Skip to main content
Log in

Poole–Frenkel Effect and the Opportunity of Its Application for the Prediction of Radiation Charge Accumulation in Thermal Silicon Dioxide

  • SURFACES, INTERFACES, AND THIN FILMS
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

It is proposed that the Poole–Frenkel effect be applied to predict radiation-induced charge accumulation in thermal silicon dioxide. Various conduction mechanisms of thermal silicon dioxide are considered, the conditions of the appearance of the Poole–Frenkel effect in it are determined, and the characteristics of donor centers participating in Poole–Frenkel electrical conductivity are calculated. A donor center level at an energy of 2.34 eV below the conduction-band bottom is determined and the concentration of ionized donor centers of 1.0 × 109 cm–3 at 400 K and a field strength of 10 MV/cm is found. It is concluded that the Poole–Frenkel effect can be applied not for prediction of the absolute value of the radiation-induced charge but for comparison of the samples in terms of the ability to accumulate it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. K. Celler and S. Cristoloveanu, J. Appl. Phys. 93, 4955 (2003).

    Article  ADS  Google Scholar 

  2. A. L. Aseev, V. P. Popov, V. P. Volodin, and V. N. Maryutin, Nano-Mikrosist. Tekh. 9, 23 (2002).

    Google Scholar 

  3. A. Yu. Nikiforov, V. A. Telets, and A. I. Chumakov, Radiation Effects in CMOS IC (Radio Svyaz’, Moscow, 1994) [in Russian].

    Google Scholar 

  4. I. B. Yashanin, G. G. Davydov, A. Yu. Nikiforov, and Yu. M. Moskovskaya, Izv. Vyssh. Uchebn. Zaved., Elektron., No. 5 (97), 11 (2012).

  5. T. Ouisse, S. Cristoloveanu, and G. Borel, IEEE Electron Dev. Lett. 12, 312 (1991).

    Article  ADS  Google Scholar 

  6. C. A. Pennise and H. A. Boesch, IEEE Trans. Nucl. Sci. 37, 1990 (1990).

    Article  ADS  Google Scholar 

  7. R. E. Stahlbush, G. J. Campisi, J. B. McKitterick, W. P. Maszara, P. Roitman, and G. A. Brown, IEEE Trans. Nucl. Sci. 39, 2086 (1992).

    Article  ADS  Google Scholar 

  8. R. E. Stahlbush, IEEE Trans. Nucl. Sci. 43, 2627 (1996).

    Article  ADS  Google Scholar 

  9. R. E. Stahlbush, IEEE Trans. Nucl. Sci. 44, 2106 (1997).

    Article  ADS  Google Scholar 

  10. O. P. Gus’kova, V. M. Vorotyntsev, E. L. Shobolov, and N. D. Abrosimova, Izv. Vyssh. Uchebn. Zaved., Mater. Elektron. Tekh., No. 4 (60), 28 (2012).

  11. D. V. Nikolaev, I. V. Antonova, O. V. Naumova, V. P. Popov, and S. A. Smagulova, Semiconductors 37, 426 (2003).

    Article  ADS  Google Scholar 

  12. A. Yu. Askinazi, A. P. Baraban, V. A. Dmitriev, and L. V. Miloglyadova, Tech. Phys. Lett. 28, 983 (2002).

    Article  ADS  Google Scholar 

  13. A. A. Shiryaev, E. L. Shobolov, and V. A. Gerasimov, in Proceedings of the 21st Nizhny Novgorod Session of Young Scientists, Technical Sciences, Ed. by I. A. Zvereva (NGIEU, Knyaginino, 2016), p. 105.

  14. K. O. Petrosyants, E. V. Orekhov, L. M. Samburskii, I. A. Kharitonov, and A. P. Yatmanov, Izv. Vyssh. Uchebn. Zaved., Elektron., No. 2 (82), 81 (2010).

  15. O. P. Gus’kova, V. M. Vorotyntsev, N. D. Abrosimova, E. L. Shobolov, and M. N. Mineev, Inorg. Mater. 48, 222 (2012).

    Article  Google Scholar 

  16. A. V. Amirkhanov, S. I. Volkov, A. A. Glushko, L. A. Zinchenko, V. V. Makarchuk, and V. A. Shakhnov, Russ. Microelectron. 45, 237 (2016).

    Article  Google Scholar 

  17. S. Mayo, J. S. Suehle, and P. Roitman, J. Appl. Phys. 74, 4113 (1993).

    Article  ADS  Google Scholar 

  18. H. Krause and R. Grünler, Phys. Status Solidi 42, 149 (1977).

    Article  ADS  Google Scholar 

  19. S. K. Gupta, A. Azam, and J. Akhtar, Pramana J. Phys. 74, 325 (2010).

    Google Scholar 

  20. F. C. Chiu, Adv. Mater. Sci. Eng. 2014, 578168 (2014).

    Google Scholar 

  21. J. G. Simmons, J. Phys. D: Appl. Phys. 4, 613 (1971).

    Article  ADS  Google Scholar 

  22. G. I. Zebrev, Radiation Effects in Silicon Integrated Schemes of High Integration Degree (NIYaU MIFI, Moscow, 2010) [in Russian].

  23. C. Sevik and C. Bulutay, J. Mater. Sci. 42, 6555 (2007).

    Article  ADS  Google Scholar 

  24. B. D. Salvo, G. Ghibaudo, G. Panabnakakis, B. Guillaumo, and G. Reimbold, Microelectron. Reliab. 39, 797 (1999).

    Article  Google Scholar 

  25. F. P. Korshunov, Yu. V. Bogatyrev, and V. A. Vavilov, Effect of Radiation on Integrated Microcirquts (Nauka Tekhnika, Minsk, 1986) [in Russian].

    Google Scholar 

  26. C. T. Sah, IEEE Trans. Nucl. Sci. 23, 1563 (1976).

    Article  ADS  Google Scholar 

  27. V. S. Pershenkov, V. D. Popov, and A. V. Shal’nov, Surface Radiation Effects in Integrated Microcirquit Elements (Energoatomizdat, Moscow, 1988) [in Russian].

    Google Scholar 

  28. S. T. Pantelides, Z. Y. Lu, C. Nicklaw, T. Bakos, S. N. Rashkeev, D. M. Fleetwood, and R. D. Schrimpf, J. Non-Cryst. Sol. 354, 217 (2008).

    Google Scholar 

  29. K. I. Tapero, V. N. Ulimov, and A. M. Chlenov, Radiation Effects in Silicon v Integrated Microcirquit for Space Application (BINOM, Labor. Znanii, Moscow, 2014) [in Russian].

  30. B. Balland, C. Plossu, and S. Bardy Balland, Thin Solid Films 148, 149 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Shiryaev.

Additional information

Translated by N. Korovin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiryaev, A.A., Vorotyntsev, V.M. & Shobolov, E.L. Poole–Frenkel Effect and the Opportunity of Its Application for the Prediction of Radiation Charge Accumulation in Thermal Silicon Dioxide. Semiconductors 52, 1114–1117 (2018). https://doi.org/10.1134/S1063782618090166

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618090166

Keywords

Navigation