Skip to main content

Advertisement

Log in

A Novel Stretch Energy Minimization Algorithm for Equiareal Parameterizations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Surface parameterizations have been widely applied to computer graphics and digital geometry processing. In this paper, we propose a novel stretch energy minimization (SEM) algorithm for the computation of equiareal parameterizations of simply connected open surfaces with very small area distortions and highly improved computational efficiencies. In addition, the existence of nontrivial limit points of the SEM algorithm is guaranteed under some mild assumptions of the mesh quality. Numerical experiments indicate that the accuracy, effectiveness, and robustness of the proposed SEM algorithm outperform the other state-of-the-art algorithms. Applications of the SEM on surface remeshing, registration and morphing for simply connected open surfaces are demonstrated thereafter. Thanks to the SEM algorithm, the computation for these applications can be carried out efficiently and reliably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. ALICE. http://alice.loria.fr/. Accessed 5 July 2016

  2. Alliez, P., Ucelli, G., Gotsman, C., Attene, M.: Recent Advances in Remeshing of Surfaces, pp. 53–82. Springer, Berlin (2008)

    Google Scholar 

  3. Berman, A., Plemmons, R.: Nonnegative Matrices in the Mathematical Sciences. Society for Industrial and Applied Mathematics, Philadelphia (1994)

    Book  MATH  Google Scholar 

  4. Cheng, S.-W., Dey, T.K., Shewchuk, J.: Delaunay Mesh Generation, 1st edn. Chapman & Hall, London (2012)

    MATH  Google Scholar 

  5. Choi, C.P., Gu, X., Lui, L.M.: Subdivision connectivity remeshing via Teichmüller extremal map. Inverse Probl. Imag. 11(\(1930\_8337\_2017\_5\_825\)), 825 (2017)

  6. Choi, P.T., Lam, K.C., Lui, L.M.: FLASH: fast landmark aligned spherical harmonic parameterization for genus-0 closed brain surfaces. SIAM J. Imaging Sci. 8(1), 67–94 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. David Xianfeng Gu’s Home Page. http://www3.cs.stonybrook.edu/~gu/. Accessed 10 July 2017

  8. Digital Shape Workbench—Shape Repository. http://visionair.ge.imati.cnr.it/ontologies/shapes/. Accessed 5 July 2016

  9. Dominitz, A., Tannenbaum, A.: Texture mapping via optimal mass transport. IEEE Trans. Vis. Comput. Graph. 16(3), 419–433 (2010)

    Article  Google Scholar 

  10. Floater, M.S.: Parametrization and smooth approximation of surface triangulations. Comput. Aided Geom. Des. 14(3), 231–250 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Floater, M.S., Hormann, K.: Surface parameterization: a tutorial and survey. In: Dodgson, N.A., Floater, M.S., Sabin, M.A. (eds.) Advances in Multiresolution for Geometric Modelling, pp. 157–186. Springer, Berlin (2005)

    Chapter  Google Scholar 

  12. Fritsch, F.N., Carlson, R.E.: Monotone piecewise cubic interpolation. SIAM J. Numer. Anal. 17(2), 238–246 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gu, X., Luo, F., Sun, J., Yau, S.-T.: Variational principles for Minkowski type problems, discrete optimal transport, and discrete Monge–Ampere equations. arXiv:1302.5472 [math.GT]

  14. Hormann, K., Lévy, B., Sheffer, A.: Mesh parameterization: theory and practice. In: ACM SIGGRAPH Course Notes (2007)

  15. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  16. Lam, K.C., Lui, L.M.: Landmark- and intensity-based registration with large deformations via quasi-conformal maps. SIAM J. Imaging Sci. 7(4), 2364–2392 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lam, K.C., Wen, C., Lui, L.M.: Conformal-based surface morphing and multi-scale representation. Axioms 3(2), 222–243 (2014)

    Article  MATH  Google Scholar 

  18. Lui, L.M., Lam, K.C., Yau, S.-T., Gu, X.: Teichmuller mapping (t-map) and its applications to landmark matching registration. SIAM J. Imaging Sci. 7(1), 391–426 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Molitierno, J.J.: Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs. CRC Press, Boca Raton (2012)

    MATH  Google Scholar 

  20. Nadeem, S., Su, Z., Zeng, W., Kaufman, A., Gu, X.: Spherical parameterization balancing angle and area distortions. IEEE T. Vis. Comput. Graph. 23(6), 1663–1676 (2017)

    Article  Google Scholar 

  21. Sander, P.V., Snyder, J., Gortler, S.J., Hoppe, H.: Texture mapping progressive meshes. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’01, pp. 409–416. ACM, New York (2001)

  22. Sheffer, A., Praun, E., Rose, K.: Mesh parameterization methods and their applications. Found. Trends Comput. Graph. Vis. 2(2), 105–171 (2006)

    Article  MATH  Google Scholar 

  23. Su, K., Cui, L., Qian, K., Lei, N., Zhang, J., Zhang, M., Gu, X.D.: Area-preserving mesh parameterization for poly-annulus surfaces based on optimal mass transportation. Comput. Aided Geom. Des. 46, 76–91 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. The Stanford 3D Scanning Repository. http://graphics.stanford.edu/data/3Dscanrep/. Accessed 23 July 2016

  25. TurboSquid. http://www.turbosquid.com/. Accessed 23 July 2016

  26. Yoshiyasu, Y., Ma, W.-C., Yoshida, E., Kanehiro, F.: As-conformal-as-possible surface registration. Comput. Graph. Forum 33(5), 257–267 (2014)

    Article  Google Scholar 

  27. Yoshizawa, S., Belyaev, A., Seidel, H.P.: A fast and simple stretch-minimizing mesh parameterization. Proc. Shape Model. Appl. 2004, 200–208 (2004)

    Google Scholar 

  28. Yueh, M.-H., Gu, X.D., Lin, W.-W., Wu, C.-T., Yau, S.-T.: Conformal surface registration with applications on face morphing (2016). mathscidoc:1605.09001

  29. Yueh, M.-H., Lin, W.-W., Wu, C.-T., Yau, S.-T.: An efficient energy minimization for conformal parameterizations. J. Sci. Comput. 73(1), 203–227 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhao, X., Su, Z., Gu, X.D., Kaufman, A., Sun, J., Gao, J., Luo, F.: Area-preservation mapping using optimal mass transport. IEEE Trans. Vis. Comput. Graph. 19(12), 2838–2847 (2013)

    Article  Google Scholar 

  31. Zou, G., Hu, J., Gu, X., Hua, J.: Authalic parameterization of general surfaces using Lie advection. IEEE Trans. Vis. Comput. Graph. 17(12), 2005–2014 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to thank Prof. Xianfeng David Gu for the useful discussion and the executable program files of the OMT algorithm. This work is partially supported by the Ministry of Science and Technology, the National Center for Theoretical Sciences, the Taida Institute for Mathematical Sciences, the ST Yau Center at NCTU, and the Center of Mathematical Sciences and Applications at Harvard University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei-Heng Yueh.

Appendix: Derivations of Gradients of the Stretch Energy

Appendix: Derivations of Gradients of the Stretch Energy

In this section, we derive the explicit formulas (17) and (18) for the gradients of the stretch energy.

Proposition 1

Given a mesh \({\mathcal {M}}\) of n vertices and a bijective piecewise affine mapping \(f:{\mathcal {M}}\rightarrow {\mathcal {D}}\subset {\mathbb {C}}\). Let \({\mathbf {f}}=(f(v_1), \ldots , f(v_n))^\top \) and \(L({\mathbf {f}})\) be defined as (14). Suppose \([{v}_j,{v}_k]\in {\mathcal {E}}({\mathcal {M}})\). Then Eq. (17) holds, for \(s=1,2\).

Proof

For each edge \([{v}_j,{v}_k]\in {\mathcal {E}}({\mathcal {M}})\),

$$\begin{aligned} \left[ ({\mathbf {f}}^s)^\top \frac{\partial L({\mathbf {f}})}{\partial {\mathbf {f}}^s}\right] _{j,k}&= \sum _{\alpha =1}^n {\mathbf {f}}^s_{\alpha } \frac{\partial L_{\alpha ,j}}{\partial {\mathbf {f}}_k^s} = \sum _{\alpha \ne j, k} {\mathbf {f}}^s_{\alpha } \frac{\partial L_{\alpha ,j}}{\partial {\mathbf {f}}_k^s} + {\mathbf {f}}^s_{j} \frac{\partial L_{j,j}}{\partial {\mathbf {f}}_k^s} + {\mathbf {f}}^s_{k} \frac{\partial L_{k,j}}{\partial {\mathbf {f}}_k^s} \\&= \sum _{\alpha \ne j, k} ({\mathbf {f}}^s_{\alpha }-{\mathbf {f}}^s_j) \frac{\partial L_{\alpha ,j}}{\partial {\mathbf {f}}_k^s} + ({\mathbf {f}}^s_{k}-{\mathbf {f}}^s_j) \frac{\partial L_{k,j}}{\partial {\mathbf {f}}_k^s} \\&= -\frac{1}{2} \sum _{[{v}_\alpha , {v}_j, {v}_k]\in {\mathcal {F}}({\mathcal {M}})} ({\mathbf {f}}^s_{\alpha }-{\mathbf {f}}^s_j) \frac{2{\mathbf {f}}^s_k - {\mathbf {f}}^s_\alpha - {\mathbf {f}}^s_j}{2|[{v}_i, {v}_j, {v}_k]|} \\&~~~~~ -\frac{1}{2} ({\mathbf {f}}^s_{k}-{\mathbf {f}}^s_j) \sum _{[{v}_\alpha , {v}_j, {v}_k]\in {\mathcal {F}}({\mathcal {M}})} \frac{{\mathbf {f}}^s_j - {\mathbf {f}}^s_\alpha }{2|[{v}_\alpha , {v}_j, {v}_k]|} \\&= -\frac{1}{2} \sum _{[{v}_\alpha , {v}_j, {v}_k]\in {\mathcal {F}}({\mathcal {M}})} \frac{({\mathbf {f}}_k^s-{\mathbf {f}}_\alpha ^s)({\mathbf {f}}_\alpha ^s-{\mathbf {f}}_j^s)}{2|[{v}_\alpha , {v}_j, {v}_k]|}. \end{aligned}$$

On the other hand, the diagonal entries

$$\begin{aligned} \left[ ({\mathbf {f}}^s)^\top \frac{\partial L({\mathbf {f}})}{\partial {\mathbf {u}}^s}\right] _{j,j}&= \sum _{\alpha =1}^n {\mathbf {f}}^s_{\alpha } \frac{\partial L_{\alpha ,j}}{\partial {\mathbf {f}}_j^s} = \sum _{\alpha \ne j} {\mathbf {f}}^s_{\alpha } \frac{\partial L_{\alpha ,j}}{\partial {\mathbf {f}}_j^s} + {\mathbf {f}}^s_{j} \frac{\partial L_{j,j}}{\partial {\mathbf {f}}_j^s} = \sum _{\alpha \ne j} ({\mathbf {f}}^s_{\alpha } - {\mathbf {f}}^s_{j}) \frac{\partial L_{\alpha ,j}}{\partial {\mathbf {f}}_j^s} \\&= -\frac{1}{2} \sum _{\alpha \ne j} ({\mathbf {f}}^s_{\alpha } - {\mathbf {f}}^s_{j}) \sum _{[{v}_\alpha , {v}_j, {v}_\beta ]\in {\mathcal {F}}({\mathcal {M}})} \frac{{\mathbf {f}}^s_\alpha - {\mathbf {f}}^s_\beta }{2 |[{v}_\alpha , {v}_j, {v}_\beta ]|} \\&= -\frac{1}{2} \sum _{[{v}_\alpha , {v}_j, {v}_\beta ]\in {\mathcal {F}}({\mathcal {M}})} \frac{({\mathbf {f}}^s_\alpha - {\mathbf {f}}^s_\beta )^2}{2 |[{v}_\alpha , {v}_j, {v}_\beta ]|}. \end{aligned}$$

\(\square \)

Proposition 2

Given a mesh \({\mathcal {M}}\) of n vertices and a bijective piecewise affine mapping \(f:{\mathcal {M}}\rightarrow {\mathcal {D}}\subset {\mathbb {C}}\). Let \({\mathbf {f}}=(f(v_1), \ldots , f(v_n))^\top \) and \(L({\mathbf {f}})\) be defined as (14). Suppose \([{v}_j,{v}_k]\in {\mathcal {E}}({\mathcal {M}})\). Then Eq. (18) holds, for \((s,t)=(1,2), (2,1)\).

Proof

For each edge \([{v}_j,{v}_k]\in {\mathcal {E}}({\mathcal {M}})\),

$$\begin{aligned} \left[ ({\mathbf {f}}^s)^\top \frac{\partial L({\mathbf {f}})}{\partial {\mathbf {f}}^t}\right] _{j,k}&= \sum _{\alpha =1}^n {\mathbf {f}}^s_{\alpha } \frac{\partial L_{\alpha ,j}}{\partial {\mathbf {f}}_k^t} = \sum _{\alpha \ne j, k} {\mathbf {f}}^s_{\alpha } \frac{\partial L_{\alpha ,j}}{\partial {\mathbf {f}}_k^t} + {\mathbf {f}}^s_{j} \frac{\partial L_{j,j}}{\partial {\mathbf {f}}_k^t} + {\mathbf {f}}^s_{k} \frac{\partial L_{k,j}}{\partial {\mathbf {f}}_k^t} \\&= \sum _{\alpha \ne j, k} ({\mathbf {f}}^s_{\alpha }-{\mathbf {f}}^s_j) \frac{\partial L_{\alpha ,j}}{\partial {\mathbf {f}}_k^s} + ({\mathbf {f}}^s_{k}-{\mathbf {f}}^s_j) \frac{\partial L_{k,j}}{\partial {\mathbf {f}}_k^s} \\&= -\frac{1}{2} \sum _{[{v}_\alpha , {v}_j, {v}_k]\in {\mathcal {F}}({\mathcal {M}})} ({\mathbf {f}}^s_{\alpha }-{\mathbf {f}}^s_j) \frac{2{\mathbf {f}}^t_k - {\mathbf {f}}^t_\alpha - {\mathbf {f}}^t_j}{2|[{v}_i, {v}_j, {v}_k]|} \\&~~~~~ -\frac{1}{2} ({\mathbf {f}}^s_{k}-{\mathbf {f}}^s_j) \sum _{[{v}_\alpha , {v}_j, {v}_k]\in {\mathcal {F}}({\mathcal {M}})} \frac{{\mathbf {f}}^t_j - {\mathbf {f}}^t_\alpha }{2|[{v}_\alpha , {v}_j, {v}_k]|} \\&= -\frac{1}{2} \sum _{[{v}_\alpha , {v}_j, {v}_k]\in {\mathcal {F}}({\mathcal {M}})} \frac{2({\mathbf {f}}_k^s-{\mathbf {f}}_\alpha ^s)({\mathbf {f}}_\alpha ^t-{\mathbf {f}}_j^t) - ({\mathbf {f}}_j^s-{\mathbf {f}}_\alpha ^s)({\mathbf {f}}_\alpha ^t-{\mathbf {f}}_k^t)}{2 |[{v}_\alpha , {v}_j, {v}_k]|}. \end{aligned}$$

On the other hand, the diagonal entries

$$\begin{aligned} \left[ ({\mathbf {f}}^s)^\top \frac{\partial L({\mathbf {f}})}{\partial {\mathbf {f}}^t}\right] _{j,j}&= \sum _{\alpha =1}^n {\mathbf {f}}^s_{\alpha } \frac{\partial L_{\alpha ,j}}{\partial {\mathbf {f}}_j^t} = \sum _{\alpha \ne j} {\mathbf {f}}^s_{\alpha } \frac{\partial L_{\alpha ,j}}{\partial {\mathbf {f}}_j^t} + {\mathbf {f}}^s_{j} \frac{\partial L_{j,j}}{\partial {\mathbf {f}}_j^t} = \sum _{\alpha \ne j} ({\mathbf {f}}^s_{\alpha } - {\mathbf {f}}^s_{j}) \frac{\partial L_{\alpha ,j}}{\partial {\mathbf {f}}_j^t} \\&= -\frac{1}{2} \sum _{\alpha \ne j} ({\mathbf {f}}^s_{\alpha } - {\mathbf {f}}^s_{j}) \sum _{[{v}_\alpha , {v}_j, {v}_\beta ]\in {\mathcal {F}}({\mathcal {M}})} \frac{{\mathbf {f}}^t_\alpha - {\mathbf {f}}^t_\beta }{2 |[{v}_\alpha , {v}_j, {v}_\beta ]|} \\&= -\frac{1}{2} \sum _{[{v}_\alpha , {v}_j, {v}_\beta ]\in {\mathcal {F}}({\mathcal {M}})} \frac{({\mathbf {f}}^s_\alpha - {\mathbf {f}}^s_\beta )({\mathbf {f}}^t_\alpha - {\mathbf {f}}^t_\beta )}{2 |[{v}_\alpha , {v}_j, {v}_\beta ]|}. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yueh, MH., Lin, WW., Wu, CT. et al. A Novel Stretch Energy Minimization Algorithm for Equiareal Parameterizations. J Sci Comput 78, 1353–1386 (2019). https://doi.org/10.1007/s10915-018-0822-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0822-7

Keywords

Mathematics Subject Classification

Navigation