Foundations of computing Volume 12

Vincent Froese

Fine-Grained Complexity Analysis of Some Combinatorial
Data Science Problems

Technische '
Universitat

Universitdtsverlag der TU Berlin Berlin

Vincent Froese

Fine-Grained Complexity Analysis of Some Combinatorial
Data Science Problems

The scientific series Foundations of computing of the
Technische Universitdt Berlin is edited by:

Prof. Dr. Rolf Niedermeier,

Prof. Dr. Uwe Nestmann,

Prof. Dr. Stephan Kreutzer.

Foundations of computing | 12

Vincent Froese

Fine-Grained Complexity Analysis of Some Combinatorial
Data Science Problems

Universitéatsverlag der TU Berlin

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the

Deutsche Nationalbibliografie; d etailed bibliographic data

are available on the internet at http://dnb.dnb.de.

Universititsverlag der TU Berlin, 2018
http://www.verlag.tu-berlin.de

Fasanenstr. 88, 10623 Berlin
Tel.: +49 (0)30 314 76131 / Fax: -76133
E-Mail: publikationen@ub.tu-berlin.de

Zugl.: Berlin, Techn. Univ., Diss., 2018

Gutachter: Prof. Dr. Rolf Niedermeier

Gutachter: Prof. Dr. Tobias Friedrich

Gutachter: Prof. Dr. Marek Cygan

Die Arbeit wurde am 28. Mai 2018 an der Fakultdt IV unter
Vorsitz von Prof. Dr. Uwe Nestmann erfolgreich verteidigt.

This work — except for quotes, figures and w here otherwise noted —
is licensed under the Creative Commons Licence CC BY 4.0
http://creativecommons.org/licenses /by /4.0

Cover image: NASA Goddard Space Flight Center |
https://www.flickr.com/photos/gsfc/5588722815 | CC BY 2.0
https://creativecommons.org/licenses /by /2.0

Print: docupoint GmbH
Layout/Typesetting: Vincent Froese

ISBN 978-3-7983-3003-0 (print)
ISBN 978-3-7983-3004-7 (online)

ISSN 2199-5249 (print)
ISSN 2199-5257 (online)

Published online on the institutional repository of the
Technische Universitédt Berlin:

DOI 10.14279/depositonce-7123
http://dx.doi.org/10.14279 /depositonce-7123

http://dnb.dnb.de
http://www.verlag.tu-berlin.de
mailto:publikationen@ub.tu-berlin.de
http://creativecommons.org/licenses/by/4.0
https://www.flickr.com/photos/gsfc/5588722815
https://creativecommons.org/licenses/by/2.0
http://dx.doi.org/10.14279/depositonce-7123

Zusammenfassung

Die vorliegende Dissertation befasst sich mit der Analyse der Berechnungskom-
plexitdt von NP-schweren Problemen aus dem Bereich Data Science. Fiir die
meisten der hier betrachteten Probleme wurde die Berechnungskomplexitéit
bisher nicht sehr detailliert untersucht. Wir filhren daher eine genaue Komplexi-
tatsanalyse dieser Probleme durch, mit dem Ziel, effizient 16sbare Spezialfélle zu
identifizieren. Zu diesem Zweck nehmen wir eine parametrisierte Perspektive ein,
bei der wir bestimmte Parameter definieren, welche Eigenschaften einer konkre-
ten Probleminstanz beschreiben, die es ermdglichen, diese Instanz effizient zu
16sen. Wir entwickeln dabei spezielle Algorithmen, deren Laufzeit fiir konstante
Parameterwerte polynomiell ist. Dariiber hinaus untersuchen wir, in welchen
Féllen die Probleme selbst bei kleinen Parameterwerten berechnungsschwer
bleiben. Somit skizzieren wir die Grenze zwischen schweren und handhabbaren
Probleminstanzen, um ein besseres Verstandnis der Berechnungskomplexitét fiir
die folgenden praktisch motivierten Probleme zu erlangen.

Beim GENERAL POSITION SUBSET SELECTION Problem ist eine Menge von
Punkten in der Ebene gegeben und das Ziel ist es, moglichst viele Punkte in
allgemeiner Lage davon auszuwéahlen. Punktmengen in allgemeiner Lage sind
in der Geometrie gut untersucht und spielen unter anderem im Bereich der
Datenvisualisierung eine Rolle. Wir beweisen etliche Harteergebnisse und zeigen,
wie das Problem mittels Polynomzeitdatenreduktion gelost werden kann, falls
die Anzahl gesuchter Punkte in allgemeiner Lage sehr klein oder sehr grofs ist.

DisTINCT VECTORS ist das Problem, moglichst wenige Spalten einer ge-
gebenen Matrix so auszuwéhlen, dass in der verbleibenden Submatrix alle
Zeilen paarweise verschieden sind. Dieses Problem hat Anwendungen im Bereich
der kombinatorischen Merkmalsselektion. Wir betrachten Kombinationen aus
maximalem und minimalem paarweisen Hamming-Abstand der Zeilenvekto-
ren und beweisen eine Komplexitdtsdichotomie fiir Bindrmatrizen, welche die
NP-schweren von den polynomzeitlésbaren Kombinationen unterscheidet.

Co-CLUSTERING ist ein bekanntes Matrix-Clustering-Problem aus dem Ge-
biet Data-Mining. Ziel ist es, eine Matrix in méglichst homogene Submatrizen
zu partitionieren. Wir fiihren eine umfangreiche multivariate Komplexitéitsana-

lyse durch, in der wir zahlreiche NP-schwere, sowie polynomzeitlosbare und
festparameterhandhabbare Spezialfélle identifizieren.

Bei F-FREE EDITING handelt es sich um ein generisches Graphmodifikations-
problem, bei dem ein Graph durch méglichst wenige Kantenmodifikationen so
abgedndert werden soll, dass er keinen induzierten Teilgraphen mehr enthélt,
der isomorph zum Graphen F' ist. Wir betrachten die drei folgenden Spezialfélle
dieses Problems: Das Graph-Clustering-Problem CLUSTER EDITING aus dem
Bereich des Maschinellen Lernens, das TRIANGLE DELETION Problem aus der
Netzwerk-Cluster-Analyse und das Problem FEEDBACK ARC SET IN TOURNA-
MENTS mit Anwendungen bei der Aggregation von Rankings. Wir betrachten
eine neue Parametrisierung mittels der Differenz zwischen der maximalen Anzahl
Kantenmodifikationen und einer unteren Schranke, welche durch eine Menge von
induzierten Teilgraphen bestimmt ist. Wir zeigen Festparameterhandhabbarkeit
der drei obigen Probleme beziiglich dieses Parameters. Dariiber hinaus beweisen
wir etliche NP-Schwereergebnisse fiir andere Problemvarianten von F-FREE
EDITING bei konstantem Parameterwert.

DTW-MEAN ist das Problem, eine Durchschnittszeitreihe beziiglich der
Dynamic-Time-Warping-Distanz fiir eine Menge gegebener Zeitreihen zu berech-
nen. Hierbei handelt es sich um ein grundlegendes Problem der Zeitreihenanalyse,
dessen Komplexitdt bisher unbekannt ist. Wir entwickeln einen exakten Expo-
nentialzeitalgorithmus fiir DTW-MEAN und zeigen, dass der Spezialfall binérer
Zeitreihen in polynomieller Zeit 16sbar ist.

vi

Abstract

This thesis is concerned with analyzing the computational complexity of NP-
hard problems related to data science. For most of the problems considered
in this thesis, the computational complexity has not been intensively studied
before. We focus on the complexity of computing exact problem solutions
and conduct a detailed analysis identifying tractable special cases. To this
end, we adopt a parameterized viewpoint in which we spot several parameters
which describe properties of a specific problem instance that allow to solve the
instance efficiently. We develop specialized algorithms whose running times are
polynomial if the corresponding parameter value is constant. We also investigate
in which cases the problems remain intractable even for small parameter values.
We thereby chart the border between tractability and intractability for some
practically motivated problems which yields a better understanding of their
computational complexity. In particular, we consider the following problems.

GENERAL POSITION SUBSET SELECTION is the problem to select a maximum
number of points in general position from a given set of points in the plane.
Point sets in general position are well-studied in geometry and play a role in
data visualization. We prove several computational hardness results and show
how polynomial-time data reduction can be applied to solve the problem if the
sought number of points in general position is very small or very large.

The DISTINCT VECTORS problem asks to select a minimum number of columns
in a given matrix such that all rows in the selected submatrix are pairwise
distinct. This problem is motivated by combinatorial feature selection. We
prove a complexity dichotomy with respect to combinations of the minimum
and the maximum pairwise Hamming distance of the rows for binary input
matrices, thus separating polynomial-time solvable from NP-hard cases.

Co-CLUSTERING is a well-known matrix clustering problem in data mining
where the goal is to partition a matrix into homogenous submatrices. We
conduct an extensive multivariate complexity analysis revealing several NP-hard
and some polynomial-time solvable and fixed-parameter tractable cases.

The generic F-FREE EDITING problem is a graph modification problem
in which a given graph has to be modified by a minimum number of edge

vii

modifications such that it does not contain any induced subgraph isomorphic
to the graph F'. We consider three special cases of this problem: The graph
clustering problem CLUSTER EDITING with applications in machine learning,
the TRIANGLE DELETION problem which is motivated by network cluster
analysis, and FEEDBACK ARC SET IN TOURNAMENTS with applications in
rank aggregation. We introduce a new parameterization by the number of
edge modifications above a lower bound derived from a packing of induced
forbidden subgraphs and show fixed-parameter tractability for all of the three
above problems with respect to this parameter. Moreover, we prove several NP-
hardness results for other variants of F-FREE EDITING for a constant parameter
value.

The problem DTW-MEAN is to compute a mean time series of a given
sample of time series with respect to the dynamic time warping distance. This
is a fundamental problem in time series analysis the complexity of which is
unknown. We give an exact exponential-time algorithm for DTW-MEAN and
prove polynomial-time solvability for the special case of binary time series.

viii

Preface

This thesis contains some outcomes of my research activity at TU Berlin in the
Algorithmics and Computational Complexity group of Prof. Rolf Niedermeier
from December 2012 until December 2017 (including a parental leave from
August 2016 to March 2017). From December 2012 to February 2015, I gratefully
received financial support by Deutsche Forschungsgemeinschaft in the project
DAMM (NI 369/13).

The presented results are partly based on journal and conference publications
which were prepared in close collaboration with several coauthors, which are,
in alphabetical order, René van Bevern, Markus Brill, Laurent Bulteau, Till
Fluschnik, Sepp Hartung, Brijnesh Johannes Jain, Iyad Kanj, Christian Ko-
musiewicz, André Nichterlein, Rolf Niedermeier, David Schultz, and Manuel
Sorge.

In the following, I will briefly elaborate on my contributions to the respective
publication corresponding to each chapter.

Chapter 3. Iyad Kanj (visiting TU Berlin from October 2014 to March 2015)
proposed to study the GENERAL POSITION SUBSET SELECTION problem which
I found appealing due to its simple and natural definition. Basically all results
were jointly developed by all authors. I was especially involved in proving
the kernelization results and wrote down major parts of our results for a
conference version. Iyad Kanj presented the results at the 25th Fall Workshop
on Computational Geometry (FWCG ’15) and at the 28th Canadian Conference
on Computational Geometry (CCCG ’16) [Fro+16b|. I was also responsible
for preparing a journal version for the International Journal of Computational
Geometry & Applications [Fro+17].

Chapter 4. In my master thesis [Frol2], I studied several combinatorial fea-
ture selection problems, among which was DISTINCT VECTORS. The results
included the NP-hardness for binary matrices with maximum row Hamming
distance four and minimum row Hamming distance two and polynomial-time

ix

solvability for maximum Hamming distance three. I presented the results at
the 38th International Symposium on Mathematical Foundations of Computer
Science (MFCS ’13) [Fro+13]. Afterwards, I realized that the polynomial-time
solvable cases can actually be generalized to arbitrary maximum Hamming
distance depending on the minimum Hamming distance. I wrote down the
proof for the full dichotomy which is published in the Journal of Computer and
System Sciences [Fro+16a]. The chapter of this thesis consists of this dichotomy
result.

Chapter 5. Rolf Niedermeier suggested to study the complexity of co-clustering
problems. I contributed the hardness results. The idea for the reduction to
SAT was by Laurent Bulteau. I was involved in developing the algorithmic
results based on the SAT reduction and also in writing major parts for a
conference version which I presented at the 25th International Symposium on
Algorithms and Computation (ISAAC ’14) [Bul+14]. T was also responsible
for preparing the journal version for which I implemented the SAT solving
approach and conducted some preliminary experiments. The article appeared
in Algorithms [Bul+16a).

Chapter 6. René van Bevern and Christian Komusiewicz had the idea to
parameterize edge modification problems above lower bounds obtained by
packings of induced forbidden subgraphs. They already had some preliminary
results for TRIANGLE DELETION with triangle packings when I joined the project.
Together, we developed the generic framework for vertex-disjoint packings of
arbitrary cost-t subgraphs. Additionally, I contributed the results for FEEDBACK
ARC SET IN TOURNAMENTS. We prepared a conference version which was
presented by René van Bevern at the 11th International Computer Science
Symposium in Russia (CSR ’16) [BFK16]. A journal version was invited to a
special issue of Theory of Computing Systems [BFK18]. For this thesis, I also
revised some of the proofs.

Chapter 7. In January 2017, Brijnesh Johannes Jain contacted me with a
question regarding the complexity of the DT W-MEAN problem. On the annual
research group retreat in April 2017 near Boiensdorf, we started to investigate
the problem together with Markus Brill, Till Fluschnik and Rolf Niedermeier.
We developed some first ideas for a polynomial-time algorithm for the binary
case. Back in Berlin, I figured out the details and wrote down the proof.

Together, we discovered some flaws in some claims from the literature regarding
the computation of exact solutions. I developed the dynamic program solving
DTW-MEAN exactly and implemented it for some benchmark experiments. A
conference version was presented by Till Fluschnik at the SIAM International
Conference on Data Mining (SDM ’18) [Bri+18]. I presented the results at the
Workshop on Optimization, Machine Learning, and Data Science and also at
the 8rd Highlights of Algorithms Conference.

Besides the abovementioned research, I also contributed to projects, which are
not covered by my thesis. I was involved in studying vertex dissolution problems
in networks [Bev+15]|, degree-based graph anonymization [Bre+15b], triangle
counting in graph streams [Bul+16b], diffusion games on graphs [BFT16], degree-
constrained editing of undirected graphs [FNN16] and directed graphs [Bre+18§],
influence propagation in social networks [Bul+17|, graph partitioning prob-
lems [Bev+17], and complexity aspects of point visibility graphs [Him+18].

Acknowledgements. 1 am thankful to Rolf Niedermeier for teaching me as
a master’s student and giving me the opportunity to work in his group as a
PhD student. Starting in 2010, I attended his lectures on algorithmics and
complexity at TU Berlin. In 2012, he supervised my master thesis. Subsequently,
he supervised my work on this PhD thesis until 2018.

Furthermore, I would like to thank all my former and current colleagues
Matthias Bentert, René van Bevern, Robert Bredereck, Markus Brill, Laurent
Bulteau, Jichua Chen, Stefan Fafianie, Till Fluschnik, Marcelo Garlet Millani,
Sepp Hartung, Falk Hiiffner, Andrzej Kaczmarczyk, Christian Komusiewicz,
Stefan Kratsch, Junjie Luo, Hendrik Molter, André Nichterlein, Piotr Skowron,
Manuel Sorge, Nimrod Talmon, Christlinde Thielcke, Anh Quyen Vuong, Math-
ias Weller, Gerhard J. Woeginger, and Philipp Zschoche.

Moreover, I enjoyed working with my groupexternal coauthors Anne-Sophie
Himmel, Clemens Hoffmann, Brijnesh Johannes Jain, Iyad Kanj, Marcel Koseler,
Pascal Kunz, Konstantin Kutzkov, Rasmus Pagh, and David Schultz.

Finally, I am thankful to Deutsche Forschungsgemeinschaft for financial
support.

xi

Contents

1 Introduction 1
2 Preliminaries and Notation 5
2.1 Numbers, Sets, and Matrices 5
2.2 Graph Theory 6
2.3 Computational Complexity 7
2.4 Parameterized Complexity 8
2.5 Approximation 11
3 General Position Subset Selection 13
3.1 Imtroduction. 13
3.2 HardnessResults 16
3.3 Fixed-Parameter Tractability 24
3.3.1 Fixed-Parameter Tractability Results for the Parameter
Solution Size k 24
3.3.2 Fixed-Parameter Tractability Results for the Dual Pa-
rameter b 30
3.3.3 Excluding O(h?~€)-point Kernels 33
34 Conclusion 37
4 Distinct Vectors 39
4.1 Introduction 39
4.2 A Complexity Dichotomy for Binary Matrices 42
4.2.1 NP-Hardness for Heterogeneous Data 43
4.2.2 Polynomial-Time Solvability for Homogeneous Data . . . 49
4.3 Conclusion 62
5 Co-Clustering 63
5.1 Introduction. 63
5.2 Problem Definition and First Observations 66

xiii

5.3 Hardness Results
5.3.1 Constant Number of Clusters
5.3.2 Constant Number of Rows
5.3.3 Clustering into Consecutive Clusters
5.4 Tractability Results
5.4.1 Reduction to CNF-SAT Solving
5.4.2 Polynomial-Time Solvability
5.4.3 Fixed-Parameter Tractability
5.5 Conclusion e
6 F-Free Editing
6.1 Introduction.
6.2 General Approach o
6.3 Triangle Deletion L.
6.4 Feedback Arc Set in Tournaments
6.5 Cluster Editing
6.6 NP-Hardness Results
6.6.1 Hard Edge Deletion Problems
6.6.2 Hardness for Edge-Disjoint Packings
6.6.3 Hard Vertex Deletion Problems
6.7 Conclusion e
7 Dynamic Time Warping
7.1 Introduction.
7.2 Preliminaries e
7.3 Problematic Statements in the Literature
7.4 An XP Algorithm for the Number of Input Series
7.5 Polynomial-Time Solvability for Binary Data
7.6 Conclusion e
8 Outlook
Bibliography

Xiv

Chapter 1

Introduction

In this thesis, we perform an in-depth computational complexity analysis of
various computationally hard problems related to data science questions. The
goal is to obtain a fine-grained picture of their complexity landscapes. Such a
detailed analysis provides insights into which properties make a problem hard
to solve, thereby allowing one to devise specialized algorithms to efficiently
compute a solution for certain special cases. Thus, we chart the border between
intractable and tractable cases (always considering exact solutions).

To this end, we adopt a parameterized viewpoint, where a specific property of
a problem instance is measured in terms of a parameter which usually comprises
a single integer value (for example, the number of rows of an input matrix). This
approach is motivated by the idea that, in practice, real-world instances often
have an underlying structure with certain properties (that is, small parameter
values) that may render these instances tractable. As a tool for designing
efficient algorithms, we adopt the concept of fized-parameter tractability, which
has successfully been applied over the last years to overcome the intractability
of NP-hard problems. The notion of fixed-parameter tractability describes the
fact that an instance with a small parameter value can be solved efficiently
(a constant parameter value implying a polynomial running time where the
degree of the polynomial does not depend on the parameter). In some cases,
where fixed-parameter tractability is unknown or unlikely, we show that it is
still possible to spot polynomial-time solvability for specific constant parameter
values.

While a majority of parameterized complexity research so far mainly focused
on (classic) graph-theoretic problems, we study a diverse selection of combi-
natorial problems originating from data science-related domains which have
not been intensively studied from a parameterized viewpoint until now, such
as machine learning, data mining, time series analysis, and also computational

geometry (geometric questions play a role in data visualization for example).
The contribution of this research is twofold:

First, we broaden the field of application of parameterized algorithmics to
some “non-standard” problems such as finding points in general position, feature
selection, co-clustering, or time series averaging. Problems like these have so
far rarely been investigated from a parameterized viewpoint. In fact, some of
the problems we study have drawn no or only little attention concerning their
(classical) computational complexity at all. Hence, in parts, our results initialize
complexity-theoretic studies of some practically motivated problems (which
are often solved heuristically) and encourage further research in this direction.
Moreover, by studying problems on a variety of discrete structures such as point
sets, matrices, (di-) graphs, and time series, we showcase the versatility and the
merit of a parameterized view for a fine-grained complexity analysis’.

Second, in conducting our complexity analysis we en passant enrich the
toolbox of parameterized and exact algorithmics by some further algorithmic
ideas and facets. For example, this includes the following aspects:

e A crucial part of deriving fixed-parameter tractability is the choice of
parameter. While often the so-called “standard parameter” (usually the
size or the quality of a sought solution) is considered for many problems,
we aim at identifying “non-standard” parameters for our problems. For
example, we consider multivariate parameters which are combinations
of multiple single parameters. This provides a systematic understanding
of the inherent computational hardness of a problem. In addition, we
consider above-guarantee parameterization, where the parameter is the
difference between the size of a sought solution and a lower bound for
the size of a solution for the given input instance. This “data-driven”
parameter can be computed in advance for a given input instance and can
be much smaller than the standard parameter solution size. Hence, this
might lead to faster algorithms in practice.

e Fixed-parameter tractability results often involve a detailed analysis of the
combinatorial structure of a problem instance (it has even been described
as “polynomial-time extremal structure theory” [Est+05]). Sometimes
it is possible to make use of known results from pure combinatorics in

IThis is in the spirit of the Workshop on Parameterized Complexity - “Not About Graphs”
(organized by Michael Fellows and Frances Rosamond) which first took place in 2011 at
Charles Darwin University.

order to achieve an algorithmic result. A famous example is the use of the
sunflower lemma for kernelizations of HITTING SET [FG06, Chapter 9].
This thesis contains two further examples of how to make algorithmic use
of extremal combinatorics for a geometry problem and a matrix problem.

e A prominent technique to derive fixed-parameter tractability is to apply
polynomial-time data reduction to obtain problem kernels. We provide
some generic data reduction rules which are equipped with an additional
parameter that allows for a tradeoff between running time and effectiveness.
The possibility of such a fine-tuned data reduction might be valuable in
practice.

In the following, we give a brief overview of this work.

To start with, we provide preliminaries such as the theoretical background of
(parameterized) computational complexity theory in Chapter 2.

Chapter 3 studies a point set problem from computational geometry, where
the goal is to select a maximum number of points in general position from a
given set of points in the plane. The computational complexity of this problem
has not been studied before. We prove several intractability results and also
show how polynomial-time data reduction can be applied in order to obtain
(tight) problem kernels based on results from combinatorial geometry. We also
note that existing ideas in the literature generalize to a framework for showing
kernel lower bounds for other point set problems.

In Chapter 4, we again make use of a combinatorial result (this time from
extremal set theory). Notably, in doing so, we even achieve polynomial-time
solvability (in contrast to fixed-parameter tractability in Chapter 3). The
problem we study is motivated by combinatorial feature selection tasks in data
mining and machine learning and asks to select a minimum number of columns of
a matrix that are sufficient to distinguish all rows. We consider the combination
of the maximum and the minimum Hamming distance between any pair of rows
as a parameter. This allows us to define a clear complexity border, that is,
we prove a dichotomy fully separating NP-hard cases from polynomial-time
solvable cases (for binary matrices).

Chapter 5 is concerned with a data mining problem which is to cluster a matrix
into homogenous submatrices by partitioning both the rows and the columns of
the matrix. While in Chapter 4 we considered a combination of two parameters,
we now conduct an extensive multivariate complexity analysis (involving five
parameters) revealing NP-hardness for several parameter combinations and some
polynomial-time solvable and also fixed-parameter tractable cases (yet, we do

not reach a complete dichotomy as in Chapter 4, since some cases remain open).
Interestingly, the polynomial-time and fixed-parameter tractability results are
achieved via a reduction to SAT solving, which draws a connection between two
seemingly remote domains.

In Chapter 6, we continue with graph-based clustering. We develop a gen-
eral framework for deriving fixed-parameter tractability (problem kernels and
algorithms) of graph (edge) modification problems with applications in machine
learning and bioinformatics such as correlation clustering (or cluster editing),
that is, to find a clustering that maximizes similarity (or agreement) between
given data points. We consider a parameterization above a given lower bound
of required edge modifications computed from a packing of induced subgraphs.
Here, the packing incorporates structural information about the input graph
which can be used to apply data reduction. We apply the framework to three
example problems including cluster editing and two other problems motivated by
network cluster analysis and rank aggregation. Moreover, we prove NP-hardness
for a constant parameter value for several other problems, thus outlining the
border of what is achievable with our parameterization.

Finally, Chapter 7 discusses a problem related to clustering time series, namely,
to compute a mean of a sample of time series in dynamic time warping spaces.
This is a fundamental problem in time series analysis whose computational
complexity is unknown. In practice, the task is solved only by heuristics without
provable performance guarantees. We give a first exact algorithm for this
problem running in exponential time (the running time is polynomial for a
constant number of input time series). As in Chapters 4 and 5, we also spot a
polynomial-time solvable special case, namely for binary time series. We recently
proved several hardness results and a running time lower bound [BFN18] (not
included in this thesis).

Chapter 8 concludes the thesis and outlines possible directions for future
research.

Chapter 2

Preliminaries and Notation

In this section, we define notation and introduce basic concepts used in this
thesis.

2.1 Numbers, Sets, and Matrices

We use the following notation for sets of numbers

e N=1{0,1,2,3,...} the set of natural numbers,

e 7 the set of integers,

e Q the set of rational numbers,

o R the set of real numbers.
A superscript + (or —) indicates the subset of positive (or negative) numbers
and a subscript 0 indicates that 0 is also contained in the set. For n,i,j € N,
we define [n] :={1,2,...,n} and [i,j] := {i,i+ 1,...,j}. The set of all size-k
subsets of a set X is denoted by ()k()

We use standard terminology for matrices. A matrix A = (a;;) € Q™™
consists of m rows and n columns where a;; denotes the entry in row ¢ and col-
umn j. We denote the i-th row vector of A by a; and the j-th column vector
by a.;. For subsets I C [m] and J C [n] of row and column indices, we
write A[l, J] := (ai;) @, jyerx s for the (|I] x |.J|)-submatrix of A containing only
the rows with indices in I and the columns with indices in J. For a vector x, we
denote by (z); the j-th entry of z. The null vector is denoted by 0 := (0,...,0).

2.2 Graph Theory

This section provides some basic definitions from graph theory.

Undirected Graphs. An undirected graph (or graph) is a pair G = (V| E)
containing a vertex set V(G) := V and an edge set E(G) .= E C (‘2/) We
set n:=|V|], m = |E| and |G| :=n + m.

A vertex v € V is a neighbor of (or is adjacent to) a vertex u € V if {u,v} € E
and a vertex v € V is incident with an edge e € E if v € e. The open
neighborhood of vertex v is the set Ng(v) := {u € V | {u,v} € E} of its
neighbors. The closed neighborhood of v is Ng[v] := Ng(v) U {v}. For a vertex
set V' C V, we define Ng(V') := ,cy» Na(v). The degree of a vertex v is
the number degs(v) := |Ng(v)| of its neighbors. We omit subscripts if the
corresponding graph is clear from the context.

We denote by G := (V, (‘2/) \ E) the complement graph of G. For a vertex
subset V' C V, the subgraph induced by V' is G[V'] :== (V' EN (‘g,)) For an
edge subset E' C (‘2/), V(E’) denotes the set of all endpoints of edges in E’
and we define the induced subgraph G[E’] ;== (V(E'), E’). For a set E' C (‘2/),
we denote by G + E' := (V, EU E’) the graph that results from inserting all
edges in E’ into G and by G — E' := (V,E \ E’) we denote the graph that
results from deleting the edges in E’. For a vertex set V' C V| we define the
graph G — V' :=G[V \ V']

Directed Graphs. A directed graph (or digraph) G = (V, A) consists of a
vertex set V(G) and an arc set A(G) := A C {(u,v) € V? | u # v}.

A tournament is a directed graph (V, A) such that, for each pair {u,v} € (‘2/),
either (u,v) € A or (v,u) € A.

Hypergraphs. A hypergraph is a pair H = (V| E) containing a vertex set V
and a set F of hyperedges. Each hyperedge in F is a subset F' C V of vertices.
For d € N, a hypergraph H is called d-uniform if all hyperedges in H contain
d elements. Thus, an undirected graph is a 2-uniform hypergraph.

2.3 Computational Complexity

In this section, we briefly recall the basic concepts of classical complexity theory
(we refer to the books by Garey and Johnson [GJ79], Papadimitriou [Pap94],
and Arora and Barak [AB09] for a detailed introduction). Complexity theory
investigates the computational complexity of decision problems usually in terms
of the worst-case running time required to solve a given problem algorithmically
(often formalized by Turing machines).

Formally, given a finite alphabet ¥ (usually the binary alphabet ¥ = {0,1}),
a decision problem is to decide whether a given word (or instance) x € X* is
contained in a given language L C ¥*. For example, an instance x might be
an appropriate encoding of numbers, a matrix or a graph. If z € L, then z is
called a yes-instance, otherwise, x is a no-instance.

The two most important complexity classes are called P and NP. The class P
contains all languages which can be decided in polynomial time, that is, in O(|z|°)
time for some constant ¢, where |z| denotes the length of the input instance,
by a deterministic Turing machine. Problems contained in P are considered to
be computationally tractable. The class NP contains all problems that can be
solved in polynomial time by a nondeterministic Turing machine. It is clear
that P C NP but it is a famous open problem whether P = NP holds. In fact,
it is widely conjectured that P £ NP. Thus, the hardest problems in NP are
believed to be intractable.

NP-hardness is defined in terms of reductions.

Definition 2.1. Let A, B C ¥*. A polynomial-time many-one reduction from A
to B is a polynomial-time computable function f : ¥* — 3* such that for
all z € ¥* it holds z € A & f(x) € B.

A problem A is NP-hard if for every problem B in NP there exists a polynomial-
time many-one reduction from B to A. If A is also contained in NP, then A
is called NP-complete. A polynomial-time algorithm solving an NP-complete
problem implies P = NP. Hence, all NP-complete problems are presumably
intractable.

Exponential Time Hypothesis. The assumption P # NP asserts that no NP-
complete problem can be solved in polynomial time. There exist even stronger
conjectures arising from the experienced difficulty to find sub-exponential-time
algorithms (that is, running in 20(]) time) for certain NP-complete problems.
One of those problems is the following:

k-CNF-SATISFIABILITY (k-SAT)

Input: Boolean formula ¢ in conjunctive normal form with at most &
literals per clause.

Question: Is there a truth assignment of the variables that satisfies ¢7

Impagliazzo and Paturi [IP01] formulated the following conjecture that 3-SAT
cannot be solved in time sub-exponential in the number of variables.

Conjecture 2.1 (Exponential Time Hypothesis (ETH)). There exists a con-
stant ¢ > 0 such that 3-SAT cannot be solved in O(2°™) time, where n is the
number of variables in the input formula.

Note that the Exponential Time Hypothesis implies P # NP. Based on
the Exponential Time Hypothesis, it is also possible to derive exponential
running time lower bounds for other problems. Assuming the Exponential Time
Hypothesis, it is however still possible that k-SAT with n-variable formulas can
be solved in 2¢" time for some constant ¢ with 0 < ¢ < 1 for every k. An even
stronger conjecture (implying ETH) asserts that this is not possible [IP01].

Conjecture 2.2 (Strong Exponential Time Hypothesis (SETH)). There exists
no constant ¢ < 1 such that k-SAT can be solved in O(2°™) time for every k > 3,
where n is the number of variables in the input formula.

2.4 Parameterized Complexity

Parameterized complexity theory was developed by Downey and Fellows [DF13,
DF99] in order to cope with the inctractability of NP-hard problems. The idea
is to measure the time complexity of a problem not only with respect to the
input size but also with respect to an additional parameter value (usually a
natural number). Intuitively, the parameter holds some information about the
input instance and its structure which might be used algorithmically.

We briefly introduce the formal definitions of relevant notions from parame-
terized algorithmics (refer to the monographs [Cyg+15, DF13, FG06, Nie06] for
a detailed introduction).

Definition 2.2. A parameterized problem is a language L C ¥* x N. A
parameterized instance (x, k) consists of the input x € ¥* and the parameter k €
N.

A parameterized problem is classified as tractable if it can be solved by an
algorithm for which the superpolynomial part of the running time solely depends
on the parameter. Hence, if the parameter of an instance is small, then this
algorithm solves the instance efficiently. This motivates the following definition.

Definition 2.3. A parameterized problem is fized-parameter tractable if there
exists an algorithm that decides any instance (x, k) in f(k)-|z|9™) time, where f
is a computable function only depending on k.

The class FPT contains all fixed-parameter tractable parameterized problems.
If the parameter of a fixed-parameter tractable problem is a constant, then
the problem is polynomial-time solvable (that is, the corresponding classical
decision problem is contained in P). Moreover, note that the degree of the
polynomial |m\o(1) is a constant not depending on the parameter k. If the
degree of the polynomial depends on & (for example |m|0(k2)) then the problem
is contained in the class XP. Clearly, FPT C XP. A multivariate parameter is
a tuple (ki,...,kq) and the parameter value is defined as the sum k; + ... + k4.

Kernelization. A common approach to show that a problem is fixed-parameter
tractable is to apply polynomial-time data reduction as a preprocessing of
a given instance. The goal is to obtain an equivalent instance whose size is
upper-bounded by a function of the parameter. This is known as kernelization.

Definition 2.4. A problem kernelization for a parameterized problem A is an
algorithm that given an instance (z, k) outputs an instance (2, k') in (|z|+&)°™)
time such that

(i) |2'| < A(k) for some computable function A,
(ii) &' < A(k), and
(iii) (z, k) e As (2, F) € A

The instance (2', k') is called a problem kernel and A is called its size. If A
is a polynomial, then (a',%’) is called a polynomial problem kernel. We say
that (2/,k") and (z,k) are equivalent instances. A decidable parameterized
problem is in FPT if and only if it has a problem kernelization [Cai+97].

A problem kernelization is often achieved by describing a set of polynomial-
time data reduction rules which are applied to an instance (z, k) of a problem
and yield an instance (2/,k’). We say that a data reduction rule is correct
if (x,k) and (2/, k') are equivalent instances.

Kernelization Lower Bounds. It is known that every parameterized problem
in FPT has a problem kernel, but it is not clear whether every fixed-parameter
tractable probem has a “small”, that is, a polynomial kernel. Several tech-
niques have been developed to exclude the existence of polynomial problem
kernels for some problems based on the complexity-theoretic assumptions that
NP ¢ coNP/poly (or coNP ¢ NP/poly) [BJK14, Bod+09, DM14, Drul5].
Here, NP /poly is the (nonuniform) class of problems that can be solved by a
polynomial-time nondeterministic Turing machine with polynomial advice (and
coNP /poly contains all complements of languages in NP /poly). Yap [Yap83|
showed that NP C coNP/poly (and also coNP C NP /poly) implies that the
polynomial hierarchy collapses to its third level which is considered unlikely in
complexity theory.

One way to show that a problem presumably has no polynomial problem
kernel is to use a polynomial parameter transformation. A polynomial parameter
transformation from a parameterized problem L to another parameterized
problem @ is a polynomial-time algorithm mapping an instance (z, k) of L to an
equivalent instance (2/,p(k)) of @, where p is a polynomial [BTY11]. If L does
not have a polynomial problem kernel and the classical (non-parameterized)
decision problem of L is NP-hard and the decision problem of @ is in P, then @
also has no polynomial problem kernel [BJK14].

Parameterized Intractability. Some parameterized problems turn out to be
presumably not fixed-parameter tractable. In parameterized complexity theory,
these problems are captured in the classes of the W-hierarchy:

FPT C W[1] C W[2] C ... C XP.

It is unknown whether FPT = W[1] and it is believed that in fact all above
inclusions are strict.

A parameterized problem A is WJ[t]-hard for ¢ > 1 if for every problem B
in W[t] there exists a parameterized reduction from B to A.

Definition 2.5. Let A, B C X* x N be two parameterized problems. A param-
eterized reduction from A to B is a function f: (X* x N) — (£* x N) such that
for all (x,k) € (¥* x N) the following holds:

(i) («',k') := f((z,k)) can be computed in g(k) - |#|°™) time for some com-
putable function g,

(ii) k" < h(k) for some computable function h, and

10

(iii) (z,k) € A& (2/,K) € B.

2.5 Approximation

Another way to deal with NP-hard problems is to relax the optimality condition
of a solution. That is, instead of solving a decision problem, we aim at finding an
approximate solution for the corresponding optimization problem in polynomial
time such that this solution is close to optimal. We briefly introduce the basic
concepts. Refer to the books by Vazirani [Vaz01| and Williamson and Shmoys
[WS11] for a more comprehensive discussion of approximation algorithms.

Definition 2.6. An optimization problem @ is a quadruple (I, S, f, g) where
1. I C ¥* is the set of input instances;

2. for each instance x € I, S(z) is the set of feasible solutions for x. The
length of each solution y € S(z) is upper-bounded by a polynomial in |z|
and it is polynomial-time decidable whether y € S(x) holds for given y
and x;

3. f is the objective function mapping an instance z € I and a solution
y € S(z) to a natural number f(z,y) € N. The function f is computable
in polynomial time;

4. g € {max, min} is the goal function.

We speak of a mazimization problem if g = max and of a minimization problem
if g = min.

For an instance x € I, we denote by opt(z) := g{f(z,y) | y € S(x)} the
optimal objective value of a solution for x. The task is to find a solution y € S(z)
that achieves the optimal objective value, that is, f(x,y) = opt(z) holds. A
feasible solution y € S(x) has an approximation factor of

> 1.

(.) = opt(z)/f(z,y), if g=max
) {f(x, y)/opt(z), if g =min

Definition 2.7. Let p: N — Q be a function. A p-approzimation algorithm for
an optimization problem @ is a polynomial-time algorithm that for every instance
x € I returns a feasible solution y(x) € S(z) such that r(x,y(z)) < p(|z]).

11

An optimization problem @ has a constant-factor approzimation algorithm if
it has a p-approximation algorithm for a constant function p. The class of all
optimization problems that admit constant-factor approximation algorithms is
denoted by APX. The class APX contains problems which can even be solved
arbitrarily close to optimal in polynomial time. These problems are said to
admit a polynomial-time approximation scheme.

Definition 2.8. A polynomial-time approzimation scheme (PTAS) for an op-
timization problem @ is an algorithm that takes an instance z € I and a
constant ¢ > 0 as input and returns in O(n*(9)) time (for some computable
function) a feasible solution y € S(x) such that r(z,y) < 1+e.

There also exists an inctractability theory concerning polynomial-time approx-
imation. An optimization problem that is APX-hard does not admit a PTAS
unless P = NP. APX-hardness is defined in terms of so-called PTAS-reductions.

Definition 2.9. Given two optimization problems Q = (1,5, f,¢) and Q' =
(I',s", f',q"), a PTAS-reduction from @ to Q" consists of three polynomial-time
computable functions h, b’ and a: Q — Q% such that:

(i) h: I — I' maps an instance of @ to an instance of @', and

(ii) for any instance z € I of @ and any solution y’' € S'(h(z)) of h(x) € I
and for any € € QT, h/(z,y’,€) € S(z) is a solution of = such that

r(h(z),y) <1+ ale) = r(z,h(z,y,¢) <1+e.

12

Chapter 3

General Position Subset Selection

In this chapter, we study the problem of selecting a maximum number of
points in general position from a given point set in the plane. Even though the
concept of general position is fundamental in geometry, this problem has not
been studied with respect to its computational complexity. We prove several
intractability results for this problem as well as fixed-parameter tractability
results. In particular, we use a result from combinatorial geometry to obtain
a cubic-point problem kernel with respect to the number of selected points
based on a simple reduction rule (improving on the kernel size known from
the literature). We also prove a quadratic-point problem kernel for the dual
parameter (that is, the number of points to delete in order to obtain a point set
in general position) while excluding strongly subquadratic kernels, in the course
of which we observe a framework for proving kernel lower bounds for point set
problems as a side result.

3.1 Introduction

For a set P = {p1,...,pn} of n points in the plane, a subset S C P is in general
position if no three points in S are collinear (that is, lie on the same straight
line). A frequent assumption for point set problems in computational geometry
is that the given point set is in general position. In fact, testing whether
a given point set is in general position is a key problem in computational
geometry [Bar+17]. We consider the generalization of this problem which is
to select a maximum-cardinality subset of points in general position from a
given set of points. Point sets in general position occur in many different fields
including graph drawing [FKV14| and pattern recognition [Cov65, Joh14].

13

O O O e e
©c e O O e
®e ®© O O O
O O e e O

e O e O O

Figure 3.1: Example of a point set consisting of 25 points on a (5 x 5)-grid. The ten
black points are in general position. Since all the points can be covered by five straight
lines, it follows that there can be at most ten points in general position (two from
each covering line).

Formally, the decision version of the problem is as follows:

GENERAL POSITION SUBSET SELECTION

Input: A set P of points in the plane and k € N.

Question: Is there a subset S C P in general position of cardinality at
least k7

See Figure 3.1 for an example. This problem has received quite some attention
from the combinatorial geometry perspective, but it was hardly considered
from the computational complexity perspective. In particular, the classical
complexity of GENERAL POSITION SUBSET SELECTION was unknown.

A well-known special case of GENERAL POSITION SUBSET SELECTION, called
the NO-THREE-IN-LINE problem, asks to place a maximum number of points
in general position on an (n x n)-grid. Since at most two points can be placed
on any grid-line, the maximum number of points in general position that can
be placed on an (n x n)-grid is at most 2n. Indeed, only for small n it is known
that 2n points can always be placed on the (n x n)-grid (Figure 3.1 shows a
solution for n = 5). Erdés [Rot51] observed that, for sufficiently large n, one
can place at least (1 — €)n points in general position on the (n x n)-grid, for
any € > 0. This lower bound was improved by Hall et al. [Hal+75] to (£ — e)n.
It was conjectured by Guy and Kelly [GK68] that, for sufficiently large n, one
can place no more than %n points in general position on an (n x n)-grid. This
conjecture remains unresolved, hinting at the challenging combinatorial nature
of NO-THREE-IN-LINE, and hence of GENERAL POSITION SUBSET SELECTION
as well.

14

A problem closely related to GENERAL POSITION SUBSET SELECTION is
PoiNT LINE COVER: Given a point set in the plane, find a minimum-cardinality
set of straight lines, the size of which is called the line cover number, that cover
all points. Interestingly, the size of a maximum subset in general position is
related to the line cover number in the following way (see also Observation 3.11).
If there are k points in general position, then at least k/2 lines are required to
cover all points since each line can cover at most two of the k points in general
position. Also, if k is the maximum number of points in general position, then at
most (g) lines are required to cover all points since every point lies on some line
defined by two of the k points in general position. Thus, knowing the maximum
number of points in general position allows to derive lower and upper bound on
the line cover number.

While PoiNT LINE COVER has been intensively studied with respect to its
computational complexity, we start filling the gap for GENERAL POSITION SUB-
SET SELECTION by providing both computational hardness and fixed-parameter
tractability results for the problem. In doing so, we particularly consider the
parameters solution size k (size of the sought subset in general position) and
its dual h := n — k (number of points to delete to obtain a subset in general
position), and investigate their impact on the computational complexity of
GENERAL POSITION SUBSET SELECTION.

Related Work. Payne and Wood [PW13| proved lower bounds on the size of a
point set in general position, a question originally studied by Erdés [Erd86]. In
his Master’s thesis, Cao [Cao12] showed a problem kernel with O(k*) points for
GENERAL POSITION SUBSET SELECTION (there called NON-COLLINEAR PACK-
ING problem) and a simple greedy factor-O(y/opt) approximation algorithm for
the maximization version. An improved approximation algorithm for GENERAL
POSITION SUBSET SELECTION was recently published by Rudi [Rud17] and
finds a subset in general position of size at least max{2n?/(coll(P)+ 2n), /opt},
where coll(P) denotes the total number of collinear pairs in lines with at least
three points in P. Cao [Caol2] also presented an Integer Linear Program
formulation and showed that it is in fact the dual of an Integer Linear Program
formulation for POINT LINE COVER.

The GENERAL POSITION TESTING problem is to decide whether any three
points of a given point set are collinear (this corresponds to the special case
of GENERAL POSITION SUBSET SELECTION where k = |P|). It is a major
open question in computational geometry whether this problem can be solved

15

in subquadratic time. Recently, Barba et al. [Bar+17| showed how to solve
GENERAL PoOSITION TESTING in subquadratic time for special point sets.

As to results for POINT LINE COVER (refer to Kratsch et al. [KPR16] and the
work cited therein): It is known to be NP- and APX-hard (a factor-O(log(opt))
approximation algorithm is known). It is fixed-parameter tractable with respect
to the number k of lines and solvable in (k/1.35)% - n®() time. Also, a problem
kernel containing k% points is known and there is no problem kernel with O(k%~¢)
points for any € > 0 unless coNP C NP /poly.

Our Contributions. In Section 3.2, we show that GENERAL POSITION SUBSET
SELECTION is NP- and APX-hard (as is POINT LINE COVER) and we prove an
exponential running time lower bound based on the Exponential Time Hypoth-
esis. Our main algorithmic results concern the power of polynomial-time data
reduction for GENERAL POSITION SUBSET SELECTION. In Section 3.3, we give
an O(k3)-point problem kernel and an O(h?)-point problem kernel for the dual
parameter h :=n — k, and show that the latter kernel is asymptotically optimal
under a reasonable complexity-theoretic assumption. Table 3.1 summarizes our
main results. Note that our kernelization results for the dual parameter A match
the kernelization results for POINT LINE COVER with respect to the number
of lines (in fact, our lower bound result is based on the ideas of Kratsch et al.
[KPR16]).

Preliminaries. We consider points in the plane encoded as pairs of coordinates
and assume all coordinates to be rational numbers. The collinearity of a set
of points P C Q? is the maximum number of points in P that lie on the same
straight line. A blocker for two points p, ¢ is a point on the open line segment pq.

3.2 Hardness Results

In this section, we prove that GENERAL POSITION SUBSET SELECTION is NP-
hard, APX-hard, and presumably not solvable in sub-exponential time. Our
hardness results follow from a polynomial-time transformation mapping arbitrary
graphs to point sets. The construction is due to Ghosh and Roy [GR15, Section 5],
which they used to prove NP-hardness of the INDEPENDENT SET problem on
so-called point visibility graphs. This transformation, henceforth called ®, allows
us to obtain the above-mentioned hardness results (using polynomial-time many-
one reductions from NP-hard restrictions of INDEPENDENT SET to GENERAL

16

Table 3.1: Overview of our results for GENERAL POSITION SUBSET SELECTION, where n
is the number of input points, k is the parameter size of the sought subset in general
position, h = n — k is the dual parameter, and £ is the line cover number.

Result Reference
@ NP-hard Th. 3.7
& APX-hard Th. 3.7
Fc% no 2°" . nO()_time algorithm (unless the ETH fails) Th. 3.7
= no O(h2~)-point kernel (unless coNP C NP /poly) Th. 3.20

O(k3)-point kernel (computable in O(n?logn) time) Th. 3.9
£ O(n?logn + o k**)-time solvable (for some constant o) Cor. 3.10
;?6 O(h?)-point kernel (computable in O(n?) time) Th. 3.16
g 0O(2.08" + n?)-time solvable Prop. 3.14
& O(£3)-point kernel (computable in O(n?logn) time) Cor. 3.12

O(n?logn + a?“¢*)-time solvable (for some constant) ~ Cor. 3.12

POSITION SUBSET SELECTION). Moreover, in Section 3.3.2, we will use ® to
give a polynomial-time many-one reduction from VERTEX COVER to GENERAL
PoOSITION SUBSET SELECTION in order to obtain kernel size lower bounds with
respect to the dual parameter (see Theorem 3.17 and Theorem 3.20). We start
by formally defining some properties that are required for the output point set
of the transformation ®. As a next step, we prove that such a point set can be
computed in polynomial time.

Let G be a graph with vertex set V(G) = {v1,...,v,}. Let ®(G) := CUB be
a set of points where C' = {p1,...,p,} are points in strictly convex position, that
is, the points in C are vertices of a convex polygon (p; € C corresponds to v;,
i=1,...,n). For each edge e = {v;,v;} € E(G), we place a blocker b, € B on
the line segment p;p; such that the following three conditions are satisfied:

(I) For any edge e € E(G) and for any two points p;, p; € C, if be, p;, p; are
collinear, then p;, p; are the points in C' corresponding to the endpoints
of edge e.

(ITI) Any two distinct blockers b, be are not collinear with any point p; € C.
(III) The set B := {b. | e € E(G)} of blockers is in general position.

17

Figure 3.2: Example of a graph (left) and a point set (right) satisfying Conditions (I)
to (IIT). The set contains a point (white) for each vertex and a blocker (black) for
each edge in the graph such that the only collinear triples are (p;,pj,bs;) for every
edge {v;,v;}. Also, no four points in the set are collinear.

Figure 3.2 depicts an example of the transformation described above.

Proposition 3.1. There is an O(m - (max{n, m})?)-time computable transfor-
mation ® which maps an arbitrary graph G to a point set ®(G) = C' U B that
satisfies Conditions (I) to (III). Moreover, no four points in ®(G) are collinear.

Proof. Given a graph G, let n = |V(G)|, m = |E(G)| and let C = {p1,...,pn}
be a set of rational points that are in a strictly convex position; for instance,
let p; == (1%.2, %) for j € {1,...,n} be n rational points (computable
in O(n) time) on the unit circle centered at the origin [Tan96]. To choose the
set B of blockers, suppose (inductively) that we have chosen a subset B’ of
blockers such that all blockers in B’ are rational points and satisfy Conditions (I)
to (III). Let b. ¢ B’ be a blocker corresponding to an edge e = {v;,v;} in G.
To determine the coordinates of b., we first mark the (rational) intersection
points (if any) between the line segment p;p; and the lines formed by every
pair of distinct blockers in B’, every pair of distinct points in C'\ {p;,p;}, and
every pair consisting of a blocker in B’ and a point in C'\ {p;,p;}. We then
choose b, to be an interior point of the segment p;p; with rational coordinates
that is distinct from all marked intersection points. To this end, let ¢ be the
first marked point on the segment p;p; starting from p; (if there is no marked
point on p;p;, then set ¢ := p;) and let b, be the midpoint of p;q. This point is
rational since it is the midpoint of rational points. Determining the coordinates

18

of a blocker can thus be done in O(m? + n? + nm) time. The overall running
time is thus in O(m - (max{n,m})?) Clearly, all points in C' U B are rational
and satisfy Conditions (I) to (III). Moreover, the construction of C' U B ensures
that no four points in C'U B are collinear. O

In what follows, we will use transformation ® as a reduction from INDE-
PENDENT SET to GENERAL POSITION SUBSET SELECTION in order to prove
our hardness results. The following observation will be helpful in proving the
correctness of the reduction.

Observation 3.2. Let G be an arbitrary graph, and let P := ®(G) = C U B.
For any point set S C P that is in general position, there is a general position
set of size at least |S| that contains the set of blockers B.

Proof. Suppose that S C P is in general position, and suppose that there is
a point b € B\ S. If b does not lie on a line defined by any two points in S,
then S U {b} is in general position. Otherwise, b lies on a line defined by two
points p,q € S. By Conditions (I) and (II), it holds that p,q € C. Moreover,
p and ¢ are the only two points in S that are collinear with b. Hence, we
exchange one of them with b to obtain a set of points in general position of the
same cardinality as S. Since b € B was arbitrarily chosen, we can repeat the
above argument to obtain a subset in general position of cardinality at least |S]|
that contains B. O

Using Observation 3.2, we give a polynomial-time many-one reduction from
INDEPENDENT SET to GENERAL POSITION SUBSET SELECTION based on
transformation ®.

INDEPENDENT SET

Input: An undirected graph G and k € N.

Question: Is there a subset I C V(G) of size at least k such that no two
vertices in I are connected by an edge?

Lemma 3.3. There is a polynomial-time many-one reduction from INDEPEN-
DENT SET to GENERAL POSITION SUBSET SELECTION. Moreover, each instance
of GENERAL POSITION SUBSET SELECTION produced by this reduction satisfies
the property that no four points in the instance are collinear.

Proof. Let (G, k) be an instance of INDEPENDENT SET, where k € N. The
GENERAL POSITION SUBSET SELECTION instance is defined as (P := ®(G), k +

19

|E(G)|). Clearly, by Proposition 3.1, the set P can be computed in polynomial
time, and no four points in P are collinear. We show that G has an independent
set of cardinality k if and only if P has a subset in general position of cardinality
k+|E(G).

Suppose that I C V(G) is an independent set of cardinality k, and let S :=
{p:i | vi € I} U B, where B is the set of blockers in P. Since |B| = |E(G)|, we
have |S| = k + |E(G)|. Suppose towards a contradiction that S is not in general
position, and let ¢, r, s be three distinct collinear points in S. By Conditions (II)
and (IIT), and since the points in C' are in a strictly convex position, it follows
that exactly two of the points ¢, 7, s must be in C'. Suppose, without loss of
generality, that ¢ = p;,r = p; € C and s € B. By Condition (I), there is an edge
between the vertices v; and v; in G that correspond to the points p;,p; € C,
contradicting that v;,v; € I. It follows that S is a subset in general position of
cardinality k + |E(G)|.

Conversely, assume that S C P is in general position and that |S| = k+|E(G)|.
By Observation 3.2, we may assume that B C S. Let I be the set of vertices
corresponding to the points in S\ B, and note that |I| = k. Since B C S, no
two points v;,v; in I can be adjacent; otherwise, their corresponding points
pi, p; and the blocker of edge {v;,v;} would be three collinear points in S. It
follows that I is an independent set of cardinality k in G. O

Lemma 3.3 implies the NP-hardness of GENERAL POSITION SUBSET SE-
LECTION. Furthermore, a careful analysis of the proof of Lemma 3.3 reveals
the intractability of an extension variant of GENERAL POSITION SUBSET SE-
LECTION, where as an additional input to the problem a subset S’ C P of
points in general position is given and the task is to find k additional points in
general position, that is, one looks for a point subset S C P in general position
such that S’ C S and |S| > |S’| + k. By Observation 3.2, we can assume
for the instance created by transformation ® that B (the set of blockers) is
contained in a maximum-cardinality point subset in general position. Thus,
we can set S’ := B. The proof of Lemma 3.3 then shows that k points can be
added to S’ if and only if the graph G contains an independent set of size k.
Since INDEPENDENT SET is W[1]-hard with respect to the solution size [DF13],
we can observe the following:

Observation 3.4. The extension variant of GENERAL POSITION SUBSET
SELECTION described above is W[1]-hard when parameterized by the number k
of additional points.

20

Hence, this extension is not fixed-parameter tractable with respect to k,
unless W[1] = FPT. The W[1]-hardness for the extension variant is in contrast
to the fixed-parameter tractability results for GENERAL POSITION SUBSET
SELECTION that will be shown in Section 3.3.1.

Next, we turn our attention to approximation, that is, we consider the
following optimization problem.

MAXIMUM GENERAL POSITION SUBSET SELECTION
Input: A set P of points in the plane.
Task: Select a subset S C P in general position of maximum cardinality.

By IS-3 we denote the MAXIMUM INDEPENDENT SET problem restricted to
graphs of maximum degree at most three.

1S-3
Input: An undirected graph G of maximum degree at most three.
Task: Find an independent set I C V(G) of maximum size.

The next lemma implies APX-hardness of MAXIMUM GENERAL POSITION
SUBSET SELECTION. Recall the definition of a PTAS-reduction from Section 2.5.

Definition 3.1. Given two maximization problems @ = (I, S, f,g) and Q' =
(I',8, f',q"), a PTAS-reduction from @ to Q' consists of three polynomial-time
computable functions h, b’ and a: Q — Q% such that:

(i) h: I — I’ maps an instance of @ to an instance of @', and
(ii) for any instance z € I of @ and any solution y’' € S'(h(z)) of h(x) € I
and for any € € QT, h/(z,y’,€) € S(z) is a solution of = such that

opt(h(x)) opt(x)]
P =T ey S

fla, W (z,y €)) —
Lemma 3.5. There is a PTAS-reduction from 1S-3 to MAXIMUM GENERAL
POSITION SUBSET SELECTION.

Proof. Let G be an instance of IS-3, and note that |E(G)| < 3|V(G)|/2. Tt
is easy to see that G has an independent set Iy of cardinality at least |Iy| >
|[V(G)|/4 that can be obtained in polynomial time by repeatedly selecting a
vertex in G of minimum degree and discarding all its neighbors until the graph
is empty.

21

We define the computable functions h, A’ and « in Definition 3.1 as follows.
For a graph G, the function h is defined as h(G) := ®(G) and is computable
in polynomial time by Proposition 3.1. Let P := h(G) = C U B and let S C P
be a subset in general position. For every € > 0, we define an independent
set W'(G, S,¢e) C V(G) as follows: If |S\ B| < |V(G)|/4, then W' (G, S,¢) := Iy.
Otherwise, we have |S\ B| > |[V(G)|/4. If B C S, then h'(G, S,¢) is the set
of vertices corresponding to the points in S\ B (by the proof of Lemma 3.3,
these vertices form an independent set in G). If B ¢ S, then we first compute
in polynomial time a subset S’ C P in general position such that B C S’
and |S’| > |S] (as described in the proof of Observation 3.2). Now, if [\ B| <
[V(G)|/4, then we set h/(G, S,€) := Iy again. Otherwise, we define h'(G, S, €)
to be the independent set corresponding to the points in S’ \ B. This finishes
the definition of h’. Note that A’ is clearly polynomial-time computable and
that h'(G, S, €) is always of size at least |V (G)|/4. Finally, we define a(e) := €/7.

Let G be a graph, P := h(G) = C U B be a point set and let S C P
be a subset in general position. Further, let opt(G) > |V(G)|/4 denote the
cardinality of a maximum independent set in G, and let opt(P) be the cardinality
of a largest subset in general position in P. From Lemma 3.3, it follows that
opt(P) = |B| + opt(G). To finish the proof, we need to show that

opt(P) opt(G)

<1 — <1
g ST = EEs g St

holds for every € > 0. Let I := h/(G, S, €). Then, we have
opt(P) _ |B|+ opt(G)

= <1+ al(e
S|~ B[+ 1S\ Bl ©
— opt(G) < (1+ ae))(|SN B|+|S\ B|) — |B|
opt(G) |[SNB[+[S\B| |[B|
<= < (1+ ale)) - - —
g = el 1 1
Since |S N B| < |B|, we obtain
opt(G) B S\ B
< ale)— + (1 + afe
Using |B| = |E(G)| < 3|[V(G)]/2 and |I| > |V (G)|/4, we have
opt(G) |S\ B

<afe) -6+ (1+ale)

]]

22

Now, if |S'\ B|] < |[V(G)|/4 or B C S, then, by definition of h’, it holds
IS\ B|/|I| <1, and thus

opt(G)
1]

<ale) 6+ (1+ale))=14+7a(c) =1+e.
If BZ S and |S\ B| > |V(G)|/4, then consider the set S’ from which I is
determined by definition of A’ and note that since |S’| > |S|, we also have

opt(P)
1571

opt(G)
1]

19"\ Bl
1|

<(I+afg) < <afe) 6+ (1+afe)

By definition of A/, it holds |S’ \ B| < |I| and thus

opt(G)
]

<147a(e)=1+e.

O

Finally, we prove that transformation ® yields a polynomial-time many-one
reduction from IS-3 to MAXIMUM GENERAL POSITION SUBSET SELECTION,
where the number of points in the point set depends linearly on the number of
vertices in the graph. This implies an exponential-time lower bound based on
the Exponential Time Hypothesis (ETH) [IPZ01].

Lemma 3.6. There is a polynomial-time many-one reduction from INDEPEN-
DENT SET on graphs with maximum degree three to GENERAL POSITION SUBSET
SELECTION mapping a graph G to a point set P of size O(|V(G)|).

Proof. For an instance (G, k) of INDEPENDENT SET, where G has maximum
degree three, the point set P := ®(G) is of cardinality |P| = |V(G)| + |E(G)| <
[V(@)|+3|V(G)|/2 € O(]V(G)|). By the proof of Lemma 3.3, ® is a polynomial-

time many-one reduction. O

We summarize the consequences of Lemmas 3.3, 3.5 and 3.6 in the following
theorem:

Theorem 3.7. The following statements are true:
(a) GENERAL POSITION SUBSET SELECTION is NP-hard.
(b) MAXIMUM GENERAL POSITION SUBSET SELECTION is APX-hard.

23

(¢) Unless ETH fails, GENERAL POSITION SUBSET SELECTION is not solvable
in 2°") . nOW) time, where n is the number of points in the input.

The above hardness results even hold for instances in which no four points are

collinear.

Proof. Part (a) follows from the NP-hardness of INDEPENDENT SET [GJ79)],
combined with Proposition 3.1 and Lemma 3.3. Part (b) follows from the
APX-hardness of IS-3 [AKO00], combined with Proposition 3.1 and Lemma 3.5.
Concerning Part (c), it is well known that, unless the ETH fails, INDEPENDENT
SET is not solvable in sub-exponential time [IPZ01], and the same is true for
the restriction to graphs of maximum degree three by the result of Johnson and
Szegedy [JS99]. Hence, by the reduction in Lemma 3.6, GENERAL POSITION
SUBSET SELECTION cannot be solved in sub-exponential time since this would
imply a sub-exponential-time algorithm for INDEPENDENT SET on graphs of
maximum degree three.

Parts (a)—(c) remain true for instances in which no four points are collinear
because the point set produced by transformation ® satisfies this property (see
Proposition 3.1). O

3.3 Fixed-Parameter Tractability

In this section, we prove several fixed-parameter tractability results for GENERAL
POSITION SUBSET SELECTION. In Section 3.3.1 we develop problem kernels
with a cubic number of points for the parameter size k of the sought subset in
general position, and for the line cover number ¢. In Section 3.3.2, we show a
quadratic-size problem kernel with respect to the dual parameter h :=n — k,
that is, the number of points whose deletion leaves a set of points in general
position. Moreover, we prove that this problem kernel is essentially optimal,
unless coNP C NP /poly (which implies an unlikely collapse in the polynomial
hierarchy).

3.3.1 Fixed-Parameter Tractability Results for the
Parameter Solution Size k

Let (P,k) be an instance of GENERAL POSITION SUBSET SELECTION, and
let n = |P|. Cao [Caol2| gave a problem kernel for GENERAL POSITION SUBSET
SELECTION with O(k*) points based on the following idea. Suppose that there

24

—

Figure 3.3: Example of Reduction Rule 3.1 for £ = 6. The thick horizontal line L
contains (°;%) + 2 = 8 points. Any two of the other four (black) points in general
position are collinear with only one point on L. Hence, there are two points on L

forming a subset in general position together with the four other points.

is a line L containing at least (’32) + 2 points from P. For any subset S’ C P
in general position with |S’| = k — 2, there can be at most (kEZ) points on L
such that each is collinear with two points in S’. Hence, we can always find at
least two points on L that together with the points in S’ form a subset S in
general position of cardinality k (see Figure 3.3 for an example). Based on this
idea, Cao [Caol2| introduced the following data reduction rule:

Reduction Rule 3.1 ([Caol2|). Let (P, k) be an instance of GENERAL POSI-
TION SUBSET SELECTION. If there is a line L that contains at least (kgz) + 2
points from P, then remove all points on L and set k := k — 2.

Cao showed that Reduction Rule 3.1 can be applied in O(n?) time ([Caol2,
Lemma B.1.]), and he showed its correctness, that is, applying Reduction Rule 3.1
to an instance (P, k) yields an instance (P’, k") which is a yes-instance if and
only if (P, k) is ([Caol2, Theorem B.2.]). Using Reduction Rule 3.1, he gave a
problem kernel for GENERAL POSITION SUBSET SELECTION containing O(k?)
points that is computable in O(n®k) time (|Caol2, Theorem B.3.]). We shall
improve on Cao’s result, both in terms of the kernel size and the running
time of the kernelization algorithm. We start by showing how, using a result

25

by Guibas et al. [GOR96, Theorem 3.2], Reduction Rule 3.1 can be applied
exhaustively in O(n?logn) time. Notably, the idea of reducing lines with many
points (based on Guibas et al. [GOR96]) also yields a kernelization result for
PoinT LINE COVER [LMO5].

Lemma 3.8. For an instance (P, k) of GENERAL POSITION SUBSET SELEC-
TION where |P| = n, we can compute in O(n?logn) time an equivalent instance
(P', k') such that the collinearity of P’ is at most (k;2) +1.

Proof. Let A = (k§2) + 2. We start by computing the set £ of all lines
that contain at least A points from P. By a result of Guibas et al. [GOR96,
Theorem 3.2], this can be performed in O(n?log (n/\)/\) time (the algorithm
also yields for every such line the points of P lying on that line). We then
iterate over each line L € L, checking whether L, at the current iteration,
still contains at least A\ points; if it does, we remove all points on L from P
and decrement k by 2. For each line L, the running time of the preceding
step is O(\), which is the time to check whether L contains at least A points.
Additionally, we might need to remove all points on L. If k reaches zero, then
we can return a trivial yes-instance (P’, k") of GENERAL POSITION SUBSET
SELECTION in constant time. Otherwise, after iterating over all lines in £, by
Reduction Rule 3.1, the resulting instance (P’, k') is an equivalent instance to
(P, k) satisfying that no line in P’ contains A points, and hence the collinearity
of P’ is at most (k;2) + 1. Overall, the above can be implemented in time
O((n?log (n/A)/A) - A) C O(n?logn). O

We move on to improving the size of the problem kernel. Payne and Wood
[PW13, Theorem 2.3] proved a lower bound on the maximum cardinality of a
subset in general position when an upper bound on the collinearity of the point
set is known. We show next how to obtain a kernel for GENERAL POSITION
SUBSET SELECTION containing O(k3) points based on this result.

Theorem 3.9. GENERAL POSITION SUBSET SELECTION admits a problem
kernel containing O(k3) points that is computable in O(n?logn) time.

Proof. By Lemma 3.8, after O(n?logn) preprocessing time, we can either return
an equivalent yes-instance of (P, k) of constant size, or obtain an equivalent
instance with a point set of cardinality O(k*) (|Caol2, Theorem B.3.]) and
collinearity at most (kf) + 1. Hence, without loss of generality, we assume in

what follows that |P| € O(k*) and that the collinearity of P is A < (kf) + 1L

26

Payne and Wood [PW13, Theorem 2.3] showed that any set of n points whose
collinearity is at most A contains a subset of points in general position of size at

least
an

vVnln A+ \2
for some constant o > 0. Since \ < (k52) + 1 < k2, we have at least

an

Vonlnk + k4

points in general position. Note that this number is monotonically increasing
in n. Thus, if n > ¢, k? for a constant ¢,, > 0, then there are at least

acy k3

V2e, k3 Ink + k4

points in general position. Since 2c,k*Ink € o(k?), it follows that for large
enough k > ¢ (for some constant ¢, > 0), the number of points in general
position is at least

acy k3 B acy k3 _acy i
VRt V2R V2

Hence, for ¢, > v/2/a, the number of points in general position is at least k.
Thus, we derived that there exists a constant ¢, (depending on «) such that
there exists a constant ¢, (depending on ¢,,) such that, for n > cnk3 and k > ¢y,
there exist at least k points in general position.

The kernelization algorithm distinguishes the following three cases: First, if
k < ¢k, then the instance is of constant size and the algorithm decides it in O(1)
time and returns an equivalent constant-size instance. Second, if k > ¢ and
|P| > ¢, k3, then the algorithm returns a trivial yes-instance of constant size.

Third, if none of the two above cases applies, then the algorithm returns the
(preprocessed) instance (P, k) which satisfies |P| € O(k?). O

We can derive the following result by a brute-force algorithm on the above
problem kernel:

Corollary 3.10. GENERAL POSITION SUBSET SELECTION can be solved in
O(n%logn + o*k2*) time for some constant .

27

Proof. Let (P, k) be an instance of GENERAL POSITION SUBSET SELECTION.
By Theorem 3.9, after O(n?logn) preprocessing time, we can assume that
|P| < ck? for some constant ¢ > 0. We enumerate every subset of size k in P,
and for each such subset, we use the result of Guibas et al. [GOR96, Theorem 3.2]
to check in O(k?log k) time whether the subset is in general position. If we find
such a subset, then we answer positively; otherwise, we answer negatively. The
number of enumerated subsets is

(il) - (C:3> < (c/:;)k . Ez(j;?)z < (o) k2,

where e is the base of the natural logarithm and k! > (k/e)* follows from
Stirling’s formula [Rob55]. Putting everything together, we obtain an algorithm
for GENERAL POSITION SUBSET SELECTION with a running time in

O(n*logn + (ce)®k?* - k% log k) € O(n?logn + o k)
for some constant a > ce. O

We can transfer the above results for the parameter k to the line cover
number ¢ (that is, the minimum number of lines that cover all points in the
point set) using the following observation made by Cao [Caol2].

Observation 3.11 ([Caol2]). For a set P of points let S C P be a maximum
subset in general position and let £ be the line cover number of P. Then,

VE< S| < 20.

As a consequence of Observation 3.11, we can assume that k& < 2¢ and, thus,
the following corollary is immediate.

Corollary 3.12. GENERAL POSITION SUBSET SELECTION can be solved in
O(n%logn + a2 - (20)*) time, and there is a kernelization algorithm that, given
an instance (P, k) of GENERAL POSITION SUBSET SELECTION, computes an
equivalent instance containing O(£3) points in O(n?logn) time.

We close this section with an improved problem kernel for a special case of
GENERAL POSITION SUBSET SELECTION. In practice, it might be unlikely
that many points lie on the same line (for example, when the data points
are measurements involving some inaccuracy). That is, the collinearity A of
the point set will be small. Note that if A\ is bounded by a constant, then

28

Observation 3.11 implies an O(k?)-point kernel (the line cover number is at
least n/A, thus, there are Q(y/n) points in general position). For the case A = 3,
we can show an even smaller problem kernel.

Let 3-GENERAL POSITION SUBSET SELECTION denote the restriction of
GENERAL POSITION SUBSET SELECTION to instances in which the point set
contains no four collinear points (that is, collinearity A < 3). By Theorem 3.7, 3-
GENERAL POSITION SUBSET SELECTION is NP-hard. Fiiredi [Fiir91, Theorem 1]
showed that every set P of n points in which no four points are collinear contains
a subset in general position of size Q(y/nlogn). Based on Fiiredi’s result, we
get the following:

Theorem 3.13. 3-GENERAL POSITION SUBSET SELECTION admits a problem
kernel containing O(k?/logk) points that is computable in O(n) time.

Proof. Let (P, k) be an instance of 3-GENERAL POSITION SUBSET SELECTION
with | P| = n. Note that the line cover number £ of P is at least n/3 since at most
three points lie on the same line. Therefore, if n > 3k2, then by Observation 3.11
we know that P contains at least k points in general position. Thus, we can
return a trivial constant-size yes-instance.

We henceforth assume that n < 3k2. Then, there exists a constant a > 0 such
that P contains at least ay/nlogn points in general position [Fiir91, Theorem 1].
Let n > ¢,k?/logk for some constant c,, > 0. Then, P contains at least

cnk? cnk? log ¢,, — log log k
I = Wk2 24+ =" S 57
a\/logk ©8 (logk:> a\/c (+ log k
points in general position. Since there exists a constant ¢ (depending on ¢,,)
such that

log ¢, — loglog k > _1

log k

holds for all k£ > ¢y, it follows that there are at least a\/cp k?(2 — 1) = a/cp - k
points in general position for large enough k. Hence, for ¢, > a2, we have a
yes-instance.

The kernelization algorithm works as follows: If k < ¢, then P is of constant
size and we decide the instance in constant time returning an equivalent constant-
size instance. If k > ¢;, and n > ¢,k?/log k, then we return a constant-size yes-
instance. Otherwise, we simply return the instance (P, k) with |P| € O(k?/logk).
The running time is in O(n) for counting the number of points in the input. [

29

We remark that the presented problem kernels (relying on non-constructive
lower bounds) only can be used to solve the decision problem, that is, they do
not allow to actually find a point set in general position. It is not clear how to
constructively find the points in general position for large yes-instances.

3.3.2 Fixed-Parameter Tractability Results for the Dual
Parameter h

In this section we consider the dual parameter number h := n — k of points that
have to be deleted (that is, excluded from the sought point set in general position)
so that the remaining points are in general position. We show a problem kernel
containing O(h?) points for GENERAL POSITION SUBSET SELECTION. Moreover,
we show that most likely this problem kernel is essentially tight, that is, there is
presumably no problem kernel with O(h%~€) points for any € > 0.

We start with the problem kernel that relies essentially on a problem kernel
for the 3-HITTING SET problem:

3-HITTING SET

Input: A universe U, a collection C of size-3 subsets of U, and h € N.

Question: Is there a subset H C U of size at most h containing at least
one element from each subset S € C?

There is a close connection between GENERAL POSITION SUBSET SELECTION
and 3-HITTING SET: For any collinear triple p, ¢, € P of distinct points, one of
the three points has to be deleted in order to obtain a subset in general position.
Hence, the set of deleted points has to be a hitting set for the family of all
collinear triples in P. Since 3-HITTING SET can be solved in O(2.08" +|C| +|U])
time [Wah07], we get:

Proposition 3.14. GENERAL POSITION SUBSET SELECTION can be solved in
O(2.08" +n?) time.

3-HITTING SET is known to admit a problem kernel with a universe of
size O(h?) computable in O(|U| + |C| + h'®) time [Bevl4]. Based on this,
one can obtain a problem kernel of size O(h?) computable in O(n?®) time. The
bottleneck in this running time is listing all collinear triples. We can improve the
running time of this kernelization algorithm by giving a direct kernel exploiting
the simple geometric fact that two non-parallel lines intersect in one point.
We first need two data reduction rules for which we introduce the following
definition:

30

i

Figure 3.4: Examples illustrating Reduction Rules 3.2 and 3.3. Left: A point p which
is not in conflict with any of the other points is always contained in a maximum subset
in general position (Reduction Rule 3.2). Right: The point p is in conflict with seven
other points on three lines. Either p is deleted or, from each of the three lines, at least
all but one of the other points are deleted. Hence, if h < 4, then p has to be removed
(Reduction Rule 3.3).

Definition 3.2. For a set P of points in the plane, we say that a point p € P
is in conflict with a point g € P if there is a third point z € P such that p, g,
and z are collinear.

Reduction Rule 3.2. Let (P, k) be an instance of GENERAL POSITION SUBSET
SELECTION. If there is a point p € P that is not in conflict with any other
points in P, then delete p and decrease k by one.

Clearly, Reduction Rule 3.2 is correct since we can always add a point which
is not lying on any line defined by two other points to a general position subset.
The next rule deals with points that are in conflict with too many other points.
The basic idea here is that if a point lies on more than h distinct lines defined
by two other points of P, then it has to be deleted (see Figure 3.4). This is
formalized in the next rule.

Reduction Rule 3.3. Let (P, k) be an instance of GENERAL POSITION SUBSET
SELECTION. For a point p € P, let L(p) be the set of lines containing p and at
least two points of P\ {p}, and for L € L(p) let |L| denote the number of points
of P on L. Then, delete each point p € P satisfying ELGE(;))(‘L| —2)>h.

Lemma 3.15. Let (P, k) be a GENERAL POSITION SUBSET SELECTION in-
stance and let (P’ k) be the resulting instance after applying Reduction Rule 3.3
to (P, k). Then, (P, k) is a yes-instance if and only if (P’ k) is a yes-instance.

31

Proof. Let (P, k) be an instance of GENERAL POSITION SUBSET SELECTION
and let (P’ := P\ D, k) be the reduced instance, where D C P denotes the set
of removed points.

Clearly, if (P', k) is a yes-instance, then so is (P, k). For the converse, we
show that no point p € D can be contained in a size-k subset of P in general
position: For each line L € L(p), all but two points need to be deleted. If a
subset S C P in general position contains p, then the points that have to be
deleted on the lines in £(p) are all distinct since any two of these lines only
intersect in p. This means that > ;. (/L] — 2) points need to be deleted.
However, since this value is by assumption larger than h, the solution S is of
size less than k = |P| — h. O

Theorem 3.16. GENERAL POSITION SUBSET SELECTION admits a problem
kernel containing at most 2h? + h points that is computable in O(n?) time,
where h =n — k.

Proof. Let (P, k) be a GENERAL POSITION SUBSET SELECTION instance. We
first show that applying Reduction Rule 3.2 exhaustively and then applying
Reduction Rule 3.3 once indeed gives a small instance (P’,k’). Note that each
point p € P’ is in conflict with at least two other points, that is, p is on at least
one line containing two other points in P’, since the instance is reduced with
respect to Reduction Rule 3.2. Moreover, since the instance is reduced with
respect to Reduction Rule 3.3, it follows that each point is in conflict with at
most 2h other points. Thus, deleting h points can give at most h - 2h points
in general position. Hence, if P’ contains more than 2h? + h points, then the
input instance is a no-instance.

We next show how to exhaustively apply Reduction Rules 3.2 and 3.3 in O(n?)
time. To this end, we follow an approach described by Edelsbrunner et al.
[EOS86] and Gomez et al. [GRT97] which uses the dual representation and line
arrangements. The dual representation maps points to lines as follows: (a, b) —
y = ax + b. A line in the primal representation containing some points of P
corresponds in the dual representation to the intersection point of the lines
corresponding to these points. Thus, a set of at least three collinear points in
the primal corresponds to the intersection of the corresponding lines in the dual.
An arrangement of lines in the plane is, roughly speaking, the partition of the
plane formed by these lines. A representation of an arrangement of n lines can
be computed in O(n?) time [EOS86]. Using an algorithm of Edelsbrunner et al.
[EOS86], we compute in O(n?) time the arrangement A(P*) of the lines P* in
the dual representation of P.

32

Reduction Rule 3.2 is now easily executable in O(n?) time: Initially, mark
all points in P as “not in conflict”. Then, iterate over the vertices of A(P*)
and whenever the vertex has degree six or more (each line on an intersection
contributes two to the degree of the corresponding vertex) mark the points
corresponding to the intersecting lines as “in conflict”. In a last step, remove all
points that are marked as “not in conflict”.

Reduction Rule 3.3 can be applied in a similar fashion in O(n?) time: Assign a
counter to each point p € P and initialize it with zero. We want this counter to
store the number 3, .~ (|L| — 2) on which Reduction Rule 3.3 is conditioned.
To this end, we iterate over the vertices in A(P*) and for each vertex of degree
six or more (each line contributes two to the degree of the intersection vertex)
we increase the counter of each point corresponding to a line in the intersection
by d/2 — 2 where d is the degree of the vertex. After one pass over all vertices
in A(P*) in O(n?) time, the counters of the points store the correct values and
we can delete all points whose counter is more than h. O

Another interesting parameter for geometry problems is the number 7 of
inner points (that is, all points which are not a vertex of the convex hull of P),
which successfully has been deployed algorithmically [Dei+06, HO06]. Note that
Proposition 3.14 and Theorem 3.16 also hold if we replace the parameter h by ~.
The reason is that in all non-trivial instances we have h < « since removing all
inner points yields a set of points in general position.

3.3.3 Excluding O(h?*~¢)-point Kernels

In this section we show that the O(h?)-point problem kernel of Theorem 3.16
is essentially optimal. We start by proving a (conditional) lower bound on the
problem kernel size (the number of encoding bits) for GENERAL POSITION
SUBSET SELECTION via a reduction from VERTEX COVER.

VERTEX COVER

Input: An undirected graph G and k£ € N.

Question: Is there a subset V' C V(QG) of size at most k such that every
edge is incident to at least one vertex in V' ?

Using a lower bound result by Dell and Melkebeek [DM14] for VERTEX COVER,
we obtain the following:

Theorem 3.17. Unless coNP C NP /poly, for any e > 0, GENERAL POSITION
SUBSET SELECTION admits no problem kernel of size O(h*~°).

33

Proof. We give a polynomial-time many-one reduction from VERTEX COVER,
where the resulting dual parameter h equals the size of the sought vertex cover.
The claimed lower bound then follows because, unless coNP C NP /poly, for
any € > 0, VERTEX COVER admits no problem kernel of size O(k*~¢), where k
is the size of the vertex cover [DM14].

Given a VERTEX COVER instance (G, k), we first reduce it to the equivalent
INDEPENDENT SET instance (G, |V (G)| — k). We then apply transformation ®
(see Section 3.2) to G to obtain a set of points P, where |P| = |V(G)| + |E(G)];
we set k' :=|V(G)| + |E(G)| — k, and consider the instance (P, k') of GENERAL
PoSITION SUBSET SELECTION. Clearly, G has a vertex cover of cardinality &
if and only if G has an independent set of cardinality |V(G)| — k, which, by
Lemma 3.3, is true if and only if P has a subset in general position of cardinality
|E(G)| + |V (GQ)| — k. Hence, the dual parameter h = |P| — k' equals the sought
vertex cover size. O

Note that Theorem 3.17 gives a lower bound only on the total size (that
is, the number of bits required to encode the instance) of a problem kernel
for GENERAL POSITION SUBSET SELECTION. The number of points in the
instance, however, is of course smaller than the total size since each point
requires more than one bit of encoding. Hence, proving a lower bound on
the number of points in a problem kernel is an even stronger result. We
show a lower bound on the number of points contained in any problem kernel
using ideas due to Kratsch et al. [KPR16]|, which are based on a lower bound
framework by Dell and Melkebeek [DM14]. Kratsch et al. [KPR16] showed
that there is no polynomial-time algorithm that reduces a POINT LINE COVER
instance (P, k) to an equivalent instance with O(k?~¢) points for any € > 0
unless coNP C NP /poly. The proof is based on a result by Dell and Melkebeek
[DM14] who showed that VERTEX COVER does not admit a so-called oracle
communication protocol of cost O(k*~€) for € > 0 unless coNP C NP /poly. An
oracle communication protocol is a two-player protocol, in which the first player
is holding the input and is allowed polynomial (computational) time in the
length of the input, and the second player is computationally unbounded. The
cost of the communication protocol is the number of bits communicated from
the first player to the second player in order to solve the input instance.

Kratsch et al. [KPR16] devise an oracle communication protocol with cost
O(nlogn) for deciding instances of POINT LINE COVER with n points. Thus,
a problem kernel for POINT LINE COVER with O(k%?~¢) points implies an
oracle communication protocol of cost O(k2~¢) for some € > 0 since the first

34

player could simply compute the kernelized instance in polynomial time and
subsequently follow the protocol yielding a cost of O(k*~¢ - log(k*~¢)), which
is in O(k*~¢') for some € > 0. This again would imply an O(k2~¢")-cost
oracle communication protocol for VERTEX COVER for some ¢’ > 0 (via a
polynomial-time many-one reduction with a linear parameter increase [KPR16,
Lemma 6]). We show that there exists a similar oracle communication protocol
of cost O(nlogn) for GENERAL POSITION SUBSET SELECTION.

The protocol is based on order types of point sets. Let P = (p1,...,p,) be
an ordered set of points and denote by ([g]) the set of ordered triples (i, j, k)
where i < j <k, 1,5,k € [n] :={1,...,n}. The order type of P is a function o :
([g]) — {—1,0,1}, where o((4, j, k)) equals 1 if p;, pj, pr are in counter-clockwise
order, equals —1 if they are in clockwise order, and equals 0 if they are collinear.
Two point sets P and @ of the same cardinality are combinatorially equivalent
if there exist orderings P’ and Q' of P and @ such that the order types of P’
and ' are identical.

A key step in the development of an oracle communication protocol is to show
that two instances of POINT LINE COVER with combinatorially equivalent point
sets are actually equivalent [KPR16, Lemma 2]. We can prove an analogous
result for GENERAL POSITION SUBSET SELECTION:

Observation 3.18. Let (P, k) and (Q, k) be two instances of GENERAL Po-
SITION SUBSET SELECTION. If the point sets P and Q) are combinatorially
equivalent, then (P, k) and (Q, k) are equivalent instances of GENERAL POSI-
TION SUBSET SELECTION.

Proof. Let P and @ be combinatorially equivalent point sets with |P| = |Q| =n
and let P = (p1,...,p,) and Q" = (q1,...,¢n) be orderings of P and Q,
respectively, having the same order type o.

Now, a subset S C P’ is in general position if and only if no three points in S
are collinear, that is, o({p;, p;,pk)) # 0 holds for all p;, p;, pr € S. Consequently,
it holds that o({(g;, ¢;,qx)) # 0, and thus the subset {¢; | p; € S} C Q' is in
general position. Hence, (P, k) is a yes-instance if and only if (Q,k) is a
yes-instance. O

Based on Observation 3.18, we obtain an oracle communication protocol for
GENERAL POSITION SUBSET SELECTION. The proof of the following lemma is
completely analogous to the proof of Lemma 4.1 in [KPR16]:

Lemma 3.19. There is an oracle communication protocol of cost O(nlogn) for
deciding instances of GENERAL POSITION SUBSET SELECTION with n points.

35

The basic idea of the proof for Lemma 3.19 is that the first player only sends
the order type of the input point set so that the computationally unbounded
second player can solve the instance (according to Observation 3.18 the order
type contains enough information to solve a GENERAL POSITION SUBSET
SELECTION instance). We conclude with the following lower bound result based
on Lemma 3.19.

Theorem 3.20. Let € > 0. Unless coNP C NP /poly, there is no polynomial-
time algorithm that reduces an instance (P, k) of GENERAL POSITION SUBSET
SELECTION to an equivalent instance with O(h?=€) points.

Proof. Assuming that such an algorithm exists, the oracle communication
protocol of Lemma 3.19 has cost O(h*~¢') for some € > 0. Since the reduction
from VERTEX COVER in Theorem 3.17 outputs a GENERAL POSITION SUBSET
SELECTION instance where the dual parameter h equals the size k of the vertex
cover sought, we obtain a communication protocol for VERTEX COVER of
cost O(k2~¢), which implies that coNP C NP /poly [DM14, Theorem 2|. O

A Kernel Lower Bound Framework Based on Kratsch et al. [KPR16]. As
a final observation, we mention that the results of Kratsch et al. [KPR16| are
indeed more generally applicable than stated there since their arguments only
rely on the equivalence of instances with respect to order types of point sets.

Observation 3.21. A parameterized problem on a point set for which

(i) two instances with combinatorially equivalent point sets are equivalent (see
Observation 3.18), and

(ii) there is no oracle communication protocol of cost O(k*~€) for some pa-
rameter k and any € > 0 unless coNP C NP /poly,

has no problem kernel containing O(k2=¢) points for any ¢ > 0 unless coNP C
NP /poly.

This framework has recently been applied to prove lower bounds for prob-
lem kernels for the extension of GENERAL POSITION SUBSET SELECTION
to d-dimensional point sets (called HYPERPLANE SUBSET GENERAL POSI-
TION) [Boi+17].

36

3.4 Conclusion

We studied the computational complexity of GENERAL POSITION SUBSET
SELECTION and proved its (approximation) intractability. Then, we started a
parameterized complexity analysis obtaining several fixed-parameter tractability
results mainly based on problem kernelizations. The considered parameters are
the solution size k, its dual h, the line cover number ¢ and the number v of
inner points. The kernelization results mostly rely on combinatorial arguments
(similar ideas were recently used to develop kernelizations for generalizing
GENERAL POSITION SUBSET SELECTION to d dimensions [Boi+17]). Thus,
a natural question to ask is whether there are any geometric properties that
can be exploited in order to obtain further improved algorithmic results for
GENERAL POSITION SUBSET SELECTION. For practical purposes, it would also
be interesting to find out which data reduction rules can be applied in linear
time.

We conclude with some further questions:

e Can the O(k?)-point kernel (Theorem 3.9) for GENERAL POSITION SUBSET
SELECTION be asymptotically improved (for example by proving stronger
combinatorial bounds or by finding further data reduction rules)? Or can
we derive a quadratic (or even a cubic) lower bound on the kernel size (or
even on the number of points)?

e For which other problems on point sets can we derive kernel lower bounds
using the framework described in Observation 3.217

e What are further interesting parameterizations for GENERAL POSITION
SUBSET SELECTION? Maybe there exist other (geometrically motivated)
parameters which allow for (stronger) fixed-parameter tractability results.
Regarding parameterization above a lower bound (as studied in Chap-
ter 6), however, note that the W[1]-hardness of the extension variant
(Observation 3.4) already indicates intractability.

More generally, studying the complexity of other computational geometry
problems from a parameterized view (as done by Knauer et al. [KKW15]) could
be a rewarding direction for future research. For example, a special case of the
Co0-CLUSTERING, problem studied in Chapter 5 boils down to the geometric
problem of separating points in the plane with few axis-parallel lines. Maybe it
is also possible to show fixed-parameter tractability with respect to the number
of lines for this problem based on combinatorial results.

37

Chapter 4

Distinct Vectors

In this chapter, we study the DISTINCT VECTORS problem which asks to delete
as many columns as possible from a given matrix such that all rows in the
resulting matrix are still pairwise distinct. This NP-complete problem arises
in the context of feature selection in data mining and machine learning. Its
(classic) computational complexity has previously been studied. We conduct
a fine-grained complexity analysis with respect to the maximum (H) and the
minimum (h) pairwise Hamming distance between matrix rows. Based on this
combined parameterization, we prove a dichotomy result for binary matrices:
DISTINCT VECTORS can be solved in polynomial time if H < 2[h/2] 4 1, and is
NP-complete otherwise. Interestingly, as in Chapter 3, we again make use of a
combinatorial result: The polynomial-time solvable cases are based on a result
from extremal set theory concerning certain set systems called sunflowers'.
Moreover, we reveal a connection to matchings in bipartite graphs.

4.1 Introduction

Feature selection in a high-dimensional feature space means to choose a subset
of features (that is, dimensions) such that some desirable data properties
are preserved or achieved in the induced subspace. Combinatorial feature
selection [Cha-+00, KS96] is a well-motivated alternative to the more frequently
studied affine feature selection. While affine feature selection combines features
to reduce dimensionality, combinatorial feature selection simply discards some
features. The advantage of the latter is that the resulting reduced feature space is
easier to interpret. See Charikar et al. [Cha+00] for a more extensive discussion
in favor of combinatorial feature selection. Unfortunately, combinatorial feature

INote that the concept of sunflowers has been used before in parameterized complexity (for
example to show problem kernels [FG06, Chapter 9]).

39

1.0(88.1] + [2.0| A |-1.0] = 1.0 A
0.0(88.1 + |2.0| A |-1.0} = 0.0 A
1.0973 — |1.7) C |5.0 ¥ 1.0 — | C
1.051.7 — |1.7| B |[5.0 ¥ 10 — B
1.097.3] + |2.7| B |-3.0 ¥ 1.0 + B

Figure 4.1: An illustration of the DISTINCT VECTORS problem: For the given 5x 7 input
matrix S (left), it is possible to select the three gray columns in order to distinguish
all rows (that is, K = {1, 3,5} is a solution). All rows in the matrix S|k (right) are
pairwise distinct. Note that there is no solution containing only two column indices.

selection problems are typically computationally very hard to solve (NP-hard
and also hard to approximate [Cha+00, CS14, DK08, GE03|), resulting in the
use of heuristic approaches in practice [BL97, Das+07, For03, MR15, Put+15].

We refine the analysis of the computational complexity landscape of an
easy-to-define combinatorial feature selection problem called DISTINCT VEC-
TORS [Cha-+00].

DiISTINCT VECTORS

Input: A matrix S € £"*? over a finite alphabet ¥ with n distinct
rows and k € N with 1 < k <d.

Question: Is there a subset K C [d] of column indices with |K| < k such
that all n rows in S| are still distinct?

Here, S| is the n x |K| submatrix of S containing only the columns with
indices in K. An example is given in Figure 4.1. In the above formulation,
the input data is considered to be a matrix where the row vectors correspond
to the data points and the columns represent features (dimensions). Thus,
DIsSTINCT VECTORS constitutes the basic task to compress the data by discarding
redundant or negligible dimensions without losing the essential information to
tell apart all data points.

Related Work. DiISTINCT VECTORS is a basic problem arising under several
names in different areas. For instance, DISTINCT VECTORS is the problem of
finding (candidate) keys in relational databases [Dat03], which is known to be

40

NP-complete [Bee+84|. Tt is also known as the MINIMAL REDUCT problem in
rough set theory [Paw91, SR92|. Later, Charikar et al. [Cha+00] investigated
the computational complexity of several problems arising in the context of
combinatorial feature selection, including DISTINCT VECTORS. They showed
that there exists a constant ¢ such that DISTINCT VECTORS is NP-hard to
approximate in polynomial time within a factor of clogd on binary matrices.
Moreover, DISTINCT VECTORS is known [Fro+16a, Frol2] to be

W][2]-hard with respect to k,

W][1]-hard with respect to d — k,

fixed-parameter tractable with respect to (k,|X|) and also (k, H),
NP-hard for |X| =2 and H > 4,

and polynomial-time solvable for |X| =2 and H < 3.

Notably, Blésius et al. [BFS17| studied the problem (among others) in the
context of databases (therein called UNIQUE) and also showed W[2]-hardness
with respect to k.

Another combinatorial feature selection problem called MINIMUM FEATURE
SET is a variant of DISTINCT VECTORS where not all pairs of rows have to be
distinguished but only all pairs of rows from two specified subsets. This problem
is known to be NP-complete for binary input data [DR94]. In addition, Cotta
and Moscato [CMO03] investigated the parameterized complexity of MINIMUM
FEATURE SET and proved W[2]-completeness with respect to the number of
selected columns even for binary matrices.

Our Contributions. The already known NP-hardness for binary matrices with
maximum pairwise row Hamming distance H > 4 [Frol2] serves as a starting
point for our complexity analysis. With the aim of identifying tractable cases,
we are particularly interested in the complexity of DISTINCT VECTORS if the
range of different Hamming distances between pairs of data points (that is,
rows) is small as this special case implies a somewhat homogeneous structure of
the input data. Hence, we also take into account the minimum pairwise row
Hamming distance h. Our parameter is then defined as the gap H — h. We
completely classify the classic complexity of DISTINCT VECTORS with respect
to all values of H — h on binary input matrices (see Figure 4.2).

In Section 4.2.1, we show that binary DISTINCT VECTORS is NP-hard if
H > 2[h/2] + 1 (Theorem 4.3) and in Section 4.2.2 we show polynomial-time
solvability for H < 2[h/2] + 1 (Theorem 4.9).

41

o
L]

NP-hard

= N W s OO N 0 ©

123456789h

Figure 4.2: Overview of the computational complexity landscape of DISTINCT VECTORS
on binary matrices with respect to the maximum pairwise row Hamming distance H
and the minimum pairwise row Hamming distance h. Gray cells correspond to NP-hard
cases, whereas white cells correspond to polynomial-time solvable cases.

4.2 A Complexity Dichotomy for Binary Matrices

We focus on instances with a binary input alphabet, say, without loss of
generality, ¥ = {0,1}. For a matrix S € {0,1}"*? and a subset J C [d] of
column indices, we use the abbreviation S| := S[[n], J] for the submatrix of S
containing all the rows but only the columns with indices in J.

We consider instances where the Hamming distance of each pair of rows
lies within a prespecified range. In other words, the number of columns in
which a given pair of rows differs shall be bounded from below and above
by some constants «, 5 € N. We first give the formal definitions and then
completely classify the classic complexity of DISTINCT VECTORS with respect
to the gap between o and 8. The NP-hard cases are given in Section 4.2.1 and
the polynomial-time solvable cases in Section 4.2.2. The formal definitions for
our setup are the following.

Definition 4.1 (Weight). For a vector = € {0,1}¢, we denote by W, := {j €
[d] | (z); = 1} the set of indices where z equals 1 and we call w(z) := |W,| the
weight of x.

42

Definition 4.2 (Hamming Distance). For vectors z,y € ¥4, let D,, := {j €
[d] | (z); # (y);} be the set of indices where x and y differ and let A(z,y) :=
|Dyy| denote the Hamming distance of x and y.

Note that, for z,y € {0,1}%, it holds D, = (W, UW,) \ (W, N W,) and
thus A(z,y) = w(z) + w(y) — 2|]W, NW,]|.
For a DISTINCT VECTORS instance (S € %"*? k), we define the parameters
o minimum pairwise row Hamming distance h := min; ;e A(s;, s5) and
o mazimum pairwise row Hamming distance H := max;4;c[n) A(Ss, 55).
To conveniently state our results, we define the following variant of DISTINCT
VECTORS:

BINARY (a, 8)-DISTINCT VECTORS

Input: A matrix S € {0,1}"*¢ with n distinct rows such that h = o <
8 =H, and k € N.

Question: Is there a subset K C [d] of column indices with |K| < k such
that all rows in S| are still distinct?

Intuitively, if the matrix consists of rows that are all “similar” to each other,
one could hope to be able to solve the instance efficiently since there are at
most [columns to choose from in order to distinguish two rows. The minimum
pairwise row Hamming distance « plays a dual role in the sense that if «a
is large, then each pair of rows differs in many columns, which also could
render the instance easy to solve. We perform a close inspection of the relation
between the minimum and maximum pairwise row Hamming distance and show
that it is possible to solve some cases in polynomial time for arbitrarily large
constants a, 8. These results are obtained by applying combinatorial arguments
from extremal set theory revealing a certain structure of the input matrix if
the values of o and (8 are close to each other, that is, the range § — « is small.
Analyzing this structure, we can show how to find solutions in polynomial time.
On the negative side, for all other cases NP-hardness still holds as we show in
the next section.

4.2.1 NP-Hardness for Heterogeneous Data

As a starting point serves the NP-hardness of BINARY (2,4)-DISTINCT VEC-
TORS [Frol2, Theorem 4.4] ([Fro+16a, Theorem 1]|). For the sake of being
self-contained, we include the proof here.

43

Theorem 4.1 ([Fro+16a, Frol2]). BINARY (2,4)-DISTINCT VECTORS is NP-
hard.

Proof. To prove NP-hardness, we give a polynomial-time many-one reduction
from a special variant of the INDEPENDENT SET problem in graphs, which is
defined as follows.

DISTANCE-3 INDEPENDENT SET

Input: An undirected graph G = (V, F) and k € N.

Question: Is there a subset of vertices I C V of size at least k such that
each pair of vertices from I has distance at least three?

Here, the distance of two vertices is the number of edges contained in a shortest
path between them. DISTANCE-3 INDEPENDENT SET is known to be NP-
complete by a reduction from the NP-complete INDUCED MATCHING prob-
lem [BM11].

Our reduction works as follows: Let (G = (V, E), k) with |[V| =n and |[E| =m
be an instance of DISTANCE-3 INDEPENDENT SET and let Z € {0,1}™*™ be
the incidence matrix of G with rows corresponding to edges and columns to
vertices, that is, z;; = 1 means that the i-th edge contains the j-th vertex. We
assume that G contains no isolated vertices since they are always contained in
a maximum distance-3 independent set and can thus be removed. We further
assume that G contains at least four edges of which at least two do not share an
endpoint. Otherwise, G is either of constant size or a star, for which a maximum
distance-3 independent set consists of only a single vertex. Hence, we can solve
these cases in polynomial time and return a trivial yes- or no-instance.

The matrix S € {0,1}(mFDX" of the BINARY (2,4)-DISTINCT VECTORS
instance (S, k) is defined as follows: s; := z; for all ¢ € [m] and s;,41 := 0
(the length-n null vector). The desired solution size is set to k' := n — k. Note
that each row in Z contains exactly two 1’s and no two rows are equal since G
contains no multiple edges. Moreover, by assumption, there exists a pair of
rows with Hamming distance four since G contains a pair of edges without a
common endpoint. Since matrix S additionally contains the null vector as a
row, it follows that h = 2 and H = 4 (see Figure 4.3 for an example). The
instance (S, k') can be computed in O(nm) time.

The correctness of the reduction is due to the following argument. The
instance (G, k) is a yes-instance if and only if there is a set I C V of size
exactly k such that every edge in G has at least one endpoint in V' \ I and no
vertex in V' \ I has two neighbors in I. In other words, the latter condition

44

V1 V2 U3 U4

1|11

€2 11
€3

€41 1

Figure 4.3: Example of the construction in the proof of Theorem 4.1: An undirected
graph G (left) and the corresponding binary matrix S with h = 2 and H = 4 (right).
Empty cells in the matrix correspond to 0’s.

says that no two edges with an endpoint in I share the same endpoint in V' \ I.
Equivalently, for the subset K of columns corresponding to the vertices in V'\ I,
it holds that all rows in Sk contain at least one 1 and no two rows contain
only a single 1 in the same column. This is true if and only if K is a solution
for (S, k') because s,,41 equals the null vector and thus two rows in S|k can
only be identical if either they consist of 0’s only or contain only a single 1 in
the same column. Furthermore, |[K|=|V\I|=n—-k=F. O

We proceed with polynomial-time many-one reductions from BINARY (2,4)-
DISTINCT VECTORS to BINARY (o, 8)-DISTINCT VECTORS for all combinations
of a and S which are classified as NP-hard in Figure 4.2. The reductions will
mainly build on some padding arguments, that is, starting from a given input
matrix as constructed in the proof of Theorem 4.1, we expand it by adding new
columns and rows such that we achieve the desired bounds on the Hamming
distances without changing the actual answer to the original instance.

To start with, we define a type of column vectors which can be used for padding
an input matrix without changing the answer to the original instance, that is,
such “padding columns” are not contained in an optimal solution. Informally,
a column j is inessential if all rows could still be distinguished by the same
number of columns without selecting j. The formal definition is the following.

Definition 4.3. For a matrix S € X"*¢, a column j € [d] is called inessential
if the following two conditions are fulfilled:

(1) There exists arow ¢ € [n] such that column j exactly distinguishes row i from
all other rows, that is, s;; # s;; and s;; = sp; holds for all 1,1’ € [n] \ {¢}.

45

(2) All rows in Sjq)\ ;) are still distinct.

Note that for binary matrices, Condition (1) of Definition 4.3 can only be
fulfilled by column vectors that contain either a single 1 or a single 0, that is,
the column vectors of weight 1 or n — 1. Next, we show that, for any inessential
column in a given input matrix, we can assume that this column is not contained
in a solution for the DISTINCT VECTORS instance.

Lemma 4.2. Let (S € "% k) be a DISTINCT VECTORS instance with
an inessential column j € [d]. Then (S,k) is a yes-instance if and only
if (Sjjap\gy}» k) is a yes-instance.

Proof. 1t is clear that the “if” part of the statement holds; let us consider the
“only if” part. To this end, assume that there is a solution set K C [d] of
columns for (S,k) with j € K. Since column j exactly distinguishes row i
from all other rows and no other pair of rows, it follows that K’ := K \ {j}
is a solution for (S[[n]\ {i},[d] \ {s}],k — 1). But then, there also exists a
solution K" C [d] \ {j} for (S[[n],[d] \ {j}],k). This is true because row
equals at most one other row [in S[[n], K'] since all rows in S[[n] \ {i}, K'] are
distinct. Row 4 can thus be distinguished from row [by a column j’ € [d] \ {j}
with s;57 # s;7, which exists because column j is inessential, and thus, by
definition, all rows in S[[n],[d] \ {j}] are distinct. Hence, K" := K’ U{j'} is a
solution for (S, k). O

Note that, due to Lemma 4.2, adding inessential columns to a given input
matrix yields an equivalent DISTINCT VECTORS instance. Hence, for the binary
case, any construction that only adds column vectors which either contain a
single 1 or a single 0 to the input matrix yields an equivalent instance since these
columns are clearly inessential. This allows us to increase the minimum and
maximum pairwise row Hamming distances of a given binary matrix. Following
this basic idea, we prove the following theorem.

Theorem 4.3. BINARY («, 3)-DISTINCT VECTORS is NP-hard for all B > a+2
if a is even, and for all B> a4+ 3 if a is odd.

Proof. In the following, we give polynomial-time many-one reductions from
BINARY (2,4)-DiSTINCT VECTORS. To this end, let (S € {0,1}"%4 k) be
the BINARY (2,4)-DISTINCT VECTORS instance as constructed in the proof of
Theorem 4.1. Recall that this matrix S contains the null row vector, say s,, = 0,
and all other rows have weight two, w(s;) = 2 for all ¢ € [n — 1]. Moreover,

46

1

(a) Case 1: =1 and 8 = 7. By adding b = 3 copies of column
vector 1?1}, the maximum Hamming distance is increased to 7.
Adding the bottom row and the last column yields a minimum
Hamming distance of 1.

(b) Case 2: a=5and 8 =9, that isa=b=3.

Figure 4.4: Examples of the padding construction. The submatrix framed by thick
lines equals the example matrix in Figure 4.3.

there exists a pair of rows with Hamming distance four. Assume, without loss of
generality, that the first two rows s; and sy have Hamming distance A(sq, s2) = 4
(Figure 4.3 depicts an example of such a matrix). In the following, we will
construct an equivalent BINARY («, 3)-DISTINCT VECTORS instance (S’ k') in
polynomial time.

Let D; C [n] denote the set of row indices where column vector s.; equals 1.
Further, for i € N and I C [i], let 1% € {0,1}* denote the size-i column vector
that has 1-entries for all indices in I and 0-entries elsewhere.

We prove the theorem in two steps: First, the case « = 1, § = 4 + b for
all b > 0, and second, the case « =2+ a, f§ =4+ 2[a/2] + b for all a,b > 0.
Note that these two cases together yield the statement of the theorem.

47

Case 1 (a=1,8=4+b,b>0). We define the instance (S, k") as follows:
The column vectors of the matrix S’ € {0, 1}(+1)x(d+b+1) gre

1gj1, je{l,...,d},

sl= 1L je{d+1,..,d+0b},
n+1 .
1{n+1}, j=d+b+1.
We set ¥/ := k + 1. An example of the constructed instance is shown in

Figure 4.4a. It is not hard to check that the rows of S’ indeed fulfill the
constraints on the Hamming distances:

o= i A(szys5) = A /’/ =1and
176}2[17&1] (s) (sn Snﬂ) o

H':= max A(S’iasj) :A(Sllvsé) :A(81752)+b:4+b
i#j€[n+1]

As regards correctness, observe first that every solution contains the column
index d + b+ 1 because the row vectors s;, and s;,,; only differ in this column.
Since this column also distinguishes row s, 11 from all other rows and no other
pair of rows in ', it follows that (S’, k') is a yes-instance if and only if (5], 4, k)
is a yes-instance. Due to Lemma 4.2, this is the case if and only if (S, k) is a
yes-instance.

Case 2 (a4 =2+a, f =4+2[a/2] + b, a,b > 0). We define the instance
(S’ k') as follows: Starting with S’ := S, we add [a/2] copies of the column
vector 17;, for each i € [n — 1] to S". Moreover, we add [a/2] copies of the
column vector 1&71] to S’. Finally, we add b copies of the column vector 1’{11}
to S” and set k' = k. Figure 4.4b shows an example of the construction. Indeed,
we have the following Hamming distances:

for all 4,5/ € {2,...,n— 1}, j # j'. Thus, it holds b/ = A(s),,s5) =2+ a and
H' = A(s},s5) =44 2[a/2] +b. Since all row vectors in S are distinct and
since we only added columns which distinguish exactly one row from all others,
the correctness follows due to Lemma 4.2. O

48

Theorem 4.3 implies that for a given instance with fixed minimum pairwise
row Hamming distance «, it is possible to increase the maximum pairwise row
Hamming distance § arbitrarily without changing the answer to the instance.
On the contrary, however, it is not clear how to construct an equivalent instance
where only the minimum pairwise row Hamming distance is increased. Indeed, in
the following, we show polynomial-time solvability for the case a > 2[3/2] — 1.

4.2.2 Polynomial-Time Solvability for Homogeneous Data

The polynomial-time solvability for homogeneous data is based on the observa-
tion that, for small differences between maximum and minimum pairwise row
Hamming distance, the input matrix is either highly structured or bounded
in size by a constant depending only on the maximum pairwise row Hamming
distance. This structure in turn guarantees that the instance is easily solvable.
Before proving the theorem, we start with some helpful preliminary results.

First, we show that there is a linear-time preprocessing of a given input matrix
such that the resulting matrix contains the null vector as a row and no two
column vectors are identical.

Lemma 4.4. For a given DISTINCT VECTORS instance I = (S € {0,1}"*4 k)
one can compute in O(nd) time an equivalent DISTINCT VECTORS instance
I':= (8 € {0,1}"*% k) such that S" contains the null vector 0 € {0} as a
row, the number d' of columns of S’ is at most d, and no two column vectors
of S’ are identical (implying d' < 2™).

Proof. From an instance I = (S, k), we compute S’ as follows: First, in order
to have the null vector 0 as a row, we consider an arbitrary row vector, say s,
and iterate over all columns j. If s;; = 1, then we exchange all 1’s and 0’s
in column j. Then, we sort the columns of S lexicographically in O(nd) time
(using radix sort). We iterate over all columns again and check for any two
successive column vectors whether they are identical and, if so, remove one
of them. This ensures that all remaining column vectors are different, which
implies that there are at most 2™. Thus, in O(nd) time, we end up with a
matrix S’ containing at most 2" columns, where s§ = 0. Clearly, reordering
columns, removing identical columns, as well as exchanging 1’s and 0’s in a
column does not change the answer to the original instance. O

We henceforth assume all input instances to be already preprocessed according
to Lemma 4.4. In fact, we can extend Lemma 4.4 by removing also inessential

49

columns (recall Definition 4.3), that is, we can use the following data reduction
rule.

Reduction Rule 4.1. Let (S, k) be a DISTINCT VECTORS instance. If S
contains an inessential column, then delete this column from S.

Lemma 4.5. Reduction Rule 4.1 is correct and can exhaustively be applied
in O(min{n, d} - nd) time.

Proof. Correctness follows from Lemma 4.2. Exhaustive application of Reduc-
tion Rule 4.1 can be done as follows: First, we determine in O(nd) time which
columns fulfill Condition (1) of Definition 4.3. Recall that these are exactly the
weight-1 and weight-(n — 1) columns of which there can be at most min{2n, d}
after the preprocessing according to Lemma 4.4. For each of these candidate
columns j, we check in O(nd) time whether Condition (2) also holds, that is,
whether all row vectors are still distinct without column j, by lexicographically
sorting the rows of the matrix without column j. The overall running time is
thus in O(min{n, d} - nd). O

We now turn towards proving polynomial-time solvability of BINARY (a, §)-
DisTINCT VECTORS for a > 2|5/2] — 1. The proof uses some results from
extremal combinatorics concerning certain set systems. To start with, we
introduce the necessary concepts and notation. Recall Definition 4.1, where we
defined the set W, of column indices where row ¢ equals 1. In the following,
for a given input matrix S and a given set of row indices I, we will consider
the column system of I, that is, the system containing the sets W, of column
indices of all row vectors with indices in I.

Definition 4.4. For a matrix S € {0,1}"*? and a subset I C [n] of row indices,
let W(I) := {Ws, | i € I} denote the column system of I containing the sets W,
of column indices for all rows in I. For w € [d], let I, := {i € [n] | w(s;) = w}
be the set of indices of the weight-w rows and let W,, := W(I,,) be the column
system of the weight-w rows.

Figure 4.5 illustrates Definition 4.4. Note that in order to distinguish all
rows of weight w from each other, we only have to consider those columns
which appear in some of the sets contained in the column system W,, since the
weight-w rows only differ in these columns. Thus, in order to find subsolutions
for the weight-w rows, the structure of W,,, especially the pairwise intersections
of the contained sets, will be very important for us. Therefore, we make use of

50

1 1 Wy = {{3}}
1 1 1
1 WQ = {{175}7{67 7}}
1 11
11 Ws = {{1v4a 7}3 {25475}}

Figure 4.5: An example of a binary matrix (left) containing rows of weight one, two,
and three. The corresponding column systems are written on the right.

two general combinatorial concepts of set systems (see [Jukll, Chapter 6] for
example), the first of which defines a system of sets that pairwise intersect in
the same number of elements, whereas the second concept describes the even
stronger condition that all pairwise intersections contain the same elements.

Definition 4.5 (Weak A-system). A family F = {Sy,..., Sy} of m different
sets is called a weak A-system if there is some A € N such that |S; N S;| = A for

all i # j € [m].

Definition 4.6 (Strong A-system). A strong A-system (or sunflower) is a
weak A-system {S1,..., Sy} such that S;NS; = C for all ¢ # j € [m] and some
set C called the core. The sets S; :=S; \ C are called petals.

The following lemma illustrates the merit of the above definitions showing
that any DISTINCT VECTORS instance can easily be solved if the underlying
column system of all non-zero-weight rows forms a sunflower.

Lemma 4.6. Let I := (S € {0,1}"*4 k) be a DISTINCT VECTORS instance
such that W :=J s, W. forms a sunflower (note that Wo =0 ¢ W). Then, I
is a yes-instance if and only if k > |[W|. Moreover, any solution intersects at
least [W| — 1 of the petals of W.

Proof. Recall that we assume the instance I to be already preprocessed ac-
cording to Lemma 4.4. Hence, we can assume without loss of generality that
S, = 0 and that no two column vectors of S are equal. Assume further
that W = {W,,..., W, _, }is a sunflower with core C'. An example is depicted
in Figure 4.6.

Recall that any solution K fulfills K N D;; # 0 for all i # j € [n], where D;;
is the set of column indices in which the row vectors s; and s; differ. Assume

o1

3 4 5 6 7|8 9 10

s Oy

e I e N N
Y e N =)
—_

—_

Figure 4.6: Example of a matrix where the set system W forms a sunflower with
core C' = {1, 2} consisting of the first two columns. The six petals from top to bottom
are {4,9}, {7}, {3,10}, {6,8}, {5} and @ (a schematic drawing of W is on the right).
Framed by thick lines is a set of columns that distinguish all rows.

towards a contradiction that K C [d] with |K| < n—1 is a solution. If KNC = (),
then K only intersects the petals. Since the petals are pairwise disjoint, it
follows that there exists an ¢ € [n — 1] such that K N W; = K N D;, = 0, which
shows that K cannot be solution. If K NC # (), then K intersects at most n — 3
of the n — 1 petals in W. Hence, there exist i,j € [n — 1] with ¢ # j such
that K N (W; U Wj) = KN D;; =0. Hence, K cannot be a solution. It remains
to show that there is always a solution of size [W| = n — 1. To this end, let K
contain an arbitrary element from each non-empty petal and, if there is an
empty petal, also an arbitrary element from the core C. Clearly, K is a solution
of size n — 1. O

According to Lemma 4.6, identifying sunflower structures in a given input
instance significantly simplifies our problem since they have easy solutions. To
this end, the following result by Deza [Dez74] will serve as an important tool
since it describes conditions under which a weak A-system actually becomes a
strong one, that is, a sunflower (see also Jukna [Juk11, Chapter 6, Theorem 6.2]).

Lemma 4.7 (Deza [Dez74, Theorem 2|). Let F be an s-uniform weak A-system,
that is, each set contains s elements. If |F| > s2 — s+ 2, then F is a sunflower.

The basic scheme for proving polynomial-time solvability of BINARY («, f3)-
DiSTINCT VECTORS for o > 2[3/2] — 1 is the following: The bounds on the

52

minimum and maximum pairwise row Hamming distances imply that the column
systems W,, for z = «, ..., 8 form xz-uniform weak A-systems. Using Lemma 4.7,
we then conclude that either the size of the instance is upper-bounded by a
constant depending on 3 only, or that the W, form sunflowers, which we can
handle according to Lemma 4.6.

As a final prerequisite, we prove the following useful lemma concerning the
intersections of a set with sets in a sunflower.

Lemma 4.8. Let A € N, let F be a sunflower with core C' and let X be a set
such that | X NS| > X for all S € F. If |F| > |X|, then | X NC| > X (implying
A <))

Proof. Assume towards a contradiction that |X N C| < A\. Then X would
intersect each of the |F| > |X| pairwise disjoint petals of F, which is not
possible. 0

We are now ready to prove the following theorem.
Theorem 4.9. BINARY (o, 3)-DISTINCT VECTORS is solvable
1.) in O(min{n,d} - nd) time if 5 < a+ 1, and
2.) in O(n3d) time if o is odd and B = o + 2.

We prove both statements of Theorem 4.9 separately. As mentioned, the
basic structures of both proofs are similar: We first partition the column system
into uniform weak A-systems. Then, we consider for each system the cases
of being a sunflower or being of bounded size (due to Lemma 4.7). Then, we
make use of the preprocessing (Lemma 4.4 and Reduction Rule 4.1) and our
knowledge about solutions for sunflowers (Lemma 4.6) to show that only a small
number of candidate solutions are to be considered. That is, the instances are
essentially solved by the preprocessing routines and we can try out all remaining
candidates to find a solution in polynomial time. Showing that there are only
few remaining candidate solutions seems to be more difficult for Statement (2.);
thus, the proof of Statement (1.) can be seen as a “warm-up”.

Proof (Theorem 4.9, Statement (1.)) In the following, let I = (S € {0,1}"*4 k)
be an instance of BINARY («, 8)-DISTINCT VECTORS for a < 8 < a+ 1. Recall
that we assume I to be already preprocessed according to Lemma 4.4 and Reduc-
tion Rule 4.1 in O(min{n, d} - nd) time, that is, S contains the null row vector,
say s, = 0, no two column vectors are equal, which implies d < 2", and there

93

are no inessential columns. We write W; := Wy, = {j € [d] | s,; = 1} for the set
of column indices j where row vector s; equals 1, and we define W;; := W; N W;.
For w € [d], let I, := {i € [n] | w(s;) = w} denote the set of indices of the
weight-w rows and let n,, := |I,|. For ease of presentation, we sometimes identify
columns or rows and their corresponding indices.

For all i € [n — 1], we have

A(s;, 8n) = A(s,0) = w(s;) € {a,a + 1}.

Since also
A(SZ‘,SJ') = w(si) + ’U)(S]) — 2|Wij| € {Oé,Oé + 1}

holds for all ¢ # j € [n — 1], the following properties can be derived:

Virj € Lss, i %5 : Wyl = [(@+1)/2], and (12)
Vi€ L, j € Tasr : [Wi| = |(a +1)/2]. (4.3)

For example, let us prove Property (4.1). For i,j € I,, we have A(s;,s;) =
2a—2|W;;| € {a, a+1}. Since |W;;] is an integer, 2a.—2|W;;| is even. Therefore,
if o is even, then 2a — 2|W;;| = a implying |W;;| = /2 = |o/2]. If « is odd,
then 2a — 2|W;;| = @ + 1 and, hence, |W;;| = (o — 1)/2 = |a/2]. This proves
Property (4.1). The proofs for the remaining properties are analogous.

Now, Property (4.1) implies that W, := {W; | ¢ € I,} is an c-uniform weak A-
system (every pair of sets intersects in | /2] elements) and Property (4.2) implies
that Woi1 :={W; | i € Io41} is an (o + 1)-uniform weak A-system (every pair
of sets intersects in [(a+ 1)/2] elements). We define the constant

ci=(a+1)?—(a+1)+2

according to the bound in Lemma 4.7. We can assume that max{ns,ne+1} > ¢
because otherwise n = ny +nq4+1 + 1 < 2¢ is upper-bounded by a constant, and
thus also d < 2" is upper-bounded by a constant (recall that we assume S to
be preprocessed according to Lemma 4.4), which implies that the instance I is
constant-time solvable.

If ng41 > ¢, then, by Lemma 4.7, it follows that W, is a sunflower with
a core C of size [(a+ 1)/2] and petals Wi, ic Ioqq1, of size a+1—1|C| > 1.
For each i € I,+1 and each j € I, Property (4.3) together with n,41 > ¢ >«
imply (due to Lemma 4.8) that [W; N C| = |W;|. Thus, we have W;; C C

o4

Y
—
—_

(a) (b)

Figure 4.7: Examples of two possible instances for the case a = 1, 8 = 2. In both
cases the column system formed by all non-zero row vectors is a sunflower. A solution
can thus be easily computed according to Lemma 4.6.

and Wz NW; = (. Hence, for x € ’VIZ-? the column vector s,, contains exactly
one 1 (namely in the i-th row), that is, s., = 17,,. Thus, column x exactly
distinguishes row i from all other rows. For o > 2, each pair of rows differs in
at least two columns. Thus, all rows in S|4\ {») are still distinct and column x
is in fact inessential, which yields a contradiction. Hence, we can assume
that o = 1. Since for all ¢ € I; and j € I, we then have W;; = W; = C, it
follows that n; = 1. See Figure 4.7a for an illustrating example. By Lemma 4.6,
I is a yes-instance if and only if £ > ny + ny = n — 1 (which can be decided
in O(nd) time).

If ng+1 < ¢, then n, > ¢ holds and Lemma 4.7 implies that W, is a sunflower
with a core C' of size |C] = |a/2]. If « is odd, then we have |(a+1)/2| > |C|,
and thus, due to Property (4.3) and n, > ¢ > « + 1, Lemma 4.8 implies
that there cannot exist a row vector of weight « + 1, that is no41 = 0 (see
Figure 4.7b). Now, by Lemma 4.6, I is a yes-instance if and only if & > n, = n—1
(decidable in O(nd) time). If « is even, then |C| = |[(a + 1)/2] > 1. Thus,
Property (4.3) and Lemma 4.8 imply that W;; = C for all ¢ € I, j € Int1.
Note that s,, = 1&_1] for all x € C, that is, column z exactly distinguishes
row n from all others. Since « is even, hence v > 2, it follows that column z is
inessential, which again yields a contradiction. O

To sum up, the proof above shows that for 8 < « + 1 the preprocessing
(Lemma 4.4 and Reduction Rule 4.1) either yields an instance of constant
size O(3%) or in fact yields an instance with o = 1 and 8 < 2 which is structured

95

in such a way that it is easily solvable. Hence, the overall running time for this
case is determined by the polynomial running time of the preprocessing.

Next, we show that BINARY (a,a + 2)-DISTINCT VECTORS is solvable
in O(n3d) time if o is odd. We use the same notation as in the proof of
Statement (1.) (also many arguments are completely analogous). Again, we
assume the input instance I = (S, k) to be already preprocessed according to
Lemma 4.4 and Reduction Rule 4.1.

Proof (Theorem 4.9, Statement (2.)) Since
A(s;, s5) = w(s;) +w(s;) —2|W;;| € {o,a+1,a +2}
holds for all ¢ # j € [n], it follows that
A(si, $n) = w(s;) € {aya+1,a+ 2}

holds for all ¢ € [n —1]. By plugging in the respective values for w(s;) and w(s;)
in the above formula for A(s;, s;), the following properties can be derived
an analogous way as for Properties (4.1) to (4.3) in the proof of Statement (1

—~
~— T
~— =

Vi,j € In, i # 5 |Wij| = |a/2],
Vi€ Io, j € Inyr : |Wij5| € {la/2], [a/2]},
Vi€ ly, j€ Inga: |[Wij| =Ta/2],
Vi, j € Int1, @ # 5 |Wij| = [a/2],
Vi€ Iny1, § € Ioto : Wil € {[a/2], [a/2] + 1},
Vi, j € Inyo, 1 # j 1 [Wij| = [a/2] + 1.

A~ N~~~
q;q;q;q;q;q;
CDOO\IQCHH;
_ D — D D

Properties (4.4), (4.7), and (4.9) imply that W,, Wat1, and Wy4o are a-,
(a+1)-, and (a + 2)-uniform weak A-systems, respectively.

In the following, we denote by U, := [, 7, Wi the index set of the columns
where at least one weight-w row vector equals 1. Let ¢ := (o +2)% — (a+2) + 2.
For each z € {a,a + 1, + 2}, we either have n, < c or n, > c¢. Overall, this
gives eight possible cases, each of which we now show how to solve:

Case 1 (ng < ¢, Not1 < € Nat2 < ¢). In this case, the number of rows
in S is upper-bounded by a constant depending on «, and thus, [is of overall
constant size.

Case 2 (ng > ¢, ngy1 < ¢, Ngy2 < ¢). Due to Lemma 4.7, the system W,
forms a sunflower. Let C' with |C| = |«/2] be the core of W,. For a =

o6

1, clearly, any solution K contains all column indices from U; in order to
distinguish the weight-1 rows from the null vector. Since |Us U Us| < 2n5 + 3ng
is upper-bounded by a constant, the number of possible subsets K’ C Us U Ug
is also upper-bounded by a constant. Thus, we only have to check a constant
number of sets K = Uy U K’. For o > 3, the size of a petal W;, i € I,,
is [W;| = [W;| = |C| = a — |a/2] = [a/2] > 2. Since the petals are pairwise
disjoint, it follows that, for each petal Wi, there exists a j € I,+1 U I,42 such
that Wl NW, # (. Otherwise, the column vectors corresponding to the indices
in petal Wl are all equal to l?i}, that is, at least one of them is inessential,
which is a contradiction. Since |Uy41 U Unq2| is upper-bounded by a constant
(depending on «), also the number n,, of petals in W, is upper-bounded by a
constant, which yields an overall constant size of I.

Case 3 (ng < ¢, Nat1 = € Nat2 < ¢). By Lemma 4.7, W, forms a
sunflower with a core C of size |C| = [«/2]. The size of each petal Wi, ie Toq1,
is thus |Wl| = [a/2]. Hence, for a > 3, analogous arguments as in Case 2
hold. For o = 1, any solution K can be written as K = C' UU; U K3 U K3,
where €' C C, K5 C Uy \ C and K3 C Us. Note that |C| and |Us| are upper-
bounded by a constant. Hence, the number of different subsets C’ and K3 is
also a constant. Since |W;| = 1 holds for all ¢ € I, we have |Us \ C| = na.
From Lemma 4.6, it follows that |K3| > ny — 1 holds in order to distinguish all
weight-2 row vectors and the null vector from each other. Therefore, the overall
number of possible choices for K, and thus for K, is in O(n).

Case 4 (ng < ¢, Nay1 < ¢, Mgtz > ¢). By Lemma 4.7, W, o forms a
sunflower with a core C of size |C| = [a/2] + 1. The size of each petal W;,
i € Inyo, is thus |W;| = [a/2]. Hence, for a > 3, analogous arguments as in
Case 2 hold. For a = 1, any solution K can be written as K = C'UU; UK, UK3,
where €' C C, K5 C Uy and K35 C Us \ C. Note that |C| and |Us| are upper-
bounded by a constant. Hence, the number of different subsets C’ and K3 is
also a constant. Lemma 4.6 implies that |K3| > ng — 1. Since |Us \ C| = ns,
this yields an overall number of O(n) possible choices for K.

Case 5 (ng > ¢, Nat1 > ¢, Ngt2 < ¢). Due to Lemma 4.7, W, forms a
sunflower with a core C of size |C| = |a/2] and Wy forms a sunflower with
core C' of size |C'| = [a/2]. First, note that Property (4.6) implies |W;;| =
[a/2] > |C| for all i € I, j € Ioy2, which is not possible due to Lemma 4.8.
Thus, it follows that no12 = 0. Moreover, since Property (4.5) implies |W;;| >
|C| for all i € I, and j € In41, Lemma 4.8 yields C C W;;, and thus C' C C".

o7

Hence, all column vectors in C' equal 1?171]7 which yields a contradiction

for a > 3 because C then contains an inessential column. For a = 1, any
solution K can be written as K = C” U U; U K3, where C”" C C’ and K, C Us.
By Lemma 4.6, we know that |K>| > ny — 1. Since |C’| =1 and |Uz \ C'| = na,
there are O(n) possible choices for K.

Case 6 (ny > ¢, Not1 < ¢, Ngt2 > ¢). This case is not possible since we
showed in Case 5 that n, > ¢ implies 1442 = 0.

Case 7 (ng > ¢, Nag+1 > ¢, Na42 > ¢). This case is again not possible.

Case 8 (ny < ¢, Nat1 > €, Ngt2 > ¢). From Lemma 4.7 it follows that W, 1
forms a sunflower with a core C of size |C| = [a/2] and W,12 forms a sunflower
with core C’ of size |C'| = [a/2] + 1. Moreover, analogously to Case 5,
Property (4.8) and Lemma 4.8 imply C' C C".

If & = 1, then any solution can be written as K = U; UC” U Ky U K3,
where C" C €', Ky C Uy \ C and K3 C Us \ C'. Since |C'| = [a/2] + 1,
|U2\C| = na, [Us\C'| = ns, and, by Lemma 4.6, |K2| > no—1 and |K3| > ng—1,
it follows that there are O(n?) possible choices for K.

For a > 3, we show that the matrix S—recall that it is reduced with respect
to Reduction Rule 4.1—has a specific structure, depicted in Figure 4.8. Namely,
we claim that

(a) if Wi; \C" # 0 fori# je[n—1], theni € Io41 and j € I U412, and

(b) the one column vector s.. with z € C'\ ¢’ equals 17 ; .
Claim (a) implies that each column in [d]\ C’ contains at most two 1’s (naturally,
any column contains at least one 1). We will see that in fact all columns in [d]\ C”
contain exactly two 1’s and therefore define the edges of a bipartite graph with
vertex sets Io41 and I, U I,4+2. We find a matching that saturates I, in this
bipartite graph and show that the columns corresponding to the matching edges
along with column z are an optimal solution.

To show Claim (a), observe that, if i # j € Io4o, then W;; \ C" =0 as Wy
is a sunflower with core C’. Likewise, if i # j € Io41, then W;; \ C" = 0
because W,y1 is a sunflower with core C and C C C’. It hence suffices to
show that W;; \ ¢’ = 0 in the case that either both ¢,j € I, or i € I,
and j € I,42. To see the latter, note that Property (4.6) and Lemma 4.8
imply |[W; N C’'| = [a/2] = |C'| — 1, for all i € I, that is, we have W;; C C’
for all i € I, j € Ioy2. Now, it only remains to show W;; C C’ for ¢,j € I,
1 # j. We derived above that

W; N C| = |W;nC'| = [a/2] = |C'] - 1.

o8

z
11111111 I5 IS
I{2 1 11 11 N \
31 1)1 11 QR ® O
4011 (1 1 \
I‘*:ii 1 111 ‘
71 1 1 1 CEONORY
8 1)1 1 I
I3
91 1 1
10

Cl

Figure 4.8: An instance for the case a = 3, 8 =5 (left). The submatrix framed by the
thick rectangle is the incidence matrix of a bipartite graph (right). An optimal solution
is highlighted in gray. Note that the columns in the solution (excluding column z)
correspond to a maximum matching in the bipartite graph (thick edges).

Thus, |(W;NC")N(W;NC")| = |[W;; NC'| > |C'| -2 = |a/2]. By Property (4.4),
it holds |W;;| < /2], which implies W;; C C”. Hence, W;;\C" =), completing
the proof of Claim (a).

Let us next prove Claim (b), that is, s., = 1?aula+2’ where z is the one
column index in C'\ C’. Assume the contrary, that is, either a row in I, has a 0
at entry z or arow in I, has a 1 at entry z. Let us first show that s;, = 0, that
is, z ¢ W; is impossible for a row i € I,,. Using |W; N C’| = |C'| — 1, it follows
that C' C W;. Then, for all j € Io41 U442, it holds W;; \ C = 0 since otherwise
either Property (4.5) or Property (4.6) is violated. Let us show that W;; \ C' = ()
also holds for all j # i € I,. Recall that W;; \ C’ = 0, as shown in the proof of
Claim (a) above. By assumption z ¢ W;, yielding W;; \ C = W;; \ C’ =). But
then, the columns in W;\C equal 17;,. Note that [W;\C| > a—|a/2] > 2 (recall
that « > 3). Hence, there is at least one inessential column, a contradiction.

Let us now show that s;,, = 1, that is z € W; is not possible for a row
i € Ing1. If z € W;, then C' C W; and thus |[W;;| > |C'| = [a/2] + 1 for
every j € Ioo. Property (4.8) then implies W;; = C’, that is W;; \ ¢’/ = 0

99

for every j € I,4+2. Moreover, consider a row j € I, and note that |Wij N
C'| = 14 |W; NC| since z € W, as shown before. By Property (4.5) and
Lemma 4.8, we have |W; N C| > |a/2], which yields [W;; N C’| > [a/2]. Now,
Property (4.5) implies |W;; NC’| = [a/2] = |Wj;|, which implies W;; C C’, that
is W;; N C" = (). But then, the columns in W; \ C’ are equal to 17;, and there
are at least |W;\ C'| = a+1—[a/2] —1 = |a/2] > 1 such inessential columns,
which yields a contradiction. Hence, for z € C’\ C, it holds s., = 17 01y
proving Claim (b). Note that column z distinguishes all rows in I, from all
rows in Iy, U Tyyo.

To finish the proof of Case 8, we need one more observation about the number
of weight-a rows, namely that n, = |C| = [a/2]. Since |[W;NC’| = |C'|—-1 = |C|
and z € W; holds for all ¢ € I,,, and since also {z} = C’\ C, we have |W;NC| =
|C] — 1. If ny < |C|, then there exists a column x € C such that x € W;
for every ¢ € I,. But then, s,, = 1’[’;71] is inessential, which is not possible.
If n, > |C], then there exists a pair i # j € I, such that W; N C = W,; N C.
This implies |W;;| > |C| — 1+ 1 = [a/2], which contradicts Property (4.4).

We now derive a solution from the abovementioned bipartite graph. Consider
the columns in [d] \ C’. Clearly, if one of these columns contains only one 1,
then this column is inessential, which yields a contradiction. Thus, each column
contains at least two 1’s. Using Claim (a), each of the columns also has at
most two 1’s. Also, after preprocessing, no two columns are equal. Thus,
the submatrix S[[n — 1],[d] \ C'] (framed by thick lines in Figure 4.8) is the
incidence matrix of a bipartite graph G, where the rows correspond to the
vertices (partitioned into I,4+1 and I, U I, 2) and the columns define the edges.
Moreover, each vertex ¢ € I,yo has degree |W; \ C'| = [a/2]. Also each
vertex ¢ € I,41 has degree |W; \ C’'| = |[W; \ C| = [a/2] by Claim (b). Each
row i € I, has |[W; N C'| = [a/2] (as shown in the proof of Claim (a)), and,
therefore, vertex i has degree |W; \ C’| = |a/2] in G. We can now use Hall’s
theorem [BG09]?, to show that there exists a matching in G that saturates I, 1,
that is, a subset M C [d] \ C’ of ng4+1 columns such that |[W; N M| = 1 for
all i € Iny1 and [W; N M| < 1 for all i € I, U T,q2. Indeed, taking any
subset T' C I,11 of vertices, consider the set Ng(T') C I, U I,12 of neighbors
of T. Since the vertices in Ng(T') have at most the degree of any vertex in T', we
have |Ng(T)| > |T|. Hence, the condition of Hall’s theorem is satisfied. Thus,
matching M exists as claimed.

2Hall’s theorem states that, for a bipartite graph G = (X WY, E), there exists an X-saturating
matching if and only if |T'| < |Ng(T)| holds for each subset T C X.

60

We now claim that K := M U {z} with |K| = n441 + 1 is an optimal solution
(highlighted in gray in Figure 4.8). First, we show that all rows in Sjx are
pairwise distinct. Column z distinguishes each row in I, U I 42 from each
row in Ioy1 U{n}. Since M saturates I,41, all rows in I,; are distinct from
row n. It remains to show that all pairs of rows in I, U I, o are distinct. Recall
that W;; \ C" = 0 for all i # j € I, U442 (by Claim (a)). Thus, every row
1 € I, U I,o with W; N M # (is distinct from all other rows in I, U I, yo.
Hence, since M is a matching, if |M| > ng + nq42 — 1, then all pairs of rows
in I, U I,4o are distinct. Since G is bipartite, we have

Ras2l/2] + nalaf2] = nasfa/2].
Thus, using n, = [«/2] (as observed above), we have
IM| = nat1 = Nas2 + /2] = ng + ngto — 1.

Consequently, all rows in S| are distinct.

Regarding optimality, it remains to show that there is no solution of size nq41.
This can be seen as follows: Lemma 4.6 implies that any solution K intersects
at least no41 — 1 of the petals of W, 1. If K intersects all n,41 petals, then,
aS Na4+1 = Na+Naq2—1, there exists a j € I,UI, 9 such that KNW; = (), which
is not possible. Otherwise, if K intersects exactly nq,41 — 1 of the petals, then
there exists an i € I,41 and also j # j’ € I, U I, 2 such that KN (W;\ C’) =0,
Kn(W;\C') =0 and KN (W, \ C’) = 0. But it is not possible to pairwise
distinguish all three rows 4, j, and j' from each other with just one column.
Hence, any optimal solution contains at least n,41 + 1 columns and, therefore,
I is a yes-instance if and only if £ > ny41 + 1. This finishes Case 8.

As regards the running time, observe that the maximum number of candidate
solutions we have to test in any of the above cases is in O(n?). Checking
whether a subset of column indices is a solution can be done in O(nd) time via
lexicographical sorting of the rows. This yields an overall running time in O(n3d)
which also subsumes the O(min{n,d} - nd) time for the preprocessing. O

As a final remark, we mention that polynomial-time solvability actually holds
for all instances that satisfy the conditions of Theorem 4.9 after the preprocessing
(Lemma 4.4 and Reduction Rule 4.1). This yields an even stronger result since in
practice also instances with a larger difference between maximum and minimum
pairwise row Hamming distance could be efficiently solvable.

61

4.3 Conclusion

Based on a combined parameterization by minimum and maximum pairwise
row Hamming distances, we proved a complexity dichotomy for DIisTINCT
VECTORS on binary matrices. We observed that for small differences between
the maximum and minimum pairwise row Hamming distance, the rows of the
input matrix correspond to set systems having a certain “sunflower” structure.
The polynomial-time solvable cases are obtained by a precise analysis of these
underlying set systems using combinatorial results from extremal set theory
and matching theory. It is a major open question whether the polynomial-time
solvability can be generalized to matrices on non-binary alphabets. For practical
purposes, it is an interesting question whether one can even obtain linear time
for the tractable cases.

We conclude with two further challenges for future research. The concepts of
weak and strong A-systems might prove useful to obtain further algorithmic
results and also to gain insight into the underlying combinatorial structure of
other problems. It is interesting to search for problems involving set systems
where the structure allows to apply results from extremal set theory.

From a combinatorial point of view, the study of structural parameterizations
for matrix problems in general seems to be a fertile but rather little researched
area for parameterized complexity studies which should be extended in the
future (another example of a parameterized complexity analysis for a vector
problem deals with the explanation of integer vectors by few homogenous seg-
ments [Bre+15a]). This also includes the task of defining appropriate parameters
in the first place. For example, instead of using the Hamming distance of rows
one could also consider other distance measures (for instance, the weighted edit
distance). Other possible parameter candidates could be the number of different
rows (or columns), the frequency of an input value in the matrix (that is, how
many times this value appears in the matrix), or the number of non-zero entries
(measuring the sparsity of the matrix).

62

Chapter 5

Co-Clustering

Co-clustering, that is, partitioning a numerical matrix into “homogeneous”
submatrices, has many applications ranging from bioinformatics to election
analysis. We focus on the basic variant of co-clustering where the homogeneity of
a submatrix is measured in terms of minimizing the maximum distance between
two entries. In contrast to Chapter 4, where we combined two parameters,
we now conduct a thorough multivariate complexity analysis involving several
combinations of parameters such as the number of clusters, the number of rows,
or the number of different values in the input matrix. As in Chapter 4, we spot
several NP-hard as well as a number of polynomial-time solvable special cases,
thus charting the border of tractability for this challenging data mining problem
(however, we do not obtain a complete dichotomy). Moreover, we obtain some
fixed-parameter tractability results by developing a reduction to SAT solving.

5.1 Introduction

Co-clustering, also known as biclustering [MOO04], performs a simultaneous
clustering of the rows and columns of a data matrix (hence, the term “co-
clustering”). Roughly speaking, the task is, given a numerical input matrix A,
to partition the rows and columns of A into subsets minimizing a given cost
function (measuring “homogeneity”). For a given subset I of rows and a subset J
of columns, the corresponding cluster consists of all entries a;; with ¢ € I
and j € J. The cost function usually defines homogeneity in terms of distances
(measured by some norm £) between the entries of each cluster. An illustration is
given in Figure 5.1. Note that the variant where clusters are allowed to “overlap”,
meaning that some rows and columns are contained in multiple clusters, has
also been studied [MOO04]. We focus on the non-overlapping variant which can
be stated as follows.

63

(1 1]3 3|5 5 6 6]
2 203 25 5 5 5
1 13 3|6 6 5 5
3 3[0 14 4 4 4
3 2(0 1|4 4 4 4
2 200 1|4 4 4 4
0 0[1 28 8 8 8

(0 1]2 2(8 7 8 7

Figure 5.1: An example of a co-clustering of an 8 x 8 matrix into k = 3 row subsets
and ¢ = 3 column subsets resulting in 9 clusters (submatrices). Within each cluster
the maximum difference between any two values (this corresponds to the maximum
norm Lq) is at most 1.

Co-CLUSTERING 2

Input: A matrix A € Q™*" and two positive integers k, ¢ € N.

Task: Find a partition of A’s rows into k subsets and a partition of A’s
columns into ¢ subsets such that a given cost function (defined
with respect to some norm £) is minimized for the corresponding
clustering.

Co-clustering is a fundamental method for unsupervised data analysis. Its
applications range from microarrays and bioinformatics over recommender
systems to election analysis [ADK12, Ban+07, MOO04, TSS05]. Due to its
enormous practical significance, there is a vast amount of literature discussing
various variants; however, due to the observed NP-hardness of “almost all
interesting variants” [MOO04, Section 2.2|, most of the literature deals with
heuristic, typically empirically validated algorithms. Indeed, there has been
very active research on co-clustering in terms of heuristic algorithms while there
is little substantial theoretical work. Motivated by an effort towards a deeper
theoretical understanding, we refine the theoretical analysis of the computational
complexity of a natural special case of CO-CLUSTERING, namely we study the
case of £ being the maximum norm L., where the problem comes down to
minimizing the maximum distance between any two entries of a cluster. This cost
function might be a reasonable choice in practice due to its outlier robustness.
Also, by focussing on CO-CLUSTERING.,, we investigate a scenario that is
combinatorially easier to grasp. In particular, our exact and combinatorial

64

polynomial-time algorithms exploit structural properties of the input matrix.
We also study a more restricted clustering version, where the row and column
partitions have to contain subsets of consecutive indices. This version (see
Section 5.3.3) subsumes the problem of feature discretization, which is used as
a preprocessing technique in data mining [CN98, Ngu06, NS95].

Related Work. Our main point of reference is the work of Anagnostopou-
los et al. [ADK12| dealing with CO-CLUSTERING for L,-norms (p > 1). The
focus of their purely theoretical study is on polynomial-time approximation
algorithms (Jegelka et al. [JSB09] further generalized the results to higher di-
mensions), but they also provide computational hardness results. In particular,
they point to challenging open questions concerning the cases k=¢ =2, k=1,
or binary input matrices. Within our more restricted setting using the maximum
norm, we can resolve parts of these questions.

The survey of Madeira and Oliveira [MOO04] provides an excellent overview on
the many variations of CO-CLUSTERING z, there called biclustering, and discusses
many applications in bioinformatics and beyond. In particular, they also discuss
Hartigan’s [Har72| special case where the goal is to partition into uniform
clusters (that is, each cluster has only one entry value). Our studies indeed
generalize this very puristic scenario by not demanding completely uniform
clusters (which would correspond to clusters with maximum entry difference 0)
but allowing some variation between maximum and minimum cluster entries.
In an experimental work, Califano et al. [CST00] aimed at clusterings where
in each submatrix the distance between any two entries of a column is upper-
bounded. This is a slightly weaker definition of cluster homogeneity than ours.
Wulff et al. [WUB13] considered a so-called “monochromatic” biclustering where
the cost for each submatrix is defined as the number of minority entries. For
binary data, this clustering task coincides with CO-CLUSTERING, as defined
by Anagnostopoulos et al. [ADK12|. Wulff et al. [WUB13] showed NP-hardness
of MONOCHROMATIC BICLUSTERING for binary data with an additional third
value denoting missing entries (which are not considered in their cost function)
and give a randomized polynomial-time approximation scheme (PTAS). They
also developed a heuristic approach which they evaluated in experiments. Feige
[Feil4] gave a proof of NP-hardness of HYPERCUBE 2-SEGMENTATION which is
equivalent to CO-CLUSTERINGy, with & = 2 and ¢ = n for binary matrices (the
reduction is from MAX CUT and makes heavy use of so-called Hadamard codes).
Note that in contrast to the L;-version, we observe that CO-CLUSTERING,__ is

65

easily solvable on binary matrices. Cheng et al. [Che+16] developed a greedy
heuristic for hierarchical co-clustering based on mutual information.

Our Contributions. In terms of defining “cluster homogeneity”, we focus on min-
imizing the maximum distance between two entries within a cluster (maximum
norm). Figure 5.2 summarizes our results. Our main conceptual contribution is
to provide a seemingly first study on the exact complexity of a natural special
case of CO-CLUSTERING .

Our main technical contributions are as follows. We prove several compu-
tational intractability results even for strongly restricted cases (that is, for
constant parameter values). Notably, we reveal non-obvious connections to
other fields such as geometric covering and partitioning problems. Moreover, we
demonstrate that the NP-hardness of Co-CLUSTERING,__ does not stem from
the inherent permutation combinatorics (of rows and columns): the problem
remains NP-hard when all clusters consist of consecutive rows or columns. This
is a strong constraint (the search space size is tremendously reduced—basically
from E™ - 4" to (7,?) . (’;)) which directly gives a polynomial-time algorithm
if k£ and ¢ are constants. Note that in the general case we have NP-hardness
for k = ¢ = 3. Concerning the algorithmic results, we develop a novel reduc-
tion to SAT solving. This reduction reveals interesting connections between
co-clustering tasks and SAT solving, which yields polynomial-time algorithms
and fixed-parameter tractability for some special cases.

Section 5.2 introduces the formal problem definition and some first obser-
vations. We start with the various NP-hardness results in Section 5.3. In
Section 5.4, we describe the SAT solving approach and the obtained algorithmic
results.

5.2 Problem Definition and First Observations

We follow the terminology of Anagnostopoulos et al. [ADK12]. For a matrix A €
Q™ " a (k,0)-co-clustering is a pair (Z,J) consisting of a k-partition T =
{L,...,I} of the row indices [m] of A (that is, I; C [m] for all 1 < i < k,
ILnl;=0forall<i<j<k, and Ule I; = [m]) and an f-partition J =
{J1,...,J¢} of the column indices [n] of A. We call the elements of Z row blocks
and the elements of J column blocks. Additionally, we require Z and J to not
contain empty sets. For (r, s) € [k]x[(], the set A5 := {a;; € A| (i,7) € I, xJs}
is called a cluster.

66

NP-hard

N W A O NS

1 2 3 4 5 6 7 k

Figure 5.2: Overview of the computational complexity landscape of Co-CLUSTERING s
with respect to the number k£ of row clusters and the number ¢ of column clusters.
White cells are polynomial-time solvable cases (Theorems 5.8 and 5.9). The dark
gray cells are NP-hard even with an alphabet size || = 3 and a maximum allowed
cost ¢ = 1 (Theorem 5.3). For the light gray cells, we show the following: Co-
CLUSTERINGo with k£ = 2 is polynomial-time solvable if |X| < 3 (Theorem 5.10),
but NP-hard if |¥| is unbounded (Theorem 5.5). However, for £k = 2 and ¢ = 1,
Co-CLUSTERING is fixed-parameter tractable with respect to ¢ and with respect
to |X] (Corollary 5.16).

The cost of a co-clustering (under maximum norm, which is the only norm
we consider here) is defined as the maximum difference between any two entries
in any cluster, formally

costoo(Z,J) := max (max.A,s — minA,;).
(r,s)€[k]x[£]

Herein, max A,s; (min A,) denotes the maximum (minimum) entry in A, ..
The decision variant of CO-CLUSTERING, with maximum norm is as follows.

CO-CLUSTERING o,
Input: A matrix A € Q™*"™ integers k,£ € N, and a cost ¢ > 0.
Question: Is there a (k, £)-co-clustering (Z, J) of A with costo(Z,J) < ¢?

See Figure 5.3 for an introductory example. We define ¥ := {a;; € A| (4,5) €
[m] x [n]} to be the alphabet of the input matrix A (consisting of the numerical
values that occur in A). Note that |X| < mn. We use the abbreviation (k, £)-
Co0-CLUSTERING, to refer to CO-CLUSTERING., with constants k,¢ € N, and

67

1 3 41 I1|1 4 1|3 1|2 3(2 1

A=12 2 1 3 2 1 3|2 1 113 4
IQ IQ

0430 0 3 0]4 0 0|4 3

I = {1}7 I, = {273} I = {2}a Iy = {1,3}
Jy=1{1,3,4), o = {2} Jy={1,4}, J» = {2,3}

Figure 5.3: The example shows two (2, 2)-co-clusterings (middle and right) of the same
matrix A (left-hand side). It demonstrates that by sorting rows and columns according
to the co-clustering, the clusters can be illustrated as submatrices of this (permuted)
input matrix. The cost of the (2,2)-co-clustering in the middle is three and the cost
of the (2, 2)-co-clustering on the right-hand side is one.

by (k, *)-Co-CLUSTERING, we refer to the case where only k is constant and ¢ is
part of the input. Clearly, CO-CLUSTERING,, is symmetric with respect to k
and ¢ in the sense that any (k, £)-co-clustering of a matrix A is equivalent to an
(¢, k)-co-clustering of the transposed matrix A”. Hence, we always assume that
k<UZ.

We next collect some simple observations. First, determining whether there is
a cost-zero (perfect) co-clustering is easy. Moreover, since, for a binary alphabet,
the only interesting case is a perfect co-clustering, we get the following.

Observation 5.1. Co-CLUSTERINC, s solvable in O(mn) time for cost zero
and also for any size-two alphabet.

Proof. Let (A, k,¢,0) be a CO-CLUSTERING, input instance. For a (k, £)-co-
clustering with cost 0, it holds that all entries of a cluster are equal. This is only
possible if there are at most k different rows and at most ¢ different columns
in A since otherwise there will be a cluster containing two different entries.
Thus, the case ¢ = 0 can be solved by lexicographically sorting the rows and
columns of A in O(mn) time (e.g. using radix sort). O

We further observe that the input matrix can, without loss of generality, be

assumed to contain only integer values (by some rescaling arguments preserving
the distance relations between elements).

68

Observation 5.2. For any CO-CLUSTERING-instance with arbitrary alpha-
bet ¥ C Q, one can find in O(|X|?) time an equivalent instance with alpha-
bet X' C Z and cost value ¢’ € N.

Proof. We show that for any instance with arbitrary alphabet ¥ C Q and
cost ¢ > 0, there exists an equivalent instance with ¥’ C Z and ¢ € N.
Let o; be the i-th element of ¥ with respect to any fixed ordering. The
idea is that the cost value ¢ determines which elements of ¥ are allowed to
appear together in a cluster of a cost-c co-clustering. Namely, in any cost-c
co-clustering two elements o; # o; can occur in the same cluster if and only
if |o; — 0j| < ¢. These constraints can be encoded in an undirected graph
G. = (X,F) with E := {{04,0;} | 0s # 0; € ¥,|0; — 0| < ¢}, where each
vertex corresponds to an element of 3, and there is an edge between two vertices
if and only if the corresponding elements can occur in the same cluster of a
cost-c co-clustering.

Now, observe that G, is a so-called unit interval graph, that is, each vertex o;
can be represented by the length-c interval [o;, 0;+¢] such that it holds {o;,0;} €
E & [0;,0; +cNloj,0; +c] # 0 (here, we assume all intervals to contain real
values). Hence, one can find in O(|X|?) time [Dur-+15] an interval representation
of G, where the vertices o; are represented by length-¢’ intervals [0}, o} +]
of equal integer length ¢’ € N with integer starting points o € Z such that
0<o0; <[E]? ¢ <X, and |0} — 0f| < ¢ & |o; — 0| < c. Hence, replacing
the elements o; by o} in the input matrix yields a matrix that has a cost-¢’
co-clustering if and only if the original input matrix has a cost-c co-clustering.
Thus, for any instance with alphabet ¥ and cost ¢, there is an equivalent instance
with alphabet 3’ C {0,...,|%]?} and cost ¢ € {0,...,|X|}. Consequently, we
can upper-bound the values in X’ by |X|? < (mn)?. O

Due to Observation 5.2, we henceforth assume for the rest of the chapter that
the input matrix contains integers, that is, A € Z™*".

5.3 Hardness Results

In the previous section, we observed that CO-CLUSTERING, is easy to solve
for binary input matrices (Observation 5.1). In contrast to this, we show in
this section that its computational complexity significantly changes as soon as
the input matrix contains at least three different values. In fact, even for very

69

restricted special cases we show NP-hardness. These special cases comprise co-
clusterings with a constant number of clusters (Section 5.3.1) or input matrices
with only two rows (Section 5.3.2). We also show NP-hardness of finding co-
clusterings where the row and column partitions are only allowed to contain
consecutive blocks (Section 5.3.3).

5.3.1 Constant Number of Clusters

We start by showing that for input matrices containing three different entries, Co-
CLUSTERING, is NP-hard even if the co-clustering consists only of nine clusters.

Theorem 5.3. (k,{)-Co-CLUSTERING, i8 NP-hard for all £ > k > 3 over
alphabet ¥ = {0, 1,2} and with mazimum allowed cost ¢ = 1.

Proof. We prove NP-hardness with a polynomial-time many-one reduction from
the NP-complete k-COLORING [GJ79].

k-COLORING
Input: An undirected graph G = (V) E).

Question: Is there a partition of the vertices V into k subsets Vp,..., Vi
such that the induced subgraph G[V;] is an independent set for
each i € [k]?

Let G = (V,E) be a k-COLORING instance with V' = {v1,...,v,} and
E = {e1,...,em}. We construct a (k,{)-Co-CLUSTERING, instance (A €
{0,1,2}"*™ k £, c:= 1) as follows. The rows of A correspond to the vertices V'
and the columns correspond to the edges E. For every edge e; = {vj,v;} € E
with h < 7, we set ap; := 0 and a;; := 2. All other matrix entries are set
to 1. Hence, each column corresponding to an edge {vy, v;} consists of 1-entries
except for the rows h and ¢, which contain 0 and 2 (see Figure 5.4). Thus, every
co-clustering of A with cost at most ¢ = 1 puts row h and row i into different
row blocks. We next prove that there is a (k, £)-co-clustering of A with cost at
most ¢ = 1 if and only if G admits a k-coloring.

First, assume that V7,...,V} is a partition of the vertex set V into k inde-
pendent sets. We define a (k, £)-co-clustering (Z,.J) of A as follows: The row
partition Z := {I4,..., I} one-to-one corresponds to the k sets Vi,...,Vj, that
is, Iy := {i | v; € V5} for all s € [k]. By the construction above, each column has
exactly two non-1-entries being 0 and 2. The column partition J := {J,..., ¢}
is defined as follows: Column block J,, s € [¢], contains all columns which have

70

€1 €2 €3 €4 €5 €g €7 €8 €9
002111111

1 1/1 1 2 1 2|1 2

QL W = = O N

Figure 5.4: An illustration of the polynomial-time many-one reduction from 3-
COLORING. Left: An undirected graph with a proper 3-coloring of the vertices
such that no two neighboring vertices have the same color. Right: The corresponding
matrix where the columns are labeled by vertices and the rows by edges with a (3, 3)-
co-clustering of cost 1. The coloring of the vertices determines the row partition into
three row blocks, whereas the column blocks are generated by the following simple
scheme: Columns corresponding to edges where the vertex with smaller index is light
gray/dark gray/white are in the first/second/third column block.

the O-entry in row block I;. If £ > k, then we simply put an arbitrary column
into each column cluster Js with s > k. Clearly, it holds that the non-1-entries
in any cluster of (Z,J) are either all 0 or all 2, implying that coste(Z,J) < 1.

Next, assume that ({I1,..., Iy}, J}) is a (k, £)-co-clustering of A with cost at
most 1. The vertex subsets Vi,..., Vi, where Vj, s € [k], contains the vertices
corresponding to the rows in I, form k independent sets: If there is an edge
between two vertices in Vj, then the corresponding column would have the
0-entry and the 2-entry in the same row block I, yielding a cost of 2, which is
a contradiction. O

It is an easy folklore result that k-COLORING is also NP-hard if all k& vertex
subsets are required to have the same size (by adding enough vertices to the
input graph). Hence, we obtain the following corollary of Theorem 5.3.

Corollary 5.4. (k,¢)-Co-CLUSTERING, is NP-hard for all ¢ > k > 3 with
¥ ={0,1,2} and ¢ =1 if the row blocks are forced to have equal sizes.

5.3.2 Constant Number of Rows

The reduction in the proof of Theorem 5.3 generates matrices containing only
three different values with an unbounded number of rows (and columns). We

71

01 2 4 5
. 31 2 0 2

01 2 3

S = NW e Ot

=)

5

Figure 5.5: Example of a Box COVER instance with seven points (left) and the
corresponding CoO-CLUSTERING+, matrix containing the coordinates of the points as
columns (right). Indicated is a (2, 3)-co-clustering of cost 2 where the column blocks
are colored according to the three squares (of side length 2) that cover all points.

now show that also the “dual restriction” is NP-hard, that is, the input matrix
only has a constant number of rows (two) but contains an unbounded number
of different values. Interestingly, this special case is closely related to a two-
dimensional variant of geometric set covering.

Theorem 5.5. CO-CLUSTERING, is NP-hard for k = m = 2 and unbounded
alphabet size |%|.

Proof. We give a polynomial-time many-one reduction from the NP-complete
Box COVER problem [FPT81].

Box COVER

Input: A set P C Z? of n points in the plane and ¢ € N.

Question: Are there ¢ squares Si,...,S¢, each with side length 2, that
cover P, that is, P C |J;<;<, S:?

Let I = (P,¢) be a Box COVER instance. We define the instance I’ :=
(A, k, 0, c) as follows: The matrix A € Z?*" has the points py,...,p, in P as
columns. Further, we set k := 2, ¢/ := £, ¢ := 2. See Figure 5.5 for a small
example.

The correctness can be seen as follows: Assume that [is a yes-instance, that
is, there are ¢ squares Sy, ...,.Sy covering all points in P. We define J; := {j |
p; € PNSi}and Js:={j|p; € PNSs\ (Uj<ies 1)} for all 2 < s < 1. Note
that (Z := {{1},{2}}, J :={J1, ..., Je}) is a (2, £)-co-clustering of .A. Moreover,
since all points with indices in J, lie inside a square with side length 2, it holds

72

that each pair of entries in A;; as well as in A, has distance at most 2,
implying coste(Z, J) < 2.

Conversely, if I’ is a yes-instance, then let ({{1},{2}},J) be the (2,¢)-
co-clustering of cost at most 2. For any J; € 7, it holds that all points
corresponding to the columns in Jg have pairwise distance at most 2 in both
coordinates. Thus, there exists a square of side length 2 covering all of them. O

5.3.3 Clustering into Consecutive Clusters

One is tempted to assume that the hardness of the previous special cases of
Co-CLUSTERING is rooted in the fact that we are allowed to choose arbitrary
subsets for the corresponding row and column partitions since the problem
remains hard even for a constant number of clusters even with equal cluster sizes.
Hence, in this section, we consider a restricted version of CO-CLUSTERING o,
where the row and the column partition has to consist of consecutive blocks.

Formally, for row indices R = {rq,...,re—1t with 1 <7y < ... <711 <m
and column indices C = {c1,...,co—1} with 1 < ¢1 < ... < ¢p—1 < n, the
corresponding consecutive (k,£)-co-clustering (Zg, Jc) is defined as

Ir:=4{{1,...,ry =1} {r1,...,ra = 1},... {rg_1,...,m}},
Jo={{1,....,c0 — 1}, {c1,...,ca — 1},..., {co—1,...,n}}.

The CONSECUTIVE CO-CLUSTERING,, problem now is to find a consecutive
(k, £)-co-clustering of a given input matrix with a given cost.

As it turns out, also this restriction is not sufficient to overcome the inherent
intractability of co-clustering, that is, we prove it to be NP-hard. Similarly to
Section 5.3.2, we encounter a close relation between consecutive co-clustering
and a geometric problem, namely to find an optimal discretization of the plane;
a preprocessing problem with applications in data mining [CN98, Ngu06, NS95].
The NP-hard OPTIMAL DISCRETIZATION problem [CN98] is the following: Given
a set of points in the plane, where each point is either colored black or white,
the task is to find a consistent set of axis-parallel lines, that is, the vertical and
horizontal lines partition the plane into rectangular regions such that no region
contains two points of different colors (see Figure 5.6 for an example).

73

ol e o 012 11 o1
s TS 112 1 1/1 1/2 1
o o 01 1 1|1 01 1

PS o 1’111’21‘10
ol o l 01 0 1]1 1]1 1

Figure 5.6: Example instance of OPTIMAL DISCRETIZATION (left) and the corresponding
instance of CONSECUTIVE CO-CLUSTERING (right). The point set consists of white
(circles) and black (diamonds) points. A solution for the corresponding CONSECUTIVE
Co-CLUSTERING instance (shaded clusters) naturally translates into a consistent set
of lines.

OPTIMAL DISCRETIZATION

Input: Aset S={p1 = (z1,y1),...,ps = (75,ys)} C Q? of s different
points in the plane, partitioned into two disjoint subsets B, W
and integers k, ¢ € N.

Question: Is there a consistent set of k£ horizontal and ¢ vertical lines?

Here, a vertical (horizontal) line is a simple number denoting its a-coordinate
(y-coordinate).

Theorem 5.6. CONSECUTIVE CO-CLUSTERING, is NP-hard for an alpha-
bet ¥ = {0,1,2} and mazximum allowed cost ¢ = 1.

Proof. We give a polynomial-time many-one reduction from OPTIMAL Dis-
CRETIZATION. Let (S,k,¢) be an OPTIMAL DISCRETIZATION instance and
let X := {z7,...,2}} be the set of different z-coordinates and let ¥V :=
{y1,...,yk} be the set of different y-coordinates of the points in S. Note
that n and m can be smaller than |S| since two points can have the same - or
y-coordinate. Furthermore, assume that 27 < ... <z} and yy < ... <y;,. We
now define the CONSECUTIVE CO-CLUSTERING instance (A, k+1,£+1,¢)
as follows: The matrix A € {0,1,2}™*™ has columns labeled with z7,..., z}
and rows labeled with yj,...,y%,. For (z,y) € X x Y, the entry ay, is defined
as 0 if (z,y) € W, 2 if (z,y) € B, and otherwise 1. The cost is set to ¢ := 1.
Clearly, this instance can be constructed in polynomial time.

To verify the correctness of the reduction, assume first that I is a yes-
instance, that is, there is a set H = {x1,...,2x} of k horizontal lines and a
set V.={y1,...,ye} of £ vertical lines partitioning the plane consistently. We

74

define row indices R := {ry,...,rx}, ri :=max{z* € X | a* < ux;},i=1,... k,
and column indices C' := {c1,...,¢ce}, ¢ =max{y* €Y |y* <y;},j=1,...,L
For the corresponding consecutive (k + 1, ¢ + 1)-co-clustering (Zgr, J¢), it holds
that no cluster contains both values 0 and 2, since otherwise the corresponding
partition of the plane defined by H and V contains a region with two points of
different colors, which contradicts consistency. Thus, we have costo, (Zr, Jo) <
1, implying that I’ is a yes-instance.

Conversely, if I’ is a yes-instance, then there exists a consecutive (k+1,¢4 1)-
co-clustering (Zg, Jc) with cost at most 1, that is, no cluster contains both

values 0 and 2. Clearly, then the k horizontal lines x; ;= minI; 1,1 =1,...,k,
and the ¢ vertical lines y; := minJ;1, j = 1,..., £, are consistent. Hence, I is
a yes-instance. O

Note that even though CONSECUTIVE CO-CLUSTERING, is NP-hard, there
still is some difference in its computational complexity compared to the general
version. In contrast to CO-CLUSTERING ., the consecutive version is polynomial-
time solvable for constants & and £ by simply trying out all O(mFn’) consecutive
partitions of the rows and columns (that is, it is contained in XP with respect

to (k,£)).

5.4 Tractability Results

In Section 5.3, we showed that CO-CLUSTERING., is NP-hard for all con-
stants £ > k > 3 and also for k£ = 2 in case of unbounded ¢ and |X|. In contrast
to these hardness results, we now investigate which parameter combinations
yield tractable cases. It turns out that the problem is polynomial-time solvable
for k = ¢ = 2 and for k = 1 (Section 5.4.2). Moreover, we can solve the
case k =2 and £ > 3 for |X| = 3 in polynomial time by showing that this case
is in fact equivalent to the case k = £ = 2. We further show fixed-parameter
tractability (for £ = 2 and ¢ = 1) for the parameters size |X| of the alphabet
and the number ¢ of column blocks (Section 5.4.3).

In Section 5.4.1, we start with a reduction from C0O-CLUSTERING, to CNF-
SAT (the satisfiability problem for Boolean formulas in conjunctive normal
form). Later on, it will be used in some special cases (see Theorem 5.9 and
Theorem 5.11) because there the corresponding formula—or an equivalent
formula—only consists of clauses containing two literals, thus being a polynomial-
time solvable 2-SAT instance.

(6]

(1 1|4 3|5 5 6 6]
u 2 203 2|5 5 4 5
0 1(3 3|6 6 4 5

0 2 4
3 3/0 1/4 6 4 4

10 4
3 900 1|5 4 4 4

01 7
2 200 1|4 4 6 4
2 01 2]/8 8 8 8
(0 2(2 2|8 7 8 7

Figure 5.7: A 3 X 3 cluster boundary U (left) and an 8 x 8 matrix A (right). The
indicated (3, 3)-co-clustering of A satisfies the cluster boundary U for ¢ = 2, since for
all (r, s) € [3] x [3], the cluster A, contains only values from the interval [u,s, urs + 2].

5.4.1 Reduction to CNF-SAT Solving

In this section we describe an approach to solve CO-CLUSTERING., via CNF-
SAT which leads to some polynomial-time solvable and fixed-parameter tractable
special cases. More precisely, our approach requires to solve O(|Z|*) many
CNF-SAT instances with clauses of size at most max{k,¢,2} (if k¥ and ¢ are
constants, then there are only polynomially many CNF-SAT instances to solve,
and for k < £ < 2, we obtain polynomial-time solvable 2-SAT instances).

To this end, we introduce the concept of cluster boundaries, which impose
a certain structure on the co-clustering. Basically, a cluster boundary defines
lower (and upper) bounds for the values in each cluster of a co-clustering (see
Figure 5.7).

Definition 5.1. Given an alphabet > C Z and two integers k, ¢, we define a
cluster boundary to be a matrix U = (u,.s) € ¥¥*¢. For a matrix A € Xmx"
and a cost ¢, we say that a given (k,£)-co-clustering of A satisfies a cluster
boundary U if A,s C [urs, urs + ¢] for all (r,s) € [k] x [€].

It is easy to see that a given (k,¢)-co-clustering has cost at most ¢ if and
only if it satisfies at least one cluster boundary (u,s), namely, the one with
urs = min A, for all (r,s) € [k] x [£].

The following “subtask” of CO-CLUSTERING, can be reduced to a certain
CNF-SAT instance: Given a cluster boundary & and a CO-CLUSTERING

76

instance I, find a co-clustering for I that satisfies /. The polynomial-time
reduction provided by the following central lemma can be used to obtain exact
C0-CLUSTERING, solutions with the help of SAT solvers and we use it in our
subsequent algorithms.

Lemma 5.7. Given a CO-CLUSTERING-instance (A, k,0,c) and a cluster
boundary U € XF** one can construct in O(mnkt) time a CNF-SAT in-
stance ¢4y with at most max{k,?,2} variables per clause such that ¢y is
satisfiable if and only if there is a (k,£)-co-clustering of A which satisfies U.

Proof. Given an instance (A, k, ¢, c¢) of Co-CLUSTERING, and a cluster bound-
ary U = (uy5) € XF*¢, we define the following Boolean variables: For each
(i,7) € [m] x [k], the variable x;, represents the expression “row i could be
put into row block I,”. Similarly, for each (j,s) € [n] x [¢], the variable y;
represents that “column j could be put into column block J,”.

We now define a Boolean CNF formula ¢ 41/ containing the following clauses:
A clause R; := (251 V32V ...V a,y) for each row ¢ € [m] and a clause
Cj = (yj1 Vyj2 V... Vyje) for each column j € [n]. Additionally, for each
(i,7) € [m] x [n] and each (r,s) € [k] x [¢] such that element a;; does not fit into
the cluster boundary at coordinate (r,s), that is, a;; ¢ [urs, urs + ¢], there is a
clause B;jrs := (m2;,»V—y;s). Note that the clauses R; and C; ensure that row ¢
and column j are put into some row and some column block, respectively. The
clause B;j.s expresses that it is impossible to have both row 7 in block I, and
column j in block J; if a;; does not satisfy u,; < a;; < ups +c. Clearly, ¢4y is
satisfiable if and only if there exists a (k, £)-co-clustering of A satisfying the
cluster boundary U. Note that ¢ 44 consists of km + ¢n variables and O(mnk?)
clauses and is computable in O(mnkl) time. O

Using Lemma 5.7, we can solve CO-CLUSTERING,, by solving O(|2[*) many
CNF-SAT instances (one for each possible cluster boundary) with km + ¢n
variables and O(mnk() clauses of size at most max{k, ¢, 2}.

5.4.2 Polynomial-Time Solvability

We first present a simple and efficient algorithm for (1, *)-CO-CLUSTERING s,
that is, the variant where all rows belong to one row block.

Theorem 5.8. (1,%)-CO-CLUSTERING, is solvable in O(n(m + logn)) time.

i

Algorithm 5.1: Algorithm for (1, %)-CO-CLUSTERING

Input: A€Z™*" ¢{>1,¢>0.
Output: A partition of [n] into at most £ blocks yielding a cost of at
most ¢, or no if no such partition exists.

1 for j <1 tondo // compute minimum and maximum of each column
2 a; < min{a;; | 1 <i<m}
3 B max{a;; | 1 <i<m}
4
5

if 8; —a; > cthen // check if solution is possible
L return no;

6 N « [n]

7 for s+ 1 to { do // fill column blocks with columns
8 Let js € N be the index such that a;, is minimal

9 JS<—{j€N|Bj—OéjS§C}
10 N +— N\ Js
11 if M =0 then // if no columns remain, then return solution

12 L return (Ji,...,Js)

13 return no

Proof. We show that Algorithm 5.1 solves (1, %)-C0O-CLUSTERING . In fact, it
even computes the minimum ¢’ such that A has a (1, ¢')-co-clustering of cost c.
The overall idea is that with only one row block, all entries of a column j are
contained in a cluster in any solution, and thus, it suffices to consider only the
minimum o; and the maximum /; value in column j. More precisely, for a
column block J C [n] of a solution it follows that max{f; | j € J} — min{q; |
j € J} < c. The algorithm starts with the column j; that contains the overall
minimum value o, of the input matrix, that is, o, = min{a; | j € [n]}. Clearly,
71 has to be contained in some column block, say J;. The algorithm then adds
all other columns j to J; where 3; < a;, + ¢, removes the columns J; from
the matrix, and recursively proceeds with the column containing the minimum
value of the remaining matrix.

We continue with the correctness of the described procedure. If Algorithm 5.1
returns (Ji,...,J) at Line 12, then this is a column partition into ¢ < ¢
blocks satisfying the cost constraint. First, it is a partition by construction:
The sets Jg are successively removed from A until it is empty. Now, let s € [¢].

78

Then, for all j € J, it holds «; > «;, (by definition of j,) and §; < «a, + ¢
(by definition of J,). Thus, Ais C [oy,,a;, + ¢| holds for all s € [¢'], which
yields costoo ({[m]}, {J1,-..,J0}) < c.

Otherwise, if Algorithm 5.1 returns no in Line 5, then it is clearly a no-instance
since the difference between the maximum and the minimum value in a column
is larger than c. If no is returned in Line 13, then the algorithm has computed
column indices js; and column blocks J; for each s € [¢], and there still exists at
least one index jp11 in N when the algorithm terminates. We claim that the
columns j1, ..., jet1 all have to be in different blocks in any solution. To see this,
consider any s,s’ € [¢ + 1] with s < §’. By construction, jy ¢ Js. Therefore,
Bj., > o, +c holds, and columns js and jy contain elements with distance more
than c. Thus, in any co-clustering with cost at most ¢, the columns ji,..., jr+1
must be in different blocks, which is impossible with only ¢ blocks. Hence, we
indeed have a no-instance.

The time complexity is seen as follows. The first loop examines in O(mn)
time all elements of the matrix. The second loop can be performed in O(n) time
if the a; and the j; are sorted beforehand, requiring O(nlogn) time. Overall,
the running time is in O(n(m + logn)). O

From now on, we focus on the k = 2 case, that is, we need to partition the
rows into two blocks. We first consider the simplest case, where also ¢ = 2.

Theorem 5.9. (2,2)-Co-CLUSTERING, is solvable in O(|%]?mn) time.

Proof. Let (A€ Z™*" k=2, =2,c) be a (2,2)-Co-CLUSTERING, instance.
We use the reduction to CNF-SAT provided by Lemma 5.7. First, note that a
cluster boundary I € ¥2%2 can only be satisfied if it contains the elements min 2
and min{a € ¥ | a > max¥ — ¢}. The algorithm enumerates all O(|2|?) of
these cluster boundaries. For a fixed U/, we construct the Boolean formula ¢ 4 1/
in O(mn) time. Observe that this formula is in 2-CNF form: The formula
consists of k-clauses, ¢-clauses, and 2-clauses, and we have k = ¢ = 2. Hence,
we can determine whether it is satisfiable in linear time [APT79| (note that the
size of the formula is in O(mn)). Overall, the input is a yes-instance if and only
if ¢ 44 is satisfiable for some cluster boundary U. O

Finally, we show that it is possible to extend the above result to any number
of column blocks for size-three alphabets.

79

Theorem 5.10. (2,*)-Co-CLUSTERING, is O(mn)-time solvable for |X| = 3.

Proof. Let I = (A € {a, 8,7}™*™, k = 2,¢,¢) be a (2,%)-CO-CLUSTERING »,
instance. We assume without loss of generality that o < 5 < 7. The case £ < 2
is solvable in O(mn) time by Theorem 5.9. Hence, it remains to consider the
case £ > 3. As |X| = 3, there are four potential values for a minimum-cost
(2, £)-co-clustering. Namely, cost 0 (all cluster entries are equal), cost 5 — «,
cost v — 3, and cost v — . Since any (2, £)-co-clustering is of cost at most v — «
and because it can be checked in O(mn) time whether there is a (2,£)-co-
clustering of cost 0 (Observation 5.1), there are only two interesting cases left,
that is, c € {8 — a,y — B}.

Avoiding a pair (z,y) € {a,3,7}? means to find a co-clustering without
a cluster containing x and y. If ¢ = max{8 — o,y — 8} (Case 1), then the
problem comes down to finding a (2, £)-co-clustering avoiding the pair («, 7).
Otherwise (Case 2), the problem is to find a (2, £)-co-clustering avoiding the
pair (a,) and, additionally, either («, 8) or (8,7).

Case 1. Finding a (2, ¢)-co-clustering avoiding (a,~):

In this case, we substitute « := 0, 5 := 1, and := 2. We describe an algorithm
for finding a (2, £)-co-clustering of cost 1 (avoiding (0,2)). We assume that
there is no (2,4 — 1)-co-clustering of cost 1 (iterating over all values from 2
to ¢). Counsider a (2, £)-co-clustering (Z,J = {J1,...,J¢}) of cost 1, that is,
for all (r,s) € [2] x [¢], it holds A,s C {0,1} or A,s C {1,2}. For s # t € [{],
let (Z, Tst == T\{Js, Jt }U{JsUJ:}) denote the (2, ¢—1)-co-clustering where the
column blocks J; and J; are merged. By assumption, for all s # ¢ € [¢], it holds
that costeo(Z, Jst) > 1 since otherwise we have found a (2, ¢ — 1)-co-clustering
of cost 1. It follows that {0,2} C A;s U Az or {0,2} C Ass U Ag; holds for
all s # t € [£]. This can only be true for ¢ = 2.

This proves that there is a (2, £)-co-clustering of cost 1 if and only if there
is a (2, 2)-co-clustering of cost 1. Hence, Theorem 5.9 shows that this case is
O(mn)-time solvable.

Case 2. Finding a (2, £)-co-clustering avoiding («,~) and («, 8) (or (8,7)):
In this case, we substitute o := 0, v := 1, and 8 := 1 if («, 8) has to be avoided,
or §:=0if (3,7) has to be avoided. It remains to determine whether there
is a (2, £)-co-clustering with cost 0, which can be done in O(mn) time due to
Observation 5.1. O

It is open whether polynomial-time solvability of (2, *)-CO-CLUSTERING , also
holds for larger (constant-size) alphabets. In the following section, however, we

80

show fixed-parameter tractability with respect to the combined parameter (¢, |X])
ife=1.

5.4.3 Fixed-Parameter Tractability

The hardness results from Section 5.3 show that CO-CLUSTERING,, IS com-
putationally hard to solve even from a parameterized view (for each of the
five parameters we considered, NP-hardness holds for a small constant). This
indicates that fixed-parameter tractability might be a challenging goal to achieve.
Based on our reduction to CNF-SAT (Lemma 5.7), however, we show fixed-
parameter tractability with respect to some parameter combinations for the
special case k =2 and ¢ = 1.

We develop an algorithm solving (2, #)-CO-CLUSTERING, for ¢ = 1. The
main idea is, given matrix A and cluster boundary U, to simplify the Boolean
formula ¢4 into a 2-CNF formula which can be solved efficiently. This is
made possible by the constraint ¢ = 1, which imposes a very specific structure
on the cluster boundary. This approach requires to enumerate all (exponentially
many) possible cluster boundaries, but yields fixed-parameter tractability for
the combined parameter (¢, |3|).

Theorem 5.11. (2,%)-Co-CLUSTERING, is O(|Z[**n?m?)-time solvable for
c=1.

In the following, we prove Theorem 5.11 in several steps.

A first subresult for the proof of Theorem 5.11 is the following lemma, which
we use to solve the case where the number 2™ of possible row partitions is less
than |2|%.

Lemma 5.12. For a fized row partition T of size k, one can solve (k,*)-
Co-CLUSTERING o, in O(|S[*mnt) time. Moreover, CO-CLUSTERINGy, is
fixed-parameter tractable with respect to the combined parameter (m,k, ¢, c).

Proof. Given a fixed size-k row partition Z, the algorithm enumerates all |%|**
different cluster boundaries U = (u,s). We say that a given column j fits in
column block J; if, for each r € [k] and i € I, we have a;; € [uys, urs + ¢] (this
can be decided in O(m) time for any pair (j,s)). The input is a yes-instance
if and only if for some cluster boundary U, every column fits in at least one
column block.

Fixed-parameter tractability with respect to (m, k, ¢, ¢) is obtained from two
simple further observations. First, all possible row partitions can be enumerated

81

in O(k™) time. Second, since each of the k¢ clusters contains at most ¢ + 1
different values, the alphabet size |X| for yes-instances is upper-bounded by (¢ +
1)k¢. Together, this yields a running time in O(k™((c 4+ 1)k€)*“mn). O

The following lemma, also used for the proof of Theorem 5.11, yields that for
specially structured cluster boundaries, there is no need to consider more than
two column clusters to which any column can be assigned.

Lemma 5.13. Let I = (A € Z™*™ k =2,{,c =1) be an instance of (2, *)-Co-
CLUSTERINGo, hy be an integer with 0 < hy < m, and U = (u,s) € X2*¢ be a
cluster boundary with pairwise different columns such that |u1s — uas| = 1 for
all s € [£]. Then, in O(n(m + ¢)) time, one can compute two indices s; € [(]
and t; € [€] for each column j € [n], such that the following holds:

If A has a (2,£)-co-clustering ({11, I}, {J1, ..., Je}) satisfying U with |I,| =
h1, then either j € Js; or j € Jy; holds.

Proof. To start with, let us define some notation. Given a column j € [n] and
any element a € 3, we write w,(j) for the number of a-entries in column j. For
s € [€], we define Usg := {uys,u1s + 1}, Uss := {ugs, uss + 1} and let a be the
integer in Uy 5\ Uss, B be the integer in Uy sNUss, and v be the integer in Uss \ U 5
(note that all the three sets contain exactly one integer since |uis — ugs| = 1).
We say that a column j € [n] fits boundary column s if the following three
conditions hold:

(i) we(j) =0 for any x € ¥\ {«o, 5,7},
(ii) wqa () < h1, and
(iil) wy(j) < hg :=m — hq.

Note that if Condition (i) is violated, then the column contains an element which
is neither in Uy, nor in Us,. If Condition (ii) (respectively (iii)) is violated, then
there are more than hy (respectively hs) rows that have to be in row block Iy
(respectively I5). Thus, if j does not fit any boundary column s, then there
is no (2, £)-co-clustering ({I1, I=},{J1, ..., Je}) satisfying U with |I;| = hy and
j € Js. Hence, in order to find a solution, we need to find out, for each column
in A, to which fitting boundary column in I/ it should be assigned.

Intuitively, we now prove that in most cases a column has at most two fitting
boundary columns, and, in the remaining cases, at most two pairs of “equivalent”
boundary columns.

82

Consider a given column j € [n]. Let a := min{a;; | ¢ € [m]} and b :=
max{a;; | i € [m]} (computable in O(m) time). If b > a + 3, then Condition (i)
is always violated, that is, column j does not fit any boundary column, and the
instance is a no-instance.

If b = a + 2, then, again by Condition (i), column j can only fit a boundary
column s where {uys,u2s} = {a,a + 1}. There are at most two such boundary
columns in U since all columns in U are distinct. Let s; and t; denote their
indices (computable in O(¢) time).

Case b = a is also easy: all values in column j are equal to a. If j fits boundary
column s, then, with Conditions (ii) and (iii), a € Uys N Uss, and s is one of at
most two columns in U for which {u1s,u2s} = {a — 1,a}. Again, let s; and ¢;
denote their indices (computable in O(¢) time).

Finally, if b = a + 1, then let s € [¢] be such that j fits boundary column s.
Hence, by Condition (i), it holds (u1s,u2s) € {(a — 1,0a), (a,a — 1), (a,b), (b,a)}.
Let s1,. .., s4 be the four column indices (computable in O(¢) time) in U (if they
exist) corresponding to these four cases. We define s; := s if j fits boundary
column s; (decidable in O(m) time), and s; := s3 otherwise. Similarly, we define
t; := sq if j fits boundary column s,, and ¢; := s4 otherwise (O(m) time). Now,
consider a (2, ¢)-co-clustering ({I1, I2},{J1,..., J¢}) satisfying U with |I1| = Iy
such that j € Js« for s* € {s1,s3} with s* # s;. Since j must fit boundary
column s*, the only possibility is that s* = s3 and s; = s;. Thus, j fits both
boundary columns s; and s3, so Conditions (ii) and (iii) imply w,(j) < hy and
wp(j) < hg. Since we(j) + wp(j) = m = hy + ha, we have wy(j) = h; and
wp(j) = hg. Thus, placing j in either of the two column blocks Jg,, Js, yields
the same row partition, namely I; = {i | a;; = a} and Iy = {i | a;; = b}. Hence,
column j can also be added to Js, instead of J,.

Similarly with sy and s4, any solution with j € Jg, or j € J,, implies that
column j can also be added to J;; (without any other modification). Thus, since
column j has to be contained in one of the blocks Js,, ..., Js,, we can assume
that it is contained in one of J,, J;; instead.

As regards the running time, for each of the n columns we can find the two
indices within at most O(m + ¢ +m) time. Hence, the overall running time is
in O(n(m + £)). O

Having all prerequisites at hand, we now present the proof of Theorem 5.11.

Proof of Theorem 5.11. Let I = (A € Z™* ™ k = 2,{,c = 1) be a (2,x*)-Co-
CLUSTERING,, instance. The proof is by induction on ¢. For £ = 1, the problem

83

is solvable in O(n(m + logn)) time (Theorem 5.8). We now consider general
values of £. Note that if ¢ is large compared to m (that is, 2™ < |[f), then
one can directly guess the row partition and run the algorithm of Lemma 5.12.
Thus, we henceforth assume that £ < m.

For a cluster boundary U = (u,s) € £2%¢ let U,y = {tys,ups + 1} for
each (r,s) € [2] x [£]. We say that the boundary column s € [{] has

e equal bounds if Uy = Uss (that is, u1s = uas),
e non-overlapping bounds if Uy N Uss = () (that is |uis — ugs| > 1),
e properly overlapping bounds otherwise (that is |uis — ugs| = 1).

We first show that instances having a (2, £)-co-clustering satisfying a cluster
boundary that contains at least one column with equal or non-overlapping
bounds can be easily solved.

Claim 5.14. If there exists a (2, £)-co-clustering that satisfies a cluster boundary
with equal bounds, then it can be computed in O(|X|?*n?m?) time.

Proof. We assume without loss of generality that boundary column ¢ has equal
bounds. We try out all possible values w1y = usy = u € ¥. Note that column
block Jy; imposes no restrictions on the row partition. Hence, any column
of A with all values in {u,u + 1} can be put into block Jy, and all other
columns have to end up in the £ — 1 other blocks, thus forming an instance of
(2,¢ — 1)-Co-CLUSTERING,. By induction (the case ¢ =1 is easily solvable by
Theorem 5.8), each of these cases can be solved in O(|Z[2¢~Vn?m?) time. This
procedure finds a (2, £)-co-clustering with a column block having equal bounds
in O(|Z] - (mn + |ZP¢"Dn2m?)) € O(|Z[*n>*m?) time. O

Claim 5.15. If there exists a (2,£)-co-clustering that satisfies a cluster boundary
with non-overlapping bounds, then it can be computed in O(|X|*n?m?) time.

Proof. Let s be the index of the boundary column with non-overlapping bounds
and assume that, without loss of generality, u1s+1 < ugs. We try out all possible
values ugs = u € X, and we check for each column j in A, whether j € J; is
possible. In order to have j € J, it is necessary that all entries in j are contained
in {u1s,u1s + 1, u, u+ 1} for some u1s < u— 1. Note that if column j fulfills the
above condition, then assuming that j € J; determines the boundary column s
and also the entire row partition, that is, if j € J,, then I; = {i | a;; < u} and
Iy = {i| a;; > u}. Using the algorithm described in Lemma 5.12, we can deduce

84

the column partition in O(|%[?“~Ynme) time (note that there are only |%|2(¢~1)
possible cluster boundaries to enumerate since column s is already fixed). The
overall running time is thus in O(|Z|-n-(m+ |22 Vnme)) € O(|2|*n?m?). O

We now show how to find a (2, £)-co-clustering that satisfies a cluster boundary
with only properly overlapping bounds. We enumerate all such cluster boundaries
U = (urs). Note that, for each s € [¢], we only need to consider the cases
where |u1s — ugs| = 1. Also note that we can assume all columns in U to be
distinct since two identical columns could be merged. We then enumerate all
possible values hy € {1,...,m — 1} (the height of the first row block) and define
hy :=m — hy > 0. Overall, there are at most (2|%|)*m cases to consider.

Using Lemma 5.13, we compute in O(mn) time two indices s;,t; for each
column j in A such that for any (2, £)-co-clustering ({11, Iz}, {J1,-.., Je}) satis-
fying cluster boundary ¢/ with |I;| = hy, either j € J,, or j € Jy, holds.

We now introduce a 2-CNF formula allowing us to simultaneously assign
the rows and columns to the possible blocks (similar to the formula created in
Lemma 5.7). Let ¢y ;, 1, be a Boolean formula over the same Boolean variables
as in Lemma 5.7 containing the following clauses:

e For each row i € [m], there is a clause R} := (x;1 V 2;2).
e For each column j € [n], there is a clause C7 := (y;,5; V yj1;)-

e For each (i,j) € [m] x [n] and each (r,s) € [2] x {s;j,t;} such that

aij & [trs,urs + 1], there is a clause BW,S = (i V Yys)

Note that ¢'y ;, ,, is a 2-CNF formula with 2m +2n variables and O(mn) clauses.
Clearly, if ¢4 ;, 5, s satisfiable, then A admits a (2, £)-co-clustering satisfying U.
Conversely, if A admits a (2, 8) -co-clustering satisfying U with |I;| = hq, then,
by the discussion above, there exists a (2, £)-co-clustering where each column j
is in one of the column blocks Jg; or J;,. For the corresponding Boolean variable
assignment, each clause of ¢/, ;,, is satisfied. Hence, ¢/y ;,;, is satisfiable.
Overall, for each cluster boundary U and each h;, we construct and solve the
formula ¢/, ;, ;, defined above. The matrix A admits a (2, £)-co-clustering of
cost 1 if and only if (;524,“7 n, 1s satisfiable for some U/ and hy. The running time
for constructing and solving the formula ¢y ;, ;. , for fixed U and hy is in O(mn),
which yields a running time in O((2|X|)%m - (mn + mn)) C O((2|%])*nm?) for
this last part.
The final running time is thus in O(2|X|*n2m?2+(2|Z))nm?) C O(|Z*n?m?).
O

85

Finally, by Theorem 5.11, we obtain the following simple corollary.

Corollary 5.16. (2, *)-Co-CLUSTERING, with ¢ = 1 is fized-parameter tractable

with respect to the alphabet size |X| and with respect to the number € of column
blocks.

Proof. Theorem 5.11 presents an FPT-algorithm with respect to the combined
parameter (¢,|%|). For (2,%)-CO-CLUSTERINGs with ¢ = 1, both parameters
can be polynomially upper-bounded by each other. Indeed, ¢ < |X|? (otherwise
there are two column blocks with identical cluster boundaries, which could be
merged) and |X| < 2(¢+ 1)¢ = 44 (all columns within a column block can only
contain values from two intervals, each covering at most ¢+ 1 elements). Hence,
the algorithm from Theorem 5.11 yields fixed-parameter tractability for each of
the two parameters alone. O

5.5 Conclusion

In this chapter, we started to closely investigate the multivariate time complexity
of exactly solving the NP-hard Co-CLUSTERING,, problem, contributing a
detailed view on the computational complexity landscape of a prominent data
mining problem. We developed a reduction that allows to solve the problem
using SAT-solvers. In some first experiments, however, we observed that this
approach is not efficient enough for practical purposes yet. The bottleneck is
the number of possible cluster boundaries, which grows extremely fast. While
a single CNF-SAT instance can be solved quickly, generating all possible
cluster boundaries together with the corresponding CNF formulas becomes
quite expensive, such that we could only solve instances with very small values
of ¥ <4 and k < ¢ <5 [Bul+16a]. Thus, further improvement is required to
efficiently compute exact solutions in practice. For example, parallel computing
could bring a significant speed-up since the SAT instances for different cluster
boundaries can be solved independently. It might also be worth to consider
integer linear programming in the context of co-clustering.

Several open questions derive from our results. Perhaps the most pressing
open question is whether the case k = 2 and ¢ > 3 is polynomial-time solvable
or NP-hard in general. So far, we only know that (2,)-CO-CLUSTERING«,
is polynomial-time solvable for ternary matrices (Theorem 5.10). Another
open question is whether OPTIMAL DISCRETIZATION [CN98] (that is, CON-
SECUTIVE CO-CLUSTERING, with ¥ = {0,1,2} and ¢ = 1) is fixed-parameter

86

tractable with respect to the combined parameter (k,¢). Note that this re-
stricted problem is a special case of the RECTANGLE STABBING problem which
is known to be W[1]-hard with respect to the number of stabbing lines (that
is, clusters) [DFR12]. OPTIMAL DISCRETIZATION is also known under the
name RED-BLUE SEPARATION and was recently shown to be W/[1]-hard when
parameterized by the number of separating lines if the lines can be chosen
arbitrarily (non-axis parallel) and conjectured to be fixed-parameter tractable
for axis-parallel lines [BGL17]. Last but not least, the computational complexity
of higher-dimensional co-clustering versions, e.g. on three-dimensional tensors
as input (the most basic case here corresponds to (2,2,2)-C0O-CLUSTERING s,
that is, partitioning each dimension into two subsets) is also open.

We conclude with the following more abstract vision for future research: Note
that for the maximum norm, the cost value ¢ defines a “conflict relation” on the
values occurring in the input matrix. That is, for any two numbers 0,0’ € X
with |0 — ¢’| > ¢, we know that they must end up in different clusters. These
conflict pairs completely determine all constraints of a solution since all other
pairs can be grouped arbitrarily. This observation can be generalized to a graph
model. Given a “conflict relation” R C (g) determining which pairs are not
allowed to be put together into a cluster, we can define a “conflict graph” (X, R).
Studying co-clusterings in the context of such conflict graphs and their structural
properties could be a promising and fruitful direction for future research.

87

Chapter 6

F-Free Editing

In this chapter, we study the parameterized complexity of a general graph
modification problem called F-FREE EDITING: Given a graph G and a natural
number k, is it possible to modify at most k edges in G so that the resulting
graph contains no induced subgraph isomorphic to F'? This problem comprises
some well-known special cases with applications in machine learning and network
analysis. For example, the case when F' is a path on three vertices is the graph
clustering problem CLUSTER EDITING.

In contrast to the previous chapters, where we analyzed problems whose
complexity has not been studied in detail before, this chapter considers a problem
whose parameterized complexity has already been studied. However, earlier
works on F-FREE EDITING mostly considered the standard parameter, that is,
the number k of edge modifications. We consider instead a parameterization
by the number ¢ of edge modifications above a given lower bound (provided
by a packing of induced subgraphs of the input graph), which is a stronger
(that is, smaller) parameter. Hence, this parameter allows a sharpening of the
complexity picture by identifying further tractable cases.

We develop a framework to show fixed-parameter tractability for F-FREE
EDITING with respect to ¢ by creating a win-win situation where we can either
apply a polynomial-time data reduction or upper-bound the number & of edge
modifications in £. We show how to apply the framework for three well-known
problems: TRIANGLE DELETION, FEEDBACK ARC SET IN TOURNAMENTS, and
CLUSTER EDITING. Moreover, we explore the limits of this parameterization
approach by proving NP-hardness for several problem variants (for example, for
edge-disjoint subgraph packings or vertex deletions) with constant parameter
value ¢ = 0.

89

6.1 Introduction

Graph modification problems are a core topic of algorithmic research [Cai96,
LY80, Yan81]. Given a graph G, the aim in these problems is to transform G
by a minimum number of modifications (like vertex deletions, edge deletions, or
edge insertions) into another graph G’ fulfilling certain properties. Particularly
well-studied are hereditary graph properties, which are closed under vertex
deletions and which are characterized by minimal forbidden induced subgraphs:
a graph fulfills a hereditary property II if and only if it does not contain a
graph F' from a property-specific family F of graphs as an induced subgraph.
All nontrivial vertex deletion problems and many edge modification and deletion
problems for establishing hereditary graph properties are NP-complete [Alo06,
ASS16, KM86, LY80, SST04, Yan81|. If the desired graph property has a finite
forbidden induced subgraph characterization, then the corresponding vertex
deletion, edge deletion, and edge modification problems are known to be fixed-
parameter tractable with respect to the number &k of modifications [Cai96]. All
vertex deletion problems for establishing graph properties characterized by a
finite number of forbidden induced subgraphs have a problem kernel of size
polynomial in the number & of allowed vertex deletions [Kral2]. In contrast,
many variants of F-FREE EDITING do not admit a problem kernel whose size is
polynomial in & [CC15, Gui+13, KW13].

Parameterization Above Lower Bounds. When combined with data reduc-
tion and pruning rules, search-tree based fixed-parameter algorithms for the
parameter k of allowed modifications are competitive in some cases [HH15,
MNS12|. Nevertheless, the number & of modifications is often too large and
smaller parameters are desirable.

A natural approach to obtain smaller parameters is “parameterization above
guaranteed values” [Cyg+13, GP16, Lok+14, MR99]. The idea is to use a lower
bound h on the solution size and to use ¢ := k — h as parameter instead of k.
This idea has been applied successfully to VERTEX COVER, that is, Ko-FREE
VERTEX DELETION. Since the size of a smallest vertex cover is large in many
input graphs, parameterizations above the lower bounds “size of a maximum
matching M in the input graph” and “optimum value L of the LP relaxation of
the standard ILP-formulation of VERTEX COVER” have been considered. After
a series of improvements [Cyg+13, GP16, Lok-+14, RO09], the currently best
running time is 3¢ - n°M) | where £ := k — (2- L — |[M|) and |M| and L denote
the lower bounds mentioned above [GP16].

90

We extend this approach to edge modification problems, where the number k
of modifications tends to be even larger than for vertex deletion problems. For
example, in the case of CLUSTER EDITING, which asks to destroy induced
paths on three vertices by edge modifications, the number of modifications is
often larger than the number of vertices in the input graph [Béc+09]|. Hence,
parameterization above lower bounds seems natural and even more relevant
for edge modification problems. Somewhat surprisingly, this approach has not
been considered so far. We thus initiate research on parameterization above
lower bounds in this context. As a starting point, we focus on edge modification
problems for graph properties that are characterized by one forbidden induced
subgraph F"

F-FREE EDITING

Input: A graph G = (V, E) and a natural number k.

Question: Is there an F-free editing set S C (‘2/) of size at most k, that is,
an edge modification set such that GAS := (V, (E\ S)U(S\ E))

does not contain F' as induced subgraph?

In the context of a concrete variant of F-FREE EDITING, we refer to an F-free
editing set as solution and call a solution optimal if it has minimum size.

Lower Bounds from Packings of Induced Subgraphs. Following the approach
of parameterizing VERTEX COVER above the size of a maximum matching, we
can parameterize F-FREE EDITING above a lower bound obtained from packings
of arbitrary induced non-F-free subgraphs.

Definition 6.1. A wvertex-disjoint (or edge-disjoint) packing of induced sub-
graphs of a graph G is a set H = {Hy,..., H.} such that each H; is an induced
subgraph of G and such that the vertex sets of the H; are mutually disjoint (or
intersect in at most one vertex).

Though Definition 6.1 does not require H to be maximal (we still call it
a packing), it is of course natural in practice to use a maximal packing of
vertex-disjoint subgraphs (for example, computed by some greedy strategy).
Also, while it is at first sight natural to consider packings of induced subgraphs
that are isomorphic to F' in order to obtain a lower bound on the solution
size, a packing of other graphs that contain F' as induced subgraph might yield
even better lower bounds and thus a smaller parameter above this lower bound.
For example, a K4 contains four K3s and two edge deletions are necessary to

91

Figure 6.1: Two instances of K3-FREE EDITING WITH C0OST-2 PACKING where the
maximum number of edge modifications is & = 3. The packing graphs have gray
background. Deleting the three dashed edges is a solution. Left: A vertex-disjoint
packing of two K3s giving excess £ = 1. Right: A vertex-disjoint packing of a K3 and
a K4 giving £ = 0.

make it K3-free. Thus, if a graph G has a vertex-disjoint packing of hs K3s
and hy Kys, then at least hg + 2 - hy edge deletions are necessary to make it
triangle-free. Moreover, when allowing arbitrary graphs for the packing, the
lower bounds provided by vertex-disjoint packings can be better than the lower
bounds provided by edge-disjoint packings of F. A disjoint union of A Kjs, for
example, has h edge-disjoint K3s but also h vertex-disjoint Kys. Hence, the
lower bound provided by packing vertex-disjoint Kjs is twice as large as the
one provided by packing edge-disjoint K3s in this graph.

Motivated by this benefit of vertex-disjoint packings of arbitrary graphs, we
mainly consider lower bounds obtained from vertex-disjoint packings, which
we assume to receive as input. Thus, we arrive at the following problem,
where 7(G) denotes the minimum size of an F-free editing set for a graph G:

F-FREE EDITING WITH COST-t PACKING

Input: A graph G = (V| E), a vertex-disjoint packing H of induced
subgraphs of G such that 1 < 7(H) <t for each H € H, and a
natural number k.

Question: Is there an F-free editing set S C (‘2/) of size at most k such
that GAS := (V, (E\S)U(S\ E)) does not contain F as induced
subgraph?

The special case of F-FREE EDITING WITH COST-t PACKING where only
subgraphs isomorphic to F' are allowed in the packing is called F-FREE EDITING
WITH F-PACKING.

From the packing H, we obtain the lower bound h(H) :=)4, 7(H) on the
size of an F-free editing set, which allows us to use the excess ¢ := k — h(H)
over this lower bound as parameter, as illustrated in Figure 6.1. Since F'is a
fixed graph, we can compute the bound h(H) in [H| - f(t) - |G|°M) time using

92

the generic algorithm [Cai96] mentioned in the introduction for each H € H.
In the same time we can also verify whether the cost-t property is fulfilled.

Packings of forbidden induced subgraphs have been used in implementations
of fixed-parameter algorithms to prune the corresponding search trees tremen-
dously [HH15]. By showing fixed-parameter algorithms for parameters above
these lower bounds, we hope to explain the fact that these packings help in
obtaining fast algorithms.

Our Contributions. We investigate three variants of F-FREE EDITING WITH
CosT-t PACKING for small graphs F, that is, on three vertices (the smallest
nontrivial number of vertices).

In the first (introductory) variant, the graph F is a triangle, that is, a K3
(complete graph on three vertices). This problem is known as TRIANGLE
DELETION (note that adding edges is never optimal since it cannot remove
triangles) and is related to network cluster analysis.

Second, we consider a directed variant in which the input is a tournament
graph and F' is a directed cycle on three vertices. This is known as FEEDBACK
ARC SET IN TOURNAMENTS and has applications in rank aggregation.

The third variant is a clustering problem on undirected graphs called CLUSTER
EDITING, where F' is a Ps, that is, a path on three vertices. This problem has
various applications in machine learning and bioinformatics.

Our positive results are fixed-parameter algorithms and problem kernels.
Using a general approach described in Section 6.2, we obtain fixed-parameter
algorithms for the above variants of F-FREE EDITING WITH COST-t PACKING
parameterized by ¢ and ¢ (mainly by developing appropriate data reduction
rules). This implies fixed-parameter tractability for F-FREE EDITING WITH
F-PACKING parameterized by ¢. Specifically, we obtain the following results
(for the kernelization results, we need to assume that ¢t € O(logn) to guarantee
polynomial running time of the data reduction):

e For TRIANGLE DELETION, we show an O((2t+3)¢: (nm +n-2.076%))-time
algorithm and an O(t - ¢)-vertex problem kernel for cost-t packings (Corol-
lary 6.6).

e For FEEDBACK ARC SET IN TOURNAMENTS, we show a 20(V @)

n®M_time algorithm and an O(t - £)-vertex problem kernel for cost-t
packings (Corollary 6.11).

93

e For CLUSTER EDITING, we show an O(1.62*+1D¢ 1+ nm 4 n - 1.62%)-time
algorithm and an O(t - £)-vertex kernel for cost-t packings (Corollary 6.16),
and also give a 4¢ - n©(M_time algorithm for Ps-packings [BFK18, Theo-
rem 6.13].

To the best of our knowledge, the above results are the first fixed-parameter
tractability results for edge modification problems parameterized above lower
bounds obtained from induced subgraph packings. Moreover, since the parame-
ter £ is potentially significantly smaller than the number & of edge modifications,
our algorithms might be fast in practice.

On the negative side, we show several NP-hardness results which point out the
limitations of parameterizing graph modification problems above lower bounds
obtained from subgraph packings and justify to a certain extent the focus on
lower bounds obtained from vertex-disjoint packings. In particular, we show
the following:

e K4-FREE DELETION WITH K3-PACKING is NP-hard for ¢ = 0 (Theo-
rem 6.18). This implies that a general fixed-parameter tractability result
as it is known for the parameter k [Cai96] cannot be expected.

e If F'is a K3 and H is an edge-disjoint packing of h K3s in a graph G, then
it is NP-hard to decide whether G has a Kj3-free deletion set of size h,
that is, £ = 0 (Theorem 6.21). Thus, parameterization by ¢ is hopeless for
edge-disjoint packing lower bounds.

e For all ¢ > 3, Pj-FREE VERTEX DELETION WITH F,;-PACKING is NP-hard
even if £ = 0 (Theorem 6.23).

Organization. In Section 6.2, we present the general approach used in our
algorithmic results. In Section 6.3, we present the results for TRIANGLE DELE-
TION, in Section 6.4 those for FEEDBACK ARC SET IN TOURNAMENTS, and
in Section 6.5 the results for CLUSTER EDITING. Section 6.6 shows edge and
vertex deletion problems that remain NP-hard for £ = 0, where £ is the number
of modifications that are allowed in addition to a lower bound based on different
types (edge- and vertex-disjoint) of subgraph packings. We conclude with some
open questions in Section 6.7.

94

6.2 General Approach

In this section, we describe the general approach of our fixed-parameter algo-
rithms. Recall that 7(H) is the minimum number of edge modifications required
to transform a graph H into an F-free graph. The idea behind the algorithms
is to arrive at a classic win-win scenario [Fel03, FNN16, Har+15] where we can
either apply polynomial-time data reduction or show that the packing size |H|
is upper-bounded in ¢. This upper bound will allow us to upper-bound k in ¢ - ¢
for yes-instances and, thus, to apply known fixed-parameter algorithms for the
parameter k to obtain fixed-parameter tractability results for (¢,).

More precisely, we show that, for each induced subgraph H of G in a given
packing H, we face essentially two situations. If there is an optimal solution
for H that is a subset of an optimal solution for GG, then we can apply a data
reduction rule. Otherwise, we find a “certificate”, that is, a set of vertex pairs
witnessing that either H itself needs to be solved suboptimally or that a vertex
pair containing exactly one vertex from H needs to be modified. We use the
following terminology for these pairs.

Definition 6.2 (External vertex pairs and edges). A vertex pair {u,v} is an
external pair for a packing graph H € H if exactly one of w or v is in V(H). An
edge in G is an external edge for H € H if exactly one of its endpoints is in H.

Observe that every vertex pair (every edge) is an external pair (edge) for at
most two packing graphs since the packing graphs are vertex-disjoint. Conse-
quently, the modification of an external vertex pair can destroy at most two
certificates. This is the main fact used in the proof of the following bound on k.

Lemma 6.1. Let (G, H,k) be an instance of F-FREE EDITING WITH COST-t
PACKING and let S be a size-k solution that contains, for each H € H, either

(a) at least T(H) 4+ 1 vertex pairs from (V(QH)), or
(b) at least one external vertex pair {v,w} for H.
Then, |H| < 2¢ and thus, k < (2t + 1)£.

Proof. Denote by H, C H the set of all graphs in H that fulfill Property (a)
and let p, := |Hy|. Let Hp := H \ H, denote the set containing the remaining
packing graphs (fulfilling Property (b)) and let py := |Hp|. Thus, |H| = ps + pe.
Furthermore, let hq :=)¢y, 7(H) denote the lower bound obtained from

95

the graphs in H, and let hy := h(H) — h, denote the part of the lower bound
obtained by the remaining graphs.

The packing graphs in H, require at least h, + p, edge modifications inside of
them. Similarly, the packing graphs in H;, cause at least h; edge modifications
inside of them, and each packing graph H € H; additionally causes a modifi-
cation of at least one external vertex pair for H. Since every vertex pair is an
external pair for at most two different packing graphs, at least hj, + p,/2 edge
modifications are caused by the graphs in H;. This implies that

k> hg+ hy + Do+ po/2

& k—h(H) = pa +pp/2
& 20> 2p, + py > [H].
Consequently, k =€+ h(H) <l+4+t-|H| <Ll+t-20=(2t+ 1)L O

Using Lemma 6.1, we can derive fixed-parameter tractability of F-FREE
EDITING WITH COST-t PACKING with respect to (¢,¢) from the fixed-parameter
tractability with respect to k. Hence, for a specific problem at hand, we have to
find suitable data reduction rules that shrink a given instance in such a way that
Lemma 6.1 becomes applicable. We give examples of how to apply Lemma 6.1
in the following three sections.

6.3 Triangle Deletion

In this section, we study TRIANGLE DELETION, that is, the problem of destroying
all triangles (K3s) in a graph by at most k edge deletions. Note that this
problem equals K3-FREE EDITING since adding edges can never help to destroy
an induced Ks.

The number of triangles in a graph is an important graph statistic with
many applications, for example in complex network analysis, spam detection,
or bioinformatics (we refer to the work by Tsourakakis et al. [TKM11]| for a
detailed discussion). For example, in network analysis the clustering coefficient
(or transitivity) is based on the number of triangles and measures how strong
a network “clusters together” [New03]. In this context, TRIANGLE DELETION
can be motivated by measuring how robust a network is clustered together,
that is, how many edges have to be deleted in order to obtain a network with a
clustering coefficient of zero. We apply our framework from Section 6.2 to show

96

that TRIANGLE DELETION is fixed-parameter tractable parameterized above
the lower bound given by a cost-t packing.

Before presenting our fixed-parameter tractability results for TRIANGLE
DELETION, let us first summarize the known results concerning the (param-
eterized) complexity of TRIANGLE DELETION. TRIANGLE DELETION is NP-
complete [Yan81|. It allows for a trivial reduction to 3-HITTING SET since
edge deletions do not create new triangles [Gra+04]. Combining this approach
with the currently fastest known algorithms for 3-HITTING SET [Wah07] gives
an algorithm for TRIANGLE DELETION with running time O(2.076% + nm).
Finally, TRIANGLE DELETION admits a problem kernel with at most 6k ver-
tices [BKMO09].

We show that TRIANGLE DELETION WITH COST-t PACKING is fixed-parameter
tractable with respect to the combination of ¢ and £ := k — h(#). More precisely,
we obtain a kernelization and a search tree algorithm. Both make crucial use
of the following generic data reduction rule for TRIANGLE DELETION WITH
CosT-t PACKING, which is designed in such a way that we can apply Lemma 6.1
to instances where the rule does not apply. The intuition behind the rule is that
if a packing subgraph has a solution (that is, an edge deletion set) which is also
“locally optimal” for the whole graph G, then we can delete those edges since
they are always contained in a global solution for G.

Reduction Rule 6.1. If there is an induced subgraph H € H and a set T C
E(H) of T(H) edges such that deleting T destroys all triangles of G that contain
edges of H, then delete T from G, H from H, and decrease k by 7(H).

Lemma 6.2. Reduction Rule 6.1 is correct.

Proof. Let (G,H,k) be the instance to which Reduction Rule 6.1 is applied
and let (G',H\ {H},k — 7(H)) with G’ := G — T be the result. We show
that (G, M, k) is a yes-instance if and only if (G',H\ {H}, k — 7(H)) is.

First, let S C E(G) be a solution of size at most k for (G, H, k). Let Sp :=
S N E(H) denote the subset of edge deletions that destroy all triangles in H.
By definition, |Sg| > 7(H). Since Sy C E(H), only triangles containing at
least one edge of H are destroyed by deleting Sp. It follows that the set of
triangles destroyed by Sp is a subset of the triangles destroyed by T'. Hence,
(S\ Sg)UT has size at most k and clearly is a solution for (G, H, k). Thus,
(S\ Sg) is a solution of size at most k —7(H) for G’ and (G', H\{H},k—7(H))
is a yes-instance.

For the converse direction, let S’ be a solution of size at most k — 7(H)
for (G',H\ {H},k — 7(H)). Since T C E(H), it holds that every triangle

97

contained in G that does not contain any edge of H is also a triangle in G’.
Thus, S’ is a set of edges whose deletion in G destroys all triangles that do not
contain any edge of H. Since T destroys all triangles containing an edge of H,
we have that T'U S’ is a solution for G of size at most k. O

‘We now show that if Reduction Rule 6.1 is not applicable to H, then we can
find a certificate for this inapplicability, which will allow us later to branch
efficiently on the destruction of triangles:

Definition 6.3 (Certificate). A certificate for inapplicability of Reduction
Rule 6.1 to an induced subgraph H € H is a set 7 of triangles in G, each
containing exactly one distinct edge of H, such that either

(a) [T] = 7(H) + L or

(b) |T| < 7(H) and 7(H') > 7(H) — |T|, where H' is the subgraph obtained
from H by deleting, for each triangle in 7, its edge shared with H.

Clearly, if we find a set 7 of triangles as defined in Definition 6.3, then
Reduction Rule 6.1 is not applicable to H since either deleting 7(H) edges in H
leaves a triangle in G with an edge in H (a), or deleting all triangles T and all
triangles in H requires more than 7(H) edge deletions in H (b).

In the following, let I'(G, k) be the fastest running time to compute a triangle-
free deletion set of size at most k in a graph G if it exists. We assume that I" is
monotonically nondecreasing in the size of G and in k. As mentioned above,
currently O(2.076% + |V (G)|-|E(G)]) is the best known upper bound for I'(G, k).

Lemma 6.3. We can check for each H € H whether Reduction Rule 6.1
applies and output a certificate Ty if it does not apply within an overall time of
O(nm + 3 ey T(H, 1))

Proof. First, in O(nm) time, we compute for all H € H a set Ty of triangles
in G that contain exactly one edge e € E(H). These edges are labeled in
each H € H. Then, for each H € #, in I'(H, t) time we determine the size 7(H)
of an optimal triangle-free deletion set for H. Let ¢’ denote the number of
labeled edges in H.

If ' > 7(H), then we return as certificate 7(H) + 1 triangles of Ty, each
containing one distinct edge of 7(H) + 1 arbitrary labeled edges in H.

If ¢/ < 7(H), then let H' denote the graph obtained from H by deleting
the labeled edges. Each triangle in G that contains at least one edge of H

98

either contains a labeled edge of H or it is a subgraph of H’. Thus, we now
determine in T'(H', 7(H) — t') time whether H' can be made triangle-free by
7(H) —t' edge deletions. If this is the case, then Reduction Rule 6.1 applies
and the set T consists of the solution for H' plus the ¢’ deleted labeled edges.
Otherwise, destroying all triangles in Ty leads to a solution for H which needs
more than 7(H) edge deletions and thus Reduction Rule 6.1 does not apply. In
this case, we return the certificate 7y for this H € H.

The overall running time now follows from the monotonicity of I" and from
the fact that one pass over H is sufficient since deleting edges in each H does
not produce new triangles and does not destroy triangles in any H' € H with
H' +H. O

Observe that Reduction Rule 6.1 never increases the parameter ¢ since we
decrease both k as well as the lower bound h(#H) by 7(H). After application of
Reduction Rule 6.1, we can upper-bound the solution size k in terms of ¢ and /¢,
which allows us to transfer parameterized complexity results for the parameter k
to the combined parameter (¢,).

Lemma 6.4. Let (G, H, k) be a yes-instance of TRIANGLE DELETION WITH
CosT-t PACKING such that Reduction Rule 6.1 is inapplicable. Then, k <
(2t +1)L.

Proof. Since (G, H, k) is reduced with respect to Reduction Rule 6.1, for each
graph H € H, there is a set of edges between V(H) and V(G) \ V(H) witnessing
that every optimal solution for H does not destroy all triangles in G containing
at least one edge from H. Consider an optimal solution S for G. For each
graph H € H, there are two possibilities:

(a) at least 7(H) + 1 edges inside H are deleted by S, or
(b) at least one external edge of H is deleted by S.

Hence, S fulfills the condition of Lemma 6.1 and thus k < (2¢ + 1)¢. O

Using the upper bound on k, we prove the following fixed-parameter tractability
results.

Theorem 6.5. Let I'(G, k) be the fastest running time for computing a triangle-
free deletion set of size at most k in a graph G if it exists. Then, TRIANGLE
DELETION WITH COST-t PACKING

99

(i) can be solved in O((2t +3)* - (nm + Y sy T(H, 1)) time, and

(i) admits a problem kernel with at most (12t + 6)¢ vertices that can be
computed in O(nm + Y o4, T(H,) time.

Proof. We first prove (ii). To this end, let (G = (V, E),H,k) be the input
instance. First, compute in O(nm + Y, I'(H,t)) time an instance that
is reduced with respect to Reduction Rule 6.1 (Lemma 6.3). Afterwards, by
Lemma 6.4, we can return a trivial constant-size no-instance if k > (2t 4+ 1)¢.
Otherwise, we apply the known kernelization algorithm for TRIANGLE DELETION
to the instance (G, k) (that is, without #). This kernelization produces in
O(m+/m) C O(nm) time a problem kernel (G’, k') with at most 6k < (12t +6)¢
vertices and with &” < k [BKMO09]. Adding an empty packing gives an equivalent
instance (G', 0, k') with parameter ¢ = k' < (2t + 1)¢ of TRIANGLE DELETION
WITH COST-{ PACKING.

It remains to prove (i). To this end, we give a search tree algorithm. If ¢ < 0,
then we can clearly reject the instance. Otherwise, apply Reduction Rule 6.1
exhaustively in O(nm + 3, T'(H,t)) time. Now, consider the following two
cases for the reduced instance.

Case 1: H = (). If G is triangle-free, then we are done. Otherwise, pick an
arbitrary triangle in G’ and add it to H.

Case 2: H contains a graph H. Since Reduction Rule 6.1 does not apply
to H, there is a certificate T of ¢’ < 7(H) + 1 triangles, each containing exactly
one distinct edge of H such that deleting the edges of these triangles contained
in H produces a subgraph H' of H that cannot be made triangle-free by 7(H)—t'
edge deletions. Thus, branch into the following (2t' + 1) < (2t + 3) cases: First,
for each triangle K € T, create two cases, in each deleting a different one of the
two edges of K that are not in H. In the remaining case, delete the ¢’ edges
of H and replace H by H' in H if 7(H') > 0.

It remains to show the running time by bounding the search tree size. In
Case 1, no branching is performed and the parameter ¢ is decreased by one.
In Case 2, the parameter £ is decreased by one in each branch: in the first 2t’
cases, an edge that is not contained in any packing graph is deleted (that is,
k decreases by one while h(H) remains unchanged). In the final case, the
value of k decreases by t'. However, 7(H') > 7(H) — t' + 1. Hence, the lower
bound h(H) decreases by 7(H) — 7(H') < t' — 1 and thus the parameter ¢
decreases by at least one. Note that applying Reduction Rule 6.1 never increases
the parameter. Hence, the depth of the search tree is at most /. O

100

Corollary 6.6. TRIANGLE DELETION WITH COST-t PACKING
(i) can be solved in O((2t + 3)* - (nm + n - 2.076%)) time, and

(i) admits a problem kernel with at most (12t 4+ 6)¢ vertices that can be
computed in O(nm + n - 2.076") time.

For the natural special case t = 1, that is, for vertex-disjoint triangle packings,
Theorem 6.5(i) immediately yields the following running time.

Corollary 6.7. TRIANGLE DELETION WITH TRIANGLE PACKING is solvable
in O(5nm) time.

Notably, in Section 6.6.2, we prove NP-hardness for £ = 0 in case of edge-
disjoint triangle packings which means that we cannot expect similar fixed-
parameter tractability results if we pack triangles edge-disjointly (since this
allows to obtain a tight lower bound as shown in the proof of Theorem 6.21).
This can be seen as a theoretical justification to use vertex-disjoint packings as
we did in this section.

6.4 Feedback Arc Set in Tournaments

In this section, we present a fixed-parameter algorithm and a problem kernel
for FEEDBACK ARC SET IN TOURNAMENTS parameterized above lower bounds
of cost-t packings.

In FEEDBACK ARC SET IN TOURNAMENTS, we are given a directed tourna-
ment graph G (every pair of vertices having exactly one arc between them) as
input and want to delete a minimum number of arcs to make the graph acyclic,
that is, to destroy all directed cycles in G. FAST is a well-studied problem
with applications in rank aggregation tasks, for example, in machine learning
and information retrieval [CSS99, Dwo+01].

It is a well-known observation that FEEDBACK ARC SET IN TOURNAMENTS
can also be viewed as an arc reversal problem: After deleting a minimum
set of arcs to make the graph acyclic, adding the arc (u,v) for every deleted
arc (v,u) does not create any cycle (see Figure 6.2 for a small example). Since
in tournaments, every pair of vertices is connected by exactly one arc, it follows
that destroying cycles by arc deletions is equivalent to destroying them by arc
reversals. Altogether, we arrive at the following problem definition.

101

Figure 6.2: Example of FAST. A tournament on four vertices containing several cycles
(left). Deleting the dashed arc leaves an acyclic directed graph. Reversing the dashed
arc also yields an acyclic tournament (right).

FEEDBACK ARC SET IN TOURNAMENTS (FAST)

Input: An n-vertex tournament G = (V, A) and a natural number k.

Question: Does G have a feedback arc set S C A, that is, a set S such that
reversing all arcs in S yields an acyclic tournament of size at
most k7

FAST is known to be NP-complete [Alo06] and fixed-parameter tractable with
respect to k [ALS09, Dom+10, Fei09, FP13, KS10, RS06]. The running time of
the asymptotically best fixed-parameter algorithm currently is 2evE 4 nfMW,
where ¢ < 5.24 [FP13]. Moreover, a problem kernel with (24 ¢€)k vertices for each
constant € > 0 is known [Bes+11] as well as a simpler 4k-vertex kernel [PPT16].
It is well-known that a tournament is acyclic if and only if it does not contain a
directed triangle (a cycle on 3 vertices). Hence, the problem is to find a set of
arcs whose reversal leaves no directed triangle in the tournament.

We show fixed-parameter tractability of FEEDBACK ARC SET IN TOUR-
NAMENTS WITH COST-t PACKING parameterized by the combination of ¢
and ¢ := k — h(H). Recall that h(H) := >,y 7(H) > |H]|, where 7(G)
is the size of a minimum feedback arc set for a directed graph G. The approach
is to upper-bound the solution size k in ¢ and ¢ (using Lemma 6.1) and apply the
fixed-parameter algorithm for & [KS10]. Observe in this context that Lemma 6.1
is also correct if the input graphs are directed and if a solution contains arc
reversals, since we observed arc reversals and deletions to be equivalent in the
context of FAST.! We use the following data reduction rule, which is similar
to Reduction Rule 6.1 for TRIANGLE DELETION.

Reduction Rule 6.2. If there is a subtournament H € ‘H and a feedback arc
set T C A(H) of H of size T(H) such that reversing the arcs in T leaves no

LFor directed input graphs, we use the term external arc instead of external edge.

102

directed triangles in G containing any arcs of H, then reverse the arcs in T,
remove H from H, and decrease k by 7(H).

Although Reduction Rule 6.2 is strikingly similar to Reduction Rule 6.1 , its
correctness proof is significantly more involved. In the following, let I'(G, k) be
the fastest running time for computing a feedback arc set of size at most k
for a given tournament G if it exists. We assume that I is monotonically

nondecreasing in both the size of G and in k. As mentioned earlier, 25-24vk 4
[V(G)|°M is the currently best known upper bound for I'(G, k) [FP13].

Lemma 6.8. Reduction Rule 6.2 is correct and, given the tournaments G
and H it can be applied in O ((2)(n — q) + T(H,t)) time, where q := |V (H)|.

Proof. We first show correctness. Let I’ := (G',H \ {H},k — 7(H)) be the
instance created by Reduction Rule 6.2 from I := (G,H,k) by reversing a
subset T of arcs of a subtournament H € H of G. If I’ is a yes-instance, then so
is I since G’ is the graph G with the 7(H) arcs in T reversed and, thus, adding
these arcs to a feedback arc set of size k — 7(H) for G’ gives a feedback arc
set of size k for G. It remains to prove that if I is a yes-instance, then so is I'.
To this end, we show that there is a minimum-size feedback arc set S for G
with T'C S.

Let S be a minimum-size feedback arc set for G = (V, A). This implies the
existence of a linear ordering og = v1,...,v, of the vertices V such that there
are |S| backward arcs, that is, arcs (v;,v;) € A such that ¢ > j. Now, let op =
w1, ..., ww| be the ordering of the vertices of H = (W, B) corresponding to the
local solution T for H with 7(H) backward arcs. Let N*(w) := {(w,v) € A |
v € V\ W} denote the out-neighbors in V '\ W of a vertex w € W. Analogously,
N~ (w) := {(v,w) € A| v € V\ W} denotes the set of in-neighbors. By the
assumption of Reduction Rule 6.2, for all i < j,

NT(w;) € Nt (w;) and N~ (w;) € N~ (w;)

holds since otherwise, after reversing the arcs in T, there exists a directed
triangle containing the arc (w;, w;) of H.

If the vertices in W appear in the same relative order in og as in o, then
we have T' C S and we are done. Otherwise, we show that we can swap the
positions of vertices of W in og so that their relative order is the same as in o
without increasing the number of backward arcs.

First, note that the number of backward arcs between vertices in V' '\ W
does not change when only swapping positions of vertices in W. Also, by

103

assumption, the number of backward arcs between vertices in W in any ordering
is at least 7(H), whereas it is exactly 7(H) when ordering them according
to or. Thus, it remains to show that the number of backward arcs between
vertices in W and V' \ W is not increased. To this end, consider a series
of swaps of pairs of vertices w; and w; such that ¢ < j, where w; appears
before w; in og, reordering the vertices in W according to o7. Let Y denote
the set of all vertices that lie between w; and w; in og (see Figure 6.3 for an
example) and note that swapping w; and w; can only introduce backward arcs
between {w;,w;} and vertices in Y. Now, swapping w; and w; removes the
backward arcs from w; to the vertices in N (w;)NY and the backward arcs from
vertices in N~ (w;) NY to w;, whereas it introduces new backward arcs from w;
to (NT(w;)NY) C (Nt (w;) NY) and from (N~ (w;) NY) C (N~ (w;) NY)
to w;. It follows that the overall number of backward arcs does not increase
in each swap. Hence, the overall number of backward arcs is not increased by
repositioning the vertices in W according to op. It follows that there is an
optimal solution containing 7.

It remains to show the running time. First, in T'(H,t) time, we compute
the size 7(H) of an optimal feedback arc set for H = (W, B). Now, for each
arc (u,v) € B, we check whether there is a vertex w € V \ W that forms a
directed triangle with u and v. If such a vertex exists, then we reverse the
arc (u,v). If this arc reversal introduces a new directed triangle with another
vertex from V \ W, then the rule does not apply. Overall, this procedure
requires O(|B|- (n —|W)) time. Let T* denote the set of arcs that are reversed
in this process. Clearly, if |T*| > 7(H), then the rule does not apply. Otherwise,
let H' denote the graph obtained from H by reversing the arcs in T* and
observe that each remaining directed triangle of G that contains at least one
arc of H' is contained in H’. Thus, we now compute whether H' has a feedback
arc set T" of size 7(H) — |T*| in T'(H',7(H) — |T*|) time. If this is the case,
then the rule applies and we set T := T" UT* (note that 7" N T* = (), since
otherwise |T'| < 7(H), which is not possible by definition of 7(H)). Otherwise,
removing all directed triangles in G that contain at least one arc from H requires
more than 7(H) arc reversals and thus the rule does not apply. O

Exhaustive application of Reduction Rule 6.2 allows us to show that k < (2¢+1)¢
holds for any yes-instance.

Lemma 6.9. Let (G, H, k) be a yes-instance of FEEDBACK ARC SET IN TOUR-
NAMENTS WITH COST-t PACKING such that Reduction Rule 6.2 cannot be applied
to any tournament in H. Then, k < (2t + 1)L.

104

Figure 6.3: Example of two vertices wj, w; with ¢ < j in an ordering os. The set Y of
vertices between w; and w; in og contains six vertices. By swapping w; and wj, all
backward arcs (dashed) are reversed (become solid) whereas all forward arcs (solid)
become new backward arcs (become dashed). Note that the number of backward arcs
does not increase since the number of backward arcs is at least the number of forward
arcs.

Proof. Since Reduction Rule 6.2 cannot be applied to any tournament in H, for
each tournament H in H, there is a set of arcs between V(H) and V(G)\ V(H)
that witness that no optimal feedback arc set for H removes all directed triangles
containing at least one arc in H.

Now, for any size-k solution S, there are two possibilities for each packing
tournament H € H:

(a) at least 7(H) + 1 arcs in H are reversed, or
(b) at least one external arc of H is reversed.
Therefore, S fulfills the condition of Lemma 6.1 and, thus, k < 2(¢t+1)¢. O

Theorem 6.10. Let T'(G, k) be the fastest running time for computing a feedback
arc set of size at most k for a given tournament G if it exists. Then, FEEDBACK
ARC SET IN TOURNAMENTS WITH COST-t PACKING

(i) is solvable in T(G, (2t + 1)¢) + n°™) 4 Y omen L(H,t) time, and

(ii) admits a problem kernel with at most (8t-+4)¢ vertices computable in n®™) +
> omen L(H,t) time.

Proof. (i) Given (G, H, k), we first apply Reduction Rule 6.2 for each H € H.
This application can be performed in O(n* 43" ;o T'(H,t)) time by Lemma 6.8

105

since |H| < n. One pass of this rule over all H € H is sufficient to obtain an
instance (G’, H', k') that is reduced since reversing arcs in some H € H does not
remove any directed triangles containing arcs of any other H' € H with H' # H.
By Lemma 6.9, we can then reject the instance if &’ > (2t 4+ 1)¢. Otherwise, we
can find a solution in I'(G’, (2t + 1)¢) time.

(ii) First, we apply Reduction Rule 6.2 once for each H € H in O(n* +
> men U'(H,t)) time. After one pass of this rule, the resulting instance (G, H', k')
is reduced since reversing arcs in some H € H does not remove any directed
triangles containing arcs of any other H' € H with H' # H. By Lemma 6.9, we
can reject if k' > (2t 4+ 1)¢. Otherwise, we apply the kernelization algorithm
for FAST by Paul et al. [PPT16] to the instance (G’, k') to obtain an equiv-
alent instance (G”, k") with at most 4k’ < (8t 4 4)¢ vertices and a solution
size k" < k' in polynomial time. Hence, (G”, 0, k") is our problem kernel with
parameter ¢/ = k" < (2t+1)¢ of FEEDBACK ARC SET IN TOURNAMENTS WITH
CosT-t PACKING. O

Corollary 6.11. FEEDBACK ARC SET IN TOURNAMENTS WITH COST-t PACK-
ING

(i) can be solved in 20(v (2t+1)e) +nPW 4+ 200D time, and

(i4) admits a problem kernel with at most (8t-+4)¢ vertices computable in n®™) +
n2°0V0 time.

6.5 Cluster Editing

We finally apply our framework from Section 6.2 to CLUSTER EDITING, a
well-studied edge modification problem in parameterized complexity [Bocl2,
CM12, Fom+14, Gra+05, KU12]. The goal is to modify at most k edges in a
given graph such that the resulting graph is a cluster graph, that is, a disjoint
union of cliques. For brevity, we refer to the connected components of a cluster
graph (which are cliques) and to their vertex sets as clusters. A graph is a
cluster graph if and only if it is Ps-free [SST04]. Thus, CLUSTER EDITING is
the problem P3;-FREE EDITING. This graph clustering problem (also known as
CORRELATION CLUSTERING) has a wide range of applications in the context of
machine learning and bioinformatics [BB13, BBC04, CDK14, Deh+06, SST04].

The currently fastest algorithm for CLUSTER EDITING parameterized by the
solution size k runs in O(1.62% +n+m) time [Béc12]. Assuming the Exponential

106

Y AW

Figure 6.4: An illustration of Reduction Rule 6.3. Left: An induced subgraph H =
(W, D) (highlighted by the gray background) fulfilling the conditions of Reduction
Rule 6.3. Right: The result of applying Reduction Rule 6.3. The two clusters in G[W]
produced by the optimal solution for H are highlighted by a gray background.

Time Hypothesis [IPZ01] (see also Chapter 3), CLUSTER EDITING cannot be
solved in 2°0F) . nO) time [Fom+14, KU12]. CLUSTER EDITING admits a
problem kernel with at most 2k vertices [CM12].

We present a fixed-parameter algorithm and a problem kernel for CLUSTER
EDITING parameterized above lower bounds given by cost-t packings. Several
kernelizations for CLUSTER EDITING are based on the following observation:
If G contains a clique such that all vertices in this clique have the same closed
neighborhood, then there is an optimal solution that leaves these vertices in
the same cluster [CM12, Guo09, PSS09]. This implies that the edges of this
clique are never deleted. The following rule is based on a generalization of this
observation.

Reduction Rule 6.3. If G = (V,E) contains an induced subgraph H =
(W, D) € H having an optimal solution S of size T(H) such that, for all
vertices u,v € W,

e Ng(v)\W = Ng(u)\ W if u and v are in the same cluster of HAS, and
e Ng(v) N Ng(u) CW otherwise,
then replace G by GAS, remove H from H, and decrease k by 7(H).

An example of Reduction Rule 6.3 is presented in Figure 6.4. Note that a
necessary condition for Reduction Rule 6.3 to apply is that for every pair of
vertices in H, their neighborhoods outside of H are either equal or disjoint.

Lemma 6.12. Reduction Rule 6.3 is correct.

Proof. Let I' :== (GAS,H',k — 7(H)) be the instance obtained by applying
Reduction Rule 6.3 to I := (G,H, k) for some induced subgraph H = (W, D) €

107

Hof G=(V,E). If I is a yes-instance, then so is I: If there is a solution S’ of
size at most k — 7(H) for GAS, then S* := (S\ S") U (5" \ S) is a solution of
size at most k for G since GAS* = (GAS)AS’. Tt remains to prove that if I is
a yes-instance, then so is I’. To this end, we show that (G, #, k) has an optimal
solution S’ such that S C §".

Let S* be an optimal solution for G, and denote by G* := GAS* the
cluster graph produced by S*. We show how to transform S* into an optimal
solution S’ containing S. For convenience, let X := V' \ W and consider the
partition S* = ST USY WSy, where

o S% := {{u,v} € 8* | u,v € X} contains all edge modifications outside
of H,

o Shw i={{u,v} € S* |ue X ANve W} contains the edge modifications
between H and the rest of G, and

o Sy, = {{u,v} € S* | u,v € W} contains the edge modifications inside
of H.

The new solution S’ will also contain the edge modifications S%. Moreover, the
edge modifications Sj;, will be replaced by S. It remains to replace S%, by a
suitable set of edge modifications between H and the rest of G. The idea is to
treat all vertices of H with the same neighborhood in X equally.

Let Wyt be the vertices of W that have at least one neighbor in X and
let Wine := W \ Wext. We define the following equivalence relation ~ C
Wt X Wext: Two vertices u, v € Wey are equivalent with respect to ~ (denoted
u ~ v) if and only if Ng(u) N X = Ng(v) N X. For u € Wy, let [u] :== {v €
Wext | u ~ v} denote the equivalence class of u with respect to ~. Fix within
each equivalence class of ~ an arbitrary vertex that is incident to a minimum
number of edge modifications in S%y, and, for each vertex u € Wey, denote
the fixed vertex of [u] by @. Furthermore, for each cluster K of G* containing
vertices of X and of Wey, fix an arbitrary vertex of K N Wy that has in G a
maximum number of neighbors in K N X; denote this vertex by ux. Finally, call
a vertex u € Wext good if there exists a cluster K of G* such that [u] = [uk],
that is, ux € [u] (note that if u is good, then all vertices in [u] are good and
have the maximum number of neighbors in K N X).

108

Now, consider the edge modification set S’ := S% U SU S, where
S .= {{u,v} | u € Wyt is good and {a,v} € S}}W} U
{{u,v} | u € Wyt is not good and v € (Ng(u) N X)}

Intuitively, the modifications in S are such that @ determines how to treat all
vertices in the equivalence class [@]. If @ is good, then all vertices in [a] are
treated like @ in S%y,. Otherwise, all edges between vertices in [4] and X in G
are deleted (that is, are contained in S).

We first show that S’ is a solution, that is, G’ := GAS’ is a cluster graph.
Clearly, G'[X]| = G[X]AS% = G*[X] is a cluster graph and G'[W] = HAS is a
cluster graph. It remains to show that every connected component of G’ that
contains vertices of W and X is a clique. We first show that such a connected
component does not contain any vertex of Wiy;. To see this, note that there
are no edges between Wi, and X in G. Also, no edges between Wi, and X
are added by S. By the first condition on S in Reduction Rule 6.3, no cluster
of HAS contains vertices from Wi, and from Wey;. This implies that the
connected component of each vertex u € Wiy in G’ is completely contained
in Wiy. Hence, it remains to consider connected components of G’ containing
a vertex u € Wyt that is connected to some vertices in X. By the conditions of
Reduction Rule 6.3, the equivalence class [u] is a cluster in HAS. If u is not
good, then u is not adjacent to any vertex of X in G’. Thus, u is good (that is,
all vertices in [u] are good). Then, all vertices of [u] are adjacent to all vertices
of exactly one cluster in G’'[X] only and not to any other vertex in X. Hence,
the connected component of u in G’ is a clique. Altogether this shows that G’
is a cluster graph.

It remains to show that |S’| < |S*|. First, S% is a subset of both S* and 5.
Second, |S| < |S}y| since S is an optimal solution for H. Thus, it remains
to show |S| < |S%w |- Since the vertices of Wi, are not incident to any edge
modifications in S, it suffices to prove this inequality by showing, for each
vertex u € Weyy, that

Hee S|uce} <|{ec€ Siw |ucel

If u is good, then the number of edge modifications incident with w in S is
the same as the number of edge modifications incident with % in S%y;,. By the
choice of @, this number is at most the number of edge modifications incident
with u in S%y and the above inequality holds.

109

Otherwise, all edges between v and X are deleted by S , that is, u is incident
to | Ng(u) N X| edge deletions in S. Let K denote the cluster in G* containing u.
If K contains only vertices in Weyt, then u is also incident to |[Ng(u) N X | edge
deletions in S% ;. Otherwise, since u is not good, there is a vertex w € (KNWext)
that is not in [u] such that w has at least as many neighbors in K N X as u.
Since w ¢ [u] (that is, w % u), it follows that Ng(u) N X # Ng(w) N X. By the
conditions of Reduction Rule 6.3, it follows that (Ng(u)NX)N(Ng(w)NX) = 0.
Since w has at least as many neighbors in K N X as u, this means that

IN¢(u) N KNX|<|KNX]|/2.

Now, observe that S%;, contains an edge insertion between u and each vertex
in (KNX)\ Ng(u). Thus, at least |[K N X|/2 edges between v and K N X are
inserted by S%y,. Moreover, S%y;, contains an edge deletion between u and
each vertex in Ng(u) N (X \ K). Altogether, this implies

l{e € Sku lu € e} = |[KNX[/2+ [Ng(u) N (X \ K)|
> [Ng(u) N KN X[+ |[Ng(u) N (X \ K)|
=|Ng(u)NX|=|{eeS|uce}.

O

It remains to analyze the running time for applying Reduction Rule 6.3.
Let I'(G, k) be the fastest running time for computing a Ps-free editing set of
size at most k in a graph G if it exists. Here, we assume that I' is monotonically
nondecreasing in k and polynomial in the size of G. Currently, O(1.62%+|V (G)|+
|E(G))) is the best known upper bound for I'(G, k) [Béc12, Theorem 2].

Lemma 6.13. In O(m+3_ 4 T'(H,t)) time, we can apply Reduction Rule 6.3
to all graphs in H.

Proof. We first show that the rule can be applied in O(|W/|+ 3", oy degg(w) +
T'(H,t)) time to an arbitrary graph H = (W, D) € H. For convenience, let X :=
VAW.

First, observe that a necessary condition for the rule is that, for each pair of
vertices u and v in H, their neighborhoods in X are the same or disjoint. This
can be checked in O(|W|+ >, oy degg(w)) time as follows. First, build the
bipartite graph

Bi=(WUNe(W)\W),{{u,v} € E(G) [ueW,ve (Nag(W)\W)}).

110

The graph B is a disjoint union of complete bipartite graphs if and only
if the above necessary condition is fulfilled. Thus, we check in O(|W]| +
> wew degg(w)) time whether B is a disjoint union of complete bipartite
graphs. If not, then the rule does not apply. Otherwise, we compute in
O(|W 1+ ,ew degg(w)) time the groups of vertices of W whose neighborhood
is the same in B. Afterwards, we can check in O(1) time whether u and v
have the same neighborhood in X in G by checking whether they belong to the
same group. We now compute the set S’ of edge modifications that is already
determined by the conditions of Reduction Rule 6.3: If v and w are nonadjacent
and have the same nonempty neighborhood in X, then the edge {v, w} needs
to be inserted and is thus added to §’. Similarly, if v and w are adjacent and
have different neighborhoods in X, then {v, w} needs to be deleted and is thus
added to S’. Observe that if S’ is a subset of an optimal solution S for H,
then |S’| < |D|. Hence, at most |D| edges are added to S’. Since we already
computed the groups of vertices that have the same or disjoint neighborhoods,
we can thus compute S” in O(|W|+ |D|) time.

Let Wey denote the vertices of W that have at least one neighbor in X
and let Wiy, := W \ Wey. Note that after applying the edge modifications
in S/, that is, in HAS’, the induced subgraph (HAS")[Wext] is a cluster graph
and there are no edges between Wey; and Wiy in HAS’. Thus, to determine
whether S’ can be extended to an optimal solution S for H that fulfills the
conditions of Reduction Rule 6.3 we compute an optimal solution of H|[Wip]
in T'(H[Wipt|, 7(H) — |S']) time. Since |H[Win]| < |H| and 7(H) — |S’| < t, this
can be done in I'(H, t) time. The size of the resulting solution S is compared with
the size of an optimal solution of H, which can also be computed in I'(H, t) time.

It remains to show that Reduction Rule 6.3 can be applied to all packing
subgraphs within the claimed running time. For each graph H = (W, D) € H,
we can check in O(|W/|+ 3"y degg(w) +T'(H,t)) time whether Reduction
Rule 6.3 applies. If it does, then we can apply the rule in O(|D]) time by
modifying at most |D| edges. Summing up over all graphs in H gives the
claimed running time. O

Observe that since k is decreased by 7(H), the parameter ¢ does not increase
when Reduction Rule 6.3 is applied. As for the previous problems, applying
the rule to each H € H is sufficient for upper-bounding & in terms of ¢ and ¢
and thus, for transferring known fixed-parameter tractability results for the
parameter k to the combined parameter (¢,).

111

Lemma 6.14. Let (G,H,k) be a yes-instance of CLUSTER EDITING WITH
CosT-t PACKING such that Reduction Rule 6.3 does not apply to any H € H.
Then, k < (2t + 1)¢.

Proof. Since the instance is reduced with respect to Reduction Rule 6.3, for
each H = (W, D) in ‘H and each size-7(H) solution S for H, either the vertices
of some cluster have different neighborhoods in V'\ W or two vertices of two
distinct clusters have a common neighbor outside of W.

Now, fix an arbitrary optimal solution S for G. By the observation above,
there are the following two possibilities for how S modifies each H € H:

(a) more than 7(H) vertex pairs of H are modified by S, or
(b) at least one external vertex pair for H is modified.
Therefore, S fulfills the condition of Lemma 6.1 and thus k < (2t + 1)¢. O

Theorem 6.15. Let I'(G, k) be the fastest running time for computing a Ps-free
editing set of size at most k in a graph G if it exists. Then, CLUSTER EDITING
WITH COST-t PACKING

(i) is solvable in O(I'(G, (2t + 1)0) +nm + 3 oy T(H, 1)) time and

(i) admits a problem kernel with at most (4t + 2)¢ vertices, which can be
computed in O(nm + 3 4, T(H, 1)) time.

Proof. (ii) First, apply Reduction Rule 6.3 exhaustively in O(m+)_ ;o T'(H, 1))
time. Then, by Lemma 6.14, we can either return a trivial constant-size no-
instance or have k < (2t + 1)£. In the latter case, we apply a kernelization
algorithm for CLUSTER EDITING to the instance (G, k) (that is, without H),
which produces, in O(nm) time, a problem kernel (G’, k") with at most 2k <
(4t + 2)¢ vertices and with &' < k [CM12]. Adding an empty packing gives
an equivalent instance (G’, 0, k') with parameter ¢/ = k’ of CLUSTER EDITING
WITH COST-t PACKING.

(i) First, apply the kernelization. Then, by Lemma 6.14, we can either return
“no” or have k < (2t + 1)¢. We can now apply the algorithm for CLUSTER
EDITING that runs in T'(G, (2t + 1)¢) time. O

By plugging in the best known bound for T'(G, k), we obtain the following.

Corollary 6.16. CLUSTER EDITING WITH COST-t PACKING

112

(i) can be solved in O(1.62H DL L nm +n - 1.62%) time, and

(i) admits a problem kernel with at most (4t+2)€ vertices that can be computed
in O(nm +n - 1.62%) time.

For CLUSTER EDITING WITH P3-PACKING, the above generic algorithm with
t = 1 leads to a running time of O(4.26° 4+ nm). This running time can be
improved using two special cases of Reduction Rule 6.3 and two further reduction
rules combined within a branching algorithm.

Theorem 6.17 ([BFK18|). CLUSTER EDITING WITH P3-PACKING can be solved
in O(4° - 03 +m +n) time.

6.6 NP-Hardness Results

In the previous three sections we demonstrated fixed-parameter tractability
for three versions of F-FREE EDITING with respect to our parameterization
above lower bounds based on subgraph packings. It is natural to ask how far
we can get with the parameter ¢ in terms of problems that are fixed-parameter
tractable with respect to £. In this section, we partially answer this question and
show various NP-hardness results even for small forbidden induced subgraphs F'
and constant parameter { = 0. The results imply that, unless P = NP, the
considered problems cannot be fixed-parameter tractable with respect to /.
Similar hardness results have also been shown for several other problems with
respect to parameters above guaranteed values [MRS09].

6.6.1 Hard Edge Deletion Problems

Our first result shows that fixed-parameter tractability of F-FREE EDITING
WITH COST-t PACKING with respect to ¢ is unlikely to hold for all graphs F' (in
contrast to the parameter k for which this is the case [Cai96]).

Theorem 6.18. For every fized ¢ > 6, K,-FREE DELETION WITH K ,-PACKING
is NP-hard for ¢ = 0.

We give a polynomial-time many-one reduction from 3-SAT.

113

3-SAT

Input: A Boolean formula ¢ = C; A ... A (), in conjunctive normal
form over variables z1,...,x, with at most three literals per
clause.

Question: Does ¢ have a satisfying truth assignment?

Construction 6.19. Let ¢ be a Boolean CNF formula with variables z1, ..., z,
and clauses C1, . .., Cp,. We assume without loss of generality that each clause C;
contains exactly three pairwise distinct variables. We create a graph G and a
vertex-disjoint K,-packing H as follows (see Figure 6.5 for an example).

For each variable z;, add a clique X; on ¢ vertices v;1,...,viq to G that has
two distinguished disjoint edges el := {v;1,v;2} and el := {v;3,v44}. For each
clause C; = (1 Aly Al3) with literals 1,05, and I3, add ¢ — 6 vertices U; =
{uj1,.. ., ujq—6)} to G. Now, for each t € [3], if [; = z;, then connect the
endpoints of e;F with all vertices in U; and if [; = —x;, then connect the
endpoints of el with all vertices in U;. Finally, connect all six neighbors of U;
with each other such that the vertices in U; together with their neighbors
induce a K, and denote this subgraph by Y;. The packing H consists of all X;
introduced for the variables z; of ¢ and we set k := |H|.

Before proving Theorem 6.18, we make the following simple observation about
induced Kgs in the graph obtained from Construction 6.19.

Observation 6.20. Let G be the graph output by Construction 6.19 and let H
be an induced K4 in G. Then, H is either one of the cliques X; or one of the
cliques Y;.

Proof. First, note that the X; are pairwise vertex-disjoint. For any X; and Y;,
the vertices in V(X;) \ V(Y;) are nonadjacent to those in V(¥;) \ V(X;) = U;.
Similarly, for Y; and Y}, the vertices in U; are nonadjacent to those in Uj; for i # j.
Thus, every clique in G is entirely contained in one of the X; or Yj. O

Using Observation 6.20, we now prove Theorem 6.18.

Proof of Theorem 6.18. Let ¢ be a 3-SAT instance with variables x1,...,x,
and clauses C, ..., C,, and let (G, H, k = |H|) be the instance returned by Con-
struction 6.19. We show that ¢ is satisfiable if and only if G can be made
K -free by k = |H| edge deletions (that is, £ = 0).

First, assume that there is an assignment that satisfies ¢. We construct a
K ,-free deletion set S for G as follows: If the variable z; is set to true, then

114

Xo

O—FO T

€3 €3
X3

Figure 6.5: An illustration of Construction 6.19 for ¢ = 6. The gray rectangles depict
the vertex-disjoint packing Kss X1, X2, and X3 (for simplicity only two edges are
shown inside each packing Kg). The K containing the edges ef', ef, and e is
denoted Y; and encodes the clause C; = (—z1 V —x2 V x3).

add the edge el to S. If the variable z; is set to false, then add el to S.
Thus, for each X;, we add exactly one edge to S. Since H consists of the X,
we have |S| = |H|. Moreover, since each clause C; contains a true literal, at
least one edge of each Y; is contained in S. Thus, G \ S is K,-free, since, by
Observation 6.20, the only Ks in G are the X; and Y and, for each of them,
S contains at least one edge.

Now, assume that G can be made K -free by deleting a set S of |H| edges.
Then, S deletes exactly one edge of each X; and at least one edge of each Yj.
We can assume without loss of generality that S contains for each X; either the
edge el or the edge el since deleting one of these edges instead of another edge
in X; always yields a solution by construction. Thus, the edge deletion set S
corresponds to a truth assignment that satisfies ¢. O

Let us briefly discuss why it is not possible to apply our framework (that
is, use Lemma 6.1 to derive k < (2t 4+ 1)¢) for the case F = Kg. In fact, it is
indeed possible to formulate a data reduction rule for K4-FREE DELETION WITH
Kg-PACKING analogous to Reduction Rule 6.1 for the triangle case. However,

115

it is not possible to use Lemma 6.1 since the conditions of the lemma do
not necessarily hold for reduced yes-instances. This is due to the fact that a
certificate for solving a packing Ky suboptimally (that is, a set of external edges)
might not exist since we could delete an edge contained in another K¢ from the
packing (Construction 6.19 is based on exactly this property). This is possible
since a Kg contains vertex-disjoint edges.

6.6.2 Hardness for Edge-Disjoint Packings

We complement the fixed-parameter tractability of TRIANGLE DELETION WITH
CosT-t PACKING with respect to £ (Theorem 6.5) by the following hardness
result for the case of edge-disjoint K3-packings:

Theorem 6.21. TRIANGLE DELETION is NP-hard even for £ :=k — |H| =0
if H is an edge-disjoint packing of Kss.

Theorem 6.21 shows that TRIANGLE DELETION remains intractable when
parameterized above a lower bound given by edge-disjoint packings. The reason
is that edge-disjoint triangles can be packed more densely, which allows to
construct hard instances with a tight lower bound on the number of required
edge deletions as the following polynomial-time many-one reduction from 3-SAT
shows.

Construction 6.22. Let ¢ be a Boolean 3-CNF formula with n variables
and m clauses. We assume that each clause of ¢ contains exactly three pairwise
distinct variables. We create a graph G and an edge-disjoint packing H of K3s
as follows (the construction is illustrated in Figure 6.6).

For each variable z; of ¢, create a triangle X; on the vertex set {z}, 2%, 23} with
two distinguished edges e} := {z}, 22} and e} := {22 23} and add X; to H. For

each clause C; = (I1,12,13) of ¢, create a triangle Y; on the vertex set {c}, ¢?, ¢3
lo

7779070

with three edges i, 2 and c§3. Connect the clause gadget Y; to the variable

R
gadgets X; as follows: Consider each literal l; of C;. Let {u,v} := c;-t. Ifl; = x;,
then add the edges {u,x}}, {v,z}} and {v,2?}. Note that the vertices {u,v,z}}
induce a K3. We call this subgraph A;; and add it to H. Note that also the
vertices {v,z},2?} induce a K3 (called B;;). If l; = —x;, then add the edges
{u, 22}, {v,2?} and {v,z}}. In this case the vertices {u,v,z?} induce a K3,
called A;;, which is added to H. Also, the vertices {v,z?,2?} induce a Kj
(called B;;). Clearly, we set k := |H].

116

Figure 6.6: Example of constructed gadgets for a clause C; = (z1 V —z2 V —x3). The
triangles on a gray background are contained in the mutually edge-disjoint triangle
packing H. Deleting the dashed edges corresponds to setting z1 and z3 to false
and 2 to true, thus satisfying C;. Note that it is impossible to destroy triangle Y; by
six edge deletions if we delete the edges ef', ed, and e, which corresponds to the fact
that clause C is not satisfied by this truth assignment.

Note that the induced K3s in H are indeed pairwise edge-disjoint since each
pair intersects in at most one vertex.

Proof of Theorem 6.21. Let ¢ be a 3-SAT instance with variables x4, ..., 2,
and clauses C1, ..., Cy, and let (G = (V, E), H, k = |H]) be the instance obtained
by Construction 6.22. First, observe that Construction 6.22 introduces no edges
between distinct clause gadgets or distinct variable gadgets. Thus, under the
assumption that each clause contains each variable at most once, the only K3s
in the constructed graph are the X; for all variables x;, the Y; for all clauses C}
and the A;; and B;; for all variables x; contained in clauses Cj.

117

Now, assume that ¢ allows for a satisfying truth assignment. We construct
a set S of edges of size |H| such that G’ := (V,E \ S) is K3-free. For each
variable z; that is true, add el to S. For each variable z; that is false, add
ef to S. By this choice, each X; is destroyed in G’. Additionally, for each
clause C; and its true literals [€ {z;, ~x;}, B;; is destroyed. To destroy A;;,
we add to S the edge of A;; shared with Y}, which also destroys the triangle Y.
For each false literal | € {z;, ~x;}, we destroy both B;; and A;; by adding to S
the shared edge of A;; and B;;.

Conversely, assume that there is a set S of size |H| such that G’ = (V, E \ S)
is K3-free. We construct a satisfying truth assignment for ¢. First, observe
that, since the K3s in H are pairwise edge-disjoint, S contains exactly one edge
of each K3 in H. Thus, for each X;, at most one of the two edges el and e} is
contained in S. The set S contains at least one edge e of each Y;. This edge is
shared with an A;;. Since A;; € H and S already contains the edge e of A;j, it
follows that S does not contain the edge shared by A;; and B;;. Since B;; ¢ H,
the set S has to contain an edge of B;; shared with another K3 in H. If the
clause C; contains z;, then the only such edge is e} and we set z; to true. If
the clause C; contains —e;, then the only such edge is €' and we set z; to false.
In both cases, clause C; is satisfied. Since at most one of e and el is in S, the
value of each variable z; is well-defined. O

6.6.3 Hard Vertex Deletion Problems

In contrast to the previous sections, we consider vertex deletions in this section.
We show that the vertex deletion variant (that is, F-FREE VERTEX DELETION)
is an even harder problem than the edge editing variant. Concretely, we prove
NP-hardness of the problem of destroying all induced paths P, on g > 3 vertices
by at most |#H| vertex deletions if a packing H of vertex-disjoint induced P,s in
the input graph G is provided as input.

P;-FREE VERTEX DELETION WITH F,-PACKING

Input: A graph G = (V, E), a vertex-disjoint packing # of induced P,s,
and a natural number k.

Question: Is there a vertex subset S C V of size at most k such that G[V'\ 5]
does not contain a P, as an induced subgraph?

The following theorem implies that P3-FREE VERTEX DELETION WITH Ps-
PACKING parameterized by ¢ := k — |H| is presumably not in XP which is

118

Figure 6.7: An illustration of Construction 6.24 for ¢ = 3. The figure shows parts of the
variable cycles for three variables z;, z,, x5 that occur in the clause Cy = (z;Va, V —xs).
The packing Pss are highlighted by a gray background.

in contrast to the fixed-paramater tractability of CLUSTER EDITING WITH
P5-PACKING (see Section 6.5).

Theorem 6.23. For every fivzed ¢ > 3, P;-FREE VERTEX DELETION WITH
P,-PACKING is NP-hard even if { =k — |H| = 0.

The polynomial-time many-one reduction is from ¢g-SAT.

Construction 6.24. Let ¢ be a Boolean g-CNF formula with clauses C1, ..., Cy,
and variables 1, ..., x,. We assume that each clause C; contains exactly ¢ pair-
wise distinct variables. We construct a graph G and a vertex-disjoint packing H
of Pys as follows; an illustration of the construction is given in Figure 6.7.
First, we introduce variable gadgets, which will ensure that a P,-free vertex
deletion set corresponds to a truth assignment of ¢. In the following, let
a(t) denote the number of occurrences of the literals of variable x; (that is, x;
and —z;) in clauses of ¢. For each variable z;, add 4a(i) vertices: v’ JF

i i

T and v
for each j € [2a(i)]. Call each vf’T a true vertex and each vg’F a false vertex.

119

Create an induced cycle on the true and false vertices of variable x; by adding
the edge set

Bii= {0} |5 € 2a@]} U {{of" 0l T} |5 € 2a(i) - 1] JU
{iOF ol T

We call this cycle the variable cycle of ;.

Then, for each even j € [2a(i)], attach to vf’T and va an induced P,_5 each.
These paths are called the attachment paths of the j-th segment of the variable
cycle of z;.

Now, for each variable z;, assign to each clause C; containing z; or —z; a
unique number p € [a(i)]. Consider the number j = 2p — 1. We will use
vertex v’ ST or vl F to build the clause gadget for clause C;. If C; contains
the literal z;, then attach an induced FP,_; to v;’ IF Otherwise, attach an
induced P,_5 to v] 5T As before, call the path the attachment path of the j-th
segment of the cycle. Now, let 7f := v?" if C; contains x;, and let ~¢ := v/F
if C; contains —x;. Call these vertlces the literal vertices of clause C; and denote
their set by II;. The construction of G is completed as follows. For each II;,
add an arbitrary set of edges to G such that G[II;] is an induced P,. The P,-
packing H contains for each variable x; an induced P, for every segment of the
variable cycle of z;: for each j € [2a(i)], choose an (arbltrary) attachment path
(a P,_2) plus the two segment vertices v/ F and v}’". Note that the packing Pys
are clearly vertex-disjoint by construction. We set k = |H]|.

Proof of Theorem 6.23. Let ¢ be a ¢-SAT instance with variables x4, ..., z,
and clauses C1, ..., Cp, and let (G = (V, E), H, k = |H|) be the instance obtained
by Construction 6.24. We show that ¢ has a satisfying truth assignment if and
only if G can be made P,-free by exactly || vertex deletions (that is, £ = 0).

Assume that ¢ has a satisfying truth assignment. For each true variable z;
in this assignment, delete all true vertices in its variable gadget, that is, v T
for j € [2a(i)]. For each false variable x; in this assignment, delete all false
vertices in its variable gadget, that is, v!"" for j € [2a(i)]. Denote this vertex
set by S and observe that |S| = |H|. Moreover, observe that each vertex on the
variable cycle for z; is either deleted or both of its neighbors on the cycle are
deleted. Every induced P, in G contains at least one vertex from a variable cycle
as the attachment paths are too short to induce Fys. Thus, to show P,-freeness

120

of G[V'\ S] it is sufficient to show that no vertex from a variable cycle is in an
induced P,.

Consider an undeleted vertex in the variable cycle for x;. Assume, without
loss of generality, that this is a true vertex v ‘T 1f j is even, then v] T is not in
an induced P, as its neighbors on the cycle (which are false vertices) are deleted
and its only other neighbor is in an attachment path with only ¢ — 2 vertices.
If j is odd and the clause C; corresponding to the j-th segment of the cycle
contains —z;, then the only neighbor of v Tin G[V'\ §] is in an attachment path.
It remains to show that vf 'Tis not in an induced P, if C} contains ;. The only
neighbors of v/ Tin G[V'\ S] are in II,. Observe that G[II;] is an induced P, and
that, in G[V'\ S], every vertex on this path is deleted or its neighbors in V' \ II,
are deleted. Hence, the connected component of G[V'\ S] containing v"" is
an induced subgraph of G[II;]. Since the assignment is satisfying, at least one
vertex of II; is deleted. Thus, this connected component has at most g — 1
vertices and does not contain a P,.

Conversely, let S C V be a size-|H| vertex set such that G[V \ S] is P,-free.
First, observe that, without loss of generality, for each variable cycle either
all true or all false vertices are deleted: No vertex in an attachment path P
is deleted since it is also a solution to delete the vertex in the variable cycle
that has a neighbor in P instead. Hence, at least one vertex of each segment
is deleted since, otherwise, one of the P,s in H is not destroyed. This already
requires |H| vertex deletions and thus ezactly one vertex for each segment of each
variable cycle is deleted. Finally, by construction, every adjacent pair of vertices
in the variable cycle forms a P, with some attachment path. Consequently, one
of the two vertices is deleted, which implies that either every even or every odd
vertex of the cycle is deleted.

Hence, the vertex deletions in the variable cycle define a truth assignment
for x1,...,x,: If all true vertices of the variable cycle of x; are deleted, then
set x; to true; otherwise, set x; to false. This assignment is satisfying: Since
G[V \ S] is P,-free, for each clause Cy, at least one vertex 4} of II; is deleted.
Without loss of generality, let ! = vf ’T, that is, C} contains the literal ;. Then,
x; is true and clause C; is satisfied. O]

121

Theorem 6.23 easily implies an NP-hardness result for the generalization of
VERTEX COVER to d-uniform hypergraphs:

d-UNIFORM HITTING SET WITH PACKING

Input: A hypergraph H = (V, E) with |e| = dforalle € E,aset H C F
of pairwise vertex-disjoint hyperedges, and an integer k.

Question: Is there a vertex set V' C V of size at most k such that Ve €
E:V'ne#0?

An instance (G, H, k) of Pj-FREE VERTEX DELETION WITH P,-PACKING can
easily be transformed in polynomial time into an equivalent instance (H,H, k)
of ¢-UNIFORM HITTING SET WITH PACKING by taking the hypergraph H on
the same vertex set as G having a hyperedge e if and only if G[e] is a P,. The
packing H and the integer k remain unchanged, and so does ¢. Thus, we obtain
the following corollary:

Corollary 6.25. For every d > 3, d-UNIFORM HITTING SET WITH PACKING
is NP-hard even if { = 0.

Corollary 6.25 shows that the known above-guarantee fixed-parameter algorithms
for VERTEX COVER [Cyg+13, GP16, Lok+14, RO09] do not generalize to d-
UNIFORM HITTING SET.

6.7 Conclusion

In this chapter, we introduced a novel parameterization of F-FREE EDITING
above a given lower bound derived from a packing of subgraphs and developed
a framework for showing fixed-parameter tractability. The basic idea is to apply
polynomial-time data reduction to the packing subgraphs such that for the
resulting instance the number of edge modifications is upper-bounded by the
parameter. We showed that the framework can be applied to three data-science
related variants of F-FREE EDITING. Our obtained algorithms are potentially
fast in practice due to a smaller parameter value than the overall number of
edge modifications. Moreover, since our framework allows to use the fastest
known algorithms with respect to the number of edge modifications, existing
implementations can be used.

There are several open questions to discuss. First of all, the running times of
our algorithms (especially the search tree algorithms for CLUSTER EDITING and

122

TRIANGLE DELETION) could be improved. Maybe more importantly, it is open
to determine the complexity of CLUSTER EDITING and FEEDBACK ARC SET IN
TOURNAMENTS parameterized above a lower bound of edge-disjoint packings of
forbidden induced subgraphs.

It is open to extend our framework to further edge modification problems.
The most natural candidates appear to be F-FREE EDITING variants where
the forbidden induced subgraph F' has four vertices. Examples are COGRAPH
EDITING [Liu+12] which is the problem of destroying all induced Pys, K4-FREE
EDITING, CLAW-FREE EDITING, and DIAMOND-FREE DELETION [Fel+11, SS15].
Finding other editing problems on directed graphs for our framework is also
interesting.

Furthermore, it would be nice to obtain more general theorems separating the
tractable from the hard cases of forbidden subgraphs F' for this parameterization.
For example, the reduction from 3-SAT in Theorem 6.18 essentially relies on
the fact that the graph F' contains a matching of size three. Maybe it is possible
to prove a complexity dichotomy based on the matching number of F.

On the practical side, our framework offers an interesting tradeoff between
running time and power of generic data reduction rules (this is similar to a
kernelization scheme by Hiiffner et al. [HKN15]). Exploring such tradeoffs (using
the maximum cost ¢ of the packing subgraphs as adjusting screw) might be a
rewarding topic for future research. For example, an interesting question to
answer empirically is how much the value of ¢ can be decreased by increasing ¢
in practice. Our generic data reduction rules are suited for implementation and
subsequent experiments to evaluate their effectiveness. Such a project includes
further challenges, for example, computing an appropriate packing of induced
subgraphs efficiently. A concrete subproblem could be formulated as follows:
Given ¢, find an induced subgraph with editing cost ¢ such that a data reduction
rule is applicable. The question whether this problem can be solved efficiently
is interesting from a practical as well as from a theoretical perspective.

Finally, parameterizing above a lower bound is a promising approach to obtain
efficient algorithms which should also be explored for non-graph problems, for
example, feature selection as studied in Chapter 4.

123

Chapter 7
Dynamic Time Warping

In previous chapters we already studied clustering problems on matrices (Chap-
ter 5) and on graphs (Chapter 6). In this chapter, we study a problem from
time series analysis which is fundamental for clustering time series. In particu-
lar, we consider the problem of computing a mean series of a given sample of
series in dynamic time warping spaces. Dynamic time warping is a distance
measure between time series and constitutes a major tool for analyzing time
series. Averaging time series under dynamic warping distance is a challenging
computational problem, so far solved by several heuristics. Our contributions
comprise a (seemingly first) exact exponential-time algorithm for computing
a mean (showing that the problem is in XP with respect to the number of
input time series, that is, for a constant number of input time series, the prob-
lem is polynomial-time solvable). Moreover, we give an exact polynomial-time
algorithm for the special case of (arbitrarily many) binary time series.

7.1 Introduction

The mean of a random variable is a fundamental statistical concept with
many applications in pattern recognition and data mining. The mean is well
understood in Euclidean spaces, but can become obscure in non-metric spaces.
An important class of non-metric spaces are dynamic time warping spaces. Time
series such as acoustic signals, electrocardiograms, and internet traffic data
are time-dependent observations that vary in length and temporal dynamics.
Given a sample of time series, to filter out such variations, a major direction
of time series averaging is based on using dynamic time warping (dtw) as
distance measure between time series. Computing a mean of time series with
respect to the dynamic time warping distance is a fundamental problem arising

125

in the context of nearest neighbor classifiers and centroid-based clustering
algorithms [HNF08, Mor+18, Pet+16, SDG16].

One way to pose time series averaging as an optimization problem is as follows
[CB17, HNF08, PKG11, SDG16, SJ18]: Suppose that X = (z1),... 2"} is a
sample of k time series (numerical sequences of arbitrary finite lengths). Then
a (Fréchet) mean (with respect to dynamic time warping) is any time series z
that minimizes the Fréchet function [Fréd8] (of the sample X))

D=3 (o ()’

where dtw(z,y) denotes the dynamic time warping distance between the time
series « and y. We refer to the problem of minimizing F' over the set of all time
series of finite length as the DTW-MEAN problem. Note that if we consider
only time series from the Euclidean space R™ and we replace the dtw-distance
by the Euclidean norm || - ||2 in the definition of the Fréchet function, then the
solution z simply is the Euclidean mean. For arbitrary time series (of different
lengths), however, one cannot apply the Euclidean distance.

Dynamic time warping has been introduced to deal with this scenario (see
Section 7.2 for a formal definition). Intuitively, in order to measure the similarity
between two time series of different lengths, dynamic time warping allows to
stretch the time series non-uniformly such that the resulting “warped” series
align well in terms of some cost function. Hence, a mean of a sample of time
series with respect to dynamic time warping is a time series that can be aligned
well to each sample time series (on average). Figure 7.1 shows an illustrating
example.

Related Work. It is known that solutions for DTW-MEAN are guaranteed
to exist, but are not unique in general [SJ18]. Polynomial-time algorithms for
DTW-MEAN are unknown. Until recently [BFN18], it was not known to be
NP-hard (though NP-hardness of related problems is mentioned in the litera-
ture [HNF08, Pet+16, PG17]|). Some exponential-time algorithms have been
proposed to optimally solve DTW-MEAN [HNF08, PG12, PKG11]|, however,
without proving their correctness or running times. Several heuristics have been
devised to approximately solve DTW-MEAN [CB17, PKG11, SJ18] (without
any guarantee on the quality of the solution). They are based on prespecifying
the length of feasible solutions without any knowledge about whether an optimal
solution of this length exists. In summary, both the computational complexity of

126

2z 0 0

\ 2\2 1\1/1 /
0/ 2/\2\2\1 \O

Figure 7.1: A sample of two time series z(!) = (0,2,1,1,0), z? = (0,2,2,2,1,0) with
a mean z = (0,2,1,0). The lines indicate the corresponding warpings between z and
the sample time series. For example, the mean z is stretched at the second position in
order to align the 2 with the three 2’s in z®. In this example, the mean is perfectly
aligned with both time series.

2@

DTW-MEAN and the development of nontrivial exact algorithms with provable
running time guarantees are to be considered widely open.

Our Contributions. To start with, Section 7.2 introduces the formal definition
of dynamic time warping. In Section 7.3, we briefly discuss several problematic
statements in the literature concerning the computational complexity of exact
algorithms for DTW-MEAN. We refute (with a counterexample) some false
claims from the literature and clarify the known complexity status of DT'W-
MEAN. In Section 7.4, we develop a dynamic program solving DTW-MEAN
optimally (Theorem 7.2). The time complexity of our dynamic program is
in O(n?**1. k2%), where k is the number of time series in the sample and n is
the maximum length of a sample time series. Hence, DTW-MEAN is in XP
with respect to k. Moreover, as a further contribution, we show in Section 7.5
that in case of binary time series (where both the input series and the mean are
over a binary alphabet) a mean can be computed in O(kn?®) time (Theorem 7.3).

7.2 Preliminaries

Throughout this chapter, we consider only finite time series with rational
elements. A univariate time series of length n is a sequence x = (x1,...,%,) €
Q™. We denote the set of all univariate rational time series of length n by 7,.
Furthermore, 7 = J,,cy Tn denotes the set of all univariate rational time
series of finite length. For simplicity, we neglect running times of arithmetical
operations on rational numbers throughout this chapter.

127

N W

0o 2 2 0 1
1 0 2 1

Figure 7.2: Example of two time series z = (0,2,2,0,1) and y = (1,0,2,1). Left:
The lines indicate the alignment according to the (optimal) warping path p =
((1,1),(1,2),(2,3),(3,3),(4,4),(5,4)) € Ps,4 of length six. The corresponding aligned
time series are z’ = (0,0,2,2,0,1) and 3’ = (1,0,2,2,1,1). Right: The warping
path p (thick line) can be illustrated in a 5 x 4 matrix where the columns corre-
spond to indices of = and the rows to indices of y. The color of cell (i,j) indicates
the value (z; — y;)? (darker means larger). The cost is Cp(z,y) = ||z’ — ¥/'||3 =

0—1)24+(0-0)2+(2-2)2+(2—-2)>+(0—1)*+ (1 — 1)* = 2, which is optimal for
this example, hence dtw(z,y) = 2.

1 2 3 45

We proceed with introducing dynamic time warping. The next definition is
fundamental for the central computational problem of this chapter (see Figure 7.2
for an illustrating example).

Definition 7.1 (Warping Path). A warping path of order mxn is a sequence p =
(p1,...,pr) of pairs py = (ig, je) € [m] x [n] for all £ € [L], L > 1, such that

(i) p1=(1,1),

(11) pL = (mvn)7 and

(111) P41 — Pe = (ilJrl — ’iz7jg+1 —jg) S {(1,0), (O, 1), (1, 1)} for all £ € [L —].]

Clearly, max{m,n} < L < m 4+ n. We denote the set of all warping paths of
order mxn by Py, . For two time series z = (z1,...,%m) andy = (Y1, .., Yn), &
warping path p = (p1,...,pr) € Pm.n defines an alignment of x and y as follows:
Each pair p; = (i¢, je), ¢ € [L], of p aligns element x;, with y;,. Aligning «
and y along a warping path p yields two aligned time series (z;,,...,Z;,)
and (yj,,...,y;,) of length L. The cost Cp(z,y) for aligning = and y along a
warping path p is defined as

L
E (zip — y],z
=1

Now, the dtw-distance between x and y is defined as

128

dtw(z,y) :== pé%gl,n { Cp(m,y)} .
A warping path p with Cp(z,y) = (dtw(:v,y))2 is called an optimal warping
path for x and y.

It is well-known that the dtw-distance of two time series of length n can be com-
puted in O(n?) time by a simple dynamic program [SC78]. Recently, the running
time has been improved to subquadratic time O(n? log log log n/log logn) [GS17].
There is no strongly subquadratic-time algorithm (that is, O(n2~¢) for some € >
0) unless the Strong Exponential Time Hypothesis fails [BK15].

Our central problem DTW-MEAN is defined as follows.

DTW-MEAN

Input: Sample X = (Jc(l)7 e ,x(k)) of k£ univariate rational time series.

Task: Find a univariate rational time series z that minimizes the Fréchet
function F(z).

It is known that a mean always exists [JS16, Proposition 2.10] and that there
always exists a mean of length at most Zle n; — 2(k — 1) [JS16, Theorem 2.7],
where n; > 2 denotes the length of z;. Also, a mean of rational time series is
itself rational [SJ18, Theorem 3.3].

7.3 Problematic Statements in the Literature

In this section, we discuss some misleading and wrong claims in the literature
concerning the computational complexity of DTW-MEAN.

NP-Hardness. The DTW-MEAN problem is often described as being closely
related to the STEINER STRING (STS) problem [ASW15, HNF08, Pet+16, PG12,
PG17, PKG11]. A Steiner string [Gus97] (or Steiner sequence) for a set S of
strings is a string s* that minimizes) ¢ D(s*,s), where D is a distance mea-
sure between two strings, for example the weighted edit distance (often assumed
to be a metric). Computing a Steiner string is related to solving the MULTIPLE
SEQUENCE ALIGNMENT (MSA) problem in bioinformatics [Gus97]. Both, STS
and MSA, are known to be NP-hard for several (metric) distance measures even
on binary alphabets [BD01, NRO5|. Some papers mention the NP-hardness of
MSA or STS in the context of DTW-MEAN [HNF08, Pet+16, PG17], probably

129

1 1 1 1 1 1 1

o \\///

z 05 05 05 05 0.5 z

I N B ///\\

T2 0 0 0 0 0 T2

Figure 7.3: Example of two time series z1 = (1,1,1,1,1), 2 = (0,0,0,0,0) showing
that the multiple alignment approach does not yield a mean (warping paths are
indicated by straight lines). Left: The unique optimal warping path between x1
and z2 clearly is p = ((1,1),(2,2),...,(5,5)), which yields a column-wise average
series z = (0.5,0.5,0.5,0.5,0.5) with F(Z) = £ -10-0.5*> = 1.25. Right: A mean of 2
and z2 is z = (0.8,0.2) with F(z) = 1(2-0.8° +8-0.2%) = 0.8.

as a justification to use heuristic approaches for DTW-MEAN. However, it is
not clear (and not shown in the literature) how to reduce from MSA (or STS)
to DTW-MEAN since the involved distance measures are significantly differ-
ent (for example, the dtw-distance lacks the metric properties of the triangle
inequality and also the identity of indiscernibles). Interestingly, as we show in
Theorem 7.3, DTW-MEAN is solvable in polynomial time for binary time series,
which contrasts the NP-hardness of ST'S and MSA on binary data. A formal
proof of NP-hardness for DTW-MEAN has recently been given by Bulteau et al.
[BFN18].

Computation of Exact Solutions. It is claimed that DTW-MEAN can be
solved by averaging a (global) multiple alignment of the k input series [HNF08,
Pet+16, PG12, PKG11|. A multiple alignment of k time series in the context
of dynamic time warping is described as computing a k-dimensional warping
path in a k-dimensional matrix. This approach may have derived from the
(misleading) claimed relation to MSA. Concerning the running time, it is claimed
that computing a multiple alignment requires ©(n*) time [PG12, PKG11]
(O(n*) time is claimed by Petitjean et al. [Pet+16]), where n is the maximum
length of an input time series. Neither the upper bound of O(n*) nor the lower
bound of Q(n*) on the running time are formally proven. Given a multiple
alignment, it is claimed that averaging the k resulting aligned time series column-
wise yields a mean [PG12]. This approach is not correct even for two time
series. Note that for two time series, the multiple alignment is obtained by
aligning along an optimal warping path. However, the column-wise average of

130

2@

Figure 7.4: Illustration of three length-4 time series z,x(l),x(z) with warping paths
between z and z(!) and between z and z(® indicated by straight lines (left) and by
the two matrices (right), where z corresponds to the columns. The elements z2 and z3
are redundant. For example, z3 is aligned to xgl) which is also aligned to 22, and z3 is
aligned to mfp which is also aligned to z4 (in both matrices the warping path contains
a horizontal segment including the third column). Note that removing 22 (and the
corresponding entries in the warping pahts) yields a shorter mean without increasing
the value of the Fréchet function.

two aligned time series obtained from an optimal warping path is not always an
optimal solution as a simple example in Figure 7.3 shows.

7.4 An XP Algorithm for the Number of Input
Series

We develop a nontrivial exponential-time algorithm showing that DTW-MEAN
parameterized by the number k of input time series is in XP. The key is
to observe a certain structure of the alignments between a mean and the
corresponding input time series. To this end, we define redundant elements in a
mean. Note that this concept was already used by Jain and Schultz [JS16] in
order to prove the existence of a mean of bounded length [JS16, Theorem 2.7]
(though [JS16, Definition 3.20] is slightly different).

Definition 7.2. Let (M, ..., 2®*) and z be time series and let pi¥), j € [k]
denote a warping path between z(/) and z. We call an element z; of z redundant
(with respect to the warping paths p(j)) if in every time series (/) there exists
an element that is aligned by p/) with z; and with another element of z.

Figure 7.4 illustrates Definition 7.2. The next lemma states that there always
exists a mean without redundant elements. The idea is that a redundant mean

131

lipsz = litg »

y4
by =1, —

) 7

Figure 7.5: Left: Example of a warping path containing the pairs (i —
1,0e-1), (4, 4¢), ..., (4, Le43), (1 + 1,€¢44), that is, @« = 3. The vertical segment in
column 4 contains the four indices #, ..., ¢i+3 that are aligned to i. Note that ¢;41
and f;o are only aligned to i, whereas £; and ;3 are also aligned to other indices (hor-
izontal segments). Hence, element z; is redundant. Right: Removing the pairs (i, ¢¢)
and (4, f¢+3) yields a warping path such that z; is not redundant without increasing
the cost.

element can either be completely removed or that the warping paths can be
modified such that the costs do not increase. The proof is implicitly contained
in the proof of [JS16, Theorem 2.7]. For the sake of clarity, however, we give an
explicit proof here.

Lemma 7.1. There exist a mean z for time series V), ... 2™ and optimal
warping paths p) between z and x9) for each j € [k] such that z contains no
redundant element.

Proof. Let z = (z1,...,24) be a mean of =W, . 2®) with optimal warping
paths pl), j € [k], such that the element z; is redundant. Note that by [JS16,
Proposition 2.10] a mean z always exists. We show that there also exists a
mean 2z’ with optimal warping paths pU)" such that no element in 2’ is redundant.

Case 1. There exists a j € [k] such that the element z; is aligned by p@)
with at least one element xl(zj) in 20 that is not aligned with any other element
in z. Then, p\%) is of the form

p(J) = (p17 DI (Z - 1a€t—1)a (i7£t)7 sy (iaet-‘ra)v (Z + 1a€t+a+l)7 e ;pLj)
for some ¢, < € < lyyq witht € [L; —a], a > 1. Since z; is redundant, it follows

that ¢;_1 = ¢; or £11o = liyat1 holds (see Figure 7.5). If ¢,_; = ¢;, then we
remove the pair (7, ¢;) from p9). Also, if £i1q = liyat1, then we remove the

132

Figure 7.6: Examples of warping paths between z (corresponding to columns) and z\)
(corresponding to rows), where element z; is redundant (top row) and the resulting
warping paths p(j) for ', where z; is removed (bottom row). The costs do not increase.
The case i = ¢ is shown left, the case ¢ < ¢ and i;+1 = ¢ + 1 is shown in the middle,
and the case ¢ < g and 4;4+1 = ¢ is shown right.

pair (i,£;44) from p(). Note that this yields a warping path p" between z
and zU) since even if we removed both pairs (i,¢;) and (i, ¢; 1), then we know
by assumption that there still exists the pair (i, £) with ¢y < £ < l414 in p@)’
since z; is aligned with xéj) which is not aligned with another element in z.
Since we only removed pairs from p®), it holds Cpuy (z,20)) < C o (2,).
Moreover, z; is not redundant anymore.

Case 2. Forall j € [k], z; is aligned only with elements in (/) = (xgj). xﬁfj))
which are also aligned with another element of z by p().
Let 2’ = (21,...,2i—1, %41, - ., 2q) denote the time series obtained by deleting

the element z; from z. See Figure 7.6 for some examples illustrating the following
cases.

If i = ¢, then each pU) has the form ((1,1),...,(g—1,n;),(g,n;)). We define
the new warping path p@" = ((1,1),...,(g — 1,n;)). Clearly, this is a valid
warping path between 2z’ and (/) and we have

Cp(]‘)’ (zlv {E(])) = Cp(f) (Zv x(J)) - (Zq - xfzj))z < Cp(j) (Z7 x(]))

J

133

Hence, 2’ is a mean with less redundant elements.

If i € [¢ — 1], then consider a warping path p¥) = (py,... ,pr;) and let p; =
(i,4;), t € [L; — 1] be the first pair such that i, = 1.

If 4.0 =i+ 1, then ¢, = ¢;_1 or ¢, = £;11 holds (or both). We define the
new warping path p()" = (pL, ..., pe—1, (g1 — 1,4441), ..., (ir, —1,£1,)). Note
that p@)’ is a warping path between 2’ and 29 since 4541 —1—i;_ = i—(i—1) =1
and f;41 — ;1 < 1. The cost is

Cooy (2, 29)) = Cpioy (2,29)) = (2i — 2)? < Cpiny (2,2D).

Hence, 2’ is a mean with less redundant elements.

If it+1 = i, then it follows 1 < t < Lj — 1 and et,1 = ét = £t+1 —1= €t+2 -1
and i,40 = i + 1. We define the warping path p()" = (pl,...,pt—1, (igye —
1,li42),..., (i, —1,€r;)). Clearly, p" is a warping path between 2’ and z()
since (i¢19 — 1,€i42) — (44—1,4—1) = (1,1). The cost is

Cyir (#,29) = Cpp (2,89)) = (2 — 2)2 = (2 —))? < Cpo (2,81),
that is, 2’ is a mean with less redundant elements.

In both cases above, we reduced the number of redundant elements. In Case 1,
we found another warping path (by removing horizontal segments in the picture)
such that z; is not redundant. In Case 2, we removed element z; and constructed
new warping paths (by cutting out horizontal segments in the picture). Hence,
we can repeat the above arguments until we obtain a mean z’ without redundant
elements. O

Lemma 7.1 allows us to devise a dynamic program to compute a mean. The
general scheme behind the dynamic program is to test all possibilities to align
the last mean element to elements from the input time series while recursively
adding an optimal solution for the remaining non-aligned elements in the input
time series. The fact that we can assume the last mean element not to be
redundant is crucial for this recursive approach, which is described in the proof
of the following theorem.

Theorem 7.2. DTW-MEAN for k input time series is solvable in O(n?*T12%k)
time, where n is the maximum length of all input time series.

Proof. Assume for simplicity that all time series have length n (the general case
can be solved analogously). We find a mean using a dynamic programming

134

approach. Let C be a k-dimensional table, where for all (iy, ..., i) € [n]*, we
define
Iy (”) OME
. S j j
C’[zl,...,zk]—gg¥ k;(dtw(, (zy s T))) ,

that is, C[i1,...,4x] is the value F(z) of the Fréchet function of a mean z for
the subseries (:cg), .. ,xl(ll)), cee (xgk), ceey Ek)) Clearly, Cln,...,n] yields the
optimal value F'(z) of the input instance.

For i1 =iy = ... =i, = 1, it is clear that there exists a mean z containing

just one element and each optimal warping path between z and (:cgj)) trivially
equals ((1,1)). Since it can be shown [SJ18, Theorem 3.3] that, given optimal
warping paths, each element of a mean equals the arithmetic mean of all elements
in all time series that are aligned to this element, we initialize

k
*1/]4123}(1) C[l Z) _ 2

?r\'—‘

Note that the corresponding mean is z = (u).
For the case that ¢; > 1 holds for at least one j € [k], we can assume by
Lemma 7.1 that there exist a mean z for (a:gl), cee 1(11)), e (xgk), R x(k)) and

ik
optimal warping paths p{) between z and (acg), ey Ej)) such that z contains no

redundant elements. Let z, be the last element of z. Then, for each j € [k], z,
is aligned by pl) with some elements :z:(J) e Ej) for ¢; € [i;]. Again, z, is the
arithmetic mean of all elements in all tlme series with which it is aligned [SJ18,
Theorem 3.3|. Hence, the contribution of z; to F'(z) can easily be determined
(see the formula for o({q,...,) below).

Now, consider the case that there exists another element z,_; in z. Clearly,
for each j € [k], z4—1 is aligned only to elements with indices at most ¢,
since otherwise the warping path conditions are violated. Hence, the remain-
ing part of F'(z) can be obtained recursively from a mean of the time se-
ries (xg)7 o 7(E2))7 e, (gcgk),. xgk)). Recall, however, that we assumed z

not to contain any redundant element. It follows that Zq—1 cannot be aligned

with xE’Z) for all J € [k] since z; is already aligned with each acg 7) Therefore,
we add the minimum value C[¢},..., ¢}] over all £; € {max(1,¢; —1),£;} such

that ¢ = ¢; — 1 holds for at least one j € [k].

135

Hence, the following recursion holds:
Clir, ... ig) = min{c* (1, ..., lk) + 0(l1,...,l) | b1 € [i1],..., Lk € [ix]},

where

ki)
1 ; Z 1Zt 0; Tt
oot =23 D (@ = = 5 ,
j=1t=¢; Zj:1(’j -4 +1)

and we define
k
c*(by, ..., lp) =min{C[¢}, ..., 0] | ¢ € {max(1,¢ Ze —0}) >0}

if £; > 1 holds for some j € [k]. We set ¢*(1,...,1) :=0.

For the value C[iy,...,ix], the minimum is computed over all possible
choices ¢; € [i;], j € [k]. For each choice, the arithmetic mean p corresponds to
the element of the mean and (41, . .., ¢;) equals the induced cost for aligning this
element with acg), o (j) for each j € [k]. The value ¢*({y,...,{;) recursively

yields the value F(z’) of a mean 2’ for the remaining subseries (xgj), . xéf))

over all £’ € {max(1,£; —1),¢;} such that Z?Zl(éj — %) > 0, which implies
that ¢ = £; — 1 holds for at least one j € [k]. This condition guarantees that
we only find warping paths such that z, is not redundant (which we can assume
due to Lemma 7.1). Note that ¢; = 1 implies that £; = 1 (since index 0 does
not exist in (7).

The dynamic programming table C' can be filled iteratively along the di-
mensions starting from C[1,...,1]. The overall number of entries is n*. For
each table entry, the minimum of a set containing O(n*) elements is computed.
Computing an element requires the computation of o(¢y,...,¢;) which can be
done in O(kn) time plus the computation of ¢* (1, ..., ¢;) which is the minimum
of a set of size at most 2¥ whose elements can be obtained by constant-time
table look-ups. Thus, the table C can be filled in O(n* - n* . 2% . kn) time. A
mean can be obtained by storing the values p for which the minimum in the
above recursion is attained (Algorithm 7.1 contains the pseudocode). O

We close with some remarks on Theorem 7.2.

136

Algorithm 7.1: Dynamic Program solving DTW-MEAN

Input: Time series (1, ..., 2®) of lengths n4, ..., ng.

Output: Mean z and F(z).
1 Initialize C // k-dimensional DP table storing F-values
2 Initialize Z // k-dimensional table storing means
3 foreach (i1,...,9x) € [n1] X ... x [ng] do // fill tables iteratively
4 C[i17...,ik] =00
5 Zli1y - yik] =)
6 foreach (¢1,...,0;) € [i1] X ... x [ig] do // compute C[i1, ...,
7 o= (5 Sy, w0)) S (i = 4+ 1)
8 o=t YE S, @) - w)?
9 c* =00
10 z:=()
11 if {y=40=...=/;. =1 then // c¢*(1,...,1) is defined as 0
12 ‘ c* =0
13 else // compute c*(f1, ..., L) based on table look-ups
14 foreach (¢},....¢0,) e {ti — 1,01} x ... x {{, —1,{;} do
15 if Vjelk]:¢; >1and 3j € [k] : £; < {; then
16 if C[¢,...,0,] < c* then
17 L ct=Cl0, ..., 0]
18 z:=Z, ... l]
19 if ¢* 4+ 0 < Cliy,...,i;] then // update mean and F-value
20 Cli,...,ig):i=c"+o0
21 Zli1, .- . ,ix] := append(z, i)
22 return (Z[ny,...,ng),Cny,...,nk))

e Our dynamic programming approach also allows to compute all means of
finite length (without identical successive elements) by storing all possible
values for which the minimum in the recursion is attained. Since a mean
does not have to be unique in general, this is interesting in practice in

order to select the most suitable mean for the task at hand.

e [t is possible to incorporate a maximum mean length ¢ into the dynamic
program such that it outputs only optimal solutions among those of length

137

at most ¢. The running time increases by a factor of ¢2. This is useful in
practice, for example, when a mean is desired not to be longer than any
input time series (which might be unnatural).

e Many applications in medicine, finance, or multimedia involve multivariate
time series (that is, measuring several signals over time) [GL15]. The
algorithm can easily be extended to multivariate time series with elements
in Q¢ with a running time increase by a factor of d.

7.5 Polynomial-Time Solvability for Binary Data

In this section, we consider the special case of DTW-MEAN where the input time
series are binary (that is, containing only 0’s and 1’s). This case naturally occurs
in applications involving status-based information such as on/ off, active /inactive,
or open/closed [Mue+16]. In this scenario, a mean might be desired to also
contain only 0’s and 1’s since arbitrary rational values might not always be
meaningful in the respective context. Hence, we define the following problem.

BiNARY DTW-MEAN
Input: Sample X = (x(1)7 ... ,(E(k)) of k time series with elements in {0, 1}.
Task: Find a time series z € {0,1}* that minimizes F'(z).

We prove that BINARY DTW-MEAN is polynomial-time solvable.

Theorem 7.3. BINARY DTW-MEAN for k input time series is solvable in
O(kn?) time, where n is the mazimum length of all input time series.

To show polynomial-time solvability of BINARY DTW-MEAN, we first prove
some auxiliary results about the dtw-distance of binary time series and properties
of a binary mean. More specifically, we show that a mean can always be assumed
to be an alternating sequence of 0’s and 1’s of length at most n 4+ 1. Hence, we
only have to check O(n) possible candidate time series.

We start with the following general definition.

Definition 7.3. A time series © = (21,...,2,) is condensed if no two consecu-
tive elements are equal, that is, x; # ;41 holds for all i € [n — 1]. We denote
the condensation of a time series x by Z and define it to be the time series
obtained by repeatedly removing one of two equal consecutive elements in x
until the remaining series is condensed.

138

(a) (b) () (d)

Figure 7.7: Illustration of two warping paths (a) and (c) between two time series z
(corresponding to columns) and y (corresponding to rows), where z is not condensed.
The second and third element of x are equal as indicated by the same colors in the
corresponding columns. In both cases it is possible to delete the third element from x
and to find a warping path without increasing the cost. The warping path (b) has the
same length and cost as (a), whereas warping path (d) is shorter than (c) and might
have decreased cost.

The following proposition states that the dtw-distance of a time series x to
any other time series is at least the dtw-distance of the condensation Z to that
time series. This implies that a mean can always be assumed to be condensed,
since the Fréchet function of the condensation of a mean does not increase. Note
that this holds for arbitrary time series (not only for the binary case) and might
thus also be useful in designing better heuristics for the general case.

Proposition 7.4. Let x be a time series and let T denote its condensation.
Then, for every time series y, it holds that dtw(Z,y) < dtw(z,y).

Proof. Let y have length m and assume that © = (21,...,,) is not condensed.
Then, z; = ;41 holds for some i € [n —1]. Let p = ((41,51),---, (45, JL))
be an optimal warping path for z and y. Now, consider the time series ' =
(1, ., Ti, Tita,...,T,) that is obtained from z by deleting element z;,1. We
construct a warping path p’ for 2’ and y such that Cp (2, y) < Cp(x,y) (see
Figure 7.7 for examples).

To this end, let p, = (ia,Ja), 2 < a < L, be the first index pair in p
where i, =i+ 1 (hence, i,—1 = 7). Now, we consider two cases.

Case 1. If j, = jo—1 + 1 (see illustration in Figure 7.7 (a)), then we define
the order-((n — 1) x m) warping path

p/ = ((hvjl)?) (iaflujafl)a (ia - 17ja)7 (iaJrl - 17ja+1)7) (ZL - lij))

139

of length L. Thus, each element of y that was aligned to z;y; in p is now
aligned to x; instead (see illustration in Figure 7.7 (b)). To check that p’ is a
valid warping path, note first that (i1,71) = (1,1) and (i — 1,75) = (n — 1,m)
holds since p is a warping path. For all £ € [a — 2], it holds (ig4+1,Je41) —
(e, 7¢) € {(1,0),(0,1),(1,1)} since p is a warping path. Moreover, (i, — 1,74) —
(ta—1,Ja—1) = (0,1). Finally, for all £ with a < ¢ < L — 1, we have

(tog1 — 1, Jogr) — (i — 1, 5e) = (i1 — e, o1 — Je) € {(1,0),(0,1),(1,1)}

since p is a warping path. The cost of p’ is

a—1 L
Cp (@', y) = (17;'5 - yjz)2 + Z(‘TEU—I) - yjz)2
=1 t=a
a—1 L
= (i, _yje)2+2(xiz _ng)Q = Cp(z,y).
{=1 l=a

Case 2. If j, = j,—1 (Figure 7.7 (c¢)), then we define the order-((n — 1) x m)

warping path
p/ = ((ilvjl)a) (iaflajafl)’ (ia+1 -]-ajaJrl)v SERE) (ZL - 17]L))

of length L —1, where the pair (i, j,) is removed and all elements of y that were
aligned to x;41 are now aligned to x; (Figure 7.7 (d)). Again, (i1,71) = (1,1)
and (i, — 1,7) = (n — 1,m) holds since p is a warping path. Clearly, for
each £ € [a — 2], it holds (i¢+1,je+1) — (3¢, 7¢) € {(1,0),(0,1),(1,1)} since p is
warping path. Further, we have

(ia+1 - 1aja+1) - (iaflvjafl) = (iaJrl - Z‘aajaJrl - ja) € {<1v O), (07 1)v (17 1)}

since p is a warping path. Finally, for all £ with a +1 < ¢ < L — 1, it holds

(o1 — 1, Jer1) — (i — 1, 40) = (o1 — de, jer1 — Je) € {(1,0),(0,1),(1,1)}
since p is a warping path. Thus, p’ is a valid warping path and its cost is
a L
Cp(a'sy) =D (@, =)+ Y (@n) = ¥5.)°
l=a+1
L

(xiz - yje)z + Z (mie - yje)2

l=a-+1
Co(@,y) = (i, = yj.)?* < Cpla,y).

I
-

7T
—_

|
~
I
N

140

Figure 7.8: Examples of warping paths having the cost claimed in Lemma 7.5 for the
three cases of binary condensed time series and y. Gray cells in a matrix indicate
index pairs (i,5) with (z; —y;)? = 1. The case 21 = y1 is depicted left. The other
examples depict the case that x1 # y1. The case that x and y have equal length is
shown in the middle. Note that the shown warping paths are optimal since in each
case every warping path contains at least two gray cells.

Since in both cases above, the cost does not increase, we obtain
dtW(SL'/, y) é Cp’ (lﬂ’, y) S Cp(xa y) = dtW(CE, y)
Repeating this argument until 2’ is condensed finishes the proof. O

Proposition 7.4 implies that we can assume a mean to be condensed. Next,
we are going to prove an upper bound of n + 1 on the length of a binary mean.
To this end, we analyze the dtw-distances of binary time series. Note that a
binary condensed time series is completely determined by its first element and
its length. We use this property to give a closed expression for the dtw-distance
of two condensed binary time series.

Lemma 7.5. Letx = (21,...,%n), Yy = (Y1,---,Ym) € {0,1}* be two condensed
binary time series with n > m. Then, it holds that

[(n—m)/2], T1 =Y
dtw(z,y)* =< 2, 1 FYyAn=m.
1+ [(n—m)/2|, z1#y1An>m

Proof. We prove the statement by first giving a warping path that has the
claimed cost and second proving that every warping path has at least the
claimed cost.

“<” 'We show that there exists a warping path p between x and y that has
the claimed cost (see Figure 7.8 for examples). The warping path p is defined
as follows:

141

If 1 = y1, then we have x; = y; for all ¢ € [m] (since x and y are condensed
and binary) and we set

p:=((1,1),(2,2),...,(m,m),(m+1,m),...,(n,m)).
This warping path has cost Cp(z,y) = >0 1 (@ — ym)? = [(n —m)/2].
If 21 # y1, then we have x; = y;_1 for all 2 < i < m. Thus, for n = m, the
warping path
b= ((la 1)7 (27 1)a (37 2)7 R (TL, m — 1)7 (7’1,, m))

has cost Cp(z,y) = (21 —y1)? + (¥n — ym)? = 2, Finally, for n > m, the warping
path

p:=((1,1),(2,1),(3,2),...,(m+1,m),(m+2,m),..., (n,m))

yields cost

m+1 n
Cpla,y) = (x1 —y1)* + Z (i — yi1)® + Z (i — ym)®
i=2 i=m+2
=14 Y @—pn) =1+ [(—m=1)/2] = 1+ |(n—m)/2].

“>": We show that every warping path has at least the cost claimed above.
Consider an optimal warping path p = (p1,...,pr) for z and y and note that,
since n > m, there are at least n — m different indices ¢4, ..., ¢, _,, with

1<lhi<...<lp_pm<L-1

such that pg,+1 — pe, = (1,0) for every t € [n — m]. For such an index ¢;, let
pe,+1 = (i,7) and pg, = (¢/,7) with i = ¢ + 1 and j = 5. Then, we have

(@i —y;)? + (@i —y3)* = (2 —y)° + (20 —y;)? =1

since x; # x; (recall that x is condensed and binary). Hence, for each ¢t €
{1,...,[(n —m)/2]}, the index f3;_1 contributes a cost of 1 to the sum
of Cp(x,y). Thus, dtw(z,y)? > [(n —m)/2].

If x1 = y1, then this lower bound matches the claimed cost. If zy #
and n = m, then also z,, # vy, and hence, every warping path has cost at

142

least 2. Finally, consider the case that 1 # y; and n > m. If n — m is
odd, then [(n —m)/2] =1+ [(n — m)/2]| and hence, the above lower bound
matches the claimed cost. If n — m is even, then z,, # y,,. Consider the
indices /¢1,...,¢,_y, from above implying the lower bound of [(n — m)/2].
Note that if ¢; > 1 or £,_,, < L — 1 holds, then Cy(z,y) > [(n —m)/2] + 1
holds since (7 — y1)? = (¥, — ym)?> = 1 (which contributes at least one
further 1 to the sum Cp(z,y)). This lower bound matches the claimed costs.
Otherwise, if 1 = 01 < 4y < ... < {y,_,, = L — 1, then each of the indices
O, 03,05, ... lp_m—1,ln_n, contributes a cost of 1 to Cy(x,y). Hence, the lower
bound is [(n —m)/2] + 1 as claimed. This finishes the proof. O

Note that according to Lemma 7.5, for a fixed condensed binary time series y
of length m, the value dtw(z,y)? is monotonically increasing in the length of z
for all condensed binary time series = of length n > m+ 1. We use this property
later in the proof of Lemma 7.7 where we derive an upper bound on the length
of a binary mean. In order to prove Lemma 7.7, we also need the following
lemma concerning the dtw-distances between condensed and non-condensed
time series.

Lemma 7.6. Let © = (1,...,%,) be a condensed binary time series and
let y=(y1,...,ym) € {0,1}* with n > m. Then, for the condensation § of y it
holds dtw(z,y)? = dtw(z, 7)2.

Proof. Assume that y is not condensed. Then, y consists of ¢ € [m] blocks,
where a block is a maximal subsequence of consecutive 0’s or consecutive 1’s in y.
Let my,...,my denote the lengths of these blocks where my + ...+ my = m.
Note also that g has length ¢ with £ < m < n. We define a warping path p
between z and y such that Cy(z,y) = dtw(x,§)?. Note that, by Lemma 7.5, we
have

[(n—0)/2], 1 =1

L+ [(n=0)/2], 1 #h

The idea is, to extend the optimal warping path between x and g as given in

the proof of Lemma 7.5 (see Figure 7.9).
If x1 = y1, then we set

dtw(z,9)? = {

pi= ((1>1)7~-~,(1’m1)7(2,m1+1),...7(2,m1 +m2)7...,
m—me+1),....(6,m),(l+1,m),...,(n,m))

and obtain cost Cp(z,y) = D741 (T — ym)* = [(n —£)/2].

143

(a) (b) (c) @

Figure 7.9: Examples of optimal warping paths between a condensed time series © =
(0,1,0,1,0,1,0) and a non-condensed time series y = (0,1,1,0,0,0) (b) and y =
(1,1,1,0,1,1) (d). The matrices (a) and (c) depict optimal warping paths between x
and the respective condensation .

If ©1 # y1, then we set
p:=((1,1),(2,1),...,(2,m1),(3,m1 + 1),...,
(37m1+m2)7"’7(€+17m)7(€+2’m)7""(n7m)>
and obtain cost
Co(z,y) =14) (wi—ym)> =1+ |(n—0)/2].
i=0+42
O

We now have all ingredients to show that there always exists a binary mean
of length at most one larger than the maximum length of any input time series.

Lemma 7.7. For binary input time series S = {0,1}* of mazimum
length n, there exists a binary mean z € {0,1}* of length at most n + 1.

Proof. Assume that z = (z1,...,2m,) € {0,1}* is a mean of length m > n + 1.
By Proposition 7.4, we can assume that z is condensed, that is, z; # z;41 for
all ¢ € [m —1]. We claim that z’ := (z1,...,2,41) is also a mean. We prove
this claim by showing that dtw(z’, z(?)? < dtw(z,2®)? holds for all i € [k]. By
Lemmas 7.5 and 7.6, we have

dtw(z', 2)? = dtw(2, 2)? < dtw(z, 29)? = dtw(z,)2,

where the inequality follows from Lemma 7.5 since 2’ is of length n +1 < m
and the dtw-distance is monotonically increasing. O

144

Having established that a binary mean is always condensed and of bounded
length, we now show that it can be found in polynomial time.

Proof of Theorem 7.3. By Proposition 7.4 and Lemma 7.7, we can assume the
desired mean z to be a condensed series of length at most n + 1. Thus, there are
at most 2n + 2 many possible candidates for z. For each candidate z, we can
compute the value F(z) in O(kn?) time and select the one with the smallest
value. This yields an overall running time in O(kn?). O

The proof of Theorem 7.3 relies on the fact that there are only O(n) different
binary condensed candidate time series of length at most n + 1. Note that,
for an alphabet with three elements, the number of condensed time series of
bounded length is already exponential in the length. It is therefore not clear
how to compute a mean over larger alphabets in polynomial time even if we
assume an upper bound on its length.

7.6 Conclusion

We studied the complexity of computing an exact mean in dynamic time warping
spaces and developed a first provably correct algorithm (running in exponential
time). Moreover, we proved that the special case of binary data is polynomial-
time solvable. Our results are obtained by analyzing the structure of warping
paths for optimal solutions. In this chapter we took a first step towards a
theoretically profound (parameterized) complexity analysis of a fundamental
problem in time series analysis; an endeavor which might also prove beneficial
in practice at some point. Note that DTW-MEAN has recently been shown to
be NP-hard, W[1]-hard with respect to the number & of input time series, and
not solvable in time n°*) . p(k) for any computable function p (assuming the
Exponential Time Hypothesis), where n is the maximum length of any input
time series [BFN18| (it is conjectured that these hardness results even hold for
binary input time series).

In preliminary experimental work, we used our exact dynamic program to
evaluate the performance of state-of-the-art heuristics. The results indicate a
poor worst-case performance of heuristic approaches with considerable space for
improvements [Bri+18].

We conclude with some challenges for future research. From an algorithmic
point of view, improving the exponential running time part (for example,
reducing n?**! to n*) might be an interesting challenge. Another natural

145

parameter is the maximum length n of the input series. So far, it is even
open whether DTW-MEAN is in XP with respect to n. Concerning other
parameterizations, it might be interesting to search for data-driven parameters
that are motivated by the structure of existing real-world data sets. For instance,
such parameters could measure the sparsity of the time series (that is, the number
of non-zero entries) or the maximum Euclidean distance between any two time
series (in case of equal-length time series).

It is further interesting to investigate whether one can extend the polynomial-
time solvability of BINARY DTW-MEAN to larger alphabet sizes; already the
case of alphabet size three is open. Improving the O(kn?)-time algorithm for
Binary DTW-MEAN might also be worth in order to conduct experiments.

Finally, we wonder whether there are other (practically relevant) restrictions
of DTW-MEAN that make the problem more tractable. For example, one could
restrict the length or the shape of a warping path, or one could optimize over a
restricted set of candidate means. Another idea is to define a maximum number
of elements from each input time series that are allowed to be aligned to a single
mean element in order to avoid degenerate solutions.

146

Chapter 8
Outlook

We shed some light on the border of computational tractability for some prac-
tically motivated problems related to data science questions. Most of the
investigated problems are computationally hard (NP-hard) to solve in general.
However, by adopting a parameterized view, we showed that choosing the “right”
parameters allows to detect tractable (sometimes polynomial-time solvable and
sometimes fixed-parameter tractable) cases for each problem. Our theoretical
results serve as a first step towards exactly solving problems efficiently in prac-
tice and raise some hope not to be forced to always rely on heuristics. Moreover,
our results carry the potential to obtain a better understanding of heuristic
approaches (cf. [KNN16]) by determining and explaining the cases in which
they might not perform well.

We suggested concrete directions for future research specific to each considered
problem in the conclusion of the corresponding chapter. This chapter concludes
the thesis with some more general ideas for future research directions.

First of all, the presented results are clearly theoretical in nature and constitute
some initial points of reference for further investigations. An obvious question
is how well the developed algorithms perform in practice. Answering this
question profoundly! should be done by an algorithm engineering approach
including implementation, optimization and thorough experimental evaluation
on real-world data (which should easily be available for most of the considered
problems).

A good candidate problem for evaluation certainly is CLUSTER EDITING
which is practically relevant and empirically well-studied. Our fine-tunable
data reduction rules developed in Chapter 6 carry the potential to speed up
state-of-the-art algorithms. It is interesting to investigate to which extent this

INote that we already conducted some preliminary experiments for Co-CLUSTERING o (see
Section 5.5) and DTW-MEAN (see Section 7.6).

147

potential can be exploited on real-world instances. It is also promising to
implement the search tree algorithm which could also be enhanced by better
branching and data reduction rules. Another candidate is DTW-MEAN from
Chapter 7. Here, the dynamic program can be used to compute optimal means
of real-world data to gain new insights on some characteristics of a mean (for
example, uniqueness) that help to improve existing heuristics. It might also be
interesting to implement the polynomial-time algorithm for binary time series
and subsequently compare its performance in terms of time series classification
and clustering tasks with existing heuristics. We point out that our algorithm
and its running time analysis are fairly simple. We believe that it might
be possible to further improve the running time to become more practical.
Moreover, it might be possible to use some of our insights to tweak existing
heuristics in order to increase their solution quality. Lastly, we believe that
solving co-clustering tasks using SAT solvers as described in Chapter 5 is a
reasonable approach which might become competitive in practice with some
effort towards more sophisticated reductions to SAT instances.

On the theoretical side, our results encourage to apply the method of a
fine-grained multivariate complexity analysis to other interesting and practically
relevant problems (also see the survey by Niedermeier [Niel0]). Besides the
problem domains we touched in this thesis, one might, for example, study
problems in other fields such as statistics, social network analysis, artificial
intelligence, computer vision, robotics, or big data (see the survey by Mnich
[Mnil7]). The search itself might include the hurdle of finding an appropriate
problem formalization in order for a concrete problem to become tangible for
complexity studies. This process of abstraction also has the potential benefit of
showing interesting connections between different research areas such as graph
theory, combinatorics, geometry and others.

Regarding the study of complexity borders, we remark that there are two
different types of borders to study, a problem-oriented and a parameter-oriented
border. The problem-oriented border describes the computational complexity of
a specific problem with respect to different parameters (as studied in Chapters 3
to 5), whereas the parameter-oriented border is defined for a specific parameter
and separates the tractable from the intractable problems with respect to this
parameter (we studied this kind of border in Chapter 6). Certainly, parameter-
oriented complexity borders are more challenging to investigate which is due
to the fact that problems are very different in nature. Nevertheless, studying

148

such borders might lead to a better theoretical understanding of the algorithmic
utility of a parameter.

Concerning parameterization, it is natural to seek other useful parameters.
Problems arising in machine learning, for example, appear to be rich of inter-
esting “non-standard” parameters such as the number of features, the number
or the size of clusters, the number of classes, or the VC dimension. Of par-
ticular interest for practical purposes are data-driven parameters which can
be measured on given data sets beforehand in order to determine whether the
parameter is actually small. Such parameters could, for example, measure the
density, the similarity or the entropy of the input data in some way.

Finally, we remark that the “art of parameterization” (cf. [Nie06, Chapter 5|)
is itself a data-scientific problem in which the goal is to extract some crucial
information from the input data that can be used to efficiently solve a problem.
This raises the question whether the process of choosing “the right” parameter
can be automated to some extent. For example, one could imagine to use
data mining techniques to discover new and interesting parameters in data
sets. Moreover, it is conceivable that machine learning methods will at some
point allow a program to learn which parameter is “the best” to consider for
a given instance. The goal would be to devise an algorithm that first predicts
the parameterized algorithm from a given suite of parameterized algorithms
that solves a given instance most efficiently (a problem related to the Algorithm
Selection Problem [Kot16, Ric76]) and then runs it on the instance (note that
similar ideas are used in the Programming by Optimization paradigm [HH15,
Hool2, Ley+14]). This might pave the way for a successful interplay between
algorithm theory and practice.

149

Bibliography

[AB09]

[ADK12]

[AKO00]

[Alo06]

[ALS09)

[APTT79)

[ASS16]

[ASW15]

[Ban+-07]

[Bar+17]

S. Arora and B. Barak. Computational Complerity—A Modern Approach.
Cambridge University Press, 2009 (cited on p. 7).

A. Anagnostopoulos, A. Dasgupta, and R. Kumar. “A constant-factor
approximation algorithm for co-clustering”. In: Theory of Computing 8
(2012), pp. 597622 (cited on pp. 64-66).

P. Alimonti and V. Kann. “Some APX-completeness results for cubic graphs”.
In: Theoretical Computer Science 237.1-2 (2000), pp. 123-134 (cited on
p. 24).

N. Alon. “Ranking tournaments”. In: STAM Journal on Discrete Mathematics
20.1 (2006), pp. 137142 (cited on pp. 90, 102).

N. Alon, D. Lokshtanov, and S. Saurabh. “Fast FAST”. In: Proceedings of the
86th International Colloquium on Automata, Languages, and Programming
(ICALP ’09). Vol. 5555. LNCS. Springer, 2009, pp. 49-58 (cited on p. 102).

B. Aspvall, M. F. Plass, and R. E. Tarjan. “A linear-time algorithm for
testing the truth of certain quantified boolean formulas”. In: Information
Processing Letters 8.3 (1979), pp. 121-123 (cited on p. 79).

N. R. Aravind, R. B. Sandeep, and N. Sivadasan. “Parameterized lower
bounds and dichotomy results for the NP-completeness of H-free edge mod-
ification problems”. In: Proceedings of the 12th Latin American Symposium
on Theoretical Informatics, (LATIN ’16). Vol. 9644. 2016, pp. 82-95 (cited
on p. 90).

S. Aghabozorgi, A. S. Shirkhorshidi, and T. Y. Wah. “Time-series clustering
— A decade review”. In: Information Systems 53 (2015), pp. 16-38 (cited
on p. 129).

A. Banerjee, I. S. Dhillon, J. Ghosh, S. Merugu, and D. S. Modha. “A
generalized maximum entropy approach to Bregman co-clustering and
matrix approximation”. In: Journal of Machine Learning Research 8 (2007),
pp. 1919-1986 (cited on p. 64).

L. Barba, J. Cardinal, J. Tacono, S. Langerman, A. Ooms, and N. Solomon.
“Subquadratic algorithms for algebraic generalizations of 3SUM”. In: Pro-
ceedings of the 33rd International Symposium on Computational Geome-

151

[BB13]

[BBCO4|

[BDO1]

[Bee+84]

[Bes+11]

[Bev+15]

[Bev+17]

[Bev14]

[BFK16]

[BFK18]

[BFN18]

[BFS17]

152

try (SoCG ’17). Vol. 77. Leibniz International Proceedings in Informatics
(LIPIcs). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017, 13:1—
13:15 (cited on pp. 13, 16).

S. Bocker and J. Baumbach. “Cluster editing”. In: The Nature of Compu-
tation. Logic, Algorithms, Applications: Proceedings of the 9th Conference
on Computability in Europe (CiE ’13). Vol. 7921. LNCS. Springer, 2013,
pp. 3344 (cited on p. 106).

N. Bansal, A. Blum, and S. Chawla. “Correlation clustering”. In: Machine
Learning 56.1 (2004), pp. 89-113 (cited on p. 106).

P. Bonizzoni and G. Della Vedova. “The complexity of multiple sequence
alignment with SP-score that is a metric”. In: Theoretical Computer Science
259.1-2 (2001), pp. 63-79 (cited on p. 129).

C. Beeri, M. Dowd, R. Fagin, and R. Statman. “On the structure of Arm-
strong relations for functional dependencies”. In: Journal of the ACM 31.1
(1984), pp. 3046 (cited on p. 41).

S. Bessy, F. V. Fomin, S. Gaspers, C. Paul, A. Perez, S. Saurabh, and
S. Thomassé. “Kernels for feedback arc set in tournaments”. In: Journal of
Computer and System Sciences 77.6 (2011), pp. 1071-1078 (cited on p. 102).

R. van Bevern, R. Bredereck, J. Chen, V. Froese, R. Niedermeier, and
G. J. Woeginger. “Network-based vertex dissolution”. In: SIAM Journal on
Discrete Mathematics 29.2 (2015), pp. 888-914 (cited on p. xi).

R. van Bevern, R. Bredereck, L. Bulteau, J. Chen, V. Froese, R. Niedermeier,
and G. J. Woeginger. “Partitioning perfect graphs into stars”. In: Journal
of Graph Theory 85.2 (2017), pp. 297-335 (cited on p. xi).

R. van Bevern. “Towards optimal and expressive kernelization for d-Hitting
Set”. In: Algorithmica 70.1 (2014), pp. 129-147 (cited on p. 30).

R. van Bevern, V. Froese, and C. Komusiewicz. “Parameterizing edge
modification problems above lower bounds”. In: Proceedings of the 11th
International Computer Science Symposium in Russia (CSR ’16). Vol. 9691.
LNCS. Springer, 2016, pp. 57-72 (cited on p. x).

R. van Bevern, V. Froese, and C. Komusiewicz. “Parameterizing edge modi-
fication problems above lower bounds”. In: Theory of Computing Systems
62.3 (2018), pp. 739-770 (cited on pp. x, 94, 113).

L. Bulteau, V. Froese, and R. Niedermeier. “Hardness of consensus problems
for circular strings and time series averaging”. In: CoRR abs/1804.02854
(2018). Submitted to FOCS. (cited on pp. 4, 126, 130, 145).

T. Blésius, T. Friedrich, and M. Schirneck. “The parameterized complex-
ity of dependency detection in relational databases”. In: Proceedings of

[BFT16]

[BGO9)

[BGL17]

[BJK14]

[BK15]

[BKMO09]

[BL97|

[BM11]

[Boc+09)

[Béc12]

[Bod+09]

the 11th International Symposium on Parameterized and Exact Computa-
tion (IPEC ’16). Vol. 63. LIPIcs. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2017, 6:1-6:13 (cited on p. 41).

L. Bulteau, V. Froese, and N. Talmon. “Multi-player diffusion games on
graph classes”. In: Internet Mathematics 12.6 (2016), pp. 363-380 (cited
on p. xi).

J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms and Applica-
tions. Springer, 2009 (cited on p. 60).

E. Bonnet, P. Giannopoulos, and M. Lampis. “On the parameterized com-
plexity of red-blue points separation”. In: Proceedings of the 12th Interna-
tional Symposium on Parameterized and Exact Computation (IPEC ’17).
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017, 8:1-8:13
(cited on p. 87).

H. L. Bodlaender, B. M. P. Jansen, and S. Kratsch. “Kernelization lower
bounds by cross-composition”. In: SIAM Journal on Discrete Mathematics
28.1 (2014), pp. 277-305 (cited on p. 10).

K. Bringmann and M. Kiinnemann. “Quadratic conditional lower bounds
for string problems and dynamic time warping”. In: Proceedings of the 56th
Annual IEEE Symposium on Foundations of Computer Science (FOCS ’15).
IEEE, 2015, pp. 79-97 (cited on p. 129).

D. Briigmann, C. Komusiewicz, and H. Moser. “On generating triangle-free
graphs”. In: Proceedings of the DIMAP Workshop on Algorithmic Graph
Theory (AGT ’09). Vol. 32. Electronic Notes in Discrete Mathematics.
Elsevier, 2009, pp. 51-58 (cited on pp. 97, 100).

A. Blum and P. Langley. “Selection of relevant features and examples in
machine learning”. In: Artificial Intelligence 97.1-2 (1997), pp. 245271
(cited on p. 40).

A. Brandstéddt and R. Mosca. “On distance-3 matchings and induced match-
ings”. In: Discrete Applied Mathematics 159.7 (2011), pp. 509-520 (cited
on p. 44).

S. Bocker, S. Briesemeister, Q. B. A. Bui, and A. Trufs. “Going weighted:
parameterized algorithms for cluster editing”. In: Theoretical Computer
Science 410.52 (2009), pp. 5467-5480 (cited on p. 91).

S. Bocker. “A golden ratio parameterized algorithm for cluster editing”. In:
Journal of Discrete Algorithms 16 (2012), pp. 79-89 (cited on pp. 106, 110).

H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin. “On
problems without polynomial kernels”. In: Journal of Computer and System
Sciences 75.8 (2009), pp. 423-434 (cited on p. 10).

153

[Boi+17]

J.-D. Boissonnat, K. Dutta, A. Ghosh, and S. Kolay. “Kernelization of
the subset general position problem in geometry”. In: Proceedings of the
42nd International Symposium on Mathematical Foundations of Computer
Science (MFCS ’17). LIPIcs. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, 2017, 25:1-25:13 (cited on pp. 36, 37).

[Bre+15a] R. Bredereck, J. Chen, S. Hartung, C. Komusiewicz, R. Niedermeier, and

O. Suchy. “On explaining integer vectors by few homogenous segments”.
In: Journal of Computer and System Sciences 81.4 (2015), pp. 766—782
(cited on p. 62).

[Bre+15b] R. Bredereck, V. Froese, S. Hartung, A. Nichterlein, R. Niedermeier, and

[Bre+18]

[Bri+18]

[BTY11]

[Bul{14]

N. Talmon. “The complexity of degree anonymization by vertex addition”.
In: Theoretical Computer Science 607.1 (2015), pp. 16-34 (cited on p. xi).

R. Bredereck, V. Froese, M. Koseler, M. G. Millani, A. Nichterlein, and
R. Niedermeier. “A parameterized algorithmics framework for digraph
degree sequence completion problems”. In: Algorithmica (2018). Accepted
for publication. URL: https://arxiv.org/abs/1604.06302 (cited on p. xi).

M. Brill, T. Fluschnik, V. Froese, B. Jain, R. Niedermeier, and D. Schultz.
“Exact mean computation in dynamic time warping spaces”. In: Proceedings
of the SIAM International Conference on Data Mining (SDM ’18). SIAM,
2018, pp. 540-548 (cited on pp. xi, 145).

H. L. Bodlaender, S. Thomassé, and A. Yeo. “Kernel bounds for disjoint
cycles and disjoint paths”. In: Theoretical Computer Science 412.35 (2011),
pp. 4570-4578 (cited on p. 10).

L. Bulteau, V. Froese, S. Hartung, and R. Niedermeier. “Co-clustering under
the maximum norm”. In: Proceedings of the 25th International Symposium
on Algorithms and Computation (ISAAC ’14). LNCS 8889. Springer, 2014,
pp. 298-309 (cited on p. x).

[Bul+16a] L. Bulteau, V. Froese, S. Hartung, and R. Niedermeier. “Co-clustering under

the maximum norm”. In: Algorithms 9.1 (2016). Art. No. 17 (cited on pp. x,
86).

[Bul+16b] L. Bulteau, V. Froese, K. Kutzkov, and R. Pagh. “Triangle counting in

[Bul+17]

154

dynamic graph streams”. In: Algorithmica 76.1 (2016), pp. 259-278 (cited
on p. xi).
L. Bulteau, S. Fafianie, V. Froese, R. Niedermeier, and N. Talmon. “The

complexity of finding effectors”. In: Theory of Computing Systems 60.2
(2017), pp. 253-279 (cited on p. xi).

https://arxiv.org/abs/1604.06302

[Cai+97]

[Cai96]

[Caol2]

[CB17]

[CC15]

[CDK14]

[Cha-+00]

[Che+16]

[CMO3]

[CM12]

[CNog]

L. Cai, J. Chen, R. G. Downey, and M. R. Fellows. “Advice classes of
parameterized tractability”. In: Annals of Pure and Applied Logic 84.1
(1997), pp. 119-138 (cited on p. 9).

L. Cai. “Fixed-parameter tractability of graph modification problems for
hereditary properties”. In: Information Processing Letters 58.4 (1996),
pp. 171-176 (cited on pp. 90, 93, 94, 113).

C. Cao. “Study on Two Optimization Problems: Line Cover and Maximum
Genus Embedding”. MA thesis. Texas A&M University, May 2012 (cited
on pp. 15, 24-26, 28).

M. Cuturi and M. Blondel. “Soft-DTW: a differentiable loss function for
time-series”. In: Proceedings of the 34th International Conference on Machine
Learning (ICML °17). Vol. 70. Proceedings of Machine Learning Research.
PMLR, 2017, pp. 894-903 (cited on p. 126).

L. Cai and Y. Cai. “Incompressibility of H-free edge modification problems”.
In: Algorithmica 71.3 (2015), pp. 731-757 (cited on p. 90).

F. Chierichetti, N. Dalvi, and R. Kumar. “Correlation clustering in MapRe-
duce”. In: Proceedings of the 20th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD ’14). ACM, 2014, pp. 641—
650 (cited on p. 106).

M. Charikar, V. Guruswami, R. Kumar, S. Rajagopalan, and A. Sahai.
“Combinatorial feature selection problems”. In: Proceedings of the 41st IEEE
Annual Symposium on Foundations of Computer Science (FOCS ’00). 2000,
pp. 631-640 (cited on pp. 39-41).

W. Cheng, X. Zhang, F. Pan, and W. Wang. “HICC: an entropy splitting-
based framework for hierarchical co-clustering”. In: Knowledge and Infor-
mation Systems 46.2 (2016), pp. 343-367 (cited on p. 66).

C. Cotta and P. Moscato. “The k-feature set problem is W[2]-complete”.
In: Journal of Computer and System Sciences 67.4 (2003), pp. 686-690
(cited on p. 41).

J. Chen and J. Meng. “A 2k kernel for the cluster editing problem”. In:
Journal of Computer and System Sciences 78.1 (2012), pp. 211-220 (cited
on pp. 106, 107, 112).

B. S. Chlebus and S. H. Nguyen. “On finding optimal discretizations for two
attributes”. In: Proceedings of the First International Conference on Rough
Sets and Current Trends in Computing (RSCTC ’98). Vol. 1424. LNCS.
Springer, 1998, pp. 537-544 (cited on pp. 65, 73, 86).

155

[Cov65]

[CS14]

[CSS99]

[CSTOO]

[Cyg+13]

[Cyg+15]

[Das+07]

[Dat03]

[Deh+06]

[Dei-+06]

[Dez74]
[DF13]

[DF99]

156

T. M. Cover. “Geometrical and statistical properties of systems of linear
inequalities with applications in pattern recognition”. In: IEEE Transactions
on Electronic Computers EC-14.3 (1965), pp. 326-334 (cited on p. 13).

G. Chandrashekar and F. Sahin. “A survey on feature selection methods”. In:
Computers & Electrical Engineering 40.1 (2014), pp. 1628 (cited on p. 40).

W. W. Cohen, R. E. Schapire, and Y. Singer. “Learning to order things”.
In: Journal of Artificial Intelligence Research 10 (1999), pp. 243-270 (cited
on p. 101).

A. Califano, G. Stolovitzky, and Y. Tu. “Analysis of gene expression microar-
rays for phenotype classification”. In: Proceedings of the Eighth International
Conference on Intelligent Systems for Molecular Biology (ISMB’00). AAAI,
2000, pp. 75-85 (cited on p. 65).

M. Cygan, M. Pilipczuk, M. Pilipczuk, and J. O. Wojtaszczyk. “On mul-
tiway cut parameterized above lower bounds”. In: ACM Transactions on
Computation Theory 5.1 (2013), p. 3 (cited on pp. 90, 122).

M. Cygan, F. V. Fomin, f.. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh. Parameterized Algorithms. Springer, 2015
(cited on p. 8).

A. Dasgupta, P. Drineas, B. Harb, V. Josifovski, and M. W. Mahoney.
“Feature selection methods for text classification”. In: Proceedings of the
18th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD ’07). ACM, 2007, pp. 230-239 (cited on p. 40).

C. J. Date. An Introduction to Database Systems. Pearson, 2003 (cited
on p. 40).

F. Dehne, M. A. Langston, X. Luo, S. Pitre, P. Shaw, and Y. Zhang. “The
cluster editing problem: implementations and experiments”. In: Proceed-
ings of the Second International Workshop on Parameterized and Ezxact
Computation (IWPEC °06). Vol. 4169. LNCS. Springer, 2006, pp. 13-24
(cited on p. 106).

V. G. Deineko, M. Hoffmann, Y. Okamoto, and G. J. Woeginger. “The
traveling salesman problem with few inner points”. In: Operations Research
Letters 34.1 (2006), pp. 106-110 (cited on p. 33).

M. Deza. “Solution d’un probléme de Erd&s-Lovasz”. In: Journal of Combi-
natorial Theory, Series B 16.2 (1974), pp. 166-167 (cited on p. 52).

R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Com-
plexity. Springer, 2013 (cited on pp. 8, 20).

R. G. Downey and M. R. Fellows. Parameterized Complezity. Springer, 1999
(cited on p. 8).

[DFR12]

[DKOS]

[DM14]

M. Dom, M. R. Fellows, and F. A. Rosamond. “The parameterized com-
plexity of stabbing rectangles”. In: Algorithmica 62.1-2 (2012), pp. 564-594
(cited on p. 87).

A. Das and D. Kempe. “Algorithms for subset selection in linear regres-
sion”. In: Proceedings of the 40th Annual ACM Symposium on Theory of
Computing (STOC '08). ACM, 2008, pp. 45-54 (cited on p. 40).

H. Dell and D. van Melkebeek. “Satisfiability allows no nontrivial sparsifi-

cation unless the polynomial-time hierarchy collapses”. In: Journal of the
ACM 61.4 (2014), 23:1-23:27 (cited on pp. 10, 33, 34, 36).

[Dom+10] M. Dom, J. Guo, F. Hiiffner, R. Niedermeier, and A. Truf. “Fixed-parameter

[DR94|

[Drulb)

[Dur+15]

tractability results for feedback set problems in tournaments”. In: Journal
of Discrete Algorithms 8.1 (2010), pp. 76-86 (cited on p. 102).

S. Davies and S. Russell. “NP-completeness of searches for smallest possible
feature sets”. In: AAAI Symposium on Intelligent Relevance. 1994, pp. 37-39
(cited on p. 41).

A. Drucker. “New limits to classical and quantum instance compression”. In:
SIAM Journal on Computing 44.5 (2015), pp. 1443-1479 (cited on p. 10).
G. Duréan, F. F. Slezak, L. Grippo, F. de S. Oliveira, and J. Szwarcfiter. “On

unit interval graphs with integer endpoints”. In: Electronic Notes in Discrete
Mathematics 50.Supplement C (2015), pp. 445-450 (cited on p. 69).

[Dwo+01] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. “Rank aggregation

[EOSS6]

[Erd86|

[Est-+05]

[Fei09]

[Feil4]

methods for the web”. In: Proceedings of the 10th International Conference
on World Wide Webseries (WWW ’01). ACM, 2001, pp. 613-622 (cited
on p. 101).

H. Edelsbrunner, J. O’'Rourke, and R. Seidel. “Constructing arrangements of

lines and hyperplanes with applications”. In: STAM Journal on Computing
15.2 (1986), pp. 341-363 (cited on p. 32).

P. Erdés. “On some metric and combinatorial geometric problems”. In:
Discrete Mathematics 60 (1986), pp. 147-153 (cited on p. 15).

V. Estivill-Castro, M. Fellows, M. A. Langston, and F. Rosamond. “FPT
is P-time extremal structure I (fixed-parameter tractability is polynomial-
time extremal structure theory)”. In: Algorithms and Complexity (Texts in
Algorithmics 4). King’s College Publications, 2005, pp. 1-41 (cited on p. 2).
U. Feige. “Faster FAST (feedback arc set in tournaments)”. In: CoRR
abs/0911.5094 (2009). URL: http://arxiv.org/abs/0911.5094 (cited on
p. 102).

U. Feige. “NP-hardness of hypercube 2-segmentation”. In: CoRR abs/1411.0821
(2014). URL: https://arxiv.org/abs/1411.0821 (cited on p. 65).

157

http://arxiv.org/abs/0911.5094
https://arxiv.org/abs/1411.0821

[Fel+11]

[Fel03]

[FGO6]

[FKV14]

[FNN16]

[Fom-+14]

[For03]

[FP13)|

[FPTS1]

[Fré48]

[Fro+13]

158

M. R. Fellows, J. Guo, C. Komusiewicz, R. Niedermeier, and J. Uhlmann.
“Graph-based data clustering with overlaps”. In: Discrete Optimization 8.1
(2011), pp. 2-17 (cited on p. 123).

M. R. Fellows. “Blow-ups, win/win’s, and crown rules: some new directions
in FPT”. In: Proceedings of the 29th International Workshop on Graph-
Theoretic Concepts in Computer Science (WG ’08). Vol. 2880. LNCS. 2003,
pp. 1-12 (cited on p. 95).

J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006
(cited on pp. 3, 8, 39).

S. Felsner, M. Kaufmann, and P. Valtr. “Bend-optimal orthogonal graph

drawing in the general position model”. In: Computational Geometry 47.3,
Part B (2014), pp. 460-468 (cited on p. 13).

V. Froese, A. Nichterlein, and R. Niedermeier. “Win-win kernelization for
degree sequence completion problems”. In: Journal of Computer and System
Sciences 82.6 (2016), pp. 1100-1111 (cited on pp. xi, 95).

F. V. Fomin, S. Kratsch, M. Pilipczuk, M. Pilipczuk, and Y. Villanger.
“Tight bounds for parameterized complexity of cluster editing with a small
number of clusters”. In: Journal of Computer and System Sciences 80.7
(2014), pp. 1430-1447 (cited on pp. 106, 107).

G. Forman. “An extensive empirical study of feature selection metrics for
text classification”. In: Journal of Machine Learning Research 3 (2003),
pp. 1289-1305 (cited on p. 40).

F. V. Fomin and M. Pilipczuk. “Subexponential parameterized algorithm for
computing the cutwidth of a semi-complete digraph”. In: Proceedings of the
21st Annual European Symposium (ESA ’13). Vol. 8125. LNCS. Springer,
2013, pp. 505-516 (cited on pp. 102, 103).

R. J. Fowler, M. S. Paterson, and S. L. Tanimoto. “Optimal packing and
covering in the plane are NP-complete”. In: Information Processing Letters
12.3 (1981), pp. 133-137 (cited on p. 72).

M. Fréchet. “Les éléments aléatoires de nature quelconque dans un espace
distancié”. In: Annales de linstitut Henri Poincaré (1948), pp. 215-310
(cited on p. 126).

V. Froese, R. van Bevern, R. Niedermeier, and M. Sorge. “A parameter-
ized complexity analysis of combinatorial feature selection problems”. In:
Proceedings of the 38th International Symposium on Mathematical Founda-
tions of Computer Science (MFCS ’13). Vol. 8087. LNCS. Springer, 2013,
pp. 445-456 (cited on p. x).

[Fro+16a] V. Froese, R. van Bevern, R. Niedermeier, and M. Sorge. “Exploiting hidden

structure in selecting dimensions that distinguish vectors”. In: Journal of
Computer and System Sciences 82.3 (2016), pp. 521-535 (cited on pp. x,
41, 43, 44).

[Fro+16b] V. Froese, I. Kanj, A. Nichterlein, and R. Niedermeier. “Finding points

[Fro+17]

[Fro12]

[Fiir91]

[GEO3]

[GJ79]

[GK68]|

[GL15]

[GORY6]

[GP16]

[GR15]

[Gra+04]

in general position”. In: Proceedings of the 28th Canadian Conference on
Computational Geometry (CCCG ’16). 2016, pp. 7-14 (cited on p. ix).

V. Froese, I. Kanj, A. Nichterlein, and R. Niedermeier. “Finding points in
general position”. In: International Journal of Computational Geometry €
Applications 27.4 (2017), pp. 277296 (cited on p. ix).

V. Froese. “Combinatorial Feature Selection: Parameterized Algorithms and
Complexity”. MA thesis. TU Berlin, 2012 (cited on pp. ix, 41, 43, 44).

7. Fiiredi. “Maximal independent subsets in Steiner systems and in planar
sets”. In: SIAM Journal on Discrete Mathematics 4.2 (1991), pp. 196-199
(cited on p. 29).

I. Guyon and A. Elisseeff. “An introduction to variable and feature selection”.
In: Journal of Machine Learning Research 3 (2003), pp. 1157-1182 (cited
on p. 40).

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman and Company, 1979
(cited on pp. 7, 24, 70).

R. K. Guy and P. A. Kelly. “The no-three-in-line problem”. In: Canadian
Mathematical Bulletin 11 (1968), pp. 527-531 (cited on p. 14).

T. Gorecki and M. Luczak. “Multivariate time series classification with
parametric derivative dynamic time warping”. In: Ezpert Systems with
Applications 42.5 (2015), pp. 2305-2312 (cited on p. 138).

L. J. Guibas, M. H. Overmars, and J. Robert. “The exact fitting problem in
higher dimensions”. In: Computational Geometry: Theory and Applications
6.4 (1996), pp. 215-230 (cited on pp. 26, 28).

S. Garg and G. Philip. “Raising the bar for vertex cover: fixed-parameter
tractability above a higher guarantee”. In: Proceedings of the 27th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA ’16). SIAM, 2016,
pp. 1152-1166 (cited on pp. 90, 122).

S. K. Ghosh and B. Roy. “Some results on point visibility graphs”. In:
Theoretical Computer Science 575 (2015), pp. 17-32 (cited on p. 16).

J. Gramm, J. Guo, F. Hiiffner, and R. Niedermeier. “Automated genera-
tion of search tree algorithms for hard graph modification problems”. In:
Algorithmica 39.4 (2004), pp. 321-347 (cited on p. 97).

159

[Gra+05]

[GRT97]

[GS17]

[Gui+13]

[Guo09]
[Gus97]

[Hal+75]

[Har+15]

[Har72]

[HH15]

[Him+18]

[HKN15]

160

J. Gramm, J. Guo, F. Hiiffner, and R. Niedermeier. “Graph-modeled data
clustering: exact algorithms for clique generation”. In: Theory of Computing
Systems 38.4 (2005), pp. 373-392 (cited on p. 106).

F. Gomez, S. Ramaswami, and G. T. Toussaint. “On removing non-degeneracy
assumptions in computational geometry”. In: Proceedings of the 3rd Italian

Conference on Algorithms and Complexity (CIAC ’97). Vol. 1203. LNCS.

Springer, 1997, pp. 86-99 (cited on p. 32).

O. Gold and M. Sharir. “Dynamic time warping and geometric edit distance:

breaking the quadratic barrier”. In: Proceedings of the 44th International

Colloquium on Automata, Languages and Programming (ICALP ’17). Vol. 80.

LIPIcs. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017, 25:1-25:14

(cited on p. 129).

S. Guillemot, F. Havet, C. Paul, and A. Perez. “On the (non-)existence of
polynomial kernels for Pp-free edge modification problems”. In: Algorithmica
65.4 (2013), pp. 900-926 (cited on p. 90).

J. Guo. “A more effective linear kernelization for cluster editing”. In: Theo-
retical Computer Science 410.8-10 (2009), pp. 718-726 (cited on p. 107).

D. Gusfield. Algorithms on Strings, Trees and Sequences. Cambridge Uni-
versity Press, 1997 (cited on p. 129).

R. Hall, T. Jackson, A. Sudbery, and K. Wild. “Some advances in the
no-three-in-line problem”. In: Journal of Combinatorial Theory, Series A
18.3 (1975), pp. 336-341 (cited on p. 14).

S. Hartung, A. Nichterlein, R. Niedermeier, and O. Suchy. “A refined
complexity analysis of degree anonymization in graphs”. In: Information
and Computation 243 (2015), pp. 249-262 (cited on p. 95).

J. A. Hartigan. “Direct clustering of a data matrix”. In: Journal of the
American Statistical Association 67.337 (1972), pp. 123-129 (cited on p. 65).

S. Hartung and Holger H. Hoos. “Programming by optimisation meets
parameterised algorithmics: a case study for cluster editing”. In: Proceedings
of the 9th International Conference on Learning and Intelligent Optimization
(LION ’15). Vol. 8994. LNCS. Springer, 2015, pp. 43-58 (cited on pp. 90,
93, 149).

A.-S. Himmel, C. Hoffmann, P. Kunz, V. Froese, and M. Sorge. “Computa-
tional complexity aspects of point visibility graphs”. In: Discrete Applied
Mathematics (2018). Accepted for publication. URL: https://arxiv.org/abs
/171101811 (cited on p. xi).

F. Hiiffner, C. Komusiewicz, and A. Nichterlein. “Editing graphs into
few cliques: complexity, approximation, and kernelization schemes”. In:

https://arxiv.org/abs/1711.01811
https://arxiv.org/abs/1711.01811

[HNF08]

[HO06]

[Hool2]
[IPO1]

[IPZ01]

[Joh14]

[J516]

[1599]

[JSB09]

[Juk11]
[KKW15]

[KMS6]

[KNN16]

Proceedings of the Algorithms and Data Structures Symposium (WADS’15).
Vol. 9214. LNCS. Springer, 2015, pp. 410-421 (cited on p. 123).

V. Hautamaki, P. Nykanen, and P. Franti. “Time-series clustering by ap-
proximate prototypes”. In: Proceedings of the 19th International Conference
on Pattern Recognition (ICPR ’08). IEEE, 2008, pp. 1-4 (cited on pp. 126,
129, 130).

M. Hoffmann and Y. Okamoto. “The minimum weight triangulation problem
with few inner points”. In: Computational Geometry: Theory and Applica-
tions 34.3 (2006), pp. 149-158 (cited on p. 33).

H. H. Hoos. “Programming by optimization”. In: Communications of the
ACM 55.2 (2012), pp. 70-80 (cited on p. 149).

R. Impagliazzo and R. Paturi. “On the complexity of k-SAT”. In: Journal
of Computer and System Sciences 62.2 (2001), pp. 367-375 (cited on p. 8).

R. Impagliazzo, R. Paturi, and F. Zane. “Which problems have strongly
exponential complexity?” In: Journal of Computer and System Sciences
63.4 (2001), pp. 512-530 (cited on pp. 23, 24, 107).

H. R. Johnson. “Some new maximum VC classes”. In: Information Processing
Letters 114.6 (2014), pp. 294-298 (cited on p. 13).

B. Jain and D. Schultz. “A reduction theorem for the sample mean in
dynamic time warping spaces”. In: CoRR abs/1610.04460 (2016) (cited
on pp. 129, 131, 132).

D. Johnson and M. Szegedy. “What are the least tractable instances of max-
imum independent set?” In: Proceedings of the 16th ACM-SIAM Symposium
on Discrete Algorithms (SODA 799). 1999, pp. 927-928 (cited on p. 24).

S. Jegelka, S. Sra, and A. Banerjee. “ Approximation algorithms for ten-
sor clustering”. In: Proceedings of the 20th International Conference of
Algorithmic Learning Theory (ALT’09). Vol. 5809. LNCS. Springer, 2009,
pp. 368—-383 (cited on p. 65).

S. Jukna. Extremal Combinatorics. Springer, 2011 (cited on pp. 51, 52).

C. Knauer, S. Konig, and D. Werner. “Fixed-parameter complexity and
approximability of norm maximization”. In: Discrete & Computational
Geometry 53.2 (2015), pp. 276-295 (cited on p. 37).

M. Krivanek and J. Moravek. “NP-hard problems in hierarchical-tree clus-
tering”. In: Acta Informatica 23.3 (1986), pp. 311-323 (cited on p. 90).

C. Komusiewicz, A. Nichterlein, and R. Niedermeier. “Parameterized algo-
rithmics for graph modification problems: on interactions with heuristics”.
In: Proceedings of the 41st International Workshop on Graph-Theoretic

161

[Kot16]

[KPR16]

[Kral2]

[KS10]

[KS96]

[KU12]

[KW13]

[Ley+14]

[Liu412]

[LMO5]

[Lok+14]

162

Concepts in Computer Science (WG ’15). Vol. 9224. LNCS. Springer, 2016,
pp. 3-15 (cited on p. 147).

L. Kotthoff. “Algorithm selection for combinatorial search problems: a
survey”. In: Data Mining and Constraint Programming: Foundations of a
Cross-Disciplinary Approach. Ed. by C. Bessiere, L. De Raedt, L. Kotthoff,
S. Nijssen, B. O’Sullivan, and D. Pedreschi. Springer, 2016, pp. 149-190
(cited on p. 149).

S. Kratsch, G. Philip, and S. Ray. “Point line cover: the easy kernel is
essentially tight”. In: ACM Transactions on Algorithms 12.3 (2016), 40:1—
40:16 (cited on pp. 16, 34-36).

S. Kratsch. “Polynomial kernelizations for MIN F*II; and MAX NP”. In:
Algorithmica 63.1-2 (2012), pp. 532-550 (cited on p. 90).

M. Karpinski and W. Schudy. “Faster algorithms for feedback arc set
tournament, Kemeny rank aggregation and betweenness tournament”. In:
Proceedings of the 21st International Symposium on Algorithms and Com-
putation (ISAAC ’10). Vol. 6506. LNCS. Springer, 2010, pp. 3-14 (cited
on p. 102).

D. Koller and M. Sahami. “Towards optimal feature selection”. In: Pro-
ceedings of the 13th International Conference on Machine Learning (ICML
1996). 1996, pp. 284292 (cited on p. 39).

C. Komusiewicz and J. Uhlmann. “Cluster editing with locally bounded
modifications”. In: Discrete Applied Mathematics 160.15 (2012), pp. 2259—
2270 (cited on pp. 106, 107).

S. Kratsch and M. Wahlstrém. “T'wo edge modification problems without
polynomial kernels”. In: Discrete Optimization 10.3 (2013), pp. 193-199
(cited on p. 90).

K. Leyton-Brown, H. H. Hoos, F. Hutter, and L. Xu. “Understanding the
empirical hardness of NP-complete problems”. In: Communications of the
ACM 57.5 (2014), pp. 98-107 (cited on p. 149).

Y. Liu, J. Wang, J. Guo, and J. Chen. “Complexity and parameterized
algorithms for Cograph Editing”. In: Theoretical Computer Science 461
(2012), pp. 45-54 (cited on p. 123).

S. Langerman and P. Morin. “Covering things with things”. In: Discrete &
Computational Geometry 33.4 (2005), pp. 717-729 (cited on p. 26).

D. Lokshtanov, N. S. Narayanaswamy, V. Raman, M. S. Ramanujan, and S.
Saurabh. “Faster parameterized algorithms using linear programming”. In:
ACM Transactions on Algorithms 11.2 (2014), 15:1-15:31 (cited on pp. 90,
122).

[LYS0]

[Mnil7]

[MNS12]

[MO04]

[Mor+18]

[MR15]

[MRO9]

[MRS09)

[Mue-+16]

[New03|

[Ngu06|

[Nie06]

[Nie10]

J. M. Lewis and M. Yannakakis. “The node-deletion problem for hereditary
properties is NP-complete”. In: Journal of Computer and System Sciences
20.2 (1980), pp. 219-230 (cited on p. 90).

M. Mnich. “Big data algorithms beyond machine learning”. In: KI - Kiin-
stliche Intelligenz (2017), pp. 1-9 (cited on p. 148).

H. Moser, R. Niedermeier, and M. Sorge. “Exact combinatorial algorithms
and experiments for finding maximum k-plexes”. In: Journal of Combinato-
rial Optimization 24.3 (2012), pp. 347-373 (cited on p. 90).

S. C. Madeira and A. L. Oliveira. “Biclustering algorithms for biological
data analysis: a survey”. In: IEEE/ACM Transactions on Computational
Biology and Bioinformatics 1.1 (2004), pp. 24-45 (cited on pp. 63-65).

M. Morel, C. Achard, R. Kulpa, and S. Dubuisson. “Time-series averag-
ing using constrained dynamic time warping with tolerance”. In: Pattern
Recognition 74 (2018), pp. 7789 (cited on p. 126).

P. Moradi and M. Rostami. “A graph theoretic approach for unsupervised
feature selection”. In: Engineering Applications of Artificial Intelligence
44.Supplement C (2015), pp. 33-45 (cited on p. 40).

M. Mahajan and V. Raman. “Parameterizing above guaranteed values:
MaxSat and MaxCut”. In: Journal of Algorithms 31.2 (1999), pp. 335-354
(cited on p. 90).

M. Mahajan, V. Raman, and S. Sikdar. “Parameterizing above or below
guaranteed values”. In: Journal of Computer and System Sciences 75.2
(2009), pp. 137-153 (cited on p. 113).

A. Mueen, N. Chavoshi, N. Abu-El-Rub, H. Hamooni, and A. Minnich.
“AWarp: fast warping distance for sparse time series”. In: Proceedings of the
16th IEEE International Conference on Data Mining (ICDM ’16). IEEE,
2016, pp. 350-359 (cited on p. 138).

M. E. J. Newman. “The structure and function of complex networks”. In:
SIAM Review 45.2 (2003), pp. 167-256 (cited on p. 96).

H. S. Nguyen. “Approximate boolean reasoning: foundations and applica-
tions in data mining”. In: Transactions on Rough Sets V. Vol. 4100. LNCS.
Springer, 2006, pp. 334-506 (cited on pp. 65, 73).

R. Niedermeier. Invitation to Fized-Parameter Algorithms. Oxford Univer-
sity Press, 2006 (cited on pp. 8, 149).

R. Niedermeier. “Reflections on multivariate algorithmics and problem
parameterization”. In: Proceedings of the 27th International Symposium
on Theoretical Aspects of Computer Science (STACS ’10). Vol. 5. LIPIcs.

163

[NRO5)

[NS95]

[Pap94]

[Paw91]

[Pet-+16]

[PG12]

[PG17]

[PKG11]

[PPT16]

[PSS09]

[Put+15]

164

Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010, pp. 17-32 (cited
on p. 148).

F. Nicolas and E. Rivals. “Hardness results for the center and median string
problems under the weighted and unweighted edit distances”. In: Journal
of Discrete Algorithms 3.2 (2005), pp. 390-415 (cited on p. 129).

S. H. Nguyen and A. Skowron. “Quantization of real value attributes -
rough set and boolean reasoning approach”. In: Proc. Second Joint Annual
Conference on Information Sciences. 1995, pp. 34-37 (cited on pp. 65, 73).

C. H. Papadimitriou. Computational Complexity. Addison Wesley, 1994
(cited on p. 7).

Z. Pawlak. Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer
Academic, 1991 (cited on p. 41).

F. Petitjean, G. Forestier, G. I. Webb, A. E. Nicholson, Y. Chen, and E.
Keogh. “Faster and more accurate classification of time series by exploiting
a novel dynamic time warping averaging algorithm”. In: Knowledge and
Information Systems 47.1 (2016), pp. 1-26 (cited on pp. 126, 129, 130).

F. Petitjean and P. Gangarski. “Summarizing a set of time series by averag-
ing: from Steiner sequence to compact multiple alignment”. In: Theoretical
Computer Science 414.1 (2012), pp. 76-91 (cited on pp. 126, 129, 130).

J. Paparrizos and L. Gravano. “Fast and accurate time-series clustering”.
In: ACM Transactions on Database Systems 42.2 (2017), 8:1-8:49 (cited
on pp. 126, 129).

F. Petitjean, A. Ketterlin, and P. Gancarski. “A global averaging method
for dynamic time warping, with applications to clustering”. In: Pattern
Recognition 44.3 (2011), pp. 678-693 (cited on pp. 126, 129, 130).

C. Paul, A. Perez, and S. Thomassé. “Linear kernel for rooted triplet
inconsistency and other problems based on conflict packing technique”. In:
Journal of Computer and System Sciences 82.2 (2016), pp. 366-379 (cited
on pp. 102, 106).

F. Protti, M. D. da Silva, and J. L. Szwarcfiter. “ Applying modular decompo-
sition to parameterized cluster editing problems”. In: Theory of Computing
Systems 44.1 (2009), pp. 91-104 (cited on p. 107).

N. Puthiyedth, C. Riveros, R. Berretta, and P. Moscato. “A new combina-
torial optimization approach for integrated feature selection using different
datasets: a prostate cancer transcriptomic study”. In: PLoS ONE 10.6
(2015), 0127702 (cited on p. 40).

[PW13]

[Ric76)

[RO09)

[Rob55|
[Rot51]

[RS06]

[Rud17]

[SCTs]

[SDG16]

[SJ18]

[SR92]

[SS15]

M. S. Payne and D. R. Wood. “On the general position subset selection
problem”. In: SIAM Journal on Discrete Mathematics 27.4 (2013), pp. 1727—
1733 (cited on pp. 15, 26, 27).

J. R. Rice. “The algorithm selection problem”. In: ed. by M. Rubinoft and
M. C. Yovits. Vol. 15. Advances in Computers Supplement C. Elsevier,
1976, pp. 65-118 (cited on p. 149).

I. Razgon and B. O’Sullivan. “Almost 2-SAT is fixed-parameter tractable”.
In: Journal of Computer and System Sciences 75.8 (2009), pp. 435-450
(cited on pp. 90, 122).

H. Robbins. “A remark on Stirling’s formula”. In: The American Mathemat-
ical Monthly 62.1 (1955), pp. 26-29 (cited on p. 28).

K. F. Roth. “On a problem of Heilbronn”. In: Journal of the London
Mathematical Society 1.3 (1951), pp. 198-204 (cited on p. 14).

V. Raman and S. Saurabh. “Parameterized algorithms for feedback set
problems and their duals in tournaments”. In: Theoretical Computer Science
351.3 (2006), pp. 446458 (cited on p. 102).

A. G. Rudi. “An improved lower bound for general position subset selection”.
In: International Journal of Computing Science and Mathematics 8.6 (2017),
pp. 562-569 (cited on p. 15).

H. Sakoe and S. Chiba. “Dynamic programming algorithm optimization for
spoken word recognition”. In: IEEE Transactions on Acoustics, Speech and
Signal Processing 26.1 (1978), pp. 43—49 (cited on p. 129).

S. Soheily-Khah, A. Douzal-Chouakria, and E. Gaussier. “Generalized k-
means-based clustering for temporal data under weighted and kernel time
warp”. In: Pattern Recognition Letters 75 (2016), pp. 63-69 (cited on p. 126).

D. Schultz and B. Jain. “Nonsmooth analysis and subgradient methods
for averaging in dynamic time warping spaces”. In: Pattern Recognition
74.Supplement C (2018), pp. 340-358 (cited on pp. 126, 129, 135).

A. Skowron and C. Rauszer. “The discernibility matrices and functions
in information systems”. In: Intelligent Decision Support—Handbook of
Applications and Advances of the Rough Sets Theory. Ed. by R. Slowinski.
Kluwer Academic, 1992, pp. 331-362 (cited on p. 41).

R. B. Sandeep and N. Sivadasan. “Parameterized lower bound and improved
kernel for diamond-free edge deletion”. In: Proceedings of the 10th Interna-
tional Symposium on Parameterized and Exact Computation (IPEC ’15).
Vol. 43. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015,
pp. 365-376 (cited on p. 123).

165

[SSTO4]

[Tan96|

[TKM11]

[TSS05]

[Vaz01]
[Wah07]

[WS11]

[WUB13]

[Yan81]

[Yap83]

166

R. Shamir, R. Sharan, and D. Tsur. “Cluster graph modification problems”.
In: Discrete Applied Mathematics 144.1 (2004), pp. 173-182 (cited on pp. 90,
106).

L. Tan. “The group of rational points on the unit circle”. In: Mathematics
Magazine 96.3 (1996), pp. 163171 (cited on p. 18).

C. E. Tsourakakis, M. N. Kolountzakis, and G. L. Miller. “Triangle spar-
sifiers”. In: Journal of Graph Algorithms and Applications 15.6 (2011),
pp. 703-726 (cited on p. 96).

A. Tanay, R. Sharan, and R. Shamir. “Biclustering algorithms: a survey”.
In: Handbook of Computational Molecular Biology. Chapman & Hall/CRC,
2005 (cited on p. 64).

V. V. Vazirani. Approzimation Algorithms. Springer, 2001 (cited on p. 11).

M. Wahlstrém. “Algorithms, Measures and Upper Bounds for Satisfiability
and Related Problems”. PhD thesis. Link6ping University, Mar. 2007 (cited
on pp. 30, 97).

D. P. Williamson and D. B. Shmoys. The Design of Approzimation Algo-
rithms. Cambridge University Press, 2011 (cited on p. 11).

S. Wulff, R. Urner, and S. Ben-David. “Monochromatic bi-clustering”. In:
Proceedings of the 30th International Conference on Machine Learning
(ICML’18). Vol. 28 (2). JMLR Workshop and Conference Proceedings, 2013,
pp. 145-153 (cited on p. 65).

M. Yannakakis. “Edge-deletion problems”. In: SIAM Journal on Computing
10.2 (1981), pp. 297-309 (cited on pp. 90, 97).

C. K. Yap. “Some consequences of non-uniform conditions on uniform
classes”. In: Theoretical Computer Science 26.3 (1983), pp. 287-300 (cited
on p. 10).

Schriftenreihe Foundations of computing

Hrsg.: Prof. Dr. Stephan Kreutzer, Prof. Dr. Uwe Nestmann, Prof. Dr. Rolf Niedermeier

ISSN 2199-5249 (print)
ISSN 2199-5257 (online)

01: Bevern, René van: Fixed-Parameter Linear-
Time Algorithms for NP-hard Graph and
Hypergraph Problems Arising in Industrial
Applications. - 2014. - 225 S.

ISBN 978-3-7983-2705-4 (print) EUR 12,00
ISBN 978-3-7983-2706-1 (online)

02: Nichterlein, André: Degree-Constrained
Editing of Small-Degree Graphs. - 2015. -
xiv, 225 S.

ISBN 978-3-7983-2705-4 (print) EUR 12,00
ISBN 978-3-7983-2706-1 (online)

03: Bredereck, Robert: Multivariate Com-
plexity Analysis of Team Management
Problems. - 2015. - xix, 228 S.

ISBN 978-3-7983-2764-1 (print) EUR 12,00
ISBN 978-3-7983-2765-8 (online)

04: Talmon, Nimrod: Algorithmic Aspects of
Manipulation and Anonymization in Social
Choice and Social Networks. - 2016. -

xiv, 275 S.
ISBN 978-3-7983-2804-4 (print) EUR 13,00
ISBN 978-3-7983-2805-1 (online)

05: Siebertz, Sebastian: Nowhere Dense Classes
of Graphs. Characterisations and Algorithmic
Meta-Theorems. - 2016. - xxii, 149 S.

ISBN 978-3-7983-2818-1 (print) EUR 11,00
ISBN 978-3-7983-2819-8 (online)

06: Chen, Jiehua: Exploiting Structure in
Computationally Hard Voting Problems. -
2016. - xxi, 255 S.

ISBN 978-3-7983-2825-9 (print) EUR 13,00
ISBN 978-3-7983-2826-6 (online)

07: Arbach, Youssef: On the Foundations of
dynamic coalitions. Modeling changes and
evolution of workflows in healthcare scenarios -
2016. - xv, 171 S.

ISBN 978-3-7983-2856-3 (print) EUR 12,00
ISBN 978-3-7983-2857-0 (online)

08: Sorge, Manuel: Be sparse! Be dense! Be robust!

Elements of parameterized algorithmics. -
2017. - xvi, 251 S.

ISBN 978-3-7983-2885-3 (print) EUR 13,00
ISBN 978-3-7983-2886-0 (online)

09: Dittmann, Christoph: Parity games,
separations, and the modal p-calculus. -
2017. -x, 274 S.

ISBN 978-3-7983-2887-7 (print) EUR 13,00
ISBN 978-3-7983-2888-4 (online)

10: noch nicht erschienen

11: noch nicht erschienen

Universitdtsverlag der TU Berlin

Fine-Grained Complexity Analysis of Some Combinatorial Data Science
Problems

This thesis is concerned with analyzing the computational complexity of combinatorial problems
arising in data science. The considered problems include selecting points in general position,
combinatorial feature selection, co-clustering, graph clustering, and time series averaging. Ad-
opting a parameterized viewpoint, a multivariate complexity analysis is conducted to chart the
border between tractability and intractability for these practically motivated problems.
Intractability results include NP- and W-hardness, approximation hardness, as well as kerneliza-
tion and running time lower bounds. Tractability is achieved by developing parameterized algo-
rithms which solve specific problem instances in polynomial time for constant parameter values.
The developed algorithms utilize various parameters such as the number of clusters, the Ham-
ming distance of data points, or the solution value above a guarantee. The algorithms involve
tools from combinatorics, data reduction, SAT-solving, and dynamic programming. While most
of the studied problems turned out to be computationally hard to solve in general, this thesis
reveals meaningful tractable special cases for each of the considered problems.

ISBN 978-3-7983-3003-0 (print)
ISBN 978-3-7983-3004-7 (online)

I S
E
[

1580 978-3-7983-3003-0 DBIE http://verlag.tu-berlin.de

	Frontcover
	Title Page
	Imprint
	1 Introduction
	2 Preliminaries and Notation
	2.1 Numbers, Sets, and Matrices
	2.2 Graph Theory
	2.3 Computational Complexity
	2.4 Parameterized Complexity
	2.5 Approximation

	3 General Position Subset Selection
	3.1 Introduction
	3.2 Hardness Results
	3.3 Fixed-Parameter Tractability
	3.3.1 Fixed-Parameter Tractability Results for the Parameter Solution Size k
	3.3.2 Fixed-Parameter Tractability Results for the Dual Parameter h
	3.3.3 Excluding O(h2-)-point Kernels

	3.4 Conclusion

	4 Distinct Vectors
	4.1 Introduction
	4.2 A Complexity Dichotomy for Binary Matrices
	4.2.1 NP-Hardness for Heterogeneous Data
	4.2.2 Polynomial-Time Solvability for Homogeneous Data

	4.3 Conclusion

	5 Co-Clustering
	5.1 Introduction
	5.2 Problem Definition and First Observations
	5.3 Hardness Results
	5.3.1 Constant Number of Clusters
	5.3.2 Constant Number of Rows
	5.3.3 Clustering into Consecutive Clusters

	5.4 Tractability Results
	5.4.1 Reduction to CNF-SAT Solving
	5.4.2 Polynomial-Time Solvability
	5.4.3 Fixed-Parameter Tractability

	5.5 Conclusion

	6 F-Free Editing
	6.1 Introduction
	6.2 General Approach
	6.3 Triangle Deletion
	6.4 Feedback Arc Set in Tournaments
	6.5 Cluster Editing
	6.6 NP-Hardness Results
	6.6.1 Hard Edge Deletion Problems
	6.6.2 Hardness for Edge-Disjoint Packings
	6.6.3 Hard Vertex Deletion Problems

	6.7 Conclusion

	7 Dynamic Time Warping
	7.1 Introduction
	7.2 Preliminaries
	7.3 Problematic Statements in the Literature
	7.4 An XP Algorithm for the Number of Input Series
	7.5 Polynomial-Time Solvability for Binary Data
	7.6 Conclusion

	8 Outlook
	Bibliography
	Backcover

