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ABSTRACT

Epigenetic features such as histone and DNA
modifications are important mechanisms for the
regulation of gene expression and for cell and tissue
development. As a result, extensive efforts are currently
undertaken using next-generation sequencing (NGS) to
generate vast amounts of data regarding the epigenetic
regulation of genomes. Several tools and frameworks for
the processing of these NGS data have been developed
in the last decade. Nevertheless, each user still bares
the challenge to integrate all these tasks to perform the
analysis. This procedure is not only tedious but also
resource-intensive due to the putative large processing
power involved. To automate, standardize and speed up
the handling of NGS data, with focus on ChIP-seq data,
we present a user-friendly pipeline that automatically
processes a list of sequencing data files and returns a
ready-to-use purified table for subsequent modelling or
analysis attempts.

KEYWORDS

Epigenetics; Histone modification; Big data; Pipeline;
Genome modelling; ChIP-seq; NGS;

AVAILABILITY AND REQUIREMENTS

• Project name: Next Gen Bender
• https://github.com/SusanneGerber/

Epigenetics-Pipeline

• Systems: Linux, Slurm and LSF
• License: GNU

INTRODUCTION

Epigenetics is a strong component of living systems,
that comprise all the mechanisms helping to convert
a genotype (sum of all genetic information) of an
organism into phenotypic traits (for instance, color of
hair or number of digits) [1]. On the molecular side,
epigenetic features regulate genes and usually maintain
their regulation at a sustained pace through the different
cell divisions during development, a mechanism called
epigenetic inheritance [2]. Before the genome era, the

molecular relationship between genetics and epigenetics
was poorly understood. The situation changed with the
development of molecular methods to study genome
function regulation and structure, such as ChIP-seq
(Chromatin Immunoprecipitation sequencing, to study
binding of features to DNA), RNA-seq (to study gene
expression) or bisulfite sequencing (to study DNA
methylation, a modification that affects gene expression
and DNA folding). Data generated with these methods
(epitomized by the term "genomics") have recently
shown emerging evidence for a role of epigenetics
in gene regulation, gene expression and pathologies
such as cancer and neurodegenerative diseases [3–
5]. Genomics has also been crucial in revealing the
influence of epigenetics in embryonic development [6]
and aging [7]. Because of these new insights, extensive
efforts are currently undertaken to study and map
epigenetic features in various tissues and organisms [8,
9].

The standard methods for the analysis of epigenetic
features, such as ChIP-seq or RNA-seq require
next-generation sequencing (NGS). NGS is a cost and
time efficient way to acquire knowledge about features
related to a given genomic position. These features
can be roughly divided into three categories: the
functional features, such as binding of transcription
factors or regulators, performed via the ChIP-seq
technology and affiliated methods; structural features,
via direct structural information (Hi-C) or by probing
the accessibility of DNA to binding factors (ATAC-seq,
FAIRE-seq); finally, regulatory features, mainly via
histone modifications, which directly or indirectly
influence the binding of factors to DNA and so play
a major role in epigenetic regulation of the genome.
Combinations or changes of these three types of
features are usually associated to different status of
chromatin. Chromatin can roughly be divided into active,
inactive and repressed state, with more complex states
that remain to be investigated.

In order to understand the intertwined mechanics
of the different epigenetic features available (such
as histone modifications and DNA methylation
sites), several modeling approaches have been
used previously: Markov Models [10, 11], Bayesian
methods [12] or Boolean networks [13]. Polymer
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models derived from Hi-C data, have also contributed
to understanding the relationship between epigenetic
features and the structure of the DNA [14]. As these
methods usually require the acquisition of information
(in the definition of information theory [15]) by the
description of "peaks" (a cluster of sequencing events
associated to a genomic position or region that form
one unit of information), it would be useful to have
an automated procedure to generate ready-to-use
information tables from raw NGS data. Several pipelines
have been released to process NGS data, either as
standalone software (KNIME [16] and SeqAn [17]),
or online (Galaxy, Mobyle [18]). Nevertheless, these
tools provide output files listing peaks that require
further processing before modelling can be performed
(SeqAn, also requires skills in C++ scripting), or
deliver information which is difficul to process further,
such as genomic functional annotation (case of
KNIME). Pipelines can be also rather sophisticated and
require investment in the computational design of the
pipeline from the user (SeqAn, already mentioned, or
Conveyor [19]).

To simplify procedures and give a comprehensible
output ready for genome modelling and analysis, we
developed a pipeline that takes raw sequencing files
generated from ChIP-seq experiments as input and
extracts all the non-redundant epigenetic information
they contain via a peak calling step. Overlap between
the peaks of the different features studied is then
assessed to compare co-occurence of features at any
place on the genome. Finally, the different peaks are
presented in a table where each column is a feature
and each row a peak. For each peak detected in
any ChIP-seq experiment, the pipeline thus computes
the status of the other samples at the exact same
position via feature-to-feature comparisons such as
correlations or clustering. As a result, this table contains
exhaustive epigenetic information located in the raw
input sequencing files. The pipeline handles all standard
tasks used in NGS processing such as downloading of
sequences, quality control step, alignment to reference
genomes and peak calling. Compared to other tools
for automated ChIP-seq processing such as [20], who
focus on functional peaks related to genes and overall
visualization, our contribution lies in the presentation
of the results in an information format ready to use
for modellers and analyst. The pipeline can be easily
adapted to include additional types of sequencing data,
for instance DNA methylation states or gene expression
data.

METHODS

Pipeline Overview

An overview of the different steps covered by the
pipeline is presented in Figure 1. The code is written
in Python 3 and uses a CSV file as input. A first step
of the analysis is to set the different global variables: (i)
name of the input file, (ii) number of processors available,
(iii) number of parallel processes to use in order to

Figure 1: Overview of the pipeline.
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enhance processing speed. The input file contains the
names of the different epigenetic marks to consider,
the associated file names containing the Chip-Seq data
and eventually the different URL necessary to download
them. Accepted file-formats are the standard formats
fastq (usually compressed) or Sequence Read Archive
(SRA). Both formats contain sequences of reads along
with metadata such as sequencing quality. URL of files
are not mandatory and the user has the liberty to either
use his own data or to refer to public SRA files via their
identifiers. By reading the CSV input file, the pipeline
creates an array of epigenetic marks to be downloaded
for each mark and a URL for each file.

The pipeline follows a protocol of tasks launched
for each feature to be analyzed, and are parallelized
whenever possible. Firstly, the SRA files are processed
with fastq-dump to generate fastq files. Afterwards,
a quality control (QC) test is performed to skip or
trim sequence files with low quality. For this purpose,
fastq files are tested with FastQC (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/)
for different measures such as quality of sequencing,
and sequence bias. If the quality is too low and providing
that the user allows for it, sequences of poor quality
can be automatically removed from the analysis, or
trimmed with custom parameter value. The fastq files
which have passed the QC step are then aligned to the
reference genome (using Bowtie 2 [21]) and saved as
SAM files. The SAM files from biological replicates are
then merged with SAMtools [22] and compressed as
BAM files. The BAM files become sorted and indexed
with SAMtools for faster access. Afterwards the peak
calling step is performed by MACS2 [23] for each file
and peaks are saved as a BED file.

To create the bed file containing the information
merged from the different ChIP-seq sequence files, the
first file in the list of marks is compared with the following
peak bed file in the list. The intersection procedure
of the BEDtools software suite finds the overlap region
of two peaks and leaves out the non-overlapping part
(command "BEDtools subtract"). Peaks are merged if
they overlap by at least 50% of their width, a value
that we selected to efficiently merge peaks from two
ChIP-seq which appear by sight to be at the same
position (for instance at a promoter start site). The
procedure guarantees that only unique peaks are saved
in the final output bed file. This process is repeated
until all unique peaks are added, sorted and saved in
the master file. Finally, the pipeline calls the R package
QuasR [24]. This package provides tools to quantify
and analyse sequence reads from NGS platforms, in
order to find the enrichment values for each mark at the
positions of the peaks, and normalize data in a single
step. At the position of a given peak, we define the value
of enrichment above input of normalized counts qi as
follows:

qi =
Feature counts

Feature total counts
Input counts

Input total counts

, (1)

where "total counts" refer to the amount of reads found
in the observed sample, either the epigenetic feature
considered or the input. The division by the total amount

of counts ensures to take size factors into account,
such as variations in the overall number of reads during
sequencing. Division by input ensures that the values
of the features are not biased by background noise but
true signals. Prior to the computing of qi, we add a
pseudocount of 1 to the values of counts equal to zero.
This avoids division by zero when input is equal to zero
and allows the comparisons between samples even in
cases where one of them might be equal to zero.

Finally, the pipeline generates a table where the
columns are associated to marks and the rows to unique
peaks. The table is ready to be processed by the user
for modelling or genome analysis. The Python code
of the pipeline is provided for two query system: LSF
(https://www.ibm.com/support/knowledgecenter/
en/SSETD4_9.1.3/QSG/lsf9.1.3_quick_start.html)
and Slurm [25].

The software is available at https://github.com/

SusanneGerber/Epigenetics-Pipeline

APPLICATION

We tested the pipeline on 12 histone modifications
published by Pope et al., 2014 [26], and investigated the
relationships between epigenetic features during early
development. Embryonic stem cells (ESC) used in the
study are a prominent model for epigenetics, as very
important epigenetic remodelling events occur during
development, thus providing a perfect platform to study
epigenetics. Besides, the dataset from Pope et al.
is a good source for ChIP-seq data as they provide
about 50 different features for ESC, including histone
modifications and transcription factors. To execute this
example analysis, we run the pipeline on Mogon, the
supercomputer of the university of Mainz, delivering
the complete analysis for 21 sample fastq files in a
wallclock-time of approximately 5 hours. The job was
running on 32 cores of a AMD Opteron 6272 node
(Cores frequency: 2.1 Ghz). Number of threads was
critical. For instance, duration of the bowtie2 step was
191 minutes for 2 threads versus 1 minute for 32 threads.

In the resulting heatmap (Figure 2) the correlation
between different marks is visible, associated to three
distinct regions of different functionality, corresponding
to active, inactive and deeply condensed chromatin. The
correlations found seem to agree with rules of epigenetic
associations published in previous major genomic
studies (e.g. the H3K9 and H3K14 [27]). Several
studies [11, 26, 28–30] classified the mammalian
genome into three major epigenetic groups: (i) enriched
in mark H3K4me3 and associated to active genes, (ii)
H3K27me3 associated to rather inactive genes that are
still activatable, (iii) H3K9m3 is mostly associated to
deeply repressed chromatin. Here, we have shown
that we can retrieve those clusters using our custom
procedure (Figure 2, right panel). This rather simple
example demonstrates the potential of the pipeline to
help modellers and computational biologists to convert
genomic data into information tables immediately usable
for modelling and genome analysis.
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Figure 2: Correlation plot between epigenetic marks generated with the information table produced by the pipeline (using R
package QuasR to calculate enrichment values and heatmap.2 command of package gplots). Left: heatmap with no clustering.
Right: Three different regions are distinguished using hierarchical clustering: (1) Marks usually associated with gene inactivity; (2)
marks associated with gene activity; (3) cluster associated with deeply condensed chromatin.

CONCLUSION

The pipeline presented here utilizes several
well-known genomic tools and combines their outputs
into one information table summarizing all the peaks
found in one or multiple samples. This table is for
further investigations of correlations between multiple
epigenetic marks. Overall, we believe that the pipeline
will be very valuable for all scientists working in the area
of computational genomics as it delivers userfriendly
information tables that can feed new algorithms or
models, and is easy to implement on any workstation or
server.

ACKNOWLEDGEMENTS

The project and the work of RD was partly funded
by the Impulsfonds Forschungsinitiative Rheinland-Pfalz
from the JGU “Deciphering cell identity and function
using single-cell data analysis”. The work of SG and DF
was funded by the Center for Computational Sciences in
Mainz (CSM).

Parts of this research were conducted using
the supercomputer Mogon and/or advisory services
offered by Johannes Gutenberg University Mainz
(hpc.uni-mainz.de), which is a member of the AHRP and
the Gauss Alliance e.V.

The authors gratefully acknowledge the computing
time granted on the supercomputer Mogon at Johannes
Gutenberg University Mainz (hpc.uni-mainz.de).

AUTHOR CONTRIBUTIONS

RD implemented the Slurm pipeline and wrote the
article. MW implemented the LSF pipeline. DF designed
the study, supervised the project, implemented the

classical pipeline and edited the text. SG supervised the
project and edited the text.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ABBREVIATIONS

BAM: Binary SAM file

BED: Browser Extensible Data

ChIP-seq: Chromatin Immunoprecipitation Sequencing

H3K27me3: Histone 3 Lysine 27 Trimethylaton

H3K4me3: Histone 3 Lysine 4 Trimethylaton

H3K9me3: Histone 3 Lysine 9 Trimethylaton

NGS: Next-Generation Sequencing

SAM: Sequence Alignment Map
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