Skip to main content

Advertisement

Log in

Pluronic-Based Mixed Polymeric Micelles Enhance the Therapeutic Potential of Curcumin

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Curcumin is a naturally occurring constituent of turmeric that is a good substitute for synthetic medicines for the treatment of different diseases, due to its comparatively safer profile. However, there are certain shortcomings that limit its use as an ideal therapeutic agent. In order to overcome these drawbacks, we prepared novel curcumin-loaded mixed polymeric micelles using different biocompatible polymers by the thin-film hydration method. We investigated the critical micelle concentration and temperature, drug loading and encapsulation efficiency, and minimum inhibitory concentration by spectrophotometry. Surface morphology, stability, particle size, drug-polymer interaction, and physical state of the prepared formulations were investigated using scanning electron microscopy, zeta potential, particle size analyzer, Fourier-transform infrared spectroscopy, and X-ray diffraction, respectively. The drug loading and entrapment efficiency were significantly increased (P < 0.01) when curcumin was encapsulated with pluronic-based mixed polymeric micelles as compared to that of pluronic-based micelles alone. In vitro studies exhibited that pluronic-based mixed polymeric micelles significantly increased anticancer (P < 0.01), antimicrobial (P < 0.001), antioxidant (P < 0.001), and α-amylase inhibitory (P < 0.001) activities when compared to pure curcumin and/or pluronic-based micelles alone. These findings suggest that the formation of mixed polymeric micelles increases the stability and solubility of curcumin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Akram M, Uddin S, Ahmed A, Usmanghani K, Hannan A, Mohiuddin E, et al. Curcuma longa and curcumin: a review article. Rom J Biol Plant Biol. 2010;55(2):65–70.

    Google Scholar 

  2. Oliveira AS, Sousa E, Helena Vasconcelos M, Pinto M. Curcumin: a natural lead for potential new drug candidates. Curr Med Chem. 2015;22(36):4196–232.

    Article  PubMed  CAS  Google Scholar 

  3. Chauhan M, Saha S, Roy A. Curcumin: a review. J Applied Pharm Res. 2014;2(1):18–28.

    Google Scholar 

  4. Hani U, Shivakumar H. Solubility enhancement and delivery systems of curcumin a herbal medicine: a review. Current Drug Delivery. 2014;11(6):792–804.

    Article  PubMed  CAS  Google Scholar 

  5. Akbar MU, Rehman K, Zia KM, Qadir MI, Akash MSH, Ibrahim M. Critical review on curcumin as a therapeutic agent: from traditional herbal medicine to an ideal therapeutic agent. Crit Rev Eukaryot Gene Expr. 2018;28(1):17–24.

    Article  PubMed  Google Scholar 

  6. Balasubramanian K. Molecular orbital basis for yellow curry spice curcumin’s prevention of Alzheimer’s disease. J Agric Food Chem. 2006;54(10):3512–20.

    Article  PubMed  CAS  Google Scholar 

  7. Lal J, Gupta SK, Thavaselvam D, Agarwal DD. Synthesis and pharmacological activity evaluation of curcumin derivatives. Chin Chem Lett. 2016;27(7):1067–72.

    Article  CAS  Google Scholar 

  8. Bendary E, Francis R, Ali H, Sarwat M, El Hady S. Antioxidant and structure–activity relationships (SARs) of some phenolic and anilines compounds. Ann Agric Sci. 2013;58(2):173–81.

    Google Scholar 

  9. Namratha K, Shenai P, Chatra L, Rao PK, Veena KM, Prabhu RV. Antioxidant and anticancer effects of curcumin-a review. Çağdaş Tıp Dergisi. 2013;3(2):136–43.

    Google Scholar 

  10. Negi P, Jayaprakasha G, Jagan Mohan Rao L, Sakariah K. Antibacterial activity of turmeric oil: a byproduct from curcumin manufacture. J Agric Food Chem. 1999;47(10):4297–300.

    Article  PubMed  CAS  Google Scholar 

  11. Sharma R, Gescher A, Steward W. Curcumin: the story so far. Eur J Cancer. 2005;41(13):1955–68.

    Article  PubMed  CAS  Google Scholar 

  12. Bansal SS, Goel M, Aqil F, Vadhanam MV, Gupta RC. Advanced drug delivery systems of curcumin for cancer chemoprevention. Cancer Prev Res. 2011;4(8):1158–71.

    Article  CAS  Google Scholar 

  13. Lao CD, Ruffin MT, Normolle D, Heath DD, Murray SI, Bailey JM, et al. Dose escalation of a curcuminoid formulation. BMC Complement Altern Med. 2006;6(1):10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Cheng A-L, Hsu C-H, Lin J-K, Hsu M-M, Ho Y-F, Shen T-S, et al. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res. 2001;21(4B):2895–900.

    PubMed  CAS  Google Scholar 

  15. Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas P. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. 1998;64(04):353–6.

    Article  PubMed  CAS  Google Scholar 

  16. Liu W, Zhai Y, Heng X, Che FY, Chen W, Sun D, et al. Oral bioavailability of curcumin: problems and advancements. J Drug Target. 2016;24(8):694–702.

    Article  PubMed  CAS  Google Scholar 

  17. Zhao L, Du J, Duan Y, Zhang H, Yang C, Cao F, et al. Curcumin loaded mixed micelles composed of pluronic P123 and F68: preparation, optimization and in vitro characterization. Colloids Surf B: Biointerfaces. 2012;97:101–8.

    Article  PubMed  CAS  Google Scholar 

  18. Yen F-L, Wu T-H, Tzeng C-W, Lin L-T, Lin C-C. Curcumin nanoparticles improve the physicochemical properties of curcumin and effectively enhance its antioxidant and antihepatoma activities. J Agric Food Chem. 2010;58(12):7376–82.

    Article  PubMed  CAS  Google Scholar 

  19. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4(6):807–18.

    Article  PubMed  CAS  Google Scholar 

  20. Tønnesen HH, Másson M, Loftsson T. Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stability. Int J Pharm. 2002;244(1):127–35.

    Article  PubMed  Google Scholar 

  21. Kurien BT, Singh A, Matsumoto H, Scofield RH. Improving the solubility and pharmacological efficacy of curcumin by heat treatment. Assay and Drug Development Technologies. 2007;5(4):567–76.

    Article  PubMed  CAS  Google Scholar 

  22. Yang X, Chen J, Guo D. Study of biocompatibility of polybutylcyanoacrylate nanoparticles. Di Yi Jun Yi Da Xue Xue Bao. 2005;25(10):1261–3.

    PubMed  CAS  Google Scholar 

  23. Wang J, Ma W, Tu P. The mechanism of self-assembled mixed micelles in improving curcumin oral absorption: in vitro and in vivo. Colloids Surf B: Biointerfaces. 2015;133:108–19.

    Article  PubMed  CAS  Google Scholar 

  24. Shelma R, Sharma CP. In vitro and in vivo evaluation of curcumin loaded lauroyl sulphated chitosan for enhancing oral bioavailability. Carbohydr Polym. 2013;95(1):441–8.

    Article  PubMed  CAS  Google Scholar 

  25. Anitha A, Maya S, Deepa N, Chennazhi K, Nair S, Tamura H, et al. Efficient water soluble O-carboxymethyl chitosan nanocarrier for the delivery of curcumin to cancer cells. Carbohydr Polym. 2011;83(2):452–61.

    Article  CAS  Google Scholar 

  26. Ramalingam P, Yoo SW, Ko YT. Nanodelivery systems based on mucoadhesive polymer coated solid lipid nanoparticles to improve the oral intake of food curcumin. Food Res Int. 2016;84:113–9.

    Article  CAS  Google Scholar 

  27. Sun M, Zhao L, Guo C, Cao F, Chen H, Zhao L, et al. Evaluation of an oral carrier system in rats: bioavailability and gastrointestinal absorption properties of curcumin encapsulated PBCA nanoparticles. J Nanopart Res. 2012;14(2):705.

    Article  CAS  Google Scholar 

  28. Tung BT, Duyen DT, Thuy HT, Hang HT, Diéguez K, Santana MC, Garrigues T, Binh NT, Hai NT. Pharmacokinetics of different pharmaceutical nano curcumin products by oral administration. Int J Phar Sci Nanotech. 2017;(6):3915–19.

    Google Scholar 

  29. Tsai Y-M, Jan W-C, Chien C-F, Lee W-C, Lin L-C, Tsai T-H. Optimised nano-formulation on the bioavailability of hydrophobic polyphenol, curcumin, in freely-moving rats. Food Chem. 2011;127(3):918–25.

    Article  PubMed  CAS  Google Scholar 

  30. Tomren M, Masson M, Loftsson T, Tønnesen HH. Studies on curcumin and curcuminoids: XXXI. Symmetric and asymmetric curcuminoids: stability, activity and complexation with cyclodextrin. Int J Pharm. 2007;338(1–2):27–34.

    Article  PubMed  CAS  Google Scholar 

  31. Maiti K, Mukherjee K, Gantait A, Saha BP, Mukherjee PK. Curcumin–phospholipid complex: preparation, therapeutic evaluation and pharmacokinetic study in rats. Int J Pharm. 2007;330(1–2):155–63.

    Article  PubMed  CAS  Google Scholar 

  32. Onoue S, Takahashi H, Kawabata Y, Seto Y, Hatanaka J, Timmermann B, et al. Formulation design and photochemical studies on nanocrystal solid dispersion of curcumin with improved oral bioavailability. J Pharm Sci. 2010;99(4):1871–81.

    Article  PubMed  CAS  Google Scholar 

  33. Duan C, Gao J, Zhang D, Jia L, Liu Y, Zheng D, et al. Galactose-decorated pH-responsive nanogels for hepatoma-targeted delivery of oridonin. Biomacromolecules. 2011;12(12):4335–43.

    Article  PubMed  CAS  Google Scholar 

  34. Takahashi M, Uechi S, Takara K, Asikin Y, Wada K. Evaluation of an oral carrier system in rats: bioavailability and antioxidant properties of liposome-encapsulated curcumin. J Agric Food Chem. 2009;57(19):9141–6.

    Article  PubMed  CAS  Google Scholar 

  35. Bisht S, Mizuma M, Feldmann G, Ottenhof NA, Hong S-M, Pramanik D, et al. Systemic administration of polymeric nanoparticle-encapsulated curcumin (NanoCurc) blocks tumor growth and metastases in preclinical models of pancreatic cancer. Mol Cancer Ther. 2010;9(8):2255–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Chacko RT, Ventura J, Zhuang J, Thayumanavan S. Polymer nanogels: a versatile nanoscopic drug delivery platform. Adv Drug Deliv Rev. 2012;64(9):836–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Cui J, Yu B, Zhao Y, Zhu W, Li H, Lou H, et al. Enhancement of oral absorption of curcumin by self-microemulsifying drug delivery systems. Int J Pharm. 2009;371(1–2):148–55.

    Article  PubMed  CAS  Google Scholar 

  38. Ahmed K, Li Y, McClements DJ, Xiao H. Nanoemulsion- and emulsion-based delivery systems for curcumin: encapsulation and release properties. Food Chem. 2012;132(2):799–807.

    Article  CAS  Google Scholar 

  39. Shaikh J, Ankola D, Beniwal V, Singh D, Kumar MR. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci. 2009;37(3–4):223–30.

    Article  PubMed  CAS  Google Scholar 

  40. Rasheed A, Ashok Kumar CK, VVNSS S. Cyclodextrins as drug carrier molecule: a review. Sci Pharm. 2008;76(4):567–98.

    Article  CAS  Google Scholar 

  41. Gilbert JC, Richardson JL, Davies MC, Palin KJ, Hadgraft J. The effect of solutes and polymers on the gelation properties of pluronic F-127 solutions for controlled drug delivery. J Control Release. 1987;5(2):113–8.

    Article  CAS  Google Scholar 

  42. Lenaerts V, Triqueneaux C, Quartern M, Rieg-Falson F, Couvreur P. Temperature-dependent rheological behavior of pluronic F-127 aqueous solutions. Int J Pharm. 1987;39(1–2):121–7.

    Article  CAS  Google Scholar 

  43. Edsman K, Carlfors J, Petersson R. Rheological evaluation of poloxamer as an in situ gel for ophthalmic use. Eur J Pharm Sci. 1998;6(2):105–12.

    Article  PubMed  CAS  Google Scholar 

  44. Miller SC, Donovan MD. Effect of poloxamer 407 gel on the miotic activity of pilocarpine nitrate in rabbits. Int J Pharm. 1982;12(2–3):147–52.

    Article  CAS  Google Scholar 

  45. Desai SD, Blanchard J. In vitro evaluation of Pluronic F127-based controlled-release ocular delivery systems for pilocarpine. J Pharm Sci. 1998;87(2):226–30.

    Article  PubMed  CAS  Google Scholar 

  46. Akash MSH, Rehman K. Recent progress in biomedical applications of Pluronic (PF127): pharmaceutical perspectives. J Control Release. 2015;209:120–38. https://doi.org/10.1016/j.jconrel.2015.04.032.

    Article  PubMed  CAS  Google Scholar 

  47. Jeong B, Kim SW, Bae YH. Thermosensitive sol–gel reversible hydrogels. Adv Drug Deliv Rev. 2012;64:154–62.

    Article  Google Scholar 

  48. Tang Y-F, Du Y-M, Hu X-W, Shi X-W, Kennedy JF. Rheological characterisation of a novel thermosensitive chitosan/poly (vinyl alcohol) blend hydrogel. Carbohydr Polym. 2007;67(4):491–9.

    Article  CAS  Google Scholar 

  49. Kumar S, Haglund BO, Himmelstein KJ. In situ-forming gels for ophthalmic drug delivery. J Ocul Pharmacol Ther. 1994;10(1):47–56.

    Article  CAS  Google Scholar 

  50. Akash MSH, Rehman K, Chen S. Pluronic F127-based thermosensitive gels for delivery of therapeutic proteins and peptides. Polym Rev. 2014;54(4):573–97.

    Article  CAS  Google Scholar 

  51. Akash MSH, Rehman K, Chen S. Natural and synthetic polymers as drug carriers for delivery of therapeutic proteins. Polym Rev. 2015;55(3):371–406.

    Article  CAS  Google Scholar 

  52. Akash MSH, Rehman K, Chen S. Polymeric-based particulate systems for delivery of therapeutic proteins. Pharm Dev Technol. 2016;21(3):367–78. https://doi.org/10.3109/10837450.2014.999785.

    Article  PubMed  CAS  Google Scholar 

  53. Akash MSH, Rehman K, Li N, Gao JQ, Sun H, Chen S. Sustained delivery of IL-1Ra from pluronic F127-based thermosensitive gel prolongs its therapeutic potentials. Pharm Res. 2012;29(12):3475–85. https://doi.org/10.1007/s11095-012-0843-0.

    Article  PubMed  CAS  Google Scholar 

  54. Akash MSH, Rehman K, Chen S. Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus. J Cell Biochem. 2013;114(3):525–31. https://doi.org/10.1002/jcb.24402.

    Article  PubMed  CAS  Google Scholar 

  55. Alexandridis P. Poly (ethylene oxide)/poly (propylene oxide) block copolymer surfactants. Curr Opin Colloid Interface Sci. 1997;2(5):478–89.

    Article  CAS  Google Scholar 

  56. Kabanov AV, Batrakova EV, Alakhov VY. Pluronic® block copolymers as novel polymer therapeutics for drug and gene delivery. J Control Release. 2002;82(2):189–212.

    Article  PubMed  CAS  Google Scholar 

  57. Chowdhary RK, Chansarkar N, Sharif I, Hioka N, Dolphin D. Formulation of benzoporphyrin derivatives in pluronics. Photochem Photobiol. 2003;77(3):299–303.

    Article  PubMed  CAS  Google Scholar 

  58. Joshi A, Ding S, Himmelstein KJ. Reversible gelation compositions and methods of use. Google Patents; 1993.

  59. Kulthe SS, Choudhari YM, Inamdar NN, Mourya V. Polymeric micelles: authoritative aspects for drug delivery. Designed Monomers and Polymers. 2012;15(5):465–521.

    Article  CAS  Google Scholar 

  60. Jones M-C, Leroux J-C. Polymeric micelles—a new generation of colloidal drug carriers. Eur J Pharm Biopharm. 1999;48(2):101–11.

    Article  PubMed  CAS  Google Scholar 

  61. Kabanov AV, Alakhov VY. Pluronic® block copolymers in drug delivery: from micellar nanocontainers to biological response modifiers. Crit Rev Ther Drug Carrier Syst. 2002;19(1):1–72.

    Article  PubMed  CAS  Google Scholar 

  62. Kazunori K, Masayuki Y, Teruo O, Yasuhisa S. Block copolymer micelles as vehicles for drug delivery. J Control Release. 1993;24(1–3):119–32.

    Article  Google Scholar 

  63. Sezgin Z, Yüksel N, Baykara T. Ilaç tasiyici sistemler olarak polimerik misellerin hazirlanmasi ve karakterizasyonu. Ankara Ecz Fak Derg. 2003;32:125–42.

    CAS  Google Scholar 

  64. Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev. 2001;47(1):113–31.

    Article  PubMed  CAS  Google Scholar 

  65. Torchilin VP. Structure and design of polymeric surfactant-based drug delivery systems. J Control Release. 2001;73(2):137–72.

    Article  PubMed  CAS  Google Scholar 

  66. Yokoyama M, Satoh A, Sakurai Y, Okano T, Matsumura Y, Kakizoe T, et al. Incorporation of water-insoluble anticancer drug into polymeric micelles and control of their particle size. J Control Release. 1998;55(2):219–29.

    Article  PubMed  CAS  Google Scholar 

  67. Yu B, Okano T, Kataoka K, Kwon G. Polymeric micelles for drug delivery: solubilization and haemolytic activity of amphotericin B. J Control Release. 1998;53(1):131–6.

    Article  PubMed  CAS  Google Scholar 

  68. Allen C, Maysinger D, Eisenberg A. Nano-engineering block copolymer aggregates for drug delivery. Colloids Surf B: Biointerfaces. 1999;16(1):3–27.

    Article  CAS  Google Scholar 

  69. Klaikherd A, Nagamani C, Thayumanavan S. Multi-stimuli sensitive amphiphilic block copolymer assemblies. J Am Chem Soc. 2009;131(13):4830–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Bouchemal K, Agnely F, Koffi A, Ponchel G. A concise analysis of the effect of temperature and propanediol-1, 2 on Pluronic F127 micellization using isothermal titration microcalorimetry. J Colloid Interface Sci. 2009;338(1):169–76.

    Article  PubMed  CAS  Google Scholar 

  71. Torchilin V. Targeted polymeric micelles for delivery of poorly soluble drugs. Cell Mol Life Sci. 2004;61(19):2549–59.

    Article  PubMed  CAS  Google Scholar 

  72. Mourya V, Inamdar N, Nawale R, Kulthe S. Polymeric micelles: general considerations and their applications. Ind J Pharm Educ Res. 2011;45:128–38.

    Google Scholar 

  73. Akash MSH, Rehman K, Chen S. Spice plant Allium cepa: dietary supplement for treatment of type 2 diabetes mellitus. Nutrition. 2014;30(10):1128–37. https://doi.org/10.1016/j.nut.2014.02.011.

    Article  PubMed  CAS  Google Scholar 

  74. Akash MSH, Rehman K, Tariq M, Chen S. Development of therapeutic proteins: advances and challenges. Turk J Biol. 2015;39(3):343–58.

    Article  CAS  Google Scholar 

  75. Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004;303(5665):1818–22.

    Article  PubMed  CAS  Google Scholar 

  76. Oerlemans C, Bult W, Bos M, Storm G, Nijsen JFW, Hennink WE. Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm Res. 2010;27(12):2569–89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Nishiyama N, Kataoka K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther. 2006;112(3):630–48.

    Article  PubMed  CAS  Google Scholar 

  78. Xiong X-B, Mahmud A, Uludağ H, Lavasanifar A. Multifunctional polymeric micelles for enhanced intracellular delivery of doxorubicin to metastatic cancer cells. Pharm Res. 2008;25(11):2555–66.

    Article  PubMed  CAS  Google Scholar 

  79. Varshosaz J, Tabbakhian M, Salmani Z. Designing of a thermosensitive chitosan/poloxamer in situ gel for ocular delivery of ciprofloxacin. The Open Drug Delivery Journal. 2008;2(1):61–70.

    Article  CAS  Google Scholar 

  80. Zhang X, Jackson JK, Burt HM. Development of amphiphilic diblock copolymers as micellar carriers of taxol. Int J Pharm. 1996;132(1–2):195–206.

    Article  CAS  Google Scholar 

  81. Park EK, Lee SB, Lee YM. Preparation and characterization of methoxy poly (ethylene glycol)/poly (ε-caprolactone) amphiphilic block copolymeric nanospheres for tumor-specific folate-mediated targeting of anticancer drugs. Biomaterials. 2005;26(9):1053–61.

    Article  PubMed  CAS  Google Scholar 

  82. Dey S, Sreenivasan K. Conjugation of curcumin onto alginate enhances aqueous solubility and stability of curcumin. Carbohydr Polym. 2014;99:499–507.

    Article  PubMed  CAS  Google Scholar 

  83. Kim SC, Kim DW, Shim YH, Bang JS, Oh HS, Kim SW, et al. In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. J Control Release. 2001;72(1):191–202.

    Article  PubMed  CAS  Google Scholar 

  84. Dabholkar RD, Sawant RM, Mongayt DA, Devarajan PV, Torchilin VP. Polyethylene glycol–phosphatidylethanolamine conjugate (PEG–PE)-based mixed micelles: some properties, loading with paclitaxel, and modulation of P-glycoprotein-mediated efflux. Int J Pharm. 2006;315(1):148–57.

    Article  PubMed  CAS  Google Scholar 

  85. Schmolka IR. Artificial skin I. Preparation and properties of pluronic F-127 gels for treatment of burns. J Biomed Mater Res A. 1972;6(6):571–82.

    Article  CAS  Google Scholar 

  86. Schmolka IR. A review of block polymer surfactants. J Am Oil Chem Soc. 1977;54(3):110–6.

    Article  CAS  Google Scholar 

  87. Wei Z, Hao J, Yuan S, Li Y, Juan W, Sha X, et al. Paclitaxel-loaded Pluronic P123/F127 mixed polymeric micelles: formulation, optimization and in vitro characterization. Int J Pharm. 2009;376(1–2):176–85.

    Article  PubMed  CAS  Google Scholar 

  88. Gaisford S, Beezer AE, Mitchell JC. Diode-array UV spectrometric evidence for cooperative interactions in binary mixtures of pluronics F77, F87, and F127. Langmuir. 1997;13(10):2606–7.

    Article  CAS  Google Scholar 

  89. Saxena V, Hussain MD. Poloxamer 407/TPGS mixed micelles for delivery of gambogic acid to breast and multidrug-resistant cancer. Int J Nanomedicine. 2012;7:713.

    PubMed  PubMed Central  CAS  Google Scholar 

  90. Jones R. Susceptibility tests: microdilution and macrodilution broth procedures. Manual of Clin Microbiol. 1985:972–7.

  91. Mukherjee P, Balasubramanian R, Saha K, Saha B, Pal M. Antibacterial efficiency of Nelumbo nucifera (Nymphaeaceae) rhizomes extract. Indian Drugs. 1995;32(6):274–6.

    Google Scholar 

  92. Kabak M, Elmali A, Elerman Y, Durlu T. Conformational study and structure of bis-N, N′-p-bromo-salicylideneamine-1, 2-diaminobenzene. J Mol Struct. 2000;553(1):187–92.

    Article  CAS  Google Scholar 

  93. Bagchi A, Mukherjee P, Bhowmick S, Raha A. Synthesis, characterization and antibacterial activity of a novel curcumin metal complex. Int J Drug Dev Res. 2015;7(2):011–4.

    CAS  Google Scholar 

  94. Bozin B, Mimica-Dukic N, Simin N, Anackov G. Characterization of the volatile composition of essential oils of some Lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils. J Agric Food Chem. 2006;54(5):1822–8.

    Article  PubMed  CAS  Google Scholar 

  95. Xiao Z, Storms R, Tsang A. A quantitative starch–iodine method for measuring alpha-amylase and glucoamylase activities. Anal Biochem. 2006;351(1):146–8.

    Article  PubMed  CAS  Google Scholar 

  96. Toton E, Ignatowicz E, Bernard M, Kujawski J, Rybczynska M. Evaluation of apoptotic activity of new condensed pyrazole derivatives. J Physiol Pharmacol. 2013;64:115–23.

    PubMed  CAS  Google Scholar 

  97. Kabanov AV, Batrakova EV, Alakhov VY. An essential relationship between ATP depletion and chemosensitizing activity of Pluronic® block copolymers. J Control Release. 2003;91(1):75–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Kabanov AV, Batrakova EV, Miller DW. Pluronic® block copolymers as modulators of drug efflux transporter activity in the blood–brain barrier. Adv Drug Deliv Rev. 2003;55(1):151–64.

    Article  PubMed  CAS  Google Scholar 

  99. Sahoo SK, Panyam J, Prabha S, Labhasetwar V. Residual polyvinyl alcohol associated with poly (D, L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J Control Release. 2002;82(1):105–14.

    Article  PubMed  CAS  Google Scholar 

  100. Misra R, Acharya S, Dilnawaz F, Sahoo SK. Sustained antibacterial activity of doxycycline-loaded poly (D, L-lactide-co-glycolide) and poly (ε-caprolactone) nanoparticles. Nanomedicine. 2009;4(5):519–30.

    Article  PubMed  CAS  Google Scholar 

  101. Mahajan HS, Mahajan PR. Development of grafted xyloglucan micelles for pulmonary delivery of curcumin: in vitro and in vivo studies. Int J Biol Macromol. 2016;82:621–7.

    Article  PubMed  CAS  Google Scholar 

  102. Yadav A, Lomash V, Samim M, Flora SJ. Curcumin encapsulated in chitosan nanoparticles: a novel strategy for the treatment of arsenic toxicity. Chem Biol Interact. 2012;199(1):49–61.

    Article  PubMed  CAS  Google Scholar 

  103. Popat A, Karmakar S, Jambhrunkar S, Xu C, Yu C. Curcumin-cyclodextrin encapsulated chitosan nanoconjugates with enhanced solubility and cell cytotoxicity. Colloids Surf B: Biointerfaces. 2014;117:520–7.

    Article  PubMed  CAS  Google Scholar 

  104. Wang Y, Lu Z, Wu H, Lv F. Study on the antibiotic activity of microcapsule curcumin against foodborne pathogens. Int J Food Microbiol. 2009;136(1):71–4.

    Article  PubMed  CAS  Google Scholar 

  105. Mun S-H, Joung D-K, Kim Y-S, Kang O-H, Kim S-B, Seo Y-S, et al. Synergistic antibacterial effect of curcumin against methicillin-resistant Staphylococcus aureus. Phytomedicine. 2013;20(8–9):714–8.

    Article  PubMed  CAS  Google Scholar 

  106. Basniwal RK, Buttar HS, Jain V, Jain N. Curcumin nanoparticles: preparation, characterization, and antimicrobial study. J Agric Food Chem. 2011;59(5):2056–61.

    Article  PubMed  CAS  Google Scholar 

  107. Yadav VR, Suresh S, Devi K, Yadav S. Effect of cyclodextrin complexation of curcumin on its solubility and antiangiogenic and anti-inflammatory activity in rat colitis model. AAPS PharmSciTech. 2009;10(3):752–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Chaibundit C, Ricardo NM, Costa FM, Yeates SG, Booth C. Micellization and gelation of mixed copolymers P123 and F127 in aqueous solution. Langmuir. 2007;23(18):9229–36.

    Article  PubMed  CAS  Google Scholar 

  109. Gaucher G, Satturwar P, Jones M-C, Furtos A, Leroux J-C. Polymeric micelles for oral drug delivery. Eur J Pharm Biopharm. 2010;76(2):147–58.

    Article  PubMed  CAS  Google Scholar 

  110. Akhtar F, Rizvi MMA, Kar SK. Oral delivery of curcumin bound to chitosan nanoparticles cured Plasmodium yoelii infected mice. Biotechnol Adv. 2012;30(1):310–20.

    Article  PubMed  CAS  Google Scholar 

  111. Panyam J, Zhou W-Z, Prabha S, Sahoo SK, Labhasetwar V. Rapid endo-lysosomal escape of poly (DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J. 2002;16(10):1217–26.

    Article  PubMed  CAS  Google Scholar 

  112. Anitha A, Deepagan V, Rani VD, Menon D, Nair S, Jayakumar R. Preparation, characterization, in vitro drug release and biological studies of curcumin loaded dextran sulphate–chitosan nanoparticles. Carbohydr Polym. 2011;84(3):1158–64.

    Article  CAS  Google Scholar 

  113. Pandey S, Sah SP, Sah ML, Mishra D. An antioxidant potential of hydromethanolic extract of urtica parviflora roxb. J Basic Clin Pharm. 2010;1(3):191–5.

    PubMed  PubMed Central  Google Scholar 

  114. Rehman K, Akash MS. Mechanisms of inflammatory responses and development of insulin resistance: how are they interlinked? J Biomed Sci. 2016;23(1):87.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Rehman K, Akash MSH. Mechanism of generation of oxidative stress and pathophysiology of type 2 diabetes mellitus: how are they interlinked? J Biomed Sci. 2017;118(11):3577–85. https://doi.org/10.1002/jcb.26097.

    Article  CAS  Google Scholar 

  116. Parveen A, Akash MSH, Rehman K, Kyunn WW. Dual role of p21 in the progression of cancer and its treatment. Crit Rev Eukaryot Gene Expr. 2016;26(1):49–62. https://doi.org/10.1615/CritRevEukaryotGeneExpr.v26.i1.60.

    Article  PubMed  Google Scholar 

  117. Parveen A, Akash MSH, Rehman K, Kyunn WW. Recent investigations for discovery of natural antioxidants: a comprehensive review. Crit Rev Eukaryot Gene Expr. 2016;26(2):143–60. https://doi.org/10.1615/CritRevEukaryotGeneExpr.2016015974.

    Article  PubMed  Google Scholar 

  118. ToDA S, Miyase T, Arichi H, Tanizawa H, Takino Y. Natural antioxidants. III. Antioxidative components isolated from rhizome of Curcuma longa L. Chem Pharm Bull. 1985;33(4):1725–8.

    Article  PubMed  CAS  Google Scholar 

  119. Tan C, Xie J, Zhang X, Cai J, Xia S. Polysaccharide-based nanoparticles by chitosan and gum arabic polyelectrolyte complexation as carriers for curcumin. Food Hydrocoll. 2016;57:236–45.

    Article  CAS  Google Scholar 

  120. Akash MSH, Rehman K, Sun H, Chen S. Interleukin-1 receptor antagonist improves normoglycemia and insulin sensitivity in diabetic Goto-Kakizaki-rats. Eur J Pharmacol. 2013;701(1–3):87–95. https://doi.org/10.1016/j.ejphar.2013.01.008.

    Article  PubMed  CAS  Google Scholar 

  121. Akash MSH, Shen Q, Rehman K, Chen S. Interleukin-1 receptor antagonist: a new therapy for type 2 diabetes mellitus. J Pharm Sci. 2012;101(5):1647–58. https://doi.org/10.1002/jps.23057.

    Article  PubMed  CAS  Google Scholar 

  122. Rehman K, Tariq M, Akash MSH, Gillani Z, Qazi MH. Effect of HA14-1 on apoptosis-regulating proteins in HeLa cells. Chem Biol Drug Des. 2014;83(3):317–23. https://doi.org/10.1111/cbdd.12245.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Khalid Mahmood Zia or Muhammad Sajid Hamid Akash.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbar, M.U., Zia, K.M., Nazir, A. et al. Pluronic-Based Mixed Polymeric Micelles Enhance the Therapeutic Potential of Curcumin. AAPS PharmSciTech 19, 2719–2739 (2018). https://doi.org/10.1208/s12249-018-1098-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-018-1098-9

KEY WORDS

Navigation