Skip to main content
Log in

Improved Ocular Delivery of Nepafenac by Cyclodextrin Complexation

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Nepafenac is a nonsteroidal anti-inflammatory drug (NSAID), currently only available as 0.1% ophthalmic suspension (Nevanac®). This study utilized hydroxypropyl-β-cyclodextrin (HPBCD) to increase the water solubility and trans-corneal permeation of nepafenac. The nepafenac-HPBCD complexation in the liquid and solid states were confirmed by phase solubility, differential scanning calorimetry (DSC), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and nuclear magnetic resonance spectroscopy (NMR) analyses. Nepafenac 0.1% ophthalmic solution was formulated using HPBCD (same pH and osmolality as that of Nevanac®) and pig eye trans-corneal permeation was studied versus Nevanac®. Furthermore, nepafenac content in cornea, sclera, iris, lens, aqueous humor, choroid, ciliary body, retina, and vitreous humor was studied in a continuous isolated pig eye perfusion model in comparison to the suspension and Nevanac®. Permeation studies using porcine corneas revealed that the solution formulation had a permeation rate 18 times higher than Nevanac®. Furthermore, the solution had 11 times higher corneal retention than Nevanac®. Drug distribution studies using porcine eyes revealed that the solution formulation enables detectable levels in various ocular tissues while the drug was undetectable by Nevanac®. The ocular solution formulation had a significantly higher drug concentration in the cornea compared to the suspension or Nevanac®.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jones BM, Neville MW. Nepafenac: an ophthalmic nonsteroidal antiinflammatory drug for pain after cataract surgery. Ann Pharmacother. 2013;47(6):892–6.

    Article  PubMed  CAS  Google Scholar 

  2. Gaynes BI, Onyekwuluje A. Topical ophthalmic NSAIDs: a discussion with focus on nepafenac ophthalmic suspension. Clin Ophthalmol. 2008;2(2):355–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Ahuja M, Dhake AS, Sharma SK, Majumdar DK. Topical ocular delivery of NSAIDs. AAPS J. 2008;10(2):229–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Walters T, Raizman M, Ernest P, Gayton J, Lehmann R. In vivo pharmacokinetics and in vitro pharmacodynamics of nepafenac, amfenac, ketorolac, and bromfenac. J Cataract Refract Surg. 2007;33(9):1539–45.

    Article  PubMed  Google Scholar 

  5. Patel A, Cholkar K, Agrahari V, Mitra AK. Ocular drug delivery systems: an overview. World J Pharmacol. 2013;2(2):47–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Saettone, M.F., Progress and problems in ophthalmic drug delivery, in Future Drug Delivery. 2002, University of Pisa. p. 167–171.

  7. Pharmacy, U.o.N.C.E.S.o. Sterile compounding: ophthalmics. [cited 2015 08/21].

  8. Sieg JW, Robinson JR. Vehicle effects on ocular drug bioavailability i: evaluation of fluorometholone. J Pharm Sci. 1975;64(6):931–6.

    Article  PubMed  CAS  Google Scholar 

  9. Duong HVQ, Westfield KC, Chalkley THF. Ketorolac tromethamine LS 0.4% versus nepafenac 0.1% in patients having cataract surgery—prospective randomized double-masked clinical trial. J Cataract Refract Surg. 2007;33(11):1925–9.

    Article  PubMed  Google Scholar 

  10. Bekers O, Uijtendaal EV, Beijnen JH, Bult A, Underberg WJM. Cyclodextrins in the pharmaceutical field. Drug Dev Ind Pharm. 1991;17(11):1503–49.

    Article  CAS  Google Scholar 

  11. Liu L, Guo QX. The driving forces in the inclusion complexation of cyclodextrins. J Incl Phenom Macrocycl Chem. 2002;42(1–2):1–14.

    Article  CAS  Google Scholar 

  12. Del Valle EMM. Cyclodextrins and their uses: a review. Process Biochem. 2004;39(9):1033–46.

    Article  CAS  Google Scholar 

  13. Sahoo SK, Diinawaz F, Krishnakumar S. Nanotechnology in ocular drug delivery. Drug Discov Today. 2008;13(3–4):144–51.

    Article  PubMed  CAS  Google Scholar 

  14. Loftsson T, Stefansson E. Effect of cyclodextrins on topical drug delivery to the eye. Drug Dev Ind Pharm. 1997;23(5):473–81.

    Article  CAS  Google Scholar 

  15. Tiwari G, Tiwari R, Rai AK. Cyclodextrins in delivery systems: applications. J Pharm Bioallied Sci. 2010;2(2):72–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Loftsson T, Stefansson E. Cyclodextrins in ocular drug delivery: theoretical basis with dexamethasone as a sample drug. Journal of Drug Delivery Science and Technology. 2007;17(1):3–9.

    Article  CAS  Google Scholar 

  17. Uekama K. Design and evaluation of cyclodextrin-based drug formulation. Chem Pharm Bull (Tokyo). 2004;52(8):900–15.

    Article  CAS  Google Scholar 

  18. Challa R, Ahuja A, Ali J, Khar RK. Cyclodextrins in drug delivery: an updated review. AAPS PharmSciTech. 2005;6(2):E329–57.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Loftssona T, Jarvinen T. Cyclodextrins in ophthalmic drug delivery. Adv Drug Deliv Rev. 1999;36(1):59–79.

    Article  PubMed  CAS  Google Scholar 

  20. Jansen T, Xhonneux B, Mesens J, Borgers M. Beta-cyclodextrins as vehicles in eye-drop formulations: an evaluation of their effecst on rabbit corneal epithelium. Lens Eye Toxic Res. 1990;7(3–4):459–68.

    PubMed  CAS  Google Scholar 

  21. Jonathan C. Javitt, N.B.J., Peter Mcdonnell, Topical compositions for the eye comprising a beta-cyclodextrin derivative and a carbonic anhydrase inhibitor 1994.

  22. Zeng YJ, Yang J, Huang K, Lee ZH, Lee XY. A comparison of biomechanical properties between human and porcine cornea. J Biomech. 2001;34(4):533–7.

    Article  PubMed  CAS  Google Scholar 

  23. Higuchi T, Connors KA. Phase solubility techniques. Adv Anal Chem Instrum. 1965;4:117–212.

    CAS  Google Scholar 

  24. Eleamen GRA, da Costa SC, Lima-Neto RG, Neves RP, Rolim LA, Rolim-Neto PJ, et al. Improvement of solubility and antifungal activity of a new aminothiophene derivative by complexation with 2-hydroxypropyl-beta-cyclodextrin. J Braz Chem Soc. 2017;28(1):116–25.

    CAS  Google Scholar 

  25. Chen CC, Chang JH, Lee JB, Javier J, Azar DT. Human corneal epithelial cell viability and morphology after dilute alcohol exposure. Invest Ophthalmol Vis Sci. 2002;43(8):2593–602.

    PubMed  Google Scholar 

  26. Abarca EM, Salmon JH, Gilger BC. Effect of choroidal perfusion on ocular tissue distribution after intravitreal or suprachoroidal injection in an arterially perfused ex vivo pig eye model. J Ocul Pharmacol Ther. 2013;29(8):715–22.

    Article  PubMed  CAS  Google Scholar 

  27. Mains J, Tan LE, Wilson C, Urquhart A. A pharmacokinetic study of a combination of beta adrenoreceptor antagonists—in the isolated perfused ovine eye. Eur J Pharm Biopharm. 2012;80(2):393–401.

    Article  PubMed  CAS  Google Scholar 

  28. Liao Y, Zhang X, Li C, Huang Y, Lei M, Yan M, et al. Inclusion complexes of HP-beta-cyclodextrin with agomelatine: preparation, characterization, mechanism study and in vivo evaluation. Carbohydr Polym. 2016;147:415–25.

    Article  PubMed  CAS  Google Scholar 

  29. Bramhane DM, Kulkarni PA, Martis EA, Pissurlenkar RR, Coutinho EC, Nagarsenker MS. Characterization of pioglitazone cyclodextrin complexes: molecular modeling to in vivo evaluation. J Pharm Bioallied Sci. 2016;8(2):161–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Tang P, Li S, Wang L, Yang H, Yan J, Li H. Inclusion complexes of chlorzoxazone with beta- and hydroxypropyl-beta-cyclodextrin: characterization, dissolution, and cytotoxicity. Carbohydr Polym. 2015;131:297–305.

    Article  PubMed  CAS  Google Scholar 

  31. Oprean C, Mioc M, Csanyi E, Ambrus R, Bojin F, Tatu C, et al. Improvement of ursolic and oleanolic acids’ antitumor activity by complexation with hydrophilic cyclodextrins. Biomed Pharmacother. 2016;83:1095–104.

    Article  PubMed  CAS  Google Scholar 

  32. Tang P, Tang B, Wang Q, Xu K, Xiong X, Li H. Effect of hydroxypropyl-beta-cyclodextrin on the bounding of salazosulfapyridine to human serum albumin. Int J Biol Macromol. 2016;92:105–15.

    Article  PubMed  CAS  Google Scholar 

  33. Tang P, Ma X, Wu D, Li S, Xu K, Tang B, et al. Posaconazole/hydroxypropyl-beta-cyclodextrin host-guest system: improving dissolution while maintaining antifungal activity. Carbohydr Polym. 2016;142:16–23.

    Article  PubMed  CAS  Google Scholar 

  34. Alves-Silva I, Sa-Barreto LCL, Lima EM, Cunha-Filho MSS. Preformulation studies of itraconazole associated with benznidazole and pharmaceutical excipients. Thermochim Acta. 2014;575:29–33.

    Article  CAS  Google Scholar 

  35. Alonso EC, Riccomini K, Silva LA, Galter D, Lima EM, Durig T, et al. Development of carvedilol-cyclodextrin inclusion complexes using fluid-bed granulation: a novel solid-state complexation alternative with technological advantages. J Pharm Pharmacol. 2016;68(10):1299–309.

    Article  PubMed  CAS  Google Scholar 

  36. Braga MA, Martini MF, Pickholz M, Yokaichiya F, Franco MK, Cabeca LF, et al. Clonidine complexation with hydroxypropyl-beta-cyclodextrin: from physico-chemical characterization to in vivo adjuvant effect in local anesthesia. J Pharm Biomed Anal. 2016;119:27–36.

    Article  PubMed  CAS  Google Scholar 

  37. Zhang CL, Liu JC, Yang WB, Chen DL, Jiao ZG. Experimental and molecular docking investigations on the inclusion mechanism of the complex of phloridzin and hydroxypropyl-beta-cyclodextrin. Food Chem. 2017;215:124–8.

    Article  PubMed  CAS  Google Scholar 

  38. Matencio A, Hernandez-Gil CJ, Garcia-Carmona F, Lopez-Nicolas JM. Physicochemical, thermal and computational study of the encapsulation of rumenic acid by natural and modified cyclodextrins. Food Chem. 2017;216:289–95.

    Article  PubMed  CAS  Google Scholar 

  39. Wei YQ, Zhang J, Zhou Y, Bei WY, Li Y, Yuan QP, et al. Characterization of glabridin/hydroxypropyl-beta-cyclodextrin inclusion complex with robust solubility and enhanced bioactivity. Carbohydr Polym. 2017;159:152–60.

    Article  PubMed  CAS  Google Scholar 

  40. IR Spectroscopy Tutorials: Amines IR Spectroscopy Tutorials [cited 2017; Available from: www.orgchemboulder.com/spectroscopy/irtutor/aminesir.shtml.

  41. Cuming RS, Abarca EM, Duran S, Wooldridge AA, Stewart AJ, Ravis W, Babu RJ, Lin YJ, Hathcock T. Development of a sustained-release voriconazole-containing thermogel for subconjunctival injection in horses. Invest Ophthalmol Vis Sci. 2017;58(5):2746–2754.

  42. Masson M, Loftsson T, Masson G, Stefansson E. Cyclodextrins as permeation enhancers: some theoretical evaluations and in vitro testing. J Control Release. 1999;59(1):107–18.

    Article  PubMed  CAS  Google Scholar 

  43. Tahara K, Karasawa K, Onodera R, Takeuchi H. Feasibility of drug delivery to the eye's posterior segment by topical instillation of PLGA nanoparticles. Asian Journal of Pharmaceutical Sciences. 2017;12(4):394–9.

    Article  Google Scholar 

  44. Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug delivery. Aaps Journal. 2010;12(3):348–60.

    Article  PubMed  CAS  Google Scholar 

  45. Prausnitz MR, Noonan JS. Permeability of cornea, sclera, and conjunctiva: a literature analysis for drug delivery to the eye. J Pharm Sci. 1998;87(12):1479–88.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dow Chemical Company and Auburn University Lambert-Powell Meats Laboratory for their generosity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Jayachandra Babu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shelley, H., Grant, M., Smith, F.T. et al. Improved Ocular Delivery of Nepafenac by Cyclodextrin Complexation. AAPS PharmSciTech 19, 2554–2563 (2018). https://doi.org/10.1208/s12249-018-1094-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-018-1094-0

KEY WORDS

Navigation