Skip to main content
Log in

Optimal Combined Radio- and Anti-Angiogenic Cancer Therapy

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

A mathematical model for combination of radio- and anti-angiogenic therapy is considered as optimal control problem with the objective of minimizing the tumor volume subject to isoperimetric constraints that limit the total radiation dose and the overall amount of anti-angiogenic agents to be given. The dynamics combines a model for tumor development under angiogenic inhibitors with the linear-quadratic model for the damage done by radiation ionization. The system has been investigated analytically as an optimal control problem and explicit expressions for possible singular controls were derived before. In this paper, for varying total radiation doses, examples of numerically computed optimal controls are given that verify and confirm these analytical structures: optimal schedules for the anti-angiogenic agents typically start with a brief full-dose segment, and then use up all inhibitors along a time-varying singular control while optimal radiotherapy schedules intensify the dosing and, after a brief period when the control is singular, end with a maximum dose segment. Singular controls occur for both the anti-angiogenic and radiotherapy dose rates. A discussion of the difficulties in proving the strong local optimality of corresponding trajectories is included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kerbel, R.S.: Tumor angiogenesis: past, present and near future. Carcinogensis 21, 505–515 (2000)

    Article  Google Scholar 

  2. Jain, R.K.: Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat. Med. 7, 987–989 (2001)

    Article  Google Scholar 

  3. d’Onofrio, A., Ledzewicz, U., Maurer, H., Schättler, H.: On optimal delivery of combination therapy for tumors. Math. Biosci. 222, 13–26 (2009). https://doi.org/10.1016/j.mbs.2009.08.004

    Article  MathSciNet  MATH  Google Scholar 

  4. Ergun, A., Camphausen, K., Wein, L.M.: Optimal scheduling of radiotherapy and angiogenic inhibitors. Bull. Math. Biol. 65, 407–424 (2003)

    Article  MATH  Google Scholar 

  5. Hahnfeldt, P., Panigrahy, D., Folkman, J., Hlatky, L.: Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy. Cancer Res. 59, 4770–4775 (1999)

    Google Scholar 

  6. Chudej, K., Huebner, D., Pesch, H.J.: Numerische Lösung eines mathematischen Modells für eine Optimale Krebskombinationstherapie aus Anti-Angiogenese und Strahlentherapie. ASIM, Dresden (2016)

    Google Scholar 

  7. Ledzewicz, U., Schättler, H.: Multi-input optimal control problems for combined tumor anti-angiogenic and radiotherapy treatments. J. Optim. Theory Appl. 153, 195–224 (2012). https://doi.org/10.1007/s10957-011-9954-8

    Article  MathSciNet  MATH  Google Scholar 

  8. Aronna, M.S., Bonnans, J.F., Dmitruk, A.V., Lotito, P.: Quadratic order conditions for bang-singular extremals. Numer. Algebra Control Optim. 2(3), 511–546 (2012). https://doi.org/10.3934/naco.2012.2.511

    Article  MathSciNet  MATH  Google Scholar 

  9. Felgenhauer, U.: Structural stability investigation of bang-singular-bang optimal controls. J. Optim. Theory Appl. JOTA 152(3), 605–631 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Poggiolini, L., Stefani, G.: Bang-singular-bang extremals: sufficient optimality conditions. J. Dyn. Control Syst. 17(4), 469–514 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Poggiolini, L., Stefani, G.: Strong local optimality for bang-bang-singular extremals in single input control problems. IFAC PapersOnLine 50(1), 6128–6133 (2017). https://doi.org/10.1016/j.ifacol.2017.08.2022

    Article  Google Scholar 

  12. Ledzewicz, U., Schättler, H.: Anti-angiogenic therapy in cancer treatment as an optimal control problem. SIAM J. Control Optim. 46, 1052–1079 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Schättler, H., Ledzewicz, U.: Optimal Control for Mathematical Models of Cancer Therapies. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  14. Fowler, J.F.: The linear-quadratic formula and progress in fractionated radiotherapy. Br. J. Radiol. 62, 679–694 (1989)

    Article  Google Scholar 

  15. Kellerer, A.M., Rossi, H.H.: The theory of dual radiation action. Curr. Top. Radiat. Res. Q. 8, 85–158 (1972)

    Google Scholar 

  16. Thames, H.D., Hendry, J.H.: Fractionation in Radiotherapy. Taylor and Francis, London (1987)

    Google Scholar 

  17. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. MacMillan, New York (1964)

    MATH  Google Scholar 

  18. Bonnard, B., Chyba, M.: Singular Trajectories and Their Role in Control Theory, Mathématiques & Applications, vol. 40. Springer, Paris (2003)

    MATH  Google Scholar 

  19. Bressan, A., Piccoli, B.: Introduction to the Mathematical Theory of Control. American Institute of Mathematical Sciences, Springfield (2007)

    MATH  Google Scholar 

  20. Liberzon, D.: Calculus of Variations and Optimal Control Theory. Princeton University Press, Princeton (2012)

    MATH  Google Scholar 

  21. Schättler, H., Ledzewicz, U.: Geometric Optimal Control, Interdisciplinary Applied Mathematics, vol. 38. Springer, New York (2012)

    Book  MATH  Google Scholar 

  22. Haynes, G.W.: On the Optimality of a Totally Singular Vector Control. National Aeronautics and Space Administration, Washington D.C (1965)

    Google Scholar 

  23. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Mathematical Programming. Duxbury Press, Brooks-Cole Publishing Company, Plymouth (1993)

    MATH  Google Scholar 

  24. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106, 25–57 (2006). (cf. IPOPT home page (C. Laird, C., Wächter, A.): https://projects.coin-or.org/Ipopt)

  25. Büskens, C.: Optimierungsmethoden und Sensitivitätsanalyse für optimale Steuerprozesse mit Steuer- und Zustands-Beschränkungen, Dissertation, Institut für Numerische Mathematik, Universität Münster, Germany (1998)

  26. Büskens, C., Maurer, H.: SQP-methods for solving optimal control problems with control and state constraints: adjoint variables, sensitivity analysis and real-time control. J. Comput. Appl. Math. 120, 85–108 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Maurer, H., Büskens, C., Kim, J.H.R., Kaya, Y.: Optimization methods for the verification of second-order sufficient conditions for bang-bang controls. Optim. Control Methods Appl. 26, 129–156 (2005)

    Article  MathSciNet  Google Scholar 

  28. Vossen, G.: Switching time optimization for bang-bang and singular controls. J. Optim. Theory Appl. 144, 409–429 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ledzewicz, U., Maurer, H., Schättler, H.: Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy. Math. Biosci. Eng. (MBE) 8, 307–328 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Osmolovskii, N.P., Maurer, H.: Applications to Regular and Bang-Bang Control: Second-Order Necessary and Sufficient Optimality Conditions in Calculus of Variations and Optimal Control, SIAM Advances in Design and Control, vol. 24. SIAM Publications, Philadelphia (2012)

    Book  MATH  Google Scholar 

  31. Fiacco, A.V.: Introduction to Sensitivity and Stability Analysis. Academic Press, New York (1983)

    MATH  Google Scholar 

  32. Büskens, C., Maurer, H.: Sensitivity analysis and real-time optimization of parametric nonlinear programming problems. In: Grötschel, M., Krumke, S.O., Rambau, J. (eds.) Online Optimization of Large Scale Systems, pp. 3–16. Springer, Berlin (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urszula Ledzewicz.

Additional information

This paper is dedicated to our friend Aram Arutyunov on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ledzewicz, U., Maurer, H. & Schättler, H. Optimal Combined Radio- and Anti-Angiogenic Cancer Therapy. J Optim Theory Appl 180, 321–340 (2019). https://doi.org/10.1007/s10957-018-1426-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-1426-y

Keywords

Mathematics Subject Classification

Navigation