Skip to main content
Log in

Template Synthesis of Monodisperse Spherical Nanocomposite SiO2/GaN:Eu3+ Particles

  • SEMICONDUCTOR STRUCTURES, LOW-DIMENSIONAL SYSTEMS, AND QUANTUM PHENOMENA
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

A nanocomposite in the form of monodisperse spherical mesoporous silica particles (mSiO2) filled with GaN:Eu3+ is synthesized by the template method. The method is based on the capillary impregnation of pores of mSiO2 particles with a melt of crystal hydrates of gallium and europium (0.22 wt %) nitrates, followed by thermal decomposition and ammonia treatment. It is shown that nanocomposite particles contain hexagonal GaN:Eu3+, are of spherical shape, monodisperse and do not coalesce with each other. The photoluminescence spectra of the mSiO2/GaN:Eu3+ particles show a group of lines characteristic of intracenter transitions in Eu3+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Y. Waseda and A. Muramatsu, Springer Ser. Mater. Sci. 64, 1 (2004).

    Google Scholar 

  2. S. K. Kumar and R. Krishnamoorti, Ann. Rev. Chem. Biomol. Eng. 1, 37 (2010).

    Article  Google Scholar 

  3. P. H. C. Camargo, K. G. Satyanarayana, and F. Wypych, Mater. Res. 12, 1 (2009).

    Article  Google Scholar 

  4. Q. Wang and D. F. Shantz, J. Solid State Chem. 181, 1659 (2008).

    Article  ADS  Google Scholar 

  5. A. Stein, B. E. Wilson, and S. G. Rudisill, Chem. Soc. Rev. 42, 2763 (2013).

    Article  Google Scholar 

  6. S Salimian, A. Zadhoush, and A. Mohammadi, J. Reinforc. Plast. Compos. 0, 1 (2018).

    Google Scholar 

  7. X. Pan, X. An, Z. Zhang, J. Zhou, and E. Xie, J. Alloys Compd. 519, 6 (2012).

    Google Scholar 

  8. S. Shirakata, R. Takashi, and K. Sasaki, Appl. Phys. Lett. 85, 2247 (2004).

    Article  ADS  Google Scholar 

  9. R. Bilyy, A. Podhorodecki, M. Nyk, R. Stoika, A. Zaichenko, G. Zatryb, J. Misiewicz, and W. Strek, Phys. E (Amsterdam, Neth.) 40, 2096 (2008).

  10. R. Bilyy, A. Tomyn, Y. Kit, A. Podhorodecki, J. Misiewicz, M. Nyk, W. Strek, and R. Stoika, Mat. Werkstofftech. 40, 234 (2009).

    Article  Google Scholar 

  11. V. Yu. Davydov, V. G. Golubev, N. F. Kartenko, D. A. Kurdyukov, A. B. Pevtsov, N. V. Sharenkova, P. Brogueira, and R. Schwarz, Nanotechnology 11, 291 (2000).

    Article  ADS  Google Scholar 

  12. V. G. Golubev, D. A. Kurdyukov, A. V. Medvedev, A. B. Pevtsov, L. M. Sorokin, and J. L. Hutchison, Semiconductors 35, 1320 (2001).

    Article  ADS  Google Scholar 

  13. V. Yu. Davydov, R. E. Dunin-Borkovski, V. G. Golubev, J. L. Hutchison, N. F. Kartenko, D. A. Kurdyukov, A. B. Pevtsov, N. V. Sharenkova, J. Sloan, and L. M. Sorokin, Semicond. Sci. Technol. 16, L5 (2001).

    Article  ADS  Google Scholar 

  14. F. A. L. Dullien, Porous Media Fluid Transport and Pore Structure, 2nd ed. (Academic, New York, 1992).

    Google Scholar 

  15. E. R. Gilliland, R. F. Baddour, and J. L. Russell, AIChE J. 4, 90 (1958).

    Article  Google Scholar 

  16. D. A. Kurdyukov, Nanotekhnika 4, 18 (2007).

    Google Scholar 

  17. E. Yu. Trofimova, D. A. Kurdyukov, Yu. A. Kukushkina, M. A. Yagovkina, and V. G. Golubev, Glass Phys. Chem. 37, 378 (2011).

    Article  Google Scholar 

  18. E. Yu. Trofimova, D. A. Kurdyukov, S. A. Yakovlev, D. A. Kirilenko, Yu. A. Kukushkina, A. V. Nashchekin, A. A. Sitnikova, M. A. Yagovkina, and V. G. Golubev, Nanotechnology 24, 155601 (2013).

    Article  ADS  Google Scholar 

  19. D. A. Eurov, D. A. Kurdyukov, D. A. Kirilenko, J. A. Kukushkina, A. V. Nashchekin, A. N. Smirnov, and V. G. Golubev, J. Nanopart. Res. 17, 82 (2015).

    Article  ADS  Google Scholar 

  20. E. Yu. Stovpiaga, D. A. Eurov, D. A. Kurdyukov, A. N. Smirnov, M. A. Yagovkina, V. Yu. Grigoriev, V. V. Romanov, D. R. Yakovlev, and V. G. Golubev, Phys. Solid State 59, 1623 (2017).

    Article  ADS  Google Scholar 

  21. D. A. Kurdyukov, D. A. Eurov, E. Yu. Stovpiaga, S. A. Yakovlev, D. A. Kirilenko, and V. G. Golubev, Phys. Solid State 56, 1033 (2014).

    Article  ADS  Google Scholar 

  22. V. Berbenni, C. Milanese, G. Bruni, and A. Marini, J. Therm. Anal. Calorim. 82, 401 (2005).

    Article  Google Scholar 

  23. P. Melnikov, I. V. Arkhangelsky, V. A. Nascimento, L. C. S. de Oliveira, A. F. Silva, and L. Z. Zanoni, J. Therm. Anal. Calorim. 128, 1353 (2017).

    Article  Google Scholar 

  24. P. I. Fedorov, M. V. Mokhosoev, and F. P. Alekseev, Chemistry of Gallium, Indium, and Thallium (Nauka, Novosibirsk, 1977) [in Russian].

    Google Scholar 

  25. G. M. Gajiev, D. A. Kurdyukov, and V. V. Travnikov, Nanotechnology 17, 5349 (2006).

    Article  ADS  Google Scholar 

  26. A. G. Milnes, Deep Impurities in Semiconductors (Wiley, New York, 1973).

    Google Scholar 

  27. A. E. Aleksenskii, A. V. Shvidchenko, and E. D. Eidel’man, Tech. Phys. Lett. 38, 1049 (2012).

    Article  ADS  Google Scholar 

  28. S. F. Kaplan, N. F. Kartenko, D. A. Kurdyukov, A. V. Medvedev, and V. G. Golubev, Appl. Phys. Lett. 86, 071108 (2005).

    Article  ADS  Google Scholar 

  29. J. Kioseoglou, M. Katsikini, K. Termentzidis, I. Karakostas, and E. C. Paloura, J. Appl. Phys. 121, 054301 (2017).

    Article  ADS  Google Scholar 

  30. V. Yu. Davydov, Yu. E. Kitaev, I. N. Goncharuk, A. N. Smirnov, J. Graul, O. Semchinova, D. Uffmann, M. B. Smirnov, A. P. Mirgorodsky, and R. A. Evarestov, Phys. Rev. B 58, 12899 (1998).

    Article  ADS  Google Scholar 

  31. Y. H. Gao, Y. Bando, T. Sato, Y. F. Zhang, and X. Q. Gao, Appl. Phys. Lett. 81, 2267 (2002).

    Article  ADS  Google Scholar 

  32. K. Binnemans, Coord. Chem. Rev. 295, 1 (2005).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was carried out in part using equipment of the Collective Use Center “Materials science and diagnostics in advanced technologies.”

The study was financially supported by the Russian Foundation for Basic Research (project no. 15-52-12011) and by DFG under ICRC TRR 160.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Stovpiaga.

Additional information

Translated by M. Tagirdzhanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stovpiaga, E.Y., Eurov, D.A., Kurdyukov, D.A. et al. Template Synthesis of Monodisperse Spherical Nanocomposite SiO2/GaN:Eu3+ Particles. Semiconductors 52, 1123–1128 (2018). https://doi.org/10.1134/S1063782618090208

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618090208

Keywords

Navigation