Skip to main content
Log in

Coconut oil as phase change material to maintain thermal comfort in passenger vehicles

An experimental analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Parked vehicles are vulnerable to cabin overheating, which leads to hyperthermia, accidental death of babies and pets, increased fuel consumption and deterioration of vehicle interior. In this study, an effort was made to maintain thermal comfort inside an automobile cabin by impregnating phase change material (PCM) beneath the rooftop of the vehicle. Experiments were performed for a period of 3 months with coconut oil as PCM, in the Abha region of Saudi Arabia. An Arduino UNO microcontroller-based temperature measurement system with LM-35 temperature sensors along with a bluetooth module and an android application was used to monitor the cabin temperature history. Initially, the cabin temperature was monitored without PCM, and it was found in good agreement with the theoretical values published in the literature. Subsequently, the cabin temperature with PCM was measured, and the results show that the interior temperature of the automobile cabin is decreased by 15 °C on an average. This method is a simple and feasible solution to prevent undesirable heating of automobile cabins when parked under sunlight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

C :

Cloud cover percentage during the time of observation

C pa :

Specific heat of air (kJ kg−1 K−1)

CO2 :

Carbon dioxide

E:

East

L PCM :

Latent heat of fusion of PCM (kJ kg−1)

m a :

Mass of air in the cabin (kg)

m PCM :

Mass of PCM (kg)

N:

North

PCM:

Phase change material

Q :

Total heat to be removed from air (kJ)

Q solar :

Daily average solar radiation

T a :

Ambient temperature (°C)

T c :

Cabin temperature (°C)

ΔT :

Temperature raise inside the cabin during the parking period without PCM

References

  1. Mansor MSF, Rahman UZA, Abidin MSZ, Zain MZM, Yusof MRM. Variation of car cabin temperature influenced by ventilation under direct sun exposure. J Mech Eng Sci. 2014;6:1014–23.

    Article  Google Scholar 

  2. Guard SSGA. Heat related deaths to young children in parked cars: an analysis of 171 fatalities in the United States, 1995–2002. Inj Prev. 2005;11(1):33–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Supure JS. Heat related illness and the automobile. Ann Emerg Med. 1982;11(5):263–5.

    Article  Google Scholar 

  4. King K, Negus K, Vance JC. Heat stress in motor vehicles: a problem in infancy. Pediatrics. 1981;68(4):579–82.

    CAS  PubMed  Google Scholar 

  5. Ferrara P, Vena F, Caporale O, Del Volgo V, Liberatore P, Ianniello F, Chiaretti A, Riccardi R. Children left unattended in parked vehicles: a focus on recent italian cases and a review of literature. Ital J Pediatr. 2013;39(1):71.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Al-Kayiem HH, Sidik MF, Munusammy YR. Study on the thermal accumulation and distribution inside a parked car cabin. Am J Appl Sci. 2010;7(6):784–9.

    Article  Google Scholar 

  7. Yamashita K, Kuroda T, Tochihara Y, Shibukawa T, Kondo Y, Nagayama H. Evaluation of summertime thermal comfort in automobiles. Elsevier Ergonomics Book Series, vol. 3. 2005; p. 299–303.

  8. Marty W, Sigrist T, Wyler D. Temperature variations in automobiles in various weather conditions: an experimental contribution to the determination of time of death. Am J Forensic Med Pathol. 2001;22(3):215–9.

    Article  CAS  PubMed  Google Scholar 

  9. Aljubury IM, Farhan AA, Mussa MA. Experimental study of interior temperature distribution inside parked automobile cabin. J Eng. 2015;21(3):1–10.

    Google Scholar 

  10. Vishweshwara SC, Dhali JM. Study of excessive cabin temperatures of the car parked in Oman and its mitigation. Int J Multidiscip Sci Eng. 2013;4(9):18–22.

    Google Scholar 

  11. Orzechowski T, Skrobacki Z. Evaluation of thermal conditions inside a vehicle cabin. In: EPJ Web Conference, vol. 114. EDP Sciences; 2016. p. 02085.

  12. Rugh JP, Farrington RB, Bharathan D, Vlahinos A, Burke R, Huizenga C, Zhang H. Predicting human thermal comfort in a transient nonuniform thermal environment. Eur J Appl Physiol. 2004;92(6):721–7.

    Article  CAS  PubMed  Google Scholar 

  13. Grundstein A, Meentemeyer V, Dowd J. Maximum vehicle cabin temperatures under different meteorological conditions. Int J Biometeorol. 2009;53(3):255–61.

    Article  PubMed  Google Scholar 

  14. McLaren C, Null J, Quinn J. Heat stress from enclosed vehicles: moderate ambient temperatures cause significant temperature rise in enclosed vehicles. Pediatrics. 2005;116(1):e109–12.

    Article  PubMed  Google Scholar 

  15. Cascetta F, Musto M. Assessment of thermal comfort in a car cabin with sky-roof. Proc Inst Mech Eng Part D J Automob Eng. 2007;221(10):1251–8.

    Article  Google Scholar 

  16. Horak J, Schmerold I, Wimmer K, Schauberger G. Cabin air temperature of parked vehicles in summer conditions: life-threatening environment for children and pets calculated by a dynamic model. Theor Appl Climatol. 2017;130(1–2):107–18.

    Article  Google Scholar 

  17. Wischhusen S. Modelling and calibration of a thermal model for an automotive cabin using human comfort library. In: Proceedings of the 9th international MODELICA conference; September 3–5; 2012; Munich; Germany 2012 Nov 19 (No. 076). Linköping University Electronic Press, p. 253–63.

  18. Basar MF, Musa M, Faizal MY, Razik NH. Alternative way in reducing car cabin temperature using portable car cooling system (Car-Cool). Int J Innov Technol Explor Eng. 2013;3(3):140–3.

    Google Scholar 

  19. Abd-Fadeel WA, Hassanein SA. Temperature variations in a parked car exposed to direct sun during hot and dry climates. Res Dev (IJAuERD). 2013;3(1):75–80.

    Google Scholar 

  20. Hadiya JP, Shukla AK. Experimental thermal behavior response of paraffin wax as storage unit. J Therm Anal Calorim. 2016;124(3):1511–8.

    Article  CAS  Google Scholar 

  21. Genc ZK, Canbay CA, Acar SS, Sekerci M, Genc M. Preparation and thermal properties of heterogeneous composite phase change materials based on camphene–palmitic acid. J Therm Anal Calorim. 2015;120(3):1679–88.

    Article  CAS  Google Scholar 

  22. Ke H, Pang Z, Peng B, Wang J, Cai Y, Huang F, Wei Q. Thermal energy storage and retrieval properties of form-stable phase change nanofibrous mats based on ternary fatty acid eutectics/polyacrylonitrile composite by magnetron sputtering of silver. J Therm Anal Calorim. 2016;123(2):1293–307.

    Article  CAS  Google Scholar 

  23. Lazcano MA, Yu W. Thermal performance and flammability of phase change material for medium and elevated temperatures for textile application. J Therm Anal Calorim. 2014;117(1):9–17.

    Article  CAS  Google Scholar 

  24. Tyagi VV, Pandey AK, Kothari R, Tyagi SK. Thermodynamics and performance evaluation of encapsulated PCM-based energy storage systems for heating application in building. J Therm Anal Calorim. 2014;115(1):915–24.

    Article  CAS  Google Scholar 

  25. Jeon J, Lee JH, Seo J, Jeong SG, Kim S. Application of PCM thermal energy storage system to reduce building energy consumption. J Therm Anal Calorim. 2013;111(1):279–88.

    Article  CAS  Google Scholar 

  26. Pielichowska K, Pielichowski K. Phase change materials for thermal energy storage. Prog Mater Sci. 2014;65:67–123.

    Article  CAS  Google Scholar 

  27. da Cunha JP, Eames P. Thermal energy storage for low and medium temperature applications using phase change materials–a review. Appl Energy. 2016;177:227–38.

    Article  CAS  Google Scholar 

  28. Kannan PCD, Palaniradja K. Review on phase change material to maintain the human comfort inside the car. IOSR J Mech Civ Eng. 2015;12(4):27–9.

    Google Scholar 

  29. Pause BH. Thermal control of automotive interiors with phase change material. United States patent US 7,320,357. 2008.

  30. Jamekhorshid A, Sadrameli SM. Application of phase change materials (PCMs) in maintaining comfort temperature inside an automobile. World Acad Sci Eng Technol Int J Chem Mol Nucl Mater Metall Eng. 2012;6(1):33–5.

    Google Scholar 

  31. Oró E, de Jong E, Cabeza LF. Experimental analysis of a car incorporating phase change material. J Energy Storage. 2016;7:131–5.

    Article  Google Scholar 

  32. Ramesh J, Raja SP, Karthikeyan P, Prakashini S, Reshma S. PCM for thermal comfort in auto car bodies. Adv Nat Appl Sci. 2016;10(7):94–100.

    Google Scholar 

  33. Nachimuthu V, Mani P, Muthukumar P. CFD analysis of application of phase change material in automotive climate control systems. Int J Innov Res Sci Eng Technol. 2014;3(2):242–52.

    Google Scholar 

  34. Lan NV, Chen CR, Chou HM. The use of PCM for ameliorating thermal performance of vehicle cabin. World Renew. Energy Forum, Denver; 2012. p. 1–8.

  35. Purusothaman M, Cornilius CS, Siva R. Experimental investigation of thermal performance in a vehicle cabin test setup with PCM in the roof. IOP Conference Series: Materials Science and Engineering, vol. 197, no 1. IOP Publishing; 2017. p. 012073.

  36. Gampala SR, Ambadipudi S, Venkateswarlu S. Sustainable passive cooling strategy for automobile using phase change material. Int J Innov Res Sci Eng Technol. 2017;6(3):3331–40.

    Google Scholar 

  37. Natrayan L, Prabhu R. Vehicle compartment heat control using phase change materials. Int J Res Appl Sci Eng Technol. 2016;9:113–7.

    Google Scholar 

  38. El-Homossani M, Gawad MA, Khalifa TF, Hafez HS. Achieving optimum thermal comfort properties for automotive seat fabrics. Int J Adv Res Sci Eng. 2015;4(11):424–35.

    Google Scholar 

  39. Rudd AF. Phase-change material wallboard for distributed thermal storage in buildings. ASHRAE Trans Res. 1993;99(2):339–46.

    Google Scholar 

  40. AU SR, Putri WA, Sutjahja IM, Kurnia D, Wonorahardjo S. The effectiveness of organic pcm based on lauric acid from coconut oil and inorganic PCM based on salt hydrate Cacl2. 6H2O as latent heat energy storage system in Indonesia. In: Journal of Physics: Conference Series, vol. 739, no. 1. IOP Publishing; 2016. p. 012119.

  41. Putri WA, Fahmi Z, Sutjahja IM, Kurnia D, Wonorahardjo S. Thermophysical parameters of coconut oil and its potential application as the thermal energy storage system in Indonesia. In: Journal of Physics: Conference Series, vol. 739, no 1. IOP Publishing; 2016. p. 012065.

  42. Bellah E, Mettawee S, Eid EI, Amin S, Amin M. Experimental study of PCM thermal storage. J Appl Sci Res. 2012;8(7):3424–32.

    Google Scholar 

  43. Mettawee ES, Ead AI. Energy saving in building with latent heat storage. Int J Therm Environ Eng. 2013;5(1):21–30.

    Google Scholar 

  44. Lauck JS. Evaluation of phase change materials for cooling in a super-insulated passive house. MSc Thesis - Portland State University; 2013.

  45. Irsyad M, Harmen. Technical and economic assessment of the implementation of measures for reducing energy losses in distribution systems. In: IOP conference series: earth and environmental science, the first international symposium on green technology for value chains; 2017. vol. 73, no 1, p. 012018.

  46. Silalahi AO, Sukmawati N, Sutjahja IM, Kurnia D, Wonorahardjo S. Thermophysical parameters of organic PCM coconut oil from T-history method and its potential as thermal energy storage in Indonesia. IOP Conference Series: Materials Science and Engineering, 2nd Materials Research Society of Indonesia Meeting (MRS-Id 2016), vol. 214, no 1. IOP Publishing; 2017. p. 012034.

  47. Silva PC, Bragança L, Almeida MG, Mendonça P. Achieving thermal inertia in lightweight constructions. Climamed Congress Lyon, France, 20–21 November 2006.

  48. Krishna AG, Gaurav R, Singh BA, Kumar PP, Preeti C. Coconut oil: chemistry, production and its applications-a review. Indian Coconut J. 2010;53(3):15–27.

    Google Scholar 

  49. AccuWeather Forecast for Abaha, Saudi Arabia. https://www.accuweather.com/en/sa/abha/296644/month/296644?view=table.

  50. The Engineering toolbox. Thermal conductivity of some common materials and gases. 2014. p. 1–9.

  51. Digital Thermometer using Arduino and LM35 Temperature Sensor. https://circuitdigest.com/microcontroller-projects/digital-thermometer-using-arduino.

  52. UO SRML: Solar position calculator. 2017. http://solardat.uoregon.edu/SolarPositionCalculator.html.

  53. Honsberg C, Bowden S. Calculation of Solar Insolation. 2017. http://www.pveducation.org/pvcdrom/calculation-of-solar-insolation.

  54. Walgama C, Fackrell S, Karimi M, Fartaj A, Rankin GW. Passenger thermal comfort in vehicles: a review. Proc Inst Mech Eng Part D J Automob Eng. 2006;220(5):543–62.

    Article  Google Scholar 

  55. Alahmer A, Omar M, Mayyas AR, Qattawi A. Analysis of vehicular cabins’ thermal sensation and comfort state, under relative humidity and temperature control, using Berkeley and Fanger models. Build Environ. 2012;48:146–63.

    Article  Google Scholar 

  56. Pala U, Oz HR. An investigation of thermal comfort inside a bus during heating period within a climatic chamber. Appl Ergonom. 2015;48:164–76.

    Article  Google Scholar 

  57. Simion M, Socaciu L, Unguresan P. Factors which influence the thermal comfort inside of vehicles. Energy Proc. 2016;85:472–80.

    Article  Google Scholar 

  58. Croitoru C, Nastase I, Bode F, Meslem A, Dogeanu A. Thermal comfort models for indoor spaces and vehicles—current capabilities and future perspectives. Renew Sustain Energy Rev. 2015;44:304–18.

    Article  Google Scholar 

  59. Kristanto D, Leephakpreeda T. Sensitivity analysis of energy conversion for effective energy consumption, thermal comfort, and air quality within car cabin. Energy Proc. 2017;138:552–7.

    Article  Google Scholar 

  60. Alahmer A, Mayyas A, Mayyas AA, Omar MA, Shan D. Vehicular thermal comfort models; a comprehensive review. Appl Thermal Eng. 2011;31(6–7):995–1002.

    Article  Google Scholar 

  61. ANSI/ASHRAE Standard 55-2010: Thermal Environmental Conditions for Human Occupancy. 2010.

  62. Sharma A, Tyagi VV, Chen CR, Buddhi D. Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev. 2009;3(2):318–45.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support by Deanship of Scientific Research, King Khalid University, Saudi Arabia: Project code: G.R.P-95-39/1439. We thank our colleagues Dr. Ali Muhammad Ali Alkuzaim Algahtani, Prof. Irfan Anjum Badruddin and Dr.Amir Kessentini of College of Engineering, King Khalid University, Abha, Saudi Arabia, who provided insight and expertise that greatly assisted the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ahamed Saleel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleel, C.A., Mujeebu, M.A. & Algarni, S. Coconut oil as phase change material to maintain thermal comfort in passenger vehicles. J Therm Anal Calorim 136, 629–636 (2019). https://doi.org/10.1007/s10973-018-7676-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7676-y

Keywords

Navigation