Skip to main content
Log in

Study of a periodically forced magnetohydrodynamic system using Floquet analysis and nonlinear Galerkin modelling

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We present a detailed study of Rayleigh–Bénard magnetoconvection with periodic gravity modulation and uniform vertical magnetic field. Linear stability analysis is carried out using Floquet theory to construct the stability boundaries in order to estimate the magnitude of forcing amplitude \(\epsilon \) required for having convection in the system for a fixed Rayleigh number Ra, wave number k and modulating frequency \(\Omega \). The effects of varying Prandtl number Pr and Chandrasekhar number Q on the threshold of convection are also investigated. A higher Pr value reduces the value of the threshold, whereas a higher Q value increases it. Bicritical states are also observed at which the minimum forcing amplitude needed for convection to begin occurs at two different k values in harmonic and sub-harmonic regions, respectively. We also construct a nonlinear Galerkin model and compare the results with those obtained from linear stability analysis. Two-dimensional (2D) oscillatory convection is observed at the onset, while quasiperiodic and chaotic behaviours are found at higher Ra values. 2D as well as nonlinear convective flow patterns are observed for primary and higher-order instabilities, respectively. Bifurcation diagrams with respect to different parameters such as \(\epsilon \), Ra and Q are provided for thorough understanding of the forced nonlinear system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Oxford University Press, London (1961)

    MATH  Google Scholar 

  2. Proctor, M.R.E., Weiss, N.O.: Magnetoconvection. Rep. Prog. Phys. 45, 1317–1379 (1982)

    MATH  Google Scholar 

  3. Nakagawa, Y.: Experiments on the inhibition of thermal convection by a magnetic field. Proc. R. Soc. Lond. A 240, 108–113 (1957)

    Google Scholar 

  4. Nakagawa, Y.: Experiments on the instability of a layer of mercury heated from below and subject to the simultaneous action of a magnetic field and rotation. II. Proc. R. Soc. Lond. A 249, 138–145 (1959)

    Google Scholar 

  5. Busse, F.H., Clever, R.M.: Stability of convection rolls in the presence of a vertical magnetic field. Phys. Fluids 25, 931–935 (1982)

    MATH  Google Scholar 

  6. Clever, R.M., Busse, F.H.: Nonlinear oscillatory convection in the presence of a vertical magnetic field. J. Fluid Mech. 201, 507–523 (1989)

    MATH  Google Scholar 

  7. Cioni, S., Chaumat, S., Sommeria, J.: Effect of a vertical magnetic field on turbulent Rayleigh–Bénard convection. Phys. Rev. E 62, R4520–R4523 (2000)

    Google Scholar 

  8. Aurnou, J.M., Olson, P.L.: Experiments on Rayleigh–Bénard convection, magnetoconvection and rotating magnetoconvection in liquid gallium. J. Fluid Mech. 430, 283–307 (2001)

    MATH  Google Scholar 

  9. Dawes, J.H.P.: Localized convection cells in the presence of a vertical magnetic field. J. Fluid Mech. 570, 385–406 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Podvigina, O.: Stability of rolls in rotating magnetoconvection in a layer with no-slip electrically insulating horizontal boundaries. Phys. Rev. E 81, 056322 (2010)

    MathSciNet  Google Scholar 

  11. Basak, A., Raveendran, R., Kumar, K.: Rayleigh–Bénard convection with uniform vertical magnetic field. Phys. Rev. E 90, 033002 (2014)

    Google Scholar 

  12. Fauve, S., Laroche, C., Libchaber, A.: Effect of a horizontal magnetic field on convective instabilities in mercury. J. Phys. Lett. 42, L455–L457 (1981)

    Google Scholar 

  13. Fauve, S., Laroche, C., Libchaber, A., Perrin, B.: Chaotic phases and magnetic order in a convective fluid. Phys. Rev. Lett. 52, 1774–1777 (1984)

    Google Scholar 

  14. Meneguzzi, M., Sulem, C., Sulem, P.L., Thual, O.: Three-dimensional numerical simulation of convection in low-Prandtl-number fluids. J. Fluid Mech. 182, 169–191 (1987)

    MATH  Google Scholar 

  15. Busse, F.H., Clever, R.M.: Traveling-wave convection in the presence of a horizontal magnetic field. Phys. Rev. A 40, 1954–1961 (1989)

    Google Scholar 

  16. Burr, U., Müller, U.: Rayleigh–Bénard convection in liquid metal layers under the influence of a horizontal magnetic field. J. Fluid Mech. 453, 345–369 (2002)

    MATH  Google Scholar 

  17. Yanagisawa, T., Yamagishi, Y., Hamano, Y., Tasaka, Y., Takeda, Y.: Spontaneous flow reversals in Rayleigh–Bénard convection of a liquid metal. Phys. Rev. E 83, 036307 (2011)

    Google Scholar 

  18. Hurlburt, N.E., Matthews, P.C., Proctor, M.R.E.: Nonlinear compressible convection in oblique magnetic fields. Astrophys. J. 457, 933–938 (1996)

    Google Scholar 

  19. Julien, K., Knobloch, E., Tobias, S.M.: Nonlinear magnetoconvection in the presence of strong oblique fields. J. Fluid Mech. 410, 285–322 (2000)

    MathSciNet  MATH  Google Scholar 

  20. Busse, F.H.: Generation of planetary magnetism by convection. Phys. Earth Planet. Inter. 12, 350–358 (1976)

    Google Scholar 

  21. Kuang, W., Bloxham, J.: An Earth-like numerical dynamo model. Nature 389, 371–374 (1997)

    Google Scholar 

  22. Glatzmaier, G.A., Roberts, P.H.: A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle. Phys. Earth Planet. Inter. 91, 63–75 (1995)

    Google Scholar 

  23. Glatzmaier, G.A.: Numerical simulations of stellar convective dynamos. I. The model and method. J. Comput. Phys. 55, 461–484 (1984)

    Google Scholar 

  24. Cattaneo, F.: On the origin of magnetic fields in the quiet photosphere. Astrophys. J. 515, L39–L42 (1999)

    Google Scholar 

  25. Schekochihin, A.A., Cowley, S.C., Taylor, S.F., Maron, J.L., McWilliams, J.C.: Simulations of the small-scale turbulent dynamo. Astrophys. J. 612, 276–307 (2004)

    Google Scholar 

  26. Braithwaite, J.: A differential rotation driven dynamo in a stably stratified star. Astron. Astrophys. 449, 451–460 (2006)

    MATH  Google Scholar 

  27. Kim, D.H., Adornato, P.M., Brown, R.A.: Effect of vertical magnetic field on convection and segregation in vertical Bridgman crystal growth. J. Cryst. Growth 89, 339–356 (1988)

    Google Scholar 

  28. Ji, H., Terry, S., Yamada, M., Kulsrud, R., Kuritsyn, A., Ren, Y.: Electromagnetic fluctuations during fast reconnection in a laboratory plasma. Phys. Rev. Lett. 92, 115001 (2004)

    Google Scholar 

  29. Reimerdes, H., Chu, M.S., Garofalo, A.M., Jackson, G.L., La Haye, R.J., Navratil, G.A., Okabayashi, M., Scoville, J.T., Strait, E.J.: Measurement of the resistive-wall-mode stability in a rotating plasma using active MHD spectroscopy. Phys. Rev. Lett. 93, 135002 (2004)

    Google Scholar 

  30. Hadad, K., Rahimian, A., Nematollahi, M.R.: Numerical study of single and two-phase models of water/Al2O3 nanofluid turbulent forced convection flow in VVER-1000 nuclear reactor. Ann. Nucl. Energy 60, 287–294 (2013)

    Google Scholar 

  31. Pal, P., Kumar, K.: Role of uniform horizontal magnetic field on convective flow. Eur. Phys. J. B 85, 201 (2012)

    Google Scholar 

  32. Pal, P., Kumar, K., Maity, P., Dana, S.K.: Pattern dynamics near inverse homoclinic bifurcation in fluids. Phys. Rev. E 87, 023001 (2013)

    Google Scholar 

  33. Basak, A., Kumar, K.: A model for Rayleigh–Bénard magnetoconvection. Eur. Phys. J. B 88, 244 (2015)

    Google Scholar 

  34. Basak, A., Kumar, K.: Effects of a small magnetic field on homoclinic bifurcations in a low-Prandtl-number fluid. Chaos 26, 123123 (2016)

    MathSciNet  Google Scholar 

  35. Stribling, T., Matthaeus, W.H.: Relaxation processes in a low-order three-dimensional magnetohydrodynamics model. Phys. Fluids B 3, 1848–1864 (1991)

    Google Scholar 

  36. Ma, X., Karniadakis, G.E.: A low-dimensional model for simulating three-dimensional cylinder flow. J. Fluid Mech. 458, 181–190 (2002)

    MathSciNet  MATH  Google Scholar 

  37. Linz, S.J., Lücke, M.: Convection in binary mixtures: a Galerkin model with impermeable boundary conditions. Phys. Rev. A 35, 3997–4000 (1987)

    Google Scholar 

  38. Sobh, N., Huang, J., Yin, L., Haber, R.B., Tortorelli, D.A., Hyland Jr., R.W.: A discontinuous Galerkin model for precipitate nucleation and growth in aluminium alloy quench processes. Int. J. Numer. Methods Eng. 47, 749–767 (2000)

    MATH  Google Scholar 

  39. Gloerfelt, X.: Compressible proper orthogonal decomposition/Galerkin reduced-order model of self-sustained oscillations in a cavity. Phys. Fluids 20, 115105 (2008)

    MATH  Google Scholar 

  40. Rogers, J.M., McCulloch, A.D.: A collocation-Galerkin finite element model of cardiac action potential propagation. IEEE Trans. Biomed. Eng. 41, 743–757 (1994)

    Google Scholar 

  41. Mynard, J.P., Nithiarasu, P.: A 1D arterial blood flow model incorporating ventricular pressure, aortic valve and regional coronary flow using the locally conservative Galerkin (LCG) method. Commun. Numer. Methods Eng. 24, 367–417 (2008)

    MathSciNet  MATH  Google Scholar 

  42. Dao, T.-S., Vyasarayani, C.P., McPhee, J.: Simplification and order reduction of lithium-ion battery model based on porous-electrode theory. J. Power Sources 198, 329–337 (2012)

    Google Scholar 

  43. Nair, R.D., Thomas, S.J., Loft, R.D.: A discontinuous Galerkin global shallow water model. Mon. Weather Rev. 133, 876–888 (2004)

    Google Scholar 

  44. Tanaka, S., Bunya, S., Westerink, J.J., Dawson, C., Luettich Jr., R.A.: Scalability of an unstructured grid continuous Galerkin based hurricane storm surge model. J. Sci. Comput. 46, 329–358 (2011)

    MathSciNet  MATH  Google Scholar 

  45. Noack, B.R., Niven, R.K.: Maximum-entropy closure for a Galerkin model of an incompressible periodic wake. J. Fluid Mech. 700, 187–213 (2012)

    MATH  Google Scholar 

  46. Chen, Z., Dai, S.: Adaptive Galerkin methods with error control for a dynamical Ginzburg–Landau model in superconductivity. SIAM J. Numer. Anal. 38, 1961–1985 (2001)

    MathSciNet  MATH  Google Scholar 

  47. Gresho, P.M., Sani, R.L.: The effects of gravity modulation on the stability of a heated fluid layer. J. Fluid Mech. 40, 783–806 (1970)

    MATH  Google Scholar 

  48. Wadih, M., Roux, B.: Natural convection in a long vertical cylinder under gravity modulation. J. Fluid Mech. 193, 391–415 (1988)

    MathSciNet  MATH  Google Scholar 

  49. Murray, B.T., Coriell, S.R., McFadden, G.B.: The effect of gravity modulation on solutal convection during directional solidification. J. Cryst. Growth 110, 713–723 (1991)

    Google Scholar 

  50. Wheeler, A.A., McFadden, G.B., Murray, B.T., Coriell, S.R.: Convective stability in the Rayleigh–Bénard and directional solidification problems: high-frequency gravity modulation. Phys. Fluids 3, 2847–2858 (1991)

    MathSciNet  MATH  Google Scholar 

  51. Clever, R., Schubert, G., Busse, F.H.: Two-dimensional oscillatory convection in a gravitationally modulated fluid layer. J. Fluid Mech. 253, 663–680 (1993)

    MATH  Google Scholar 

  52. Kumar, K., Tuckerman, L.S.: Parametric instability of the interface between two fluids. J. Fluid Mech. 279, 49–68 (1994)

    MathSciNet  MATH  Google Scholar 

  53. Kumar, K.: Linear theory of Faraday instability in viscous liquids. Proc. R. Soc. Lond. A 452, 1113–1126 (1996)

    MathSciNet  MATH  Google Scholar 

  54. Volmar, U.E., Müller, H.W.: Quasiperiodic patterns in Rayleigh–Bénard convection under gravity modulation. Phys. Rev. E 56, 5423–5430 (1997)

    Google Scholar 

  55. Christov, C.I., Homsy, G.M.: Nonlinear dynamics of two-dimensional convection in a vertically stratified slot with and without gravity modulation. J. Fluid Mech. 430, 335–360 (2001)

    MATH  Google Scholar 

  56. Li, B.Q.: Stability of modulated-gravity-induced thermal convection in magnetic fields. Phys. Rev. E 63, 041508 (2001)

    Google Scholar 

  57. Venezian, G.: Effect of modulation on the onset of thermal convection. J. Fluid Mech. 35, 243–254 (1969)

    MATH  Google Scholar 

  58. Rosenblat, S., Tanaka, G.A.: Modulation of thermal convection instability. Phys. Fluids 14, 1319–1322 (1971)

    MATH  Google Scholar 

  59. Ahlers, G., Hohenberg, P.C., Lücke, M.: Externally modulated Rayleigh–Bénard convection: experiment and theory. Phys. Rev. Lett. 53, 48–51 (1984)

    Google Scholar 

  60. Roppo, M.N., Davis, S.H., Rosenblat, S.: Bénard convection with time-periodic heating. Phys. Fluids 27, 796–803 (1984)

    MathSciNet  MATH  Google Scholar 

  61. Bhadauria, B.S., Bhatia, P.K.: Time-periodic heating of Rayleigh–Bénard convection. Phys. Scr. 66, 59–65 (2002)

    MATH  Google Scholar 

  62. Bhadauria, B.S.: Combined effect of temperature modulation and magnetic field on the onset of convection in an electrically conducting-fluid-saturated porous medium. J. Heat Transf. 130, 052601 (2008)

    Google Scholar 

  63. Singh, J., Bajaj, R.: Temperature modulation in ferrofluid convection. Phys. Fluids 21, 064105 (2009)

    MATH  Google Scholar 

  64. Paul, S., Kumar, K.: Effect of magnetic field on parametrically driven surface waves. Proc. R. Soc. Lond. A 463, 711–722 (2006)

    MathSciNet  MATH  Google Scholar 

  65. Yasir, M., Ahmad, S., Ahmed, F., Aqeel, M., Akbar, M.Z.: Improved numerical solutions for chaotic-cancer-model. AIP Adv. 7, 015110 (2017)

    Google Scholar 

  66. Aqeel, M., Ahmad, S.: Analytical and numerical study of Hopf bifurcation scenario for a three-dimensional chaotic system. Nonlinear Dyn. 84, 755–765 (2016)

    MathSciNet  MATH  Google Scholar 

  67. Aqeel, M., Azam, A., Ahmad, S.: Control of chaos: Lie algebraic exact linearization approach for the Lü system. Eur. Phys. J. Plus 132, 426 (2017)

    Google Scholar 

  68. Dias, F.S., Mello, L.F.: Hopf bifurcations and small amplitude limit cycles in Rucklidge systems. Electron. J. Differ. Equ. 2013, 1–9 (2013)

    MathSciNet  MATH  Google Scholar 

  69. Dias, F.S., Mello, L.F., Zhang, J.-G.: Nonlinear analysis in a Lorenz-like system. Nonlinear Anal. Real World Appl. 11, 3491–3500 (2010)

    MathSciNet  MATH  Google Scholar 

  70. Messias, M., de Carvalho Braga, D., Mello, L.F.: Degenerate Hopf bifurcations in Chua’s system. Int. J. Bifurc. Chaos 19, 497–515 (2009)

    MathSciNet  MATH  Google Scholar 

  71. Marques, F., Lopez, J.M.: Taylor–Couette flow with axial oscillations of the inner cylinder: Floquet analysis of the basic flow. J. Fluid Mech. 348, 153–175 (1997)

    MathSciNet  MATH  Google Scholar 

  72. Brambilla, A., Gruosso, G., Gajani, G.S.: Determination of Floquet exponents for small-signal analysis of nonlinear periodic circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 28, 447–451 (2009)

    Google Scholar 

  73. Watanabe, G., Mäkelä, H.: Floquet analysis of the modulated two-mode Bose–Hubbard model. Phys. Rev. A 85, 053624 (2012)

    Google Scholar 

  74. Shin, J.-Y., Lee, H.-W.: Floquet analysis of quantum resonance in a driven nonlinear system. Phys. Rev. E 50, 902–909 (1994)

    Google Scholar 

  75. Lundh, E.: Directed transport and Floquet analysis for a periodically kicked wave packet at a quantum resonance. Phys. Rev. E 74, 016212 (2006)

    Google Scholar 

  76. Staliunas, K., Longhi, S., de Valcárcel, G.J.: Faraday patterns in Bose–Einstein condensates. Phys. Rev. Lett. 89, 210406 (2002)

    Google Scholar 

  77. Carias, H., Beratan, D.N., Skourtis, S.S.: Floquet analysis for vibronically modulated electron tunneling. J. Phys. Chem. B 115, 5510–5518 (2011)

    Google Scholar 

  78. Luter, R., Reichl, L.E.: Floquet analysis of atom-optics tunneling experiments. Phys. Rev. A 66, 053615 (2002)

    Google Scholar 

  79. Tanner, J.J., Maricq, M.M.: Floquet analysis of the far-infrared dissociation of a Morse oscillator. Phys. Rev. A 40, 4054–4064 (1989)

    Google Scholar 

  80. Guérin, S.: Complete dissociation by chirped laser pulses designed by adiabatic Floquet analysis. Phys. Rev. A 56, 1458–1462 (1997)

    Google Scholar 

  81. Cavagnero, M.J.: Floquet analysis of inelastic collisions of ions with Rydberg atoms. Phys. Rev. A 52, 2865–2875 (1995)

    Google Scholar 

  82. Safaenili, A., Chimenti, D.E., Auld, B.A., Datta, S.K.: Floquet analysis of guided waves propagating in periodically layered composites. Compos. Eng. 5, 1471–1476 (1995)

    Google Scholar 

  83. Skjoldan, P.F., Hansen, M.H.: Implicit Floquet analysis of wind turbines using tangent matrices of a non-linear aeroelastic code. Wind Energy 15, 275–287 (2012)

    Google Scholar 

  84. Lee, B., Liu, J.Z., Sun, B., Shen, C.Y., Dai, G.C.: Thermally conductive and electrically insulating EVA composite encapsulants for solar photovoltaic (PV) cell. Express Polym. Lett. 2, 357–363 (2008)

    Google Scholar 

  85. Thual, O.: Zero-Prandtl-number convection. J. Fluid Mech. 240, 229–258 (1992)

    MATH  Google Scholar 

Download references

Acknowledgements

I acknowledge the financial support from the Center of Excellence in Space Sciences India (CESSI) funded by the Ministry of Human Resource Development, Government of India. I am grateful to my Ph.D. supervisor Prof. Krishna Kumar for learning different numerical techniques from him and to my father Tushar Kanti Basak for fruitful discussions. I am obliged to the anonymous referees whose valuable suggestions have helped improve the standard of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnab Basak.

Ethics declarations

Funding

The study was funded by the Ministry of Human Resource Development, Government of India via the Center of Excellence in Space Sciences India (CESSI).

Conflict of interest

The author declares that there is no conflict of interest.

Appendices

Appendix I: The magnetohydrodynamic equations

The properties of the concerned magnetohydrodynamic system are as described in the first paragraph of Sect. 2. Let us have a look at how we arrive at the governing Eqs. 36 of our system. The equation of continuity is given by

$$\begin{aligned} \frac{\partial \rho }{\partial t} + {{\varvec{\nabla }}\cdot }(\rho {\varvec{v}})=0 \end{aligned}$$
(38)

while the equation of momentum transfer is given by

$$\begin{aligned} \rho \left[ \frac{\partial {\varvec{v}}}{\partial t} +({\varvec{v}}{\cdot {\varvec{\nabla }}}){\varvec{v}}\right]= & {} -\,{{\varvec{\nabla }}} P + \rho g {{\varvec{e_3}}} + {\varvec{f}}_L \nonumber \\&+\,\zeta \nabla ^2{{\varvec{v}}} + \frac{\zeta }{3}{{\varvec{\nabla }}}({\varvec{\nabla }}\cdot {\varvec{v}}) \end{aligned}$$
(39)

where P is the non-magnetic pressure, \(\rho \) is the density and \(\zeta \) is the dynamic viscosity of the fluid. The term \(\rho g {{\varvec{e_3}}}\) is the buoyant force in the system due to the constant temperature gradient across the layer of fluid. The term \({\varvec{f}}_L\) represents the Lorentz force which arises due to the application of the external magnetic field and is given by

$$\begin{aligned} {\varvec{f}}_L = {\varvec{J}}\times {\varvec{B}} \end{aligned}$$
(40)

Using Maxwell’s equations, the above can be written as

$$\begin{aligned} {\varvec{J}}\times {\varvec{B}} = -{\varvec{\nabla }}\left( \frac{B^2}{2\mu }\right) + \frac{1}{\mu } ({\varvec{B}}{\cdot {\varvec{\nabla }}}){\varvec{B}} \end{aligned}$$
(41)

Substituting this, Eq. 39 can be written as

$$\begin{aligned} \rho \left[ \frac{\partial {\varvec{v}}}{\partial t} +({\varvec{v}}{\cdot {\varvec{\nabla }}}){\varvec{v}}\right]= & {} -{{\varvec{\nabla }}} \left( P+\frac{B^2}{2\mu }\right) + \rho g {{\varvec{e_3}}} \nonumber \\&+ \frac{1}{\mu } ({\varvec{B}}{\cdot {\varvec{\nabla }}}){\varvec{B}} + \zeta \nabla ^2{{\varvec{v}}} \nonumber \\&+ \frac{\zeta }{3}{{\varvec{\nabla }}}({\varvec{\nabla }}\cdot {\varvec{v}}) \end{aligned}$$
(42)

The magnetic induction equation is given by

$$\begin{aligned} \frac{\partial {\varvec{B}}}{\partial t} = {\varvec{\nabla }}\times ({\varvec{v}}\times {\varvec{B}}) + \frac{1}{\mu \sigma } \nabla ^2{{\varvec{B}}} \end{aligned}$$
(43)

which can be simplified as

$$\begin{aligned} \frac{\partial {\varvec{B}}}{\partial t} +({\varvec{v}}{\cdot {\varvec{\nabla }}}){\varvec{B}} = ({\varvec{B}}{\cdot {\varvec{\nabla }}}){\varvec{v}} + \frac{1}{\mu \sigma } \nabla ^2{{\varvec{B}}} \end{aligned}$$
(44)

Here, \(\sigma \) is the electrical conductivity of the fluid and relates to the magnetic diffusivity \(\lambda \) as \(\lambda =1/(\mu \sigma )\). The heat diffusion equation is given by

$$\begin{aligned}&\rho \left[ \frac{\partial }{\partial t}(C_V T) +({\varvec{v}}{\cdot {\varvec{\nabla }}})(C_V T)\right] \nonumber \\&\quad = {{\varvec{\nabla }}} (k_T {{\varvec{\nabla }}} T) +\chi - P({{\varvec{\nabla }}}\cdot {\varvec{v}}) \end{aligned}$$
(45)

where \(C_V\), T, \(k_T\), and \(\chi \) are the specific heat at constant volume, temperature of the fluid, thermal conductivity of the fluid, and heat dissipation term in the fluid, respectively.

At this point, the Boussinesq approximation [1] comes in which is based on the smallness of the volume expansion coefficient \(\alpha \). Since the range of \(\alpha \) lies between \(10^{-3}\) and \(10^{-4}\) for most of the fluids, thus for small variation in temperature (\(<10^\circ \)), the variation in density is at the most 1\(\%\). Consequently, the variations of specific heat, thermal conductivity, viscosity, etc., are also of the same order. So, the variations of these quantities with the temperature are small, and they are considered to be constant except in the buoyancy term of the equation for momentum transfer. The order of magnitude of the buoyancy force is comparable with that of the inertial term and hence cannot be neglected. Under this approximation, the velocity field becomes solenoidal (from Eq. 38),

$$\begin{aligned} {\varvec{\nabla }}\cdot {\varvec{v}}=0 \end{aligned}$$
(46)

and the momentum and heat transfer equations become

$$\begin{aligned} \frac{\partial {\varvec{v}}}{\partial t} +({\varvec{v}}{\cdot {\varvec{\nabla }}}){\varvec{v}}= & {} -\frac{1}{\rho _0} {{\varvec{\nabla }}} \left( P+\frac{B^2}{2\mu }\right) +\left( \frac{\rho }{\rho _0}\right) g {{\varvec{e_3}}} \nonumber \\&\quad +\frac{1}{\mu \rho _0} ({\varvec{B}}{\cdot {\varvec{\nabla }}}){\varvec{B}} + \nu \nabla ^2{{\varvec{v}}} \end{aligned}$$
(47)

and

$$\begin{aligned} \frac{\partial T}{\partial t} +({\varvec{v}}\cdot {{\varvec{\nabla }}})T = \kappa \nabla ^2 T \end{aligned}$$
(48)

respectively, where \(\nu =\zeta /\rho _0\) denotes the kinematic viscosity, \(\rho _0\) is the fluid density at the temperature \(T_0\) of the lower plate, \(\kappa =k_T/(\rho _0 C_V)\) is the thermal diffusivity and \(\delta \rho =-\rho _0 \alpha (T-T_0)\) is the change in density due to the change in temperature. In the conduction state, the velocity is zero and consequently, there are no currents in the fluid. The temperature \(T_s(z)\) in the conduction state of the fluid is independent of time and is given by

$$\begin{aligned} T_s(z) = T_0- \beta z \end{aligned}$$
(49)

where the adverse temperature gradient across the fluid layer is given by \(\beta =\Delta T/d=(T_0-T_1)/d\). \(T_1\) is the temperature of the upper plate. The variation of fluid density in the vertical direction is given by

$$\begin{aligned} \rho _s(z)=\rho _0(1+\alpha \beta z) \end{aligned}$$
(50)

and the pressure distribution by

$$\begin{aligned} P_s(z)= P_0 + \rho _0 g\left[ (d-z)+\frac{\alpha \beta }{2} (d^2-z^2)\right] -\frac{B_0^2}{2\mu } \end{aligned}$$
(51)

where \(P_s(z)\) is the pressure of the fluid in the conduction state, \(P_0\) is a constant pressure at the upper plate located at \(z=d\), and \(B_0\) is the magnitude of the applied external magnetic field. As soon as the convective state sets in, the fluid velocity becomes finite and the other quantities are modified as

$$\begin{aligned}&T_{s}(z) \rightarrow T(x,y,z,t)= T_{s}(z)+\theta (x,y,z,t) \end{aligned}$$
(52)
$$\begin{aligned}&\rho _{s}(z) \rightarrow \rho (x,y,z,t)= \rho _{s}(z) + \delta \rho (x,y,z,t)\end{aligned}$$
(53)
$$\begin{aligned}&P_{s}(z) \rightarrow P(x,y,z,t)= P_{s}(z) + p(x,y,z,t)\end{aligned}$$
(54)
$$\begin{aligned}&{\varvec{B_0}} \rightarrow {\varvec{B}}(x,y,z,t) = {\varvec{B_0}} + {\varvec{b}}(x,y,z,t) \end{aligned}$$
(55)

where \(\delta \rho (x,y,z,t)\), \(\theta (x,y,z,t)\), p(xyzt) and \({\varvec{b}}(x,y,z,t)\) denote the changes in density, temperature, pressure and the uniform magnetic field, respectively, due to the onset of convection. Please note that the convective pressure p also includes the change due to the induced magnetic field. For Boussinesq fluids, the change in density is given by \(\delta \rho = \rho _0 \alpha \theta \). Considering an external uniform magnetic field which is applied in the vertical direction \({\varvec{B}} = B_0{\varvec{e_3}} + {\varvec{b}}(x,y,z,t)\) and using the scaling factors as given in Sect. 2 for non-dimensionalization, the set of dimensionless equations come out to be

$$\begin{aligned}&\frac{\partial {\varvec{v}}}{\partial t}+({\varvec{v}}\cdot {\varvec{\nabla )}}{\varvec{v}}=-{\varvec{\nabla }} p + \nabla ^2{\varvec{v}} \nonumber \\&\quad +\,Q\left[ \frac{\partial {\varvec{b}}}{\partial z}+Pm({\varvec{b}}{\cdot {\varvec{\nabla }}}){\varvec{b}} \right] \nonumber \\&\quad +\, Ra\theta {\varvec{e_3}} \end{aligned}$$
(56)
$$\begin{aligned}&Pm\left[ \frac{\partial {\varvec{b}}}{\partial t} + ({\varvec{v}}\cdot {\varvec{\nabla )}}{\varvec{b}}\right] = \frac{\partial {\varvec{v}}}{\partial z}+ \nabla ^2{\varvec{b}} + Pm({\varvec{b}}{\cdot {\varvec{\nabla }}}){\varvec{v}} \end{aligned}$$
(57)
$$\begin{aligned}&Pr\left[ \frac{\partial \theta }{\partial t} + ({\varvec{v}}\cdot {\varvec{\nabla )}}\theta \right] =\nabla ^2\theta +v_3 \end{aligned}$$
(58)
$$\begin{aligned}&{\varvec{\nabla }}\cdot {\varvec{v}}=0 \end{aligned}$$
(59)
$$\begin{aligned}&{\varvec{\nabla }}\cdot {\varvec{b}}=0 \end{aligned}$$
(60)

The four dimensionless control parameters as mentioned in Sect. 2 are thermal Prandtl number Pr, magnetic Prandtl number Pm, Chandrasekhar number Q and Rayleigh number Ra. In the limit \(Pm\rightarrow 0\) for the case of terrestrial fluids and modulating gravity, the above equations narrow down to the set of Eqs. 36.

Appendix II: The model

The 16-mode low-dimensional Galerkin model is presented below.

$$\begin{aligned} {\dot{W}}_{101}= & {} a_1 [a_2 W_{101} + a_3f(t) T_{101} + a_4 W_{011}W_{112}\nonumber \\&\quad +\,a_5 W_{211}W_{112} + a_6 W_{011}Z_{112} + a_7 W_{011}Z_{110}\nonumber \\&\quad +\, a_8 W_{211}Z_{112} + a_9 W_{121}Z_{220} + a_{10} W_{112}Z_{211}\nonumber \\&\quad +\, a_{11} W_{211}Z_{110} + a_{12} Z_{121}Z_{220} + a_{13} Z_{112}Z_{211}\nonumber \\&\quad +\, a_{14} Z_{211}Z_{110}] \end{aligned}$$
(61)
$$\begin{aligned} {\dot{W}}_{011}= & {} a_1 [a_2 W_{011} + a_3f(t) T_{011} + a_4 W_{101}W_{112}\nonumber \\&\quad +\, a_5 W_{121}W_{112} - a_6 W_{101}Z_{112} - a_7 W_{101}Z_{110}\nonumber \\&\quad -\, a_8 W_{121}Z_{112} - a_9 W_{211}Z_{220} - a_{10} W_{112}Z_{121}\nonumber \\&\quad -\, a_{11} W_{121}Z_{110} + a_{12} Z_{211}Z_{220} + a_{13} Z_{112}Z_{121}\nonumber \\&\quad +\, a_{14} Z_{121}Z_{110}] \end{aligned}$$
(62)
$$\begin{aligned} {\dot{W}}_{121}= & {} b_1 [b_2 W_{121} + b_3f(t) T_{121} + b_4 W_{011}W_{112}\nonumber \\&\quad +\, b_5 W_{211}W_{112} + b_6 W_{211}Z_{112} + b_7 W_{112}Z_{211}\nonumber \\&\quad +\, b_8 W_{211}Z_{110} + b_9 W_{011}Z_{110} + b_{10} W_{101}Z_{220}\nonumber \\&\quad +\, b_{11} W_{011}Z_{112} + b_{12} Z_{112}Z_{211} + b_{13} Z_{211}Z_{110}] \end{aligned}$$
(63)
$$\begin{aligned} {\dot{W}}_{211}= & {} b_1 [b_2 W_{211} + b_3f(t) T_{211} + b_4 W_{101}W_{112}\nonumber \\&\quad +\, b_5 W_{121}W_{112} - b_6 W_{121}Z_{112} - b_7 W_{112}Z_{121}\nonumber \\&\quad -\, b_8 W_{121}Z_{110} - b_9 W_{101}Z_{110} - b_{10} W_{011}Z_{220}\nonumber \\&\quad -\, b_{11} W_{101}Z_{112} + b_{12} Z_{112}Z_{121} + b_{13} Z_{121}Z_{110}] \end{aligned}$$
(64)
$$\begin{aligned} {\dot{W}}_{112}= & {} c_1 [c_2 W_{112} + c_3f(t) T_{112} + c_4 W_{101}W_{211}\nonumber \\&\quad +\, c_5 W_{011}W_{101} + c_6 W_{121}W_{211} + c_7 W_{011}W_{121}\nonumber \\&\quad +\, c_8 W_{011}Z_{121} + c_9 W_{101}Z_{211} + c_{10} W_{211}Z_{121}\nonumber \\&\quad +\, c_{11} W_{121}Z_{211} + c_{12} Z_{211}Z_{121}] \end{aligned}$$
(65)
$$\begin{aligned} {\dot{Z}}_{121}= & {} d_1 [d_2 Z_{121} + d_3 W_{211}W_{112} + d_4 W_{011}W_{112}\nonumber \\&\quad +\, d_5 W_{011}Z_{112} + d_6 W_{101}Z_{220} + d_7 W_{112}Z_{211}\nonumber \\&\quad +\, d_8 W_{211}Z_{110} + d_9 W_{211}Z_{112} + d_{10} W_{011}Z_{110}\nonumber \\&\quad +\, d_{11} Z_{112}Z_{211} + d_{12} Z_{211}Z_{110}] \end{aligned}$$
(66)
$$\begin{aligned} {\dot{Z}}_{211}= & {} d_1 [d_2 Z_{211} - d_3 W_{121}W_{112} - d_4 W_{101}W_{112}\nonumber \\&\quad +\, d_5 W_{101}Z_{112} + d_6 W_{011}Z_{220} + d_7 W_{112}Z_{121}\nonumber \\&\quad +\, d_8 W_{121}Z_{110} + d_9 W_{121}Z_{112} + d_{10} W_{101}Z_{110}\nonumber \\&\quad -\, d_{11} Z_{112}Z_{121} - d_{12} Z_{121}Z_{110}] \end{aligned}$$
(67)
$$\begin{aligned} {\dot{Z}}_{112}= & {} e_1 [e_2 Z_{112} + e_3 W_{101}W_{211} + e_4 W_{011}W_{121}\nonumber \\&\quad + e_5 W_{011}Z_{121} + e_6 W_{101}Z_{211} + e_7 W_{112}Z_{220}] \end{aligned}$$
(68)
$$\begin{aligned} {\dot{Z}}_{110}= & {} f_1 Z_{110} + f_2 W_{101}W_{211} + f_3 W_{011}W_{121}\nonumber \\&\quad +\, f_4 W_{211}Z_{121} + f_5 W_{121}Z_{211} + f_6 W_{101}Z_{211}\nonumber \\&\quad +\, f_7 W_{011}Z_{121} \end{aligned}$$
(69)
$$\begin{aligned} {\dot{Z}}_{220}= & {} g_1 Z_{220} + g_2 W_{011}W_{211} + g_3 W_{101}W_{121}\nonumber \\&\quad + g_4 W_{011}Z_{211} + g_5 W_{101}Z_{121} + g_6 W_{112}Z_{112} \end{aligned}$$
(70)
$$\begin{aligned} {\dot{T}}_{101}= & {} h_1 [h_2 T_{101} + h_3 W_{101} + h_4 W_{112}T_{211}\nonumber \\&\quad +\, h_5 W_{101}T_{002} + h_6 W_{011}T_{112} + h_7 W_{211}T_{112}\nonumber \\&\quad +\, h_8 Z_{211}T_{112} + h_9 Z_{110}T_{011} + h_{10} Z_{110}T_{211}\nonumber \\&\quad +\, h_{11} Z_{112}T_{011} + h_{12} Z_{112}T_{211} + h_{13} Z_{220}T_{121}] \end{aligned}$$
(71)
$$\begin{aligned} {\dot{T}}_{011}= & {} h_1 [h_2 T_{011} + h_3 W_{011} + h_4 W_{112}T_{121}\nonumber \\&\quad +\, h_5 W_{011}T_{002} + h_6 W_{101}T_{112} + h_7 W_{121}T_{112}\nonumber \\&\quad -\, h_8 Z_{121}T_{112} - h_9 Z_{110}T_{101} - h_{10} Z_{110}T_{121}\nonumber \\&\quad -\, h_{11} Z_{112}T_{101} - h_{12} Z_{112}T_{121} - h_{13} Z_{220}T_{211}] \end{aligned}$$
(72)
$$\begin{aligned} {\dot{T}}_{121}= & {} i_1 [i_2 T_{121} + i_3 W_{121} + i_4 W_{011}T_{112}\nonumber \\&\quad +\, i_5 W_{112}T_{011} + i_6 W_{211}T_{112} + i_7 W_{121}T_{002}\nonumber \\&\quad +\, i_8 Z_{211}T_{112} + i_9 Z_{110}T_{011} + i_{10} Z_{110}T_{211}\nonumber \\&\quad +\, i_{11} Z_{112}T_{011} + i_{12} Z_{112}T_{211} + i_{13} Z_{220}T_{101}] \end{aligned}$$
(73)
$$\begin{aligned} {\dot{T}}_{211}= & {} i_1 [i_2 T_{211} + i_3 W_{211} + i_4 W_{101}T_{112}\nonumber \\&\quad +\, i_5 W_{112}T_{101} + i_6 W_{121}T_{112} + i_7 W_{211}T_{002}\nonumber \\&\quad -\, i_8 Z_{121}T_{112} - i_9 Z_{110}T_{101} - i_{10} Z_{110}T_{121}\nonumber \\&\quad -\, i_{11} Z_{112}T_{101} - i_{12} Z_{112}T_{121} - i_{13} Z_{220}T_{011}] \end{aligned}$$
(74)
$$\begin{aligned} {\dot{T}}_{112}= & {} j_1 [j_2 T_{112} + j_3 W_{112} + j_4 W_{101}T_{211}\nonumber \\&\quad +\, j_5 W_{121}T_{011} + j_6 W_{011}T_{121} + j_7 W_{011}T_{101}\nonumber \\&\quad +\, j_8 W_{211}T_{101} + j_9 W_{121}T_{211} + j_{10} W_{101}T_{011}\nonumber \\&\quad +\, j_{11} W_{211}T_{121} + j_{12} Z_{211}T_{121} + j_{13} Z_{121}T_{011}\nonumber \\&\quad +\, j_{14} Z_{121}T_{211} + j_{15} Z_{211}T_{101}] \end{aligned}$$
(75)
$$\begin{aligned} {\dot{T}}_{002}= & {} k_1 [k_2 T_{002} + k_3 W_{011}T_{011} + k_4 W_{101}T_{101}\nonumber \\&\quad +\, k_5 W_{211}T_{211} + k_6 W_{121}T_{121}] \end{aligned}$$
(76)

The values of the coefficients are given below.

\(a_1=\frac{1}{80(\pi ^2+k^2)}\), \(a_2=-80[(\pi ^2+k^2)^2+\pi ^2Q]\), \(a_3=80k^2Ra\), \(a_4=20\pi (\pi ^2+k^2)\), \(a_5=2\pi (17k^2-11\pi ^2)\), \(a_6=10(k^2-\pi ^2)\), \(a_7=20(\pi ^2-k^2)\), \(a_8=9\pi ^2-5k^2\), \(a_9=7\pi ^2-5k^2\), \(a_{10}=2(3\pi ^2-k^2)\), \(a_{11}=2(5k^2-\pi ^2)\), \(a_{12}=-4\pi \), \(a_{13}=-2\pi \), and \(a_{14}=-4\pi \).

\(b_1=\frac{1}{80(\pi ^2+5k^2)}\), \(b_2=-80[(\pi ^2+5k^2)^2+\pi ^2Q]\), \(b_3=400k^2Ra\), \(b_4=20\pi (5k^2+13\pi ^2)\), \(b_5=18\pi (5k^2+\pi ^2)\), \(b_6=3(13\pi ^2-25k^2)\), \(b_7=6(5k^2+\pi ^2)\), \(b_8=6(25k^2+3\pi ^2)\), \(b_9=20(3\pi ^2+5k^2)\), \(b_{10}=10(5k^2-3\pi ^2)\), \(b_{11}=50(\pi ^2-k^2)\), \(b_{12}=18\pi \), and \(b_{13}=36\pi \).

\(c_1=\frac{1}{200(2\pi ^2+k^2)}\), \(c_2=-400[(2\pi ^2+k^2)^2+\pi ^2Q]\), \(c_3=200k^2Ra\), \(c_4=-20\pi (\pi ^2+11k^2)\), \(c_5=-200\pi (\pi ^2+k^2)\), \(c_6=-18\pi (5k^2+\pi ^2)\), \(c_7=-20\pi (\pi ^2+11k^2)\), \(c_8=10(4\pi ^2-k^2)\), \(c_9=10(k^2-4\pi ^2)\), \(c_{10}=3(5k^2-8\pi ^2)\), \(c_{11}=3(8\pi ^2-5k^2)\), and \(c_{12}=-18\pi \).

\(d_1=\frac{1}{80(\pi ^2+5k^2)}\), \(d_2=-80[(\pi ^2+5k^2)^2+\pi ^2Q]\), \(d_3=54\pi ^2(\pi ^2+5k^2)\), \(d_4=-20\pi ^2(\pi ^2+5k^2)\), \(d_5=100\pi (\pi ^2+5k^2)\), \(d_6=-40\pi (\pi ^2+5k^2)\), \(d_7=18\pi (\pi ^2+5k^2)\), \(d_8=-16\pi (\pi ^2+5k^2)\), \(d_9=-18\pi (\pi ^2+5k^2)\), \(d_{10}=80\pi (\pi ^2+5k^2)\), \(d_{11}=9(\pi ^2+5k^2)\), and \(d_{12}=18(\pi ^2+5k^2)\).

\(e_1=\frac{1}{10(2\pi ^2+k^2)}\), \(e_2=-20[(2\pi ^2+k^2)^2+\pi ^2Q]\), \(e_3=-2\pi ^2(2\pi ^2+k^2)\), \(e_4=2\pi ^2(2\pi ^2+k^2)\), \(e_5=-4\pi (2\pi ^2+k^2)\), \(e_6=-4\pi (2\pi ^2+k^2)\), and \(e_7=-5\pi (2\pi ^2+k^2)\).

\(f_1=-2k^2\), \(f_2=\frac{\pi ^2}{5}\), \(f_3=-\frac{\pi ^2}{5}\), \(f_4=-\frac{\pi }{20}\), \(f_5=-\frac{\pi }{20}\), \(f_6=-\frac{\pi }{10}\), and \(f_7=-\frac{\pi }{10}\).

\(g_1=-8k^2\), \(g_2=\frac{2}{5}\pi ^2\), \(g_3=-\frac{2}{5}\pi ^2\), \(g_4=\frac{4}{5}\pi \), \(g_5=\frac{4}{5}\pi \), and \(g_6=\pi \).

\(h_1=\frac{1}{80Pr}\), \(h_2=-80(\pi ^2+k^2)\), \(h_3=80\), \(h_4=20\pi Pr\), \(h_5=80\pi Pr\), \(h_6=20\pi Pr\), \(h_7=14\pi Pr\), \(h_8=-2Pr\), \(h_9=-20Pr\), \(h_{10}=10Pr\), \(h_{11}=10Pr\), \(h_{12}=-5Pr\), and \(h_{13}=-5Pr\).

\(i_1=\frac{1}{80Pr}\), \(i_2=-80(\pi ^2+5k^2)\), \(i_3=80\), \(i_4=60\pi Pr\), \(i_5=-40\pi Pr\), \(i_6=18\pi Pr\), \(i_7=80\pi Pr\), \(i_8=6Pr\), \(i_9=20Pr\), \(i_{10}=30Pr\), \(i_{11}=-10Pr\), \(i_{12}=-15Pr\), and \(i_{13}=10Pr\).

\(j_1=\frac{1}{40Pr}\), \(j_2=-80(2\pi ^2+k^2)\), \(j_3=40\), \(j_4=-30\pi Pr\), \(j_5=-14\pi Pr\), \(j_6=-30\pi Pr\), \(j_7=-20\pi Pr\), \(j_8=-14\pi Pr\), \(j_9=-9\pi Pr\), \(j_{10}=-20\pi Pr\), \(j_{11}=-9\pi Pr\), \(j_{12}=-3Pr\), \(j_{13}=-2Pr\), \(j_{14}=3Pr\), and \(j_{15}=2Pr\).

\(k_1=\frac{\pi }{4Pr}\), \(k_2=-16\pi \), \(k_3=-2Pr\), \(k_4=-2Pr\), \(k_5=-Pr\), and \(k_6=-Pr\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basak, A. Study of a periodically forced magnetohydrodynamic system using Floquet analysis and nonlinear Galerkin modelling. Nonlinear Dyn 94, 2763–2784 (2018). https://doi.org/10.1007/s11071-018-4523-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4523-4

Keywords

Navigation