Skip to main content
Log in

Performance comparison and optimal parameters evaluation of solar-assisted NH3–NaSCN and NH3–LiNO3 type absorption cooling system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper represents the detailed thermodynamic study to compare the performance of solar energy-assisted ammonia–sodium thiocyanate (NH3–NaSCN) and ammonia–lithium nitrate (NH3–LiNO3) absorption cooling system coupled with various solar collectors. A 15-kW absorption cooling system at evaporator temperature − 5 °C is considered and analyzed integrated with flat plate collectors (FPC), evacuated tube collectors (ETC), flat plate with compound parabolic collector reflectors and parabolic trough collectors (PTC) connected with storage tank to operate the absorption system. In this study, minimum generator (cut-off) temperature to operate the system is evaluated for both NH3–NaSCN and NH3–LiNO3 working pairs. Analysis of variance is performed to find out most critical operational parameters for cut-off temperature. In addition, the influence of heat source temperature on energetic, exergetic and economic aspects of systems is depicted. Exergetic optimization of each system estimated the required optimum collecting area for cooling. Required capital cost of solar collector at optimized area is also evaluated. The performance comparison from thermodynamic perspectives shows that NH3–LiNO3 coupled with ETC is superior to NH3–LiNO3 coupled with FPC. NH3–LiNO3 VARS coupled with PTC exhibited 23% higher value of optimized cost and 0.7% higher value of \(\eta_{{{\text{II}},{\text{system}}}}\) in comparison with NH3–LiNO3 integrated with ETC. Key performance indicator is evaluated for the selection of optimum system. On the basis of key performance indicator, NH3–LiNO3 system coupled with ETC is recommended by considering thermodynamic and economic criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

A:

Area (m2)

\(C_{\text{collector}}\) :

Specific cost of collector (€ m−2)

\(C_{\text{p}}\) :

Specific heat (kJ kg−1K−1)

\(C_{\text{R}}\) :

Area concentration ratio

\(E_{\text{X}}\) :

Exergy (kW)

\(G_{\text{b}}\) :

Beam irradiance (W m−2)

\(G_{\text{d}}\) :

Diffused irradiance (W m−2)

\(K_{\text{collector}}\) :

Cost of collector (€)

\(G_{\text{T}}\) :

Irradiance (W m−2)

\(\dot{m}\) :

Mass flow rate (kg s−1)

\(M\) :

Water mass in storage tank (kg)

\(P\) :

Pressure (kPa)

\(\dot{Q}\) :

Heat load (kW)

\(R_{\text{b}}\) :

Beam radiation factor

\({\text{SCOP}}\) :

Solar coefficient of performance

\(T\) :

Temperature (K)

\(U_{\text{L}}\) :

Overall heat loss coefficient (W m−2 K−1)

\(\dot{W}\) :

Work (kW)

\(\eta\) :

Efficiency

\(\rho_{\text{w}}\) :

Water density (kg m−3)

\(\eta_{\text{I}}\) :

First law efficiency

\(\eta_{\text{II}}\) :

Second law efficiency

\(\beta\) :

Inclination of collector (°)

\(\rho\) :

Ground reflectance

\(\varphi\) :

Latitude (°)

A:

Absorber

C:

Condenser

E:

Evaporator

G:

Generator

in:

Inlet stream

min:

Minimum

out:

Outlet stream

P:

Pump

r:

Refrigerant

st:

Storage tank

st1:

Tank first zone

st2:

Tank second zone

st3:

Tank third zone

Sun:

Sun

ss:

Strong solution

ws:

Weak solution

o:

Ambient

CFC:

Chlorofluorocarbons

COP:

Coefficient of performance

CPC:

Flat plate with compound parabolic collector reflectors

ETC:

Evacuated tube collector

FPC:

Flat plate collector

HCHC:

Hydro-chlorofluorocarbons

PTC:

Parabolic trough collector

VARS:

Vapour absorption refrigeration system

References

  1. Wu S, Eames IW. Innovations in vapour-absorption cycles. Appl Energy. 2003;66:251–66. https://doi.org/10.1088/1757-899X/88/1/012060.

    Article  CAS  Google Scholar 

  2. http://news.nationalgeographic.com/news/2014/11/141102-ipcc-synthesis-report-climate-change-science-environment/. Accessed on 1 Mar 2018.

  3. Johansson TB, Patwardhan AP, Nakićenović N, Gomez-Echeverri L. Global energy assessment: toward a sustainable future. Cambridge: Cambridge University Press; 2012.

    Book  Google Scholar 

  4. Avila-Marin AL, Fernandez-Reche J, Tellez FM. Evaluation of the potential of central receiver solar power plants: configuration, optimization and trends. Appl Energy. 2013;112:274–88. https://doi.org/10.1016/j.apenergy.2013.05.049.

    Article  Google Scholar 

  5. Srikhirin P, Aphornratana S, Chungpaibulpatana S. A review of absorption refrigeration technologies. Renew Sustain Energy Rev. 2001;5:343–72. https://doi.org/10.1016/S1364-0321(01)00003-X.

    Article  CAS  Google Scholar 

  6. Kumar V, Pandya B, Patel J, Matawala V. Cut-off temperature evaluation and performance comparison from energetic and exergetic perspective for NH3–H2O absorption refrigeration system. Therm Sci Eng Prog. 2017;4:97–105. https://doi.org/10.1016/j.tsep.2017.09.007.

    Article  Google Scholar 

  7. Pandya B, Kumar V, Matawala V, Patel J. Thermal comparison and multi-objective optimization of single stage aqua-ammonia absorption cooling system powered by different solar collectors. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7193-z.

    Article  Google Scholar 

  8. Pandya B, Kumar V, Patel J, Matawala VK. Optimum heat source temperature and performance comparison of LiCl–H2O and LiBr–H2O type solar cooling system. J Energy Res Technol. 2018;140(5):051204. https://doi.org/10.1115/1.4038918.

    Article  CAS  Google Scholar 

  9. Kumar V, Pandya B, Matawala V, Patel J. Vapour absorption systems powered by different solar collectors types: cooling performance, optimization and economic comparisons. Sci Technol Built Environ. 2018;6:612–25. https://doi.org/10.1080/23744731.2018.1431479.

    Article  Google Scholar 

  10. Wang SG, Wang RZ. Recent developments of refrigeration technology in fishing vessels. Renewable Energy. 2005;30:589–600. https://doi.org/10.1016/j.renene.2004.03.020.

    Article  Google Scholar 

  11. NFPA 704. Standard system for the identification of the hazards of material for emergency response. Quincy: National Fire Protection Association; 2012.

    Google Scholar 

  12. Sun DW. Comparison of the performances of NH3–H2O, NH3–LiNO3 and NH3–NaSCN absorption refrigeration systems. Energy Convers Manag. 1998;39:357–68. https://doi.org/10.1016/S0196-8904(97)00027-7.

    Article  CAS  Google Scholar 

  13. Acuña A, Velázquez N, Cerezo J. Energy analysis of a diffusion absorption cooling system using lithium nitrate, sodium thiocyanate and water as absorbent substances and ammonia as the refrigerant. Appl Therm Eng. 2013;51:1273–81. https://doi.org/10.1016/j.applthermaleng.2012.10.046.

    Article  CAS  Google Scholar 

  14. Tyagi KP. Second law analysis of NH3–NaSCN absorption refrigeration cycle. J Heat Recovery Syst. 1986;6:73–82. https://doi.org/10.1016/0198-7593(86)90174-8.

    Article  CAS  Google Scholar 

  15. Táboas F, Bourouis M, Vallès M. Analysis of ammonia/water and ammonia/salt mixture absorption cycles for refrigeration purposes in fishing ships. Appl Therm Eng. 2014;66(1–2):603–11. https://doi.org/10.1016/j.applthermaleng.2014.02.065.

    Article  CAS  Google Scholar 

  16. Zhu L, Gu J. Second law-based thermodynamic analysis of ammonia/sodium thiocyanate absorption system. Renewable Energy. 2010;35:1940–6. https://doi.org/10.1016/j.renene.2010.01.022.

    Article  CAS  Google Scholar 

  17. Farshi LG, Ferreira CAI, Mahmoudi SMS, Rosen MA. First and second law analysis of ammonia/salt absorption refrigeration systems. Int J Refrig. 2014;40:111–21. https://doi.org/10.1016/j.ijrefrig.2013.11.006.

    Article  CAS  Google Scholar 

  18. Cai D, He G, Tian Q, Tang W. Thermodynamic analysis of a novel air-cooled non-adiabatic absorption refrigeration cycle driven by low grade energy. Energy Convers Manag. 2014;86:537–47. https://doi.org/10.1016/j.enconman.2014.06.008.

    Article  CAS  Google Scholar 

  19. Cai D, He G, Tian Q, Tang W. Exergy analysis of a novel air-cooled non-adiabatic absorption refrigeration cycle with NH3–NaSCN and NH3–LiNO3 refrigerant solutions. Energy Convers Manag. 2014;88:66–78. https://doi.org/10.1016/j.enconman.2014.08.025.

    Article  CAS  Google Scholar 

  20. López-Villada J, Ayou DS, Bruno JC, Coronas A. Modelling, simulation and analysis of solar absorption power-cooling systems. Int J Refrig. 2014;39:125–36. https://doi.org/10.1016/j.ijrefrig.2013.11.004.

    Article  Google Scholar 

  21. Acuña A, Velázquez N, Sauceda D, Rosales P, Suastegui P, Ortiz A. Influence of a compound parabolic concentrator in the performance of a solar diffusion absorption cooling system. Appl Therm Eng. 2016;2016(102):1374–83. https://doi.org/10.1016/j.applthermaleng.2016.03.061.

    Article  CAS  Google Scholar 

  22. Acuña A, Lara F, Velázquez N, Cerezo J. Optimum generator temperature to couple different diffusion absorption solar cooling systems. Int J Refrig. 2014;45:128–35. https://doi.org/10.1016/j.ijrefrig.2014.05.016.

    Article  CAS  Google Scholar 

  23. Duffie JA, Beckman WA. Solar engineering of thermal processes. New Jersey: Wiley; 2006.

    Google Scholar 

  24. Kalogirou SA. Solar energy engineering: processes and systems. Cambridge: Academic Press; 2013. https://www.elsevier.com/books/solar-energy-engineering/unknown/978-0-12-397270-5.

  25. Jafarkazemi F, Ahmadifard E. Energetic and exergetic evaluation of flat plate solar collectors. Renewable Energy. 2013;56:55–63. https://doi.org/10.1016/j.renene.2012.10.031.

    Article  Google Scholar 

  26. Borge D, Colmenar A, Castro M, Martín S, Sancristobal E. Exergy efficiency analysis in buildings climatized with LiCl–H2O solar cooling systems that use swimming pools as heat sinks. Energy Build. 2011;43:3161–72. https://doi.org/10.1016/j.enbuild.2011.08.014.

    Article  Google Scholar 

  27. Patel J, Pandya B, Mudga A. Exergy based analysis of LiCl–H2O absorption cooling system. Energy Procedia. 2017;109:261–9. https://doi.org/10.1016/j.egypro.2017.03.061.

    Article  CAS  Google Scholar 

  28. Kalogirou SA. The potential of solar industrial process heat applications. Appl Energy. 2003;76:337–61. https://doi.org/10.1016/S0306-2619(02)00176-9.

    Article  CAS  Google Scholar 

  29. Mani A. Handbook of solar radiation data for India. Resonance: 2008. https://www.ias.ac.in/article/fulltext/reso/013/11/1082-1086.

  30. Gogoi TK, Konwar D. Exergy analysis of a H2O–LiCl absorption refrigeration system with operating temperatures estimated through inverse analysis. Energy Convers Manag. 2016;110:436–47. https://doi.org/10.1016/j.enconman.2015.12.037.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinay Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandya, B., Modi, N., Kumar, V. et al. Performance comparison and optimal parameters evaluation of solar-assisted NH3–NaSCN and NH3–LiNO3 type absorption cooling system. J Therm Anal Calorim 135, 3437–3452 (2019). https://doi.org/10.1007/s10973-018-7561-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7561-8

Keywords

Navigation