Skip to main content

Advertisement

Log in

Co-Processed Excipients for Dispersible Tablets–Part 1: Manufacturability

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Co-processed excipients may enhance functionality and reduce drawbacks of traditional excipients for the manufacture of tablets on a commercial scale. The following study aimed to characterise a range of co-processed excipients that may prove suitable for dispersible tablet formulations prepared by direct compression. Co-processed excipients were lubricated and compressed into 10.5-mm convex tablets using a Phoenix compaction simulator. Compression profiles were generated by varying the compression force applied to the formulation and the prepared tablets were characterised for hardness, friability, disintegration and fineness of dispersion. Our data indicates that CombiLac, F-Melt type C and SmartEx QD100 were the top 3 most suitable out of 16 co-processed excipients under the conditions evaluated. They exhibited good flow properties (Carr’s index ˂ 20), excellent tabletability (tensile strength > 3.0 MPa at 0.85 solid fraction), very low friability (< 1% after 15 min), rapid disintegration times (27–49 s) and produced dispersions of ideal fineness (< 250 μm). Other co-processed excipients (including F-Melt type M, Ludiflash, MicroceLac, Pharmaburst 500 and Avicel HFE-102) may be appropriate for dispersible tablets produced by direct compression providing the identified disintegration and dispersion risks were mitigated prior to commercialisation. This indicates that robust dispersible tablets which disintegrate rapidly could be manufactured from a range of co-processed excipients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gohel MC, Jogani PD. A review of co-processed directly compressible excipients. J Pharm Pharm Sci. 2005;8:76–93.

    PubMed  CAS  Google Scholar 

  2. Chattoraj S, Sun CC. Crystal and particle engineering strategies for improving powder compression and flow properties to enable continuous tablet manufacturing by direct compression. J Pharm Sci. 2018;107:968–74. https://doi.org/10.1016/j.xphs.2017.11.023.

    Article  PubMed  CAS  Google Scholar 

  3. Leane M, Pitt K, Reynolds G. A proposal for a drug product manufacturing classification system (MCS) for oral solid dosage forms. Pharm Dev Technol. 2014;7450:1–10. https://doi.org/10.3109/10837450.2014.954728.

    Article  Google Scholar 

  4. Li XH, Zhao LJ, Ruan KPF, Feng Y, Xu DS, Ruan KPF. The application of factor analysis to evaluate deforming behaviors of directly compressed powders. Pharm Technol. 2013;247:47–54. https://doi.org/10.1016/j.powtec.2013.06.040.

    Article  CAS  Google Scholar 

  5. Rojas J, Buckner I, Kumar V. Co-proccessed excipients with enhanced direct compression functionality for improved tableting performance. Drug Dev Ind Pharm. 2012;38:1159–70. https://doi.org/10.3109/03639045.2011.645833.

    Article  PubMed  CAS  Google Scholar 

  6. MHRA, Summary of product characteristics-istin 10mg orodispersible tablets, (2013). http://www.drugs.com/uk/istin-10mg-orodispersible-tablets-leaflet.html.

  7. Sreekanth B, Ajay K, Suman D. Co-processed excipients: a review. Int. J Curr Trends Pharm Res. 2013;1:205–14.

    Google Scholar 

  8. Jivraj M, Martini LG, Thomson CM. An overview of the different excipients useful for the direct compression of tablets. Pharm Sci Technol Today. 2000;3:58–63. https://doi.org/10.1016/s1461-5347(99)00237-0.

    Article  PubMed  CAS  Google Scholar 

  9. Arida AI, Al-Tabakha MM. Cellactose a co-processed excipient: a comparison study. Pharm Dev Technol. 2008;13:165–75. https://doi.org/10.1080/10837450701831294.

    Article  PubMed  CAS  Google Scholar 

  10. Jacob S, Shirwaikar AA, Joseph A, Srinivasan KK. Novel co-processed excipients of mannitol and microcrystalline cellulose for preparing fast dissolving tablets of glipizide. Indian J Pharm Sci. 2007;69:633–9.

    Article  CAS  Google Scholar 

  11. Russell R. Synthetic excipients challenge all-natural organics—offer advantages/challenges to developers and formulators. Pharm Technol. 2004:38–50.

  12. WHO, Forty-fourth report of the WHO Expert Committee on specifications for pharmaceutical preparations, 2010. http://www.who.int/medicines/publications/44threport/en/.

  13. Abdulla S, Sagara I. Dispersible formulation of artemether/lumefantrine: specifically developed for infants and young children. Malar J. 2009;8:6. https://doi.org/10.1186/1475-2875-8-s1-s7.

    Article  Google Scholar 

  14. L. Lachman, H. Lieberman, J. Kanig, The theory and practice of industrial pharmacy, 3rd ed., Lea & Febiger, Philadelphia, 1986.

  15. Zhou D, Qiu Y. Understanding material properties in pharmaceutical product development and manufacturing: powder flow and mechanical properties. J Valid Technol. 2010:65–77.

  16. Pitt KG, Newton JM, Stanley P. Tensile fracture of doubly-convex cylindrical discs under diametral loading. J Mater Sci. 1988;23:2723–8. https://doi.org/10.1007/BF00547442.

    Article  Google Scholar 

  17. Pitt KG, Webber RJ, Hill KA, Dey D, Gamlen MJ. Compression prediction accuracy from small scale compaction studies to production presses. Powder Technol. 2015;270 (490–3. https://doi.org/10.1016/j.powtec.2013.10.007.

    Article  CAS  Google Scholar 

  18. R.M. Pabari, Examination of formulation and process factors on the characteristics of fast dissolving and fast disintegrating tablets manufactured by a direct compression process. PhD thesis, Royal College of Surgeons in Ireland, 2010.

  19. Saleem M, Shahin M, Srinivas B, Begum A. Evaluation of tablets by friability apparatus. Int J Res Pharm Chem. 2014;4:837–40.

    Google Scholar 

  20. Parkash V, Maan S, Deepika SKY, Hemlata VJ. Fast disintegrating tablets: opportunity in drug delivery system. J Adv Pharm Technol Res. 2011;2:223–35. https://doi.org/10.4103/2231-4040.90877.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Brniak W, Jachowicz R, Pelka P. The practical approach to the evaluation of methods used to determine the disintegration time of orally disintegrating tablets (ODTs). Saudi Pharm J. 2015;23:437–43. https://doi.org/10.1016/j.jsps.2015.01.015.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kimura S, Uchida S, Kanada K, Namiki N. Effect of granule properties on rough mouth feel and palatability of orally disintegrating tablets. Int J Pharm. 2015;484:156–62. https://doi.org/10.1016/j.ijpharm.2015.02.023.

    Article  PubMed  CAS  Google Scholar 

  23. Bolhuis GK, Reichman G, Lerk CF, Vankamp HV, Zuurman K. Evaluation of anhydrous alpha-lactose, a new excipient in direct compression. Drug Dev Ind Pharm. 1985;11:1657–81. https://doi.org/10.3109/03639048509057692.

    Article  CAS  Google Scholar 

  24. Amin MCIM, Albawani SM, Amjad MW. A comparative study of the compaction properties of binary and bilayer tablets of direct compression excipients. Trop J Pharm Res. 2012;11:585–94. https://doi.org/10.4314/tjpr.v11i4.9.

    Article  Google Scholar 

  25. Thoorens G, Krier F, Leclercq B, Carlin B, Evrard B. Microcrystalline cellulose, a direct compression binder in a quality by design environment-a review. Int J Pharm. 2014;473:64–72. https://doi.org/10.1016/j.ijpharm.2014.06.055.

    Article  PubMed  CAS  Google Scholar 

  26. Olmo IG, Ghaly ES. Compressional characterization of two dextrose-based directly compressible excipients using an instrumented tablet press. Pharm Dev Technol. 1999;4:221–31. https://doi.org/10.1081/pdt-100101356.

    Article  PubMed  CAS  Google Scholar 

  27. Hentzschel CM, Sakmann A, Leopold CS. Comparison of traditional and novel tableting excipients: physical and compaction properties. Pharm Dev Technol. 2012;17:649–53. https://doi.org/10.3109/10837450.2011.572897.

    Article  PubMed  CAS  Google Scholar 

  28. Gharaibeh SF, Aburub A. Use of first derivative of displacement vs. force profiles to determine deformation behavior of compressed powders. AAPS PharmSciTech. 2013;14:398–401. https://doi.org/10.1208/s12249-013-9928-2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Rojas J, Aristizabal J, Henao M. Screening of several excipients for direct compression of tablets: a new perspective based on functional properties. J Basic Appl Pharm Sci. 2013;34:17–23.

    CAS  Google Scholar 

  30. M. Çelik, Pharmaceutical Powder Compaction Technology, Second, Informa Healthcare SE, 2011.

  31. Koner JS, Rajabi-Siahboomi A, Bowen J, Perrie Y, Kirby D, Mohammed AR. A holistic multi evidence approach to study the fragmentation behaviour of crystalline mannitol. Sci Rep. 2015;5:16352. https://doi.org/10.1038/srep16352.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Al-Ibraheemi ZAM, Anuar MS, Taip FS, Amin MCI, Tahir SM, Mahdi AB. Deformation and mechanical characteristics of compacted binary mixtures of plastic (microcrystalline cellulose), elastic (sodium starch glycolate), and brittle (lactose monohydrate) pharmaceutical excipients. Part Sci Technol. 2013;31:561–7. https://doi.org/10.1080/02726351.2013.785451.

    Article  CAS  Google Scholar 

  33. Šantl M, Ilić I, Vrečer F, Baumgartner S. A compressibility and compactibility study of real tableting mixtures: the impact of wet and dry granulation versus a direct tableting mixture. Acta Pharma. 2012;62:325–40. https://doi.org/10.1016/j.ijpharm.2011.05.025.

    Article  Google Scholar 

  34. Es-Saheb MHH. Tensile fracture characteristics of double convex-faced cylindrical powder compacts. J Mater Sci. 1996;31:214–23. https://doi.org/10.1007/bf00355148.

    Article  CAS  Google Scholar 

  35. Pabari R, Ramtoola Z. Effect of a disintegration mechanism on wetting, water absorption, and disintegration time of orodispersible tablets. J Young Pharm. 2012;4:157–63. https://doi.org/10.4103/0975-1483.100021.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Kawashima Y, Takeuchi H, Hino T, Niwa T, Lin T-L. Pulverized low-substituted hydroxypropylcellulose and microcrystalline cellulose modified with hydroxypropylmethylcellulose as a sustained drug release matrix base for direct tabletting. Chinese Pharm J. 1994;46:1–31.

    Article  CAS  Google Scholar 

  37. Patel AR, Vavia PR. Evaluation of synthesized cross linked polyvinyl alcohol as potential disintegrant. J. Pharm. Pharm. Sci. 2010;13:114–27.

    Article  PubMed  CAS  Google Scholar 

  38. Shihora H, Panda S. Superdisintegrants, utility in dosage forms: a quick review. J. Pharm. Sci. Biosci Res. 2011;1:148–53.

    Google Scholar 

  39. Desai PM, Liew CV, Heng PWS. Review of disintegrants and the disintegration phenomena. J Pharm Sci. 2016;105:2545–55. https://doi.org/10.1016/j.xphs.2015.12.019.

    Article  PubMed  CAS  Google Scholar 

  40. Stoltenberg I, Breitkreutz J. Orally disintegrating mini-tablets (ODMTs)—a novel solid oral dosage form for paediatric use. Eur J Pharm Biopharm. 2011;78:462–9. https://doi.org/10.1016/j.ejpb.2011.02.005.

    Article  PubMed  CAS  Google Scholar 

  41. Moqbel HA, ElMeshad AN, El-Nabarawi MA. Comparative study of different approaches for preparation of chlorzoxazone orodispersible tablets. Drug Dev Ind Pharm. 2016;9045:1–9. https://doi.org/10.1080/03639045.2016.1225753.

    Article  Google Scholar 

  42. Hill PM. Effect of compression force and corn starch on tablet disintegration time. J Pharm Sci. 1976;65:1694–7. https://doi.org/10.1002/jps.2600651134.

    Article  PubMed  CAS  Google Scholar 

  43. Rojas J, Guisao S, Ruge V. Functional assessment of four types of disintegrants and their effect on the spironolactone release properties. AAPS PharmSciTech. 2012;13:1054–62. https://doi.org/10.1208/s12249-012-9835.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Chebli C, Cartilier L. Cross-linked cellulose as a tablet excipient: a binding/disintegrating agent. Int J Pharm. 1998;171:101–10. https://doi.org/10.1016/s0378-5173(98)00161-6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all excipients suppliers for kindly providing samples.

Funding

This work was supported by the CDT in Targeted Therapeutics and Formulation Sciences (EP/I01375X/1) and the CDT in Advanced Therapeutics and Nanomedicines (EP/L01646X), which are funded by the EPSRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry B. Ernest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bowles, B.J., Dziemidowicz, K., Lopez, F.L. et al. Co-Processed Excipients for Dispersible Tablets–Part 1: Manufacturability. AAPS PharmSciTech 19, 2598–2609 (2018). https://doi.org/10.1208/s12249-018-1090-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-018-1090-4

KEY WORDS

Navigation