Skip to main content

Advertisement

Log in

Serofendic acid protects from iodinated contrast medium and high glucose probably against superoxide production in LLC-PK1 cells

  • Original Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

It is well known that patients with chronic kidney disease, including diabetic nephropathy, often develop cardiovascular diseases. In case of radiographic procedures, reduced renal function may be deteriorated by the use of iodinated contrast medium (CM). This is known as CM-induced nephropathy. In this study, we have focused on the mechanisms of this type of injury in diabetic nephropathy and the preventive effects of serofendic acid.

Methods

We evaluated the cytotoxicity of CM and high glucose on tubular epithelial cells using an LLC-PK1 cell line, and measured cell viability with an alamarBlue assay. We further evaluated superoxide production levels measured by dihydroethidium. We also examined the protective effects of serofendic acid on cytotoxicity with superoxide production of CM and high glucose.

Results

CM reduced cell numbers in a dose-dependent and time-dependent manner in LLC-PK1 cells. Furthermore, cytotoxicity of CM in diluted concentration was additively influenced by high glucose. CM and high glucose increased superoxide production, which was evaluated by the response to dihydroethidium, and was suppressed by serofendic acid. Cytotoxicity of CM, high glucose, and H2O2 was suppressed by serofendic acid, as well as the suppression by N-acetylcysteine on CM toxicity. Interestingly, the recovery by serofendic acid in H2O2- and high glucose-induced cellular injury was to the basal level, in contrast with the partial recovery from CM-induced injury. Finally, serofendic acid suppressed CM-induced injury and high glucose-induced apoptosis.

Conclusions

These results suggest that CM and high glucose induce cytotoxicity and oxidative stress in LLC-PK1 cells and that serofendic acid protects the injury probably from superoxide generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351:1296–305.

    Article  CAS  PubMed  Google Scholar 

  2. Yamagata K, Iseki K, Nitta K, Imai H, Iino Y, Matsuo S, et al. Chronic kidney disease perspectives in Japan and the importance of urinalysis screening. Clin Exp Nephrol. 2008;12:1–8.

    Article  PubMed  Google Scholar 

  3. Liss P, Persson PB, Hansell P, Lagerqvist B. Renal failure in 57 925 patients undergoing coronary procedures using iso-osmolar or low-osmolar contrast media. Kidney Int. 2006;70:1811–7.

    Article  CAS  PubMed  Google Scholar 

  4. Tervahartiala P, Kivisaari L, Kivisaari R, Vehmas T, Virtanen I. Structural changes in the renal proximal tubular cells induced by iodinated contrast media. Nephron. 1997;76:96–102.

    Article  CAS  PubMed  Google Scholar 

  5. Hizoh I, Haller C. Radiocontrast-induced renal tubular cell apoptosis: hypertonic versus oxidative stress. Invest Radiol. 2002;37:428–34.

    Article  PubMed  Google Scholar 

  6. Yano T, Itoh Y, Sendo T, Kubota T, Oishi R. Cyclic AMP reverses radiocontrast media-induced apoptosis in LLC-PK1 cells by activating A kinase/PI3 kinase. Kidney Int. 2003;64:2052–63.

    Article  CAS  PubMed  Google Scholar 

  7. Thuraisingham RC, Nott CA, Dodd SM, Yaqoob MM. Increased nitrotyrosine staining in kidneys from patients with diabetic nephropathy. Kidney Int. 2000;57:1968–72.

    Article  CAS  PubMed  Google Scholar 

  8. Allen DA, Harwood SM, Varagunam M, Raftery MJ, Yaqoob MM. High glucose-induced oxidative stress causes apoptosis in proximal tubular epithelial cells and is mediated by multiple caspases. FASEB J. 2003;17:908–10.

    Article  CAS  PubMed  Google Scholar 

  9. Terauchi T, Asai N, Yonaga M, Kume T, Akaike A, Sugimoto H. Synthesis and absolute configuration of serofendic acids. Tetrahedron Lett. 2002;43:3625–8.

    Article  CAS  Google Scholar 

  10. Kume T, Kawai Y, Yoshida K, Nakamizo T, Kanki R, Sawada H, et al. Protective effect of serofendic acid on glutamate-induced neurotoxicity in rat cultured motor neurons. Neurosci Lett. 2005;383:199–202.

    Article  CAS  PubMed  Google Scholar 

  11. Durham JD, Caputo C, Dokko J, Zaharakis T, Pahlavan M, Keltz J, et al. A randomized controlled trial of N-acetylcysteine to prevent contrast nephropathy in cardiac angiography. Kidney Int. 2002;62:2202–7.

    Article  CAS  PubMed  Google Scholar 

  12. Fung JW, Szeto CC, Chan WW, Kum LC, Chan AK, Wong JT, et al. Effect of N-acetylcysteine for prevention of contrast nephropathy in patients with moderate to severe renal insufficiency: a randomized trial. Am J Kidney Dis. 2004;43:801–8.

    Article  CAS  PubMed  Google Scholar 

  13. Springer JE, Azbill RD, Carlson SL. A rapid and sensitive assay for measuring mitochondrial metabolic activity in isolated neural tissue. Brain Res Brain Res Protoc. 1998;2:259–63.

    Article  CAS  PubMed  Google Scholar 

  14. Romano G, Briguori C, Quintavalle C, Zanca C, Rivera NV, Colombo A, Condorelli G (2008) Contrast agents and renal cell apoptosis. Eur Heart J 2008 May 8 [Epub ahead of print].

  15. Kendig DM, Tarloff JB. Inactivation of lactate dehydrogenase by several chemicals: implications for in vitro toxicology studies. Toxicol In Vitro. 2007;21:125–32.

    Article  CAS  PubMed  Google Scholar 

  16. Becker LB, van den Hoek TL, Shao ZH, Li CQ, Schumacker PT. Generation of superoxide in cardiomyocytes during ischemia before reperfusion. Am J Physiol Heart Circ Physiol. 1999;277:H2240–6.

    Article  CAS  Google Scholar 

  17. Sayen MR, Gustafsson AB, Sussman MA, Molkentin JD, Gottlieb RA. Calcineurin transgenic mice have mitochondrial dysfunction and elevated superoxide production. Am J Physiol Cell Physiol. 2003;284:C562–70.

    Article  CAS  PubMed  Google Scholar 

  18. Nash K, Hafeez A, Hou S. Hospital-acquired renal insufficiency. Am J Kidney Dis. 2002;39:930–6.

    Article  PubMed  Google Scholar 

  19. Moreau JF, Helenon O, Kinkel K, Melki P. Assessment of the patient with renal disease: conventional uroradiology and contrast media. In: Davison AM, Cameron JS, Grünfeld J-P, Kerr DNS, Ritz E, Winearls CG, editors. Oxford textbook of clinical nephrology, vol 1, 2nd edn. New York: Oxford University Press; 1998. p. 93–132.

    Google Scholar 

  20. Yano T, Itoh Y, Kubota T, Sendo T, Koyama T, Fujita T, et al. A prostacyclin analog prevents radiocontrast nephropathy via phosphorylation of cyclic AMP response element binding protein. Am J Pathol. 2005;166:1333–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zager RA, Johnson AC, Hanson SY. Radiographic contrast media-induced tubular injury: evaluation of oxidant stress and plasma membrane integrity. Kidney Int. 2003;64:128–39.

    Article  CAS  PubMed  Google Scholar 

  22. Nowzari FB, Davidson SD, Eshghi M, Mallouh C, Tazaki H, Konno S. Adverse effects of oxidative stress on renal cells and its prevention by antioxidants. Mol Urol. 2000;4:15–9.

    PubMed  CAS  Google Scholar 

  23. Haeussler U, Riedel M, Keller F. Free reactive oxygen species and nephrotoxicity of contrast agents. Kidney Blood Press Res. 2004;27:167–71.

    Article  CAS  PubMed  Google Scholar 

  24. Pryor W, Squadrito G. The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am J Physiol. 1995;268:L699–772.

    PubMed  CAS  Google Scholar 

  25. Beckman JS. Oxidative damage and tyrosine nitration from peroxynitrite. Chem Res Toxicol. 1996;9:836–44.

    Article  CAS  PubMed  Google Scholar 

  26. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA. 1990;87:1620–4.

    Article  CAS  PubMed  Google Scholar 

  27. Harwood SM, Allen DA, Raftery MJ, Yaqoob MM. High glucose initiates calpain-induced necrosis before apoptosis in LLC-PK1 cells. Kidney Int. 2007;71:655–63.

    Article  CAS  PubMed  Google Scholar 

  28. Prabhakar S, Starnes J, Shi S, Lonis B, Tran R. Diabetic nephropathy is associated with oxidative stress and decreased renal nitric oxide production. J Am Soc Nephrol. 2007;18:2945–52.

    Article  CAS  PubMed  Google Scholar 

  29. Marwaha A, Lokhandwala MF. Tempol reduces oxidative stress and restores renal dopamine D1-like receptor-G protein coupling and function in hyperglycemic rats. Am J Physiol Renal Physiol. 2006;29:F58–66.

    Article  CAS  Google Scholar 

  30. Zhang Y, Wada J, Hashimoto I, Eguchi J, Yasuhara A, Kanwar YS, et al. Therapeutic approach for diabetic nephropathy using gene delivery of translocase of inner mitochondrial membrane 44 by reducing mitochondrial superoxide production. J Am Soc Nephrol. 2006;17:1090–101.

    Article  CAS  PubMed  Google Scholar 

  31. Kume T, Asai N, Nishikawa H, Mano N, Terauchi T, Taguchi R, et al. Isolation of a diterpenoid substance with potent neuroprotective activity from fetal calf serum. Proc Natl Acad Sci USA. 2002;99:3288–93.

    Article  CAS  PubMed  Google Scholar 

  32. Littlefield LG, Joiner EE, Colyer SP, Sayer AM, Frome EL. Modulation of radiation-induced chromosome aberrations by DMSO, an OH radical scavenger. 1: dose-response studies in human lymphocytes exposed to 220 kV X-rays. Int J Radiat Biol. 1988;53:875–90.

    Article  CAS  Google Scholar 

  33. Takeda T, Akao M, Matsumoto-Ida M, Kato M, Takenaka H, Kihara Y, et al. Serofendic acid, a novel substance extracted from fetal calf serum, protects against oxidative stress in neonatal rat cardiac myocytes. J Am Coll Cardiol. 2006;47:1882–90.

    Article  CAS  PubMed  Google Scholar 

  34. Kume T, Taguchi R, Katsuki H, Akao M, Sugimoto H, Kaneko S, et al. Serofendic acid, a neuroprotective substance derived from fetal calf serum, inhibits mitochondrial membrane depolarization and caspase-3 activation. Eur J Pharmacol. 2006;542:69–76.

    Article  CAS  PubMed  Google Scholar 

  35. Orzechowski A, Łokociejewska M, Muras P, Hocquette JF. Preconditioning with millimolar concentrations of vitamin C or N-acetylcysteine protects L6 muscle cells insulin-stimulated viability and DNA synthesis under oxidative stress. Life Sci. 2002;71:1793–808.

    Article  CAS  PubMed  Google Scholar 

  36. Kelly AM, Dwamena B, Cronin P, Bernstein SJ, Carlos RC. Meta-analysis: effectiveness of drugs for preventing contrast-induced nephropathy. Ann Intern Med. 2008;148:284–94.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiko Ono.

About this article

Cite this article

Kitamura, O., Uemura, K., Kitamura, H. et al. Serofendic acid protects from iodinated contrast medium and high glucose probably against superoxide production in LLC-PK1 cells. Clin Exp Nephrol 13, 15–24 (2009). https://doi.org/10.1007/s10157-008-0081-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-008-0081-2

Keywords

Navigation