Skip to main content
Log in

Über die Kondensation verschiedener Dämpfe bei adiabatischer Expansion

  • Kurze Mitteilungen
  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Summary

In accordance withKöhler's theory, considerable supersaturation is needed to get the entire body of condensation nuclei to grow into droplets; the degree of saturation is determined by the size of the individual nuclei and their solubility in the condensed liquid. Since it is known that in expansion meters all the atmospheric particles which count as condensation nuclei do in fact grow into droplets, it may be assumed that the designated supersaturation in the expansion chambers is achieved for at least a short space of time. The formation of the theoretically correct degree of supersaturation requires, however, that once the moisture saturation has been exceeded condensation should markedly lag behind pressure variation, in order to allow time for the requisite supersaturation to develop.

Experiments designed to test this question have established that condensation follows extraordinarily quickly on variation of pressure after moisture saturation has been exceeded. Condensation is also virtually uninfluenced by the choice of vapour used. At very high expansion speeds the condensation process is governed by the operative laws of diffusion. Measurements indicate that the degrees of supersaturation occurring in the expansion chambers lie considerably below the level of critical saturation even for the smallest nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

dp :

Druckänderung

I :

an der Photozelle wirksame Strahlungsintensität zu einem beliebigen Zeitpunkt [erg/cm2·s];

I 0 :

wieI, jedoch zu Beginn der Expansion [erg/cm2·s];

i :

van't Hoffscher Faktor;

M i :

Molekulargewicht des Stoffesi [g/Mol];

m i :

Menge des Stoffesi [g];

P o :

Atmosphärendruck [dyn/cm2];

p * :

p 0+dp [dyn/cm2];

r :

Radius der Tröpfchen [cm];

r kr :

Kritischer Gleichgewichtsradius [cm];

S :

Übersättigung;

S kr :

kritische Gleichgewichtsübersättigung;

T :

Temperature [0K];

ϱi :

Dichte des Stoffesi [g/cm3];

ϱi/j :

Oberflächenspannung voni gegenj [dyn/cm]

ReferencesLiteraturverzeichnis

  1. W. Thomson,On the Equilibrium of Vapour at a Curved Surface of Liquid, Proc. Roy. Soc. Edinb.7 (1), 63 (1870).

    MATH  Google Scholar 

  2. H. Köhler, Geofys. Publ. II (1923), Nr. 1 und Nr. 6.

  3. Chr. Junge, Ann. Met.3, 129 (1950).

    Google Scholar 

  4. W. Wieland, Z. angew. Math. Phys.7, 428 (1956).

    Article  Google Scholar 

  5. Chr. Junge, Beitr. Geophys.46, 108 (1936).

    Google Scholar 

  6. G. Gotsch, Geof. pura e applicata42 (1959/I).

  7. B. J. Mason,The Physics of Clouds (Clarendon Press, Oxford 1957).

    Google Scholar 

  8. W. E. Howell, J. Met.6, 134 (1949).

    Article  Google Scholar 

  9. W. A. Mordy undC. Rooth, Vortrag am 3. Symposium über Kondensationskerne in Cambridge, erscheint demnächst in Tellus.

  10. H. Mache, Met. Z.50, 393 (1933).

    Google Scholar 

Download references

Authors

Additional information

Osservatorio Ticinese della Centrale Meteorologica Svizzera.

Forschungsstelle am Osservatorio Ticinese der Eidgenössischen Kommission zum Studium der Hagelbildung und der Hagelabwehr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernasconi, S., Gotsch, G. & Locarno-Monti Über die Kondensation verschiedener Dämpfe bei adiabatischer Expansion. Journal of Applied Mathematics and Physics (ZAMP) 10, 509–519 (1959). https://doi.org/10.1007/BF01601359

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01601359

Navigation