Skip to main content
Log in

Rietveld refinement, microstructure, mechanical properties and oxidation characteristics of Fe-28Mn-xAl-1C (x = 10 and 12 wt. %) low-density steels

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The quantitative relationship between microstructure and properties of austenitic Fe-28Mn-xAl-1C (x = 10 and 12 wt. %) low-density steels was evaluated using Rietveld method to refine X-ray diffraction (XRD) patterns. The results showed that a typical three-phase austenitic steel was obtained in the forged Mn28Al10 (i.e. Fe-28Mn-10Al-1C) steel, which included about 92.85 wt. % γ-Fe(Mn, Al, C) (austenite), 5.28 wt. % (Fe, Mn)3AlC0.5(κ-carbide), and 1.87 wt. % α-Fe(Al, Mn) (ferrite). For the forged Mn28Al12 (i.e. Fe-28Mn-12Al-1C) steel, nevertheless, only about 76.64 wt. % austenite, 9.63 wt. % κ-carbide, 9.14 wt. % ferrite and 4.59 wt. % Fe3Al (DO3) could be obtained. Nanometer κ-carbide and DO3 were mainly distributed in austenite grains and at the interface between austenite and ferrite, respectively. The forged Mn28Al10 steel had a better combination of strength, ductility and specific strength as compared with the forged Mn28Al12 steel. The ductility of the forged Mn28Al12 steel was far lower than that of the forged Mn28Al10 steel. The oxidation kinetics of Mn28Al10 steel oxidized at 1323 K for 5–25 h had two-stage linear rate laws, and the oxidation rate of the second stage was faster than that of the first stage. Although the oxidation kinetics of Mn28Al12 steel under this condition also had two-stage linear rate laws, the oxidation rate of the second stage was slower than that of the first stage. When the oxidation temperature increased to 1373 K, the oxidation kinetics of the two steels at 5–25 h had only one-stage linear rate law, and the oxidation rates of the two steels were far faster than those at 1323 K for 5–25 h. The oxidation resistance of Mn28Al12 steel was much better than that of Mn28Al10 steel. Ferrite layer formed between the austenite matrix and the oxidation layer of the two Fe-Mn-Al-C steels oxidized at high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Frommeyer, U. Brüex, Steel Res. Int. 77 (2006) 627–633.

    Article  Google Scholar 

  2. H. Kim, D. W. Suh, N. J. Kim, Sci. Technol. Adv. Mater. 14 (2013) 014205.

    Article  Google Scholar 

  3. H. Ding, D. Han, Z. Cai, Z. Wu, JOM 66 (2014) 1821–1827.

    Article  Google Scholar 

  4. A. Etienne, V. Massardier-Jourdan, S. Cazottes, X. Garat, M. Soler, I. Zuazo, X. Kleber, Metall. Mater. Trans. A 45 (2014) 324–334.

    Article  Google Scholar 

  5. L. Zhang, R. Song, C. Zhao, F. Yang, Mater. Sci. Eng. A 640 (2015) 225–234.

    Article  Google Scholar 

  6. S. S. Sohn, H. Song, B. C. Suh, J. H. Kwak, B. J. Lee, N. J. Kim, S. Lee, Acta Mater. 96 (2015) 301–310.

    Article  Google Scholar 

  7. S. H. Kim, H. Kim, N. J. Kim, Nature 518 (2015) 77–79.

    Article  Google Scholar 

  8. H. Ding, D. Han, J. Zhang, Z. Cai, Z. Wu, M. Cai, Mater. Sci. Eng. A 652 (2016) 69–76.

    Article  Google Scholar 

  9. A. Mohamadizadeh, A. Zarei-Hanzaki, H. R. Abedi, Mech. Mater. 95 (2016) 60–70.

    Article  Google Scholar 

  10. L. Bartlett, D. Van Aken, JOM 66 (2014) 1770–1784.

    Article  Google Scholar 

  11. Y. Sutou, N. Kamiya, R. Umino, I. Ohnuma, K. Ishida, ISIJ Int. 50 (2010) 893–899.

    Article  Google Scholar 

  12. M. Witkowska, A. Zielińska-Lipiec, J. Kowalska, W. Ratuszek, Archives Metall. Mater. 59 (2014) 971–975.

    Article  Google Scholar 

  13. L. M. Kaputkina, A. G. Svyazhin, D. E. Kaputkin, V. E. Bazhenov, A. V. Bronz, I. V. Smarygina, Metallurgist 59 (2016) 895–898.

    Article  Google Scholar 

  14. D. Raabe, H. Springer, I. Gutierrez-Urrutia, F. Roters, M. Bausch, J. B. Seol, M. Koyama, P. P. Choi, K. Tsuzaki, JOM 66 (2014) 1845–1856.

    Article  Google Scholar 

  15. H. Springer, D. Raabe, Acta Mater. 60 (2012) 4950–4959.

    Article  Google Scholar 

  16. D. T. Pierce, J. A. Jiménez, J. Bentley, D. Raabe, C. Oskay, J. E. Wittig, Acta Mater. 68 (2014) 238–253.

    Article  Google Scholar 

  17. E. Welsch, D. Ponge, S. M. Hafez Haghighat, S. Sandlöbes, P. Choi, M. Herbig, S. Zaefferer, D. Raabe, Acta Mater. 116 (2016) 188–199.

    Article  Google Scholar 

  18. B. Bhattacharya, Metall. Mater. Trans. A 43 (2012) 1747–1759.

    Article  Google Scholar 

  19. I. Zuazo, B. Hallstedt, B. Lindahl, M. Selleby, M. Soler, A. Etienne, A. Perlade, D. Hasenpouth, V. Massardier-Jourdan, S. Cazottes, X. Kleber, JOM 66 (2014) 1747–1758.

    Article  Google Scholar 

  20. S. Pramanik, S. Suwas, JOM 66 (2014) 1–9.

    Article  Google Scholar 

  21. C. S. Wang, C. N. Hwang, C. G. Chao, T. F. Liu, Scripta Mater. 57 (2007) 809–812.

    Article  Google Scholar 

  22. I. S. Kalashnikov, O. Acselrad, A. Shalkevich, L. D. Chumakova, L. C. Pereira, J. Mater. Process. Technol. 136 (2003) 72–79.

    Article  Google Scholar 

  23. C. N. Hwang, C. Y. Chao, T. F. Liu, Scripta Metall. Et Mater. 28 (1993) 263–268.

    Article  Google Scholar 

  24. S. W. Hwang, J. H. Ji, E. G. Lee, K. T. Park, Mater. Sci. Eng. A 528 (2011) 5196–5203.

    Article  Google Scholar 

  25. S. H. Park, L. S. Chung, W. K. Tai, Oxid. Met. 49 (1998) 349–371.

    Article  Google Scholar 

  26. L. Cho, E. J. Seo, G. S. Jung, D. W. Suh, B. C. De Cooman, Metall. Mater. Trans. A 47 (2016) 1705–1719.

    Article  Google Scholar 

  27. S. C. Tjong, Mater. Trans. JIM 28 (1987) 671–678.

    Article  Google Scholar 

  28. C. J. Wang, J. G. Duh, J. Mater. Sci. 23 (1988) 3447–3454.

    Article  Google Scholar 

  29. J. G. Duh, C. J. Wang, J. Mater. Sci. 25 (1990) 2063–2070.

    Article  Google Scholar 

  30. D. P. Leng, X. F. Zhang, Y. Cao, Z. Y. Huang, L. Zhang, G. Chen, J. Iron Steel Res. 27 (2015) 54–59 (in Chinese).

    Google Scholar 

  31. P. Pérez, F. J. Pérez, C. Gómez, P. Adeva, Corros. Sci. 44 (2002) 113–127.

    Article  Google Scholar 

  32. X. Yuan, Y. Yao, L. Chen, Acta Metall. Sin. (Engl. Lett.) 27 (2014) 401–406.

    Article  Google Scholar 

  33. A. Dias, V. D. F. C. Lins, Corros. Sci. 40 (1998) 271–280.

    Article  Google Scholar 

  34. J. Matějícek, B. Kolman, J. Dubsky, K. Neufuss, N. Hopkins, J. Zwick, Mater. Charact. 57 (2006) 17–29.

    Article  Google Scholar 

  35. F. Izumi, K. Momma, Solid State Phenom. 130 (2007) 15–20.

    Article  Google Scholar 

  36. S. C. Tjong, Mater. Charact. 24 (1990) 275–292.

    Article  Google Scholar 

  37. Y. Kimura, K. Handa, K. Hayashi, Y. Mishima, Intermetallics 12 (2004) 607–617.

    Article  Google Scholar 

  38. W. K. Choo, J. H. Kim, J. C. Yoon, Acta Mater. 45 (1997) 4877–4885.

    Article  Google Scholar 

  39. C. Haase, C. Zehnder, T. Ingendahl, A. Bikar, F. Tang, B. Hallstedt, W. Hu, W. Bleck, D. A. Molodov, Acta Mater. 122 (2017) 332–343.

    Article  Google Scholar 

  40. J. D. Yoo, K. T. Park, Mater. Sci. Eng. A 496 (2008) 417–424.

    Article  Google Scholar 

  41. J. D. Yoo, S. W. Hwang, K. T. Park, Metall. Mater. Trans. A 40 (2009) 1520–1523.

    Article  Google Scholar 

  42. K. G. Chin, H. J. Lee, J. H. Kwak, J. Y. Kang, B. J. Lee, J. Alloy. Comp. 505 (2010) 217–223.

    Article  Google Scholar 

  43. O. N. Senkov, D. B. Miracle, Mater. Res. Bull. 36 (2001) 2183–2198.

    Article  Google Scholar 

  44. X. F. Zhang, H. Yang, D. P. Leng, L. Zhang, Z. Y. Huang, G. Chen, J. Iron Steel Res. Int. 23 (2016) 963–972.

    Article  Google Scholar 

  45. R. A. Rapp, Metall. Mater. Trans. A 15 (1984) 765–782.

    Article  Google Scholar 

  46. A. U. Malik, Oxid. Met. 24 (1985) 233–263.

    Article  Google Scholar 

  47. P. R. S. Jackson, G. R. Wallwork, Oxid. Met. 21 (1984) 135–170.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-yu Hou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Zy., Hou, Al., Jiang, Ys. et al. Rietveld refinement, microstructure, mechanical properties and oxidation characteristics of Fe-28Mn-xAl-1C (x = 10 and 12 wt. %) low-density steels. J. Iron Steel Res. Int. 24, 1190–1198 (2017). https://doi.org/10.1016/S1006-706X(18)30017-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(18)30017-7

Key words

Navigation