Skip to main content

Advertisement

Log in

Multimodal Molecular Imaging Demonstrates Myeloperoxidase Regulation of Matrix Metalloproteinase Activity in Neuroinflammation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Myeloperoxidase (MPO) has paradoxically been found to be able to both activate matrix metalloproteinases (MMPs) as well as inhibit MMPs. However, these regulatory effects have not yet been observed in vivo, and it is unclear which pathway is relevant in vivo. We aim to track MPO regulation of MMP activity in living animals in neuroinflammation. Mice induced with experimental autoimmune encephalomyelitis (EAE), a mouse model of neuroinflammation and multiple sclerosis, were treated with either the MPO-specific inhibitor 4-aminobenzoic acid hydrazide or saline as control. Mice underwent concurrent magnetic resonance imaging (MRI) with the MPO-specific molecular imaging agent MPO-Gd and fluorescence molecular tomography (FMT) with the MMP-targeting agent MMPsense on day 12 after induction. Biochemical and histopathological correlations were performed. Utilizing concurrent MRI and FMT imaging, we found reduced MMP activity in the brain with MPO inhibition, demonstrating MPO activity positively regulates MMP activity in vivo. In vivo MMPSense activation and MMP-9 activity correlated with MPO-Gd+ lesion volume and disease severity. This was corroborated by in vitro assays and histopathological analyses that showed MMP activity and MMP-9+ cells correlated with MPO activity and MPO+ cells. In conclusion, multimodal molecular imaging demonstrates for the first time MPO regulation of MMP activity in living animals. This approach could serve as a model to study the interactions of other biologically interesting molecules in living organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hu J, Van den Steen PE, Sang QX, Opdenakker G (2007) Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nat Rev Drug Discov 6(6):480–498. https://doi.org/10.1038/nrd2308

    Article  CAS  PubMed  Google Scholar 

  2. Maier CM, Hsieh L, Yu F, Bracci P, Chan PH (2004) Matrix metalloproteinase-9 and myeloperoxidase expression: quantitative analysis by antigen immunohistochemistry in a model of transient focal cerebral ischemia. Stroke 35(5):1169–1174. https://doi.org/10.1161/01.STR.0000125861.55804.f2

    Article  CAS  PubMed  Google Scholar 

  3. Parks WC, Wilson CL, Lopez-Boado YS (2004) Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev 4(8):617–629

    Article  CAS  Google Scholar 

  4. Gerwien H, Hermann S, Zhang X, Korpos E, Song J, Kopka K, Faust A, Wenning C et al (2016) Imaging matrix metalloproteinase activity in multiple sclerosis as a specific marker of leukocyte penetration of the blood-brain barrier. Sci Transl Med 8(364):364ra152. https://doi.org/10.1126/scitranslmed.aaf8020

    Article  CAS  PubMed  Google Scholar 

  5. Sorokin L (2010) The impact of the extracellular matrix on inflammation. Nat Rev 10(10):712–723

    CAS  Google Scholar 

  6. Opdenakker G, Nelissen I, Van Damme J (2003) Functional roles and therapeutic targeting of gelatinase B and chemokines in multiple sclerosis. Lancet Neurol 2(12):747–756

    Article  CAS  Google Scholar 

  7. Fainardi E, Castellazzi M, Bellini T, Manfrinato MC, Baldi E, Casetta I, Paolino E, Granieri E et al (2006) Cerebrospinal fluid and serum levels and intrathecal production of active matrix metalloproteinase-9 (MMP-9) as markers of disease activity in patients with multiple sclerosis. Mult Scler 12(3):294–301

    Article  CAS  Google Scholar 

  8. van der Veen BS, de Winther MP, Heeringa P (2009) Myeloperoxidase: molecular mechanisms of action and their relevance to human health and disease. Antioxid Redox Signal 11(11):2899–2937

    Article  Google Scholar 

  9. Swirski FK, Weissleder R, Pittet MJ (2009) Heterogeneous in vivo behavior of monocyte subsets in atherosclerosis. Arterioscler Thromb Vasc Biol 29(10):1424–1432

    Article  CAS  Google Scholar 

  10. Gray E, Thomas TL, Betmouni S, Scolding N, Love S (2008) Elevated activity and microglial expression of myeloperoxidase in demyelinated cerebral cortex in multiple sclerosis. Brain Pathology (Zurich, Switzerland) 18(1):86–95

    Article  Google Scholar 

  11. Fu X, Kassim SY, Parks WC, Heinecke JW (2001) Hypochlorous acid oxygenates the cysteine switch domain of pro-matrilysin (MMP-7). A mechanism for matrix metalloproteinase activation and atherosclerotic plaque rupture by myeloperoxidase. J Biol Chem 276(44):41279–41287

    Article  CAS  Google Scholar 

  12. Wang Z, Nicholls SJ, Rodriguez ER, Kummu O, Horkko S, Barnard J, Reynolds WF, Topol EJ et al (2007) Protein carbamylation links inflammation, smoking, uremia and atherogenesis. Nat Med 13(10):1176–1184

    Article  CAS  Google Scholar 

  13. Fu X, Kassim SY, Parks WC, Heinecke JW (2003) Hypochlorous acid generated by myeloperoxidase modifies adjacent tryptophan and glycine residues in the catalytic domain of matrix metalloproteinase-7 (matrilysin): an oxidative mechanism for restraining proteolytic activity during inflammation. J Biol Chem 278(31):28403–28409

    Article  CAS  Google Scholar 

  14. McCann CM, Waterman P, Figueiredo JL, Aikawa E, Weissleder R, Chen JW (2009) Combined magnetic resonance and fluorescence imaging of the living mouse brain reveals glioma response to chemotherapy. Neuroimage 45(2):360–369. https://doi.org/10.1016/j.neuroimage.2008.12.022

    Article  PubMed  Google Scholar 

  15. Forghani R, Wojtkiewicz GR, Zhang Y, Seeburg D, Bautz BR, Pulli B, Milewski AR, Atkinson WL et al (2012) Demyelinating diseases: myeloperoxidase as an imaging biomarker and therapeutic target. Radiology 263(2):451–460. https://doi.org/10.1148/radiol.12111593

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chen JW, Querol Sans M, Bogdanov A Jr, Weissleder R (2006) Imaging of myeloperoxidase in mice by using novel amplifiable paramagnetic substrates. Radiology 240(2):473–481

    Article  Google Scholar 

  17. Rodriguez E, Nilges M, Weissleder R, Chen JW (2010) Activatable magnetic resonance imaging agents for myeloperoxidase sensing: mechanism of activation, stability, and toxicity. J Am Chem Soc 132(1):168–177. https://doi.org/10.1021/ja905274f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Breckwoldt MO, Chen JW, Stangenberg L, Aikawa E, Rodriguez E, Qiu S, Moskowitz MA, Weissleder R (2008) Tracking the inflammatory response in stroke in vivo by sensing the enzyme myeloperoxidase. Proc Natl Acad Sci U S A 105(47):18584–18589. https://doi.org/10.1073/pnas.0803945105

    Article  PubMed  PubMed Central  Google Scholar 

  19. Teng N, Maghzal GJ, Talib J, Rashid I, Lau AK, Stocker R (2017) The roles of myeloperoxidase in coronary artery disease and its potential implication in plaque rupture. Redox Rep 22(2):51–73. https://doi.org/10.1080/13510002.2016.1256119

    Article  CAS  PubMed  Google Scholar 

  20. Vissers MC, Winterbourn CC (1987) Myeloperoxidase-dependent oxidative inactivation of neutrophil neutral proteinases and microbicidal enzymes. Biochem J 245(1):277–280

    Article  CAS  Google Scholar 

  21. Mainnemare A, Megarbane B, Soueidan A, Daniel A, Chapple IL (2004) Hypochlorous acid and taurine-N-monochloramine in periodontal diseases. J Dent Res 83(11):823–831. https://doi.org/10.1177/154405910408301101

    Article  CAS  PubMed  Google Scholar 

  22. Michaelis J, Vissers MC, Winterbourn CC (1992) Different effects of hypochlorous acid on human neutrophil metalloproteinases: activation of collagenase and inactivation of collagenase and gelatinase. Arch Biochem Biophys 292(2):555–562

    Article  CAS  Google Scholar 

  23. Davies JM, Horwitz DA, Davies KJ (1994) Inhibition of collagenase activity by N-chlorotaurine, a product of activated neutrophils. Arthritis Rheum 37(3):424–427

    Article  CAS  Google Scholar 

  24. Toft-Hansen H, Nuttall RK, Edwards DR, Owens T (2004) Key metalloproteinases are expressed by specific cell types in experimental autoimmune encephalomyelitis. J Immunol 173(8):5209–5218

    Article  CAS  Google Scholar 

  25. Martiney JA, Rajan AJ, Charles PC, Cerami A, Ulrich PC, Macphail S, Tracey KJ, Brosnan CF (1998) Prevention and treatment of experimental autoimmune encephalomyelitis by CNI-1493, a macrophage-deactivating agent. J Immunol 160(11):5588–5595

    CAS  PubMed  Google Scholar 

  26. Wang G, Guo Q, Hossain M, Fazio V, Zeynalov E, Janigro D, Mayberg MR, Namura S (2009) Bone marrow-derived cells are the major source of MMP-9 contributing to blood-brain barrier dysfunction and infarct formation after ischemic stroke in mice. Brain Res 1294:183–192. https://doi.org/10.1016/j.brainres.2009.07.070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pagenstecher A, Stalder AK, Kincaid CL, Shapiro SD, Campbell IL (1998) Differential expression of matrix metalloproteinase and tissue inhibitor of matrix metalloproteinase genes in the mouse central nervous system in normal and inflammatory states. Am J Pathol 152(3):729–741

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Clements JM, Cossins JA, Wells GM, Corkill DJ, Helfrich K, Wood LM, Pigott R, Stabler G et al (1997) Matrix metalloproteinase expression during experimental autoimmune encephalomyelitis and effects of a combined matrix metalloproteinase and tumour necrosis factor-alpha inhibitor. J Neuroimmunol 74(1–2):85–94

    Article  CAS  Google Scholar 

  29. Ntziachristos V, Ripoll J, Weissleder R (2002) Would near-infrared fluorescence signals propagate through large human organs for clinical studies? Opt Lett 27(5):333–335

    Article  Google Scholar 

  30. Yoo H, Kim JW, Shishkov M, Namati E, Morse T, Shubochkin R, McCarthy JR, Ntziachristos V et al (2011) Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo. Nat Med 17(12):1680–1684. https://doi.org/10.1038/nm.2555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Chen.

Electronic Supplementary Material

ESM 1

(DOCX 5952 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Dong, H., Seeburg, D.P. et al. Multimodal Molecular Imaging Demonstrates Myeloperoxidase Regulation of Matrix Metalloproteinase Activity in Neuroinflammation. Mol Neurobiol 56, 954–962 (2019). https://doi.org/10.1007/s12035-018-1137-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1137-2

Keywords

Navigation