Skip to main content

Advertisement

Log in

Effect of Complexes and Microemulsions on the Permeability of Drugs: Determination Using a New Biomimetic Artificial Membrane

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The aim of this work was to predict the permeability of two model drugs, sulfamerazine (SMR) and indomethacin (INM), and to determine the effect on their apparent permeabilities by complexation with cyclodextrins and/or meglumine or incorporation in microemulsions. Permeation experiments were performed using two-chamber diffusion cells with a new composition of bio-mimetic membrane composed of 80% of Lipoid® S100 and 20% of cholesterol in n-octanol 10% w/w solution, at 37 ± 0.5°C and 14,000 rpm. The predictive capacity of the permeability of passive diffusion absorbed compounds was evaluated using 20 drug standards and showed an exponential correlation between the apparent permeability coefficients (Papp) and the fraction absorbed percentages in humans (Fa%), with an R2 value of 0.67942 and a constant value of − 4.1 ± 0.8. SMR and INM were classified as Class II and I, respectively, according to the Biopharmaceutical Classification System. These drugs were complexed and incorporated in microemulsions. The Fa% from all the drug products was higher than 90%. SMR in the complexes and both drugs in microemulsions were classified as highly soluble. Thus, SMR and INM incorporated in these pharmaceutical products could be classified as Class I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. CDER/FDA. Guidance for Industry, Waiver of in vivo bioavailability and bioequivalence studies for immediate release solid oral dosage forms based on a biopharmaceutics classification system. Cent Drug Eval Res. 2017.

  2. Corti G, Maestrelli F, Cirri M, Furlanetto S, Mura P. Development and evaluation of an in vitro method for prediction of human drug absorption I. Assessment of artificial membrane composition. Eur J Pharm Sci. 2006;27:346–53.

    Article  PubMed  CAS  Google Scholar 

  3. Giorno L, Mazzei R, Drioli E. Biological membranes and biomimetic artificial membranes. In: Drioli E, Giorno L, editors. Comprehensive membrane science and engineering. Oxford: Elsevier; 2010. p. 1–12.

  4. Másson M, Loftsson T, Másson G, Stefánsson E. Cyclodextrins as permeation enhancers: some theoretical evaluations and in vitro testing. J Control Release. 1999;59:107–18.

    Article  PubMed  Google Scholar 

  5. Gantzsch SP, Kann B, Ofer-Glaessgen M, Loos P, Berchtold H, Balbach S, et al. Characterization and evaluation of a modified PVPA barrier in comparison to Caco-2 cell monolayers for combined dissolution and permeation testing. J Control Release. 2014;175:79–86.

    Article  PubMed  CAS  Google Scholar 

  6. Li G, Fan Y, Li X, Wang X, Li Y, Liu Y, et al. In vitro and in vivo evaluation of a simple microemulsion formulation for propofol. Int J Pharm. 2012;425:53–61.

    Article  PubMed  CAS  Google Scholar 

  7. Li H, Dong L, Liu Y, Wang G, Wang G, Qiao Y. Biopharmaceutics classification of puerarin and comparison of perfusion approaches in rats. Int J Pharm. 2014;466:133–8.

    Article  PubMed  CAS  Google Scholar 

  8. Silva AE, Barratt G, Chéron M, Egito EST. Development of oil-in-water microemulsions for the oral delivery of amphotericin B. Int J Pharm. 2013;454:641–8.

    Article  PubMed  CAS  Google Scholar 

  9. Aloisio C, Gomes de Oliveira A, Longhi M. Characterization, inclusion mode, phase-solubility and in vitro release studies of inclusion binary complexes with cyclodextrins and meglumine using sulfamerazine as model drug. Drug Dev Ind Pharm. 2014;40:919–28.

    Article  PubMed  CAS  Google Scholar 

  10. Aloisio C, de Oliveira AG, Longhi M. Solubility and release modulation effect of sulfamerazine ternary complexes with cyclodextrins and meglumine. J Pharm Biomed Anal. 2014;100:64–73.

    Article  PubMed  CAS  Google Scholar 

  11. Aloisio C, Gomes de Oliveira A, Longhi M. G., de Oliveira A, Longhi M. Cyclodextrin and meglumine-based microemulsions as a poorly water-soluble drug delivery system. J Pharm Sci. 2015;In press:2703–11.

  12. Aloisio C, Longhi MR, De Oliveira AG. Development and characterization of a biocompatible soybean oil-based microemulsion for the delivery of poorly water-soluble drugs. J Pharm Sci. 2015;10:3535–43.

    Article  CAS  Google Scholar 

  13. Zhao G, Huang J, Xue K, Si L, Li G. Enhanced intestinal absorption of etoposide by self-microemulsifying drug delivery systems: roles of P-glycoprotein and cytochrome P450 3A inhibition. Eur J Pharm Sci. 2013;50:429–39.

    Article  PubMed  CAS  Google Scholar 

  14. Fang JY, Sung KC, Lin HH, Fang CL. Transdermal iontophoretic delivery of diclofenac sodium from various polymer formulations: in vitro and in vivo studies. Int J Pharm. 1999;178:83–92.

    Article  PubMed  CAS  Google Scholar 

  15. Fei Y, Kostewicz ES, Sheu M-T, Dressman JB. Analysis of the enhanced oral bioavailability of fenofibrate lipid formulations in fasted humans using an in vitro–in silico–in vivo approach. Eur J Pharm Biopharm. 2013;85:1274–84.

    Article  PubMed  CAS  Google Scholar 

  16. Langguth P, Kubis A, Krumbiegel G, Lang W, Merkle HP, Wächter W, et al. Intestinal absorption of the quaternary trospium chloride: permeability-lowering factors and bioavailabilities for oral dosage forms. Eur J Pharm Biopharm. 1997;43:265–72.

    Article  CAS  Google Scholar 

  17. Sjögren E, Westergren J, Grant I, Hanisch G, Lindfors L, Lennernäs H, et al. In silico predictions of gastrointestinal drug absorption in pharmaceutical product development: application of the mechanistic absorption model GI-Sim. Eur J Pharm Sci. 2013;49:679–98.

    Article  PubMed  CAS  Google Scholar 

  18. Klimundová J, Šatinský D, Sklenářová H, Solich P, Satinský D, Sklenárová H. Automation of simultaneous release tests of two substances by sequential injection chromatography coupled with Franz cell. Talanta. 2006;69:730–5.

    Article  PubMed  CAS  Google Scholar 

  19. Sajeesh S, Bouchemal K, Marsaud V, Vauthier C, Sharma CP. Cyclodextrin complexed insulin encapsulated hydrogel microparticles: an oral delivery system for insulin. J Control Release. 2010;147:377–84.

    Article  PubMed  CAS  Google Scholar 

  20. Sugano K, Hamada H, Machida M, Ushio H, Saitoh K, Terada K. Optimized conditions of bio-mimetic artificial membrane permeation assay. Int J Pharm. 2001;228:181–8.

    Article  PubMed  CAS  Google Scholar 

  21. Samiei N, Mangas-Sanjuan V, González-Álvarez I, Foroutan M, Shafaati A, Zarghi A, et al. Ion-pair strategy for enabling amifostine oral absorption: rat in situ and in vivo experiments. Eur J Pharm Sci. 2013;49:499–504.

    Article  PubMed  CAS  Google Scholar 

  22. Sevin E, Dehouck L, Fabulas-da Costa A, Cecchelli R, Dehouck MP, Lundquist S, et al. Accelerated Caco-2 cell permeability model for drug discovery. J Pharmacol Toxicol. 2013;68:334–9.

    Article  CAS  Google Scholar 

  23. Zhu M-L, Liang X-L, Zhao L-J, Liao Z-G, Zhao G-W, Cao Y-C, et al. Elucidation of the transport mechanism of baicalin and the influence of a Radix Angelicae Dahuricae extract on the absorption of baicalin in a Caco-2 cell monolayer model. J Ethnopharmacol. 2013;150:553–9.

    Article  PubMed  CAS  Google Scholar 

  24. Fujikawa M, Ano R, Nakao K, Akamatsu M. Relationships between structure and high-throughput screening permeability of diverse drugs with artificial membranes: application to prediction of Caco-2 cell permeability. Bioorg Med Chem. 2005;13:4721–32.

    Article  PubMed  CAS  Google Scholar 

  25. Sinkó B, Garrigues TM, Balogh GT, Nagy ZK, Tsinman O, Avdeef A, et al. Skin–PAMPA: a new method for fast prediction of skin penetration. Eur J Pharm Sci. 2012;45:698–707.

    Article  PubMed  CAS  Google Scholar 

  26. Sugano K, Nabuchi Y, Machida M, Aso Y. Prediction of human intestinal permeability using artificial membrane permeability. Int J Pharm. 2003;257:245–51.

    Article  PubMed  CAS  Google Scholar 

  27. Dezani AB, Pereira TM, Caffaro AM, Reis JM, Serra CH dos R, Helena C, et al. Determination of lamivudine and zidovudine permeability using a different ex vivo method in Franz cells. J Pharmacol Toxicol. 2013;67:194–202.

    Article  CAS  Google Scholar 

  28. Velický M, Tam KY, Dryfe RAW. In situ artificial membrane permeation assay under hydrodynamic control: correlation between drug in vitro permeability and fraction absorbed in humans. Eur J Pharm Sci. 2011;44:299–309.

    Article  PubMed  CAS  Google Scholar 

  29. Levintova Y, Plakogiannis FM, Bellantone RA. An improved in vitro method for measuring skin permeability that controls excess hydration of skin using modified Franz diffusion cells. Int J Pharm. 2011;419:96–106.

    Article  PubMed  CAS  Google Scholar 

  30. Rauma M, Johanson G. Comparison of the thermogravimetric analysis (TGA) and Franz cell methods to assess dermal diffusion of volatile chemicals. Toxicol In Vitro. 2009;23:919–26.

    Article  PubMed  CAS  Google Scholar 

  31. Reis JM, Dezani AB, Pereira TM, Avdeef A, Serra CHR. Lamivudine permeability study: a comparison between PAMPA, ex vivo and in situ single-pass intestinal perfusion (SPIP) in rat jejunum. Eur J Pharm Sci. 2013;48:781–9.

    Article  PubMed  CAS  Google Scholar 

  32. Drugs.com. [Internet]. [Updated: 2018 Mar 1; Cited: 2018 April 5]. 2018. Available from: https://www.drugs.com/.

  33. Amidon GL, Sinko PJ, Fleisher D. Estimating human oral fraction dose absorbed: a correlation using rat intestinal membrane permeability for passive and carrier-mediated compounds. Pharm Res. 1988;5:651–4.

    Article  PubMed  CAS  Google Scholar 

  34. Lipka E, Amidon GL. Setting bioequivalence requirements for drug development based on preclinical data: optimizing oral drug delivery systems. J Control Release. 1999;62:41–9.

    Article  PubMed  CAS  Google Scholar 

  35. Yu LX, Amidon GL. A compartmental absorption and transit model for estimating oral drug absorption. Int J Pharm. 1999;186:119–25.

    Article  PubMed  CAS  Google Scholar 

  36. Paixão P, Gouveia LF, Morais JAG. Prediction of the human oral bioavailability by using in vitro and in silico drug related parameters in a physiologically based absorption model. Int J Pharm. 2012;429:84–98.

    Article  PubMed  CAS  Google Scholar 

  37. Delrivo A, Aloisio C, Longhi MR, Granero G. Artificial lipid membrane permeability method for predicting intestinal drug transport: probing the determining step in the oral absorption of sulfadiazine; influence of the formation of binary and ternary complexes with cyclodextrins. AAPS Pharm Sci Tech. 2018.

  38. Chuasuwan B, Binjesoh V, Polli JE, Zhang H, Amidon GL, Junginger HE, et al. Biowaiver monographs for immediate release solid oral dosage forms: diclofenac sodium and diclofenac potassium. J Pharm Sci. 2009;98:1206–19.

    Article  PubMed  CAS  Google Scholar 

  39. Potthast H, Dressman JB, Junginger HE, Midha KK, Oeser H, Shah VP, et al. Biowaiver monographs for immediate release solid oral dosage forms: ibuprofen. J Pharm Sci. 2005;94:2121–31.

    Article  PubMed  CAS  Google Scholar 

  40. Masaoka Y, Tanaka Y, Kataoka M, Sakuma S, Yamashita S. Site of drug absorption after oral administration: assessment of membrane permeability and luminal concentration of drugs in each segment of gastrointestinal tract. Eur J Pharm Sci. 2006;29:240–50.

    Article  PubMed  CAS  Google Scholar 

  41. Bhosale UV, Kusum Devi V, Jain N. Formulation and optimization of mucoadhesive nanodrug delivery system of acyclovir. J Young Pharm. 2011;3:275–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Fini A, Fazio G, Feroci G. Solubility and solubilization properties of non-steroidal anti-inflammatory drugs. Int J Pharm. 1995;126:95–102.

    Article  CAS  Google Scholar 

  43. Gennaro AR. Volume 2. The Science and Practice of Pharmacy Remington farmacia, Joseph Price Remington. 20th ed. Buenos Aires: Ed. Médica Panamericana; 2003.

  44. Thompson JE, Davidow LW. A practical guide to contemporary pharmacy. Lippincott Williams & Wilkins: Baltimore, Philadelphia; 2009.

    Google Scholar 

  45. Wishart D, Feunang Y, Guo A, Lo E, Marcu A, Grant J, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2017; https://doi.org/10.1093/nar/gkx1037.2018.

  46. Incecayir T, Tsume Y, Amidon G. Comparison of the permeability of metoprolol and labetalol in rat, mouse, and caco-2 cells: use as a reference standard for BCS classification. Mol Pharm. 2013:10958–66.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcela R. Longhi.

Electronic supplementary material

ESM 1

(PDF 290 kb)

ESM 2

(PDF 286 kb)

ESM 3

(PDF 58 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aloisio, C., Ponce-Ponte, M., Granero, G.E. et al. Effect of Complexes and Microemulsions on the Permeability of Drugs: Determination Using a New Biomimetic Artificial Membrane. AAPS PharmSciTech 19, 2629–2638 (2018). https://doi.org/10.1208/s12249-018-1096-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-018-1096-y

KEY WORDS

Navigation