Skip to main content

Advertisement

Log in

The Impact of Morphine on the Characteristics and Function Properties of Human Mesenchymal Stem Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Morphine is an analgesic drug therapeutically administered to relieve pain. However, this drug has numerous side effects, which include impaired healing and regeneration after injuries or tissue damages. It suggests negative effects of morphine on stem cells which are responsible for tissue regeneration. Therefore, we studied the impact of morphine on the properties and functional characteristics of human bone marrow-derived mesenchymal stem cells (MSCs). The presence of μ-, δ- and κ-opioid receptors (OR) in untreated MSCs, and the enhanced expression of OR in MSCs pretreated with proinflammatory cytokines, was demonstrated using immunoblotting and by flow cytometry. Morphine modified in a dose-dependent manner the MSC phenotype, inhibited MSC proliferation and altered the ability of MSCs to differentiate into adipocytes or osteoblasts. Furthermore, morphine rather enhanced the expression of genes for various immunoregulatory molecules in activated MSCs, but significantly inhibited the production of the vascular endothelial growth factor, hepatocyte growth factor or leukemia inhibitory factor. All of these observations are underlying the selective impact of morphine on stem cells, and offer an explanation for the mechanisms of the negative effects of opioid drugs on stem cells and regenerative processes after morphine administration or in opioid addicts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barlass, U., Dutta, R., Cheema, H., George, J., Sareen, A., Dixit, A., Yuan, Z., Giri, B., Meng, J., Banerjee, S., Banerjee, S., Dudeja, V., Dawra, R. K., Roy, S., & Saluja, A. K. (2018). Morphine worsens the severity and prevents pancreatic regeneration in mouse models of acute pancreatitis. Gut, 67, 600–602.

    PubMed  Google Scholar 

  2. Bayer, R., Franke, H., Ficker, C., Richter, M., Lessig, R., Büttner, A., & Weber, M. (2015). Alterations of neuronal precursor cells in stages of human adult neurogenesis in heroin addicts. Drug Alcohol Dependence, 156, 139–149.

    Article  Google Scholar 

  3. Abdyazdani, N., Nourazarian, A., Nozad Charoudeh, H., Kazemi, M., Feizy, N., Akbarzade, M., Mehdizadeh, A., Rezaie, J., & Rahbarghazi, R. (2017). The role of morphine on rat neural stem cells viability, neuro-angiogenesis and neuro-steroidgenesis properties. Neuroscience Letters, 636, 205–212.

    Article  CAS  Google Scholar 

  4. Feizy, N., Nourazarian, A., Rahbarghazi, R., Nozad Charoudeh, H., Abdyazdani, N., Montazersaheb, S., & Narimani, M. (2016). Morphine inhibited the rat neural stem cell proliferation rate by increasing neuro steroid genesis. Neurochemical Research, 41, 1410–1419.

    Article  CAS  Google Scholar 

  5. Willner, D., Cohen-Yeshurun, A., Avidan, A., Ozersky, V., Shohami, E., & Leker, R. R. (2014). Short term morphine exposure in vitro alters proliferation and differentiation of neural progenitor cells and promotes apoptosis via mu receptors. PLoS One, 9(7), e103043. https://doi.org/10.1371/journal.pone.0103043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lam, C. F., Chang, P. J., Huang, Y. S., Sung, Y. H., Huang, C. C., Lin, M. W., Liu, Y. C., & Tsai, Y. C. (2008). Prolonged use of high-dose morphine impairs angiogenesis and mobilization of endothelial progenitor cells in mice. Anesthesia and Analgesia, 107, 686–692.

    Article  CAS  Google Scholar 

  7. Rook, J. M., & McCarson, K. E. (2007). Delay of cutaneous wound closure by morphine via local blockade of peripheral tachykinin release. Biochemical Pharmacology, 74, 752–757.

    Article  CAS  Google Scholar 

  8. Rook, J. M., Hasan, W., & McCarson, K. E. (2009). Morphine-induced early delays in wound closure: involvement of sensory neuropeptides and modification of neurokinin receptor expression. Biochemical Pharmacology, 77, 1747–1755.

    Article  CAS  Google Scholar 

  9. Chrastil, J., Sampson, C., Jones, K. B., & Higgins, T. F. (2013). Postoperative opioid administration inhibits bone healing in an animal model. Clinical Orthopaedics and Related Research, 471, 4076–4081.

    Article  Google Scholar 

  10. Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8, 315–327.

    Article  CAS  Google Scholar 

  11. Holan, V., Trosan, P., Cejka, C., Javorkova, E., Zajicova, A., Hermankova, B., Chudickova, M., & Cejkova, J. (2015). A comparative study of the therapeutic potential of mesenchymal stem cells and limbal epithelial stem cells for ocular surface reconstruction. Stem Cells Translational Medicine, 4, 1052–1063.

    Article  CAS  Google Scholar 

  12. Le Blanc, K. (2006). Mesenchymal stromal cells: Tissue repair and immune modulation. Cytotherapy, 8, 559–561.

    Article  Google Scholar 

  13. Sasaki, M., Abe, R., Fujita, Y., Ando, S., Inokuma, D., & Shimizu, H. (2008). Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. Journal of Immunology, 180, 2581–2587.

    Article  CAS  Google Scholar 

  14. Squillaro, T., Peluso, G., & Galderisi, U. (2016). Clinical trials with mesenchymal stem cells: An update. Cell Transplantation, 25, 829–848.

    Article  Google Scholar 

  15. Abumaree, M., Al Jumah, M., Pace, R. A., & Kalionis, B. (2012). Immunosuppressive properties of mesenchymal stem cells. Stem Cell Reviews, 8, 375–392.

    Article  CAS  Google Scholar 

  16. English, K. (2013). Mechanisms of mesenchymal stromal cell immunomodulation. Immunology and Cell Biology, 91, 19–26.

    Article  CAS  Google Scholar 

  17. Holan, V., Hermankova, B., Bohacova, P., Kossl, J., Chudickova, M., Hajkova, M., Krulova, M., Zajicova, A., & Javorkova, E. (2016). Distinct immunoregulatory mechanisms in mesenchymal stem cells: Role of the cytokine environment. Stem Cell Reviews and Reports, 12, 654–663.

    Article  CAS  Google Scholar 

  18. Dholakiya, S. L., Aliberti, A., & Barile, F. A. (2016). Morphine sulfate concomitantly decreases neuronal differentiation and opioid receptor expression in mouse embryonic stem cells. Toxicology Letters, 247, 45–55.

    Article  CAS  Google Scholar 

  19. Hahn, J. W., Jagwani, S., Kim, E., Rendell, V. R., He, J., Ezerskiy, L. A., Wesselschmidt, R., Coscia, C. J., & Belcheva, M. M. (2010). Mu and kappa opioids modulate mouse embryonic stem cell-derived neural progenitor differentiation via MAP kinases. Journal of Neurochemistry, 112, 1431–1441.

    Article  CAS  Google Scholar 

  20. Higuchi, S., Ii, M., Zhu, P., & Ashraf, M. (2012). Delta-opioid receptor activation promotes mesenchymal stem cell survival via PKC/STAT3 signaling pathway. Circulation Journal, 76, 204–212.

    Article  CAS  Google Scholar 

  21. Ujcikova, H., Hlouskova, M., Cechova, K., Stolarova, K., Roubalova, L., & Svoboda, P. (2017). Determination of μ-, δ- and κ-opioid receptors in forebrain cortex of rats exposed to morphine for 10 days: Comparison with animals after 20 days of morphine withdrawal. PLoS One, 12(10), e0186797. https://doi.org/10.1371/journal.pone.0186797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cechova, K., Hlouskova, M., Javorkova, E., Roubalova, L., Ujcikova, H., Holan, V., & Svoboda, P. (2018). Up-regulation of μ-, δ- and κ-opioid receptors in concanavalin A-stimulated rat spleen lymphocytes. Journal of Neuroimmunology, 321, 12–23.

    Article  CAS  Google Scholar 

  23. Holan, V., Zajicova, A., Krulova, M., Blahoutova, V. &, Wilczek, H. (2003). Augmented production of proinflammatory cytokines and accelerated allotransplantation reactions in heroin-treated mice. Clinical and Experimental Immunology, 132, 40–45.

    Article  CAS  Google Scholar 

  24. Plein, L. M., & Rittner, H. L. (2017). Opioids and the immune system - friend or foe. British Journal of Pharmacology, 175, 2717–2725.

    Article  Google Scholar 

  25. Tu, T., Zhang, C., Yan, H., Luo, Y., Kong, R., Wen, P., Ye, Z., Chen, J., Feng, J., Liu, F., Wu, J. Y., & Yan, X. (2015). CD146 acts as a novel receptor for netrin-1 in promoting angiogenesis and vascular development. Cell Research, 25, 275–287.

    Article  CAS  Google Scholar 

  26. Yan, H., Zhang, C., Wang, Z., Tu, T., Duan, H., Luo, Y., Feng, J., Liu, F., & Yan, X. (2017). CD146 is required for VEGF-C-induced lymphatic sprouting during lymphangiogenesis. Scientific Reports, 7(1), 7442. https://doi.org/10.1038/s41598-017-06637-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chiossone, L., Conte, R., Spaggiari, G. M., Serra, M., Romei, C., Bellora, F., Becchetti, F., Andaloro, A., Moretta, L., & Bottino, C. (2016). Mesenchymal stromal cells induce peculiar alternatively activated macrophages capable of dampening both innate and adaptive immune responses. Stem Cells, 34, 1909–1921.

    Article  CAS  Google Scholar 

  28. Ferrara, N., & Gerber, H. P. (2002). The role of vascular endothelial growth factor in angiogenesis. Acta Haematological, 106, 148–156.

    Article  Google Scholar 

  29. Hofer, H. R., & Tuan, R. S. (2016). Secreted trophic factors of mesenchymal stem cells support neurovascular and musculoskeletal therapies. Stem Cell Research and Therapy, 7, 131. https://doi.org/10.1186/s13287-016-0394-0.

    Article  CAS  PubMed  Google Scholar 

  30. Nicola, N. A., & Babon, J. J. (2015). Leukemia inhibitory factor (LIF). Cytokine Growth Factor Reviews, 26, 533–544.

    Article  CAS  Google Scholar 

  31. Yue, X., Wu, L. & Hu, W. (2015). The regulation of leukemia inhibitory factor. Cancer Cell Microenvironment, 2(3). Pii: e877.

  32. Conway, K., Price, P., Harding, K. G., & Jiang, W. G. (2006). The molecular and clinical impact of hepatocyte growth factor, its receptor, activators, and inhibitors in wound healing. Wound Repair and Regeneration, 14, 2–10.

    Article  Google Scholar 

  33. Bortolotto, V., & Grilli, M. (2017). Opiate analgesics as negative modulators of adult hippocampal neurogenesis: Potential implications in clinical practice. Frontiers in Pharmacology, 8. https://doi.org/10.3389/fphar.2017.00254.

Download references

Acknowledgements

This work was supported by grants from the Grant Agency of the Czech Republic no. 17-07070S and 17-05903S, the projects LO1309 and LO1508 from the Ministry of Education, Youth and Sports of the Czech Republic, institutional support of the Institute of Physiology (RVO:6798523) and by the project SVV 244-260435 from Charles University, Prague.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Holan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holan, V., Cechova, K., Zajicova, A. et al. The Impact of Morphine on the Characteristics and Function Properties of Human Mesenchymal Stem Cells. Stem Cell Rev and Rep 14, 801–811 (2018). https://doi.org/10.1007/s12015-018-9843-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-018-9843-8

Keywords

Navigation