Skip to main content

Advertisement

Log in

Comparative Profiling of Three Atheris Snake Venoms: A. squamigera, A. nitschei and A. chlorechis

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

A proteomic and transcriptomic comparative analysis of the venoms of three Atheris species (A. squamigera, A. nitschei and A. chlorechis) was carried out by size exclusion liquid chromatography, gel electrophoresis, mass spectrometry, and mRNA sequencing. The improved proteomic profiling utilised in this work was combined with transcript studies, advancing our insights into venom composition, protein distribution and inter-species variation among the three bush vipers. Crude venoms of all three samples contained at least 10–20 protein components, ranging in size from ≤ 3 to > 98 kDa. Both approaches yielded converging overall information, pointing to phospholipases, disintegrins, serine proteases and metalloproteases as the major toxin classes, which are likely to explain the local and systemic symptoms observed in envenomation by Atheris genus. Being considered as the main factors involved in the distinct venom-induced pathologies, these identified snake venom proteins are of particular interest in terms of understanding their physiological and biological function as well as for their contribution in potential medical treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

A. chlorechis :

Atheris chlorechis

A. nitschei :

Atheris Nitschei

A. squamigera :

Atheris squamigera

BCA:

Bicinchoninic acid

BLAST:

Basic Local Alignment Search Tool

CDD:

Conserved domain database

cDNA:

Complementary DNA

CHCA:

Alpha-cyano-5-hydroxycinnamic acid

MALDI-TOF:

Matrix-assisted laser desorption ionization, time-of-flight

mRNA:

Messenger RNA

MS:

Mass spectrometry

NCBI:

National Centre of Biotechnology Information

NUP:

Nested universal primer

PBS:

Phosphate buffered saline

PCR:

Polymerase chain reaction

pHpG:

Poly-histidine and poly-glycine

RACE:

Rapid Amplifiction of cDNA Ends

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

SEC:

Size exclusion chromatography

SMART:

Switching Mechanism At 5′ end of RNA Transcript

SVMP:

Snake venom metalloproteinases

SVSP:

Snake venom serine proteinases

References

  1. Pandey DP, Vohra R, Stalcup P, Shrestha BR (2016) A season of snakebite envenomation: presentation patterns, timing of care, anti-venom use, and case fatality rates from a hospital of southcentral nepal. J Venom Res 7:1–9

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Alapegirón A, Sanz L, Escolano J, Floresdíaz M, Madrigal M, Sasa M et al (2008) Snake venomics of the lancehead pitviper bothrops asper: geographic, individual, and ontogenetic variations. J Proteome Res 7(8):3556

    Article  CAS  Google Scholar 

  3. Birrell GW, Earl ST, Wallis TP, Masci PP, De JJ, Gorman JJ et al (2007) The diversity of bioactive proteins in australian snake venoms. Mol Cell Proteom 6(6):973

    Article  CAS  Google Scholar 

  4. Tanaka GD, Furtado MDFD., Portaro FCV, Sant’Anna OA, Tambourgi DV (2010) Diversity of micrurus snake species related to their venom toxic effects and the prospective of antivenom neutralization. PLoS Negl Trop Dis 4(3):e622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Samy RP, Sethi G, Lim LH (2016) A brief update on potential molecular mechanisms underlying antimicrobial and wound-healing potency of snake venom molecules. Biochem Pharmacol 115:1–9

    Article  CAS  PubMed  Google Scholar 

  6. Spawls S, Branch WR (1995) The dangerous snakes of Africa: natural history, species directory: venoms and snakebite. Blandford, London

    Google Scholar 

  7. Knoepffler LP (1965) Autoobservation d’envenimation par morsure d’Atheris sp. Toxicon 2(4):275–276

    Article  CAS  PubMed  Google Scholar 

  8. Mebs D, Holada K, Kornalík F, Simák J, Vanková H, Müller D et al (1998) Severe coagulopathy after a bite of a green bush viper (Atheris squamiger): case report and biochemical analysis of the venom. Toxicon 36(10):1333

    Article  CAS  PubMed  Google Scholar 

  9. Top LJ, Tulleken JE, Ligtenberg JJ, Meertens JH, Ts VDW, Zijlstra JG (2006) Serious envenomation after a snakebite by a western bush viper (Atheris chlorechis) in the netherlands: a case report. Neth J Med 64(5):153–156

    CAS  PubMed  Google Scholar 

  10. Valenta J, Stach Z, Fricova D, Zak J, Balik M (2008) Envenoming by the viperid snake proatheris superciliaris: a case report. Toxicon 52(2):392–394

    Article  CAS  PubMed  Google Scholar 

  11. Favreau P, Cheneval O, Menin L, Michalet S, Gaertner H, Principaud F et al (2007) The venom of the snake genus atheris contains a new class of peptides with clusters of histidine and glycine residues. Rapid Commun Mass Spectrom 21(3):406–412

    Article  CAS  PubMed  Google Scholar 

  12. Mallow D, Ludwig D, Nilson G, Mallow D, Ludwig D, Nilson G (2003) True vipers: natural history and toxinology of old world vipers. Krieger, Malabar

    Google Scholar 

  13. Li S, Wang JX, Ren Y, Wang N, Zhao K, Chen X et al (2004) Proteomic characterization of two snake venoms: naja naja atra and agkistrodon halys. Biochem J 384(1):119–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Calvete JJ, Petras D, Calderóncelis F, Lomonte B, Encinar JR, Sanzmedel A (2017) Protein-species quantitative venomics: looking through a crystal ball. J Venom Anim Toxins Incl Trop Dis 23(1):27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang H, Chen X, Wang L, Chen W, Zhou M, Chen T et al (2013) Cloning and characterisation of three novel disintegrin precursors from the venoms of three atheris species: Atheris chlorechis, Atheris nitschei and Atheris squamigera. Toxicon 71:31–40

    Article  CAS  PubMed  Google Scholar 

  16. Wang H, Chen X, Zhou M, Wang L, Chen T, Shaw C (2016) Molecular characterization of three novel phospholipase a2proteins from the venom ofatheris chlorechis, Atheris nitschei and Atheris squamigera. Toxins 8(6):168

    Article  CAS  PubMed Central  Google Scholar 

  17. Rawlings ND, Barrett AJ (1995) Evolutionary families of metallopeptidases. Methods Enzymol 248(248):183

    Article  CAS  PubMed  Google Scholar 

  18. Cipriani V, Debono J, Goldenberg J, Tnw J, Arbuckle K, Dobson J et al (2017) Correlation between ontogenetic dietary shifts and venom variation in Australian brown snakes (pseudonaja). Comp Biochem Physiol C 197:53–60

    CAS  Google Scholar 

  19. Wang H, Wang L, Zhou M, Chen T, Shaw C (2010) Molecular cloning and deduced organization of the phpg/cnp precursor from the venom of the african forest viper, Atheris squamigera. Regul Pept 164(1):35–35

    Article  Google Scholar 

  20. Wagstaff SC, Favreau P, Cheneval O, Laing GD, Wilkinson MC, Miller RL et al (2008) Molecular characterisation of endogenous snake venom metalloproteinase inhibitors. Biochem Biophys Res Commun 365(4):650–656

    Article  CAS  PubMed  Google Scholar 

  21. Cundall D (2009) Viper fangs: functional limitations of extreme teeth. Physiol Biochem Zool 82(1):63

    Article  PubMed  Google Scholar 

  22. Mackessy SP (2010) Evolutionary trends in venom composition in the Western Rattlesnakes (Crotalus viridis, sensu lato): Toxicity vs. tenderizers. Toxicon 55(8):1463–1474

    Article  CAS  PubMed  Google Scholar 

  23. Barlow A, Pook CE, Harrison RA, Wüster W (2009) Coevolution of diet and prey-specific venom activity supports the role of selection in snake venom evolution. Proc Biol Sci 276(1666):2443–2449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Moura-Da-Silva AM, Almeida MT, Portes-Junior JA, Nicolau CA, Francisco GN, Valente RH (2016) Processing of snake venom metalloproteinases: generation of toxin diversity and enzyme inactivation. Toxins 8(6):183

    Article  CAS  PubMed Central  Google Scholar 

  25. Calvete JJ, Sanz L, Angulo Y, Lomonte B, Gutiérrez JM (2009) Venoms, venomics, antivenomics. FEBS Lett 583(11):1736–1743

    Article  CAS  PubMed  Google Scholar 

  26. Gutiérrez JM, Solano G, Pla D, Herrera M, Segura Á, Vargas M et al (2017) Preclinical evaluation of the efficacy of antivenoms for snakebite envenoming: state-of-the-art and challenges ahead:. Toxins 9(5):163

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The project was kindly supported by the Science Foundation of Education Department of Fujian Province, China (Grant No. JAT160247), the Young Talent Project of Health Department of Fujian Province, China (Grant No. 2017-1-69) and the Joint Funds for the innovation of science and Technology, Fujian province (Grant No. 2016Y9048).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to He Wang or Xiaole Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1119 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Chen, X., König, E. et al. Comparative Profiling of Three Atheris Snake Venoms: A. squamigera, A. nitschei and A. chlorechis. Protein J 37, 353–360 (2018). https://doi.org/10.1007/s10930-018-9781-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-018-9781-y

Keywords

Navigation