Skip to main content

Advertisement

Log in

Amyloid-β and Parkinson’s disease

  • Review
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is the second commonest neurodegenerative disorder in the world with a rising prevalence. The pathophysiology is multifactorial but aggregation of misfolded α-synuclein is considered to be a key underpinning mechanism. Amyloid-β (Aβ) and tau deposition are also comorbid associations and especially Aβ deposition is associated with cognitive decline in PD. Some existing evidence suggests that low cerebrospinal fluid (CSF) Aβ42 is predictive of future cognitive impairment in PD. Recent studies also show that CSF Aβ is associated with the postural instability and gait difficulties (PIGD) or the newly proposed cholinergic subtype of PD, a possible risk factor for cognitive decline in PD. The glial-lymphatic system, responsible for convective solute clearance driven by active fluid transport through aquaporin-4 water channels, may be implicated in brain amyloid deposition. A better understanding of the role of this system and more specifically the role of Aβ in PD symptomatology, could introduce new treatment and repurposing drug-based strategies. For instance, apomorphine infusion has been shown to promote the degradation of Aβ in rodent models. This is further supported in a post-mortem study in PD patients although clinical implications are unclear. In this review, we address the clinical implication of cerebral Aβ deposition in PD and elaborate on its metabolism, its role in cognition and motor function/gait, and finally assess the potential effect of apomorphine on Aβ deposition in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Marsh SE, Blurton-Jones M (2012) Examining the mechanisms that link beta-amyloid and alpha-synuclein pathologies. Alzheimers Res Ther 4(2):11. https://doi.org/10.1186/alzrt109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120(3):885–890

    Article  CAS  PubMed  Google Scholar 

  3. Aarsland D, Creese B, Politis M, Chaudhuri KR, Ffytche DH, Weintraub D, Ballard C (2017) Cognitive decline in Parkinson disease. Nat Rev Neurol 13(4):217–231. https://doi.org/10.1038/nrneurol.2017.27

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ffytche DH, Pereira JB, Ballard C, Chaudhuri KR, Weintraub D, Aarsland D (2017) Risk factors for early psychosis in PD: insights from the Parkinson’s progression markers initiative. J Neurol Neurosurg Psychiatry 88(4):325–331. https://doi.org/10.1136/jnnp-2016-314832

    Article  PubMed  Google Scholar 

  5. Edison P, Ahmed I, Fan Z, Hinz R, Gelosa G, Ray Chaudhuri K, Walker Z, Turkheimer FE, Brooks DJ (2013) Microglia, amyloid, and glucose metabolism in Parkinson’s disease with and without dementia. Neuropsychopharmacology 38(6):938–949. https://doi.org/10.1038/npp.2012.255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Edison P, Rowe CC, Rinne JO, Ng S, Ahmed I, Kemppainen N, Villemagne VL, O’Keefe G, Nagren K, Chaudhury KR, Masters CL, Brooks DJ (2008) Amyloid load in Parkinson’s disease dementia and Lewy body dementia measured with [11C] PIB positron emission tomography. J Neurol Neurosurg Psychiatry 79(12):1331–1338. https://doi.org/10.1136/jnnp.2007.127878

    Article  CAS  PubMed  Google Scholar 

  7. Compta Y, Parkkinen L, Kempster P, Selikhova M, Lashley T, Holton JL, Lees AJ, Revesz T (2014) The significance of alpha-synuclein, amyloid-beta and tau pathologies in Parkinson’s disease progression and related dementia. Neurodegener Dis 13(2–3):154–156. https://doi.org/10.1159/000354670

    Article  CAS  PubMed  Google Scholar 

  8. Lashley T, Holton JL, Gray E, Kirkham K, O’Sullivan SS, Hilbig A, Wood NW, Lees AJ, Revesz T (2008) Cortical alpha-synuclein load is associated with amyloid-beta plaque burden in a subset of Parkinson’s disease patients. Acta Neuropathol 115(4):417–425. https://doi.org/10.1007/s00401-007-0336-0

    Article  CAS  PubMed  Google Scholar 

  9. Clinton LK, Blurton-Jones M, Myczek K, Trojanowski JQ, LaFerla FM (2010) Synergistic interactions between Abeta, tau, and alpha-synuclein: acceleration of neuropathology and cognitive decline. J Neurosci 30(21):7281–7289. https://doi.org/10.1523/jneurosci.0490-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Masliah E, Rockenstein E, Veinbergs I, Sagara Y, Mallory M, Hashimoto M, Mucke L (2001) Beta-amyloid peptides enhance alpha-synuclein accumulation and neuronal deficits in a transgenic mouse model linking Alzheimer’s disease and Parkinson’s disease. Proc Natl Acad Sci USA 98(21):12245–12250. https://doi.org/10.1073/pnas.211412398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pletnikova O, West N, Lee MK, Rudow GL, Skolasky RL, Dawson TM, Marsh L, Troncoso JC (2005) Abeta deposition is associated with enhanced cortical alpha-synuclein lesions in Lewy body diseases. Neurobiol Aging 26(8):1183–1192. https://doi.org/10.1016/j.neurobiolaging.2004.10.006

    Article  CAS  PubMed  Google Scholar 

  12. Rochester L, Galna B, Lord S, Yarnall AJ, Morris R, Duncan G, Khoo TK, Mollenhauer B, Burn DJ (2017) Decrease in Abeta42 predicts dopa-resistant gait progression in early Parkinson disease. Neurology 88(16):1501–1511. https://doi.org/10.1212/wnl.0000000000003840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Titova N, Qamar MA, Chaudhuri KR (2017) The nonmotor features of Parkinson’s disease. Int Rev Neurobiol 132:33–54. https://doi.org/10.1016/bs.irn.2017.02.016

    Article  PubMed  Google Scholar 

  14. Hall SSY, Öhrfelt A, Zetterberg H, Lindqvist D, Hansson, O2 (2015) CSF biomarkers and clinical progression of Parkinson disease. Neurology 6(1):57–63 84(

    Article  Google Scholar 

  15. Caccamo A, Oddo S, Sugarman MC, Akbari Y, LaFerla FM (2005) Age- and region-dependent alterations in Abeta-degrading enzymes: implications for Abeta-induced disorders. Neurobiol Aging 26(5):645–654. https://doi.org/10.1016/j.neurobiolaging.2004.06.013

    Article  CAS  PubMed  Google Scholar 

  16. Kummer MP, Heneka MT (2014) Truncated and modified amyloid-beta species. Alzheimers Res Ther 6(3):28–28. https://doi.org/10.1186/alzrt258

    Article  PubMed  PubMed Central  Google Scholar 

  17. Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 8(2):101–112. https://doi.org/10.1038/nrm2101

    Article  CAS  PubMed  Google Scholar 

  18. Benilova I, Karran E, De Strooper B (2012) The toxic Abeta oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci 15(3):349–357. https://doi.org/10.1038/nn.3028

    Article  CAS  PubMed  Google Scholar 

  19. Zlokovic BV (2005) Neurovascular mechanisms of Alzheimer’s neurodegeneration. Trends Neurosci 28(4):202–208. https://doi.org/10.1016/j.tins.2005.02.001

    Article  CAS  PubMed  Google Scholar 

  20. Murphy MP, LeVine H (2010) Alzheimer’s disease and the β-amyloid peptide. J Alzheimers Dis 19(1):311. https://doi.org/10.3233/JAD-2010-1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Plog BA, Nedergaard M (2018) The glymphatic system in central nervous system health and disease: past, present, and future. Annu Rev Pathol 13:379–394. https://doi.org/10.1146/annurev-pathol-051217-111018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hoshi A, Tsunoda A, Tada M, Nishizawa M, Ugawa Y, Kakita A (2017) Expression of aquaporin 1 and aquaporin 4 in the temporal neocortex of patients with Parkinson’s disease. Brain Pathol 27(2):160–168. https://doi.org/10.1111/bpa.12369

    Article  CAS  PubMed  Google Scholar 

  23. Xu Z, Xiao N, Chen Y, Huang H, Marshall C, Gao J, Cai Z, Wu T, Hu G, Xiao M (2015) Deletion of aquaporin-4 in APP/PS1 mice exacerbates brain Abeta accumulation and memory deficits. Mol Neurodegener 10:58. https://doi.org/10.1186/s13024-015-0056-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rainey-Smith SR, Mazzucchelli GN, Villemagne VL, Brown BM, Porter T, Weinborn M, Bucks RS, Milicic L, Sohrabi HR, Taddei K, Ames D, Maruff P, Masters CL, Rowe CC, Salvado O, Martins RN, Laws SM (2018) Genetic variation in aquaporin-4 moderates the relationship between sleep and brain Abeta-amyloid burden. Transl Psychiatry 8(1):47. https://doi.org/10.1038/s41398-018-0094-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Maruyama M, Higuchi M, Takaki Y, Matsuba Y, Tanji H, Nemoto M, Tomita N, Matsui T, Iwata N, Mizukami H, Muramatsu S, Ozawa K, Saido TC, Arai H, Sasaki H (2005) Cerebrospinal fluid neprilysin is reduced in prodromal Alzheimer’s disease. Ann Neurol 57(6):832–842. https://doi.org/10.1002/ana.20494

    Article  CAS  PubMed  Google Scholar 

  26. Sharma SK, Chorell E, Wittung-Stafshede P (2015) Insulin-degrading enzyme is activated by the C-terminus of alpha-synuclein. Biochem Biophys Res Commun 466(2):192–195. https://doi.org/10.1016/j.bbrc.2015.09.002

    Article  CAS  PubMed  Google Scholar 

  27. Steger M, Tonelli F, Ito G, Davies P, Trost M, Vetter M, Wachter S, Lorentzen E, Duddy G, Wilson S, Baptista MA, Fiske BK, Fell MJ, Morrow JA, Reith AD, Alessi DR, Mann M (2016) Phosphoproteomics reveals that Parkinson’s disease kinase LRRK2 regulates a subset of Rab GTPases. ELife. https://doi.org/10.7554/eLife.12813

    Article  PubMed  PubMed Central  Google Scholar 

  28. Esteves AR, Swerdlow RH, Cardoso SM (2014) LRRK2, a puzzling protein: insights into Parkinson’s disease pathogenesis. Exp Neurol. https://doi.org/10.1016/j.expneurol.2014.05.025

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chen ZC, Zhang W, Chua LL, Chai C, Li R, Lin L, Cao Z, Angeles DC, Stanton LW, Peng JH, Zhou ZD, Lim KL, Zeng L, Tan EK (2017) Phosphorylation of amyloid precursor protein by mutant LRRK2 promotes AICD activity and neurotoxicity in Parkinson’s disease. Sci Signal. https://doi.org/10.1126/scisignal.aam6790

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rodrigue KM, Kennedy KM, Devous MD, Rieck JR, Hebrank AC, Diaz-Arrastia R, Mathews D, Park DC (2012) β-amyloid burden in healthy aging: regional distribution and cognitive consequences. Neurology 78(6):387–395. https://doi.org/10.1212/WNL.0b013e318245d295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bennett DA, Schneider JA, Arvanitakis Z, Kelly JF, Aggarwal NT, Shah RC, Wilson RS (2006) Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology 66(12):1837–1844. https://doi.org/10.1212/01.wnl.0000219668.47116.e6

    Article  CAS  PubMed  Google Scholar 

  32. Pearson HA, Peers C (2006) Physiological roles for amyloid beta peptides. J Physiol 575(Pt 1):5–10. https://doi.org/10.1113/jphysiol.2006.111203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Plant LD, Boyle JP, Smith IF, Peers C, Pearson HA (2003) The production of amyloid beta peptide is a critical requirement for the viability of central neurons. J Neurosci 23(13):5531–5535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Plant LD, Webster NJ, Boyle JP, Ramsden M, Freir DB, Peers C, Pearson HA (2006) Amyloid beta peptide as a physiological modulator of neuronal ‘A’-type K + current. Neurobiol Aging 27(11):1673–1683. https://doi.org/10.1016/j.neurobiolaging.2005.09.038

    Article  CAS  PubMed  Google Scholar 

  35. Janelidze S, Stomrud E, Palmqvist S, Zetterberg H, van Westen D, Jeromin A, Song L, Hanlon D, Tan Hehir CA, Baker D, Blennow K, Hansson O (2016) Plasma beta-amyloid in Alzheimer’s disease and vascular disease. Sci Rep 6:26801. https://doi.org/10.1038/srep26801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zetterberg H (2015) Plasma amyloid beta-quo vadis? Neurobiol Aging 36(10):2671–2673. https://doi.org/10.1016/j.neurobiolaging.2015.07.021

    Article  PubMed  Google Scholar 

  37. Park JC, Han SH, Cho HJ, Byun MS, Yi D, Choe YM, Kang S, Jung ES, Won SJ, Kim EH, Kim YK, Lee DY, Mook-Jung I (2017) Chemically treated plasma Abeta is a potential blood-based biomarker for screening cerebral amyloid deposition. Alzheimers Res Ther 9(1):20. https://doi.org/10.1186/s13195-017-0248-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nakamura A, Kaneko N, Villemagne VL, Kato T, Doecke J, Dore V, Fowler C, Li QX, Martins R, Rowe C, Tomita T, Matsuzaki K, Ishii K, Ishii K, Arahata Y, Iwamoto S, Ito K, Tanaka K, Masters CL, Yanagisawa K (2018) High performance plasma amyloid-beta biomarkers for Alzheimer’s disease. Nature 554(7691):249–254. https://doi.org/10.1038/nature25456

    Article  CAS  PubMed  Google Scholar 

  39. Morris E, Chalkidou A, Hammers A, Peacock J, Summers J, Keevil S (2016) Diagnostic accuracy of (18)F amyloid PET tracers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging 43(2):374–385. https://doi.org/10.1007/s00259-015-3228-x

    Article  CAS  PubMed  Google Scholar 

  40. Maetzler W, Reimold M, Liepelt I, Solbach C, Leyhe T, Schweitzer K, Eschweiler GW, Mittelbronn M, Gaenslen A, Uebele M, Reischl G, Gasser T, Machulla HJ, Bares R, Berg D (2008) [11C] PIB binding in Parkinson’s disease dementia. Neuroimage 39(3):1027–1033. https://doi.org/10.1016/j.neuroimage.2007.09.072

    Article  PubMed  Google Scholar 

  41. Campbell MC, Markham J, Flores H, Hartlein JM, Goate AM, Cairns NJ, Videen TO, Perlmutter JS (2013) Principal component analysis of PiB distribution in Parkinson and Alzheimer diseases. Neurology 81(6):520–527. https://doi.org/10.1212/WNL.0b013e31829e6f94

    Article  PubMed  PubMed Central  Google Scholar 

  42. Foster ER, Campbell MC, Burack MA, Hartlein J, Flores HP, Cairns NJ, Hershey T, Perlmutter JS (2010) Amyloid imaging of Lewy body-associated disorders. Mov Disord 25(15):2516–2523. https://doi.org/10.1002/mds.23393

    Article  PubMed  PubMed Central  Google Scholar 

  43. Maetzler W, Liepelt I, Reimold M, Reischl G, Solbach C, Becker C, Schulte C, Leyhe T, Keller S, Melms A, Gasser T, Berg D (2009) Cortical PIB binding in Lewy body disease is associated with Alzheimer-like characteristics. Neurobiol Dis 34(1):107–112. https://doi.org/10.1016/j.nbd.2008.12.008

    Article  CAS  PubMed  Google Scholar 

  44. Ashton NJ, Scholl M, Heurling K, Gkanatsiou E, Portelius E, Hoglund K, Brinkmalm G, Hye A, Blennow K, Zetterberg H (2018) Update on biomarkers for amyloid pathology in Alzheimer’s disease. Biomark Med. https://doi.org/10.2217/bmm-2017-0433

    Article  PubMed  Google Scholar 

  45. Siderowf A, Xie SX, Hurtig H, Weintraub D, Duda J, Chen-Plotkin A, Shaw LM, Van Deerlin V, Trojanowski JQ, Clark C (2010) CSF amyloid {beta} 1–42 predicts cognitive decline in Parkinson disease. Neurology 75(12):1055–1061. https://doi.org/10.1212/WNL.0b013e3181f39a78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Terrelonge M Jr, Marder KS, Weintraub D, Alcalay RN (2016) CSF beta-amyloid 1–42 predicts progression to cognitive impairment in newly diagnosed Parkinson disease. J Mol Neurosci 58(1):88–92. https://doi.org/10.1007/s12031-015-0647-x

    Article  CAS  PubMed  Google Scholar 

  47. Modreanu R, Cerquera SC, Marti MJ, Rios J, Sanchez-Gomez A, Camara A, Fernandez M, Compta Y (2017) Cross-sectional and longitudinal associations of motor fluctuations and non-motor predominance with cerebrospinal tau and Abeta as well as dementia-risk in Parkinson’s disease. J Neurol Sci 373:223–229. https://doi.org/10.1016/j.jns.2016.12.064

    Article  PubMed  Google Scholar 

  48. Alves G, Lange J, Blennow K, Zetterberg H, Andreasson U, Forland MG, Tysnes OB, Larsen JP, Pedersen KF (2014) CSF Abeta42 predicts early-onset dementia in Parkinson disease. Neurology 82(20):1784–1790. https://doi.org/10.1212/wnl.0000000000000425

    Article  CAS  PubMed  Google Scholar 

  49. Backstrom DC, Eriksson Domellof M, Linder J, Olsson B, Ohrfelt A, Trupp M, Zetterberg H, Blennow K, Forsgren L (2015) Cerebrospinal fluid patterns and the risk of future dementia in early, incident Parkinson disease. JAMA Neurol 72(10):1175–1182. https://doi.org/10.1001/jamaneurol.2015.1449

    Article  PubMed  Google Scholar 

  50. Compta Y, Buongiorno M, Bargallo N, Valldeoriola F, Munoz E, Tolosa E, Rios J, Camara A, Fernandez M, Marti MJ (2016) White matter hyperintensities, cerebrospinal amyloid-beta and dementia in Parkinson’s disease. J Neurol Sci 367:284–290. https://doi.org/10.1016/j.jns.2016.06.009

    Article  CAS  PubMed  Google Scholar 

  51. Caspell-Garcia C, Simuni T, Tosun-Turgut D, Wu IW, Zhang Y, Nalls M, Singleton A, Shaw LA, Kang JH, Trojanowski JQ, Siderowf A, Coffey C, Lasch S, Aarsland D, Burn D, Chahine LM, Espay AJ, Foster ED, Hawkins KA, Litvan I, Richard I, Weintraub D (2017) Multiple modality biomarker prediction of cognitive impairment in prospectively followed de novo Parkinson disease. PloS One 12(5):e0175674. https://doi.org/10.1371/journal.pone.0175674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Compta Y, Pereira JB, Rios J, Ibarretxe-Bilbao N, Junque C, Bargallo N, Camara A, Buongiorno M, Fernandez M, Pont-Sunyer C, Marti MJ (2013) Combined dementia-risk biomarkers in Parkinson’s disease: a prospective longitudinal study. Park Relat Disord 19(8):717–724. https://doi.org/10.1016/j.parkreldis.2013.03.009

    Article  Google Scholar 

  53. Parnetti L, Farotti L, Eusebi P, Chiasserini D, De Carlo C, Giannandrea D, Salvadori N, Lisetti V, Tambasco N, Rossi A, Majbour NK, El-Agnaf O, Calabresi P (2014) Differential role of CSF alpha-synuclein species, tau, and Abeta42 in Parkinson’s disease. Front Aging Neurosci 6:53. https://doi.org/10.3389/fnagi.2014.00053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Litvan I, Goldman JG, Troster AI, Schmand BA, Weintraub D, Petersen RC, Mollenhauer B, Adler CH, Marder K, Williams-Gray CH, Aarsland D, Kulisevsky J, Rodriguez-Oroz MC, Burn DJ, Barker RA, Emre M (2012) Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force guidelines. Mov Disord 27(3):349–356. https://doi.org/10.1002/mds.24893

    Article  PubMed  PubMed Central  Google Scholar 

  55. Titova N, Chaudhuri KR (2018) Non-motor Parkinson disease: new concepts and personalised management. Med J Aust 208(9):404–409

    Article  PubMed  Google Scholar 

  56. Weintraub D, Burn DJ (2011) Parkinson’s disease: the quintessential neuropsychiatric disorder. Mov Disord 26(6):1022–1031. https://doi.org/10.1002/mds.23664

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sauerbier A, Jenner P, Todorova A, Chaudhuri KR (2016) Non motor subtypes and Parkinson’s disease. Park Relat Disord 22(Suppl 1):S41–S46. https://doi.org/10.1016/j.parkreldis.2015.09.027

    Article  Google Scholar 

  58. Titova N, Padmakumar C, Lewis SJG, Chaudhuri KR (2017) Parkinson’s: a syndrome rather than a disease? J Neural Transm (Vienna) 124(8):907–914. https://doi.org/10.1007/s00702-016-1667-6

    Article  CAS  Google Scholar 

  59. Titova N, Martinez-Martin P, Katunina E, Chaudhuri KR (2017) Advanced Parkinson’s or “complex phase” Parkinson’s disease? Re-evaluation is needed. J Neural Transm (Vienna) 124(12):1529–1537. https://doi.org/10.1007/s00702-017-1799-3

    Article  Google Scholar 

  60. Irwin DJ, White MT, Toledo JB, Xie SX, Robinson JL, Van Deerlin V, Lee VM, Leverenz JB, Montine TJ, Duda JE, Hurtig HI, Trojanowski JQ (2012) Neuropathologic substrates of Parkinson disease dementia. Ann Neurol 72(4):587–598. https://doi.org/10.1002/ana.23659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hurtig HI, Trojanowski JQ, Galvin J, Ewbank D, Schmidt ML, Lee VM, Clark CM, Glosser G, Stern MB, Gollomp SM, Arnold SE (2000) Alpha-synuclein cortical Lewy bodies correlate with dementia in Parkinson’s disease. Neurology 54(10):1916–1921

    Article  CAS  PubMed  Google Scholar 

  62. Mattila PM, Rinne JO, Helenius H, Dickson DW, Roytta M (2000) Alpha-synuclein-immunoreactive cortical Lewy bodies are associated with cognitive impairment in Parkinson’s disease. Acta Neuropathol 100(3):285–290

    Article  CAS  PubMed  Google Scholar 

  63. Ruffmann C, Calboli FC, Bravi I, Gveric D, Curry LK, de Smith A, Pavlou S, Buxton JL, Blakemore AI, Takousis P, Molloy S, Piccini P, Dexter DT, Roncaroli F, Gentleman SM, Middleton LT (2016) Cortical Lewy bodies and Abeta burden are associated with prevalence and timing of dementia in Lewy body diseases. Neuropathol Appl Neurobiol 42(5):436–450. https://doi.org/10.1111/nan.12294

    Article  CAS  PubMed  Google Scholar 

  64. Horvath J, Herrmann FR, Burkhard PR, Bouras C, Kovari E (2013) Neuropathology of dementia in a large cohort of patients with Parkinson’s disease. Park Relat Disord 19(10):864–868. https://doi.org/10.1016/j.parkreldis.2013.05.010 (discussion 864)

    Article  Google Scholar 

  65. Aarsland D, Perry R, Brown A, Larsen JP, Ballard C (2005) Neuropathology of dementia in Parkinson’s disease: a prospective, community-based study. Ann Neurol 58(5):773–776. https://doi.org/10.1002/ana.20635

    Article  PubMed  Google Scholar 

  66. Apaydin H, Ahlskog JE, Parisi JE, Boeve BF, Dickson DW (2002) Parkinson disease neuropathology: later-developing dementia and loss of the levodopa response. Arch Neurol 59(1):102–112

    Article  PubMed  Google Scholar 

  67. Colosimo C, Hughes AJ, Kilford L, Lees AJ (2003) Lewy body cortical involvement may not always predict dementia in Parkinson’s disease. J Neurol Neurosurg Psychiatry 74(7):852–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Parkkinen L, Kauppinen T, Pirttila T, Autere JM, Alafuzoff I (2005) Alpha-synuclein pathology does not predict extrapyramidal symptoms or dementia. Ann Neurol 57(1):82–91. https://doi.org/10.1002/ana.20321

    Article  CAS  PubMed  Google Scholar 

  69. Jellinger KA, Korczyn AD (2018) Are dementia with Lewy bodies and Parkinson’s disease dementia the same disease? BMC Med 16(1):34. https://doi.org/10.1186/s12916-018-1016-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Compta Y, Parkkinen L, O’Sullivan SS, Vandrovcova J, Holton JL, Collins C, Lashley T, Kallis C, Williams DR, de Silva R, Lees AJ, Revesz T (2011) Lewy- and Alzheimer-type pathologies in Parkinson’s disease dementia: which is more important? Brain 134 (Pt 5):1493–1505. https://doi.org/10.1093/brain/awr031

    Article  PubMed  Google Scholar 

  71. Colom-Cadena M, Grau-Rivera O, Planellas L, Cerquera C, Morenas E, Helgueta S, Munoz L, Kulisevsky J, Marti MJ, Tolosa E, Clarimon J, Lleo A, Gelpi E (2017) Regional overlap of pathologies in Lewy body disorders. J Neuropathol Exp Neurol 76(3):216–224. https://doi.org/10.1093/jnen/nlx002

    Article  CAS  PubMed  Google Scholar 

  72. Howlett DR, Whitfield D, Johnson M, Attems J, O’Brien JT, Aarsland D, Lai MK, Lee JH, Chen C, Ballard C, Hortobagyi T, Francis PT (2015) Regional multiple pathology scores are associated with cognitive decline in Lewy body dementias. Brain Pathol 25(4):401–408. https://doi.org/10.1111/bpa.12182

    Article  CAS  PubMed  Google Scholar 

  73. Sabbagh MN, Adler CH, Lahti TJ, Connor DJ, Vedders L, Peterson LK, Caviness JN, Shill HA, Sue LI, Ziabreva I, Perry E, Ballard CG, Aarsland D, Walker DG, Beach TG (2009) Parkinson disease with dementia: comparing patients with and without Alzheimer pathology. Alzheimer Dis Assoc Disord 23(3):295–297. https://doi.org/10.1097/WAD.0b013e31819c5ef4

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ballard C, Ziabreva I, Perry R, Larsen JP, O’Brien J, McKeith I, Perry E, Aarsland D (2006) Differences in neuropathologic characteristics across the Lewy body dementia spectrum. Neurology 67(11):1931–1934. https://doi.org/10.1212/01.wnl.0000249130.63615.cc

    Article  CAS  PubMed  Google Scholar 

  75. Kotzbauer PT, Cairns NJ, Campbell MC, Willis AW, Racette BA, Tabbal SD, Perlmutter JS (2012) Pathologic accumulation of alpha-synuclein and Abeta in Parkinson disease patients with dementia. Arch Neurol 69(10):1326–1331. https://doi.org/10.1001/archneurol.2012.1608

    Article  PubMed  PubMed Central  Google Scholar 

  76. Halliday G, Hely M, Reid W, Morris J (2008) The progression of pathology in longitudinally followed patients with Parkinson’s disease. Acta Neuropathol 115(4):409–415. https://doi.org/10.1007/s00401-008-0344-8

    Article  PubMed  Google Scholar 

  77. Nakano K, Kayahara T, Tsutsumi T, Ushiro H (2000) Neural circuits and functional organization of the striatum. J Neurol 247(5):V1–V15. https://doi.org/10.1007/pl00007778

    Article  PubMed  Google Scholar 

  78. Kalaitzakis ME, Graeber MB, Gentleman SM, Pearce RK (2008) Striatal beta-amyloid deposition in Parkinson disease with dementia. J Neuropathol Exp Neurol 67(2):155–161. https://doi.org/10.1097/NEN.0b013e31816362aa

    Article  PubMed  Google Scholar 

  79. Halliday GM, Song YJ, Harding AJ (2011) Striatal beta-amyloid in dementia with Lewy bodies but not Parkinson’s disease. J Neural Transm 118(5):713–719. https://doi.org/10.1007/s00702-011-0641-6

    Article  CAS  PubMed  Google Scholar 

  80. Kalaitzakis ME, Walls AJ, Pearce RK, Gentleman SM (2011) Striatal Abeta peptide deposition mirrors dementia and differentiates DLB and PDD from other parkinsonian syndromes. Neurobiol Dis 41(2):377–384. https://doi.org/10.1016/j.nbd.2010.10.005

    Article  CAS  PubMed  Google Scholar 

  81. Jellinger KA, Attems J (2006) Does striatal pathology distinguish Parkinson disease with dementia and dementia with Lewy bodies? Acta Neuropathol 112(3):253–260. https://doi.org/10.1007/s00401-006-0088-2

    Article  PubMed  Google Scholar 

  82. Kalaitzakis ME, Pearce RK, Gentleman SM (2009) Clinical correlates of pathology in the claustrum in Parkinson’s disease and dementia with Lewy bodies. Neurosci Lett 461(1):12–15. https://doi.org/10.1016/j.neulet.2009.05.083

    Article  CAS  PubMed  Google Scholar 

  83. Yamamoto R, Iseki E, Murayama N, Minegishi M, Marui W, Togo T, Katsuse O, Kosaka K, Kato M, Iwatsubo T, Arai H (2007) Correlation in Lewy pathology between the claustrum and visual areas in brains of dementia with Lewy bodies. Neurosci Lett 415(3):219–224. https://doi.org/10.1016/j.neulet.2007.01.029

    Article  CAS  PubMed  Google Scholar 

  84. Morys J, Bobinski M, Wegiel J, Wisniewski HM, Narkiewicz O (1996) Alzheimer’s disease severely affects areas of the claustrum connected with the entorhinal cortex. J Hirnforsch 37(2):173–180

    CAS  PubMed  Google Scholar 

  85. Jacobson SA, Morshed T, Dugger BN, Beach TG, Hentz JG, Adler CH, Shill HA, Sabbagh MN, Belden CM, Sue LI, Caviness JN, Hu C (2014) Plaques and tangles as well as Lewy-type alpha synucleinopathy are associated with formed visual hallucinations. Park Relat Disord 20(9):1009–1014. https://doi.org/10.1016/j.parkreldis.2014.06.018

    Article  Google Scholar 

  86. Ffytche DH, Creese B, Politis M, Chaudhuri KR, Weintraub D, Ballard C, Aarsland D (2017) The psychosis spectrum in Parkinson disease. Nat Rev Neurol 13(2):81–95. https://doi.org/10.1038/nrneurol.2016.200

    Article  PubMed  PubMed Central  Google Scholar 

  87. Mashima K, Ito D, Kameyama M, Osada T, Tabuchi H, Nihei Y, Yoshizaki T, Noguchi E, Tanikawa M, Iizuka T, Date Y, Ogata Y, Nakahara T, Iwabuchi Y, Jinzaki M, Murakami K, Suzuki N (2017) Extremely low prevalence of amyloid positron emission tomography positivity in Parkinson’s disease without dementia. Eur Neurol 77(5–6):231–237. https://doi.org/10.1159/000464322

    Article  CAS  PubMed  Google Scholar 

  88. Jokinen P, Scheinin N, Aalto S, Nagren K, Savisto N, Parkkola R, Rokka J, Haaparanta M, Roytta M, Rinne JO (2010) [(11)C]PIB-, [(18)F] FDG-PET and MRI imaging in patients with Parkinson’s disease with and without dementia. Park Relat Disord 16(10):666–670. https://doi.org/10.1016/j.parkreldis.2010.08.021

    Article  Google Scholar 

  89. Johansson A, Savitcheva I, Forsberg A, Engler H, Langstrom B, Nordberg A, Askmark H (2008) [(11)C]-PIB imaging in patients with Parkinson’s disease: preliminary results. Park Relat Disord 14(4):345–347. https://doi.org/10.1016/j.parkreldis.2007.07.010

    Article  CAS  Google Scholar 

  90. Shah N, Frey KA, Muller ML, Petrou M, Kotagal V, Koeppe RA, Scott PJ, Albin RL, Bohnen NI (2016) Striatal and cortical beta-amyloidopathy and cognition in Parkinson’s disease. Mov Disord 31(1):111–117. https://doi.org/10.1002/mds.26369

    Article  CAS  PubMed  Google Scholar 

  91. Akhtar RS, Xie SX, Chen YJ, Rick J, Gross RG, Nasrallah IM, Van Deerlin VM, Trojanowski JQ, Chen-Plotkin AS, Hurtig HI, Siderowf AD, Dubroff JG, Weintraub D (2017) Regional brain amyloid-beta accumulation associates with domain-specific cognitive performance in Parkinson disease without dementia. PloS One 12(5):e0177924. https://doi.org/10.1371/journal.pone.0177924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Petrou M, Bohnen NI, Muller ML, Koeppe RA, Albin RL, Frey KA (2012) Abeta-amyloid deposition in patients with Parkinson disease at risk for development of dementia. Neurology 79(11):1161–1167. https://doi.org/10.1212/WNL.0b013e3182698d4a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Buddhala C, Campbell MC, Perlmutter JS, Kotzbauer PT (2015) Correlation between decreased CSF alpha-synuclein and Aβ1–42 in Parkinson disease. Neurobiol Aging 36(1):476–484. https://doi.org/10.1016/j.neurobiolaging.2014.07.043

    Article  CAS  PubMed  Google Scholar 

  94. Gomperts SN, Locascio JJ, Rentz D, Santarlasci A, Marquie M, Johnson KA, Growdon JH (2013) Amyloid is linked to cognitive decline in patients with Parkinson disease without dementia. Neurology 80(1):85–91. https://doi.org/10.1212/WNL.0b013e31827b1a07

    Article  PubMed  PubMed Central  Google Scholar 

  95. Buongiorno M, Antonelli F, Compta Y, Fernandez Y, Pavia J, Lomena F, Rios J, Ramirez I, Garcia JR, Soler M, Camara A, Fernandez M, Basora M, Salazar F, Sanchez-Etayo G, Valldeoriola F, Barrio JR, Marti MJ (2017) Cross-sectional and longitudinal cognitive correlates of FDDNP PET and CSF amyloid-beta and tau in Parkinson’s disease. J Alzheimers Dis 55(3):1261–1272. https://doi.org/10.3233/jad-160698

    Article  CAS  PubMed  Google Scholar 

  96. Compta Y, Marti MJ, Ibarretxe-Bilbao N, Junque C, Valldeoriola F, Munoz E, Ezquerra M, Rios J, Tolosa E (2009) Cerebrospinal tau, phospho-tau, and beta-amyloid and neuropsychological functions in Parkinson’s disease. Mov Disord 24(15):2203–2210. https://doi.org/10.1002/mds.22594

    Article  PubMed  Google Scholar 

  97. Montine TJ, Shi M, Quinn JF, Peskind ER, Craft S, Ginghina C, Chung KA, Kim H, Galasko DR, Jankovic J, Zabetian CP, Leverenz JB, Zhang J (2010) CSF Abeta(42) and tau in Parkinson’s disease with cognitive impairment. Mov Disord 25(15):2682–2685. https://doi.org/10.1002/mds.23287

    Article  PubMed  PubMed Central  Google Scholar 

  98. Mollenhauer B, Trenkwalder C, von Ahsen N, Bibl M, Steinacker P, Brechlin P, Schindehuette J, Poser S, Wiltfang J, Otto M (2006) Beta-amlyoid 1–42 and tau-protein in cerebrospinal fluid of patients with Parkinson’s disease dementia. Dement Geriatr Cogn Disord 22(3):200–208. https://doi.org/10.1159/000094871

    Article  CAS  PubMed  Google Scholar 

  99. Goldman JG, Andrews H, Amara A, Naito A, Alcalay RN, Shaw LM, Taylor P, Xie T, Tuite P, Henchcliffe C, Hogarth P, Frank S, Saint-Hilaire MH, Frasier M, Arnedo V, Reimer AN, Sutherland M, Swanson-Fischer C, Gwinn K, Kang UJ (2018) Cerebrospinal fluid, plasma, and saliva in the BioFIND study: relationships among biomarkers and Parkinson’s disease features. Mov Disord 33(2):282–288. https://doi.org/10.1002/mds.27232

    Article  CAS  PubMed  Google Scholar 

  100. Alves G, Bronnick K, Aarsland D, Blennow K, Zetterberg H, Ballard C, Kurz MW, Andreasson U, Tysnes OB, Larsen JP, Mulugeta E (2010) CSF amyloid-beta and tau proteins, and cognitive performance, in early and untreated Parkinson’s disease: the Norwegian ParkWest study. J Neurol Neurosurg Psychiatry 81(10):1080–1086. https://doi.org/10.1136/jnnp.2009.199950

    Article  PubMed  Google Scholar 

  101. Bohnen NI, Muller ML, Koeppe RA, Studenski SA, Kilbourn MA, Frey KA, Albin RL (2009) History of falls in Parkinson disease is associated with reduced cholinergic activity. Neurology 73(20):1670–1676. https://doi.org/10.1212/WNL.0b013e3181c1ded6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bohnen NI, Frey KA, Studenski S, Kotagal V, Koeppe RA, Scott PJ, Albin RL, Muller ML (2013) Gait speed in Parkinson disease correlates with cholinergic degeneration. Neurology 81(18):1611–1616. https://doi.org/10.1212/WNL.0b013e3182a9f558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wennberg AMV, Savica R, Hagen CE, Roberts RO, Knopman DS, Hollman JH, Vemuri P, Jack CR Jr, Petersen RC, Mielke MM (2017) Cerebral amyloid deposition is associated with gait parameters in the Mayo Clinic Study of Aging. J Am Geriatr Soc 65(4):792–799. https://doi.org/10.1111/jgs.14670

    Article  PubMed  Google Scholar 

  104. Alves G, Pedersen KF, Bloem BR, Blennow K, Zetterberg H, Borm GF, Dalaker TO, Beyer MK, Aarsland D, Andreasson U, Lange J, Tysnes OB, Zivadinov R, Larsen JP (2013) Cerebrospinal fluid amyloid-beta and phenotypic heterogeneity in de novo Parkinson’s disease. J Neurol Neurosurg Psychiatry 84(5):537–543. https://doi.org/10.1136/jnnp-2012-303808

    Article  PubMed  Google Scholar 

  105. Kang JH, Irwin DJ, Chen-Plotkin AS, Siderowf A, Caspell C, Coffey CS, Waligorska T, Taylor P, Pan S, Frasier M, Marek K, Kieburtz K, Jennings D, Simuni T, Tanner CM, Singleton A, Toga AW, Chowdhury S, Mollenhauer B, Trojanowski JQ, Shaw LM (2013) Association of cerebrospinal fluid beta-amyloid 1–42, T-tau, P-tau181, and alpha-synuclein levels with clinical features of drug-naive patients with early Parkinson disease. JAMA Neurol 70(10):1277–1287. https://doi.org/10.1001/jamaneurol.2013.3861

    Article  PubMed  PubMed Central  Google Scholar 

  106. Ding J, Zhang J, Wang X, Zhang L, Jiang S, Yuan Y, Li J, Zhu L, Zhang K (2017) Relationship between the plasma levels of neurodegenerative proteins and motor subtypes of Parkinson’s disease. J Neural Transm (Vienna) 124(3):353–360. https://doi.org/10.1007/s00702-016-1650-2

    Article  CAS  Google Scholar 

  107. Muller ML, Frey KA, Petrou M, Kotagal V, Koeppe RA, Albin RL, Bohnen NI (2013) Beta-amyloid and postural instability and gait difficulty in Parkinson’s disease at risk for dementia. Mov Disord 28(3):296–301. https://doi.org/10.1002/mds.25213

    Article  CAS  PubMed  Google Scholar 

  108. Bohnen NI, Frey KA, Studenski S, Kotagal V, Koeppe RA, Constantine GM, Scott PJ, Albin RL, Muller ML (2014) Extra-nigral pathological conditions are common in Parkinson’s disease with freezing of gait: an in vivo positron emission tomography study. Mov Disord 29(9):1118–1124. https://doi.org/10.1002/mds.25929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Simuni T, Caspell-Garcia C, Coffey C, Lasch S, Tanner C, Marek K (2016) How stable are Parkinson’s disease subtypes in de novo patients: analysis of the PPMI cohort? Park Relat Disord 28:62–67. https://doi.org/10.1016/j.parkreldis.2016.04.027

    Article  Google Scholar 

  110. Jenner PKR (2016) Apomorphine—pharmacological properties and clinical trials in Parkinson’s disease. Park Relat Disord 33(Suppl 1):S13–S21

    Article  Google Scholar 

  111. Panza F, Seripa D, Solfrizzi V, Imbimbo BP, Lozupone M, Leo A, Sardone R, Gagliardi G, Lofano L, Creanza BC, Bisceglia P, Daniele A, Bellomo A, Greco A, Logroscino G (2016) Emerging drugs to reduce abnormal beta-amyloid protein in Alzheimer’s disease patients. Expert Opin Emerg Drugs 21(4):377–391. https://doi.org/10.1080/14728214.2016.1241232

    Article  CAS  PubMed  Google Scholar 

  112. Himeno E, Ohyagi Y, Ma L, Nakamura N, Miyoshi K, Sakae N, Motomura K, Soejima N, Yamasaki R, Hashimoto T, Tabira T, LaFerla FM, Kira J (2011) Apomorphine treatment in Alzheimer mice promoting amyloid-beta degradation. Ann Neurol 69(2):248–256. https://doi.org/10.1002/ana.22319

    Article  CAS  PubMed  Google Scholar 

  113. Yarnall AJ, Lashley T, Ling H, Lees AJ, Coleman SY, O’Sullivan SS, Compta Y, Revesz T, Burn DJ (2016) Apomorphine: a potential modifier of amyloid deposition in Parkinson’s disease? Mov Disord 31(5):668–675. https://doi.org/10.1002/mds.26422

    Article  CAS  PubMed  Google Scholar 

  114. Hanaki M, Murakami K, Katayama S, Akagi KI, Irie K (2018) Mechanistic analyses of the suppression of amyloid beta42 aggregation by apomorphine. Bioorg Med Chem 26(8):1538–1546. https://doi.org/10.1016/j.bmc.2018.01.028

    Article  CAS  PubMed  Google Scholar 

  115. Titova N, Chaudhuri KR (2017) Personalized medicine in Parkinson’s disease: time to be precise. Mov Disord 32(8):1147–1154. https://doi.org/10.1002/mds.27027

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding was received for this article.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Ee Wei Lim.

Ethics declarations

Conflicts of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, E.W., Aarsland, D., Ffytche, D. et al. Amyloid-β and Parkinson’s disease. J Neurol 266, 2605–2619 (2019). https://doi.org/10.1007/s00415-018-9100-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-018-9100-8

Keywords

Navigation