Skip to main content
Log in

Prediction of critical forging penetration efficiency for 06Cr19Ni9NbN steel by dynamic recrystallization

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

In order to determine the critical forging penetration efficiency (FPE) of 06Crl9Ni9NbN steel, a new model was presented to describe critical FPE, which is significant to optimize the steel forging process. The plane strain compression tests were conducted to obtain the model and confirm its validity. The results indicated that the dynamic recrystallization (DRX) volume fraction increases and the grain size decreases with the rise of reduction ratio. Meanwhile, the compression process was simulated by DEFORM software. The tensile tests were conducted and the results demonstrated that the mechanical properties gradually become stable when the reduction ratio increases to 30%, 34% and 40% at 1200, 1100 and 1000 °C, respectively. The calculated results based on this new model are consistent with experimental results, indicating that the model is suitable to predict the critical FPE for the steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. X. Zhao, Y. Liu, Mater. Des. 57 (2014) 494–502.

    Article  Google Scholar 

  2. W. H. Yuan, X. H. Gong, Y. Q. Sun, J. X. Liang, J. Iron Steel Res. Int. 23 (2016) 401–408.

    Article  Google Scholar 

  3. H. Zhang, D. Wang, P. Xue, Mater. Des. 110 (2016) 802–810.

    Article  Google Scholar 

  4. M. Ma, H. Ding, Z. Y. Tang, J. W. Zhao, Z. H. Jiang, G. W. Fan, J. Iron Steel Res. Int. 23 (2016) 244–252.

    Article  Google Scholar 

  5. F. Peng, X. H. Dong, K. Liu, H. Y. Xie, J. Iron Steel Res. Int. 22 (2015) 931–936.

    Article  Google Scholar 

  6. A. Ghaei, M. R. Movahhedy, T. A. Karimi, J. Mater. Process. Technol. 170 (2005) 156–163.

    Article  Google Scholar 

  7. A. Bapari, A. Najafizadeh, M. Moazeny, Mater. Sci. Eng. A 491 (2008) 258–265.

    Article  Google Scholar 

  8. D. S. Ma, H. X. Chi, J. Zhou, Q. L. Yong, J. Iron Steel Res. Int. 19 (2012) No. 3, 56–61.

    Article  Google Scholar 

  9. Y. Wu, X. Dong, Q. Yu, J. Mech. Sci. 85 (2014) 120–129.

    Article  Google Scholar 

  10. M. Sanjari, P. Saidi, A. K. Taheri, Mater. Des. 38 (2012) 147–153.

    Article  Google Scholar 

  11. Y. Wu, X. Dong, J. Mech. Sci. 103 (2015) 1–8.

    Article  Google Scholar 

  12. S. Y. Yang, J. Mater. Process. Technol. 28 (1991) 307–319.

    Article  Google Scholar 

  13. S. Y. Yang, C. Q. Su, W. H. Wang, Equipment Environmental Eng. 3 (1987) 23–26.

    Google Scholar 

  14. Z. F. Wang, Z. S. Hu, J. Northeast. Univ. 15 (1994) 35–39.

    Google Scholar 

  15. Z. S. Hu, Titanium Industry Progress 5 (2000) 15–18.

    Google Scholar 

  16. X. D. Zhou, X. R. Liu, J. B. Xing, J. Shanghai Jiaotong Univ. 17 (2012) 315–318.

    Article  Google Scholar 

  17. Y. R. Yao, J. S. Liu, X. W. Duan, Trans. Mater. Heat Treat. 36 (2015) 89–93.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-sheng Liu Ph.D..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, Yx., Liu, Js., Duan, Xw. et al. Prediction of critical forging penetration efficiency for 06Cr19Ni9NbN steel by dynamic recrystallization. J. Iron Steel Res. Int. 24, 649–653 (2017). https://doi.org/10.1016/S1006-706X(17)30097-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(17)30097-3

Key words

Navigation