Skip to main content

Advertisement

Log in

Amorphous germanium as a promising anode material for sodium ion batteries: a first principle study

  • Computation
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The abundance of sodium (Na), its low-cost, and low reduction potential provide a lucrative inexpensive, safe, and environmentally benign alternative to lithium ion batteries (LIBs). The significant challenges in advancing sodium ion battery (NIB) technologies lie in finding the better electrode materials. Experimental investigations revealed the real potency of germanium (Ge) as suitable anode materials for NIBs. However, a systematic atomistic study is necessary to understand the fundamental aspects of capacity–voltage correlation, microstructural changes of Ge, as well as diffusion kinetics. We, therefore, performed the Density Functional Theory (DFT) and Ab Initio Molecular Dynamics (AIMD) simulation to investigate the sodiation–desodiation kinetics in germanium–sodium system (Na64Ge64). We analyzed the intercalation potential and capacity correlation for intermediate equilibrium structures and compared our data with the experimental results. Effect of sodiation on inter-atomic distances within Na–Ge system is analyzed by means of Pair Correlation Function (PCF). This provides insight into possible microstructural changes taking place during sodiation of amorphous Ge (a-Ge). We further investigated the diffusivity of sodium in a-Ge electrode material and analyzed the volume expansion trend for Na64Ge64 electrode system. Our computational results provide the fundamental insight into the atomic scale and help experimentalists design Ge-based NIBs for real-life applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Whittingham MS (1976) Electrical energy storage and intercalation chemistry. Science 192(4244):1126–1127

    Article  Google Scholar 

  2. Whittingham MS, Thompson AH (1975) Intercalation and lattice expansion in titanium disulfide. J Chem Phys 62(4):1588

    Article  Google Scholar 

  3. Tarascon J-M, Armand M (2011) Issues and challenges facing rechargeable lithium batteries. In: Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, World Scientific, pp 171–179

  4. de la Llave E, Borgel V, Park K-J, Hwang J-Y, Sun Y-K, Hartmann P, Chesneau F-F, Aurbach D (2016) Comparison between Na-ion and Li-ion cells: understanding the critical role of the cathodes stability and the anodes pretreatment on the cells behavior. ACS Appl Mater Interfaces 8(3):1867–1875

    Article  Google Scholar 

  5. Böhm H, Beyermann G (1999) ZEBRA batteries, enhanced power by doping. J Power Sources 84(2):270–274

    Article  Google Scholar 

  6. Nithya C, Gopukumar S (2015) Sodium ion batteries: a newer electrochemical storage. Wiley Interdiscip Rev Energy Environ 4(3):253–278

    Article  Google Scholar 

  7. Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114(23):11636–11682

    Article  Google Scholar 

  8. Kundu D, Talaie E, Duffort V, Nazar LF (2015) The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew Chem Int Ed 54(11):3431–3448

    Article  Google Scholar 

  9. Adelhelm P, Hartmann P, Bender CL, Busche M, Eufinger C, Janek J (2015) From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries. Beilstein J Nanotechnol 2015(6):1016–1055

    Article  Google Scholar 

  10. Stojić M, Kostić D, Stošić B (1986) The behaviour of sodium in Ge, Si and GaAs. Physica B + C 138(1–2):125–128

    Article  Google Scholar 

  11. Delmas C, Fouassier C, Hagenmuller P (1980) Structural classification and properties of the layered oxides. Physica B + C 99(1–4):81–85

    Article  Google Scholar 

  12. Berthelot R, Carlier D, Delmas C (2011) Electrochemical investigation of the P2–NaxCoO2 phase diagram. Nat Mater 10(1):74–80

    Article  Google Scholar 

  13. Shiva K, Singh P, Zhou W, Goodenough JB (2016) NaFe2PO4(SO4)2: a potential cathode for a Na-ion battery. Energy Environ Sci 9(10):3103–3106

    Article  Google Scholar 

  14. Xu J, Lee DH, Meng YS (2013) Recent advances in sodium intercalation positive electrode materials for sodium ion batteries. Funct Mater Lett 6(01):1330001–1330007

    Article  Google Scholar 

  15. Okamoto Y (2013) Density functional theory calculations of alkali metal (Li, Na, and K) graphite intercalation compounds. J Phys Chem C 118(1):16–19

    Article  Google Scholar 

  16. Balogun M-S, Luo Y, Qiu W, Liu P, Tong Y (2016) A review of carbon materials and their composites with alloy metals for sodium ion battery anodes. Carbon 98:162–178

    Article  Google Scholar 

  17. Chevrier V, Ceder G (2011) Challenges for Na-ion negative electrodes. J Electrochem Soc 158(9):A1011–A1014

    Article  Google Scholar 

  18. Jache B, Adelhelm P (2014) Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew Chem Int Ed 53(38):10169–10173

    Article  Google Scholar 

  19. Wen Y, He K, Zhu Y, Han F, Xu Y, Matsuda I, Ishii Y, Cumings J, Wang C (2014) Expanded graphite as superior anode for sodium-ion batteries. Nat Commun 5:4033-1–4033-10

    Google Scholar 

  20. Mei Y, Huang Y, Hu X (2016) Nanostructured Ti-based anode materials for Na-ion batteries. J Mater Chem A 4(31):12001–12013

    Article  Google Scholar 

  21. Legrain F, Malyi O, Manzhos S (2015) Insertion energetics of lithium, sodium, and magnesium in crystalline and amorphous titanium dioxide: a comparative first-principles study. J Power Sources 278:197–202

    Article  Google Scholar 

  22. Li W, Zhou M, Li H, Wang K, Cheng S, Jiang K (2015) A high performance sulfur-doped disordered carbon anode for sodium ion batteries. Energy Environ Sci 8(10):2916–2921

    Article  Google Scholar 

  23. Klein F, Jache B, Bhide A, Adelhelm P (2013) Conversion reactions for sodium-ion batteries. Phys Chem Chem Phys 15(38):15876–15887

    Article  Google Scholar 

  24. Mortazavi M, Ye Q, Birbilis N, Medhekar NV (2015) High capacity group-15 alloy anodes for Na-ion batteries: electrochemical and mechanical insights. J Power Sources 285:29–36

    Article  Google Scholar 

  25. Mortazavi M, Deng J, Shenoy VB, Medhekar NV (2013) Elastic softening of alloy negative electrodes for Na-ion batteries. J Power Sources 225:207–214

    Article  Google Scholar 

  26. Stevens D, Dahn J (2000) An in situ small-angle X-ray scattering study of sodium insertion into a nanoporous carbon anode material within an operating electrochemical cell. J Electrochem Soc 147(12):4428–4431

    Article  Google Scholar 

  27. Wang Y-X, Chou S-L, Liu H-K, Dou S-X (2013) Reduced graphene oxide with superior cycling stability and rate capability for sodium storage. Carbon 57:202–208

    Article  Google Scholar 

  28. Li D, Zhang L, Chen H, Wang J, Ding L-X, Wang S, Ashman PJ, Wang H (2016) Graphene-based nitrogen-doped carbon sandwich nanosheets: a new capacitive process controlled anode material for high-performance sodium-ion batteries. J Mater Chem A 4(22):8630–8635

    Article  Google Scholar 

  29. Usui H, Yoshioka S, Wasada K, Shimizu M, Sakaguchi H (2015) Nb-doped rutile TiO2: a potential anode material for Na-ion battery. ACS Appl Mater Interfaces 7(12):6567–6573

    Article  Google Scholar 

  30. Umebayashi T, Yamaki T, Itoh H, Asai K (2002) Band gap narrowing of titanium dioxide by sulfur doping. Appl Phys Lett 81(3):454–456

    Article  Google Scholar 

  31. Fu S, Ni J, Xu Y, Zhang Q, Li L (2016) Hydrogenation driven conductive Na2Ti3O7 nanoarrays as robust binder-free anodes for Sodium-ion batteries. Nano Lett 16(7):4544–4551

    Article  Google Scholar 

  32. Li H, Fei H, Liu X, Yang J, Wei M (2015) In situ synthesis of Na2 Ti7 O15 nanotubes on a Ti net substrate as a high performance anode for Na-ion batteries. Chem Commun 51(45):9298–9300

    Article  Google Scholar 

  33. Jung SC, Jung DS, Choi JW, Han Y-K (2014) Atom-level understanding of the sodiation process in silicon anode material. J Phys Chem Lett 5(7):1283–1288

    Article  Google Scholar 

  34. Abel PR, Lin Y-M, de Souza T, Chou C-Y, Gupta A, Goodenough JB, Hwang GS, Heller A, Mullins CB (2013) Nanocolumnar germanium thin films as a high-rate sodium-ion battery anode material. J Phys Chem C 117(37):18885–18890

    Article  Google Scholar 

  35. Komaba S, Matsuura Y, Ishikawa T, Yabuuchi N, Murata W, Kuze S (2012) Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell. Electrochem Commun 21:65–68

    Article  Google Scholar 

  36. Li Z, Ding J, Mitlin D (2015) Tin and tin compounds for sodium ion battery anodes: phase transformations and performance. Acc Chem Res 48(6):1657–1665

    Article  Google Scholar 

  37. Baggetto L, Ganesh P, Meisner RP, Unocic RR, Jumas J-C, Bridges CA, Veith GM (2013) Characterization of sodium ion electrochemical reaction with tin anodes: experiment and theory. J Power Sources 234:48–59

    Article  Google Scholar 

  38. Malyi OI, Tan TL, Manzhos S (2013) A comparative computational study of structures, diffusion, and dopant interactions between Li and Na insertion into Si. Appl Phys Express 6(2):027301-1–027301-3

    Article  Google Scholar 

  39. Kulish VV, Malyi OI, Ng M-F, Chen Z, Manzhos S, Wu P (2014) Controlling Na diffusion by rational design of Si-based layered architectures. Phys Chem Chem Phys 16(9):4260–4267

    Article  Google Scholar 

  40. Baggetto L, Keum JK, Browning JF, Veith GM (2013) Germanium as negative electrode material for sodium-ion batteries. Electrochem Commun 34:41–44

    Article  Google Scholar 

  41. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186

    Article  Google Scholar 

  42. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979

    Article  Google Scholar 

  43. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758–1775

    Article  Google Scholar 

  44. Johari P, Qi Y, Shenoy VB (2011) The mixing mechanism during lithiation of Si negative electrode in Li-ion batteries: an ab initio molecular dynamics study. Nano Lett 11(12):5494–5500

    Article  Google Scholar 

  45. Farbod B, Cui K, Kalisvaart WP, Kupsta M, Zahiri B, Kohandehghan A, Lotfabad EM, Li Z, Luber EJ, Mitlin D (2014) Anodes for sodium ion batteries based on tin–germanium–antimony alloys. ACS Nano 8(5):4415–4429

    Article  Google Scholar 

  46. Jung SC, Kim H-J, Kang Y-J, Han Y-K (2016) Advantages of Ge anode for Na-ion batteries: Ge versus Si and Sn. J Alloy Compd 688:158–163

    Article  Google Scholar 

  47. Hwang J-Y, Myung S-T, Sun Y-K (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46(12):3529–3614

    Article  Google Scholar 

  48. Grigorovici R, Mǎnǎilǎ R (1969) Short-range order in amorphous germanium. J Non-Cryst Solids 1(5):371–387

    Article  Google Scholar 

  49. Panchmatia PM, Armstrong AR, Bruce PG, Islam MS (2014) Lithium-ion diffusion mechanisms in the battery anode material Li1+xV1−xO2. Phys Chem Chem Phys 16(39):21114–21118

    Article  Google Scholar 

Download references

Acknowledgements

DD acknowledges NJIT for the faculty start-up package. We thank Prof. Siva Nadimpalli of NJIT for his suggestion throughout the project. We are grateful to the High-Performance Computing (HPC) facilities managed by Academic and Research Computing Systems (ARCS) in the Department of Information Services and Technology (IST) of the New Jersey Institute of Technology (NJIT). Some computations were performed on Kong.njit.edu HPC cluster, managed by ARCS. We acknowledge the support of the Extreme Science and Engineering Discovery Environment (XSEDE) for providing us their computational facilities (Start-Up Allocation—DMR170065 and Research Allocation—DMR180013). Most of these calculations were performed in XSEDE SDSC COMET Cluster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dibakar Datta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1320 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Ghatak, K. & Datta, D. Amorphous germanium as a promising anode material for sodium ion batteries: a first principle study. J Mater Sci 53, 14423–14434 (2018). https://doi.org/10.1007/s10853-018-2661-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2661-1

Keywords

Navigation