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Abstract

With computer software pervading every aspect of our lives, vulnerabilities pose an
active threat. Moreover, with shorter software development cycles and a security-as-
an-afterthought mindset, vulnerabilities in shipped code are inevitable. Therefore,
recognizing and fixing vulnerabilities has gained in importance. At the same time,
there is a demand for methods to diagnose vulnerabilities within the software
development process.

This dissertation introduces compiler assisted vulnerability assessment, a novel ap-
proach that brings together techniques from program analysis and software testing
for recognizing vulnerabilities as software is written. The main idea behind our
approach is to leverage compile-time analysis to abstract program information that is
relevant for vulnerability assessment from source code. Our analysis is targeted at an
in-memory code representation that exposes program syntax and semantics, making
it both fast and precise. We show that our approach not only enables identification
of well-studied vulnerability classes such as buffer overflows but also assists software
testing and regression analysis. To this end, we develop three different methods
for software vulnerability assessment, namely, a method to identify vulnerabilities
spread across multiple source files, a method to infer the input format of parsing
applications to test them more effectively, and a method to perform vulnerabil-
ity template matching from fuzzer crashes. These methods address distinct tasks
encountered by security practitioners on a regular basis. In doing so, they show
how program-centric analyses and input-centric testing can complement each other
towards vulnerability assessment.

We evaluate our methods on popular open-source software (OSS), quantifying their
benefit in terms of number of new vulnerabilities exposed, time to expose vulner-
abilities, and test coverage improvement. Our tools have found tens of zero-day
vulnerabilities in production software such as Open vSwitch and tcpdump, and
improved test coverage by 10-15%. In controlled settings, they have speeded up
the time to vulnerability exposure by an order of magnitude. Our work shows that
compiler assisted analysis has the potential to reduce the likelihood of vulnerabil-
ities propagating to production software. More importantly, it shows that static
program analysis holds promise for advancing the state-of-the-art in vulnerability
assessment.






Zusammenfassung

Computersoftware durchdringt mittlerweile beinahe jeden Aspekt des alltdglichen
Lebens—dies lasst Schwachstellen in Computersoftware zu einer aktiven Bedro-
hung werden. Dariiber hinaus sind Schwachstellen durch kiirzere Softwareentwick-
lungszyklen und durch Entwicklungsprozesse, in denen Sicherheit als nachtrégliche
und nebensichliche Adjustierung betrachtet wird, unvermeidbar. Daher hat das
Erkennen und Beheben von Schwachstellen an Bedeutung gewonnen. Gleichzeitig
besteht Bedarf an Methoden zur Diagnose von Schwachstellen innerhalb des Softwa-
reentwicklungsprozesses selbst.

Diese Dissertation stellt Compiler-gestiitzte Schwachstellenanalyse vor—einen neuar-
tigen Ansatz, welcher Techniken aus der statischen Programmanalyse und dem
Software Testing kombiniert, um Schwachstellen noch wéhrend des Entwick-
lungsprozesses zu erkennen. Die Grundidee des Ansatzes ist hierbei, compile-
time Analyse zu nutzen um diejenigen Informationen iiber das Programm zu ex-
trahieren, die relevant fiir die Schwachstellenanalyse des Quellcodes sind. Ziel
unserer Analyse ist eine in-memory Représentation des Codes, welche Syntax und
Semantik enthélt und dadurch sowohl schnell als auch prézise ist. Wir zeigen auf,
dass unser Ansatz nicht nur die Analyse von bereits gut erforschten Schwachstel-
lenarten wie zum Beispiel Pufferiiberldufen ermdéglicht, sondern auch Software
Testing und Regressionsanalyse unterstiitzt. Hierzu entwickeln wir drei Metho-
den zur Schwachstellenanalyse: 1) Eine Methode um Schwachstellen, welche {iber
mehrere Quellcode-Dateien verteilt sind, zu finden, 2) eine Methode zur Ermittlung
des Eingabeformats von Parser Applikationen, wodurch diese effizienter getestet
werden konnen und 3) eine Methode, um Vulnerability template matching von
durch Fuzzing identifizierten Abstiirzen durchzufiihren. Diese Methoden helfen
bei der Losung von verschiedenartigsten Problemstellungen, welche von Sicher-
heitsexperten taglich angetroffen werden. Insgesamt zeigen die Methoden so, wie
sich Programm-zentrierte Analysen und Eingabe-zentrierte Tests zum Zweck der
Schwachstellenanalyse gegenseitig ergédnzen konnen.

Wir evaluieren unsere Methoden anhand von populdrer Open-Source-Software
(0SS). Dabei quantifizieren wir ihren Nutzen hinsichtlich entdeckter Schwachstellen,
der Dauer bis zur Entdeckung der Schwachstelle sowie der Verbesserung der Testab-
deckung. Unsere Tools haben in Produktionssoftware, wie z.B. Open vSwitch und
tcpdump, Dutzende von Zero-Day-Schwachstellen gefunden und die Testabdeckung
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um 10-15% verbessert. In kontrollierten Testumgebungen haben sie die Zeit bis zum
Aufdecken der Schwachstelle um eine Grofdenordnung verkiirzt.

Unsere Arbeit zeigt, dass Compiler-gestiitzte Analyse das Potenzial hat, die
Wahrscheinlichkeit des Verbleibens von Schwachstellen in Produktionssoftware
zu verringern. Vor allem zeigt diese Arbeit, auch dass die statische Programmanalyse
eine vielversprechende Technik ist, um den aktuellen Stand der Schwachstellenanal-
yse weiter auszubauen.
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Introduction

Every program has (at least) two purposes: the one for which it was written
and another for which it wasn't.

— Alan Perlis, Epigrams on Programming

We live in the so-called “Information Age” in which our reliance on computer systems
is striking. Using digital services such as Internet banking and electronic commerce
has become second nature to us. Computer infrastructure is the backbone of the
modern economy, responsible for information storage, processing, and transmission
at scale. Needless to say, we depend on the correct operation of computer systems.
Software defects, or bugs, undermine our reliance on them. Of particular concern
are software vulnerabilities, bugs that may be leveraged by a motivated adversary to
cause intentional harm.

In our highly inter-connected world, vulnerabilities equip adversaries to disrupt day-
to-day operations at a global scale. One of the earliest examples of this phenomenon
is the Morris worm [115], which, in 1988, effectively brought down thousands of
computers by exploiting, among others, a buffer overflow vulnerability in the fingerd
network service. Three decades later, software vulnerabilities continue to expose
digital infrastructure to widespread attacks. Indeed, the impact of present-day
attacks is heightened by the high degree of interconnectedness of computer systems.
Last year, the Wannacry worm [42] exploited a vulnerability in the Microsoft server
message block (SMB) server implementation [99] to lock down machines with
ransomware, bringing hospital services to a halt [70]. These incidents underscore
the need for software vulnerability assessment.

Vulnerability discovery forms the basis of software vulnerability assessment. At
its core, vulnerability discovery is a search problem whose aim is finding program
defects that provide leverage to attackers. This distinguishes vulnerability discovery
from bug discovery whose aim is finding program defects regardless of their utility
to attackers. Therefore, a key concern of vulnerability discovery is reasoning about
program behavior from an offensive perspective. Software vulnerability assessment
is non-trivial because vulnerabilities are corner cases that escape attention under

normal operating conditions.



1.1

Prior work addresses the software vulnerability assessment problem using three
approaches that we will call input-centric, program-centric, and hybrid. Input-
centric approaches develop run time mechanisms to monitor program behavior [135,
163, 108] and generate input that is likely to trigger vulnerabilities [56, 59, 117,
21, 57, 22]. Program-centric approaches focus on analyzing program syntax and
semantics to uncover vulnerabilities in source code [152, 45, 89, 77, 159]. Hybrid
approaches [142, 11, 101, 34, 153] combine both input and program centric
approaches to assist in specific vulnerability assessment tasks such as checking
input sanitization and generating vulnerability signatures. Although prior work
has significantly advanced vulnerability discovery, diagnosis of vulnerabilities as
software is written is a largely unaddressed problem.

In this dissertation, we address the problem of early vulnerability diagnosis. Our
aim is to develop vulnerability assessment tools that can be integrated into the
software development lifecycle so that vulnerabilities are detected before software
is shipped to end-users. Our approach brings together concepts from program
analysis and testing while benefiting from advances in compiler technology. In
particular, we present program analysis methods that are adaptable to both program
and input centric paradigms and practical enough to discover vulnerabilities in
production software. In the rest of this chapter, we introduce the reader to the
task of vulnerability assessment and ideas from program analysis. Subsequently, we
briefly describe our approach and proceed to highlight the primary contributions
of this dissertation. We conclude this chapter with an outline of this thesis, briefly
summarizing the content of each chapter. We discuss related work separately in
each of the following chapters.

Vulnerability Assessment

Vulnerability assessment is a recent addition to computer security research. In
contrast to intrusion detection [5], vulnerability assessment is concerned with the
discovery of software vulnerabilities even before they may manifest as attacks. The
Internet Security Glossary (IETF RFC 4949) [111, page 333] defines a vulnerability
as follows.

Definition 1.1. Vulnerability is a flaw or weakness in a system’s design, implemen-
tation, or operation and management that could be exploited to violate the system’s
security policy.

1 Introduction



Security policies usually center around one or more of the following security require-
ments: maintaining confidentiality, integrity, or availability [15], colloquially known
as the C-I-A triad. Thus, vulnerabilities are system defects that permit violation of the
C-I-A triad. We make two qualifications to Definition 1.1 to present the scope of our
work. First, we exclude vulnerabilities in the operational and management aspects
of a system so that we can focus on vulnerabilities in its design and implementation.
Second, we consider vulnerabilities in computer software only, excluding vulnerabil-
ities in the hardware and firmware components of a typical computer system. This
permits us to assess vulnerabilities in a computer program in isolation.

The definition of vulnerability assessment follows Definition 1.1.

Definition 1.2. Vulnerability assessment is the systematic examination of a system
to identify vulnerabilities.

Central to vulnerability identification is assessing attacker leverage. The C-I-A triad
provides a basis for assessing the impact of a vulnerability at a policy level. However,
the empirical impact of a vulnerability is judged by the attacker’s ability to perform
one or more of the following malicious actions.

* Execute arbitrary code. An attacker may execute code of their choice on the
victim’s system. For example, they may leverage vulnerable code to install a
back door in a networked system.

* Disclose information. An attacker may steal private data on a victim system.
For example, they may exercise vulnerable code to steal victim’s cryptographic
private key.

* Deny service. An attacker may disrupt a widely-used service. For example,
they may exercise vulnerable code to repeatedly shut down a web service or
cause it to be flooded with requests so that it is effectively shut down.

For example, Listing 1.1 shows a code snippet from Open vSwitch containing an
exploitable buffer overflow vulnerability that was discovered by the author. The
vulnerability is in the function called parse_mpls that is responsible for parsing
MPLS packets sent to the switch from a remote end-point. parse_mpls accepts a
pointer to raw packet data datap as input and returns the number of MPLS labels
present in the packet as output (line 14). It does so by incrementing a local counter
for each parsed label until it encounters a label that has a set bit in the bit position
reserved by the MPLS standard for the last MPLS label [110]. parse_mpls then
returns the number of MPLS labels to the calling function miniflow_extract that

1.1 Vulnerability Assessment
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/* Pulls the MPLS headers at ’*datap’ and returns the count of them. */
static inline int
parse_mpls(void **datap, size_t *sizep)

{
const struct mpls_hdr *mh;
int count = 0;
while ((mh = data_try_pull(datap, sizep, sizeof #*mh))) {
count++;
if (mh->mpls_lse.lo & htons (1 << MPLS_BOS_SHIFT)) {
break;
}
¥
return MAX(count, FLOW_MAX_MPLS_LABELS);
}

/* Caller is responsible for initializing ’dst’ with enough storage for
* *x FLOW_U32S * 4 bytes. x*/
void
miniflow_extract (struct ofpbuf *packet,
const struct pkt_metadata *md,
struct miniflow *dst) {

void *data = ofpbuf_data(packet);

size_t size = ofpbuf_size(packet);

uint32_t *values = miniflow_values (dst);

struct mf_ctx mf { 0, values, values + FLOW_U32S };

/* Parse mpls. */

if (OVS_UNLIKELY(eth_type_mpls(dl_type))) {
int count;
const void *mpls = data;
count = parse_mpls(&data, &size);
miniflow_push_words(mf, mpls_lse, mpls, count);

}

Listing 1.1: Buffer overflow in Open vSwitch that permits remote code execution.

is responsible for copying the labels from the packet stream to a local data structure
called dst that is stack allocated (line 36).

However, not accounting for the fact that the input to the parse_mpls function
(packet data) is attacker controlled, it returns a maximum of the number of parsed
labels or a constant that denotes an upper bound on the number of MPLS labels (see
line 14, FLOW_MAX_MPLS_LABELS). Should the attacker send an Ethernet packet that
contains more than FLOW_MAX_MPLS_LABELS MPLS labels, the number returned by
parse_mpls leads to a stack buffer overflow in miniflow_extract. This vulnera-
bility has been shown to be quite severe, permitting a remote attacker to take full
control of data center infrastructure [146].

It is evident from our discussion that reasoning about program behavior, especially
in corner-cases such as this, is central to recognizing vulnerabilities and gauging

1 Introduction
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Bug Report

Analyzer m
Program Yes Programmer
P IsB?

X=42; % //.\‘
if (IM(5)) o / )

x=43; No a

Fig. 1.1.: Program analysis as a decision procedure for vulnerability identification.

their impact. Program analysis, a field of study that is focused on the automatic
analysis of program behavior, is well-suited for this task.

Program Analysis

Program analysis is concerned with the task of developing methods and techniques
for analyzing other programs. Typically, program analysis targeted at bug detection
is a decision procedure for the following question: Given source code of a program P
and an undesired program property B, does P exhibit B in at least one of all feasible
executions. If the answer to this question is yes, a bug report detailing the violation
is presented to the programmer. Figure 1.1 illustrates this setting.

There are two flavors of program analysis: dynamic and static. Dynamic program
analysis is the study of algorithms that reason about program behavior during its
execution. This field of study [14, 79, 155, 112, 135] has many useful applications
such as understanding program behavior and testing it for correctness. Dynamic
program analysis serves as a useful debugging aid, especially for vulnerability
assessment, because program behavior may be observed for specific executions.
However, because it is execution (and hence input) centric, observable program
behavior is limited by the number of distinct program inputs provided.

Static program analysis is the study of algorithms that reason about program behavior
without executing the program. This field of study is useful not only for designing
optimizing code compilers [3] but also tools that assist in software development,
including but not limited to software vulnerability assessment [80, 62, 33, 51, 67].
Although the application of program analysis for reasoning about program properties
is highly desirable, all non-trivial ! program properties are undecidable [130]. Even
though this appears to be a discouraging result, it does not detract from the utility

A non-trivial program property is one that is true for at least one program and false for at least one
program.

1.2 Program Analysis

5



1.2.1

of program analysis for solving practical problems such as making the program run
faster and finding vulnerabilities.

Since reasoning about non-trivial program properties is undecidable in general, a
program analyzer may make one of the following three choices:

* Unsound: May conclude program is buggy even when it is not
* Sound but incomplete: May conclude program is not buggy even when it is
* Non-terminating: Is sound and complete but may never terminate

Naturally, a non-terminating vulnerability detector is unappealing because program-
mers desire quick actionable advice. A sound vulnerability detector is desirable
because all flagged vulnerabilities are indeed real. For example, a fuzz testing tool
such as afl-fuzz is sound with regard to severe memory corruption vulnerabilities
because all program crashes discovered by it are caused by verifiable vulnerabilities.
However, sound tools inherently miss vulnerabilities, demanding complementary
techniques to increase confidence in the program. From a static program analysis
perspective, designing a sound vulnerability detector is notoriously difficult because
of two reasons. First, static analysis can not anticipate dynamic program properties
such as a memory allocation that is dependent on program input, because of which it
may miss real vulnerabilities. Second, static analyses approximate program behavior
to be tractable, making false negatives inevitable. Despite these constraints, even
unsound static program analysis can complement sound vulnerability detectors such
as fuzzers. There is always scope to design a static analyzer that makes more precise
approximations to cater to practical problems, a principle that is colloquially called
the full employment theorem for static program analysis designers.

Next, we introduce concepts central to static program analysis in general and
vulnerability identification in particular. First, we discuss different stages of program
analysis, namely, lexical, syntax, and semantic analysis. Second, we discuss data and
control flow analysis that are fundamental to understanding the flow of data and
program statements.

Analysis Stages
Lexical Analysis

Lexical analysis is one of the simplest forms of program analysis whose purpose is to
decompose the input program into chunks for subsequent analysis. Lexical analysis

1 Introduction
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accepts program source code as input and parses the program into sequences called
lexemes that hold meaning in the underlying programming language. Lexemes are
then tokenized such that each lexeme corresponds to a token. Although lexical
analysis is extremely fast, it provides little structural insight into the program. The
ITS4 scanner [152] is one of the earliest examples of a vulnerability analyzer based

on lexical analysis.

Syntax Analysis

Syntax analysis, also called parsing, takes tokens produced by lexical analysis as
input and produces a parse tree that encapsulates the underlying language grammar.
The parse tree is also called the abstract syntax tree (AST) since at this stage
concrete syntax such as variable names have been abstracted away. Syntax analysis
is also extremely fast, and although it provides structural insight into the program
it lacks an understanding of program semantics. The concept of vulnerability
extrapolation [160] is a good example of the use of abstract syntax for vulnerability
identification.

Semantic Analysis

Semantic analysis takes the abstract syntax tree of the program as input and checks
that the program conforms to language semantics. For example, type checking
is a semantic analysis that checks that each operator in the language definition
(such as addition) have operands of the same type. Semantic analysis is slower
compared to syntax analysis because it requires making multiple passes over a
program abstraction such as the control flow graph [31]. Livshits et al. [89] use a
semantic analysis technique called points-to analysis to find security vulnerabilities
in Java code.

Analysis Types

Data-Flow Analysis

Data-flow analysis refers to a collection of techniques that reason about the flow
of data in the program. Data-flow analysis is used by compilers towards code

optimization. For example, constant propagation is a data-flow analysis that seeks
to replace expressions that always evaluate to a constant value by the constant.

1.2 Program Analysis
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Fig. 1.2.: High level structure of a modern optimizing compiler depicting the placement of
our vulnerability analyzer.

Taint analysis [89, 133] is another example of data-flow analysis that is of particular
importance for vulnerability assessment. Taint analysis analyzes the flow of data
between two program points of interest: a source of potentially attacker controlled
data and a sink that performs some security sensitive operation.

Control-Flow Analysis

While data-flow analysis reasons about the flow of data in the program, control flow
analysis reasons about the flow of program statements. For example, a conditional
program statement such as if can have two outcomes, one in which the statement
in the scope of the if statement is executed and the other in which the program
statement following the if statement is executed. Compilers use the control flow
graph (CFG) data structure to reason about control flow. The CFG is a directed
graph in which nodes represent program statements and edges represent program
path chunks. Control flow analysis is essential to vulnerability identification because
by reasoning about the feasibility of program paths, it can tell us how a vulnerability
may be triggered.

Compiler Assisted Vulnerability Assessment

As we have seen, program analysis is well-suited for the task of vulnerability assess-
ment. However, performing early vulnerability diagnosis poses two challenges. First,
the task of vulnerability assessment should integrate with modern software devel-
opment lifecycle, otherwise programmers and testers will not get timely feedback.

1 Introduction



Second, since modern software is dynamic and is modified on a daily basis, vulnera-
bility analysis should be reasonably fast so that it may be performed continuously.
We require an analysis platform that addresses both these challenges while enabling
precise vulnerability diagnosis.

A compiler is an ideal analysis platform for this setting because it is not only a
standard component in the software development workflow but also permits fast
analysis. Indeed, compilers may be considered the most basic vulnerability analyzers
that point out defects in code. Naturally, extending the compiler framework to
perform more targeted vulnerability analysis is appealing. This is the key idea
behind our approach that we call compiler assisted vulnerability assessment. We use
the name to collectively refer to any form of compiler-based program analysis that is
useful for vulnerability assessment.

Figure 1.2 shows the architecture of a modern optimizing compiler and the place-
ment of our vulnerability analysis. As shown in Figure 1.2, a compiler is a program
that accepts source code as input and produces machine code as output. It may
be divided into two components: the front-end and the back-end. The former is
responsible for parsing source code and performing syntax and semantic analysis,
while the latter is responsible for generating optimal machine code.

The primary task of the compiler front-end is to check that the source program is well-
formed and understand program semantics toward code generation and optimization.
This requires the compiler to perform multiple stages of analysis to first understand
the meaning of program statements before attempting to produce a more optimal
version of the program. Specifically, well-formedness is checked using lexical and
syntax analysis and optimization is performed based on the outcome of semantic
analysis. Program insight gained through syntax and semantic analysis performed
by the compiler is also useful for vulnerability analysis because vulnerabilities
are ultimately a program property. Although the compiler back-end is primarily
concerned with code optimization, modern compiler back-ends such as LIVM [85]
permit whole program analysis that help diagnose vulnerabilities spread across
source files. Therefore, our analysis is modeled as plug-ins to the syntax and
semantic analyzers of a modern compiler front-end, occasionally taking advantage
of the global scope of a compiler back end for performing more precise analysis.

Before we can undertake the design and implementation of a vulnerability analyzer,
we need to understand program properties that characterize vulnerabilities. This
is the motivation behind the next chapter. The design space of compiler-based
techniques for vulnerability identification is constrained by the following factors.

1.3 Compiler Assisted Vulnerability Assessment
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Fig. 1.3.: A schematic illustration of our vulnerability discovery process and core contribu-
tion. Gray blocks are our novel contribution.

First, these techniques should address clear-cut tasks that are useful in the vulner-
ability diagnosis process. Second, they need to mesh together with the software
development workflow. These factors influence the design and implementation of
vulnerability assessment methods presented in Chapters 3-5.

Thesis Contribution

In this dissertation we address the problem of vulnerability assessment of open-
source software by combining concepts from program analysis and testing. We
present a program analysis framework based on a modern compiler infrastructure
for discovering memory corruption vulnerabilities in large object-oriented codebases
and network parsers.

Figure 1.3 shows a schematic overview of our contribution. Broadly speaking,
our proposed methods accept source code of program under analysis as input and
produce vulnerability reports as output. They may be applied at compile-time
(Chapter 3), prior to fuzz testing (Chapter 4), post fuzz testing (Chapter 5), or
post production (Chapter 2). The following contributions have made our work
possible.

1 Introduction



1.5

* Security Audit of Firefox OS: We perform the first security audit of Firefox
OS, an emerging web based smartphone OS, and uncover vulnerabilities that
manifest at the intersection of the web and smartphone paradigms. This work
serves as a stepping stone to understanding the requirements of and designing
a vulnerability analyzer (Chapter 2).

* Diagnosis of Distributed Vulnerabilities: We introduce a novel paradigm for
analysis of vulnerabilities that manifest across multiple software components in
large codebases, and demonstrate that our analysis is capable of flagging real
vulnerabilities. Our analysis comprises two stages to diagnose vulnerability
classes such as type confusion and use of uninitialized variable in large object
oriented codebases (Chapter 3).

 Static Analysis Guided Fuzzing: We propose the use of static program analy-
sis as a fuzzing aid, demonstrating that program analysis may be flexibly used
for vulnerability assessment. To enable this coupling, we leverage program
analysis to infer the format of network packet and file formats and feed the
resulting information to the fuzzer. We show that program analysis guided
fuzzing is better than baseline fuzzers in terms of test coverage, time to vul-
nerability exposure, and the number of vulnerabilities uncovered (Chapter 4).

* Static Vulnerability Template Matching: We develop a method to find repli-
cas of zero-day vulnerabilities found by fuzz testing, leveraging this method
to identify regressions in a production networking switch. To this end, we
propose a pipeline for automatically constructing vulnerability templates from
fuzzer crashes, and match them against the code base. This has helped identify
not only software regressions but new bugs that were in untested code paths
(Chapter 5).

We have open-sourced the tools developed during this thesis, namely Mélange [138],
Orthrus [139], and afl-sancov [137] under a GPL license. These tools have helped
diagnose and fix multiple vulnerabilities in open-source software.

Thesis Organization

This thesis consists of six chapters and an appendix. The first chapter serves as a
general introduction. In Chapters 2-5, we present our methods for vulnerability
assessment, their evaluation, and a discussion of related work. These chapters
have been written so that they may be read independently of each other. However,

1.5 Thesis Organization
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reading them in sequence is recommended. Chapter 2 emphasizes manual methods
while Chapters 3-5 emphasize semi-automated methods for vulnerability assessment.
Chapter 6 concludes this dissertation. Appendix A lists zero-day vulnerabilities that
were discovered and subsequently reported during the course of this dissertation. In
the following, we briefly summarize the content of the remaining chapters.

Chapter 2 We start with a brief introduction to web-based smartphone OS in
general and Firefox OS in particular. We proceed to perform a security audit of
Firefox OS using a penetration testing approach and discuss our findings. This work
serves as a motivation to develop tools for vulnerability discovery.

Chapter 3 We begin an investigation of the utility of compiler-based analysis for
vulnerability discovery. Focusing on the problem of identifying vulnerabilities spread
across source files and motivated by real-world vulnerabilities, we describe the
design and evaluation of a staged program analyzer that we call Mélange.

Chapter 4 We continue our discussion on compiler-based vulnerability assessment
by focusing on the problem of testing parsing applications. Motivated by the chal-
lenges specific to testing parsing applications whose behavior is heavily influenced
by the supplied input, we describe the design and implementation of a static anal-
ysis guided input inference engine that may be used to assist fuzz testing tools.
We demonstrate that this inference can improve program testing, leading to the
discovery of new vulnerabilities and increasing test coverage in production code.

Chapter 5 We briefly describe the challenges in performing regression testing,
another important task in vulnerability assessment. We introduce the reader to static
template matching and its application to regression analysis. We show that coupling
static analysis and fuzz testing is well-suited to tackle the problems of regression
analysis and the detection of recurring zero-day vulnerabilities. We evaluate our
method using a case study of a popular networking switch. This chapter is the last
of the three methods for compiler-based vulnerability assessment.

Chapter 6 We conclude this dissertation and present a summary of work carried
out. Finally, we present avenues for future work in the field.

1 Introduction



Appendix A We list zero-day vulnerabilities found during the course of this disser-
tation.
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A First Step in Vulnerability
Assessment

Smartphones have changed how we interact with the digital world, making services
available at our finger tips. Providing services via mobile applications—the mobile
application provisioning model—is the accepted norm today. This provisioning
model relies largely on a portable systems application programming interface (API)
so that applications can be written once and run on diverse hardware platforms.
Owing to its portability and maturity as a programming language, Java is a popular
choice for application development in the Android ecosystem.

In recent times, the idea of leveraging a web backend for smart devices has received
attention [72, 116, 93]. Mozilla’s efforts towards a web-based smartphone operating
system—called Firefox OS [124]—is a prominent example. Firefox OS comprises
a web backend—a JavaScript interpreter and a rendering engine—engineered on
top of the Linux kernel. Firefox OS applications written in HTML/JavaScript and
CSS, may be either hosted remotely on a server or packaged and hosted in a central
application store.

In this chapter, we perform a security audit of Firefox OS using manual source
code audits and a penetration testing approach [154]. This complements the static
analysis approach taken by Mozilla for Firefox OS applications [105]. Moreover, our
approach is well-suited to answer specific research questions such as: “How secure
is the enforcement of the same origin policy in Firefox OS?” and “Is TLS certificate
validation performed correctly?” Indeed, our goal is to understand specific security
challenges that arise at the intersection of mobile and web technologies.

The rest of this chapter is organized as follows. We begin by providing background
information on the Firefox OS architecture. Next, we briefly motivate the task of
performing a security assessment of Firefox OS. Subsequently, we present our study
methodology and discuss results of the study. This is followed by a discussion of
related work. We conclude the chapter with a discussion on the need for automated
and more scalable techniques for performing security audit of application and
systems software.

15
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Background

Firefox OS is a web operating system that comprises three components called Gonk,
Gecko, and Gaia. Gonk is similar in spirit to the Linux kernel used in the Android
stack. It abstracts the underlying hardware, providing system services such as
process management, privilege separation etc. Gecko comprises Mozilla’s JavaScript
interpreter (SpiderMonkey) and the web rendering engine that is responsible for
displaying HTML/CSS applications. Applications written in HTML/JavaScript/CSS
are run by Gecko. Finally, Gaia comprises the UI of Firefox OS. It consists of a set of
applications that are shipped with Firefox OS devices.

Types of Applications

Firefox OS applications can be classified by their privilege level as follows: un-
privileged, privileged, and certified. Unprivileged applications can make use of a
restricted set of device permissions. They may be hosted on a remote server or
packaged. In practice, the installation of hosted applications is akin to bookmarking
a web page; the installed application only serves as a shortcut to the hosted content.
On the other hand, a packaged application comprises the software required to run
and render it on the device. The software (HTML/JavaScript/CSS files along with an
application manifest) are packaged in a zip file that is distributed via an application
marketplace similar to the Android app store. The marketplace is responsible for
signing all packaged applications. The application manifest contains meta-data
about the application including an exhaustive list of device permissions requested
by the application.

Privileged applications, as their name suggests, may make use of device APIs that
are considered security sensitive. Some examples of security sensitive APIs include
geolocation, contacts etc. Privileged applications must be packaged and conform to
the default content security policy (CSP) defined by Mozilla. Privileged applications
are reviewed before being accepted into a marketplace. Finally, certified applications
are those applications that are bundled together with a device. Certified applications
have access to all permissions.

2 A First Step in Vulnerability Assessment
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Application Distribution

The distribution and installation of unprivileged applications depends on whether
they are hosted or packaged. Unprivileged packaged applications are distributed via
an application store in the form of a zip archive. The zip archive is digitally signed
by the app store and delivered over HTTPS. This ensures the integrity of application
code. On the other hand, hosted applications are distributed directly by the appli-
cation developer via a hosting space of their choice. Although hosted applications
function like bookmarks, their installation involves fetching an application manifest
file over the network. The manifest file contains meta-data about the application
and the permissions requested by it.

Device Permissions

Like Android, Firefox OS uses a permission model to provide access to web applica-
tions. There are a total of 56 permissions available of which only 23 are usable by
uncertified (i.e., hosted) applications. Firefox OS permissions may be either implicit
or explicit. Implicit permissions are those permissions that are automatically granted
if they are present in the application’s manifest file. On the other hand, explicit
permissions trigger a user prompt at first use, and more importantly are revocable
at any time via the Settings application.

Task: Firefox OS Security Audit

Web security has matured over the years. The web has been exposed to large scale
attacks [95, 92] for a long time. Defensive techniques, such as the use of transport
level security (TLS) and cross-site scripting (XSS) filters, have evolved as a response
to these attacks. There is an expectation that a web-based smartphone will inherit
the defensive outlook of the web. In this chapter, our aim is to empirically assess
if this expectation is justified or not. Firefox OS is a natural target for our case
study since it is one of the first web-based smartphones targeted at a mass user
base [124].

Firefox OS is massive code base comprising over 15 million source lines of code. We
constrain the scope of our study because a complete security audit at this scale is
resource intensive. Since Mozilla performs static analysis of applications admitted
to the application store [105], we focus on auditing dynamic application behavior

2.2 Task: Firefox OS Security Audit
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on the one hand, and applications’ interaction with the underlying operating system
on the other. Therefore, our task complements existing security measures adopted
by Mozilla.

Security audit of Firefox OS poses two challenges. First, given the massive codebase,
reviewing each and every line of code is not suitable. Therefore, we need to select
portions of code that contribute to system security. Second, an experimental set
up needs to be established to facilitate monitoring of dynamic program behavior.
To address these challenges, we use a combination of manual source code analysis
and penetration testing [154], an approach favored by security practitioners for
assessing system security.

Penetration Testing Firefox OS

Weaknesses in the smartphone permission model [48, 47, 17] and TLS certification
validation in smartphones [46, 55] have received significant attention in the security
community. Taking a cue from past work, we focus attention on portions of Firefox
OS that relate to application installation and permission checks and TLS certification
validation. Using manual source code audit, we note that application installation in
Firefox OS is handled by the boot2gecko process, while TLS certificate validation is
performed by the network security services (NSS) library developed by Mozilla. In
the following, we treat these subsystems as targets of our analysis.

To perform our task, we set up an experimental test bed that consists of the following
components: (1) The Geeksphone Peak [54] smartphone running a pre-release
version of Firefox OS version 1.4.0.0; (2) Firefox OS simulator [104], the OS
emulator developed by Mozilla; (3) MITMProxy [32], a popular proxy application
for performing person in the middle attacks. We describe our findings in the
following paragraphs.

In particular, we describe what happens when system services that used to be
tightly coupled to the browser program are exposed to applications in a mobile
environment without modification. Alongside insufficient security Ul in Firefox
OS, we demonstrate how the SSL/TLS certificate caching problem poses a security
risk. Furthermore, we bring attention to the use of plain text communications for
provisioning applications, and show that an attacker can inject new functionality
(and permissions) during the application download process.

2 A First Step in Vulnerability Assessment



2.3.1 SSL Certificate Caching

The certificate caching problem—a known issue in Firefox OS [18]—is the following:
Manually overriding a certificate warning for a web origin not only overrides the
warning for subsequent visits to that web origin, but also makes the override
applicable to any application on the phone, as though applications queried a shared
system-wide cache for certificate overrides. Since application code from the same
web origin is sandboxed across applications in Firefox OS, the handling of overrides
presents an anomaly. We digress to present a simplified flow of SSL certificate
validation and override in Gecko. Subsequently, we analyze the problem of certificate
caching in detail.

Certificate Validation and Override Services Gecko relies on the Network Security
Services (NSS) library [109] for security related services. NSS’ SSL/TLS certificate
validation service is responsible for validating the SSL certificate chain presented by
a remote server in the process of initiating an HTTPS connection. The certificate
override service, tied to the certificate warning interstitial page, allows for manual
overrides of certificate warnings. It maintains a record of certificate overrides that
have taken place in the past, in the form of {Web Origin, Certificate Fingerprint}
key-value pairs. For a temporary override, the key-value pair is cached in Gecko’s
program memory. When certificate validation for a server fails, the validation service
queries the override service to check if an overridden certificate for the server has
been cached. If there is a cache hit, the override service verifies if the cached
certificate is the same as the certificate presented in the ongoing SSL handshake. If
this succeeds, the HTTPS connection proceeds without a warning. Otherwise, the
user is presented with a certificate warning interstitial.

A valid certificate vouches for the authenticity of a remote security principal and
forms the basis for trust in Internet communications. The browser web and the
smartphone platform entertain different notions of security principals. Next, we see
how this leads to a confused deputy scenario in Firefox OS.

Security Principal Desktop browsers routinely interact with off-device security
principals. The same origin policy establishes a means to identify them. While the
policy is reflected in legacy NSS code, the notion of an on-device security principal
is something that is alien to security services in the NSS library in general, and the
certificate validation and override services in particular.

2.3 Penetration Testing Firefox OS 19
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While Firefox OS relies on the underlying OS kernel for isolating on-device principals,
it delegates certificate validation and overriding to the legacy NSS library. So, while
the application is treated as a security principal in managing session tokens, local
storage, and permission-based access control, the web origin dictates how SSL
certificates are handled. This semantic difference between the NSS port in the
desktop browser and in Firefox OS makes both the certificate validation and override
services, confused deputies. Since the two services still treat web origin as the
security principal, certificate validation requests for the same web origin across
Firefox OS applications elicit the same response.

Next, we examine architectural differences between the desktop browser and Firefox
OS that lead to side-effects being distributed and subsequently retained across
process boundaries.

Process Model The desktop browser and Firefox OS are built on different process
models. The desktop browser program itself and all of its (web) content run in a
single OS process. In contrast, Firefox OS is built on a multi-process model. Each
web app on Firefox OS runs in a separate Content process. Gecko and its constituent
sub-systems run in a privileged process called the boot2gecko (b2g) process.

Because the desktop browser and its content pages run in a single process, all tran-
sient side-effects are contained within the process’ memory; this includes temporary
certificate overrides. On Firefox OS web apps running in content processes are
untrusted principals, but the b2g process belongs to the trusted computing base
(TCB). Security sensitive side-effects such as certificate overrides are registered in
the b2g process, even if the operation responsible for the side-effect originated in a
content process. The validity of the override stretches through the lifespan of the
b2g process. Given that the b2g process is one of of Firefox OS’ core components, it
is killed only on device restart.

A defining characteristic of the desktop user experience is users being able to start
and close (kill) programs (OS processes). This observation combined with the fact
that desktop users are exposed to the browser program in its entirety (program
= process) instills the notion that side-effects are strictly tied to program lifespan.
The smartphone user experience on Firefox OS is starkly different. Since program
(process) management of the b2g process is not exposed to smartphone users, user
expectations around side-effects are not respected by the underlying OS.

2 A First Step in Vulnerability Assessment
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Fig. 2.1.: Site identity button after a certificate override: (Top-Bottom) Firefox OS browser,
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Put together, application agnostic certificate handling and retention of overrides in a
core process pose a security risk. Next, we see how the problem is exacerbated by
discrepancies in the security UI of Firefox OS.

Ul Discrepancy Although the caching of temporarily overridden certificates is a
characteristic of the desktop browser, there are checks in place to ensure that an
active attacker has limited leverage. Temporary certificate overrides are removed
when the user closes the browser program. However, a browser restart is not a
necessary prerequisite to clear overrides. Desktop Firefox exposes the option! to
remove overrides during a running instance of the program. Furthermore, even if
overrides are not cleared, information about past overrides is captured in multiple
visual security indicators in the browser UI; these indicators assist users in taking
informed decisions. One such indicator is a Ul element called the site identity
button [102]. The site identity button is comprised of a padlock icon at a bare-
minimum. Figure 2.1 shows comparative screen shots of the site identity buttons in
the Firefox OS browser and the Firefox desktop browser after a certificate override
has taken place. As shown in the figure, the padlock icon is gray colored when
a certificate override has taken place on the desktop browser. On clicking the
padlock, an informative security dialog is displayed to the user which presents textual
feedback on the state of connection security. While the browser app on Firefox OS
has options which permit clearing browsing history, cookies, and stored data, none
of these are tied to sanitizing temporary certificate overrides. An examination of the
source code of Firefox OS’ NSS port reveals that the option of overriding Active

1Removal of temporary certificate overrides is tied to clearing Active Logins from recent browsing
history.
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Logins is present. Evidently, this option is neither exposed in the browser app nor
the certified Settings app.

The site identity button in Firefox OS’ browser app has the following states:
1. Web page has no security (HTTP), visually represented by the globe icon,

2. Page is insecure or displays mixed (HTTP and HTTPS) content, represented by
a broken gray colored padlock,

3. Page is secure, represented by a green colored padlock.

In the Gecko port for Firefox OS, certificate overrides are incorrectly mapped to
the secure state of the site identity button; the padlock is thus green colored (see
Figure 2.1) even when a web page’s SSL certificate has been manually overridden.
Additionally, because of limited screen real estate, the security information dialog
that is supposed to pop-up on clicking the site identity button is absent in the browser
app. In the mozbrowser view that is commonly used by Firefox OS apps to render
web pages, the site identity button is absent. Certificate validation or overrides
in the mozbrowser view therefore go unnoticed. Given that temporary certificate
overrides remain in Gecko’s program memory for a substantial time-period, this
poses a realistic threat. Tricking the user into overriding the certificate warning
for a given web origin is sufficient to compromise subsequent visits to the affected
web origin across multiple apps. This includes the default browser app, mozbrowser
instances of apps belonging to the same domain, and third-party apps that load web
content (e.g. for OAuth based authentication) from the affected web origin. This
was manually verified in our experimental testbed.

Threat Scenario
1. Victim connects to compromised network, such as public wifi.
2. Attacker performs MITM attack against HTTPS? and presents a fake certificate.

3. Victim overrides certificate warning temporarily, assuming the action impacts
only the present page visit.

4. Page is loaded with green padlock in the location bar.

5. All subsequent connections can be MITM.

2Web domains for which HTTP Strict-Transport-Security (HSTS) is hard-coded in the browser are not
vulnerable to the described attack primarily because certificate overrides for these domains are
disallowed.

2 A First Step in Vulnerability Assessment
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If device restart has not taken place, the MITM attack outlined in the preceding
scenario might recur should the victim reconnect to the compromised wifi at a later
time. On successive connections to a domain whose certificate has been overridden
by the victim in the past, a full SSL handshake with the attacker’s cached SSL
certificate takes place silently i.e., the victim is neither presented with a warning
interstitial, nor is a possible MITM signaled in the browser UI. Apart from initiating
MITM attacks on newer connections, the adversary can steal cookies from the
victim’s unexpired sessions with the compromised domain across applications.

A malicious application could aid this process by detecting when a MITM attack
is present. The application could provide the user with some plausible sounding
reason for requiring a certificate override. Certificate warnings are already confusing,
and any inconsistencies in sandboxing behavior only increase the cognitive attack
surface.

Application Code and Manifest Provisioning

While Mozilla ensures that packaged applications are digitally signed and fetched
from the marketplace over SSL, hosted applications are provisioned as if they were
normal web content. Because hosted apps still need to fetch application manifests
and code from a web origin, Mozilla recommends that app developers serve them
over HTTPS [103].

The application manifest file contains security sensitive information including a list
of permissions requested by an app among other things. We collated an exhaustive
list of hosted manifest URLs and noted that 92.8%3 of hosted applications fetch
manifest and application code over HTTP. We evaluated the threat of a man-in-the-
middle intercepting a hosted manifest/application code and subsequently modifying
it before relaying the modified content to the end-user. As proof of concept, we
inserted the audio-capture (microphone) permission in the manifest of an application
that is designed to only play audio content. Subsequently, while application code
was being fetched from the remote server (over HTTP), we altered it by adding a
record audio functionality to the app.

The threat of an active attacker modifying the manifest and application code in
transit is constrained in two ways. Firstly, sensitive permissions available to hosted
apps such as audio-capture and geolocation are explicit i.e., prompt on first use.
Secondly, Mozilla segregates permission sets for hosted and privileged applications.

%1106 out of a total of 1191 hosted applications returned by the marketplace API, as of 22nd February,
2014

2.3 Penetration Testing Firefox OS
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Should an attacker request, say, the Contacts permission (a privileged permission on
Firefox OS), Gaia’s application installer component will trigger a signature check.
Upon finding that the file in question is a manifest and not a signed zip package,
the installation process is aborted. Unprivileged implicit permissions, however, can
be injected without the user’s knowledge. Since the App Permissions tab in the
Settings app does not list implicit permissions, there is no way for a user to tell
that the permission requests have been modified. Presently, implicit permissions for
hosted apps include audio, fmradio, alarms, desktop-notification, and storage [106].
These are relatively benign permissions, but their absence from the permissions Ul
combined with the lack of an integrity mechanism for hosted application code would
be a cause for concern should Mozilla enlarge the set of implicit permissions for
hosted applications.

We also observed that several popular Firefox OS applications such as Free SMS [134]
encode user identifiable information (including phone numbers) in URLs and com-
municate over HTTP. Moving forward, requiring that security sensitive hosted
applications serve their manifest (and application code) over HTTPS would be a
step in the right direction.

Related Work

To the best of our knowledge, we are the first to look at the security of Firefox
OS. The differences between Android and Firefox OS permission enforcement are
discussed in [75], but the focus of that work is on Android. While real-world
studies [55, 46] have observed problems in SSL validation across popular web
and smartphone applications and middleware libraries, they do not look at how
certificate overrides are handled at the client side. On Firefox OS, SSL validation is
done by system software; applications are not trusted to validate certificates on their
own.

Amrutkar et al. [4] perform an empirical evaluation of security indicators across
mobile browser apps based on W3C guidelines for web user interface. They conclude
that mobile web browsers implement only a subset of desktop browsers’ security
indicators, leaving mobile users vulnerable to attacks that the indicators are designed
to signal. While our study does not intend to evaluate the state of security indicators
in Firefox OS, our observations could be used as a starting point for extrapolating the
findings in [4] to Firefox OS. Akhawe et al. [2] quantify the effectiveness of desktop
browser warnings by measuring their click-through rates. Their finding that a high
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proportion of users click through SSL warnings, although from a desktop browser
user base, lends credence to the attack scenario based on a certificate override that
we demonstrate.

Towards Semi-Automated Analysis

As we have seen in this chapter, the convergence of web technologies and smart
devices leads to new security challenges. Security issues arise both at the application
and systems level. To a great extent, Mozilla has relied on static analysis to facilitate
application code review, while largely ignoring audit of systems code and the interac-
tion between systems code and applications. Indeed, automated analysis of complex
interactions between applications and the underlying system is a challenging task.

This chapter shows how a penetration testing approach, popular with security
practitioners today, may be useful to audit such complex interactions. Nonetheless,
this approach has an inherent drawback: Entirely manual security audit does not
scale. In the following chapters, we set out to understand how vulnerability analysis
tools may be designed so that manual labor involved in the task of vulnerability
assessment is reduced. To this end, we envision an analysis framework that assists
system implementors in specific tasks such as vulnerability identification, regression
analysis, and fuzz testing.

2.5 Towards Semi-Automated Analysis
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Vulnerability Diagnosis Using
Staged Program Analysis

This is the whole “C” attitude toward life, right? Life fast, die young, right?

— James Mickens, MIT 6.858 Computer Systems Security

In the previous chapter, we performed a security audit of the Firefox OS using a
combination of manual code review and penetration testing. Although this work led
to the discovery of two important security vulnerabilities, the adopted approach has
two specific limitations. First, because it is labor intensive manual source code audits
do not scale to large codebases. Second, penetration testing treats the program
under test as a black-box due to which it may not discover vulnerabilities in deep
program paths. Indeed, since no individual approach is capable of identifying all
classes of vulnerabilities, diversifying vulnerability detection approaches is necessary.
Prior studies [132, 7] have not only corroborated this observation in controlled
environments but also concluded that more scalable vulnerability detection ap-
proaches such as static program analysis have the potential to boost programmer
productivity.

In this chapter, we begin to conceptualize a static program analysis framework
for vulnerability assessment. In particular, we describe the first of three methods
called staged program analysis. Staged program analysis is aimed at diagnosing
vulnerabilities that are spread across source files. It proceeds in two steps. For a
structural program weakness (vulnerability class) known a priori, we first obtain
vulnerability summaries—descriptions of potential vulnerabilities—at the function
call level. Next, we evaluate these summaries at the whole program level to check
if the vulnerabilities can indeed manifest in the scope of the whole program. Our
staged approach keeps our analysis tractable to even large programs such as web
browsers and helps diagnose vulnerabilities due to faulty interactions between
software components.

The rest of this chapter is organized as follows. We continue with a brief discussion
of the task of diagnosing distributed vulnerabilities in Section 3.1. We then present
two primitives that will help us in this task, namely source (see Section 3.2.2)
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and whole program analyzers (see Section 3.2.3). We empirically evaluate our
method in Section 3.3, and conclude this chapter with a discussion of related work
in Section 3.4.

Task: Diagnosing Distributed Vulnerabilities

Today’s software is complex and has many moving parts. It is natural that software
development follows a divide-and-conquer strategy in which a high-level require-
ment is broken down into smaller development tasks. Programmers have a deep
understanding of the components they create but only a shallow understanding of
other components in the system. This may give rise to incorrect assumptions. For
example, while one group of programmers may assume that the data provided to
their component is well formed, another group may assume that sanity checks are
carried out by the said component. We illustrate this problem using an otherwise
straightforward memory corruption vulnerability in the Chromium codebase.

The code snippet in Listing 3.1 shows the implementation of a PageIndicator
object that is used by several other components in the Chromium codebase.
One of the object members called fade_out_timer_id_ is defined lazily in the
ResetFadeOutTimer method (line 11) such that invoking the OnTimerFired method
reads uninitialized memory (line 18), potentially diverting program execution in an
unintended way. This vulnerability was detected by the Google security team using
dynamic program analysis tools [23].

Statically analyzing such defects calls for an approach that can analyze inter-
component interactions at compile time with a low run time overhead. End-to-end
analysis of entire codebases is ruled out because codebases such as Chromium have
over 14 million source lines of code (SLoC). Our task is to create an analyzer that
can not only scale up to large codebases but also provide sufficient diagnostics for
the developer to fix those defects that manifest during inter-component interactions.
To address these challenges, our method uses ideas from semantic code analysis and
staged computation.

Staged Program Analysis

Although program analysis has long been used to flag software defects, their appli-
cation to vulnerability assessment is recent. One of the biggest differences between
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// Constructor definition of the Pagelndicator object

// Object does not initialize member fade_out_timer_id_

PageIndicator::PagelIndicator ()
current_page_(0),
splash_timeout_(kPageIndicatorSplashTimeoutMs),
always_visible_(false) {}

// Method defines fade_out_timer_id_
void PageIndicator::ResetFadeOutTimer ()

{
fade_out_timer_id_ = owner()->ScheduleTimer(id(), splash_timeout_);

}

// Method assumes fade_out_timer_id_ initialized
void PageIndicator::0OnTimerFired(uint32 timer_id)

{
FadingControl::0OnTimerFired(timer_id) ;
if (timer_id == fade_out_timer_id_) {
Fade (false, fade_timeout_);
}
}

Listing 3.1: Security bug in Chromium version 38 in which reading uninitialized memory
contents may lead to unintended control flow.

bug detection and vulnerability detection is that the latter depends a lot more on
program run time information than the former. For example, memory corruption
vulnerabilities—a large class of C/C+ + vulnerabilities—exploit unintended reads
from and writes to program memory at run time. Therefore, one of the biggest chal-
lenges in designing a static vulnerability analysis tool is to anticipate such dynamic
behavior and generate informative bug reports when a violation is feasible.

Since our analyzer is invoked at program compile time, it does not have access to
run time information. However, program semantics may be inferred via source code
analysis. For example, if a source file declares a variable but fails to initialize it, it
may be inferred that an uninitialized read is possible at run time. However, whether
the uninitialized read is feasible is still not known. To this end, whole program
analysis may be used. Fortunately, whole program analysis of specific feasibility
queries is tractable because analysis is carried out on specific program variables.
Therefore, a two-staged analysis in which a feasibility analysis examines specific
instances of potential program defects is well-suited for the diagnosis of distributed
vulnerabilities.

We design a staged program analyzer called Mélange. Figure 3.1 provides an
overview of our approach. Mélange comprises four high-level components: the
build interceptor, the LLVM builder, the source analyzer, and the Whole-Program
(WP) analyzer. We summarize the role of each component in analyzing a program.
Subsequently, we describe them in greater detail.

3.2 Staged Program Analysis
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Fig. 3.1.: Overview of our staged program analyzer called Mélange.

1. Build Interceptor. The build interceptor is a program that interposes between
the build program (e.g., GNU-Make) and the compilation system (e.g., Clang/L-
LVM). In Mélange, the build interceptor is responsible for correctly and inde-
pendently invoking the program builders and the source analyzer. (§3.2.1)

2. LLVM Builder. The LLVM builder is a utility program that assists in generating
LIVM Bitcode for C, C++, and Objective-C programs. It mirrors steps taken
during native compilation onto LIVM Bitcode generation. (§3.2.1)

3. Source Analyzer. The source analyzer executes domain-specific checks on a
source file and outputs candidate bug reports that diagnose a potential security
bug. The source analyzer is invoked during the first stage of Mélange’s analysis.
We have implemented the source analyzer as a library of checkers that plug
into a patched version of Clang SA. (§3.2.2)

4. Whole-Program Analyzer. The WP analyzer examines candidate bug reports
(from Step 3), and either provides extended diagnostics for the report or
classifies it as a false positive. The developer is shown only those reports that
have extended diagnostics i.e., those not classified as a false positive by the
WP analyzer. We have implemented the WP analyzer in multiple LIVM passes.
(83.2.3)

Analysis Utilities

Ease-of-deployment is one of the design goals of Mélange. We want software
developers to use our analysis framework in their build environments seamlessly.
The build interceptor and the LIVM builder are analysis utilities that help us achieve
this goal. The build interceptor and the LIVM builder facilitate transparent analysis
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of codebases by plugging in Mélange’s analyses to an existing build system. We
describe them briefly in the following paragraphs.

Build Interceptor Our approach to transparently analyze large software projects
hinges on triggering analysis via the build command. We use an existing build
interceptor, scan-build [131], from the Clang project. scan-build is a command-line
utility that intercepts build commands and invokes the source analyzer in tandem
with the compiler. Since Mélange’s WP analysis is targeted at program (LIVM)
Bitcode, we instrument scan-build to not only invoke the source analyzer, but also
the LLVM builder.

LLVM Builder Generating LIVM Bitcode for program libraries and executables with-
out modifying source code and/or build configuration is a daunting task. Fortunately,
the Whole-program LIVM (WLILVM) [157], an existing open-source LIVM builder,
solves this problem. WLIVM is a python-based utility that leverages a compiler
for generating whole-program or whole-library LLIVM Bitcode. It can be used as a
drop-in replacement for a compiler i.e., pointing the builder (e.g., GNU-Make) to
WLILVM is sufficient.

Source Analyzer

The primary challenge of the source analyzer is to extract vulnerability artifacts
from source code for subsequent investigation. The analyzer may be described as
a system that takes a checking policy and extracts artifacts that conform to this
policy. The concept of meta-compilation [6] offers a suitable solution for this task. A
meta-compilation compilation system comprises a compiler and a set of checkers
written as plugins to the compiler. While the compiler is responsible for performing
code analysis and optimization, checkers are responsible for encoding a policy to be
checked and emitting bug reports when this policy is violated. In the following, we
describe the local analyzer.

The source analyzer flags potential bugs in source code. We build a novel event
collection system that helps detect both taint-style vulnerabilities as well as semantic
defects. Our event collection system is implemented as a system of taints on C
and C+ + language constructs (Declarations). We call the underlying mechanism
Declaration Tainting because taints in the proposed event collection system are
associated with AST Declaration identifiers of C and C++ objects. Since declaration

3.2 Staged Program Analysis
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tainting is applied on AST constructs, it can be carried out in situations where local
symbolic execution is not possible.

We write checkers to flag defects. Checkers have been developed as clients of the
proposed event collection system. The division of labor between checkers and
the event collection system mirrors the Meta-level Compilation concept: Checkers
encode the policy for flagging defects, while the event collection system maintains
the state required to perform checks. We have prototyped this system for flagging
garbage (uninitialized) reads® of C++ objects, incorrect type casts in PHP interpreter
codebase, and other Common Weakness Enumerations (see §4.3).

We demonstrate the utility of the proposed system by using the code snippet shown
in Listing 3.2 as a running example. Our aim is to detect uninitialized reads of class
members in the example. The listing encompasses two source files, foo.cpp and
main.cpp, and a header file foo.h. We maintain two sets in the event collection
system: the Def set containing declaration identifiers for class members that have
at least one definition, and the UseWithoutDef set containing identifiers for class
members that are used (at least once) without a preceding definition. We maintain
an instance of both sets for each function that we analyze in a translation unit
i.e., for function F', A denotes the analysis summary of F' that contains both sets.
The checker decides how the event collection sets are populated. The logic for
populating the Def and UseWithoutDef sets is simple. If a program statement in
a given function defines a class member for the very first time, we add the class
member identifier to the Def set of that function’s analysis summary. If a program
statement in a given function uses a class member that is absent from the Def set, we
add the class member identifier to the UseWithoutDef set of that function’s analysis
summary.

In Listing 3.2, when function foo: :isZero in file foo.cpp is being analyzed, the
checker adds class member foo: :x to the UseWithoutDef set of A ¢y..iszero after
analyzing the branch condition on Line 13. This is because the checker has not
encountered a definition for foo: : x in the present analysis context. Subsequently,
analysis of the constructor function foo: : foo does not yield any additions to either
the Def or UseWithoutDef sets. SO A, 00 is empty. Finally, the checker compares
set memberships across analysis contexts. Since foo: :x is marked as a use without
a valid definition in A ¢,..iszero and foo: :x is not a member of the Def set in the
constructor function’s analysis summary (A ¢, f00), the checker classifies the use
of Line 13 as a candidate bug. The checker encodes the proof for the bug in the
candidate bug report. Listing 3.3 shows how candidate bug reports are encoded. The

The algorithm for flagging garbage reads is based on a variation of gen-kill sets [81].
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// foo.h
class foo {
public:
int x;
foo () {}
bool isZero () ;

};

OOV WN =

// foo.cpp
10 |#include "foo.h"

12 | bool foo::isZero() {
13 if (!'x)
14 return true;

15 |7

17 | // main.cpp
18 |#include "foo.h"

19

20 | int main() {

21 foo f;

22 if (f.isZero())
23 return 0;

24 return 1;

25 |}

Listing 3.2: Running example-The foo object does not initialize its class member
foo::x. The call to isZero on Line 22 leads to a garbage read on Line 13.

bug report encodes the location and analysis stack corresponding to the potential
garbage (uninitialized) read.

The proposed event collection approach has several benefits. First, by retrofitting
simple declaration-based object tainting into Clang SA, we enable checkers to
perform analysis based on the proposed taint abstraction. Due to its general-purpose
nature, the taint abstraction is useful for discovering other defect types such as null
pointer dereferences. Second, the tainting APIs we expose are opt-in. They may be
used by existing and/or new checkers. Third, our additions leverage high-precision
analysis infrastructure already available in Clang SA. We have implemented the
event collection system as a patch to the mainline version of Clang Static Analyzer.
In the next section, we describe how candidate bug reports are analyzed by our
whole-program analyzer.

Whole-Program Analyzer

Whole-program analysis is demand-driven. Only candidate bug reports are analyzed.
The analysis target is an LLVM Bitcode file of a library or executable. There are two
aspects to WP analysis: Parsing of candidate bug reports to construct a query, and
the analysis itself. We have written a simple python-based parser to parse candidate

3.2 Staged Program Analysis

33



34

// Source-level bug report
// report-e6ed9c.html

Local Path to Bug: foo::x->_ZN3foo6isZeroEv
Annotated Source Code

foo.cpp:4:6: warning: Potentially uninitialized object field
if (!'x)

VOO WN

10 |1 warning generated.

11
12 | // Whole-program bug report
13 | -——-----—- report-e6ed9c.html ---------

14 | [+] Parsing bug report report-e6ed9c.html

15 | [+] Writing queries into LLVM pass header file

16 | [+] Recompiling LLVM pass

17 | [+] Running LLVM BugReportAnalyzer pass against main

19 | Candidate callchain is:

21 | foo::isZero ()

Listing 3.3: Candidate bug report (top) and whole-program bug report (bottom) for
garbage read in the running example shown in Listing 3.2.

bug reports and construct queries. The analysis itself is implemented as a set of
LIVM passes. The bug report parser encodes queries as preprocessor directives in a
pass header file. A driver script is used to recompile, and run the pass against all
candidate bug reports.

Our whole-program analysis routine is composed of a Cal1Graph analysis pass. We
leverage an existing LLIVM pass called the Basic CallGraph pass to build a whole-
program call graph. Since the basic pass misses control flow at indirect call sites, we
have implemented additional analyses to improve upon the precision of the basic
callgraph. Foremost among our analyses is Class Hierarchy Analysis (CHA) [43].
CHA enables us to devirtualize those dynamically dispatched call sites where we
are sure no delegation is possible. Unfortunately, CHA can only be undertaken in
scenarios where no new class hierarchies are introduced. In scenarios where CHA is
not applicable, we examine call instructions to resolve as many forms of indirect call
sites as possible. Our prototype resolves aliases of global functions, function casts
etc.

Once program call graph has been obtained, we perform a vulnerability-specific
WP analysis. For instance, to validate garbage reads, the pass inspects loads and
store to the buggy program variable or object. In our running example (Listing
3.2), loads and stores to the foo: :x class member indicated in candidate bug report
(Listing 3.3) are tracked by the WP garbage read pass. To this end, the program
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call graph is traversed to check if a load of foo: : x does not have a matching store.
If all loads have a matching store, the candidate bug report is classified as a false
positive. Otherwise, program call-chains in which a load from foo: :x does not
have a matching store are displayed to the analyst in the whole-program bug report
(Listing 3.3).

Evaluation

We have evaluated Mélange against both static analysis benchmarks and real-world
code. To gauge Mélange’s utility, we have also tested it against known defects and
vulnerabilities. Our evaluation seeks to answer the following questions:

* What is the effort required to use Mélange in an existing build system? (§3.3.1)

How does Mélange perform against static analysis benchmarks? (§3.3.2)

How does Mélange fare against known security vulnerabilities? (§3.3.3)

What is the analysis run-time and effectiveness of Mélange against large
well-tested codebases? (§3.3.4)

Deployability

Ease-of-deployment is one of the design goals of Mélange. Build interposition allows
us to analyze codebases as is, without modifying build configuration and/or source
code. We have deployed Mélange in an Amazon compute instance where codebases
with different build systems have been analyzed (see §4.3.2). Another benefit
of build system integration is incremental analysis. Only the very first build of a

codebase incurs the cost of end-to-end analysis; subsequent analyses are incremental.

While incremental analysis can be used in conjunction with daily builds, full analysis
can be coupled with nightly builds and initiated on virtual machine clusters.

NIST Benchmarks

We used static analysis benchmarks released under NIST’s SAMATE project [113] for
benchmarking Mélange’s detection rates. In particular, the Juliet C/C++ test suite
(version 1.2) [114] was used to measure true and false positive detection rates for
defects spread across multiple categories. The Juliet suite comprises test sets for

3.3 Evaluation
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Fig. 3.2.: Juliet test suite: True Positive Rate (TPR) and False Positive Rate (FPR) for
Mélange, and Clang Static Analyzer. Clang SA supports CWE457 only.

multiple defect types. Each test set contains test cases for a specific Common Weak-
ness Enumeration (CWE) [149]. The CWE system assigns identifiers for common
classes of software weaknesses that are known to lead to exploitable vulnerabilities.
We implemented Mélange checkers and passes for the following CWE categories:
CWE457 (Garbage or uninitialized read), CWE843 (Type confusion), CWE194 (Un-
expected Sign Extension), and CWE195 (Signed to Unsigned Conversion Error).
With the exception of CWE457, the listed CWEs have received scant attention from
static analysis tools. For instance, type confusion (CWE843) is an emerging attack
vector [86] for exploiting popular applications.

Figure 3.2 summarizes the True/False Positive Rates (TPRs/FPRs) for Clang SA
and Mélange for the chosen CWE benchmarks. Currently, Clang SA only supports
CWE457. Comparing reports from Clang SA and Mélange for the CWE457 test set,
we find that the former errs on the side of precision (fewer false positives), while
the latter errs on the side of caution (fewer false negatives). For the chosen CWE
benchmarks, Mélange attains a true-positive rate between 57-88 %, and thus, it is
capable of spotting over half of the bugs in the test suite.

Mélange’s staggered analysis approach allows it to present both source file wide
and program wide diagnostics (see Figure 3.3). In contrast, Clang SA’s diagnostics
are restricted to a single source file. Often, the call stack information presented in
Mélange’s extended diagnostics has speeded up manual validation of bug reports.
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Detection of Known Vulnerabilities

We tested five known type-confusion vulnerabilities in the PHP interpreter with
Mélange. All of the tested flaws are taint-style vulnerabilities: An attacker-controlled
input is passed to a security-sensitive function call that wrongly interprets the input’s
type. Ultimately all these vulnerabilities result in invalid memory accesses that can
be leveraged by an attacker for arbitrary code execution or information disclosure.
We wrote a checker for detecting multiple instances of this vulnerability type in
the PHP interpreter codebase. For patched vulnerabilities, testing was carried out
on unpatched versions of the codebase. Mélange successfully flagged all known
vulnerabilities. The first five entries of Table 3.1 summarize Mélange’s findings.
Three of the five vulnerabilities have been assigned Common Vulnerabilities and
Exposures (CVE) identifiers by the MITRE Corporation. Reporters of CVE-2014-3515,
CVE-2015-4147, and PHP report ID 73245 have received bug bounties totaling $5500
by the Internet Bug Bounty Panel [119].

In addition, we ran our checker against a recent PHP release candidate (PHP 7.0
RC7) released on 12th November, 2015. Thus far, Mélange has drawn attention to
PHP sub-systems where a similar vulnerability may exist. While we haven’t been
able to verify if these are exploitable, this exercise demonstrates Mélange’s utility in
bringing attention to multiple instances of a software flaw in a large codebase that
is under active development.

Case Studies

To further investigate the practical utility of Mélange, we conducted case studies
with three popular open-source projects, namely, Chromium, Firefox, and MySQL.
We focused on detecting garbage reads only. In the following paragraphs, we present
results from our case studies emphasizing analysis effectiveness, and analysis run-
time.

Software Versions: Evaluation was carried out for Chromium version 38 (dated
August 2014), for Firefox revision 244208 (May 2015), and for MySQL version 5.7.7
(April 2015).

Evaluation Setup: Analysis was performed in an Amazon compute instance running
Ubuntu 14.04 and provisioned with 36 virtual (Intel Xeon E5-2666 v3) CPUs clocked
at 2.6 GHz, 60 GB of RAM, and 100 GB of SSD-based storage.

3.3 Evaluation
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Codebase CVE ID (Rating)  BugID Vulnerability Known/New

PHP CVE-2015-4147 69085 [121] Type- Known
confusion

PHP CVE-2015-4148 69085 [121] Type- Known
confusion

PHP CVE-2014-3515 67492 [120] Type- Known
confusion

PHP Unassigned 73245 [127] Type- Known
confusion

PHP Unassigned 69152 [122] Type- Known
confusion

Chromium  (Medium- 411177 [24] Garbage read Known

Severity)
Chromium  None 436035 [25] Garbage read Known
Firefox None 1168091 [19] Garbage read New

Tab. 3.1.: Detection summary of Mélange against production codebases. Mélange has
confirmed known vulnerabilities and flagged a new defect in Firefox. Listed
Chromium and Firefox bugs are not known to be exploitable. Chromium bug
411177 is classified as a Medium-Severity bug in Google’s internal bug tracker.

Effectiveness

True Positives Our prototype flagged 3 confirmed defects in Chromium, and Fire-
fox, including a new defect in the latter (see bottom three entries of Table 3.1).
Defects found by our prototype in MySQL codebase have been reported upstream
and are being triaged. Figure 3.3 shows Mélange’s bug report for a garbage read in
the pdf library shipped with Chromium v38. The source-level bug report (Figure
3.3a) shows the line of code that was buggy. WP analyzer’s bug report (Figure 3.3b)
shows candidate call chains in the libpdf library in which the uninitialized read may
manifest.

We have manually validated the veracity of all bug reports generated by Mélange
through source code audits. For each bug report, we verified if the data-flow and
control-flow information conveyed in the report tallied with program semantics. We
classified only those defects that passed our audit as true positives. Additionally, for
the Chromium true positives, we matched Mélange’s findings with reports [24, 25]
generated by MemorySanitizer [148], a dynamic program analysis tool from Google.
The new defect discovered in Firefox was reported upstream [19]. Our evaluation
demonstrates that Mélange can complement dynamic program analysis tools in use
today.

3 Vulnerability Diagnosis Using Staged Program Analysis



Bug Summary

File: out_analyze/Debug/../../pdf/page_indicator.cc
Location: line 94, column 19
Description: Potentially uninitialized object field
Local Path to Bug: chrome_pdf::Pagelndicator::fade_out timer_id_—

_ZN10chrome_pdfl13Pagelndicator120nTimerFiredEj

Annotated Source Code

92 | void Pagelndicator::0OnTimerFired(uint32 timer id) {
93 FadingControl::0OnTimerFired(timer id);
94 if (timer_id == fade_out_timer_id_) {

Potentially uninitialized object field J

95 Fade(false, fade timeout );

(a) Source-level Bug Report

7777777777 page_indicator.cc.pass.html —-—————--——-
[+] Parsing bug report page_indicator.cc.pass.html
[+] Writing queries into LLVM pass header file

[+] Recompiling LLVM pass

[+] Selecting LLVM BC for analysis

[+] Target Found: libpdf.a

[+] Running LLVM BugReportAnalyzer pass

Candidate callchain is:
chrome_pdf::PageIndicator::OnTimerFired (unsigned int)
chrome_pdf::Instance::0nControlTimerFired (int,
unsigned int consté&, unsigned int)

(b) Whole-program Bug Report

Fig. 3.3.: Mélange bug report for Chromium bug 411177.

False Positives Broadly, we encounter two kinds of false positives; those that are
due to imprecision in Mélange’s data-flow analysis, and those due to imprecision in
its control-flow analysis. In the following paragraphs, we describe one example of
each kind of false positive.

Data-flow imprecision: Mélange’s analyses for flagging garbage reads lack sophis-
ticated alias analysis. For instance, initialization of C++ objects passed-by-reference
is missed. Listing 3.4 shows a code snippet borrowed from the Firefox codebase that
illustrates this category of false positives.

When AltSvcMapping object is constructed (see Line 2 of Listing 3.4), one of its
class members mHttps is passed by reference to the callee function SchemeIsHTTPS.
The callee function SchemeIsHTTPS initializes mHttps via its alias (outIsHTTPS).
Mélange’s garbage read checker misses the aliased store and incorrectly flags the
use of class member mHttps on Line 8 as a candidate bug. Mélange’s garbage read
pass, on its part, tries to taint all functions that store to mHttps. Since the store to
mHttps happens via an alias, the pass also misses the store and outputs a legitimate

control-flow sequence in its WP bug report.

3.3 Evaluation
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AltSvcMapping::AltSvcMapping(...) {
if (NS_FAILED(SchemeIsHTTPS (originScheme, mHttps))) {

}

}

void AltSvcMapping::GetConnectionInfo(...) {
// ci is an object on the stack
ci->SetInsecureScheme (! mHttps);

}

HOVONOUTDAWNRE

1

1 static nsresult SchemeIsHTTPS(const nsACString &originScheme, bool &
outIsHTTPS)

12 | {

13 outIsHTTPS = originScheme.Equals (NS_LITERAL_CSTRING("https"));

14 -

15 |}

Listing 3.4: Code snippet involving an aliased definition that caused a false positive in
Mélange.

Control-flow imprecision: Mélange’s WP analyzer misses control-flow information
at indirect call sites e.g., virtual function invocations. Thus, class members that are
initialized in a call sequence comprising an indirect function call are not registered by
Mélange’s garbage read pass. While resolving all indirect call sites in large programs
is impossible, we employ best-effort devirtualization techniques such as Rapid Type
Analysis [9] to improve Mélange’s control-flow precision.

Codebase SLoC Compilation Time Analysis Overhead
(millions) Ny SA, WPA, TA, WPAvg
Chromium 14.7 18m20s 29.09 15.49 44.58 7.5s
Firefox 4.9 41m25s  3.38 39.31 42.69 13m35s
MySQL 1.2 8ml5s 9.26 21.24 30.50 2m26s

Tab. 3.2.: Mélange: Analysis Summary for Large Open-source Projects. All terms except
W P Avg are normalized to native compilation time.

Codebase Number of Bug Reports
Source (q) Whole-program

Chromium 2686 12
Firefox 587 16
MySQL 2494 32

Tab. 3.3.: Mélange: Number of bugs reported after source-level and whole-program analy-
sis.

The final three columns of Table 3.2 present a summary of Mélange’s findings for
Chromium, Firefox, and MySQL projects. We find that Mélange’s two-stage analysis
pipeline is very effective at filtering through a handful of bug reports that merit
attention. In particular, Mélange’s WP analyses filter out 99.6%, 97.3%, and 98.7%
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Fig. 3.4.: For each codebase, its source and whole-program analysis run-times are shown as
fractions (in %) of Mélange’s total analysis run-time.

source level bug reports in Chromium, Firefox, and MySQL respectively. Although
Mélange’s true positive rate is low in our case studies, the corner cases it has pointed
out, notwithstanding the confirmed bugs it has flagged, is encouraging. Given that
we evaluated Mélange against well-tested production code, the fact that it could point
out three confirmed defects in the Chromium and Firefox codebases is a promising
result. We plan to make our tool production-ready by incorporating insights gained
from our case studies. Next, we discuss Mélange’s analysis run-time.

Analysis Run-Time

We completed end-to-analysis of Chromium, Firefox, and MySQL codebases—all
of which have millions of lines of code—in under 48 hours. Of these, MySQL, and
Chromium were analyzed in a little over 4 hours, and 13 hours respectively. Table 3.2
summarizes Mélange’s run-time for our case studies. We have presented the analysis
run-time of a codebase relative (normalized) to its build time, N;. For instance, a
normalized analysis run-time of 30 for a codebase indicates that the time taken to
analyze the codebase is 30x longer than its build time. All normalized run-times
are denoted with the = subscript. Normalized source analysis time, WP analysis
time, and total analysis time of Mélange are denoted as SA,, WPA,, and TA,
respectively. The term W P Avg, denotes the average time (not normalized) taken
by Mélange’s WP analyzer to analyze a single candidate bug report.

Figure 3.4 shows source and WP analysis run-times for a codebase as a fraction
(in percentage terms) of Mélange’s total analysis run-time. Owing to Chromium’s
modular build system, we could localize a source defect to a small-sized library. The
average size of program analyzed for Chromium (1.8MB) was much lower compared
to MySQL (150MB), and Firefox (1.1GB). As a consequence, the WP analysis run-
times for Firefox, and MySQL are relatively high. While our foremost priority while
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prototyping Mélange has been functional effectiveness, our implementation leaves
significant room for optimizations that will help bring down Mélange’s end-to-end
analysis run-time.

Limitations

Approach Limitations By design, Mélange requires two analysis procedures at
different code abstractions for a given defect type. We depend on programmer-
written analysis routines to scale out to multiple defect types. Two actualities
lend credence to our approach: First, analysis infrastructure required to carry out
extended analyses is already available and its use is well-documented. This has
assisted us in prototyping Mélange for four different CWEs. Second, the complexity
of analysis routines is many times lower than the program under analysis. Our
analysis procedures span 2,598 lines of code in total, while our largest analysis
target (Chromium) has over 14 million lines of C++ code.

While Mélange provides precise diagnostics for security bugs it has discovered,
manual validation of bug reports is still required. Given that software routinely
undergoes manual review during development, our tool does not introduce an
additional requirement. Rather, Mélange’s diagnostics bring attention to problematic
corner cases in source code. The manual validation process of Mélange’s bug reports
may be streamlined by subsuming our tool under existing software development
processes (e.g., nightly builds, continuous integration).

Implementation Limitations Mélange’s WP analysis is path and context insensi-
tive. This makes Mélange’s whole-program analyzer imprecise and prone to issuing
false warnings. To counter imprecision, we can augment our WP analyzer with
additional analyses. Specifically, more powerful alias analysis and aggressive de-
virtualization algorithms will help prune false positives further. One approach to
counter existing imprecision is to employ a ranking mechanism for bug reports (e.g.,
Z-Ranking [83]).

Related Work

Lint was developed at Bell Labs in 1977, primarily to check “portability, style, and
efficiency” of C programs [76]. Lint performed syntactic analysis, predominantly
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type-checking, of programs for flagging potential programming errors. In the past
two decades, many commercial [33, 62, 80, 67], closed-source [26], free [64], and
open source [90, 136, 148, 10, 66, 50, 156, 21, 8, 160] tools have been developed.
Broadly, these tools are based on Model Checking [10, 66], Theorem Proving [64],
Static Program Analysis [90, 67, 33, 62, 26, 160], Dynamic Analysis [108, 136, 148,
21], or hybrid systems such as [8]. In the following paragraphs, we comment on
related work that is close in spirit to Mélange.

Program Instrumentation Traditionally, memory access bugs have been found by
performing randomized program testing (e.g., fuzzing) of instrumented program
binaries. The instrumentation takes care of tracking the state of program memory
and adds run-time checks before memory accesses are made. Instrumentation
is done either during run time (as in Valgrind [108]), or at compile time (as in
AddressSanitizer [136]). Since compile-time instrumentation has a lower run time
overhead, the idea has gained traction, and compile-time program instrumentation
is now being used to find multiple kinds of memory access errors including reads
from uninitialized memory [148]. As effective as tools such as Valgrind and ASan
are, they fail to provide an assurance on the program as a whole. In part, this is
because the testing methodology that underlies these tools is empirical: program
is tested against concrete inputs that may or may not exercise all possible program
paths (Code Coverage). The code coverage problem gets exacerbated when the
program under test has millions of lines of code. To the best of our knowledge, we
are unaware of published work that evaluates code coverage of fuzzer-based tools
against large codebases. In contrast, a static analysis tool such as ours, performs
more comprehensive code analysis, complementing software testing.

Symbolic Execution Symbolic execution has been used to find bugs in programs,
or to generate test cases with improved code coverage. KLEE [21], Clang SA [90],
and AEG [8] use different flavors of forward symbolic execution for their own end.
In KLEE and AEG, FSE is performed at run-time. As the program (symbolically)
executes, constraints on program paths (path predicates) are maintained. Satisfia-
bility queries on path predicates are used to prune infeasible program paths. AEG
proposes heuristics to reduce input space of symbolic inputs using a technique the
authors call “preconditioned symbolic execution.” Unlike KLEE and AEG, symbolic
execution in Clang SA is done statically. Moreover, the extent of symbolic execution
in Clang SA is limited to a single source file, unlike KLEE and AEG that symbolically
execute whole-programs. Anecdotal evidence suggests that KLEE and AEG don’t
scale up to large programs like web browsers [65].
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UC-KLEE [126] offers an alternate mode for symbolic execution which its authors
describe as “under-constrained.” UC-KLEE, unlike KLEE, begins symbolical execution
at procedure entry points. By skipping over constraints that would have been built
up by a whole-program symbolic analyzer such as KLEE, UC-KLEE achieves greater
scalability. Mélange shares the larger goal of reconciling analysis scalability and
analysis effectiveness with UC-KLEE. However, Mélange focuses on finding defects in
object-oriented code. Indirections that object-oriented code introduce, necessitates
analysis whose outlook is global in nature.

Static Analysis Parfait [26] employs an analysis strategy that is similar in spirit
to ours for finding buffer overflows in C programs. It employs multiple stages
of analysis. In Parfait, each successive stage is more precise than the preceding
stage. Parfait uses IR-only analysis in contrast to mixed-level (Source + IR) analysis
that we undertake. We want source-level patterns that typically characterize bug
classes (e.g., uninitialized read, use-after-free) to be driving analysis. This precludes
IR-only analysis. Like Yamaguchi et al. [160], our goal is empower developers in
finding multiple instances of a known defect. However, the approach we take is
different. In [160], structural traits in a program’s AST representation are used to
drive a Machine Learning (ML) phase. The ML phase extrapolates traits of known
vulnerabilities in a codebase, obtaining matches that are similar in structure to
the vulnerability. In contrast, Mélange employs semantic analysis to drive defect
discovery, while leveraging an LIVM pass towards defect extrapolation. Our notion
of defect extrapolation is different: For us, extrapolation entails obtaining whole-
program diagnostics for a local defect.

CQUAL [50], and CQual++ [156], are flow-insensitive data-flow analysis frame-
works for C and C++ languages respectively. Oink performs whole-program data-
flow analysis on the back of Elsa, a C++ parser, and Cqual++. Data-flow analysis
is based on type qualifiers. Our approach has two advantages over Cqual++. We
use a production compiler for parsing C++ code that has a much better success
rate at parsing advanced C++ code than a custom parser such as Elsa. Second,
our source-level analysis is both flow and path sensitive while, in CQual++, it is
not. Livshits et al. [89], propose a program analysis technique to detect security
vulnerabilities in Java code. Their technique relies on context-sensitive points-to
analysis of Java objects. Java bytecode is analyzed against a user-specified vulner-
ability specification written in a declarative language. The approach is similar in
spirit to Fortify’s taint analyzer [143] that performs analysis of IR-level objective C
code using user-written tainting rules. Both these works are geared towards IDE
integration. In contrast, Mélange encodes a hard-coded policy in its source-level
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checker. However, our taint infrastructure can be leveraged to implement a system
that accommodates user-specified taint policy as in [89, 143].

Finally, Clang Static Analyzer borrows ideas from several publications including (but
not limited to) [128, 63]. Inter-procedural context-sensitive analysis in Clang SA
is based on graph reachability that was proposed by Reps et al. [128]. Clang SA is
similar in spirit to xgcc [63].

3.4 Related Work
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Vulnerability Diagnosis Using
Static Input Format Inference

In general, an implementation must be conservative in its sending behavior,
and liberal in its receiving behavior.

— IETF RFC 791, Internet Protocol Specification

In the previous chapter, we demonstrated the utility of staged program analysis
in diagnosing vulnerabilities that are caused by faulty interactions between pro-
gram components. So far, we have taken a program-centric view of vulnerabilities.
Program input has been of no consequence in our analyses. In practice, several
applications such as network and file format parsers that parse highly structured
input can benefit from input-centric analysis.

Parsing applications contain an input processing pipeline in which the input is
first tokenized, then parsed syntactically, and finally analyzed semantically. The
application logic (e.g., intrusion detection, network monitoring etc.) usually resides
in the final stage. There are two problems that these applications pose for traditional
program-centric analyzers. First, the highly structured nature of input leads to a
vast number of control flow paths in the portion of application code where packet
parsing takes place. Coping with diverse program paths in the early stages of the
packet processing pipeline, and exploring the depths of program code where the
core application logic resides is taxing even for state-of-the-art analyzers. Second,
the diversity of program input not only amplifies the number of control flows but
also demands analysis in breadth. For example, the deep packet inspection library,
nDPI, analyzes close to 200 different network protocols [107]. In the face of such
diversity, generating inputs that efficiently test application logic is a hard problem.

In this chapter, we address these challenges by using static analysis to assist dynamic
program testing tools such as fuzzers. Specifically, we propose a static analysis
method that accepts source code as input, and infers the structure of program input
processed by the source code. The inferred input structure is encoded as a dictionary
and supplied to the fuzzer towards program testing. Our method for input inference
is based on the insight that code patterns reflect the specification of inputs processed
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by a program. For example, we expect that a parsing program matches constant
tokens in its input stream by encoding them as constant strings. To this end, we
analyze code to infer the underlying data specification.

An important consequence of Rice’s theorem [130] is that program analysis is
incomplete in general. In the scope of this work, this means that the data format
specification may not be completely inferred by a static analyzer. However, our
evaluation shows that even incomplete descriptions of this specification can make
program testing more effective in two ways: They can increase test coverage, find
more vulnerabilities or do both. Overall, the presented method increases confidence
in software that is going to be shipped to end-users, contributing to the aim of this
dissertation.

The rest of this chapter is organized as follows. We proceed with a definition of
the task of inferring the input specification in Section 4.1. We then present the
design and implementation of a static analyzer geared towards extracting input
fragments from source code in Section 4.2. We evaluate our method in controlled
as well as uncontrolled environments. Our evaluation methodology and results are
presented in Section 4.3. We conclude the chapter with a discussion of related work
in Section 4.4.

Task: Input Inference

Parsing applications are an integral part of computer networks, being responsible
for correctly decoding data exchanged over the network. These applications are
a natural target for attackers because they are usually remotely accessible and
afford a foothold into private infrastructure. Due to their sensitive nature, parsing
applications must be conservative in what they accept failing safely when input is
malformed. Instead, networking protocols have been historically designed to be
liberal in what they accept drawing attackers’ interest to parsing applications.

Testing the resilience of parsers to malformed input is a big challenge. Consider the
code responsible for decoding Internet protocol (IP) packets in the Snort++ intrusion
detection system shown in Listing 4.1. The Ipv4Codec: :decode function accepts
raw IPv4 packet data and a decoding configuration as input, decoding the packet
into an internal data structure. The IPv4 decoder needs to perform tens of checks
to ensure that IPv4 data is well formed. As illustrated in Listing 4.1 these checks
are usually encoded as branch statements such as if statements. For example, [Pv4
version check is encoded in an if statement on line 12, header length check on line
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bool Ipv4Codec::decode(const RawData& raw, CodecData& codec, DecodeData¥

snort)
{
ié.(raw.len < ip::IP4_HEADER_LEN)
‘ if ((codec.codec_flags & CODEC_UNSURE_ENCAP) == 0)
. .
if ( snort::SnortConfig::get_conf()->hit_ip_maxlayers(codec.ip_layer_cnt)
)
.if (iph->ver () != 4)
‘ if ((codec.codec_flags & CODEC_UNSURE_ENCAP) == 0)
}
if (hlen < ip::IP4_HEADER_LEN)
if (ip_len > raw.len)
.if (ip_len < hlen)
.if ( snort.ip_api.is_ip6() )
}

Listing 4.1: Snort++ code snippet for decoding IP packets.

18, total payload length on line 20 etc. Since the number of program paths grows
exponentially with the number of branch statements, software testing tools such
as fuzzers find it difficult to test each and every program path. Moreover, since the
input to parsers is highly structured, program paths are exercised only if program
input contains specific tokens of interest.

This setting calls for a method that can augment input-centric testing with program
information so that implementors can obtain a high assurance that parsers are
fail safe. To this end, our method uses static program analysis to obtain input-
centric information about the program in advance so that test effectiveness can be

improved.

Data Format Dictionary Construction

It is evident from our previous discussion that awareness of the input format is
crucial for improving test effectiveness. Next, we first briefly outline the problem
scope with regard to protocol specification inference, then provide an overview of
our approach, and finally describe our methodology.

4.2 Data Format Dictionary Construction
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Fig. 4.1.: Work-flow for program analysis guided fuzzing.

Problem Scope: An application protocol specification usually comprises a state
machine that defines valid sequences of protocol messages, and a message format
that defines the protocol message. In our work, we focus on inferring the protocol
message format only, leaving the inference of the state machine for future work.
Since file formats are stateless specifications, our work is applicable for conducting
security evaluations of file format parsers as well.

Approach Overview: We demonstrate how fuzz testing of network applications
can be significantly improved by leveraging static analysis for test guidance. It
has already been suggested in non-academic circles that, a carefully constructed
dictionary of parser input can dramatically improve a fuzzer’s effectiveness [162].
However, creating input dictionaries has required domain expertise. We automati-
cally generate input dictionaries by performing static program analysis, supplying it
to an off-the-shelf fuzzer toward input generation. Indeed, our prototype builds on
legacy fuzzers to demonstrate the effectiveness of our approach.

Figure 4.1 illustrates our analysis and test workflow. First, we statically analyze
application source code and obtain a dictionary of protocol message constructs and
conjunctions. Each item in the dictionary is an independent message fragment:
It is either a simple message construct, or a conjunction of multiple constructs.
For example, a constant string SIP/2.0 in source code is inferred as a message
construct, while usages of another construct, say the constant string INVITE, that
are contingent on SIP/2.0 are inferred to be a conjunction of the form INVITE
SIP/2.0. Second, we supply the input dictionary obtained in the first step to a
fuzzer toward input generation. The fuzzer uses the supplied dictionary together
with an initial set of program inputs (seeds) toward fuzzing an application test
case. In contrast to prior work, our analysis is automatic, and requires neither a
hand-written grammar specification, nor software instrumentation. Furthermore,
the input dictionary obtained through our analysis may be supplied as is to existing
fuzzers such as afl, aflfast, and libFuzzer, making our approach legacy compliant.
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Input Dictionary Generation

The use of static program analysis for inferring program properties is a long-standing
field of research. However, the main challenge underlying our approach is that
our analysis must infer properties of the program input from application source
code. Although Rice’s theorem [69] states that all semantic program properties are
undecidable in general, we aim to make an informed judgement.

Program Slicing: The first problem we encounter is an instance of the classical
forward slicing problem [52]: determining the subset of program statements, or
variables that process, or contain program input. Although existing forward slicing
techniques obtain precise inter-procedural slices of small programs, they do not
scale up to complex network parsers that exhibit a high degree of control as well as
data-flow diversity.

As a remedy, we obtain a backward program slice with respect to a pre-determined
set of program statements that are deemed to process program input. These program
statements are called taint sinks, since program input (taint) flows into them. Since
our analysis is localized, it is tractable and scales up to large programs. Furthermore,
we can efficiently obtain backward program slices using analysis infrastructure that
comes with modern compilers. The selection criteria for taint sinks influence analysis
precision, and ultimately decide the quality of inferred input fragments. To this end,
we employ useful heuristics and follow reasonable design guidelines so that taint
sink selection is not only well-informed by default, but can also benefit from domain
expertise when required. We explain our heuristics and design guidelines for taint
sink selection in the next paragraph. Subsequently, we describe how we perform
backward slicing with reference to the chosen sinks, using analysis queries.

Taint Sinks: We select a program statement as a taint sink if it satisfies one or more
of the following conditions:

1. Is a branch statement involving a program variable e.g., switch...case, If
etc.

2. Is a well-known data sink e.g., POSIX functions strcmp, memcmp etc.

3. Contains a const qualified program variable such as
const char *sip = "SIP/2.0"

4. Contains a literal string, character, or an integer such as
if (mpls == 0x8848)

4.2 Data Format Dictionary Construction
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Although these heuristics are simple, they are effective, and have two useful proper-
ties. First, they narrow the search for protocol keywords (e.g., Heuristic 2, 3, 4), or
potentially data-dependent control flow (Heuristic 1). Second, although our heuris-
tics are not sound, they capture a wide array of code patterns that are commonly
found in parsing applications. Thus, they constitute a good default specification
that is broadly applicable to a large class of parsing applications. The defaults that
are built-in to our analysis framework make our solution accessible for conducting
security assessments of third-party network software.

Naturally, our heuristics may miss application-specific taint sinks. A prominent
example is the use of application specific APIs for input processing. To cater to such
use cases, we permit the security analyst to specify a non-default set of taint sinks as
an analysis parameter. Thus, our analysis framework facilitates automatic analysis
of third-party software, while opportunistically benefiting from application-specific
knowledge. This makes our analysis framework flexible in practice.

Analysis Queries

In order to infer protocol message constructs, we need to analyze data and control-
flow around taint sinks. To facilitate fast and scalable analysis, we design a query
system that is capable of both syntactic and semantic analysis. Fortunately, the
infrastructure to obtain program AST, CFG, and perform analysis on them is already
available in modern compiler toolchains. Thus, we focus on developing the analysis
logic for performing backward program slicing toward obtaining protocol message
constructs.

Algorithm 1 illustrates our analysis procedure for generating an input dictionary from
source code. We begin by initializing our internal data-structures to an empty set
(lines 2 — 4). Next, we iterate over all compilable source files in the code repository,
and obtain their program AST and CFG representations (lines 8 — 9) using existing
compiler routines. Based on our default set of taint sinks, we formulate syntactic
and semantic queries (described next) that are designed to elicit input message
constructs or their conjunctions in source code (line 6). Equipped with the queries,
for each source file, we obtain a list of input message constructs present in it using
syntactic analysis (line 11), and conjunctions of constructs using semantic analysis
(line 13). The constructs and conjunctions obtained from the source file is added to
the dictionary data structure(line 14 — 15) and the analysis continues on the next
source file.
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Algorithm 1 Pseudocode for generating an input dictionary.

1: function GENERATE-DICTIONARY(SourceCode, Builder)

2:  dictionary = ()
3: constructs = ()
4: conjunctions = ()
5: > Queries generated from internal database
6: queries = @
7: for each sourcefile in SourceCode do
8: ast = frontendParse(sourcefile)
o: cfg = semanticParse(ast)
10: > Obtain constructs
11: constructs = syntactic-analysis(ast, queries)
12: > Obtain conjunctions of existing constructs
13: conjunctions = semantic-analysis(cfg, constructs)
14: > Update dictionary
15: dictionary += constructs
16: dictionary += conjunctions
17: return dictionary
18:
19: function SYNTACTIC-ANALYSIS(AST, Queries)
20: constructs = ()
21: for each query in ) do
22: constructs += synQuery(AST, query)
23: return constructs
24:
25: function SYNQUERY(AST, Query)

26: matches = ()

27: while T = traverseAST(AST) do

28: if Query matches T then

29: matches += (T.id, T.value)

30: return matches

31:

32: function SEMANTIC-ANALYSIS(C F'G, Constructs)

33: conjunctions = ()

34: > Obtain conjunctions in a given calling context

35: conjunctions += Context-Sensitive-Analysis(C'F'G, Constructs)
36: > Obtain productions in a given program path

37: conjunctions += Path-Sensitive-Analysis(C' F'G, Constructs)
38: return conjunctions

Syntactic Queries: At the syntactic level, our analysis logic accepts functional
queries and returns input message constructs (if any) that match the issued query.
These queries are made against the program AST. In our framework, a functional
query is a query that is composed of boolean predicates on a program statement or
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data type. As an example, consider the following query:
stringliteral (hasParent (callExpr (hasName ("strcmp")))).

The query shown above elicits a program value of type string (stringlLiteral)
whose parent node in the AST is a function call (callExpr), and whose declaration
name is strcmp. Thus, a functional query is essentially compositional in nature and
operates on properties of the program AST. There are two key benefits of functional
queries. First, their processing time is very low allowing them to scale up to large
codebases. Second, since large parsers use a recurring pattern of code to parse
input messages of different formats, even simple queries are efficient at building a
multi-protocol input dictionary.

Syntactic queries are efficient for obtaining a list of simple input message constructs
such as constant protocol keywords. However, these queries do not analyze the
context in which constructs appear in the program. Analyzing the context brings us
a deeper understanding of the input message format. As an example, we may know
which two constructs are used in conjunction with each other, or if there is a partial
order between grammar production rules involving these constructs. Deeper analysis
of message constructs may infer complex message fragments, allowing the fuzzer to
explore intricate parsing routines. To facilitate such context-sensitive analyses, we
write context and path-sensitive checkers that enable semantic queries.

Semantic Queries: At the semantic level, a query accepts a list of input message
constructs as input, and returns conjunctions (if any) of constructs as output. Se-
mantic queries are made against a context-sensitive inter-procedural graph [129]
constructed on a program’s CFG. Each query is written as a checker routine that
returns the set of conjunctions that can be validated in the calling context where the
input construct appeared. As an example, consider the parsing code snippet shown
in Listing 4.2.

The parse function takes two string tokens as input and performs an operation only
when the first token is INVITE and the second token is SIP/2.0. From this code, we
can infer that there is a dependency between the two tokens, namely, that INVITE is
potentially followed by the SIP/2.0 string. While syntactic queries can only identify
simple message constructs, semantic queries can be used to make an inference about
such message conjunctions. Together, syntactic and semantic queries may be used to
build a dictionary of the input message format.

An input dictionary can improve the effectiveness of fuzzing by augmenting the
program representation maintained by the fuzzer for test guidance. The input
fragments in the supplied dictionary enable input mutations that are well-informed,
and in some cases more effective at discovering new program paths than purely
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int parse(const char #*tokenl, const char *token2) {
if (tokenl == "INVITE")
if (strcmp(token2, "SIP/2.0"))
do_something () ;
}

Listing 4.2: Sample parser code.

Algorithm 2 Pseudocode for dictionary-based fuzzing.

1: function DICTIONARY-FUZZ(input, Dictionary, deterministic)
2 dictToken = Random(Dictionary)
3 if deterministic then
4 for each byteoffset in input do
5: fuzz-token-offset(input, dictT oken, byteoffset)
6 else
7 byteoffset = Random (sizeOf(input))
8 fuzz-token-offset(input, dictT oken, byteoffset)
9:
10: function FUZZ-TOKEN-OFFSET (input, dictT oken, byteoffset)
11: > Token overwrites input byte
12: input|byteoffset] = dictToken
13: Program(input)
14: > Token inserted into input

15: InsertToken (input, byteoffset, dictToken)
16: Program(input)

random mutations. Next, we document how our input dictionary can be integrated

into a modern fuzzer.

Fuzzing with an Input Dictionary

In order to efficiently test applications with highly structured input, contemporary
fuzzers offer an interface to plug in an application-specific dictionary. We use this
interface to supply the input fragments inferred by our analysis framework, to the
fuzzer.

Algorithm 2 presents the pseudocode for dictionary based fuzzing employed by most
present-day fuzzers. Dictionary based mutations may be performed either determin-
istically (at all byte offsets in the input stream, line 4 — 5), or non-deterministically
(at a random byte offset, line 7 — 8). There are two kinds of dictionary based
mutations used by fuzzers: overwrite, and insert. In an overwrite operation, the
chosen dictionary token is used to overwrite a portion of a program input in the
fuzzer queue (line 12 — 13). In an insert operation, the chosen token is inserted into
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the queued input at the specified offset (line 15 — 16). Typically, fuzzers perform
both mutations on a chosen token.

Fuzzers bound the runtime allocated to dictionary-based fuzzing routines. In practice,
fuzzers either use up to a certain threshold (typically a few hundred) of supplied
dictionary tokens deterministically, while using the rest probabilistically, or pick each
token at random. Thus, it is important that the size of the supplied dictionary is
small, and the relevance of the tokens be high. Our use of demand-driven queries,
and analyses of varying precision ensures that we supply such a dictionary to the
fuzzer.

Soundness and Precision: In summary, by providing message format specific
insight to the fuzzer in advance, our approach should increase the test coverage.
However, owing to the unsound nature of our chosen heuristics, it is possible
that our approach fails to extract certain input fragments i.e., has false negatives.
However, in scenarios where application-specific knowledge is inevitable, we permit
the user to supply custom analysis parameters, such as, application-specific taint
sinks and functional queries on them. This lowers the number of false negatives, at
an acceptable cost to usability.

Our semantic analysis routines have a high degree of precision, owing to their
context and path sensitivity. Thus, input conjunctions returned by our semantic
queries have a low number of false positives.

Implementation: We have implemented our approach in a research prototype, that
we call Orthrus. Our query system is composed of tooling based on the libASTMatch-
ers, and the libTooling infrastructure in Clang (syntactic queries), and checkers
to the Clang Static Analyzer [90] (semantic queries). To enable ease-of-use, we
have packaged our framework as a test pipeline that is scripted in the Python lan-
guage. Although we have described our proposal in the context of protocol parsers,
our approach is generalizable to other classes of parsing applications such as file
format parsers. At the moment, our prototype may be used to conduct grammar-
based security assessments of applications written in the C/C++ programming
language.

Evaluation

In this section, we present our evaluation of Orthrus in both controlled and uncon-
trolled environments. First, we assess the time Orthrus needs to uncover vulnerabil-

4 \Vulnerability Diagnosis Using Static Input Format Inference



4.3.1

CVE-2014-0160 CVE-2016-5180

30T ’ | os) ’
= 20| - o6 —
2 2 :
= = 0.4 N N
g 10 1 E
O, .

CVE-2015-8317 WOFF2 Bug 1

s
, 1 E 30}

— 0r
Baseline Orthrus Baseline Orthrus

20

Time (s)
Time (m)

Fig. 4.2.: Comparison of time required to expose vulnerability using libFuzzer as the base-
line.

ities in a set of fuzzer benchmarks (§4.3.1). Subsequently, we evaluate how well
Orthrus performs in comparison to state-of-the-art fuzzers on real-world codebases
(84.3.2).

Measurement Infrastructure: All measurements presented in this section were per-
formed on a 64-bit machine with 80 CPU threads (Intel Xeon E7-4870) clocked at
2.4 GHz, and 512 GB RAM.

Benchmarks: Time to Vulnerability Exposure

To enable independent reproduction, we briefly document our evaluation methodol-
ogy-

Fuzzer Test Suite In order to measure the time required to expose program vulnera-
bilities, we used the fuzzer test suite [61]. The fuzzer test suite is well-suited for this
purpose because it provides a controlled environment in which timing measurements
can be done, and contains test cases for several known high-profile vulnerabilities.
Indeed, the test suite has been used for benchmarking the LIVM libFuzzer [91], that
we use as a baseline in our evaluation. The specific vulnerabilities in the test suite
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that feature in our evaluation are: CVE-2014-0160 [96] (OpenSSL Heartbleed), CVE-
2016-5180 [98] (buffer overflow in the c-ares dns library), CVE-2015-8317 [97]
(buffer overflow in libxml2), and a security-critical bug in Google’s WoFF2 font
parser [29].

Test Methodology For each test case, our evaluation was performed by measuring
the time to expose the underlying vulnerability in two scenarios: (i) The baseline
fuzzer alone; and (ii) The baseline fuzzer augmented with Orthrus generated
dictionary. Our approach is deemed effective when the time to expose vulnerability
reduces in comparison to the baseline, and is ineffective/irrelevant when it increases
or remains the same in comparison to the baseline. Timing measurements were
done using Unix’s time utility. In order to reduce the effect of seemingly random
vulnerability exposures, we obtained at least 80 timing measurements for each
test case in each of the two scenarios. Measurements for each test case were
carried out in parallel, with one experiment being run on a single core. The input
dictionary generated by Orthrus was supplied to libFuzzer via the -dict command
line argument. Finally, to eliminate the effect of seed corpuses on measurement
outcome, we strictly adhered to the selection of seed corpuses as mandated by the
fuzzer test suite documentation.

Results Figure 4.2 presents our test results as box plots. The baseline box plot
(libFuzzer) is always on the left of the plot, and results for libFuzzer augmented
with Orthrus (Orthrus) to the right. Orthrus generated input dictionary brought
down the time to expose a buffer overflow in the libxml2 library (CVE-2015-8317)
by an order of magnitude (from a median value of close to 3h using the baseline
to a median value of 5 minutes using our approach). For all the other test cases,
the median time to expose vulnerability was lower for Orthrus in comparison to
libFuzzer. In addition, Orthrus shrunk the range of timing variations in exposing the
vulnerability.

To understand the varying impact of the supplied dictionary on the time to vulnerabil-
ity exposure, we studied each of tested vulnerabilities to understand their root cause.
Our approach consistently brought down the time to exposure for all vulnerabilities
that were triggered by a file or protocol message specific to the application under
test. Thus, our approach worked well in scenarios where knowledge of the input
format was crucial to eliciting the vulnerability. Furthermore, in scenarios where
our approach did not substantially lower time to vulnerability exposure, the time
penalty incurred by our approach, owing to the test time dedicated to dictionary
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mutations, was marginal. In summary, we find that static program analysis can
improve bug-finding efficiency of fuzzers for those class of bugs that are triggered by
highly structured input (commonly found in network applications, and file format
parsers), while not imposing a noticeable performance penalty.

Case Study

To investigate the practical utility of Orthrus, we conducted a case study of two
popular network applications, namely, nDPI, and tcpdump. For each application, we
conducted multivariate testing using baseline fuzzers such as afl and aflfast [16]
with and without Orthrus generated dictionary.

The chosen applications were also fuzzed using the Peach fuzzer [117], a state-of-
the-art fuzzer for protocol security assessments. Since grammar specifications for
the set of protocols parsed by tcpdump, and nDPI were not publicly available, we
enabled Peach fuzzer’s input analyzer mode that automatically infers the input data
model. Such an evaluation was aimed at comparing Peach fuzzer with Orthrus in
scenarios where a data model specification is not available. However, the community
edition of the Peach fuzzer that we had access to, is not geared toward long runs.
In our Peach-based experiments, we could not achieve a run time of longer than
24 hours. This prevented a fair comparison of the two approaches. Therefore, we
document results of our Peach experiments for reference, and not a comparative
evaluation.

Evaluation Methodology We evaluated Orthrus using two metrics, namely, test
coverage achieved, and the number of program vulnerabilities exposed. Test cov-
erage was measured as the percentage of program branches that were discovered
during testing. Since fuzzers often expose identical crashes, making it non-trivial to
document unique vulnerabilities, we semi-automatically deduplicated fuzzer crashes
in a two-step process. First, we used the concept of fuzzy stack hashes [100] to
fingerprint a crash’s stack trace using a cryptographic hash function. Second, crashes
with a unique hash were manually triaged to determine the number of unique
program vulnerabilities.

To minimize the impact of seed quality on fuzzer outcome, two elementary seeds
(bare-bones IPv4, and IPv6 packets) were used in all our evaluations. It is possible
that a diverse set of seeds improves the effectiveness of fuzzing. Hence, we have
carefully analyzed the additional coverage achieved solely through the use of input
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Software afl afl-orthrus  aflfast aflfast- Peach-

orthrus analyzer
tcpdump 80.56 90.23 (+ 9.67) 71.35 78.82 (+7.47) 6.25
nDPI 66.92 81.49 (+14.57) 64.40 68.10 (+3.70) 24.98

Tab. 4.1.: Test coverage achieved by different fuzzing configurations.

fragments in the supplied dictionary to ensure that the presented increments can
be attributed to our method. In addition, we manually triage all the vulnerabilities
that were exclusively found using our approach to ensure causality i.e., that they are
identified due to the use of specific tokens in the supplied dictionary. Tests involving
the fuzzers afl and aflfast were conducted in a multi-core setting.

Fuzzing Duration: Dictionary based mutations get a fraction of the total fuzz time
of a fuzzer. Thus, to fully evaluate our approach, we ran the fuzzer configurations
(except Peach) until each unique program input synthesized by the fuzzer was
mutated with the supplied dictionary constructs at least once. Owing to the relatively
poor execution throughput of the evaluated software (under 100 executions per
second), we had to ran each fuzzer over a period of 1 week in which time the
supplied dictionary was utilized at least once for each unique input.

Utilities: CERT’s exploitable [49] utility was used for crash deduplication. We
used AddressSanitizer [136] as a debugging aid; this expedited the bug reporting
process.

Evaluated Software: We evaluated nDPI revision f51fef6 (November 2016), and
tcpdump trunk (March 2017).

Test Coverage

Our test coverage measurements present the fraction of all program branches (edges)
covered by test cases generated by a fuzzer configuration. We have evaluated
Orthrus against two baselines, namely, afl, and aflfast. Therefore, our measurements
have been obtained for afl, afl augmented with Orthrus-generated input dictionary
(afl-Orthrus), aflfast, aflfast augmented with Orthrus-generated input dictionary
(aflfast-Orthrus), and the Peach fuzzer with a binary analyzer data model. Table 4.1
shows the test coverage achieved by different fuzzer combinations for tcpdump, and
nDPI, while Figure 4.3 visualizes code coverage over time. Coverage measurements
have been performed whenever there is a change in coverage, as reported by the
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Fig. 4.3.: Test coverage as a function of time for tcpdump 4.3a, and nDPI 4.3b, for different
fuzzing configurations. Program coverage measurements were made only when
there was a change in its magnitude.

fuzzer. Due to the relatively short running duration of the Peach fuzzer, we have
excluded its coverage visualization.

As shown in Figure 4.3, the obtained coverage measurements for tcpdump, and nDPI,
approach a saturation point asymptotically. For both tcpdump, and nDPI, the growth
rate in test coverage is higher initially, tapering off asymptotically to zero. The test
coverage curves for afl-Orthrus and aflfast-Orthrus have a higher initial growth rate
compared to their respective baselines, namely, afl, and aflfast. This results in a
consistent increase in overall test coverage achieved by Orthrus in comparison to
the baseline fuzzers, as shown in Table 4.1. For nDPI, Orthrus’ input dictionary
increases test coverage by 14.57% over the afl fuzzer. In the case of tcpdump, this
increase in test coverage is 9.67%. Orthrus’ enhancements in test coverage over
aflfast for nDPI, and tcpdump are 3.7%, and 7.47% respectively. Although aflfast is
a fork of afl, the supplied input dictionary has a lesser effect on the former than the
latter. To understand this anomaly, we examined the source code of afl, and aflfast.
afl performs dictionary-based mutations on all inputs in the fuzzer queue at least
once. However, aflfast performs dictionary-based mutations on a given input in the
queue, only when the input’s performance score (computed by the aflfast algorithm)
is above a certain threshold. We determined that the threshold used by aflfast is too
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Tab. 4.2.: Number of bugs and vulnerabilities exposed by different fuzzing configurations.
For Orthrus-based fuzzer configurations, the number of bugs exclusively found
by them is shown in brackets.

Software afl afl-orthrus aflfast aflfast-orthrus Peach-
analyzer

tcpdump 15 26 (+10) 1 5(+4 0
nDPI 26 27 (+ 4) 24 17 (+ 1) 0

aggressive, resulting in too few inputs in the fuzzer queue undergoing dictionary
mutations.

Vulnerabilities Exposed

Table 4.2 shows the number of vulnerabilities exposed in nDPI, and tcpdump, across
all fuzzing configurations. In the case of tcpdump, the positive impact of the Orthrus
generated dictionary is evident. afl, and afl-Orthrus, exposed 15, and 26 unique
vulnerabilities respectively. 10 out of the 11 additional vulnerabilities exposed by
afl-Orthrus, were exclusively found by it i.e., it exposed 10 vulnerabilities in tcpdump
not found by stand-alone afl. aflfast, and aflfast-Orthrus configurations exposed
1 and 5 vulnerabilities respectively. aflfast-Orthrus exposed 4 vulnerabilities that
were not exposed by stand-alone aflfast. In the case of nDPI, afl-Orthrus exposed 4
vulnerabilities that were not found by stand-alone afl, while aflfast-Orthrus exposed
1 such vulnerability. For both nDPI, and tcpdump, aflfast-Orthrus finds fewer number
of vulnerabilities overall in comparison to its baseline. We hypothesize that the
fuzz schedule alterations carried out in aflfast [16] influence the scheduling of
dictionary-mutations, resulting in the observed drop.

Table 4.3 documents those vulnerabilities found using Orthrus generated dictionaries
that were not found by stand-alone fuzzing of tcpdump, and nDPI. The number of
exposed vulnerabilities that may be exclusively attributed to Orthrus are 10, and
5, for tcpdump, and nDPI respectively. Overall, Orthrus generated dictionaries
exposed vulnerabilities in 14 different network protocols across the two codebases.
Some of the exposed vulnerabilities are in the processing of proprietary protocol
messages such as the Viber protocol. All the exposed vulnerabilities resulted in buffer
overflows, and were immediately reported to the respective vendors. These results
are a testament to the efficacy of our approach in increasing the breadth of testing
for complex network applications without requiring domain-specific knowledge.
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Tab. 4.3.: Vulnerabilities exposed exclusively using Orthrus generated dictionaries in afl,
and aflfast, for tcpdump, and nDPI. All the vulnerabilities result in a buffer
overflow. Number in square brackets indicates the number of vulnerabilities
found.

Software Vulnerable Component

IPv6 DHCP packet printer

IPv6 Open Shortest Path First (OSPFv3) packet printer

IEEE 802.1ab Link Layer Discovery Protocol (LLDP) packet printer

ISO CLNS, ESIS, and ISIS packet printers [2]

tcpdump IP packet printer
ISA and Key Management Protocol (ISAKMP) printer

IPv6 Internet Control Message Protocol (ICMPv6) printer

Point to Point Protocol (PPP) printer

White Board Protocol printer

ZeroMQ Message Transport Protocol processor

Viber protocol processor

nDPI Syslog protocol processor
Ubiquity UBNT AirControl 2 protocol processor

HTTP protocol processor

4.4 Related Work

Prior works have proposed multiple techniques to improve the effectiveness of
fuzzing. For our discussion of related work, we focus on approaches that infer
the protocol specification, or use grammar-based fuzzing, and query-driven static
analysis approaches.

Inferring Protocol Specification: There are two problems underlying protocol
specification inference: Inferring the (i) protocol message format; and (ii) protocol
state machine. Prior work, with the exception of Prospex [30] has focused solely
on the message format inference problem. Broadly, two approaches have been
proposed to automatically infer the protocol specification. The first approach relies
entirely on network traces for performing the inference, exemplified by the tool
Discoverer [35]. As other researchers have noted, the main problem with this
approach is that network traces contain little semantic information, such as the
relation between fields in a message. Therefore, inference based entirely on network
traces is often limited to a simple description of the message format that is an
under-approximation of the original specification.

The second approach, also a pre-dominant one, is to employ dynamic program
analysis in a setting where the network application processes sample messages, in
order to infer the protocol specification. Proposals such as Polyglot [20], Tupni [36],
Autoformat [88], Prospex [30], and the tool by Wondracek et al. [158] fall into this
category. In comparison to our work, these proposals have two shortcomings. First,
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they require dynamic instrumentation systems that are often proprietary or simply
inaccessible. Dynamic instrumentation and analysis often requires software expertise,
making it challenging for auditing third-party code. In contrast, we show that our
analysis can be bundled into an existing compiler toolchain so that, performing the
protocol inference is as simple as compiling the underlying source code. Second,
prior works with the exception of Prospex, have not specifically evaluated the impact
of their inference on the effectiveness of fuzz testing. Although Comparetti et al. [30]
evaluate their tool Prospex in conjunction with the Peach fuzzer, their evaluation
is limited to finding known vulnerabilities in controlled scenarios. In contrast to
these works, we extensively evaluate the impact our inference on the effectiveness
of fuzzing, both quantitatively in terms of test coverage achieved, and time to
vulnerability exposure, and qualitatively in terms of an analysis of vulnerabilities
exclusively exposed using our inference in real-world code.

Grammar-based Fuzzing Godefroid et al. [57] design a software testing tool in
which symbolic execution is applied to generate grammar-aware test inputs. The
authors evaluate their tool against the IE7 JavaScript interpreter and find that
grammar-based testing increases test coverage from 53% to 81%. Although their
techniques are promising, their work suffers from three practical difficulties. First,
a manual grammar specification is required for their technique to be applied. Sec-
ond, the infrastructure to perform symbolic execution at their scale is not publicly
available, rendering their techniques inapplicable to third-party code. Third, their ap-
proach requires non-trivial code annotations, requiring a close co-operation between
testers and developers, something that might not always be feasible. In contrast,
we solve these challenges by automatically inferring input data formats from the
source code. Indeed, we show that more lightweight analysis techniques can sub-
stantially benefit modern fuzzers. Langfuzz [68] uses a grammar specification of
the JavaScript and PHP languages to effectively conduct security assessments on the
respective interpreters. Like Godefroid et al., the authors of Langfuzz demonstrate
that, in scenarios where a grammar specification can be obtained, specification
based fuzzing is superior to random testing. However, creating such grammar spec-
ifications for complex network applications manually is a daunting task. Indeed,
network protocol specifications (unlike computing languages) are specified only
semi-formally, requiring protocol implementors to hand-write parsers instead of
generating them from a parser generator. Such practical difficulties make grammar
(specification) based fuzzing challenging for network applications.

Query Based Program Analysis Our static analysis approach is inspired by prior
work on the use of queries to conduct specific program analyses by Lam et al. [84],
and automatic inference of search patterns for discovering taint-style vulnerabilities
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from source code by Yamaguchi et al [159]. At their core, both these works use a
notion of program queries to elicit vulnerable code patterns from source code. While
Lam et al. leverage datalog queries for analysis, Yamaguchi et al. employ so called
graph traversals. In contrast to their work, we leverage query-driven analysis toward
supporting a fuzzer instead of attempting static vulnerability discovery.
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Vulnerability Diagnosis Using
Static Template Matching

If it looks like a duck, swims like a duck, and quacks like a duck, then it
probably is a duck.

— The Duck Test

In the previous chapter, we saw that the effectiveness of fuzz testing can be improved
by an awareness of the program input format. To this end, we were able to use
static analysis to extract input fragments from source code. Although, static analysis
augmented fuzzing helped us uncover tens of zero-day vulnerabilities, we witnessed
that test coverage fell short of 100%. A natural question that follows from this
observation is whether all vulnerabilities have been uncovered or not? Although it
is impossible to be certain, we can always hope to improve our confidence in the
program by more detailed analysis. The overall aim of this chapter is to increase the
confidence in the program by diagnosing vulnerabilities missed by fuzzers.

Although fuzz testing can only prove presence and not absence of vulnerabilities, it
provides valuable feedback for taking vulnerability diagnosis further. As we have
seen in the previous chapter, a program crash uncovered using fuzz testing can
help locate memory corruption vulnerabilities that lay dormant in the program.
Our intuition is that we can apply template matching to locate other instances of
a vulnerability flagged by a fuzzer. This requires us to understand code properties
of a vulnerability and leverage them for furthering our vulnerability search. We
approach this problem using concepts from automatic fault localization and template
matching. The method presented in this chapter may not only be used to explore
known vulnerability patterns but to also perform regression analysis: eliminating
the recurrence of known vulnerabilities across a codebase.

The rest of the chapter is structured as follows. We begin with a brief discussion
of the task of static exploration of fuzzer crashes in Section 5.1. We then present
the design and implementation of our method in Section 5.2. We evaluate our
method using a case study of Open vSwitch (OvS), an open-source virtual switch
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#include <string.h>

#include <crypt.h>

#include <stdlib.h>

#include <unistd.h>

#define CUSTOM() abort ()

void fuzzable(const char *input) {
// Fuzzer finds this bug
if (!strcmp(input, "doom"))

abort();
}

void cov_bottleneck (const char *input) {
char *hash = crypt(input, "salt");

// Fuzzer is unlikely to find this bug
if (!strcmp(hash, "hash_val"))
CUSTOM(); // grep misses this
}

// Fuzzer test harmness

// INPUT: stdin

int main() {
char buf [256];
memset (buf, 0, 256);
read (0, buf, 255);
fuzzable (buf) ;
cov_bottleneck (buf);
return O;

}

Listing 5.1: A representative fuzzer test harness in which two synthetic denial of service
vulnerabilities have been introduced by calling the abort () function.

implementation used in data centers in Section 5.3. Finally, we conclude the chapter
with a discussion of related work in Section 5.4.

Task: Static Exploration of Fuzzer Crashes

Although fuzz testing is a simple and effective technique for vulnerability discovery, it
can not be used to test all program paths. This is a practical difficulty encountered by
security practitioners on a regular basis. We illustrate this problem using a synthetic
code example that is shown in Listing 5.1. This program accepts potentially attacker
controlled input, invoking two APIs, namely fuzzable and cov_bottleneck on this
input. Note that both these APIs may call the CUSTOM function which is a short hand
for the abort C library call that abruptly terminates a program leading to a denial
of service.

In particular, the program aborts while parsing (i) the input string literal doom; (ii)
the input whose cryptographic hash equals the string hash_val. We assume that the
fuzzer is able to quickly find the crash due to the string literal comparison (doom),
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but is unlikely to generate the input that satisfies the cryptographic operation. This
is a reasonable assumption since a fuzzer is very unlikely to synthesize a hash
collision simply by performing random input mutations. This means that the second
vulnerability, although identical to the first, will probably never be found by fuzz
testing alone. Therefore, even after fuzz testing has been conducted and the first
vulnerability has been uncovered, the security practitioner is left wondering if the
same vulnerability may manifest in untested program paths. This setting calls for
a method that can accept a known program crash as input and perform a search
for recurring instances of the underlying vulnerability. We refer to this task as
vulnerability exploration.

Static exploration of fuzzer crashes poses three challenges. Exploring a vulnerability
pattern requires us to know what the pattern is to begin with. This requires us to
automatically formulate a vulnerability pattern from a program crash. Next, we
need to develop algorithms and data structures to facilitate vulnerability search
based on this pattern. Finally, the output of the vulnerability search must facilitate
easy diagnosis and fixing of recurring vulnerabilities. We address these challenges
by using concepts from spectrum based fault localization and program analysis.

Static Exploration

Contemporary fuzzers and dynamic memory analysis tools have greatly advanced
vulnerability detection and re-mediation, owing to their ease-of-use and public
availability. Since fuzzers and memory analyzers are invoked at runtime, they
require a test harness that accepts user input (usually read from a file or standard
input), and invokes program APIs against this input. Therefore, the effectiveness of
fuzzing and dynamic memory analysis depends on the availability of test cases that
exercise a wide array of program APIs.

In practice, code bases contain test harnesses for only a limited number of program
APIs. This means that, even if fuzzing were to achieve 100% test coverage (either
line or edge coverage) for the set of existing test harnesses, it does not lead to 100%
program API coverage. Furthermore, for networking software, local test harnesses
do not suffice, requiring elaborate setups involving multiple software components.

Our work seeks to counter practical limitations of fuzz testing using a complementary
approach. It builds on the idea that the reciprocal nature of static analysis and

fuzzing may be leveraged to increase the effectiveness of source-code security audits.

Our key insight is that vulnerabilities discovered using a fuzzer can be localized to a

5.2 Static Exploration
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Fig. 5.1.: Work-flow of static vulnerability exploration. Templates generated from fault
localized code are used to find recurring instances of a fuzzer-discovered vulnera-
bility. The resulting matches are ranked to focus attention on potential recurring
vulnerabilities in untested code.

small portion of application code from which vulnerability templates may be derived.
These templates may then be used to find recurring vulnerabilities that may have
been either missed by the fuzzer, or are present in code portions that lack a fuzzable
test harness.

Leveraging static analysis to complement fuzzing is appealing for two reasons. First,
static analysis does not require a test harness, making it well-suited for our problem
setting. Second, by taking a program-centric view, static analysis provides a greater
overall assurance on software quality or lack thereof. Moreover, since we leverage
concrete test cases to bootstrap our analysis, our vulnerability templates focus on a
specific fault pattern that has occurred at least once with a demonstrable test input.
This begets greater confidence in the returned matches and a higher tolerance for
false positives, from an analyst’s point of view.

The proposed vulnerability exploration framework requires a coupling between
dynamic and static analysis. We begin by fuzzing a readily available program test
case. Subsequently, the following steps are taken to enable static exploration of
fuzzer-determined program crashes.

* Fault localization: We localize vulnerabilities (faults) reported by the fuzzer to
a small portion of the code base using either a dynamic memory error detector
such as AddressSanitizer [135], or using differential execution slices. Fault
localization serves as an interface for coupling dynamic and static analyses,
and facilitates automatic generation of vulnerability templates.

* Vulnerability Templates: Using lines of code returned by the fault localization
module, together with the crash stack trace, we automatically generate vul-
nerability templates. The templates are encoded using code properties based
on a program abstraction such as the abstract syntax tree (AST). Template
matching is used to for finding potentially recurring vulnerabilities.

5 Vulnerability Diagnosis Using Static Template Matching



5.2.1

Algorithm 3 Pseudocode for execution slice based fault localization.

: function OBTAIN-SLIGE(Input, Program)
> Slice generated using coverage tracer
Return lines executed by Program(Input)

: function OBTAIN-DICE(Slicel, Slice2)
dice = Slicel - Slice2
return dice

R A A R S

: function LOCALIZE-FAILURE(Fault — Input, Program, Fuzz — Corpus)

10: fault-slice = obtain-slice(Fault — Input, Program)

11: nonfault-input = obtain-parent-mutation(Fault — Input, Fuzz — Corpus)
12: nonfault-slice = obtain-slice(non fault — input, Program)

13: fault-dice = obtain-dice(fault-slice, nonfault-slice)

14: return fault-dice

* Ranking Matches: We rank matches returned by template matching before
it is made available for human review. Matches comprising lines of code not
covered by fuzzing are ranked higher than those that have already been fuzzed.

* Validation: Finally, we manually audit the results returned by our analysis
framework to ascertain if they can manifest as vulnerabilities in practice.

Fault Localization

Although a program stack trace indicates where a crash happened, it does not neces-
sarily pin-point the root-cause of the failure. This is because, a failure (e.g., memory
access violation) manifests much after the trail of the faulty program instructions has
been erased from the active program stack. Therefore, fault localization is crucial
for templating the root-cause of a vulnerability.

We localize a fuzzer-discovered program failure using a memory detector such as
AddressSanitizer [135]. AddressSanitizer is a dynamic analysis tool that keeps
track of the state of use of program memory at run time, flagging out-of-bounds
reads/writes at the time of occurrence. However, AddressSanitizer cannot localize
failures not caused by memory access violations. For this reason, we additionally
employ a differential execution slicing ! algorithm to localize general-purpose
defects.

1 An execution slice is the set of source lines of code/branches executed by a given input.

5.2 Static Exploration
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Agrawal et al. [1] first proposed the use of differential execution slices (that the
authors named execution dices) to localize a general-purpose program fault. Al-
gorithm 3 shows an overview of our implementation of this technique. First, the
execution slice for a faulty input is obtained (fault — slice, line 10 of Algorithm 3).
Second, the fuzzer mutation that preceded the faulty input and did not lead to a
failure is determined (line 11), and the execution slice for this input obtained (line
12). Finally, the set difference of the faulty and the non-faulty execution slices is
obtained (line 13). This set difference is called the fault dice for the observed failure.
We obtain execution slices of a program using the SanitizerCoverage tool [28].

In summary, fault localization helps us localize a fuzzer-discovered vulnerability to
a small portion of the codebase. Faulty code may then be used to automatically
generate vulnerability templates.

Vulnerability Templates

Faulty code snippets contain syntactic and semantic information pertaining to a
program failure. For example, the fact that dereference of the len field from a
pointer to struct udp leads to an out-of-bounds memory access contains (i) the
syntactic information that len field dereference of a data-type struct udp are
potentially error-prone; and (ii) the semantic information that tainted input flows
into the struct udp type record, and that appropriate sanitization is missing in this
particular instance. Therefore, we leverage both syntactic, and semantic information
to facilitate static exploration of fuzzer-determined program crashes.

Syntactic and semantic templates are derived from localized code snippets, and the
crash stack trace. Syntactic templates are matched against the program’s abstract
syntax tree (AST) representation, while semantic templates against the program’s
control flow graph (CFG) representation. In the following, we briefly describe how
templates are generated, and subsequently matched.

Syntactic Templates Syntactic templates are matched against the program abstract
syntax tree (AST). They may be formulated as functional predicates on properties
of AST nodes. We describe the process of formulating and matching AST templates
using an out-of-bounds read in UDP parsing code of Open vSwitch v2.6.1 that was
found by afl-fuzz and AddressSanitizer.

Listing 5.2 shows the code snippet responsible for the out-of-bounds read. The
faulty read occurs on line 636 of Listing 5.2 while dereferencing the udp_header

5 Vulnerability Diagnosis Using Static Template Matching



624 | static inline bool

625 | check_14_udp(const struct conn_key x*key,
626 const void *data, size_t size,
627 const void *13)

628 | {

629 const struct udp_header *udp = data;
630
631
632
633
634
635
636 size_t udp_len = ntohs(udp->udp_len);
637
638 if (OVS_UNLIKELY (udp_len < UDP_HEADER_LEN ||
639 udp_len > size)) {

640 return false;

641 }

642 .
643 |}

Listing 5.2: Code snippet from Open vSwitch v2.6.1 that contains a buffer overread
vulnerability in UDP packet parsing code.

Declaration

Line 636

Variable Definition

Member

Fig. 5.2.: AST of the localized fault that triggers an out-of-bounds read in UDP packet
parsing code.

struct field called udp_len. The stack trace provided by AddressSanitizer is shown
in Listing 5.3. In this instance, the fault is localized to the function named check_-
14_udp. Post fault localization, a vulnerability (AST) template is derived from the
AST of the localized code itself.

Figure 5.2 shows the AST fragment of the localized faulty code snippet, generated
using the Clang compiler. The AST fragment is a sub-tree rooted at the declaration
statement on line 636, that assigns a variable named udp_len of type size_t, to
the value obtained by dereferencing a struct field called udp_len of type const
unsigned short from a pointer named udp that points to a variable of type to
struct udp_header. Using the filtered AST fragment, we use AST template match-
ing to find similar declaration statements where udp_len is dereferenced. The
templates are generated by automatically parsing the AST fragment (as shown in
Figure 5.2), and creating Clang libASTMatcher [27] style functional predicates.

5.2 Static Exploration
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==48662==ERROR: AddressSanitizer:
heap-buffer-overflow on address 0x60600000ef3a at
pc 0x0000005fd716 bp 0x7ffddc709c70

sp 0x7££ddc709c68

READ of size 2 at 0x60600000ef3a thread TO
#0 0x5fd715 in check_14_udp
lib/conntrack.c:636:33
#1 Ox5fcdcb in extract_14
lib/conntrack.c:903:29
#2 0x5f84bd in conn_key_extract
lib/conntrack.c:978:13
#3 0x5f78c4 in conntrack_execute
lib/conntrack.c:304:14
#4 0xb56dfb8 in pcap_batch_execute_conntrack
tests/test-conntrack.c:186:9

Listing 5.3: Stack trace for the buffer overread in UDP packet parsing code obtained using
AddressSanitizer.

Subsequently, template matching is done on the entire codebase. Listing 5.5 shows
the generated template and the matches discovered.

AST templates are superior to simple code searching tools such as grep for multiple
reasons. First, they encode type information necessary to filter through only the
relevant data types. Second, they are flexible enough to mine for selective code
fragments, such as searching for udp_len dereferences in binary operations in
addition to declaration statements only.

Listing 5.4 shows one of the matches discovered (see Match #3 of Listing 5.5). In
the code snippet shown in Listing 5.4, the OVS controller function named pinctrl_-
handle_put_dhcpv6_opts handles an incoming DHCP packet (containing a UDP
packet) that is assigned to a pointer to struct udp_header, and subsequently
dereferenced in the absence of a bounds-check on the length of the received packet.
This is one of the bugs found using syntactic template matching that was reported
upstream, and subsequently patched by the vendor [123]. Moreover, this match
alerted the OvS developers to a similar flaw in the DNS header parsing code.

To be precise, vulnerability templates need to encode both data and control flow
relevant failure inducing code. Otherwise, explicit sanitization of tainted input will
be missed, leading to false positives. To this end, we augment syntactic template
matching with semantic (control and data-flow) template matching.

Semantic Templates Control and data-flow templates encode semantic code prop-
erties needed to examine the flow of tainted input. However, since each defect is
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539
540
541
542
543
544
545
546
547
548
549
550
551

553

static void
pinctrl_handle_put_dhcpv6_opts(struct dp_packet
*pkt_in, struct ofputil_packet_in *pin,
struct ofpbuf *userdata, struct ofpbuf
*continuation OVS_UNUSED)
{

// Incoming packet parsed into udp struct
struct udp_header *in_udp =

dp_packet_14 (pkt_in);
// Dereference missing bounds checking

size_t udp_len = ntohs(in_udp->udp_len);

}

Listing 5.4: Match returned using automatically generated AST template shows a

potentially recurring vulnerability in Open vSwitch 2.6.1. This new flaw
was present in the portion of OvS code that lacked a test harness and was
found during syntactic template matching.

let member memberExpr (allOf (hasDeclaration(namedDecl (hasName ("udp_len"))),
hasDescendant (declRefExpr (hasType (pointsTo (
recordDecl (hasName ("udp_header"))))))))

m declStmt (hasDescendant (member))

=============================== Matches ===============================
Match #1:

ovn/controller/pinctrl.c:635:5: note: "root" binds here

out_ip6->ip6_ctlun.ip6_unl.ip6_unl_plen = out_udp->udp_len;

Match #2:

tests/test-conntrack.c:52:9: note: "root" binds here
udp->udp_src = htons(ntohs(udp->udp_src) + tid);

Match #3:
ovn/controller/pinctrl.c:550:5: note: "root" binds here

size_t udp_len = ntohs(in_udp->udp_len);

3 Matches.

Listing 5.5: AST template matching and its output. The code snippet surrounding match

#3 is shown in Listing 5.4.
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Algorithm 4 Pseudocode for ranking statically explored vulnerability matches.

1: function 1SHIGH(M atching — unit, Coverset)
9:
3 for each m — unit in Coverset do
4 if m — unit == Matching — unit then return True
5: return False
6:
7: function RANK-MATCHES (M atches, Coverset)
8 RHigh = ()
9: RLow = ()

10:

11: for each match in Matches do

12: if isHigh(match, Coverset) then

13: RHigh += match

14: else

15: RLow += match

16: return (RHigh, RLow)

characterized by unique control and data-flow, semantic templates are harder to
automate. We remedy this problem by providing fixed semantic templates that are
generic enough to be applied to any defect type.

We parse the program crash stack trace to perform semantic template matching.
First, we determine the function in which the program fails (top-most frame in
the crash trace), and generate a template to match other call-sites of this function.
We call this a callsite template. Callsite templates intuitively capture the insight
that, if a program failure manifests in a given function, other calls to that function
demand inspection. Second, for memory access violation related vulnerabilities, we
determine the data-type of the variable that led to an access violation, and assume
that this data-type is tainted. Subsequently, we perform taint analysis on this data-
type terminating at pre-determined security-sensitive sinks such as memcpy, strcpy
etc. We call this a taint template. Taint templates provide insight on risky usages of a
data-type that is known to have caused a memory access violation. Callsite and taint
templates are matched against the program control flow graph (CFG). They have
been implemented as extensions to the Clang Static Analyzer framework [90].

Match Ranking

Matches returned using static template matching may be used to (in)validate poten-
tially recurring vulnerabilities in a codebase. However, since vulnerability templates
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over-approximate failure-inducing code patterns, false positives are inevitable. We
remedy the false-positive problem using a simple yet practical match ranking algo-
rithm.

Algorithm 4 presents the pseudocode for our match ranking algorithm. The pro-
cedure called RANK-MATCHES accepts the set of template matches (denoted as
Matches), and the set of program functions covered by fuzz testing (denoted
as C'overset) as input, and returns a partially orders list suitable for manual review.
For each match, we apply a ranking predicate on the program function in which the
match was found. We call this function, the matching unit. The ranking predicate
(denoted as the procedure isHigh) takes two input parameters: the matching func-
tion name, and the Coverset. Under the hood, isHigh simply performs a test of set
membership; it checks if the matching unit is a member of the coverset, returning
True if it is a member, False otherwise. All matching units that satisfy the ranking
predicate are ranked high, while the rest are ranked low. The ranked list is returned
as output.

Our ranking algorithm is implemented in Python using a hash table based data
structure. Therefore, ranking a match takes O(1) on average, and O(n) in the worst
case, where n is the number of functions in the coverset. On average, the time to
rank all matches grows linearly with the number of matches. This is really fast in
practice e.g., in the order of a few milliseconds (see Table 5.3).

Our prototype leverages GCov [53], a publicly available program coverage tracing
tool, for obtaining the coverset of a fuzzer corpus. Although our prototype currently
uses function as a matching unit, it may be suitably altered to work at the level of
source line of code (basic blocks). However, given that a fuzzer corpus typically
contains thousands of test cases, we chose function-level tracing for performance

reasons.

Validation

Although match ranking helps reduce the burden of false positives, it does not
eliminate them entirely. Therefore, we rely on manual audit to ascertain the validity
of analysis reports. Nonetheless, our approach focuses attention on recurrences of
demonstrably vulnerable code patterns, thereby reducing the extent of manual code
audit.

5.2 Static Exploration
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Evaluation

Fuzzer-Discovered CVE ID Explored True
Vulnerability Matches Positives
Out-of-bounds read (IP) CVE-2016-10377 [37] 5 0
Out-of-bounds read (TCP) CVE-2017-9264 [40] 10 0
Out-of-bounds read (UDP) CVE-2017-9264 2 1
Out-of-bounds read (IPv6) CVE-2017-9264 3 0
Re.mote DoS due to assertion CVE-2017-9214 [38] 99 0
failure
Remote DoS due to
o —— CVE-2017-9263 [39] 34 0
Out-of-bounds read CVE-2017-9265 [41] 1 0
Total 96 1

Tab. 5.1.: Summary of static vulnerability exploration carried out on vulnerabilities found
by fuzzing Open vSwitch. For each fuzzer-discovered vulnerability, our prototype
generated a vulnerability template, and matched it against the entire codebase.

CVE ID Explored Ranked high Reduction in FP

matches (untested) (in %)
CVE-2016-10377 5 0 100
CVE-2017-9264 10 0 100
CVE-2017-9264 2 2 0
CVE-2017-9264 3 0 100
CVE-2017-9214 41 17 59
CVE-2017-9263 34 17 50
CVE-2017-9265 1 0 100
Total 96 36 62

Tab. 5.2.: Effectiveness of our matching ranking algorithm in highlighting untested code,
and assisting in fast review of matches.

We evaluated our approach on multiple versions of Open vSwitch, an open-source

virtual switch used in data centers. We chose Open vSwitch for evaluation because

(i) it is a good representative of production code; (ii) it has insufficient test harnesses

suitable for fuzzing, resulting in program edge coverage of less than 5%.

Our evaluations were performed using afl-fuzz for fuzzing, AddressSanitizer for

fault localization, falling back to our implementation of differential slice-based fault

localization, and our implementation of static template generation, matching, and

ranking algorithms. Experiments were carried out on a 64-bit machine with 80 CPU
threads (Intel Xeon E7-4870) clocked at 2.4 GHz, and 512 GB RAM.
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Fuzzing and Fault Localization Using the baseline fuzzer, we discovered multiple
out-of-bounds reads and assertion failures in packet parsing code in Open vSwitch.
All the discovered flaws were triaged to ascertain their security impact, and subse-
quently reported upstream and fixed. For each unique vulnerability, we used our
fault localization module comprising AddressSanitizer, and differential execution
slicing, to determine the lines of code triggering the vulnerability.

Template Matching Using localized code, we automatically generated a template
suitable for matching similar code patterns elsewhere in the codebase. For example,
the AST snippet shown in Figure 5.2 was parsed to derive a template for CVE-2017-
9264. Subsequently, we used the tool clang-query to perform template matching
using the derived template. Listing 5.5 shows the outcome of template matching for
one of the bugs comprising CVE-2017-9264. For each vulnerability that the fuzzer
discovered, we counted the number of matches (excluding the known vulnerability
itself) returned using template matching.

We used semantic template matching only when syntactic template matching was
too broad to capture the code pattern underlying the vulnerability. For example, if a
program crash was caused by a failed assertion, syntactic templates (that matched
calls to all assertion statements), were augmented with semantic templates (that
matched a smaller subset of assertion statements involving tainted data types).

Ranking The returned matches were ranked using our proposed ranking algorithm
(see Algorithm 4), and the ranked output was used as a starting point for manual
security audit. Matches ranked high were reviewed first. This enabled us to devote
more time to audit untested code, than the code that had already undergone
testing.

Analysis Effectiveness

We evaluated the effectiveness of our approach in two ways: Quantifying (i) the raw
false positive rate of our analysis; (ii) the benefit of the proposed ranking algorithm
in reducing the effective false positive rate after match ranking was done.

To quantify the number of raw false positives, we counted the total number of
statically explored matches, and the number of true positives among them. A match
was deemed a true positive if manual audit revealed that the tainted instruction
underwent no prior sanitization and was thus potentially vulnerable. Table 5.1

5.3 Evaluation
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Total

CVE ID Locah.za— Synta.c— Semap— Ranking Run Noanal-

tion tic tic . ized
Time

CVE-2016-

10377 82ms 1.66s - 63ms 1.80s 0.20x

CVE-2017-

9264 84ms 3.20s - 64ms 3.34s 0.25x

(TCP)

CVE-2017-

9264 86ms 4.77s - 59ms 491s 0.37x

(UDP)

CVE-2017-

9264 91ms 4.71s - 60ms 4.86s 0.36x

(IPv6)

CVE-2017- oms 8.44s 44.17s 60ms 52.67s 5.51x

9214

;:;/gg-)zow- 9ms 11.88s  44.26s 59ms 57.09s 5.97x

CVE-2017-

9265 111ms 5.74s - 56ms 5.9s 0.62x

Tab. 5.3.: Run times of fault localization, template matching, and match ranking for all
statically explored vulnerabilities in Open vSwitch. The absolute and relative (to
code compilation) run times for our end-to-end analysis is presented in the final
two columns. A normalized run time of 2x denotes that our end-to-end analysis
takes twice as long as code compilation.

summarizes our findings. Our prototype returned a total of 96 matches for the
7 vulnerabilities found by fuzzing (listed in column 1 of Table 5.1). Out of 96
matches, only one match corresponding to CVE-2017-9264 was deemed a new
potential vulnerability. This was reported upstream and subsequently patched [123].
Moreover, the reported (potential) vulnerability helped OvS developers uncover
another similar flaw in the DHCPv6 parsing code that followed the patched UDP
flaw.

Our ranking algorithm ranked untested code over tested code, thereby helping
reduce the manual effort involved in validating potential false positives. Although it
is hard to correctly quantify the benefit of our ranking algorithm in bringing down
the false positive rate, we employ a notion of effective false positive rate. We define
the effective false positive rate to be the false positive rate only among highly ranked
matches. This is intuitive, since auditing untested code is usually more interesting to
a security analyst than auditing code that has already undergone testing. Table 5.2
summarizes the number of effective false positives due to our analysis. In total,
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there were 36 matches (out of 96) that were ranked high, bringing down the raw
false positive rate by 62%. Naturally, we confirmed that the single true positive was
among the highly ranked matches.

Match ranking helps reduce, but not eliminate the number of false positives. Indeed,
1 correct match out of 36 matches is very low. Having said that, our approach has
borne good results in practice, and has helped advance the tooling required for
secure coding. The additional patch that our approach contributed to is not the
only way in which our approach met this objective. We discovered that the template
derived from the vulnerability CVE-2016-10377 present in an earlier version of Open
vSwitch (v2.5.0), could have helped eliminate a similar vulnerability (CVE-2017-
9264) in a later version (v2.6.1), perhaps during software development itself. This
shows that our approach is suitable for regression testing. Indeed, OvS developers
noted in personal communications with the authors that the matches returned by our
tooling not only encouraged reasoning about corner cases in software development,
but helped catch bugs (latent vulnerabilities) at an early stage.

Analysis Runtime

We quantified the run time of our tooling by measuring the total and constituent
run times of our work-flow steps, starting from fault localization, and template
matching, to match ranking. Table 5.3 presents our analysis run times for each of
the fuzzer-discovered vulnerabilities in Open vSwitch. Since fault localization was
done using dynamic tooling (AddressSanitizer/coverage tracing), it was orders of
magnitude faster (ranging between 9-111 milliseconds) than the time required for
static template matching. For each fuzzer-discovered vulnerability, we measured
the template matching run time as the time required to construct and match the
vulnerability template against the entire codebase. Template matching run time
comprised between 92-99% of the end-to-end runtime of our tooling, and ranged
from 1.8 seconds to 57.09 seconds. Syntactic template matching was up to 4x
faster than semantic template matching. This conformed to our expectations, as
semantic matching is slower due to the need to encode (and check) program data
and control flow in addition to its syntactic properties. Nonetheless, our end-to-end
vulnerability analysis had a normalized run time (relative to code compilation time)
of between 0.2x to 5.97x. The potential vulnerability that our analysis pointed out
in untested UDP parsing code, was returned in roughly a third of the time taken
for code compilation of the codebase. This shows that our syntactic analysis is fast
enough to be applied on each build of a codebase, while our semantic analysis is
more suitable to be invoked during daily builds. Moreover, given the low run time
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of our analysis, templates derived from a vulnerability discovered in a given release
may be continuously applied to future versions of the same codebase as part of
regression testing.

Related Work

Our work brings together ideas from recurring vulnerability detection, and program
analysis and testing. In the following paragraphs, we compare our work to advances

in these areas.

Patch-based Discovery of Recurring Vulnerabilities Redebug [73] and Securesync
[118] find recurring vulnerabilities by using syntax matching of templates derived
from vulnerability patches. Thus, patched vulnerabilities form the basis of their
template-based matching algorithms. In contrast, we template a vulnerability based
on automatically localized failures, and debug information obtained from fuzzer
reported crashes. What makes our setting more challenging is the lack of a reliable
code pattern (usually obtained from a patch) to build a template from. As we have
shown, it is possible to construct vulnerability templates even in this constrained
environment and find additional vulnerabilities even in the absence of patches.

Code Clone Detection We are not the first to present a pattern-based approach to
vulnerability detection. Yamaguchi et al. [161] project vulnerable code patterns
derived from patched vulnerabilities on to a vector space. This permits them to
extrapolate known vulnerabilities in current code, thereby permitting the discovery
of recurring vulnerabilities.

Other researchers have focused on finding code clones regardless of them man-
ifesting as vulnerabilities [13, 12, 82, 94]. Code clone detection tools such as
CPMiner [87], CCFinder [78], Deckard [74] solve the problem of finding code clones
but rely on sample code input to be provided. These tools solve the more general
problem of finding identical copies of user-provided code. Although these tools serve
as a building block for recurring vulnerability discovery, they require that the user
specifies the code segment to be matched. In a setting where a security analyst is
auditing third-party code, manual specification of code templates might not be feasi-
ble. By automatically performing template matching on fuzzer-discovered program
crashes, leverage the fuzzer for the specification for vulnerable code patterns.
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Hybrid Vulnerability Discovery SAGE [60] is a white-box fuzz testing tool that
combines fuzz testing with dynamic test-case generation. Constraints accumulated
during fuzz testing are solved using an SMT solver to generate test cases that the
fuzzer alone could not generate. This is expensive because it requires a sophisticated
solver. In a similar vein, Driller [145] augments fuzzing through selectively resorting
to symbolic execution when fuzzer encounters coverage bottlenecks. The use of
symbolic execution to augment fuzzing is complementary to our approach. In
practice, security audits would benefit from both our approach as well as that
proposed by prior researchers.

Saner [11] combines static and dynamic analyses towards identifying XSS and
SQL injection vulnerabilities in web applications. The authors of Saner use static
analysis to capture a set of taint source-sink pairs from web application code, and
subsequently use dynamic analysis on the captured pairs to tease out vulnerabilities.
Their evaluation on popular PHP applications show that dynamic analysis is able
to bring down the number of false positives produced by static analysis, and find
multiple vulnerabilities. Like our work, Saner demonstrates that static and dynamic
analyses can effectively complement each other. In contrast to Saner, we differ in
the order of analyses performed (we perform static analysis driven vulnerability
exploration after confirmed taint source-sink pairs have been found), and in the
target programming language.

Yamaguchi et al. [159] automatically infer search patterns for taint-style vulnera-
bilities from source code by combining static analysis and unsupervised machine
learning. They show that their approach helps reduce the amount of code audit
necessary to spot recurring vulnerabilities by up to 94.9%, enabling them to find
8 zero-day vulnerabilities in production software. Their work is close in spirit to
ours. However, we avoid the computational overhead involved in their workflow
(building a code property graph, pattern clustering etc.), while retaining their tem-
plate matching run time. In our framework, fault localization and result ranking run
times are almost negligible.

5.4 Related Work
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Conclusion

Ultimately, the key to winning the hearts and minds of practitioners is very
simple: you need to show them how the proposed approach finds new, inter-
esting bugs in the software they care about.

— Michat Zalewski, Symbolic execution in vuln research

Vulnerabilities in shipped code increase the risk of active harm. At the same time,
eliminating vulnerabilities is a hard problem because it is almost impossible to
anticipate all security-relevant corner cases in complex software. Therefore, an
early diagnosis of software vulnerabilities is crucial for increasing our confidence in
software.

This thesis has introduced compiler assisted vulnerability assessment, a set of methods
based on compiler-based static analysis that advances the state-of-the-art in vulner-
ability assessment of production software. Our methods are practical, and can be
incorporated either at the development or the testing stage of the software develop-
ment lifecycle, permitting early vulnerability diagnosis. Moreover, the developed
techniques address both object-oriented software and network parsers, showing that
our techniques not only scale up to large sized codebases but also work for different
application classes.

The methods presented in this thesis showcase the adaptable nature of static analysis
for vulnerability diagnosis. Our methods leverage program analysis both tradition-
ally (accept source code as input and produce bug reports, see Chapter 3), and less
traditionally to infer input format (Chapter 4), and for vulnerability template match-
ing (Chapter 5). Our vulnerability assessment tools have been used to diagnose tens
of zero-day vulnerabilities in production software.

In the following, we briefly highlight the main results of this dissertation. Finally,
we outline directions for future work.
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Summary of Results

This dissertation began with a manual security audit of an emerging web based OS
called Firefox OS. Subsequently, we proposed three compiler-assisted methods to
scale up vulnerability discovery. To this end, we designed and implemented vulnera-
bility assessment tools that can be deployed either during software development or
during the quality assurance stage. Although the first of our methods studies static
vulnerability diagnosis, the latter two methods exploit the complementary nature of
dynamic and static approaches in novel ways. The last of our methods closes the
loop by showing that static vulnerability diagnosis can be (re)invoked to increase
our confidence on the findings from the program testing stage. In specific terms, this
dissertation makes the following contributions.

Security Audit of Firefox OS We are witnessing a convergence of the web and
smartphone technologies in emerging systems such as Firefox OS and Chrome OS.
We lack an understanding of new classes of vulnerabilities that may be introduced
due to this convergence. To this end, we have presented the first security audit
of Firefox OS to the best of our knowledge. Using manual source code audits
and a penetration testing approach, we show that (i) lack of code integrity is a
cause for concern in the web provisioning model adopted by Mozilla, and (ii)
insufficient identification of security principals may lead to subtle user experience
related security issues.

A method for diagnosing distributed vulnerabilities. Due to the scale of today’s soft-
ware development, vulnerabilities may only manifest when two or more subsystems
interact in a specific manner. To this end, we have presented a method for diagnosing
distributed vulnerabilities that is scalable to large codebases. The method builds
on a novel event collection system, and demand-driven whole-program analyzer to
perform vulnerability diagnosis in a staged manner. Using this design, we have been
able to scalably diagnose vulnerabilities spanning source files in codebases such as
Chromium and Firefox that contain millions of lines of code. Based on empirical
evaluation of our method, we have demonstrated that our analyses is reasonably
fast, cheap to deploy, and capable of flagging vulnerabilities in production code
(chapter 3).

A method for inferring input format specification. Exhaustive testing of parsing
applications is challenging owing to a large number of program paths involved. We
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have presented a static analysis based approach to identify input format specification
of a parser by analyzing source code. We use syntactic and semantic code analysis
to extract regular and non-regular portions of the input specification. Using a case
study approach, we have shown that our approach improves test coverage by 10—
15%, and uncovers 15 zero-day vulnerabilities in network parsers that are not found
by standalone fuzzing (chapter 4).

A method for exploring fuzzer discovered vulnerabilities. Legacy code is insuffi-
ciently stress tested because of a lack of security test cases. We have presented
an approach to guide security code audits in this scenario. Our approach builds
on the idea that functional test cases can serve as a starting point to initiate an
exploration of the vulnerability landscape of an application. To this end, we build
a static analysis tool that, given a confirmed fault pattern, returns similar matches
across the code base. We have demonstrated our method’s utility by using it for
security audit of a popular virtual switch called Open vSwitch. We show that our
method is useful not only for vulnerability discovery but also regression testing
(chapter 5).

Future Directions

We now outline directions for future work by listing some ideas for progress.

Data Protection Violation Analysis In this dissertation, we focus on methods for
diagnosing memory corruption vulnerabilities for systems code. Although this is an
important vulnerability class, privacy violations are going to assume importance in
the near future. One emerging class of vulnerabilities is violation of security policies
mandated by legislation. For example, the upcoming European Union’s general data
protection regulation (GDPR) [150] requires software vendors to enforce strict data
usage guidelines. Automated analysis is going to be one of the enablers of such
policy enforcement and validation. Extending the methods in this dissertation and
applying them to data violations is one avenue for future research.

Security Analysis of Modern Software Although C/C++ is still popular in the embed-
ded systems domain and for writing performant cross-platform code, programming
languages such as JavaScript and Python address the needs of modern software.
The GitHub 2017 year in review [71] shows that these were the three most actively
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used programming languages, going by the number of pull requests issued. Apply-
ing compiler-based vulnerability assessment techniques to modern software poses
interesting challenges. One specific problem of interest is to make analysis language
independent so that security violations can be identified across-the-board.

Machine Learning Assisted Program Analysis With increased availability of dedi-
cated hardware, machine learning is starting to influence the domains of program
analysis and security testing [125, 58]. As we have seen in Chapter 5, vulnerability
patterns can drive the search for recurring vulnerabilities. Machine learning is
well-suited to assist pattern-based vulnerability analysis in two ways. It can learn
characteristics of program input and even generate new inputs based on the learning
phase. This is of particular use in fuzz testing because learning algorithms provide a
structured way to provide good starting inputs (seeds) to fuzz testing tools. Moreover,
as the state-of-the-art in machine learning based vulnerability detection shows [159,
160], machine learning may also be used to infer security policy from source code to
drive program analysis. Advancing these directions has the potential to significantly
impact the practice of vulnerability assessment.
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Reported Vulnerabilities

Table A.1 lists vulnerabilities discovered during the course of this thesis. All vul-
nerabilities were responsibly disclosed to the vendor, following which a common
vulnerabilities and exposures (CVE) identifier was assigned to them by MITRE.
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Software

Vulnerability Description

CVE ID

Open vSwitch

GNU oSIP2

Snort+ +

tcpdump

Out-of-bounds (OOB) write in MPLS parser per-
mits remote code execution

OOB read in TCP/UDP/IPv6 parsers
OOB read in flow parser

OOB read in OpenFlow (OF) parser
Denial of service (DoS) due to unhandled case
in OF parser

OOB read in OF parser

DoS due to OOB write in SIP parser
OOB write in SIP parser

DoS due to OOB write in SIP parser
DoS due to OOB write in SIP parser
DoS due to logical error in Ethernet parser
OOB read in packet decoder

OOB read in utility function

OOB read in the ICMP parser

OOB read in the ARP parser

OOB read in the EAP parser

OOB read in the ISO ES-IS parser
OOB read in the DHCPv6 parser
OOB read in the PGM parser

OOB read in the PGM parser

OOB read in the VTP parser

OOB read in the ICMPv6 parser

OOB read in the IP parser

OOB read in the IPv6 mobility parser
OOB read in the IPv6 mobility parser
OOB read in the IPv6 mobility parser
OOB read in the ISO IS-IS parser
OOB read in the LLDP parser

OOB read in the BOOTP parser

OOB read in the PPP parser

OOB read in the PIM parser

OOB read in the IPv6 fragmentation header
parser

OOB read in the RADIUS parser
OOB read in the VTP parser

OOB read in the PGM parser

OOB read in the ISO IS-IS parser
OOB read in the OSPFv3 parser

OOB read in the IP parser

OOB read in the ISAKMP parser
OOB read in the HNCP parser

OOB read in the BGP parser

OOB read in the HNCP parser

OOB read in the OLSR parser

CVE-2016-2074

CVE-2017-9264
CVE-2016-10377
CVE-2017-9214
CVE-2017-9263

CVE-2017-9265

CVE-2017-7853

CVE-2016-10324
CVE-2016-10325
CVE-2016-10326
CVE-2017-6657

CVE-2017-6658

CVE-2017-13011
CVE-2017-13012
CVE-2017-13013
CVE-2017-13015
CVE-2017-13016
CVE-2017-13017
CVE-2017-13018
CVE-2017-13019
CVE-2017-13020
CVE-2017-13021
CVE-2017-13022
CVE-2017-13023
CVE-2017-13024
CVE-2017-13025
CVE-2017-13026
CVE-2017-13027
CVE-2017-13028
CVE-2017-13029
CVE-2017-13030
CVE-2017-13031

CVE-2017-13032
CVE-2017-13033
CVE-2017-13034
CVE-2017-13035
CVE-2017-13036
CVE-2017-13037
CVE-2017-13039
CVE-2017-13042
CVE-2017-13043
CVE-2017-13044
CVE-2017-13688

Tab. A.1.: Vulnerabilities found during the course of this dissertation. This table continues
on the next page.

Appendix A Reported Vulnerabilities



Software Vulnerability Description

CVE ID

tecpdump

OOB read in the VQP parser
OOB read in the BGP parser

OOB read in the ISO ES-IS parser
OOB read in the RSVP parser
OOB read in the RPKI-Router parser
OOB read in the IKEv1 parser
OOB read in the IKEv2 parser
OOB read in the RSVP parser
OOB read in the ISO IS-IS parser
OOB read in the CFM parser
OOB read in the BGP parser
OOB read in the LLDP parser

CVE-2017-13045
CVE-2017-13046
CVE-2017-13047
CVE-2017-13048
CVE-2017-13050
CVE-2017-13689
CVE-2017-13690
CVE-2017-13051
CVE-2017-13055
CVE-2017-13052
CVE-2017-13053
CVE-2017-13054
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