Skip to main content
Log in

Pursuing polynomial bounds on torsion

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We show that for all ϵ > 0, there is a constant C(ϵ) > 0 such that for all elliptic curves E defined over a number field F with j(E) ∈ Q we have

$$\# E\left( F \right)\left[ {tors} \right] \leq C\left( \in \right){\left[ {F:\mathbb{Q}} \right]^{5 + 2 + \in }}$$

. We pursue further bounds on the size of the torsion subgroup of an elliptic curve over a number field E/F that are polynomial in [F: Q] under restrictions on j(E). We give an unconditional result for j(E) lying in a fixed quadratic field that is not imaginary of class number one as well as two further results, one conditional on GRH and one conditional on the strong boundedness of isogenies of prime degree for non-CM elliptic curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Abramovich, A linear lower bound on the gonality of modular curves, International Mathematics Research Notices (1996), 1005–1011.

    Google Scholar 

  2. K. Arai, On uniform lower bound of the Galois images associated to elliptic curves, Journal de Théorie des Nombres de Bordeaux 20 (2008), 23–43.

    Article  MathSciNet  MATH  Google Scholar 

  3. F. Breuer, Torsion bounds for elliptic curves and Drinfeld modules, Journal of Number Theory 130 (2010), 1241–1250.

    Article  MathSciNet  MATH  Google Scholar 

  4. P. L. Clark, On the Hasse principle for Shimura curves, Israel Journal of Mathematics 171 (2009), 349–365.

    Article  MathSciNet  MATH  Google Scholar 

  5. P. L. Clark, M. Milosevic and P. Pollack, Typically bounding torsion, Journal of Number Theory, to appear.

  6. P. L. Clark and P. Pollack, The truth about torsion in the CM case, Comptes Rendus Mathématique. Académie des Sciences. Paris 353 (2015), 683–688.

    Article  MathSciNet  MATH  Google Scholar 

  7. P. L. Clark and P. Pollack, The truth about torsion in the CM case, II, Quarterly Journal of Mathematics 68 (2017), 1313–1333.

    Article  MathSciNet  Google Scholar 

  8. A. Cadoret and A. Tamagawa, A uniform open image theorem for ℓ-adic representations, I, Duke Mathematical Journal 161 (2012), 2605–2634.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Cadoret and A. Tamagawa, A uniform open image theorem for ℓ-adic representations, II, Duke Mathematical Journal 162 (2013), 2301–2344.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Derickx, Torsion points on elliptic curves over number fields of small degree, PhD thesis, Leiden, 2016.

    Google Scholar 

  11. G. Faltings, The general case of S. Lang’s conjecture, in Barsotti Symposium in Algebraic Geometry (Abano Terme, 1991), Perspectives in Mathematics, Vol. 15, Academic Press, San Diego, CA, 1994, pp. 175–182.

    Chapter  Google Scholar 

  12. M. Fried and M. Jarden, Field Arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 11, Springer-Verlag, Berlin, 2008.

    Google Scholar 

  13. G. Frey, Curves with infinitely many points of fixed degree, Israel Journal of Mathematics 85 (1994), 79–83.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Hindry and N. Ratazzi, Torsion pour les variétés abéliennes de type I et II, Algebra & Number Theory 10 (2016), 1845–1891.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Hindry and J. Silverman, Sur le nombre de points de torsion rationnels sur une courbe elliptique, Comptes Rendus de l’Académie des Sciences. Série I. Mathématique 329 (1999), 97–100.

    MathSciNet  MATH  Google Scholar 

  16. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, Oxford, 2008.

    MATH  Google Scholar 

  17. M. Lazard, Groupes analytiques p-adiques, Institut des Hautes études Scientifiques. Publications Mathématiques 26 (1965), 389–603.

    MathSciNet  MATH  Google Scholar 

  18. Á. Lozano-Robledo, Uniform boundedness in terms of ramification, Research in Number Theory 4 (2018), Art. 6, 39 pp.

    Article  MathSciNet  Google Scholar 

  19. E. Larson and D. Vaintrob, Determinants of subquotients of Galois representations associated with abelian varieties, Journal of the Institute of Mathematics of Jussieu 13 (2014), 517–559.

    Article  MathSciNet  MATH  Google Scholar 

  20. B. Mazur, Rational isogenies of prime degree, Inventiones Mathematicae 44 (1978), 129–162.

    Article  MathSciNet  MATH  Google Scholar 

  21. D. Masser, Lettre à Daniel Bertrand du 10 novembre 1986.

  22. L. Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Inventiones Mathematicae 124 (1996), 437–449.

    Article  MathSciNet  MATH  Google Scholar 

  23. F. Momose, Isogenies of prime degree over number fields, Compositio Mathematica 97 (1995), 329–348.

    MathSciNet  MATH  Google Scholar 

  24. N. Nikolov and D. Segal, On finitely generated profinite groups. I. Strong completeness and uniform bounds, Annals of Mathematics 165 (2007), 171–238.

    Article  MathSciNet  MATH  Google Scholar 

  25. P. Parent, Bornes effectives pour la torsion des courbes elliptiques sur les corps de nombres, Journal für die Reine und Angewandte Mathematik 506 (1999), 85–116.

    Article  MathSciNet  MATH  Google Scholar 

  26. J. Rouse, What are the strongest conjectured uniform versions of Serre’s Open Image Theorem?, https://doi.org/mathoverflow.net/q/203837

  27. J.-P. Serre, Lectures on the Mordell–Weil Theorem, Aspects of Mathematics, Friedrich Vieweg & Sohn, Braunschweig, 1997.

    Google Scholar 

  28. J.-P. Serre, Abelian ℓ-adic Representations and Elliptic Curves, McGill University Lecture Notes, W. A. Benjamin, New York–Amsterdam, 1968.

    Google Scholar 

  29. J.-P. Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Inventiones Mathematicae 15 (1972), 259–331.

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Silverberg, Torsion points on abelian varieties of CM-type, Compositio Mathematica 68 (1988), 241–249.

    MathSciNet  MATH  Google Scholar 

  31. A. Silverberg, Points of finite order on abelian varieties, in p-adic Methods in Number Theory and Algebraic Geometry, Contemporary Mathematics, Vol. 133, American Mathematical Society, Providence, RI, 1992, pp. 175–193.

    Google Scholar 

  32. J. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, Vol. 151, Springer-Verlag, Berlin, 1994.

    Google Scholar 

  33. A. Silverberg and Yu. G. Zarhin, Semistable reduction and torsion subgroups of abelian varieties, Université de Grenoble. Annales de l’Institut Fourier 45 (1995), 403–420.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Pollack.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clark, P.L., Pollack, P. Pursuing polynomial bounds on torsion. Isr. J. Math. 227, 889–909 (2018). https://doi.org/10.1007/s11856-018-1751-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-018-1751-8

Navigation