (b) The accordion graph K1 with a vertex of
degree 3 stacked into one face.

Figure 6.9: Illustration of Proposition 6.5 and its proof.
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6.3 Negative Areas and Plane Cubic Graphs

This section is based on joint work with Alexander Igamberdiev. We alter our problem
in two directions. In one aspect we are more demanding and in the other aspect more
generous. In particular, we want to consider generalized area assignments which also allow
for negative face areas. However, this forces us to refrain from planarity.

To do so, we need some notation. A generalized area assignment of a plane graph G is
a function A : F ′ → R. We also have to clarify what we mean by the area of a face in a
drawing with crossings. Let G be a plane graph with vertex placement D. For an inner
face f = (v1, . . . , vk) of G, we define the area of f in D with the shoelace formula as in
Equation (2.2):

2 · area(f,D) =
k−1
i=2

Det(v1, vi, vi+1).

We say a generalized area assignment A is realizable if there exists a vertex placement D
such that for each inner face f it holds that area(f,D) = A(f). We show that every
generalized area assignment of a plane cubic graph is realizable.

■ Theorem 43. Let G be a plane cubic graph and A : F ′ → R a generalized area assignment.
Then A is realizable.

We prove this statement in three steps. First, we show the claim for the triangular
prism, depicted in Figure 6.10, then for 3-connected plane cubic graphs and finally for plane
cubic graphs which are at most 2-connected.

A B

C

a b

c

A B

C

a b

c

Figure 6.10: The triangular prism and a layout realizing all positive area assignments.

▶ Lemma 6.6. Every generalized area assignment of the triangular prism is realizable.

Proof. We label the vertices of the triangular prism as depicted in Figure 6.10 and realize
one face area after the other. We start by realizing the central face abc by any triangle of
correct area, for example, we set a = (0, 0), b = (2, 0) and c = (0,A(abc)) as in Figure 6.11.
Note that this definition respects the sign of the area.

Secondly, we realize the bottom face ABba. For this we identify A and a and place B
on the line supported by b and c such that the face area of ABba is realized. Note that ac
and Bc serve as the base segment for the remaining two faces. Hence, we may place C in
the intersection point of the two height lines. This finishes the proof.
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Figure 6.11: Different layouts of the triangular prism to realize all generalized area assign-
ment. If the central face has positive area, there are three depicted layouts and additionally,
the one when all areas have positive sign.

Figure 6.11 displays the different layouts when the central face is positive (and at least
one face is negative.) The other three layouts can be obtained by taking the mirror image
of the graph and reversing the sign of the area assignment. ◀

6.3.1 3-connected Plane Cubic Graphs

Next, we show that all plane 3-connected cubic graphs may realize any generalized area
assignment. We use the following observation.

Observation 6.7. Let D be a vertex placement of a plane graph G with a vertex v of
degree 3. Let ℓ denote a line through two neighbors w1 and w2 of v. Let u denote the third
neighbor of v and fi the face incident to u, v, wi. Moving v on the line through v parallel
to ℓ, except for the two faces f1 and f2 incident to v, all faces areas are maintained.

u

v

f1 f2

w1

w2

Figure 6.12: By moving v on the indicated line, area between f1 and f2 can be exchanged.

Here, we show the following theorem.

▶ Proposition 6.8. For a plane 3-connected plane cubic graph every generalized area
assignment A : F ′ → R is realizable.

The proof is inductive and uses the fact that plane cubic graphs can be constructed by
iteratively inserting edges starting from the triangular prism. Here an edge-insertion is an
operation of the following type, see also Figure 6.13: Given a plane cubic graph, choose a
face f and two of its edges e1 and e2. For i ∈ [2], subdivide ei with vi and insert a new
edge (v1, v2). Note that this operation maintains 3-connectedness. In fact, every cubic
graph can be constructed with this operation.
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fe1

e2

v1

v2

Figure 6.13: An edge-insertion into a face of a plane cubic graph.
.

▶ Lemma 6.9 ([Igamberdiev et al., 2017]). Every 3-connected plane cubic graph, different
from K4, can be constructed from triangular prism by a sequence of inner edge insertions,
i.e., no edge is inserted in the outer face.

Now, we are ready to prove the theorem for 3-connected graphs.

Proof of Proposition 6.8. We show the claim by induction with the help of Lemma 6.9.
Since it excludes K4, we show the claim separately: Let a1, a2, a3 be an area assignment to
the three inner triangles of K4. Fix a triangle whose area equals the total area h :=


ai,

for example, (0, 0), (2, 0) and (0, h). It is easy to check that placing the inner vertex
at (2/h · a2, a1) fulfills all conditions.

The induction base for the triangular prism is established by Lemma 6.6.
For the induction step, we realize a generalized area assignment A of G which can be

obtained from G′ by an edge insertion into f where e1 := (u1, w1) and e2 := (u2, w2) are
subdivided by vertices v1 and v2. Inserting the edge gives two new faces which we call fu
and fw, respectively. We consider an A′-realizing vertex placement D′ of G′ which coincides
with A except for the fact that A′(f) := A(fu) +A(fw).

The idea of the construction is visualized in Figure 6.14: In D′, we place v1 on the
edge e1 such that v1 does not lie on the line ℓ supported by e2. This is possible if and
only if both edges do not have the same supporting line. Consider the triangulation of
fu and fw where v1 is the center. The area of the polygon fu and fw can be corrected
by the area of the triangles v1v2u2 and v1v2w2, respectively. Since v1 does not lie on ℓ,
moving v2 along ℓ continuously (and monotonically) changes the area of the triangle v1v2u2.
Consequently, there is a unique position for v2 on the line ℓ such that fu has correct area.
Since A′(f) := A(fu) +A(fw) and f has area in A′(f) in G′, the area of fw is also correct
for this position of v2.

u2 w2v2

Pu

Pw

u2 w2

e2

u1

w1

f

e1 u1

w1

v1

Figure 6.14: Illustration of the induction step.
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We ensure that e1 and e2 do not have the same supporting line by a stronger induction
hypothesis: There exists a realizing drawing where no two edges of any inner face are
collinear.

u2 w2

v2

v1

Pu
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f2
u2 w2

e2

u1

w1

f

f1

f2

e1 u1

w1
f1

Figure 6.15: Illustration of the stronger induction step such that no face has collinear edges.

In the current idea, there exist two issues with collinear edges. Firstly, by subdividing
an edge, the two new edges have the same supporting line. Secondly, the new inserted
edge may be collinear with an existing edge. As before, let f be a face in G′ with edges e1
and e2. Let f1 and f2 denote the other faces incident to e1 and e2 as depicted in Figure 6.15.
In A, we shift a small ε > 0 of the area of f1 to f2 and use the strong induction hypothesis
to consider a realizing drawing for this modified area assignment. In order to obtain a
realizing drawing of A we may place v1 and v2 on lines ℓ1 and ℓ2 parallel to e1 and e2,
respectively. Since the number of edges is bounded, only finitely many points on these two
lines are problematic, i.e., cause pairs of collinear edges. For a fixed position of v1 on ℓ1,
there exists a unique position of v2 on ℓ2. Observe that if v1 moves continuously between
two problematic points on ℓ1, v2 also moves continuously on ℓ2. Therefore, there exists an
unproblematic position of v1 which yields an unproblematic position of v2. ◀

6.3.2 General Plane Cubic Graphs

Now, we prove the claim for all plane cubic graphs.

■ Theorem 43. Let G be a plane cubic graph and A : F ′ → R a generalized area assignment.
Then A is realizable.

Proof. Proposition 6.8 establishes the proof for 3-connected plane graphs. Therefore, we
now show how to obtain the result for less connected graphs.

If G is at most 1-connected we easily obtain the result by induction: Let v be a vertex
such that G[V − v] is not connected. Let V1 be the vertex set of one component of G[V − v]
and consider G1 := G[V1 + v] and G2 := G[V \V1]. By induction we obtain realizing
drawings for G1 and G2. Identifying v in both drawings yields a realizing drawing of G.

It remains to consider the case that G is 2-connected. Since G is cubic, there also exists
a cut containing only 2 edges. (If v1 and v2 form a separator, consider the edges from v1
and v2 to at least two components. By pigeon hole principle, vi has only one edge to at
least one component. In all cases we find a cut consisting of two edges.) Let G1 and G2

denote the components after deletion of the edges of a 2-cut, see also Figure 6.16.
Observe that Gi contains two vertices of degree 2 and is therefore not cubic. We call

these two vertices the anchors of Gi. If the anchors are not adjacent in Gi, then we insert
the edge between them and obtain a cubic graph.
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G1 G2
G1 G2

a1 a2 a1 a2

Figure 6.16: Illustration of the proof of Theorem 43 for 2-connected plane cubic graphs
with non-adjacent anchors.

Suppose that the trick works in both graphs G1 and G2. Then we split the area
assignment arbitrarily among the three new faces, see also Figure 6.16. Given a realizing
drawing for Gi, we rotate the drawing such that the line through the anchors is vertical.
Then we adjust the distance of the vertical lines through the anchors in the drawing of G1

and G2 such that the central 4-face has the prescribed area.
If the anchor vertices of Gi are adjacent in Gi, then we delete the anchors from Gi and

define their two unique neighbors in the remaining graph as the new anchor vertices. Note
that a common neighbor of the two anchors of Gi serves as a separator in G. Consequently,
the anchors have two unique neighbors. We repeat this operation until the anchor vertices
share no edge. Since the graph is finite, the procedure stops. Finally, G1 and G2 are
connected by a sequence of 4-faces as depicted Figure 6.17 and their anchors are not
adjacent.

G1 G2u1

v1 v2

u2

Figure 6.17: Illustration of the proof of Theorem 43 for 2-connected plane cubic graphs
with adjacent anchors.

We find realizing vertex placements for Gi by induction. For the central part we may
take a representation where all pairs of vertices which where anchor pairs are placed on a
vertical line. Then we glue all parts as before. ■
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This chapter is based on joint work with Michael Dobbins, Tillmann Miltzow, and Paweł
Rzążewski. The results also appear in [Dobbins et al., 2018]. We are interested in the
computational complexity of deciding if a given plane graph is area-universal and denote
this problem by Area Universality.

Area Universality
Input: Plane graph G = (V,E).
Question: Is G area-universal?

Even though the computational complexity of Area Universality is still open, we
have an intriguing conjecture. To support our conjecture we show hardness of several
variants of Area Universality indicating that our conjecture might reflect the truth.
The chapter is organized as follows: We start with an introduction to our considered
computational complexity class. Afterwards we show hardness of three variants.

7.1 Introduction to the Complexity Class ∀∃R

When investigating natural geometric problems, one often discovers that an instance can be
described as a first-order formula over the reals in prenex form containing only existential
quantifiers:

∃X1, X1, . . . , Xn : Φ(X1, X2, . . . , Xn).

The variables encode the configuration of the geometric objects and the quantifier-free
formula Φ describes the relations between them. A value assignment X satisfying Φ
corresponds to a solution of the original geometric problem.

More precisely,Φ is a quantifier-free boolean formula built of constants 0 and 1, arithmetic
operators (+,−,×), relation symbols (<,≤,=, ̸=), logic symbols (∧,∨,¬,⇔), variable
symbols, and parentheses, using standard syntactic rules. All variables are assumed to be
real numbers, all arithmetic operators and relational symbols are interpreted as operators
and relations over R. Moreover, the quantifiers range over all reals. Indeed, every boolean
formula of this type which additionally contains quantifiers can always be transformed such
that all quantifiers appear in the beginning. If a formula has this appearance, it has the
so-called prenex form.

The computational problem Existential Theory of the Reals (ETR) takes a
boolean formula in prenex form as an input and asks whether it is true or not. The

118
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complexity class ∃R consists of all problems that reduce in polynomial time to ETR.
Here we consider the classical Karp reductions in the Turing model. Interestingly, many
natural geometric problems are not only contained in ETR, but also appear to be ∃R-
complete. A prominent example is the stretchability of pseudoline arrangements; see also
[Matoušek, 2014, Mnëv, 1988, Schaefer and Štefankovič, 2017].

A B
C

X Y
Z

Figure 7.1: A non stretchable pseudoline arrangement.

A pseudoline arrangement in the plane is a set of unbounded x-monotone Jordan
curves where every pair of curves intersects in exactly one crossing point. A pseudoline
arrangement is stretchable if there exists an arrangement of straight lines with the same
face structure. Stretchability is a computational problem which asks whether a given
pseudoline arrangement is stretchable. The ∃R-completeness of Stretchability reflects
the deep algebraic connections between line arrangements and real algebra. This connection
has important consequences. The first consequence is that there is little hope to find a
simple combinatorial algorithm for Stretchability, since simple combinatorial algorithms
to decide ETR are not known. In fact, without certain algebraic tools allowing to bound
the length of integer coordinate representations, we would not even know if Stretchability
is decidable (see [Matoušek, 2014]). However, it is not just difficult to decide whether a
given pseudoline arrangement is stretchable. It requires algebraic arguments. For instance,
the non-stretchability of the (smallest non-stretchable) pseudoline arrangement depicted
in Figure 7.1 is based on Pappus’s Hexagon Theorem [Levi, 1926], dating back to the 4th
century.

■ Theorem (Pappus’s Hexagon Theorem). Let A,B,C be three points on a straight line
and let X,Y, Z be three points on another line. If the lines AY ,BZ,CX intersect the lines
BX,CY ,AZ, respectively, then the three points of intersection are collinear.

A
B C

X Y
Z

Figure 7.2: Illustration of Pappus’s Hexagon Theorem.

Although the statement of Pappus’s Hexagon Theorem is intrinsically geometric, it is non-
trivial to prove and most known proofs have some algebraic flavor, see [Richter-Gebert, 2011,
Chapter 1].
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As mentioned before, geometric problems that are ∃R-complete usually ask for the
existence of certain objects, satisfying properties that are easy to check. However, the nature
of Area Universality seems to be different. We therefore define the complexity class
∀∃R as the set of all problems that reduce in polynomial time to Universal Existential
Theory of the Reals (UETR). The input of UETR is a first order formula over the
reals in prenex form, which starts with a block of universal quantifiers followed by a block
of existential quantifiers and is otherwise quantifier-free. We ask if the formula is true.

Universal Existential Theory of the Reals (UETR)
Input: A formula over the reals of the form
(∀ Y1, Y2, . . . , Ym) (∃ X1, X2, . . . , Xn) : Φ(X1, X2, . . . , Xn, Y1, Y2, . . . , Ym),
where Φ is a quantifier-free formula with variables Y1, Y2, . . . , Ym, X1, X2, . . . , Xn.
Question: Is the input formula true?

It is straightforward to show that Area Universality belongs to ∀∃R. We have seen
all necessary ideas already in Section 2.3. The idea of the proof is to use a block of universal
quantified variables to describe the area assignment and a block of existential quantified
variables to describe the placement of the vertices of a drawing of G.

▶ Proposition 7.1. Area Universality is in ∀∃R.

Proof. Let G be a plane graph with n vertices and k faces. We describe a formula
Ψ ∈ UETR of polynomial size such that G is area-universal if and only if Ψ is true. We
use the universal quantifiers for the areas and the existential quantifiers for the coordinates
of the vertices. We represent the coordinates of a vertex vi by (xi, yi). We have seen the
essential part of the quantifier free formula already in Chapter 2. Recall that, by Proposi-
tion 2.17, for every area assignment A of G there exists a system E(G,A) of polynomial
equations (of polynomial size) which has a real solution if and only if A is realizable. A
tuple of real numbers (a1, . . . , ak) is an area assignment if and only if all entries are positive;
we write A := (a1, . . . , ak). Hence, our instance of UETR reads as follows:

∀(a1, . . . , ak) ∈ R ∃(x1, . . . , xn, y1, . . . , yn) ∈ R : (a1 > 0) ∧ · · · ∧ (ak > 0) =⇒ E(G,A)

Instead of E(G,A), we can also use the boolean-free formula E ′(G,A) as defined in the
proof of Proposition 2.17. ◀

We believe that the following stronger statement holds.

Conjecture. Area Universality is ∀∃R-complete.

While this conjecture, if true, would show that Area Universality is a really difficult
problem in an algebraic and combinatorial sense, it would also give the first known natural
geometric problem that is complete for ∀∃R. In the following, we explain how ∀∃R fits well
into the zoo of complexity classes.

7.1.1 Connections to the Polynomial Hierarchy

ETR is often considered to be a real counterpart of Satisfiability (Sat), where we ask if
a given existential logic formula is true. Hence, in Sat we are seeking for a solution of a logic
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formula and in ETR for the solution of a real formula. A logic formula is built of constants
0 and 1, logic symbols (∧,∨,¬,⇔,⇒), variable symbols, parentheses, and quantifiers (∃
and ∀), using standard syntactic rules. Compared to a logic formula, a formula over the
reals also allows for arithmetic operators (+,−,×), and relation symbols (<,≤,=, ̸=).

Moreover, as ∃R is the complexity class containing all problems reducible in polynomial
time to ETR, the celebrated Cook-Levin theorem [Cook, 1971, Levin, 1973] shows that
NP is the class of problems reducible in polynomial time to Sat.

In both, ETR and Sat, only one block of existential quantifiers is used. Allowing
universal and existential quantifiers for the boolean variables makes a problem algorithmi-
cally more difficult. This leads to the definition of the so-called polynomial hierarchy of
complexity classes. Informally speaking, the problems on increasing levels of the polynomial
hierarchy can be reduced to checking if a formula with increasing number of alternating
quantifier blocks is true (see [Arora and Barak, 2009, Chapter 5]).

For instance, the complexity class Πp
2 is contained in the second level of the polynomial

hierarchy. Πp
2 consists of the problems which reduce in polynomial time to Π2-Taut of

checking if a logic formula of the form

(∀ Y1, Y2, . . . , Ym) (∃ X1, X2, . . . , Xn) : Φ(X,Y ),

where Φ is quantifier-free, is true. Even though the complexity class might look pure logical,
some natural combinatorial problems appear to be complete for Πp

2. An example of such
a problem is 3-Choosability, also known as 3-List-Colorability [Gutner, 1996]. In
3-Choosability, we are given a graph G, and want to decide if for any assignment of a
list of three colors to each vertex of G, there exists a proper coloring of the vertices of G
where the colors are chosen from the lists.

The complexity class ∀∃R can be seen as the real coun-
terpart of the complexity class Πp

2. Moreover, it is ob-
vious that ∃R is contained in ∀∃R, see also Figure 7.3.
Since it is easy to observe and well-known that NP
is contained in ∃R, with the analogous approach we
can observe that Πp

2 is contained in ∀∃R. Establishing
the the containment of ∀∃R in PSPACE is highly non-
trivial [Basu et al., 2006]. For all we know, all these
complexity classes could collapse, as we do not know
whether NP and PSPACE constitute two different or
the same complexity class. However, ∃R ̸= ∀∃R can
be believed with similar confidence as NP ̸= Πp

2.

∃RNP

Πp
2

PSPACE

⊆

⊆

⊆ ⊆
⊆⊆

∀∃R

Figure 7.3: Containment rela-
tions of the complexity classes.

Although to the best of our knowledge, ∀∃R and ∃∀R have never been formally intro-
duced, the idea has been around. In particular, the literature on algorithms deciding if a
formula of the first order theory of the reals is true, focuses on formulas in prenex form and
a key parameter for their difficulty is the number of quantifier alternations [Renegar, 1992].

Blum et. al. [Blum et al., 1998] also introduce a hierarchy of complexity classes analogous
to the complexity class NP, but over the reals (or other rings). Their canonical model of
computation is the so-called Blum-Shub-Smale machine (BSS). The main difference is that
BSS accepts real numbers as input. However, the classes ∃R, ∀∃R, ∃∀R work with ordinary
Turing machines, which only take strings over a finite (binary) alphabet as input.
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7.2 Hard Variants

As a first step towards proving our conjecture, we consider three variants of Area Univer-
sality, each approaching the conjecture from a different direction. To do so, we introduce
restricted variants of ETR and UETR which are still complete. These are presented in
Section 7.2.1 and may also be useful to show hardness for other problems.

As a starting point we drop the planarity restriction. For a plane graph G = (V,E), the
face hypergraph of G has vertex set V , and its hyper-edges correspond to the sets of vertices
which form the faces of G. Consequently, the face hypergraph of a plane triangulation is
3-uniform since all faces are triangles. We define the area of a triple of points in the plane
to be the area of the triangle formed by these three points. Clearly, Area Universality
can be equivalently formulated in the language of face hypergraphs. This relation motivates
the following relaxation of the problem.

Area Universality for Triples*
Input: A set V of vertices, a set of triples F ⊆


V
3


, and a partial area assignment

A′ : F ′ → R≥0 for some F ′ ⊆ F .
Question: Is it true that for every A : F → R≥0 with A(f) = A′(f) for all f ∈ F ′,
there exist a placement of V in the plane, such that the area of each f ∈ F is A(f)?

In Section 7.2.2, we show that this problem is hard.

■ Theorem 44. Area Universality for Triples* is ∀∃R-complete.

For the proof of Theorem 44, we use gadgets similar to the von Staudt constructions
used to show the ∃R-hardness of order-types, see [Matoušek, 2014].

Our second result concerns a variant, where we investigate the complexity of realizing
a specific area assignment. Prescribed Area denotes the following problem: Given a
plane graph G with an area assignment A, does there exist a crossing-free drawing of G
that realizes A? We study a partial extension version of Prescribed Area, where some
vertex positions are fixed and we seek for a realizing placement of the remaining vertices.

Prescribed Area Partial Extension
Input: A plane graph G = (V,E), an area assignment A : F ′ → R>0, and fixed
positions for a subset of vertices V ′ ⊆ V .
Question: Does there exist a realizing drawing of G respecting the given positions for
all v ∈ V ′?

In Section 7.2.3, we show that this problem is hard.

■ Theorem 45. Prescribed Area Partial Extension is ∃R-complete.

The last two results consider the analogous question for simplicial complexes in three
dimensions. Recall that a 3-simplex s ⊆ R3 is the convex hull of at most four affinely
independent points. We denote the vertices of s by vert(s) and call the convex hull of a
subset of vert(s) a face of s. A simplicial complex S in R3 is a set of 3-simplices such that
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firstly, any face of a simplex from S is also a simplex in S and secondly, the intersection of
two simplices s, t ∈ S is either ∅ or a face of s and t.

An abstract simplicial complex is a family Σ of non-empty finite sets over a ground
set V =


Σ, which is closed under taking non-empty subsets. We say Σ is pure when all of

the maximal sets in Σ have the same number of elements. Moreover, Σ is realizable in R3

when there is a simplicial complex S in R3 that has a vertex for each element of V and
a simplex corresponding to each set in Σ. A crossing-free drawing of Σ is a mapping of
every i ∈ V to a point pi ∈ R3 such that the following holds: For any pair of sets σ1, σ2 ∈ Σ
there is a separating hyperplane h = {x ∈ R3 : ⟨a, x⟩ = b} such that ⟨a, pi⟩ ≤ b for all i ∈ σ1
and ⟨a, pi⟩ ≥ b for all i ∈ σ2. A volume assignment for Σ is a function V : T → R≥0 on
the collection T of all 4-element sets in Σ. A crossing-free drawing of Σ realizes a volume
assignment V : T → R≥0 when for each τ ∈ T , the convex hull of the points {pi : i ∈ τ}
has volume V(τ). The analogous question of Prescribed Area can be stated as follows:

Prescribed Volume
Input: A pure abstract simplicial complex Σ realizable in R3; a volume assignment V .
Question: Does there exist a crossing-free drawing of Σ that realizes V?

Likewise, the analogous question of Area Universality reads as:

Volume Universality*
Input: A pure abstract simplicial complex Σ realizable in R3 and a volume assignment
V ′ : T ′ → R≥0 for some of the 4-element sets T ′ ⊆ T of Σ.
Question: Is it true that for every V : T → R≥0 with V(τ) = V ′(τ) for all τ ∈ T ′,
there exists a crossing-free drawing of Σ that realizes V?

Note that crossing-free 3-dimensional simplicial complexes are a natural generalization
of planar triangulations. The fact that the tetrahedra only intersect in common faces
corresponds to the non-crossing condition in planar drawings. Indeed, Prescribed Volume
generalizes Prescribed Area for triangulations in the following sense:

▶ Proposition 7.2. There is a polynomial time algorithm that takes as input any plane
triangulation T with positive area assignment A and outputs a simplicial complex S with
volume assignment V such that A is realizable for T if and only if V is realizable for S.

Additionally, these analogues of Prescribed Area and Area Universality are
hard. First we show that Prescribed Volume is hard.

■ Theorem 46. Prescribed Volume is ∃R-complete.

Then, we extend its proof in order to obtain the following result:

■ Theorem 47. Volume Universality* is ∀∃R-complete.

Both proofs are presented in Section 7.2.4.
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7.2.1 Hard Variants of ETR and UETR

In this section, we introduce restricted variants of ETR and UETR which enable us to
show hardness. Recently, Abrahamsen et al. showed that the following problem is also ∃R-
complete [Abrahamsen et al., 2018]. In particular, note that we can restrict multiplication
to inversion and assume that a yes-instance has a solution within a bounded positive
interval.

ETR-inv
Input: A formula over the reals of the form (∃ X1, X2, . . . , Xn) : Φ(X1, X2, . . . , Xn),
where Φ is a conjunction of constraints of the following form: X = 1 (introducing
constant 1), X+Y = Z (addition), X ·Y = 1 (inversion), with X,Y, Z ∈ {X1, . . . , Xn}.
Additionally, Φ is either unsatisfiable, or has a solution, such that all variables are in
the interval [1/2, 2].
Question: Is the input formula true?

In order to define some even more restricted variant of ETR-inv, we introduce the
concept of an incidence graph of a formula. By definition of ETR-inv, we can consider a
formula Φ of the form Φ = C1 ∧ C2 ∧ . . . ∧ Cm, where each Ci is a quantifier-free formula
of the first order-theory of the reals with variables X1, X2, . . . , Xn, which uses arithmetic
operators and comparisons but no logic symbols. An incidence graph of Φ is the bipartite
graph with vertex set {X1, X2, . . . , Xn} ∪ {C1, C2, . . . , Cm} that has an edge XiCj if and
only if the variable Xi appears in the subformula Cj .

. . .

. . .

X1 X2 X3 Xn

C1 C2 C3 Cm

Figure 7.4: The incidence graph of the formula Φ = (X1 + X2 = X3) ∧ (X1 · X2 = 1)
∧ (X1 +X4 = X3) ∧ (X4 ·X3 = 1).

By Planar-ETR-inv we denote the restriction of ETR-inv, where the incidence
graph of Φ is planar, and Φ is either unsatisfiable, or has a solution where all variables are
within the interval (0, 5). We show that this variant of ETR is still hard.

■ Theorem 48. Planar-ETR-inv is ∃R-complete.

Proof. Consider an instance (∃ X1, X2, . . . , Xn) : Φ(X) of ETR-inv. Let G be (not neces-
sarily crossing-free) straight-line drawing of the incidence graph of Φ in the plane. Suppose
that G is not crossing-free and consider a pair of crossing edges. Let (X,CX) and (Y,CY )
denote the edges where X,Y denote the variables and CX and CY the constraints. We
introduce three new existential variables X ′, Y ′, Z and three constraints:

X + Y = Z, X + Y ′ = Z, X ′ + Y = Z.
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Observe that these constraints ensure that X = X ′ and Y = Y ′. Therefore, we may modify
the constraints CX such that X ′ replaces X; likewise we replace Y by Y ′ in CY . Moreover,
the drawing of G can be modified such that the new incidence graph G′ has strictly fewer
crossings. To do so, we choose a small enough empty box around the crossing and modify
the drawing within this box as depicted in Figure 7.5.

X Y

XYCY CX

(a) The edges (X,Cx) and (Y,CY ) cross.

Z

X + Y = Z

X + Y ′ = Z X ′ + Y = Z

X Y

X ′Y ′

Y ′ X ′

(b) Modified drawing without the crossing.

Figure 7.5: Illustration of the proof of Theorem 48.

In particular, G′ looses the considered crossing and no new crossing is introduced. We
repeat this procedure until the incidence graph of the modified formula is crossing-free.
Finally, note that 0 < 1 ≤ Z = X + Y ≤ 2 + 2 = 4 < 5 whenever 1/2 ≤ X,Y ≤ 2. Note
that the number of new variables and constraints is at most O(|Φ|4), since the degree of
each subformula in ETR-inv is at most three. ■

Now we introduce a restricted variant of UETR where the variables range of the positive
reals and the constraints are in conjunctive form.

Constrained-UETR
Input: A formula over the reals of the form
(∀ Y1, . . . , Ym ∈ R>0) (∃ X1, . . . , Xn ∈ R>0) : Φ(X,Y ), where Φ is a conjunction of con-
straints of the form: X = 1 (introducing constant 1), X +Y = Z (addition), X ·Y = Z
(multiplication), with X,Y, Z ∈ {X1, . . . , Xn, Y1, . . . , Ym}.
Question: Is the input formula true?

This problem can be seen as a simplified ∀∃R-version of a variant of ETR called Ineq,
where we ask if a conjunction of polynomial equations and inequalities has a real solu-
tion. Ineq is known to be ∃R-complete [Matoušek, 2014, Schaefer and Štefankovič, 2017].
Similarly, we show the ∀∃R-completeness of Constrained-UETR.

■ Theorem 49. Constrained-UETR is ∀∃R-complete.

Our main tool is the following result by Schaefer and Štefankovič. We state it in a
slightly different way, which is more suitable to our notation.
▶ Lemma 7.3 ([Schaefer and Štefankovič, 2017]). Let Φ(X) be a quantifier-free formula
of the first order theory of the reals, with the vector of variables X = (X1, X2, . . . , Xn). In
polynomial time, we can construct for some k = O(|Φ|) a polynomial F : Rn+k → R of
degree 4, whose coefficient have bitlength O(|Φ|) such that

{x ∈ Rn : Φ(x) is true} = {x ∈ Rn : (∃u ∈ Rk) F (x, u) = 0}.
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With this lemma at hand, we are ready to prove the theorem.

Proof of Theorem 49. First of all, observe that Constrained-UETR is contained in ∀∃R,
since the formula (∀Y1, Y2, . . . , Ym ∈ R>0)(∃X1, X2, . . . , Xn ∈ R>0) : Φ(X,Y ) is equivalent
to the following instance of UETR:

(∀Y1, . . . , Ym ∈ R)(∃X1, . . . , Xn ∈ R) :


m
i=1

(Yi > 0) ⇒
n

i=1

(Xi > 0) ∧ Φ(X,Y )


.

To prove the hardness of Constrained-UETR, we consider an instance of UETR of the
form Ψ = (∀Y1, Y2, . . . , Ym ∈ R)(∃X1, X2, . . . , Xn ∈ R) : Φ(X,Y ) and create an equivalent
Constrained-UETR formula

Ψ = (∀Y1, Y2, . . . , Ym ∈ R>0)(∃X1, X2, . . . , Xn ∈ R+) : Φ(X,Y ),

such that the size of the new formula Ψ is polynomial in the size of Ψ. The reduction
consists of several steps.

Transforming Φ into a single polynomial. First, we apply Lemma 7.3 to simplify Φ.
Let F : Rn+m+k → R be the obtained polynomial for some k ∈ O(|Φ|). We define a UETR
formula Ψ′ as follows:

Ψ′ = (∀Y1, . . . , Ym ∈ R)(∃X1, . . . , Xn ∈ R)(∃U1, . . . , Uk ∈ R) : F (Y,X,U) = 0.

First note that Ψ′ is equivalent to Ψ. To see this, we define

S = {(y, x) ∈ Rm+n : Φ(x, y)} and S′ = {(y, x) ∈ Rm+n : (∃u ∈ Rk)F (y, x, u) = 0},

as in Lemma 7.3. We know that S′ = S and Ψ is true if and only if the orthogonal
projection of S onto the first m coordinates equals Rm. Similarly, Ψ′ is true if and only if
the orthogonal projection of S = S′ onto the first m coordinates equals Rm.

Transforming F into a conjunction of constraints. We transform F into an equiva-
lent conjunction of constraints. First note that we can rewrite F as a sum of monomials
F = f1 + . . .+ fℓ in polynomial time, because F has degree at most 4. We show how to
replace each monomial f by an equivalent set of constraints, each of which is either the
introduction of the constant 1, an addition or a multiplication. Consider a mononomial

f = s · c · Z1 · Z2 · . . . · Zt

of F , where s ∈ {−1, 1} is the sign, c is a positive integer of bitlength O(|Φ′|) = O(|Φ|),
and Z1, . . . , Zt are not necessarily distinct variables. For convenience, we introduce the
existentially quantified variables I0, I1, I−1, I2, whose values will be forced to be 0, 1, −1,
and 2, respectively, by the following constraints:

I0 = I0 + I0, I1 = 1, I0 = I−1 + I1, and I2 = I1 + I1.
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We start by describing a variable holding the value sc, using only the above constraints.
Let cℓcℓ−1 . . . c0 be binary expansion of c, i.e., c =

ℓ
i=0 ci · 2i where each ci is either 0 or 1.

We introduce new existentially quantified variables and the constraints described below;
the index of each variable represents its intended value. The idea is to use the recursion

cℓ . . . ct = 2 · cℓ . . . ct−1 + ct.

We encode the multiplication and addition of the recursion in two steps. The constraints
are as follows:

V2cℓ =I2 · Icℓ

V2cℓ+cℓ−1
=V2cℓ + Icℓ−1

V4cℓ+2cℓ−1
=I2 · V2cℓ+cℓ−1

...

Vc =Vℓ
i=1 ci·2i

+ Ic0

Vsc =Is · Vc

Observe that Vsc = sc. Next, we introduce new existential variables Vf , VZ1 and VZ1Z2...Zk

for all 2 ≤ k ≤ t, and add the following constraints:

VZ1 = Z1

VZ1Z2...Zk
= VZ1Z2...Zk−1

· Zk for all 2 ≤ k ≤ t

Vf = Vsc · VZ1Z2...Zt .

The last constraint ensures that the value of Vf is equal to the value of f . We repeat the
same procedure for every monomial f .

Recall that F = f1 + f2 + . . .+ fℓ, where f1, f2, . . . , fℓ are monomials. We introduce
new existential variables and the following constraints for 2 ≤ k ≤ ℓ− 1:

Vf1+f2+...+fk =Vf1+f2+...+fk−1
+ Vfk

I0 =Vf1+f2+...+fℓ−1
+ Vfℓ

This way we construct Ψ′′ = (∀Y ′
1 , . . . , Y

′
m′ ∈ R)(∃X ′

1, . . . , X
′
n′ ∈ R) : Φ′′(X ′, Y ′), which is

equivalent to Ψ, its size is polynomial in |Ψ|, and Φ′′ is a conjunction of the introduction of
the constant 1, addition and multiplication constraints.

Changing the ranges of the quantifiers. Next, we guarantee that the quantifiers range
over the positive reals. For each variable Z of Ψ′′, we introduce two positive variables Z+

and Z−. If Z is universally quantified, then so are both Z+ and Z−; analogously, if Z is
existentially quantified, then so are Z+ and Z−. Every appearance of Z in Φ′′ is substituted
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by (Z+ −Z−); let Φ′′′ be the formula obtained in such a way. It is easy to observe that the
constructed formula is equivalent to Ψ′. However, the structure of constraints is destroyed.

Restoring the form of the constraints. Finally, we restore the form of the constraints.
Therefore, we re-introduce the existential variable I1 with constraint I1 = 1. Then, we
transform every constraint in Φ′′′ in the following way: A constraint (Z+ − Z−) = 1 is
transformed into Z+ = Z− + I1.

An addition constraint (X+ − X−) + (Y + − Y −) = (Z+ − Z−) is equivalent to the
expression X+ + Y + + Z− = X− + Y − + Z+. We introduce new positive, existentially
quantified variables and the constraints:

VX++Y + =X+ + Y +

VX−+Y − =X− + Y −

VX−+Y −+Z+ =VX−+Y − + Z+

VX++Y + + Z− =VX−+Y −+Z+ .

A multiplication-constraint (X+ −X−) · (Y + − Y −) = (Z+ − Z−) is equivalent to the
expression X+Y + +X−Y − + Z− = X+Y − +X−Y + + Z+. We introduce new positive,
existentially quantified variables and the constraints for each pair ◦,× ∈ {+,−}

VX◦Y × =X◦ · Y ×

as well as the constraints:

VX+Y ++X−Y − =VX+Y + + VX−Y −

VX+Y −+X−Y + =VX+Y − + VX−Y +

VX+Y −+X−Y ++Z+ =VX+Y −+X−Y + + Z+

VX+Y −+X−Y + + Z− =VX+Y −+X−Y ++Z+ .

Note that finally all constraints are of the desired form and the variables are strictly
positive. Thus we produced a formula

Ψ = (∀Y1, Y2, . . . , Ym ∈ R>0)(∃X1, X2, . . . , Xn ∈ R>0) : Φ(X,Y ),

in which Φ is a conjunction of the introduction of a constant, additions, and multiplications.
Moreover, Ψ is equivalent to Ψ. Observe that the number of introduced variables and the
length of Φ are polynomial in |Φ|. This completes the proof. ■

With this tool at hand, we are able to show hardness for several variants of area-
universality. We start to consider Area Universality for Triples*.
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7.2.2 Hardness of Area Universality for Triples*

We now prove Theorem 44.

■ Theorem 44. Area Universality for Triples* is ∀∃R-complete.

Proof. For the membership, we form an instance of ∀∃R. For each triple, we consider one
equation as in Equation (2.1) and form the instance by taking their conjunctions.

For proving hardness, we reduce from Constrained-UETR. For every instance Ψ of
Constrained-UETR, we give a set of points V and unordered triples T , along with a
partial area assignment A′. Let Ψ be a formula of the form:

Ψ = (∀Y1, . . . , Ym ∈ R>0)(∃X1, . . . , Xn ∈ R>0) : Φ(X,Y ).

Recall that Φ is a conjunction of constraints of the form Z = 1, Zi + Zj = Zk, and
Zi · Zj = Zk.

First, we show how to express Φ. Our gadgets are similar to the ones for showing
∃R-hardness of Order Type (see Matoušek [Matoušek, 2014]).

All variables are represented by points on one line; which we denote by ℓ for the rest of
the proof. First, we enforce points to be on ℓ. Afterwards we construct gadgets to mimic
addition and multiplication.

To force points on a line, we start by introducing the three points p0, p1, and r and
define A′(p0, p1, r) := 1. The positive area of the triple ensures that the points are not
collinear and pairwise different. We measure in units of ∥p0p1∥ and interpret p0 as 0 and
p1 as 1. Denoting a line through two points a and b by ℓa,b, we set ℓ := ℓp0,p1 , see also
Figure 7.6. To force a point x on ℓ, we set A′(x, p0, p1) := 0. Note that this does not
introduce any other constraint on the position of x on ℓ.

p0 xp1

1

0 `

r

Figure 7.6: Forcing points on a line.

Each variable X is represented by a point x on ℓ. Additionally, since all variables are
non-zero, we introduce a triple of positive area forcing x to be different from p0. Note
that in general, we can ensure that two points x1, x2 are distinct, by introducing a new
point q and adding a triple (x1, x2, q) with A′(x1, x2, q) := 1. Now, we define the absolute
value of X by ∥p0x∥. If x is on the same side of p0 as p1, then the value of X is positive,
otherwise it is negative. We accept currently both positive and negative values, but later
we force the original variables to be positive.

Let us describe the gadgets for addition and multiplication. We start with the addition
constraint X + Y = Z. Let x, y, z be the points encoding the values of X,Y, Z, respectively.
Recall that these points lie on ℓ and do not coincide with p0. We introduce a point q1
and prescribe the areas A′(p0, x, q1) = A′(y, z, q1) = 1. Figure 7.7 illustrates the addition
gadget.
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p0 y x+ yx

1 1

z

q1

Figure 7.7: The addition gadget.

Since the two triangles have the same area and height, the distance between y and z
must agree with the distance between p0 and x. Thus, the value of Z is either X + Y
or X − Y . Analogously, we introduce a point q2 and define A′(p0, y, q2) = A′(x, z, q2) = 1,
implying that Z is either Y + X or Y − X. This is satisfied either if Z = X + Y (the
intended solution) or if Z = X − Y = Y −X. The second solution implies that X = Y
and thus Z = 0. This contradicts to the fact that z ̸= p0 and hence shows the correctness
of the addition gadget.

As a preparation to the multiplication gadget, we show how to enforce on the four
pairwise different points p, p′, s, s′ that ℓp,p′ is parallel to ℓs,s′ , without adding additional
constraints on any of the four points. Figure 7.8 displays the desired situation.

p p′

`s,s′

`p,p′

s s′

h1

h2

Figure 7.8: Gadgets for the construction of a parallel line.

We insert two new points h1 on the line ℓp,p′ and h2 on the line ℓs,s′ by defining
A′(p, p′, h1) = A′(s, s′, h2) = 0. We aim for a trapezoid with points p, h1, s, h2 such that ph1
is parallel to sh2. For this, we prescribe the areas A′(p, h1, s) = A′(p, h1, h2) = 1 and the
areas A′(s, h2, p) = A′(s, h2, h1) = 2, as illustrated in Figure 7.9(a). Indeed, s and h2 must
lie on the same side of the line ℓp,h1 : Assume for a contradiction that ℓp,h1 separates s
and h2. If p and h1 are on the same side of ℓs,h2 then the triangle (s, h2, p) is contained in
or contains the triangle (s, h2, h1), see Figure 7.9(b). However, both triangles are supposed
to have the same area and p ̸= h1. A contradiction.

s

p h1

h2

1
22
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2
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Figure 7.9: Forcing a trapezoid.
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Consequently, ℓs,h2 separates p and h1 and the quadrangle can be partitioned by each
of the two diagonals sh2 and ph1. See Figure 7.9(c) to observe the following contradiction:

2 = A(p, h1, s) +A(p, h1, h2) = A(s, h2, h1) +A(s, h2, p) = 4.

Thus s and h2 lie on the same side of ℓp,h1 . By the prescribed areas, s and h2 have the
same distance to ℓp,h1 . Therefore, the segments ph1 and sh2 and the lines ℓp,p′ and ℓs,s′ are
parallel. Moreover, no other constraints are imposed on the points p, p′, s, s′.

To construct a multiplication gadget for the constraint X · Y = Z, let x, y, z ( ̸= p0) be
the points encoding the values of X,Y, Z, respectively. First we introduce two points p, p′

which do not lie on ℓ, but the three points p0, p, p
′ are collinear by setting A′(p0, p, p

′) = 0.
We enforce the following pairs of lines to be parallel by the construction of a parallel line:
ℓp1,p with ℓy,p′ and ℓx,p with ℓz,p′ . Figure 7.10 displays the multiplication gadget. By the
intercept theorem, the following ratios coincide – also for negative variables:

|p0p|/|p0p′| = |p0p1|/|p0y| = |p0x|/|p0z|.

By the definition of x, y, z, we obtain 1/Y = X/Z, which implies that X · Y = Z.

p0 x y x · yp1

p

p′

z

Figure 7.10: The multiplication gadget.

Next, we introduce the universally quantified variables Y1, Y2, . . . , Ym. For every Yi,
let yi be the point encoding its value, we know that yi is on ℓ and yi ̸= p0. We introduce
a triple fi = (p0, r, yi), whose area is universally quantified. Recall that r is a point
with A′(p0, p1, r) = 1. Now we show how to enforce each original variable X to be positive.
We add an existentially quantified variable SX and the constraint X = SX · SX . The
variable SX may not be positive, but this is not required. This finishes the reduction which
clearly runs in polynomial time.

It remains to argue that Ψ is true if and only if our constructed instance of Area
Universality for Triples* is realizable. Let V (Y1), . . . , V (Ym) ∈ R>0 be some values
of the universally quantified variables. Then for every i ∈ {1, . . . ,m}, A(p0, r, yi) enforces
the positions of yi to correspond to V (Yi). Consequently, the position of the point encoding
the value of SYi is either


(V (Yi), or −


(V (Yi)) (both alternatives are plausible). Fixing

a value of Xi fixes SXi to be either

V (Xi) or −


V (Xi) (both plausible), so it only

remains to show that if there exist values V (X1), . . . , V (Xn) such that Φ(Y,X) holds, then
there is an A-realizing placement of the points x1, . . . , xn and vice versa. This follows
immediately from the correctness of the gadgets and the fact that auxiliary points for SXi

and SYj can be set arbitrarily and are independent for each gadget. This shows hardness of
Area Universality for Triples*. ■

We now come to further hard variant.
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7.2.3 Hardness of Prescribed Area Partial Extension

In this section, we prove Theorem 45 by reducing from Planar-ETR-inv.

■ Theorem 45. Prescribed Area Partial Extension is ∃R-complete.

Proof. Let Ψ = (∃X1, . . . , Xn) : Φ(X1, . . . , Xn) be an instance of Planar-ETR-inv.
Recall that we can assume that if Ψ is a yes-instance, then it has a solution, in which
the values of the variables are in the interval (0, λ) for λ = 5. We construct a plane graph
GΨ = (V,E), an area assignment A of GΨ, and fixed positions for a subset V ′ of vertices,
such that GΨ has a realizing drawing respecting the prescribed vertex positions if and only
if Φ is satisfiable by real values from the interval (0, λ).

Consider the incidence graph of Φ and fix an orthogonal plane drawing on an integer
grid. As indicated in Figure 7.11, we consider a crossing-free degenerate drawing where the
edges are allowed to share grid lines as long as they do not properly cross. Such a drawing
can be computed by a ⊥-contact-representation as in Theorem 27.

addition

inversion
wire

variable

splitter

X1

X2X3 X4

Figure 7.11: An orthogonal drawing on an integer grid of the incidence graph GΨ of the
instance Ψ = (X1 +X2 = X3) ∧ (X1 ·X2 = 1) ∧ (X1 +X4 = X3) ∧ (X4 ·X3 = 1).

We design several types of gadgets: variable gadgets representing the variables, as well
as inversion and addition gadgets, realizing the corresponding constraints. Moreover, we
construct wires and splitters in order to copy and transport information. Some vertices will
have prescribed positions; these are called fixed and the remaining vertices are flexible.

The variable gadget for a variable X consists of eight fixed vertices and one flexible
vertex vx, see Figure 7.12(a). The variable gadget has two inner faces. The outer face of the
variable gadget forms a rectangle of area 6. The vertices a, b, vx form a triangle of area 1/2.
Observe that the prescribed area of the triangle abvx forces vx to lie on the line containing
the segment cd. Therefore, due to planarity, vx must lie in the interior of the segment cd. As
before, the Euclidean distance of two points p, q is given by ∥pq∥, and λ∥dvx∥ specifies the
value of X. We symbolize ∥dvx∥ by a bold gray line in Figure 7.12(a). Now, we introduce
a constant 1 with a constraint X = 1 by using a variable gadget. We define vx to be fixed
and place it in such a way that ∥dvx∥ = 1/λ. In the following, we sometimes assume that
a flexible vertex is forced to lie on a specified segment. Note that this property can be
induced by a variable gadget.

The wire gadget consists of several box-like fragments: four fixed vertices positioned as
the corners of an axis-parallel unit square and two opposite fixed edges, see Figure 7.12(b).
Each of the other two sides of the square is subdivided by a flexible vertex, these two
vertices are joined by an edge. Each of the two quadrangular faces has a prescribed area
of 1/2. Note that if one of the flexible vertices is collinear with its fixed neighbors, so is
the other one. The planarity constraint ensures that each flexible vertex lies between the
corresponding fixed vertices. Moreover, the segment representing the value of the variable
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(a) The variable gadget (with a wire attached).
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(b) The wire gadget.

fixed

flexible

Figure 7.12: The variable gadget and wires.

changes from top to bottom or vice versa. Hence, if necessary, we may use an odd number
of fragments in order to invert the side where the value is represented. Wires are used to
connect other gadgets.

The splitter gadget contains a central fixed square of area 1, where each side is adjacent
to a triangle of area 1/2 with a third flexible vertex. Figure 7.13(a) depicts the splitter
gadget. Each triangle forces the flexible vertex on a line. These flexible vertices and their
neighbors on the boundary of the splitter gadget are identified with the appropriate vertices
in a variable gadget or a wire; this is how we connect the splitter with other gadgets.
Observe that the value of one variable fixes the values of all variables by pushing the area
circularly. Note that each face of area 1 has exactly two flexible vertices which are forced
to lie on specific segments. Thus if one of them is determined, the other is also uniquely
determined in a realizing drawing. Note that we may use the splitter gadget not only for
splitting wires, but also for realizing left and right turns.
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(a) The splitter gadget which also
enables left and right turns.
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(b) The inversion gadget.
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(c) The addition gadget.

Figure 7.13: The splitter, inversion, and the addition.

It remains to introduce gadgets for the inversion and addition constraints. First consider
an inversion constraint X · Y = 1. The inversion gadget, illustrated in Figure 7.13(b),
consists of four fixed vertices arranged in a unit square, two flexible vertices vx and vy,
and seven edges. By linking the inversion gadget with variable gadgets or wires, we can
ensure that vx and vy belong to the segment of their fixed neighbors. Let x be the distance
from the bottom left corner to vx, and y be the distance from the bottom left corner to vy.
Suppose that these distances represent, respectively, the values of variables X and Y in
the way described in the paragraph about variable gadgets; this is obtained by identifying
them with appropriate vertices of such a gadget or a wire. Namely, the value of X is λ · x,
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and the value of Y is λ · y. To realize the area 1/(2λ2) of the triangle formed by vx, vy, and
their common neighbor, the lengths x and y are forced to satisfy the equation

xy

2
=

1

(2λ2)
.

This implies that the value of X · Y is λx · λy = 1. Consequently, the inversion constraint
is satisfied.

Finally, we construct an addition gadget for an addition constraint X + Y = Z. We
introduce nine fixed vertices placed on an integer grid on the boundary of our gadget, as
depicted in Figure 7.13(c). Moreover, we introduce four fixed vertices b, c, e, g in the interior
of our gadget on integer points and three flexible vertices vx, vy, vz encode the values of
variables X,Y, Z, respectively. The vertices vx, vy, vz are identified by appropriate flexible
vertices in variable or wire gadgets; this ensures that they are forced to lie on the segments
of their fixed outer neighbors. Finally, we introduce a flexible vertex q adjacent to the
four inner fixed vertices b, c, e, g. Consequently, the addition gadget has four inner faces
f1, f2, f3, f4 to which we assign the areas A(f1) = 3.5,A(f2) = 2,A(f3) = 1, and A(f4) = 1.

Let x := ∥avx∥ and y := ∥dvy∥ and z := ∥fvz∥. Since vx, vy, vz encode the values of the
variables X, Y , and Z, respectively, we know that X = λx, Y = λy, and Z = λz. Moreover,
the area of the triangle avxb is ax := x/2, the area of the triangle cdvy is ay := y/2 and the
area of efvz is az := z/2. We want to show that there exists a realizing drawing if and only
if X + Y = Z. In a realizing drawing, the area of f1 is

A(f1) = 3 +A(avxb) +A(cvyd) +A(bqc) = 3 + ax + ay
!
= 3.5 = A(f1).

Consequently, the area of the triangle bqc is forced to be 1/2 − ax − ay. Note if Ψ is a
positive instance, we may assume that Z = X + Y < λ, thus the area of the triangle bqc
is positive. On the other hand, if X + Y > λ, it is easy to see that there is no way to
put flexible points in a way that conforms prescribed areas. An easy but crucial point
is that A(bqc) + A(egq) = 1/2 = A(beq) + A(gcq). Combining this with the fact that the
triangle bqc has area 1/2−ax−ay, we obtain that area of the triangle egq is forced to ax+ay.
Observe that the area of f3 forces the area of triangle cqg to equal ay. It is easy to see
that the area of f4 equals A(f4) = 1/2 +A(egq) + (1/2 −A(efvz)) = 1 + ax + ay − az. Its
prescribed area of 1 therefore enforces that ax + ay = az.

If on the other hand, the constraint ax + ay = az is fulfilled, we take the placement of q
such that f1 and f3 are fulfilled. By f3, the area of the triangle cqg equals ay and it holds

A(f2) = 2−A(avxb)−A(cqg) +A(efvz) = 2− ax − ay + az = 2 = A(f2).

By the correct total area, f4 has area A(f4). The correctness of the addition gadget follows.
Finally, during the construction, we might have introduced inner faces without specified

areas. Since the total area of each gadget is fixed, we measure the area of these introduced
faces and set these as the prescribed area. Consequently, we created a planar graph GΨ,
a subset of vertices with fixed positions, and an area assignment A, such that GΨ has a
realizing drawing for A and respecting the fixed positions if and only if Ψ is true. The
correctness of the construction follows directly from the correctness of the individual gadgets.
Moreover, the size of GΨ is polynomial in |Ψ|. Thus the proof is complete. ■
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Next, we consider the variants with simplicial complexes in three dimensions.

7.2.4 Realizing the Volume of Simplicial Complexes

We start with some basic definitions and observations. Recall that a simplex s ⊆ Rd is
the convex hull of at most d+ 1 affinely independent points, the vertices of s are denoted
by vert(s). By affinely independent, we mean that there is no set of {ri ∈ R | i ∈ [k]}
such that r1 + · · ·+ rk = 1 and v0 = r1v1 + · · ·+ rkvk where {v0, . . . , vk} = vert(s). For a
simplex s, the convex hull of a subset of vert(s) is a face of s. A simplicial complex S is a
set of simplices in Rd that satisfies the following conditions:

• Any face of a simplex from S is also a simplex in S.
• The intersection of two simplices s, t ∈ S is either ∅ or a face of simplices s and t.

An abstract simplicial complex is a collection of finite sets Σ that is closed under inclusion.
That is, if σ ∈ Σ and τ ⊆ σ then τ ∈ Σ. Note that to define an abstract simplicial complex Σ
it suffices to only specify the maximal sets of Σ. We say Σ is a pure d-dimensional abstract
simplicial complex when all maximal sets in Σ have exactly d+ 1 elements. Moreover, an
abstract simplicial complex Σ is realizable in Rd when there is a simplicial complex S ⊆ Rd

that has a simplex σ̃ for each set σ ∈ Σ and τ̃ ∈ S is a face of a simplex σ̃ ∈ S if and only
if τ ⊆ σ. We say S realizes Σ. Note that every simplicial complex S realizes the abstract
simplicial complex consisting of the set of vertices of each simplex of S.

A crossing-free drawing of Σ is a mapping of every i ∈ V to a point pi ∈ R3, such
that the following holds: For any pair of sets σ1, σ2 ∈ Σ there is a separating hyperplane
h = {x ∈ R3 : ⟨a, x⟩ = b} such that ⟨a, pi⟩ ≤ b for all i ∈ σ1 and ⟨a, pi⟩ ≥ b for all i ∈ σ2.
Note also that a crossing-free drawing of an abstract simplicial complex is not necessarily a
simplicial complex, since some simplices may be degenerate, or may intersect along their
boundary where they do not share a common face.

A volume assignment for Σ is a function V : T → R≥0 on the collection T of all 4-element
sets in Σ. A crossing-free drawing of Σ realizes a volume assignment V : T → R≥0 when
for each τ ∈ T , the convex hull of the points {pi : i ∈ τ} has volume V(τ).

Basic properties Let S = (V, F ) be a simplicial 3-complex, i.e., a simplicial complex
in R3. Lets first recall that the volume of a tetrahedron t = {a, b, c, d} can be expressed in
terms of the area of one triangle △ := {a, b, c} and its respective height h:

vol(t) = 1/3 · area(△) · h.

As suggested by abstract simplicial complexes, we think of a simplex s mostly as the set of
its vertices vert(s). However, talking about area or volume, we refer to the volume of the
convex hull of vert(s). Given two simplices s and t, we define s⊕ t as the simplex consisting
of the convex hull of vert(s) ∪ vert(t). For a simplicial complex S and a vertex v, we define
the cone of v over S by

S ⊕ v := {s⊕ v | s ∈ S}.

In particular, we are interested in cones T ⊕ v over a plane triangulation T and a vertex v.
We also say v is an apex for T in T ⊕ v. Let V be a volume assignment of a simplicial
complex S containing T ⊕ v for some plane triangulation T and apex v. We define
the induced area assignment Av of v on T as follows: For each triangle abc of T , we
set Av({a, b, c}) := V({a, b, c, v}).
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▶ Lemma 7.4. Let T be a plane triangulation and S be a simplicial complex containing
T ⊕ v for some vertex v. Let V be a volume assignment of S. If T is coplanar in a
V-realization of S, then the induced area assignment Av is realizable for T .

Proof. For each triangle abc of T and its corresponding tetrahedron abcv with height h it
holds that: vol(abcv) = 1/3 ·area(abc) ·h. If T is coplanar, then the height h of all tetrahedra
with respect to this plane coincides. Hence, the volume of the tetrahedra translates
immediately to the area of the triangles (scaled by 1/3h). If the volume assignment V is
realized for S, then the induced area assignment Av scaled by λ := 1/3h is realized for T .
By scaling the plane accordingly, we find an Av-realizing drawing of T . ◀

Consider a simplicial complex S with volume assignment V, a plane triangulation T
and a vertex v of S but not of T such that T ⊕ v is contained in S. We define the (weak)
dual graph G∗ of T : The vertex set of G∗ consists of the inner faces of T and the edge set
of G∗ represents adjacent faces. We call an edge e in G∗ good, if in every V-realization of S,
the two adjacent triangles of e are coplanar. The coplanar graph of T (with respect to V)
is the subgraph of G∗ consisting of good edges.

▶ Lemma 7.5. Let T be plane triangulation, v be a vertex, and S be a simplicial complex
containing v ⊕ T . Then T is coplanar in all V-realization of S if and only if the coplanar
graph of T is connected.

Proof. Suppose T is coplanar in all V-realization of S. Then clearly all edges of D are good.
Consequently, the coplanar graph of T is connected.

Suppose the coplanar graph of T is connected. Then, by transitivity of coplanarity, T
is coplanar in all V-realization of S. ◀

Reduction from Prescribed Area for Triangulations

We show that the realizability of an area assignment of any triangulation can be reduced to
an instance of Prescribed Volume.

▶ Proposition 7.2. There is a polynomial time algorithm that takes as input any plane
triangulation T with positive area assignment A and outputs a simplicial complex S with
volume assignment V such that A is realizable for T if and only if V is realizable for S.

Proof. For a plane triangulation T , we define a simplicial complex ST in the following
way: Take two copies of T and glue them along an outer edge resulting in the graph F .
Consider Figure 7.14(a) for an illustration. We introduce two new vertices x and y and
define ST := (x⊕ F ) ∪ (y ⊕ F ). Note that x and y are apices for their neighborhoods. For
a given area assignment A of T , we consider the following volume assignment of ST :

VA,0(s) :=

A(t) for s = t⊕ x

0 for s = t⊕ y

We show that the area assignment A is realizable for T if and only if the volume
assignmentVA,0 is realizable for ST .
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T T

A

0

x

y

(a) Construction of the simplicial complex ST

and the volume assignment VA,0.

T ′

C y

(b) If a copy T ′ of T is not coplanar, then y
coincides with an inner vertex of T ′.

Figure 7.14: Illustration of Proposition 7.2 and its proof.

If A is realizable for T , then we consider a realizing drawing of T and its copy in the
plane. Placing vertex x at height 3 above the plane and vertex y at height 0 below the
plane yields a V-realization for ST .

Now assume that VA,0 is realizable for ST . We show that the vertices of at least one
copy of T in any VA,0-realization of ST are coplanar. To this end, let us assume that the
vertices of one of the copies T ′ of T in F are not coplanar. We will call an inner edge e
of T ′ a crease edge when the two triangles adjacent to e are not coplanar. We claim that y
must be at an inner vertex of T ′.

Observe that the area of each triangle of T ′ is positive, since each of the tetrahedra
formed by a triangle of T ′ with the vertex x has positive volume. Hence, for every triangle t
of T ′, we must have that y is in the plane spanned by t.

Let C denote the partition of the triangles of T ′ where each part consists of a maximal
subset of coplanar triangles of T ′. Since the vertices of T ′ are not coplanar, C has several
parts and the boundaries of these parts must include at least one inner vertex. Hence, there
is a closed walk W in T ′ around the boundary of a part of C that includes at least one
inner vertex, see Figure 7.14(b). Since, the walk W is around the boundary of a part of C,
all the edges of W that are inner edges of T ′ are in fact crease edges.

For any crease edge e = t1 ∩ t2 adjacent to the two triangles t1 and t2, the planes
spanned by t1 and t2 intersect in a line ℓ. Since y is contained in both of these planes, y
lies on the line ℓ. Observe that ℓ is also the line spanned by the edge e.

Since all triangles have positive area, the walk W must include some inner vertex w
where it bends. That is, the edges e1 and e2 of W that are incident to w are not collinear.
Since y is on both the line spanned by e1 and the line spanned by e2, we must have
that y = w at the point where these lines meet. Thus, y is at an inner vertex of T ′.

Since each of the tetrahedra formed by a triangle of F with the vertex x has positive
volume and these tetrahedra are non-crossing, none of the inner vertices of F coincide.
Therefore, y can be an inner vertex of at most one of the copies T that constitute F , which
means that the vertices of a copy T ′′ of T in F are coplanar.

Since the vertices of T ′′ are contained in a common plane P , each triangle t of T ′′ has
area 3/h · VA,0(t⊕ x) where h is the distance between x and P . Thus, if VA,0 is realizable,
then scaling T ′′ by h

3 as above provides a realization of A. ◀

Now, we are ready to prove the 3-dimensional generalization of prescribed area of
triangulations hard.



138 7 Computational Complexity

7.2.5 Hardness of Prescribed Volume

In this section, we present a proof of the following statement.

■ Theorem 46. Prescribed Volume is ∃R-complete.

Proof. We have to show the containment and the hardness. We start with the containment.
Let S be a pure simplicial complex on the ground set V ; we denote the maximal sets,
namely the set of tetrahedra, by T and consider a volume assignment V : T → R≥0. We
describe an ETR-formula Ψ that is true if and only if S has a crossing-free V-realization.
We define Ψ as follows:

∃
i∈V

(Xi, Yi, Zi) ∃
τ,τ ′∈T

(Xτ,τ ′ , Yτ,τ ′ , Zτ,τ ′ , Bτ,τ ′) : 
τ,τ ′∈T

CrossFree(τ, τ ′)

∧
 

τ∈T
Volume(τ,V(τ))



For two tetrahedra τ and τ ′, the predicate CrossFree(τ, τ ′) shall guarantee that there
exists a hyperplane separating τ and τ ′. We define the predicate as the conjunction for
each i ∈ τ ,

Xτ,τ ′Xi + Yτ,τ ′Yi + Zτ,τ ′Zi +Bτ,τ ′ ≥ 0

and for each j ∈ τ ′,
Xτ,τ ′Xj + Yτ,τ ′Yj + Zτ,τ ′Zj +Bτ,τ ′ ≤ 0.

In these inequalities Xτ,τ ′ , Yτ,τ ′ , Zτ,τ ′ , and Bτ,τ ′ represent the coefficients of a hyperplane
separating the two tetrahedra τ and τ ′.

Analogous to Equation (2.1), the condition Volume(τ,V(τ)) for a tetrahedron τ =
{h, i, j, k} is given by the determinant equation

det


Xh Xi Xj Xk

Yh Yi Yj Yk

Zh Zi Zj Zk

1 1 1 1

 = 6V(τ).

This finishes the proof of the containment.

It remains to show the ∃R-hardness. To do so, we reduce from ETR-inv. Let

Ψ = ∃X1 . . . Xn : Φ(X1, . . . , Xn)

be an instance of ETR-inv, where Ψ is a conjunction of constraints expressing additions,
inversions or the introduction of a constant. Since we will extend this proof in order to also
prove Theorem 47, we handle the inversion constraints as general multiplications constraints
(in order to be able to reduce from Constrained-UETR later on).

We construct a simplicial complex S = (V, F ) and a volume assignment V for the
tetrahedra in F , such that S has a V-realization if and only if Φ is satisfiable. We start
with a description of our essential building block.
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Coplanar gadget The coplanar gadget forces several triangles of equal area to lie in a
common plane as illustrated in Figure 7.15(a). These triangles will be free to one half space
and hence, accessible for our further construction. In particular, all but one vertex of this
gadget lie in the same plane. We call this plane the (base) plane of the coplanar gadget.

For the description of the construction, consider Figure 7.15(b). The coplanar gadget
consists of three layers of tetrahedra. The first layer forces the triangles to be of equal size
and the remaining two layers force coplanarity. We start with the plane triangulation Tk

depicted in the top of Figure 7.15(b). Informally, Tk can be described as a row of alternating
triangles where one vertex is stacked into every face. The parameter k denotes the number
of red triangles in the top row. For the simplicial complex, we introduce a vertex v and a
tetrahedron v ⊕ t for each triangle t ∈ Tk and assign it to a volume of 1. In other words, v
is an apex for Tk and V(t⊕ v) = 1 for all t ∈ Tk.

(a) The coplanar gadget.

T3

v

(b) The layers of the coplanar gadget.

Figure 7.15: The coplanar gadget and its construction.

Now, we describe the two layers enforcing co-planarity. Observe that the dual graph of
the white triangles of Tk is an even path P . Consider a maximum matching M in P . For
each matching edge e, we introduce a tetrahedron of volume 0 consisting of the two triangles
of e in M , see the blue tetrahedra in Figure 7.15(b). In any realization, these quadruples of
points are now coplanar due to the volume assignment. For the third layer, we consider
the path P without M . This is also a matching and for each of its edges, we introduce a
tetrahedron of volume 0 consisting of the two triangles in P \M , see the green tetrahedra
in Figure 7.15(b). Consequently, the coplanar graph of Tk is connected and hence, by
Lemma 7.5, the vertices of Tk are coplanar in every volume realization. Lemma 7.4 in turn
implies that the areas of all triangles in Tk are of equal size due to their tetrahedra with v.
Note that the effective area depends on the distance of the plane to v.

When we refer to a triangle of the base plane, we always refer to one of the red triangles.
The coplanar gadget bears its name due to the following functionality: By inserting a
tetrahedron for each point of a set X with a private triangle from the base plane, the points
of X are forced to lie in a common plane, i.e., to be coplanar. Moreover, this set of points is
then accessible from almost all sides. We will make use of this fact to force points on a line.
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Forcing points on a line We use the coplanar gadget to force a set of points representing
the values of the variables to lie on a common line ℓ. In order to do so, we take two coplanar
gadgets and enforce that their base planes E and Eℓ are not parallel. This can be achieved
by choosing two triangles ∆1,∆2 of equal area on E and two distinct points v1, v2 from Eℓ

and inserting two tetrahedra v1 ⊕∆1 and v2 ⊕∆2 of different volume, e.g., 1 and 2.
Now consider a set of points {x1, . . . , xn}. For each xi, we introduce two tetrahedra:

one with a triangle on E and the other with a triangle on Eℓ, see Figure 7.16. We prescribe
their volumes to be 1. Since the planes E and Eℓ are not parallel, but the triangles on each
plane have the same area, all xi must lie in the intersection of two planes parallel to E
and Eℓ, respectively. We call this line of intersection ℓ.

E`

`

E

Figure 7.16: Forcing points to lie on a line ℓ.

The points {x1, . . . , xn} represent the values of our variables Xi in the following way.
We introduce two special points p0 and p1 on the line ℓ and two other free points q, q′

not necessarily on ℓ. The tetrahedron p0, p1, q, q
′ of volume 1 ensures that p0 and p1 are

distinct. Without loss of generality we assume that ∥p0p1∥ = 1. The value of variable Xi is
represented by ∥p0xi∥. As before, we interpret p0 as 0 and p1 as 1.

Parallel gadget The parallel gadget is an extension of the coplanar gadget in order to
force two sets of points to lie in two parallel planes that can vary independently of each
other, see also Figures 7.17 and 7.18.

v1 v2

Figure 7.17: The triangulation T2k consists of part T 1 with red triangles of equal area and
the part T 2 with violet triangles of equal area. For i ∈ {1, 2}, each T i has a private apex vi.
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Let U1 and U2 be two vertex sets. Consider a coplanar gadget with base plane B. In
the first layer of the construction, we choose a triangulation T2k for some k; the other two
layers consist of degenerate tetrahedra forcing the triangulation to be coplanar in the same
way as the degenerate tetrahedra of the coplanar gadget. The triangulation T2k is broken
into two parts, each isomorphic to Tk, as illustrated in Figure 7.17.

We denote these parts by T 1 and T 2, respectively. For each part T i, there is an apex
vertex vi and a simplex vi ⊕ t for each t ∈ T i, and all of these simplices are assigned to a
volume of 1. Consequently, the triangles of T2k are coplanar and the triangles from T i have
the same area. Note that the areas of the triangles of T 1, the red triangles in Figure 7.17,
are independent from the areas of the triangles of T 2, the violet triangles in Figure 7.17.
We then add vertices u ∈ Ui and for each triangle ti of T i a simplex u⊕ ti that is assigned
volume 1. As in the coplanar gadget the vertices u ∈ Ui from the same set are coplanar and
the planes of coplanarity are each parallel to the plane that contains the triangulation T .

Clearly, we can generalize this construction to force h sets of points to lie in h parallel
planes for any constant h.

B U1 U2

v1

v2

Figure 7.18: The parallel gadget. The points of U1 and U2 are both in a common plane
parallel to B. However, these two planes are independent.

Addition and Multiplication gadget For both, the addition and multiplication gad-
gets, we mimic the ideas of the von Staude constructions. A crucial step is to construct a
line parallel to a given line through a specified point. Let ℓ1 be a line forced by coplanar
gadgets with the already mentioned plane E and a new plane E1. Let p be some point. We
construct a line ℓ2 parallel to ℓ1 through p by introducing a parallel gadget extending the
base plane E1. We force points to be on ℓ2 by tetrahedra with triangles on E1 belonging to
the parallel gadget and E (if they do not already exist). Figure 7.19 illustrates the parallel
line construction.

In case we need to enforce that ℓ1 and ℓ2 do not coincide, we insert a tetrahedron t
with volume 1 consisting of two new points on ℓ1, a new point on ℓ2 and an arbitrary new
point. This tetrahedron t is displayed in cyan in Figure 7.19. Due to the positive volume
of t, the four vertices of vert(t) are distinct and affinely independent. Consequently, in
any V-realization, ℓ1 and ℓ2 are two parallel and distinct lines.
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`1`2

v1

v2

E1

E

Figure 7.19: Constructing a parallel line. The cyan tetrahedron enforces ℓ1 and ℓ2 to be
distinct.

Addition gadget For the addition gadget consider Figure 7.20. Suppose we want to
enforce the constraint X + Y = Z. Thus the value of two points x and y on the line ℓ
should add up to the value of the point z also on ℓ. We introduce a line ℓ′ parallel to
ℓ through a new point u1 and ensure that the two lines are distinct as described above
(analogous to the cyan tetrahedron in Figure 7.19). Using the parallel gadget we can later
enforce more points to lie on ℓ′.

Then, we introduce a line ℓg through p0 and u1 and a parallel line ℓ′g through y. Again,
we use the parallel gadget. These two lines are green in Figure 7.20. We introduce the
intersection point u2 of ℓ′ and ℓ′g. Then we construct the line ℓr through u1 and x and
introduce the parallel line ℓ′r through u2; these two lines are displayed in red in Figure 7.20.
The intersection point of ℓ and ℓ′r is identified with z. Since the lines are parallel, it follows
that ∥u1u2∥ = ∥p0y∥ = ∥xz∥ and hence, z is representing the value ∥p0z∥ = ∥p0x∥+ ∥p0y∥.
This finishes our description of the addition gadget.

p0 x y z = x+ y

`

`′
u1 u2

`g `′g`r `′r

Figure 7.20: The addition gadget.
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Multiplication gadget Now, we come to the multiplication gadget. (Note that an
inversion gadget would suffice. However, as mentioned before, we extend this construction
to prove ∀∃R-hardness for Volume Universality*. For this reduction we need the
multiplication gadget, since we are going to reduce from Constrained-UETR.)

We will mimic the multiplication gadget from von Staude, which we previously used to
prove Theorem 44, see Figure 7.10. We start by introducing a new coplanar gadget with
base plane E∞ to create a line ℓ∞ intersecting ℓ in p0 and spanning a plane with ℓ parallel
to E. The points on ℓ∞ are forced by the planes E and E∞. We ensure that ℓ∞ and ℓ do
not coincide by introducing a tetrahedron of positive volume consisting of p0, a new point
on ℓ, a new point on ℓ∞, and an arbitrary new point.

For the construction of the multiplication gadget, we choose a special point p̃1 on ℓ∞
and introduce the line p1p̃1. A parallel gadget with base plane Ep (together with E) forces
a line parallel to p1p̃1 through y. These lines are depicted by green lines in Section 7.2.5.

E∞

E`

` `∞

ỹ

Ex

Ep

E
p1p0

x

y

z =
x ·

y

p̃1

Figure 7.21: The multiplication gadget.

For each multiplication constraint including a fixed variable x, we need to introduce
one private plane Ex. It forces lines parallel to xp̃1 (through ỹ). These lines are depicted
by red lines in Section 7.2.5. We have already argued in the proof of Theorem 44, that the
intercept theorem implies the correctness of this multiplication gadget. In particular, it
holds that

∥p̃1p0∥
∥ỹp0∥

=
∥p1p0∥
∥yp0∥

=
∥xp0∥
∥zp0∥

.

Thus ∥xp0∥ · ∥yp0∥ = ∥zp0∥. Note that this gadget works for both cases x ≤ y and x > y.
This finishes the construction of S and its volume assignment V. Next we will show

that this yields a reduction.
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▶ Proposition 7.6. There exists a V-realization of S if and only if Ψ is a yes-instance.

Proof. If there exists a V-realization of S then by construction of the coplanar gadget, all
xi are on a common line ℓ. By construction of the addition and multiplication gadgets all
constraints of Ψ are satisfied. Hence setting Xi := ∥p0xi∥ is a satisfying assignment, and it
follows that Ψ is a yes-instance.

Now, suppose that Ψ is a yes-instance. To do so, we describe an explicit placement
of the previously described objects. We give explicit coordinates for the objects that are
responsible for the encoding of the variables and the calculations. However, we place most
of the coplanar and parallel gadgets very far away in some ‘generic’ directions. In this way,
almost all tetrahedra are long and skinny. This ensures that they do not intersect, as those
directions are sufficiently different. The following thought experiment might help to give
an intuition: Consider a set Q of points in R3 and a set R of rays emitting from Q. When
we choose the directions of the rays in a generic direction, no two rays intersect. In fact
we expect that they have some positive distance. The long and skinny tetrahedra can be
thought of as thickened rays.

As a start, we assume that there exist values for X1, . . . , Xk fulfilling the addition and
multiplication constraints. By slight abuse of notation, we will also denote the values
of X1, . . . , Xk by the same symbol. We have to show that there exists a V-realization of S.
In order to do so, we place the point xi = (Xi, 0, 0) for all i ∈ [k] and choose the x-axis
as the line ℓ. We then build a coplanar gadget with base plane E = {(X,Y,−1)} and a
second coplanar gadget with base plane Eℓ = {(X,−1, Z)}, see also Figure 7.22.

y

z

x
x1 x2

E = {(X,Y,−1)}

E` = {(X,−1, Z)}

Figure 7.22: Placement of the points and the first base planes.

We can then add all the tetrahedra forcing the points xi to be on the line ℓ. We position
the triangulation T in the plane E so that triangles ti where we attach tetrahedra with a
vertex at the points xi are positive in the second coordinate and so that successive triangles
have larger second coordinate everywhere. Specifically, we can choose points a0, . . . , a2k
and b0, . . . , b2k−1, as shown in Figure 7.23(a), given explicitly by

ai =

(0, i,−1) for i even

(9, i,−1) for i odd
and bi= (ai−1 + ai + ai+1)/3.
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(a) Placing the triangulation.

E = {(X,Y,−1)}y
`E

a0
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`E`

x1

b1

b3
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k1
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y

z
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x1 x2

E` = {(X,−1, Z)}

(b) Addition of the tetrahedra.

Figure 7.23: Placing the coplanar gadgets for E and Eℓ.

Let ti be the triangle with vertices {a2i, b2i+1, a2i+2}. Note that ti has area 3. We then
place the apex v of T at (0, 0,−2). Let us denote the line through all a2, a4, . . . , a2k as
the skeleton-line ℓE of the triangles in E. As depicted in Figure 7.23(b), the line ℓE is
orthogonal to ℓ. Now we add the simplices given in the definition of the coplanar gadget.
Observe these tetrahedra have pairwise disjoint interior for all positions of xi on ℓ. To be
more specific, let Ti = ti ⊕ xi and Tj = tj ⊕ xj be two such tetrahedra with i < j. We
define a plane P that separates the interior of the two tetrahedra as follows. Let ki be the
line (X, 2i,−1) parallel to ℓ. The unique plane that contains ℓ and ki defines P .

Similarly, we position the triangulation Tℓ in Eℓ such that each triangle t′i is positive in
the third coordinate which is increasing with i. In other words, the skeleton line ℓEℓ

of Tℓ

is orthogonal to both ℓE and ℓ. We can achieve this in the same way as for T by swapping
the second and third coordinates, as illustrated in Figure 7.23(b). We may extend the
triangulation Tℓ to include vertices that are negative in the third coordinate, and attach a
tetrahedron to two of these triangles, t′0 and t′−1 as given above, with a vertex at a0 and a1
respectively. Then these tetrahedra have volumes 1 and 2. Observe these tetrahedra all
have pair-wise disjoint interior.

For the addition and multiplication gadget we assume that the formula Φ is “long enough”,
i.e., its length n := |Φ| is at least C, for some sufficiently large constant C. Otherwise we
may replace n with a sufficiently large constant where needed in the construction.

For each multiplication constraint Ci ≡ [X · Y = Z] in Φ, we attach a copy of the
multiplication gadget. Each multiplication gadget introduces two new points, ãi and b̃i that
correspond to the points p̃1 and ỹ in the definition of the multiplication gadget, respectively,
and additionally one new line ℓi that corresponds to the line ℓ∞ in the definition of the
multiplication gadget. We choose the lines ℓi such that successive lines have greater slope.
Specifically, we choose ℓi = {X, iX, 0} to have slope i, see also Figure 7.24.

By the multiplication constraint, the triangulation Eℓ was extended. Moreover, we
introduce the tetrahedra connected to the extended triangles of Tℓ and to the points ãi, b̃i
in order to force these points to be in the plane parallel to Eℓ through the line ℓ. Note that
we are free to choose ãi on the line ℓi. However, each choice determines b̃i, provided that
both points have a positive first coordinate.
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Figure 7.24: Placing points of the multiplication gadgets.

For each addition constraint C ≡ [X + Y = Z] in Φ, we introduced a copy of the
addition gadget. Recall that each addition gadget introduces two new points d̃i and ẽi
that respectively correspond to u1 and u2 in the definition of the addition gadget. We put
the points d̃i and ẽi on the ray ℓ′i = {(X, 0, n+ i) : X > 0}. Note that these rays do not
intersect the lines ℓi from the multiplication gadgets, as illustrated in Figure 7.24. Again
we extend Tℓ and add tetrahedra connecting a triangle of Tℓ to each of these points. Note
that we are free to choose d̃i on the ray {(X, 0, n+ i) : X > 0}, and this determines ẽi.

It remains to place the coplanar and parallel gadgets introduced for an an addition
or a multiplication constraint. Here, we specify a special (generic) direction. To do so,
we define di = (i, n · i, 1), then we add a triangulation Ti starting with the point n3di.
We may choose all planes of the triangulations Ti to have slope at most 1 with respect
to the second coordinate plane. This means that the tetrahedra connecting points in
the second coordinate plane to those triangles that are within a constant radius of n3di
have a height of order n4. Therefore, their triangles have an area of order n−4. Since the
triangulation has only finitely many triangles, the entire triangulation can be placed within
a distance of order n−4 from the point n3di. Thus, for n large enough, for each point x
among xi, ãi, b̃i, d̃i, ẽi, the tetrahedra connecting x to the coplanar and parallel gadgets will
only intersect at x.

Consider a pair of distinct vertices x, x′ among the vertices xi, ãi, b̃i, d̃i, ẽi and two
tetrahedra t, t′ connecting those vertices to a parallel or coplanar gadget. If both x and x′

are on the line ℓ, then t and t′ do not intersect. Thus, suppose that x′ is not on ℓ. The
tetrahedra t and t′ are contained in cylinders C,C ′ of radius of order at most n−4. The
projection of the cylinder C to the transverse plane of C ′ is a strip of width of order n−4

that has slope of order at least n−2 with respect to the line on which the point x′ is chosen.
Thus, if we fix the position of x, there is an interval of length of order at most n−2 where we
cannot place x′ without t and t′ intersecting. Therefore, if we choose the points ãi and d̃i
successively, each time we place a point, if we consider positions that are spaced n−2 apart,
at most a factor of n of these will cause a forbidden intersection with a tetrahedron already
placed. Thus, we only have to consider a factor of n such positions to be guaranteed a
position that does not cause a forbidden intersection. Thus, we have found a crossing-free
drawing of S. This completes the proof of Proposition 7.6. ◀
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Finally, we argue that the underlying abstract simplicial complex of S is realizable.

▶ Proposition 7.7. S is realizable in R3 as a simplicial complex without volume constraints.

Proof. To see this, we just follow the same construction as above, but we start with
points xi placed arbitrarily along the first coordinate axis. We add the coplanar gadgets
that force the points to be on ℓ, but we perturb the vertices of the triangulation slightly
to realize the abstract simplicial complex defined by the coplanar gadget as a simplicial
complex. In the case of the triangulation T this is done by moving each point bi to the
point bi + (0, 0, 1/2), and similarly for Tℓ. In general this may be done by moving the inner
points of the triangulation away from the apex v of the coplanar or parallel gadget. Next,
we add the points ãi, b̃i, c̃i, d̃i, ẽi in the upper half of the second coordinate plane without
regard to collinearities or parallel lines. Then, we add the coplanar and parallel gadgets
used in the addition and multiplication gadgets as above, but we modify the coplanar and
parallel gadgets to be simplicial complexes by relaxing the coplanarity of the triangulation
in the same way as with T . ◀

This completes the proof of Theorem 46. ■

As promised, we now expand the presented proof in order to show hardness of the
universality variant.

7.2.6 Hardness of Volume Universality*

In this section we prove the following theorem.

■ Theorem 47. Volume Universality* is ∀∃R-complete.

Proof. We show that Volume Universality* is contained in ∀∃R by describing an
arbitrary instance as an UETR-formula. This is analogous to the containment of Pre-
scribed Volume in ∃R. We are given a pure abstract simplicial complex realizable in
R3 over a ground set V with maximal sets T and a partial assignment of the volumes
V : T ′ → R≥0. The corresponding formula is defined as follows, where the predicates
CrossFree and Volume are defined as in the proof of Theorem 46:

∀
τ∈T

(Aτ ) ∃
i∈V

(Xi, Yi, Zi) ∃
τ,τ ′∈T

(Xτ,τ ′ , Yτ,τ ′ , Zτ,τ ′ , Bτ,τ ′) : 
τ∈T

Aτ ≥ 0


∧
 

τ∈T ′

V(τ) = Aτ


⇒ 

τ,τ ′∈T
CrossFree(τ, τ ′)


∧
 

τ∈T
Volume(Aτ , τ)



To prove hardness, we reduce from Constrained-UETR. Let Ψ be a formula of the form:

Ψ = (∀Y1, . . . , Ym ∈ R>0)(∃X1, . . . , Xn ∈ R>0) : Φ(Y1, . . . , Ym, X1, . . . , Xn).

Recall that Φ is a conjunction of constraints of the form X = 1, X +Y = Z and X · Y = Z.
We extend the construction from the proof of Theorem 46. Since we already introduced
gadgets for the constraints, it only remains to introduce the universally quantified variables.
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For every Yi, let yi be the point encoding its value. We force yi to lie on ℓ with the planes
E and Eℓ. As before ∥p0yi∥ represents the value of Yi, see also Figure 7.25.

a0
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a4

a6

k3
k2

k1
a8t4

t3

t2

t1

(a) Depiction of the base plane EY .

x

y

z

yi

t

(b) Placement of EY in space.

Figure 7.25: The coplanar gadget with base plane EY is used to insert the universally
quantified variables Yi.

Moreover, we introduce a coplanar gadget with base plane EY . We ensure that ℓ
intersects EY by identifying the point p0, which is contained in EY and in ℓ. Consequently,
each plane parallel to EY intersects ℓ in exactly one point.

We introduce a tetrahedron of volume 1, connecting one of the triangles on EY to the
point p1 representing the value 1. For each universally quantified variable, we introduce a
tetrahedron of flexible volume Yi consisting of a triangle of EY and the point yi. For each
value of Yi, the point yi is uniquely determined (since it lies on ℓ and the height of the
tetrahedron is prescribed). In particular, the value of Yi is ∥p0yi∥.

It remains to show that the defined simplicial complex S has the wished properties.

▶ Proposition 7.8. S is volume-universal if and only if Ψ is a yes-instance.

Proof. Suppose Ψ is a no-instance. Then there exist the values Y1, . . . , Ym ∈ R>0 such
that for all values X1, . . . , Xn ∈ R>0 the formula Φ is false. Suppose for a contradiction
that S is volume-universal. Then, in particular, there exists a realization for the chosen
values Y1, . . . , Ym. By the correctness of the addition and multiplication gadgets, it follows
that setting Xi to ∥p0xi∥ is a satisfying assignment. This contradicts the fact that our
choice of values Y1, . . . , Ym certifies Ψ to be a no-instance.

Now, suppose Ψ is a yes-instance. Consider fixed but arbitrary Y1, . . . , Ym ∈ R>0. Hence,
we consider the constructed simplicial complex where all tetrahedra have fixed volume. We
construct a realization exactly as is Theorem 46. It only remains to add the new points
yi and their tetrahedra to the planes EY , E and Eℓ. We set the plane EY = {(0, Y, Z)}.
The triangulation TY of EY is placed such that it is contained in {(0, y, z) : y, z ≤ 0}; in
particular, it is is placed within a quarter circle as depicted in Figure 7.25(a). We choose the
triangulation small enough such that the line ki in EY through a2i and the origin separates
two adjacent triangles.

First we observe that no two tetrahedra of a point yi intersects in their interior. For
this let t, t′ be two such tetrahedra. We note that their underlying triangles are separated
in the EY plane by at least one of the ki’s. Define P as a plane containing such a ki and
the x-axis. The plane P separates t and t′.
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It remains to show that no newly introduced tetrahedron intersects any previous
tetrahedron. We define the octants

O(+ + +) = {(x, y, z) : x ≥ 0, y ≥ 0, z ≥ 0},

O(+−+) = {(x, y, z) : x ≥ 0, y ≤ 0, z ≥ 0},

O(+ +−) = {(x, y, z) : x ≥ 0, y ≥ 0, z ≤ 0},

O(+−−) = {(x, y, z) : x ≥ 0, y ≤ 0, z ≤ 0}.

For an illustration consider Figure 7.26. Except for the apex tetrahedra, it is easy to observe
that all (interesting) tetrahedra of EY are contained in the octant O(+−−). Likewise, the
interesting tetrahedra of E are in the octant O(+ +−) and the tetrahedra of Eℓ are in the
octant O(+−+). Moreover, the tetrahedra for the addition and the multiplication gadgets
are contained in the octant O(+ + +). This certifies that none of the new tetrahedra
intersect any of the previous ones. ◀

z

x

EY ⊆ O(+−−)

E` ⊆ O(+−+)

O(+ + +)

y
E ⊆ O(+ +−)

Figure 7.26: The construction is simultaneously realizable, because the tetrahedra of Eℓ are
contained in the octant O(+−+), the tetrahedra of E are contained in the octant O(++−),
the tetrahedra of EY are contained in the octant O(+ − −), and the tetrahedra of the
multiplication and addition gadgets are contained in the octant O(+ + +).

Therefore, we have proved Theorem 47. ■

This finishes our discussion of the computational complexity of area-universality. We
have proved that several related problems are ∀∃R-complete. For further interesting
candidates of ∀∃R-complete problems, we refer to our paper [Dobbins et al., 2018].
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In this chapter, we present a promising idea for proving area-universality. The air pressure
method is inspired by the physical principle of pressure compensation and has been
successfully used to show area-universality of rectangular layouts [Felsner, 2014]. Starting
with some drawing of a plane graph, the idea is to theoretically pump air in the faces such
that faces with too little area have high pressure and faces with too much area have low
pressure. Then the air pressure exerts forces on the vertices. If a vertex moves in the
direction of its force the drawing improves. Ideally, in every non-realizing drawing, there
exists a non-balanced vertex which can be moved in the direction of its force. By iteratively
moving vertices to better positions, we wish to arrive at a realizing drawing.

Figure 8.1: An air pump which may be used to pump air the faces of the a plane graph.

150
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8.1 Air Pressure Method

In this chapter, we restrict to drawings that are not degenerate, i.e. planar, and therefore
consider a plane graph G with an area assignment A : F ′ → R>0. The pressure pf (D) of
an inner face f of G in a fixed drawing D is defined as the ratio of the prescribed area and
the area in D, i.e.,

pf (D) :=
A(f)

area(f,D)
.

The area of f is realized in D if and only if its pressure is 1. Since the drawing is planar,
the area of each face is positive. The pressure pf (D) of face f exerts a force on an incident
vertex v as follows: Let v1 and v2 denote the two neighbors of v on f such that v1, v, v2
appear in counter clockwise orientation on the boundary of f . Figure 8.2 depicts this
situation. Let s(v, f) denote the vector connecting its neighbors from v2 to v1, i.e., we

v

v2

v1

s(v, f)

ns(v,f)

f

‖s(v, f)‖ · ns(v,f)

Figure 8.2: Illustration of how the pressure of a face exerts a force on an incident vertex.

define s(v, f) := v1 − v2. The force of f on v is proportional to the pressure of f and the
length of s(v, f). Its direction is the normal of s(v, f). Denoting the normal of a vector s
by ns, the total force fv(D) acting on v in the drawing D is described by

fv(D) :=

f :v∈f

pf (D) · ∥s(v, f)∥ · ns(v,f).

We say a vertex is in balance (of forces) in D if its force vanishes, i.e., has length 0.
Otherwise a vertex is unbalanced.

Observation 8.1. Vertex v is in balance if and only if
f :v∈f

pf (D) · s(v, f) = 0⃗.

To show that the drawing improves when a vertex is moved in the direction of its
force vector, we introduce the entropy function. The entropy of a face f of G in D is
defined as Ef (D) := −A(f) · log(pf (D)). The entropy function E : D → R assigns to each
drawing D ∈ D of G the sum of face entropies:

E(D) :=

f

Ef (D) =

f

−A(f) · log(pf (D)).
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It follows from the definition that

Observation 8.2. The entropy function is smooth.

Indeed, moving a vertex v in direction of its force fv increases the entropy. This is easy
to understand given the following interplay of the entropy and the forces.

▶ Proposition 8.3. The vector field of forces v : D → R2(n−3), v(D) = (fv(D))v is a
gradient vector field with the entropy function E : D → R as its potential.

Proof. Let v be a vertex with coordinates (vx, vy). We show that up to scaling, the force of
v is the gradient of E restricted to two coordinates. In particular, it holds that

1

2
fv =

∂E

∂vx


1

0


+

∂E

∂vy


0

1


.

Since only vertex v moves, we interpret E(·), p(·), and area(·) as functions of (vx, vy). The
area of a face f incident to v can be expressed with respect to the position v0 of v in D:

area(f, v) = area(f, v0) +
1

2
· ||s(v, f)|| ·


ns(v,f),


vx
vy


− v0


For the partial derivative, it therefore holds that

∂area (f, v)

∂vx
=

1

2
· ||s(v, f)|| ·


ns(v,f),


1

0


By some straight-forward manipulations, we obtain

∂E(v)

∂vx
=

f : v∈f

∂

∂vx


−A(f) · log(pf (v))


=

f : v∈f

pf (v) ·
∂area
∂vx

(f, v) =
1

2


fv,


1

0


.

Analogously, it holds that ∂E/∂vy = 1/2⟨fv, (0, 1)⟩ This yields the claim. ◀

A further useful fact is that the entropy is always non-positive and vanishes only in
realizing drawings. This property has already been used before.

▶ Lemma 8.4 ([Felsner, 2014], Lemma 6). The entropy E(D) is non-positive for all D ∈ D
and E(D) = 0 if and only if D is a realizing drawing.

The idea of the air pressure method is to find realizing drawings with the following
gradient descent procedure:

Algorithmic Idea

While D not realizing
• find a vertex v with fv ̸= 0,
• move vertex v along fv by preserving planarity.
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Clearly for this algorithm to work, the following property is essential: If a drawing is
not realizing, then

(i) there exists a vertex v with fv ̸= 0 such that
(ii) vertex v can be moved along the trajectory of its force fv preserving planarity.

In fact, property (i) can be guaranteed for cubic graphs and property (ii) can be
guaranteed for triangulations. Unfortunately, we do not know of a graph class where
we can prove both properties simultaneously. While there is no hope that (i) holds for
triangulations, we are still positive that there is some way to show property (ii) for cubic
graphs.

Due to the fact that the above algorithm would stop, we call a non-realizing drawing
where all vertices are in a balance of forces a deadlock. We call a vertex v movable in D if
it can be moved along the trajectory of fv (for a little bit) such that the redrawing is still a
planar straight-line drawing. We continue to sketch the above properties for the mentioned
graphs classes.

8.1.1 Vertices are Movable in Triangulations

Throughout this subsection, we consider a plane triangulation T with an area assign-
ment A : F ′ → R>0. For the following properties, it turns out that the positivity of the
area assignment is crucial.

▶ Lemma 8.5. Every vertex v in T is movable; even to a balanced position.

Proof. If fv = 0, the statement is vacuous. So we assume that fv ̸= 0. Let P denote the
set of all points in the plane such that D remains crossing-free when v is moved to this
point. In Figure 8.3, the gray region illustrates the set P . We want to show that fv points
in a direction contained in P. It is easy to see that P is the intersection of half spaces:

v

Figure 8.3: Illustration of Lemma 8.5.

For each incident triangle t of v, consider the line ℓt supporting the unique triangle edge
which is not incident to v. Then v must lie in the half space defined by ℓt containing v.
Moreover, approaching any point on the boundary of P, some triangle t has infinitesimal
area, resulting in unbounded pressure. Consequently, close to the boundary of P , the force
fv points inwards. Thus, v is movable.

In order to show the existence of a balanced position, the idea is to follow fv as long
as possible. Recall that, by Proposition 8.3, the force fv(p) is a gradient vectorfield on P
with the entropy E(Dp) as its potential. By the extreme value theorem (Weierstraß), the
continuous function E(Dp) attains its maximum on the non-empty compact set P . Due to
the direction of the force vectors, no boundary point of P is a maximum. Consequently,
the maximum is attained at an inner point p. Therefore, the gradient in p vanishes and it
holds that fv(p) = 0. ◀
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The statement of Lemma 8.5 can be strengthened as follows. The proof is presented in
Section 8.1.3.

▶ Lemma 8.6. Every vertex v in T can be moved to a balanced position; this position is
unique when all other vertices are kept at their position.

In the following, we consider a sequence (Di)i of drawings of a plane triangulation T
where Di+1 is obtained from Di by moving an unbalanced vertex v into the balanced
position. We call a rule for selecting an unbalanced vertex v attentive if it fulfills the
following property: If v is unbalanced in Di, then there is a j > i such that v is balanced
in Dj .

▶ Lemma 8.7. Let T be a plane triangulation with an area assignment A : F ′ → R>0 and
let D0 be a drawing of T where the outer face has area ΣA. Let (Di)i∈N be a sequence of
drawings of T , where Di+1 is obtained from Di by moving an unbalanced inner vertex v
into a balanced position. If the selection rule of the vertices is attentive, then there is a
subsequence (D′

i)i∈N of drawings with limit D′ := limi→∞D′
i which is either an A-realizing

drawing or a deadlock.

A proof of this lemma is presented in Section 8.1.3. It implies that the following
algorithm approaches realizing drawings or deadlocks.

Air Pressure Algorithm 1

While there exists an unbalanced vertex,
• pick an unbalanced vertex v with an attentive selecting rule and
• move v into its balanced position.

Hence, we obtain the following fact:

■ Corollary 50. Let T be a plane triangulation with an area assignment A : F ′ → R>0.
Then, the Air Pressure Algorithm 1 yields a drawing that is arbitrarily close to a
realizing straight-line drawing or a deadlock.

Unfortunately, there exist deadlocks even if realizing drawings exist. Figure 8.4 depicts
two distinct equiareal drawings of the plane octahedron graph and a deadlock an equiareal
area assignment. Intuitively, the algorithm is torn between the two realizing drawings.

(a) An equiareal drawing. (b) A deadlock. (c) An equiareal drawing.

Figure 8.4: Two equiareal drawings of the octahedron graph in (a) and (c) and a deadlock
drawing between these to realizing drawings in (b).
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▶ Proposition 8.8. Triangulations may have deadlocks – even if a realizing drawing exists.

Proof. We consider the area assignment of the octahedron graph where all face areas
are assigned to 1. We claim that there exists a rotational symmetric deadlock situation
where all inner vertices lie on the bisectors as illustrated in Figure 8.4(b). Consider the
neighborhood of an inner vertex in such a symmetric drawing. We denote the incident faces
of v by fi for i ∈ [4] as depicted in Figure 8.5 where fi has pressure pi and si := s(v, fi).
Note that the 4-cycle formed by the neighbors of v has two parallel sides.

f1

f2f4

f3

s1

s2s4

s3

Figure 8.5: Computing the direction of the force vectors.

Thus, for some α > 0 it holds that −α · s1 = s3 and s2+ s4 = (1−α) · s1. By symmetry,
the faces f2 and f4 have the same pressure. Therefore, the sum of the (rotated) forces
equals 

pi · si = (p1 + (1− α) · p2 − α · p3) · s1.

Consequently, the force has direction ±ns1 and thus points along the bisector. Moving all
three vertices simultaneously in the direction of their force, the length of their force vectors
continuously decreases and we end in a deadlock. ◀

8.1.2 Plane Cubic Graphs have no Deadlock

In this section, we show that plane cubic graphs are free of deadlocks. To do so, we study
vertices in balanced positions. Throughout this subsection, we consider a plane cubic
graph G with an area assignment A : F ′ → R>0. For a vertex v, we denote its three incident
faces by fi with i ∈ [3] and define si := s(v, fi) as well as pi as the pressure of fi.

▶ Lemma 8.9. In a plane cubic graph G, vertex v is in balance if and only if one of the
following conditions hold

a) the pressures of its incident faces are identical, i.e., p1 = p2 = p3, or
b) the three neighbors of v are collinear and the pressure p3 in the face with reflex angle

is the weighted average of pressures p1 and p2, i.e., p3∥s3∥ = p1∥s1∥+ p2∥s2∥.

v

p1 p2

p3

s1

s2

s3

Figure 8.6: Illustration of property (b) in Lemma 8.9: Vertex v is in balance if its neighbors
are collinear and the pressure p3 is the weighted average of p1 and p2.
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Proof. It is easy to check that conditions (a) and (b) imply a balance of forces with the
following two facts. Firstly, it holds that


i si = 0⃗ and secondly, by Observation 8.1, a

vertex v is in balance if and only if


i pi · si = 0.

For the reverse direction we assume without loss of generality that s3 is a longest
segment and distinguish two cases: If s1 and s2 are linearly independent, they form a basis
of the plane. Hence, given a pressure p3, there are unique coefficients p1, p2 for s1, s2 such
that p1s1 + p2s2 = −p3s3. Since


i si = 0⃗ it holds that p1 = p2 = p3. This is a trivial

balance of forces and thus condition (a).
If s1, s2 are linearly dependent then, by their vanishing sum, all three segments are

pairwise linearly dependent. This implies collinearity of the three neighbors of v. Since v
is in balance it holds that −p3s3 = p1s1 + p2s2. In particular, the length of the left and
right vector coincide, that is ∥ − p3s3∥ = ∥p1s1 + p2s2∥. Due to the collinearity and the
fact that s3 is the longest segment, it holds that ∥p1s1 + p2s2∥ = p1∥s1∥ + p2∥s2∥. This
directly implies condition (b). ◀

With this characterization, we obtain the following lemma.

▶ Lemma 8.10. In a drawing D of a plane cubic graph, every vertex is in balance in D if
and only if D is realizing, i.e., there is no deadlock.

Proof. Assume, for a contradiction, that all vertices are in balance but there exists a face
area that is not realized. Consequently, not all pressures are equal. Consider the union
of all faces of minimal pressure; we call this region R. Observe that a vertex v on the
boundary ∂R of R with an edge strictly inside R is unbalanced: Due to their equal pressure,
the faces inside R behave as one face when we are computing the force vectors. Therefore,
the vertex v corresponds to a vertex of degree 2, where the two segments connecting its
neighbors are scaled by different pressures. Consequently, v is unbalanced. Thus, no edge
of G lies strictly within R. Since G is cubic, this implies that R is a collection of disjoint
faces. We set R to one of these faces and distinguish two cases:

In case 1, R is not convex. Then we consider a vertex v which has a reflex angle in R.
By assumption, v is balanced and, by Lemma 8.9, the pressure of R is the weighted average
of the other two neighboring faces of v. However, this is a contradiction to the fact that
the pressure of R is minimal.

In case 2, R is convex. Then we consider the induced subgraph of the vertices on ∂R
and their neighbors. For all vertices v on ∂R, its neighbors are collinear by Lemma 8.9. Due
to planarity, collinearity, and convexity of R, the induced subgraph resembles a windmill
as displayed in Figure 8.7. Moreover, the pressure of the face of v with the reflex angle is
the weighted average of the other two faces of v. Since R is convex, the reflex angle lies

+++++

−

0

+

+++

+++

Figure 8.7: In case 2, the neighborhood of R resembles a windmill.
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outside R. Consequently, the pressure increases circularly around R, which implies that all
pressures are equal. However, this means that R has the same pressure – a contradiction to
the fact that R is an isolated face of minimal pressure. ◀

8.1.3 More Details

In this section, we present the pending proofs of this chapter.

▶ Lemma 8.6. Every vertex v in T can be moved to a balanced position; this position is
unique when all other vertices are kept at their position.

Proof. In light of Lemma 8.5, it remains to show that the balanced position is unique.
Let Dp denote the modified drawing of D where v is moved to position p ∈ P . Assume, for a
contradiction, that there exist two distinct positions p, q ∈ P such that fv(Dp) = fv(Dq) = 0.
By convexity of P, the segment connecting p and q is contained in P. For t ∈ [0, 1], pt
denotes the position p + td where d := (q − p). Let fv(t) denote the force vector of v in

p
q

fi

fj

Figure 8.8: Moving v from p to q, there exists a triangle which continuously shrinks or
grows. In the illustrated case, the area of fi grows, while the area of fj remains constant.

the drawing Dt where v is at position pt. We consider g(t) := ⟨fv(t), d⟩, the force of v in
direction d by moving v from p to q. Let ni be the normal of the segment connecting the
neighbors of v in face fi. We set ci := ⟨ni, d⟩. Since T is a triangulation, there exist an i
such that ci ̸= 0. Note the following relationships:

ci > 0 ⇐⇒ area(fi, Dt) is strictly increasing ⇐⇒ pi(Dt) is strictly decreasing

ci < 0 ⇐⇒ area(fi, Dt) is strictly decreasing ⇐⇒ pi(Dt) is strictly increasing

Consequently, for all i it holds that ci · pi(t) is a decreasing function in t and there exists
an i such that ci · pi(t) is strictly decreasing. Therefore, g(t) is strictly decreasing:

g(t) = ⟨fv(t), d⟩ =

i

pi(t) · ∥s(v, f)∥ · ⟨ni, d⟩ =

i

ci · pi(t) · ∥s(v, f)∥

By assumption it holds that fv(0) = fv(1) = 0 and thus g(0) = g(1) = 0; a contradiction to
strict monotonicity unless p = q. ◀
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In order to find the balanced position, it suffices to optimize in two directions. For
i ∈ [2], let ei be a standard basis vector and gi(t) = ⟨fv(t), ei⟩. We seek t with gi(t) = 0 for
all i. If g1(t) = g2(t) = 0, then fv(t) = 0.

Now, we prove the following lemma.

▶ Lemma 8.7. Let T be a plane triangulation with an area assignment A : F ′ → R>0 and
let D0 be a drawing of T where the outer face has area ΣA. Let (Di)i∈N be a sequence of
drawings of T , where Di+1 is obtained from Di by moving an unbalanced inner vertex v
into a balanced position. If the selection rule of the vertices is attentive, then there is a
subsequence (D′

i)i∈N of drawings with limit D′ := limi→∞D′
i which is either an A-realizing

drawing or a deadlock.

Proof. As before, we encode a drawing Di of T by its vertex placement. Since the outer
vertices coincide in all drawings and form a fixed triangle △ of area ΣA. By Lemma 2.12, the
set of vertex placements D|fo→△ where the outer face fo is fixed to △ is bounded. Clearly,
the subset of non-degenerate vertex placements, denoted by D̃|fo→△, is also bounded. Hence,
by Bolzano-Weierstrass, there exists a converging subsequence (D′

i)i∈N with limit D′. We
denote the corresponding entropy sequence by (ei)i∈N.

First, we show that D′ is not degenerate. This follows from the facts that the entropy
sequence is monotonically increasing and that the entropy of a face tends to infinity as
the area goes to 0. In particular, we show that there exists a constant c > 0 such that
for each face f in every drawing D′

i it holds that area(D′
i, f) > c. This implies that

area(D′, f) ≥ c for all f and guarantees that D′ is not degenerate.
Consider an arbitrary but fixed drawing D′

i. By construction, the entropy is increasing
and hence, e0 ≤ ei. For each face f , we get

−Ef (D
′
i) ≤ ei − e0 − Ef (D

′
i) =


f̃∈F ′−f

Ef̃ (D
′
i)− e0

Naturally, every face area is upper bounded by the area of △, namely ΣA. Consequently,
for every drawing D in D̃|fo→△ and all faces f , it holds that area(f,D) ≤ ΣA. Hence,

Cf,1 :=


f̃∈F−f

A(f̃) · log
A(f̃)

ΣA


≤


f̃∈F−f

A(f̃) · log
 A(f̃)

area(f̃ , D′
i)


= −


f̃∈F−f

Ef̃ (D
′
i).

This gives −Ef (D
′
i) ≤ −Cf,1 − e0. Using the definition of the entropy and solving for

area(f,D′
i) yields

area(f,D′
i) ≥ Cf,2 := A(f) · exp


e0 + Cf,1

A(f)


> 0

Setting c := minf∈F Cf,2, we obtain a positive lower bound on the area of all faces.
The entropy sequence (ei)i∈N is strictly increasing by Proposition 8.3 and, by Lemma 8.4,

bounded from above by zero. Hence, (ei)i∈N converges to some real constant e < 0. By
continuity of the entropy, cf. Observation 8.2, we obtain that

E(D′) = E( lim
i→∞

D′
i) = lim

i→∞
E(D′

i) = lim
i→∞

ei = e.
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If e = 0, then Lemma 8.4 guarantees that D′ is realizing drawing. It remains to show that
if D′ is not an A-realizing drawing, then it is a deadlock. Therefore, we assume that e < 0
and that there exist a vertex v with fv(D

′) ̸= 0. By Lemma 8.6, v is movable to a balanced
position. Let ϵ denote the increase in entropy by shifting v in D′ to the balanced position p
and Dp the resulting drawing, i.e., ϵ := E(Dp)− E(D′). We show the following property:

❋ Claim 8.11. There exist an N ∈ N such that for all i > N , vertex v is unbalanced in D′
i

and the entropy increases by at least ϵ
2 when v is moved in D′

i to a balanced position.

For notational convenience, we denote the vertex placements of drawings D,Di, D
′

by z, zi, z
′, respectively. For moving v in D by d, we also write z+ d ·χv. Let Br(D) denote

the open ball of radius r around the vertex placement z of D. Since D̃|fo→△ is open, there
exists r > 0 such that Br(Dp) ⊂ D̃|fo→△. By continuity of E, there exists δ > 0 such that
for all D ∈ D̃|fo→△ it holds that

∥z′ − z∥ < δ =⇒ |E(D′)− E(D)| < ϵ

4
and (8.1)

∥zp − z∥ < δ =⇒ |E(Dp)− E(D)| < ϵ

4
. (8.2)

Since (D′
i)i∈N converges to D′, there exist N ∈ N such that for all i > N it holds

that ∥z′ − z′i∥ < min{r, δ}. Thus, we consider a drawing D′
i with i > N . Let D∗

i denote the
drawing where v is moved to the balanced position in D′

i. To show that E(D∗
i )−E(D′

i) ≥ ϵ
2 ,

we consider an intermediate drawing where v is first moved by d. For the drawing Di,p

with vertex placement zi,p := (z′i + d · χv), it holds that

∥zi,p − zp∥ = ∥(z′i + d · χv)− (z′ + d · χv)∥ = ∥z′i − z′∥ < min{r, δ}.

Thus, by the triangle inequality and properties (8.1) and (8.2), we get the following fact:

ϵ = E(Dp)− E(D′) ≤ |E(Dp)− E(Di,p)|+ |E(Di,p)− E(D′
i)|+ |E(D′

i)− E(D′)|

≤ ϵ

4
+ |E(Di,p)− E(D′

i)|+
ϵ

4
.

Since the balanced position is a unique optimal position for v moved in D′
i, it holds

that E(D∗
i ) ≥ E(Di,p). Moreover, ∥zi,p − zp∥ < min{r, δ} implies that E(Di,p) > E(D′);

otherwise E(Dp)−E(Di,p) = E(Dp)−E(D′)+E(D′)−E(Di,p) = ε+|E(D′)−E(Di,p)| ≥ ε,
a contradiction since E(Dp) and E(Di,p) differ by at most ε

4 by (8.1). It follows that
E(Di,p) > E(D′) > E(D′

i) and the claim is shown by the following chain of inequalities:

E(D∗
i )− E(D′

i) ≥ E(Di,p)− E(D′
i) = |E(Di,p)− E(D′

i)| ≥
ϵ

2
.

Since e is the limit of the sequence (ei)i∈N, there exists an M ∈ N such that for
all i > M it holds that ei > e − ϵ

2 . If vertex v was selected in iteration i > max{M,N}
then ei+1 ≥ ei +

ϵ
2 > e. This is a contradiction since e is the limit of an increasing sequence.

Consequently, for all i > max{M,N}, vertex v is unbalanced and not selected. This is a
contradiction to the attentive selecting rule. Hence, every vertex in D′ is balanced and D′

is an A-realizing drawing or a deadlock. ◀
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We conclude by stating interesting ways to continue the study of plane graphs and faces
areas. We present several research directions together with our favorite open problems. The
directions fall into the following categories: area-universal graph classes, equiareal graph
classes, computational complexity, and optimal bend drawings. For each open question, we
recall relevant related results. Afterwards, we identify relations between the problems.

Area-universal graph classes Our favorite open problem concerns the area-universality
of plane bipartite graphs. We conjecture that the answer to the following question is
positive.

Open Problem 1: Are plane bipartite graphs area-universal?

In Chapter 4, we introduced first tools to tackle this conjecture and proved that
a minimal counter example has at least 14 vertices. In Section 6.1, we showed
that even for 3-connected quadrangulations we cannot hope for convex realizing
drawings (Theorem 38). However, it might be true that quadrangulations are strongly
area-universal.

As partial results, we know the area-universality of 2-degenerate quadrangulations
(Proposition 2.6), of grid graphs (Proposition 4.3), as well as the area-universality of
angle graphs of triangulations with a subdivision number of at most 1 (Theorem 18).

Moreover, angle graphs of wheels have some very nice properties, namely they are
convex area-universal and strongly area-universal as proved in Theorems 23 and 37.

Some indication that the subdivision number of quadrangulations with m edges
is smaller than for plane graphs with m edges is given by the fact that the small
subdivision number is bounded by m/2 (Theorem 31); whereas our upper bound for
general plane graphs is m (Theorem 26). However, we do not expect any of these
bounds to be close to the truth.

As a promising tool to prove area-universality, we introduced the air pressure method
in Chapter 8. Thus, we pose the following open problem.

Open Problem 2: Can the air pressure method be used to prove area-universality
of interesting graph classes? More specifically, do non-realizing drawings of plane
cubic graphs always have a non-balanced movable vertex?
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Equiareal graph classes Equiareal drawings may be visually very appealing as discussed
in Section 6.2. Unfortunately, as Ringel [Ringel, 1990] showed, not every plane graph
is equiareal. Since his example was a triangulation, any equiareal graph class does
not allow for separating triangles. It is thus natural to restrict the search to 4-
connected graphs. While we presented many 4-connected triangulations that are not
area-universal, we do not know of any that are not equiareal. Therefore, we ask:

Open Problem 3: Is every 4-connected triangulation equiareal?

Recall that Sabariego and Stump [Sabariego and Stump, 2006] tackled this question
by investigating small examples by computer search. They found a triangulation
for which their heuristic did not find a close to equiareal drawing. However, in
Proposition 6.5, we showed that this triangulation is indeed area-universal.
Moreover, we have seen in Proposition 6.4, equiareality is a property of plane graphs
rather than planar graphs. Thus, it is not enough to test only one embedding of every
planar graph. Theorem 40 asserts that a plane graph, which can be obtained from
an area-universal graph by disjoint diamond additions, is equiareal. With this result,
we proved that a smallest counter example has at least 11 vertices (Corollary 42).
Moreover, Theorem 40 implies that every double stacking graph is equiareal (Corol-
lary 41). Thus for every n, there exist an equiareal 4-connected triangulation on n
vertices.
More generally, it would be interesting to know whether for 4-connected triangulations,
there exist constant factor approximate equiareal drawings. In other words, does there
exist a constant c such that every 4-connected triangulation has a drawing where the
ratio between the largest and smallest face area does not exceed c. If the answer to
Open Problem 3 is positive, then c = 1. Recall that there is no hope for constant
factor approximate drawings of plane graphs in general as discussed in Section 3.1.1.

Computational Complexity The complexity class ∀∃R is a natural generalization of ∃R,
a complexity class capturing the computational complexity of many interesting
geometric problems. It lies somewhere between NP and PSPACE:

NP ⊆ ∃R ⊆ ∀∃R ⊆ PSPACE.

As discussed in Chapter 7, we conjecture that the computational complexity of
deciding whether a plane graph is area-universal is ∀∃R-complete.

Open Problem 4: What is the computational complexity of deciding whether a
plane graph is area-universal?

We have already seen that the containment is very straight forward (Proposition 7.1).
So the open problem of the conjecture is to show the ∀∃R-hardness. Recall that we
proved several variants of area-universality to be hard for ∃R or ∀∃R. In particular,
we showed that the 3-dimensional analogue of deciding if volume assignment of a
simplicial complex is realizable is ∃R-complete Proposition 7.2. We have introduced
restricted but hard variants of ETR and UETR which might be helpful to prove the
conjecture or hardness of other problems.
Area-universality may turn out to be the first natural geometric problem which is com-
plete for this class. This would give the complexity class ∀∃R some relevance. For fur-
ther natural candidates of ∀∃R-complete problems we refer to [Dobbins et al., 2018].
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Optimal Bend Drawings We showed that the 1-subdivision of every plane graph is
area-universal (Theorem 26). Consequently, one bend per edge always suffices to
realize any given area assignment for every plane graph. However, studying particular
graphs yields the impression that the number of necessary bends may be a lot smaller.
In Chapter 5, we introduced the bend number b(G) and subdivision number s(G) of a
plane graph G as possible notions for optimal bend drawings.

Recall that, by Proposition 5.3, for every plane graph G holds that b(G) ≤ s(G).
However, we do have not a single instance where the bend and subdivision number of
a graph differ. This suggests the following questions.

Open Problem 5 a: Do the bend number and subdivision number fall apart? Is the
subdivision number bounded by a function of the bend number?

We also considered the bend and subdivision number of a graph class G which are
defined as

b(G) := max
G∈G

b(G) and s(G) := max
G∈G

s(G).

For the class Gm of plane graphs with m edges, Corollary 29 shows that s(Gm) ∈ Θ(m).

Open Problem 5 b: What is the bend and subdivision number of the class Gm of
plane graphs with m edges? What is the correct constant c such that s(Gm) = c ·m?

Corollary 29 shows that c lies between 1/12 and 1. Clearly, narrowing the gap between
the upper and lower bound is also of interest.

Now we show that the above problems are not totally independent.

9.1 Relationship of Open Problem 1 and Open Problem 5 b

If we settle the conjecture of plane bipartite graphs, then this has interesting consequences
for the subdivision number of the class of plane triangulations.

▶ Proposition 9.1. If plane bipartite graphs are area-universal, then for every plane
triangulation T = (V,E) it holds that s(T ) ≤ 1/3|E|.

Proof. Let T be a plane triangulation on n vertices. Then T has 2n− 4 faces. The dual
graph T ∗ of T is a bridgeless cubic graph and hence, has a perfect matching M∗ of size n−2
by Petersen’s theorem. Deleting the dual edges M of M∗ in T yields a quadrangulation
Q := T − M . If plane bipartite graphs are area-universal, then there exists a realizing
drawing for Q for every area assignment. By Proposition 2.4, we insert the edges of M
with at most one bend. Therefore at most n− 2 of the 3(n− 2) edges of T have a bend. ◀

Figure 9.1: Illustration of Proposition 9.1 for the icosahedron graph.
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9.2 Relationship of Open Problem 1 and Open Problem 3

Now we comment on the connection of the first and third open problem. Indeed, a positive
answer to the third problem dominates a positive answer to the first problem due to the
following fact.

▶ Proposition 9.2. If every 4-connected triangulation is equiareal, then every plane
bipartite graph is area-universal.

Proof. Firstly, we show that every integral area assignment of a quadrangulation is realizable.
Secondly, we argue that indeed every area assignment is realizable. Then, the claim for
general plane bipartite graphs follows from Lemma 2.2.

Let Q be a plane quadrangulation and A an integral area assignment. Let f be a face
with A(f) =: k. We partition f into 4k triangles with the following procedure. First, we
partition f into k quadrangles with the operation depicted in Figure 9.2(a) and obtain the
quadrangulation Q′. Then, we partition every face into four by inserting a vertex into every
face f of Q′ and connecting it to all vertices of f . Figure 9.2(b) illustrates the second step.

(a) Step 1 (b) Step 2

Figure 9.2: The two steps to enhance a quadrangulation to a 4-connected triangulation.

We claim that the resulting graph T contains no separating triangle. Let v be a
vertex inserted during the second step. Clearly, each triangle incident to vertex v is facial.
Moreover, since Q′ is triangle free, every triangle in T is incident to at least one vertex
inserted during the second step. Consequently, there exists no separating triangle and
thus T is a 4-connected triangulation.

If every 4-connected triangulation is equiareal, then there exists a drawing of T where
every face has area 1/4. Since every face of Q corresponds to 4k faces in G, deleting the
edges and vertices introduced in step 1 and 2 yields a A-realizing drawing of Q.

It remains to consider an area assignment A which is not integral. Since the rational
numbers are dense in the set of real numbers, we may consider a sequence (Ai)i of rational
area assignments converging to A. By scaling and Lemma 2.1, each Ai is realizable.
Moreover, we may consider realizing drawings Di where the outer vertices of Ti coincide.
Thus, by Bolzano-Weierstrass, the sequence (Di)i contains a converging subsequence with
limit D. By definition of (Ai)i and (Di)i, D is a A-realizing. ◀
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