Skip to main content
Log in

Surface and porous textural properties of silica–wollastonite composites prepared by sol–gel process

  • Original Paper: Sol–gel and hybrid materials with surface modification for applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

A Correction to this article was published on 28 March 2019

This article has been updated

Abstract

Silica–wollastonite xerogel composites (xerocomposites) with different wollastonite filler content were obtained after classical drying of silica–wollastonite gels. Two different silica precursors were used, TEOS and colloidal LUDOX, for composites named TW and LW, respectively. We utilized SAXS experiments, N2 adsorption–desorption, and SEM techniques to determine the textural and structural properties of these porous materials. For both the TW and LW composites, it was shown that a macroporosity and a mesoporosity coexist. We argue that the proportion of macroporosity directly depends on the proportion of wollastonite fillers in the composite. We propose a unique two-stage drying mechanism to explain the formation of macropores. We additionally found that the surface of wollastonite fillers was covered by a dense multilayer packing of silica colloids in LUDOX LW xerocomposites. We believe that these surface-modified wollastonite fillers could improve the carbonation kinetics of wollastonite when used as a precursor for aqueous mineral carbonation, a promising route for safe and durable carbon sequestration.

SEM image of wollastonite fillers covered by silica in a LUDOX–wollastonite composite (left), and schematic representation of the dense coating of colloidal silica particles at the surface of wollastonite fillers in LUDOX–wollastonite composites (right)

Highlights

  • Silica–wollastonite xerogel-composites (xerocomposites) were prepared.

  • TEOS–wollastonite and LUDOX–wollastonite xerogels show porosity at two different scales, a macroporosity and a mesoporosity as confirmed from macroscopic and N2 adsorption–desorption measurements.

  • SAXS, SEM, and N2 adsorption–desorption measurements reveal that the wollastonite filler surface is covered by a dense coating of silica colloidal particles in LUDOX–wollastonite xerocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Change history

  • 28 March 2019

    The original version of this article unfortunately contained a mistake. The Figure 1 was inadvertently duplicated in the source file, the same has been processed and published as Fig. 2. The correct Fig. 2 is given below.

References

  1. Brinker C, Scherer G (1990) Sol–gel science. Academic Press Inc, New York

    Google Scholar 

  2. Aegerter M, Koebel M, Leventis N (2001) Aerogels handbook. Springer, New York

  3. Calvo E, Menéndez J, Arenillas A (2011) In: Mohammed Muzibur Rahman (Ed.) Designing nanostructured carbon xerogels, nanomaterials. Intech Open, Spain. https://doi.org/10.5772/17157

  4. Hasmy A, Jullien R (1995) Sol-gel process simulation by cluster–cluster aggregation. J Non-Cryst Solids 186:342–348

    Article  Google Scholar 

  5. Teichner S, Nicolaon G, Vicarini G, Gardes G (1976) Inorganic oxide aerogels. Adv Colloid Interface 5:245–273

    Article  Google Scholar 

  6. Fricke J (1992) Aerogels and their applications. J Non-Cryst Solids 147–148:356–362

    Article  Google Scholar 

  7. Gronauer M, Fricke J (1986) Acoustic properties of microporous SiO2-aerogel. Acustica 59:177–181

    Google Scholar 

  8. Tsou P (1995) Silica aerogel captures cosmic dust intact. J Non-Cryst Solids 186:415–427

    Article  Google Scholar 

  9. Qu R, Wang M, Sun C, Zhang Y, Ji C, Chen H, Meng Y, Yin P (2008) Chemical modification of silica-gel with hydroxyl- or amino-terminated polyamine for adsorption of Au (III). Appl Surf Sci 255:3361–3370

    Article  Google Scholar 

  10. Teng Z, Han Y, Li J, Yan F, Yang W (2010) Preparation of hollow mesoporous silica spheres by a sol/gel emulsion approach. Microporous Mesoporous Mater 127:67–72

    Article  Google Scholar 

  11. Woignier T, Phalippou J, Prassas M (1990) Glasses from aerogels Part 1: The synthesis of monolithic silica aerogels. J Mater Sci 25:3111–3117

    Article  Google Scholar 

  12. Woignier T, Primera J, Lamy M, Fehr C, Anglaret E, Sempere R, Phalippou J (2005) The use of gels as host matrices for chemical species. Different ways to control the permeability and the mechanical properties. J Non-Cryst Solids 350:298–306

    Google Scholar 

  13. Reynes J, Woignier T, Phalippou J (2001) Permeability measurements aerogels: application to nuclear waste storage. J Non-Cryst Solids 285:323–327

    Article  Google Scholar 

  14. Pierre AC (1998) Introduction to sol–gel processing. Kluwer Academic, Massachusetts

    Book  Google Scholar 

  15. Woignier T, Phalippou J, Despetis F, Calas-Etienne S (2017) Aerogels processing. In: Klein L et al. (Eds) Handbook of sol–gel science and technology. Springer International Publishing, New York

  16. Santos A, Toledo-Fernández J, Mendoza-Serna R, Gago-Duport L, De la Rosa-Fox N, Piñero M, Esquivias L (2007) Chemically active silica aerogel–wollastonite composites for CO2 fixation by carbonation reactions. Ind Eng Chem 46:103–107

    Article  Google Scholar 

  17. Toledo-Fernández J, Mendoza-Serna R, Morales-Flórez V, De la Rosa-Fox N, Santos A, Piñero M, Esquivias L (2007) Aerogeles con aplicaciones en biomedicina y medioambiente. Bol Soc Esp Ceram V 46:138–144

    Article  Google Scholar 

  18. Weissbart E, Rimstidt J (2000) Wollastonite: Incongruent dissolution and leached layer formation. Geochim Cosmochim Acta 64:4007–4016

    Article  Google Scholar 

  19. Daval D, Martinez I, Corvisier J, Findling N, Goffe B, Guyot F (2009) Carbonation of Ca-bearing silicates, the case of wollastonite: experimental investigatins and kinetic modeling. Chem Geol 265:63–78

    Article  Google Scholar 

  20. Daval D, Martinez I, Guinier J, Hellmann R, Corvisier J, Findling N, Dominici C, Goffe B, Guyot F (2009) Mechanism of wollastonite carbonation deduced from micro- to nanometer length scale observations. Am Mineral 94:1707–1726

    Article  Google Scholar 

  21. Santos A, Ajbary M, Kherbeche A, Piñero M, De la Rosa-Fox N, Esquivias L (2008) Fast CO2 sequestration by aerogel composites. J Sol–Gel Sci Technol 45:291–297

    Article  Google Scholar 

  22. Santos A, Ajbary M, Toledo-Fernández J, Morales-Flórez V, Kherbeche A, Esquivias L (2008) Reactivity of CO2 traps in aerogel-wollastonite composites. J Sol–Gel Sci Technol 48:224–230

    Article  Google Scholar 

  23. Morales-Flórez V, Santos A, Esquivias L (2011) Recent insight into xerogel and aerogel mineral composites for CO2 mineral sequestration. J Sol–Gel Sci Technol 59:417–423

    Article  Google Scholar 

  24. Primera J (2002) Synthèse, Structure et Propriétés de Transport des Gels Composites SiO2–SiO2: Etude expérimental et Simulation. Ph.D. thesis, Université de Montpellier 2, France.

  25. Toki M, Miyashita S, Takeuchi T, Kanbe S, Kochi A (1988) A large-size silica glass produced by a new sol–gel process. J Non-Cryst Solids 100:479–482

    Article  Google Scholar 

  26. Primera J, Woignier T, Hashmy A (2005) Ore structure simulation of gels with a binary monomer size distribution J Sol–Gel Sci Technol 34:273–280

    Article  Google Scholar 

  27. Woignier T, Reynes J, Phalippou J, Dussossoy JL (2000) Nuclear waste storage in gel derived materials. J Sol–Gel Sci Technol 19:833–837

    Article  Google Scholar 

  28. Marlière C, Woignier T, Dieudonné P, Primera J, Lamy M, Phalippou J (2001) Two fractal structures in aerogel. J Non-Cryst Solids 285:175–180

    Article  Google Scholar 

  29. Woignier T, Primera J, Hafidi Alaoui A, Calas-Etienne S (2011) Mechanical behaviour of nano composite aerogels. J Sol–Gel Sci Technol 58:385–393

    Article  Google Scholar 

  30. Ayral A, Phalippou J, Woignier T (1992) Skeletal density of silica aerogels determined by helium pycnometry. J Mater Sci 27:1166–1170

    Article  Google Scholar 

  31. Brebler I, Kohlbrecher J, Thünemann (2015) SASfit: A tool for small-angle scattering data analysis using a library of analytical expressions. J Appl Crystallogr 48:1587–1598

    Article  Google Scholar 

  32. Hasmy A, Anglaret E, Foret M, Pelous J, Jullien R (1994) Small-angle neutron-scattering investigation on long-range correlations in silica aerogels: simulation and experiments. Phys Rev B 50:6006–6016

    Article  Google Scholar 

  33. Schaefer DW, Olivier BJ, Ashley CS, Richter D, Farago B, Frick B, Hrubesh L, Van Bommel MJ, Long G, Krueger S (1992) Structure and topology of silica aerogels. J Non-Cryst Solids 145:105–112

    Article  Google Scholar 

  34. Vacher R, Woignier T, Pelous J, Courtens E (1988) Structure and self-similarity of silica-aerogels. Phys Rev B 37:6500–6503

    Article  Google Scholar 

Download references

Acknowledgements

This article is a special tribute to the memory of our friend, colleague and mentor, Professor Jean Phalippou. The authors are also very grateful to David Bessières and Marina Hild (“Nanostructured materials for a sustainable development” Franco-Venezuelian PCP program) to Claude Castro-Gimenez from the French Embassy in Venezuela and the FONACIT (Venezuela) for their financial support and encouragements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Dieudonné-George.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larreal de Hernandez, L., Anez-Borges, L., Woignier, T. et al. Surface and porous textural properties of silica–wollastonite composites prepared by sol–gel process. J Sol-Gel Sci Technol 90, 113–125 (2019). https://doi.org/10.1007/s10971-018-4874-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-018-4874-9

Keywords

Navigation