Skip to main content
Log in

Electric-Field Behavior of the Resonance Features of the Tunneling Photocurrent Component in InAs(QD)/GaAs Heterostructures

  • SEMICONDUCTOR STRUCTURES, LOW-DIMENSIONAL SYSTEMS, AND QUANTUM PHENOMENA
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The electric-field behavior of resonance features of the photoelectric characteristics of InAs/GaAs heterostructures is investigated. The emission of carriers excited by light from InAs quantum dots into the GaAs matrix is ​​discussed. It is shown that at the temperature of liquid nitrogen the photocurrent in a strong transverse electric field is only determined by the effect of electron tunneling through a barrier formed at the quantum-dot interfaces. Comparison of the experimental curves with the results obtained using a quasiclassical expression for the tunneling-current component and subsequent analysis of the potential structure made it possible to refine the parameters of the heterostructure under study. The contribution of the resonance component caused by possible electron tunneling through the barrier with the participation of the local defect states to the total tunneling current is analyzed. The influence of the level of excitation of the system on the photocurrent flowing through the InAs/GaAs heterojunction is theoretically studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. N. Ledentsov, V. M. Ustinov, V. A. Shchukin, P. S. Kop’ev, Zh. I. Alferov, and D. Bimberg, Semiconductors 32, 343 (1998).

    Article  ADS  Google Scholar 

  2. I. A. Dmitriev and R. A. Suris, Semiconductors 35, 212 (2001).

    Article  ADS  Google Scholar 

  3. J. Lu, P. T. Webster, S. Liu, Y. H. Zhang, S. R. Johnson, and D. J. Smith, J. Cryst. Growth 425, 250 (2015).

    Article  ADS  Google Scholar 

  4. E. S. Shatalina, S. A. Blokhin, A. M. Nadtochy, A. S. Payusov, A. V. Savelyev, M. V. Maximov, A. E. Zhukov, N. N. Ledentsov, A. R. Kovsh, S. S. Mikhrin, and V. M. Ustinov, Semiconductors 44, 1308 (2010).

    Article  ADS  Google Scholar 

  5. P. W. Fry, I. E. Itskevich, S. R. Parnell, J. J. Finley, L. R. Wilson, K. L. Schumacher, D. J. Mowbray, M. S. Skolnick, M. Al-Khafaji, A. G. Cullis, M. Hopkinson, J. C. Clark, and G. Hill, Phys. Rev. B 62, 16784 (2000).

    Article  ADS  Google Scholar 

  6. G. Torelly, R. Jakomin, L. D. Pinto, M. P. Pires, J. Ruiz, P. G. Caldas, R. Prioli, H. Xie, F. A. Ponce, and P. L. Souza, J. Cryst. Growth 434, 47 (2016).

    Article  ADS  Google Scholar 

  7. A. Hospodková, J. Pangrác, M. Zíková, J. Oswald, J. Vyskočil, P. Komninou, J. Kioseoglou, N. Florini, and E. Hulicius, Appl. Surf. Sci. 301, 173 (2014).

    Article  ADS  Google Scholar 

  8. B. N. Zvonkov, I. A. Karpovich, N. V. Baidus’, D. O. Filatov, and S. V. Morozov, Semiconductors 35, 93 (2001).

    Article  ADS  Google Scholar 

  9. P. Waltereit, J. M. Fernandez, S. Kaya, and T. J. Thornton, Appl. Phys. Lett. 72, 2262 (1998).

    Article  ADS  Google Scholar 

  10. V. A. Pogrebnyak, V. M. Yakovenko, and I. V. Yakovenko, Phys. Solid State 39, 1677 (1997).

    Article  ADS  Google Scholar 

  11. Z. S. Gribnikov, K. Hess, and G. A. Kosinovsky, J. Appl. Phys. 77, 1337 (1995).

    Article  ADS  Google Scholar 

  12. P. M. Mensz, S. Luryi, A. Y. Cho, D. L. Sivco, and F. Ren, Appl. Phys. Lett. 57, 2558 (1990).

    Article  ADS  Google Scholar 

  13. M. L. Orlov and L. K. Orlov, Semiconductors 43, 652 (2009).

    Article  ADS  Google Scholar 

  14. T. Sugaya, K. Y. Jang, C. Koo, K. Komori, A. Shinoda, and K. Yonei, J. Appl. Phys. 97, 034507 (2005).

    Article  ADS  Google Scholar 

  15. L. K. Orlov, A. A. Mel’nikova, M. L. Orlov, N. A. Alyabina, N. L. Ivina, V. N. Neverov, and Zs. Horvath, Phys. E (Amsterdam, Neth.) 51, 87 (2013).

  16. C. M. A. Kapteyn, F. Heinrichsdorff, O. Stier, R. Heitz, M. Grundmann, N. D. Zakharov, D. Bimberg, and P. Werner, Phys. Rev. B 60, 14265 (1999).

    Article  ADS  Google Scholar 

  17. N. S. Volkova, A. P. Gorshkov, D. O. Filatov, and D. S. Abramkin, JETP Lett. 100, 156 (2014).

    Article  Google Scholar 

  18. I. A. Karpovich, B. N. Zvonkov, S. B. Levichev, N. B. Baidus’, S. V. Tikhov, D. O. Filatov, A. P. Gorshkov, and S. Yu. Ermakov, Semiconductors 38, 431 (2004).

    Article  ADS  Google Scholar 

  19. E. N. Korol’, Sov. Phys. Solid State 19, 1327 (1977).

    Google Scholar 

  20. R. A. Suris, Sov. Phys. Semicond. 20, 1258 (1986).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.P. Gorshkov and T.O. Mishenko for help in the measurements and calculations. The measurements were performed on the structures synthesized by B.N. Zvonkov at the Physical-Technical Research Institute of the Nizhny Novgorod State University.

This study was carried out in the framework of the Federal Target Program “Scientific and Scientific-Pedagogical Personnel for Innovative Russia” in 2009–2013, applications 2011-1.2.1-12-000-2013-095 and 2012-1.3.1-12-000-2003- 031 (no. 8543). Authors thank also RFBR (grant 18-42-520062) for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Orlov.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlov, M.L., Volkova, N.S., Ivina, N.L. et al. Electric-Field Behavior of the Resonance Features of the Tunneling Photocurrent Component in InAs(QD)/GaAs Heterostructures. Semiconductors 52, 1129–1136 (2018). https://doi.org/10.1134/S1063782618090129

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618090129

Keywords

Navigation