Skip to main content

Advertisement

Log in

Evaluation of Fe-containing Li2CuO2 on CO2 capture performed at different physicochemical conditions

  • Current trends in Sustainable Energy, Engineering, Materials and Environment
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Li2CuO2 and different iron-containing Li2CuO2 samples were synthesized by solid state reaction. On iron-containing samples, atomic sites of copper are substituted by iron ions in the lattice (XRD and Rietveld analyses). Iron addition induces copper release from Li2CuO2, which produce cationic vacancies and CuO, due to copper (Cu2+) and iron (Fe3+) valence differences. Two different physicochemical conditions were used for analyzing CO2 capture on these samples; (i) high temperature and (ii) low temperature in presence of water vapor. At high temperatures, iron addition increased CO2 chemisorption, due to structural and chemical variations on Li2CuO2. Kinetic analysis performed by first order reaction and Eyring models evidenced that iron addition on Li2CuO2 induced a faster CO2 chemisorption but a higher thermal dependence. Conversely, CO2 chemisorption at low temperature in water vapor presence practically did not vary by iron addition, although hydration and hydroxylation processes were enhanced. Moreover, under these physicochemical conditions the whole sorption process became slower on iron-containing samples, due to metal oxides presence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Bamiduro F, Ji G, Brown AP, Dupont VA, Zhao M, Milne SJ (2017) Spray-dried sodium zirconate: a rapid absorption powder for CO2 capture with enhanced cyclic stability. ChemSusChem 10:1–10

    Google Scholar 

  • Bergmann J, Kleeberg R (1998) Rietveld analysis of disordered layer silicates. Mater Sci Forum 278–281:300–305

    Google Scholar 

  • Bhatta LKG, Subramanyam S, Chengala MD, Olivera S, Venkatesh K (2015) Progress in hydrotalcite like compounds and metal-based oxides for CO2 capture: a review. J Clean Prod 103:171–196

    CAS  Google Scholar 

  • Chen C, Lee YR, Ahn WS (2016a) CO2 adsorption over metal-organic frameworks: a mini review. J Nanosci Nanotechnol 16:4291–4301

    CAS  Google Scholar 

  • Chen X, Xiong Z, Qin Y, Gong B, Tian C, Zhao Y, Zhang J, Zheng C (2016b) High-temperature CO2 sorption by Ca-doped Li4SiO4 sorbents. Int J Hydrog Energy 41:13077–13085

    CAS  Google Scholar 

  • Doebelin N, Kleeberg R (2015) Profex: a graphical user interface for the Rietveld refinement program BGMN. J Appl Crystallogr 48:1573–1580

    CAS  Google Scholar 

  • Dou B, Wang C, Song Y, Chen H, Jiang B, Yang M, Xu Y (2016) Solid sorbents for in-situ CO2 removal during sorption-enhanced steam reforming process: a review. Renew Sust Energ Rev 53:536–546

    CAS  Google Scholar 

  • Gauer C, Heschel W (2006) Doped lithium orthosilicate for absorption of carbon dioxide. J Mater Sci 41:2405–2409

    CAS  Google Scholar 

  • Ji G, Memon MZ, Zhuo H, Zhao M (2017) Experimental study on CO2 capture mechanisms using Na2ZrO3 sorbents synthesized by soft chemistry method. Chem Eng J 313:646–654

    CAS  Google Scholar 

  • Kanki K, Maki H, Mizuhata M (2016) Carbon dioxide absorption behavior of surface-modified lithium orthosilicate/potassium carbonate prepared by ball milling. Int J Hydrog Energy 41:18893–18899

    CAS  Google Scholar 

  • Kierzkowska AM, Pacciani R, Müller CR (2013) CaO-based CO2 sorbents: from fundamentals to the development of new, highly effective materials. ChemSusChem 6:1130–1148

    CAS  Google Scholar 

  • Kumar S, Saxena SK (2014) A comparative study of CO2 sorption properties for different oxides. Mater Renew Sustain Energy 3:1–30

    Google Scholar 

  • Lara-García HA, Pfeiffer H (2017) High and efficient Li2CuO2-CO2 chemisorption using different partial pressures and enhancement produced by the oxygen addition. Chem Eng J 313:1288–1294

    Google Scholar 

  • Lara-García HA, Alcántar-Vázquez B, Duan Y, Pfeiffer H (2015) Water steam effect during high CO2 chemisorption in lithium cuprate (Li2CuO2) at moderate temperature: experimental and theoretical evidence. RSC Adv 5:34157–34165

    Google Scholar 

  • Lara-García HA, Ramírez-Moreno MJ, Ortiz-Landeros J, Pfeiffer H (2016a) CO2 chemisorption in Li2CuO2 microstructurally modified by ball milling: study performed with different physicochemical CO2 capture conditions. RSC Adv 6:57880–57888

    Google Scholar 

  • Lara-García HA, Alcántar-Vázquez B, Duan Y, Pfeiffer H (2016b) CO chemical capture on lithium cuprate, through a consecutive CO oxidation and chemisorption bifunctional process. J Phys Chem C 120:3798–3806

    Google Scholar 

  • Lowell S, Shields JE, Thomas MA (2004) Characterization of porous solids and powders: surface area, pore size and density; particle technology series. Kluwer Academic Publishers, London

    Google Scholar 

  • Martínez-dlCruz L, Pfeiffer H (2012) Microstructural thermal evolution of the Na2CO3 phase produced during a Na2ZrO3-CO2 chemisorption process. J Phys Chem C 116:9675–9680

    Google Scholar 

  • Matsukura Y, Okumura T, Kobayashi R, Oh-Ishi K (2010) Synthesis and CO2 absorption properties of single-phase Li2CuO2 as a CO2 absorbent. Chem Lett 39:966–967

    CAS  Google Scholar 

  • Memon MZ, Zhao X, Sikarwar VS, Vuppaladadiyam AK, Milne SJ, Brown AP, Li J, Zhao M (2017) Alkali metal CO2 sorbents and the resulting metal carbonates: potential for process intensification of sorption-enhanced steam reforming. Environ Sci Technol 51:12–27

    CAS  Google Scholar 

  • Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276

    CAS  Google Scholar 

  • Nanda S, Reddy SN, Mitra SK, Kozinki JA (2016) The progressive routes for carbon capture and sequestration. Energy Sci Eng 4:99–122

    CAS  Google Scholar 

  • Oh-Ishi K, Matsukura Y, Okumura T, Matsunaga T, Kobayashi R (2014) Fundamental research on gas-solid reaction between CO2 and Li2CuO2 linking application for solid CO2 absorbent. J Solid State Chem 211:162–169

    CAS  Google Scholar 

  • Ortiz-Landeros J, Gómez-Yáñez C, Palacios-Romero LM, Lima E, Pfeiffer H (2012a) Structural and thermochemical chemisorption of CO2 on Li4+x(Si1-xAlx)O4 and Li4-x(Si1-xVx)O4 solid solutions. J Phys Chem A 116:3163–3171

    CAS  Google Scholar 

  • Ortiz-Landeros J, Ávalos-Rendón TL, Gómez-Yáñez C, Pfeiffer H (2012b) Analysis and perspectives concerning CO2 chemisorption on lithium ceramics using thermal analysis. J Therm Anal Calorim 108:647–655

    CAS  Google Scholar 

  • Palacios-Romero LM, Lima E, Pfeiffer H (2009) Structural analysis and CO2 chemisorption study on nonstoichiometric lithium cuprate (Li2+xCuO2+x/2). J Phys Chem A 113:193–198

    CAS  Google Scholar 

  • Pan Y, Zhang Y, Zhou T, Louis B, O’Hare D, Wang Q (2017) Fabrication of lithium silicates as highly efficient high-temperature CO2 sorbents from SBA-15 precursor. Inorg Chem 56:7821–7834

    CAS  Google Scholar 

  • Pannocchia G, Puccini M, Seggiani M, Vitolo S (2007) Experimental and modeling studies on high-temperature capture of CO2 using lithium zirconate based sorbents. Ind Eng Chem Res 46:6696–6706

    CAS  Google Scholar 

  • Sanna A, Ramli I, Maroto-Valer MM (2015) Development of sodium/lithium/fly ash sorbents for high temperature post-combustion CO2 capture. Appl Energy 156:197–206

    CAS  Google Scholar 

  • Sapiña F, Rodriguez-Carvajal J, Sanchis MJ, Ibanez R, Beltran A, Beltran D (1990) Crystal and magnetic structure of Li2CuO2. Solid State Commun 74:779–784

    Google Scholar 

  • Shakerian F, Kim KH, Szulejko JE, Park JW (2015) A comparative review between amines and ammonia as sorptive media for post-combustion CO2 capture. Appl Energy 148:10–22

    CAS  Google Scholar 

  • Subha PV, Nair BN, Hareesh P, Mohamed AP, Yamaguchi T, Warrier KGK, Hareesh US (2015) CO2 absorption studies on mixed alkali orthosilicates containing rare-earth second-phase additives. J Phys Chem C 119:5319–5326

    CAS  Google Scholar 

  • Theo WL, Lim JS, Hashim H, Mustaffa AA, Ho WS (2016) Review of pre-combustion and ionic liquid in carbon capture and storage. Appl Energy 183:1633–1663

    CAS  Google Scholar 

  • Wang S, An C, Zhang QH (2013) Synthesis and structure of lithium zirconates for high-temperature CO2 absorption. J Mater Chem A 1:3540–3550

    CAS  Google Scholar 

  • Wang K, Yin Z, Zhao P (2016a) Synthesis of macroporous Li4SiO4 via a citric acid-based sol-gel route coupled with carbon coating and its CO2 chemisorption properties. Ceram Int 42:2990–2999

    CAS  Google Scholar 

  • Wang K, Zhou Z, Zhao P, Yin Z, Su Z, Sun J (2016b) Synthesis of a high efficient Li4SiO4 ceramic modified with a gluconic acid-based carbon coating for high-temperature CO2 capture. Appl Energy 183:1418–1427

    CAS  Google Scholar 

  • Wang K, Zhou Z, Zhao P, Yin Z, Su Z, Sun J (2017) Molten sodium-fluoride-promoted high-performance Li4SiO4-based CO2 sorbents at low CO2 concentrations. Appl Energy 204:403–412

    CAS  Google Scholar 

  • Xiang M, Zhang Y, Hong M, Liu S, Zhang Y, Liu H, Gu C (2015) CO2 absorption properties of Ti- and Na-doped porous Li4SiO4 prepared by a sol–gel process. J Mater Sci 50:4698–4706

    CAS  Google Scholar 

  • Xiao Q, Tang X, Liu Y, Zhong Y, Zgu W (2013) Comparison study on strategies to prepare nanocrystalline Li2ZrO3-based absorbents for CO2 capture at high temperatures. Front Chem Sci Eng 7:297–302

    CAS  Google Scholar 

  • Yang X, Liu W, Sun J, Hu Y, Wang W, Chen H, Zhang Y, Li X, Xu M (2016) Preparation of novel Li4SiO4 sorbents with superior performance at low CO2 concentration. ChemSusChem 9:1607–1613

    CAS  Google Scholar 

  • Yin XS, Song M, Zhang QH, Yu JG (2010) High-temperature CO2 capture on Li6Zr2O7: experimental and modeling studies. Ind Eng Chem Res 49:6593–6598

    CAS  Google Scholar 

  • Yin XS, Zhang QH, Yu JG (2011) Three-step calcination synthesis of high-purity Li8ZrO6 with CO2 absorption properties. Inorg Chem 50:2844–2850

    CAS  Google Scholar 

  • Zhang S, Chowdhury MBI, Zhang Q, de Lasa HI (2016) Novel fluidizable K-doped HAc-Li4SiO4 sorbent for CO2 capture preparation and characterization. Ind Eng Chem Res 55:12524–12531

    CAS  Google Scholar 

  • Zhang Q, Peng D, Zhang S, Ye Q, Wu Y, Ni Y (2017) Behaviors and kinetic models analysis of Li4SiO4 under various CO2 partial pressures. AICHE J 63:2153–2164

    CAS  Google Scholar 

  • Zhao T, Ronning M, Chen D (2013) Preparation of nanocrystalline Na2ZrO3 for high-temperature CO2 acceptors: chemistry and mechanism. J Energy Chem 22:387–393

    CAS  Google Scholar 

  • Zhou Z, Wang K, Yin Z, Zhao P, Su Z, Sun J (2017) Molten K2CO3-promoted high-performance Li4SiO4 sorbents at low CO2 concentrations. Thermochim Acta 655:284–291

    CAS  Google Scholar 

Download references

Acknowledgements

Ana Yañez-Aulestia would like to thank CONACYT for personal financial support. Finally, authors would like to thank Adriana Tejeda, Omar Novelo, and Josue Romero for technical assistant.

Funding

The present work was financially supported by the projects SENER-CONACYT (251801) and PAPIIT-UNAM (IN-101916).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heriberto Pfeiffer.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yañez-Aulestia, A., Ovalle-Encinia, O. & Pfeiffer, H. Evaluation of Fe-containing Li2CuO2 on CO2 capture performed at different physicochemical conditions. Environ Sci Pollut Res 26, 29532–29543 (2019). https://doi.org/10.1007/s11356-018-2444-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2444-x

Keywords

Navigation