Skip to main content
Log in

Infrared Semiconducting Transition-Metal Dichalcogenide Lasing with a Silicon Nanocavity

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The remaining challenge for silicon photonics is creating a light-emitter on chip. Recently, a special group of two-dimensional materials, semiconducting transition-metal dichalcogenides, have been developed. These materials demonstrate unique electronic properties and excellent optoelectronic performance, opening up new possibilities to finally overcome this challenge. In this letter, we report a novel nano-scale silicon laser source, which was achieved by combining a far-field optimized silicon photonic crystal cavity and a two-dimensional gain material, tri-layer molybdenum ditelluride. When an optical continuous-wave pump was employed, the maximum lasing output power obtained was at a wavelength of 1080 nm. Such output power shows that this novel source has great potential for use in on-chip optical communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Jung, J. Shim, K. Kwon, J. B. You, K. Choi and K. Yu, Sci Rep 6, 29841 (2016).

    Article  ADS  Google Scholar 

  2. A. A. Liles, K. Debnath and L. O’Faolain, Opt Lett 41, 894 (2016).

    Article  ADS  Google Scholar 

  3. B. Mayer et al., Nano lett. 16, 152 (2016).

    Article  ADS  Google Scholar 

  4. J. Pu, K. P. Lim, D. K. Ng, V. Krishnamurthy, C. W. Lee, K. Tang, A. Y. Seng Kay, T. H. Loh and Q. Wang, Opt Lett 40, 1378 (2015).

    Article  ADS  Google Scholar 

  5. Y. Zheng, K. T. Ng, Y. Wei, Y. Wang, Y. Huang, Y. Tu, C. W. Lee, B. Liu and S. T. Ho, Appl. Phys. Lett. 99, 5269 (2011).

    Google Scholar 

  6. G. R. Bhimanapati et al., ACS Nano 9, 11509 (2015).

    Article  Google Scholar 

  7. J. Gao, L. Li, J. Tan, H. Sun, B. Li, J. C. Idrobo, C. V. Singh, T. M. Lu and N. Koratkar, Nano Lett. 16, 3780 (2016).

    Article  ADS  Google Scholar 

  8. I. G. Lezama, A. Arora, A. Ubaldini, C. Barreteau, E. Giannini, M. Potemski and A. F. Morpurgo, Nano Lett. 15, 2336 (2015).

    Article  ADS  Google Scholar 

  9. H. Zeng and X. Cui, Chem. Soc. Rev. 44, 2629 (2015).

    Article  Google Scholar 

  10. Y. Li, J. Zhang, D. Huang, H. Sun, F. Fan, J. Feng, Z. Wang and C. Z. Ning, Nature Nanotech. 12, 987 (2017).

    Article  ADS  Google Scholar 

  11. V. Menon, Nature Mater. 14, 370 (2015).

    Article  ADS  Google Scholar 

  12. O. Salehzadeh, M. Djavid, N. H. Tran, I. Shih and Z. Mi, Nano Lett. 15, 5302 (2015).

    Article  ADS  Google Scholar 

  13. V. J. Sorger, NPG Asia Mater. 7, e200 (2015).

    Article  Google Scholar 

  14. S. Wu et al., Nature 520, 69 (2015).

    Article  ADS  Google Scholar 

  15. S. Tongay et al., Nat. Commun. 5, 3252 (2014).

    Article  Google Scholar 

  16. H. Zhang, W. Zhou, X. Li, J. Xu, Y. Shi, B. Wang and F. Miao, Appl. Phys. Lett. 108, 091902 (2016).

    Article  ADS  Google Scholar 

  17. H. Zhao, J. Wu, H. Zhong, Q. Guo, X. Wang, F. Xia, L. Yang, P. Tan and H. Wang, Nano Res. 8, 3651 (2015).

    Article  Google Scholar 

  18. A. Allain, J. Kang, K. Banerjee and A. Kis, Nature Mater. 14, 1195 (2015).

    Article  ADS  Google Scholar 

  19. J. N. Coleman et al., Science 331, 568 (2011).

    Article  ADS  Google Scholar 

  20. A. M. Jones et al., Nature Nanotech. 8, 634 (2013).

    Article  ADS  Google Scholar 

  21. K. F. Mak, C. Lee, J. Hone, J. Shan and T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).

    Article  ADS  Google Scholar 

  22. C. H. Naylor et al., Nano Lett. 16, 4297 (2016).

    Article  ADS  Google Scholar 

  23. C. Ruppert, O. B. Aslan and T. F. Heinz, Nano Lett. 14, 6231 (2014).

    Article  ADS  Google Scholar 

  24. Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang and X. Zhang, Nature Photon. 9, 733 (2015).

    Article  ADS  Google Scholar 

  25. H. Fang, J. Liu, H. Li, L. Zhou, L. Liu, J. Li, X. Wang, T. F. Krauss and Y. Wang, Laser & Photonics Rev. (to be published 2018).

    Google Scholar 

  26. S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani and D. Gerace, Opt. Express 18, 16064 (2010).

    Article  ADS  Google Scholar 

  27. Y. Ota, M. Kakuda, K. Watanabe, S. Iwamoto and Y. Arakawa, Opt. Express 25, 19981 (2017).

    Article  ADS  Google Scholar 

  28. A. Shakoor et al., Laser Photonics Rev. 7, 114 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juntao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Fang, H., Xiao, J. et al. Infrared Semiconducting Transition-Metal Dichalcogenide Lasing with a Silicon Nanocavity. J. Korean Phys. Soc. 73, 278–282 (2018). https://doi.org/10.3938/jkps.73.278

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.73.278

Keywords

Navigation