Skip to main content
Log in

Remaining idle time aware intelligent channel bonding schemes for cognitive radio sensor networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Channel bonding (CB) is a technique used to provide larger bandwidth to users. It has been applied to various networks such as wireless local area networks, wireless sensor networks, cognitive radio networks, and cognitive radio sensor networks (CRSNs). The implementation of CB in CRSNs needs special attention as primary radio (PR) nodes traffic must be protected from any harmful interference by cognitive radio (CR) sensor nodes. On the other hand, CR sensor nodes need to communicate without interruption to meet their data rate requirements and conserve energy. If CR nodes perform frequent channel switching due to PR traffic then it will be difficult to meet their quality of service and data rate requirements. So, CR nodes need to select those channels which are stable. By stable, we mean those channels which having less PR activity or long remaining idle time and cause less harmful interference to PR nodes. In this paper, we propose two approaches remaining idle time aware intelligent channel bonding (RITCB) and remaining idle time aware intelligent channel bonding with interference prevention (RITCB-IP) for cognitive radio sensor networks which select stable channels for CB which have longest remaining idle time. We compare our approaches with four schemes such as primary radio user activity aware channel bonding scheme, sample width algorithm, cognitive radio network over white spaces and AGILE. Simulation results show that our proposed approaches RITCB and RITCB-IP decrease harmful interference and increases the life time of cognitive radio sensor nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. We use the term CR nodes and CRSN nodes for the same types of nodes throughout the manuscript and they are used interchangeably.

References

  1. Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.

    Article  Google Scholar 

  2. Wang, N., Zhang, N., & Wang, M. (2006). Wireless sensors in agriculture and food industry recent development and future perspective. Computers and Electronics in Agriculture, 50(1), 1–14.

    Article  Google Scholar 

  3. Qi, L., Xu, M., Fu, Z., Mira, T., & Zhang, X. (2014). C2SLDS: A WSN-based perishable food shelf-life prediction and LSFO strategy decision support system in cold chain logistics. Food Control, 38, 19–29.

    Article  Google Scholar 

  4. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422.

    Article  Google Scholar 

  5. Bukhari, S. H. R., Siraj, S., & Rehmani, M. H. (2018). Wireless sensor networks in smart cities: Applications of channel bonding to meet data communication requirements. Book Chapter for the Book, Transportation and Power Grid in Smart Cities: Communication Networks and Services. Wiley, UK (in print).

  6. Ahmad, A., Ahmad, S., Rehmani, M. H., & Hassan, N. U. (2015). A survey on radio resource allocation in cognitive radio sensor networks. IEEE Communications Surveys & Tutorials, 17(2), 888–917.

    Article  Google Scholar 

  7. Akhtar, F., Rehmani, M. H., & Reisslein, M. (2016). White space: Definitional perspectives and their role in exploiting spectrum opportunities. Telecommunications Policy, 40(4), 319–331.

    Article  Google Scholar 

  8. Gulbahar, B., & Akan, O. B. (2012). Information theoretical optimization gains in energy adaptive data gathering and relaying in cognitive radio sensor networks. IEEE Transactions on Wireless Communications, 11(5), 1788–1796.

    Article  Google Scholar 

  9. Oto, M. C., & Akan, O. B. (2012). Energy-efficient packet size optimization for cognitive radio sensor networks. IEEE Transactions on Wireless Communications, 11(4), 1544–1553.

    Article  Google Scholar 

  10. Akan, O. B., Karli, O. B., & Ergul, O. (2009). Cognitive radio sensor networks. IEEE Network, 23(4), 34–40.

    Article  Google Scholar 

  11. Sharma, M., & Sahoo, A. (2010). Opportunistic channel access scheme for cognitive radio system based on residual white space distribution. In 21st annual IEEE international symposium on personal, indoor and mobile radio communications (pp. 1842–1847). IEEE.

  12. Song, Y., & Xie, J. (2010). Common hopping based proactive spectrum handoff in cognitive radio ad hoc networks. In Global telecommunications conference (GLOBECOM) (pp. 1–5). IEEE.

  13. Wang, C.-W., Wang, L.-C., & Adachi, F. (2009). Modeling and analysis of multi-user spectrum selection schemes in cognitive radio networks. In IEEE 20th international symposium on personal, indoor and mobile radio communications (pp. 828–832). IEEE.

  14. Li, X., & Zekavat, S. A. R. (2009). Traffic pattern prediction based spectrum sharing for cognitive radios. Den Haag: INTECH Open Access Publisher.

    Book  Google Scholar 

  15. Li, X., & Zekavat, S. A. (2008). Traffic pattern prediction and performance investigation for cognitive radio systems. In IEEE wireless communications and networking conference (pp. 894–899). IEEE.

  16. Yang, L., Cao, L., & Zheng, H. (2008). Proactive channel access in dynamic spectrum networks. Physical Communications Journal, 1, 103–111.

    Article  Google Scholar 

  17. Liang, Y. C., Zeng, Y., Peh, E. C. Y., & Hoang, A. T. (2008). Sensing-throughput tradeoff for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(4), 326–1337.

    Google Scholar 

  18. Lin, Z., Ghosh, M., & Demir, A. (2013). A comparison of MAC aggregation vs. PHY bonding for WLANs in TV white spaces. In 24th international symposium on personal, indoor and mobile radio communications: MAC and cross-layer design track (pp. 1829–1834).

  19. Bukhari, S. H. R., Rehmani, M. H., & Siraj, S. (2016). A survey of channel bonding for wireless networks and guidelines of channel bonding for futuristic cognitive radio sensor networks. IEEE Communications Surveys & Tutorials, 18(2), 924–948.

    Article  Google Scholar 

  20. Ramaboli, A. L., Falowo, O. E., & Chan, A. H. (2012). Bandwidth aggregation in heterogeneous wireless networks: A survey of current approaches and issues. Journal of Network and Computer Applications, 35(6), 1674–1690.

    Article  Google Scholar 

  21. Sharma, M., & Sahoo, A. (2010). Residual white space distribution-based opportunistic channel access for cognitive radio enabled devices. ACM SIGCOMM Computer Communication Review, 40(4), 427–428.

    Article  Google Scholar 

  22. Cordeiro, C., Challapali, K., Birru, D., & Shankar, S. (2006). IEEE 802.22 an introduction to the first wireless standard based on cognitive radios. Journal of Communications, 1(1), 38–47.

    Article  Google Scholar 

  23. Bukhari, S. H. R., Siraj, S., & Rehmani, M. H. (2016). PRACB: A novel channel bonding algorithm for cognitive radio sensor networks. IEEE Access, 4, 6950–6963.

    Article  Google Scholar 

  24. Yuan, G., Grammenos, R., Yang, Y., & Wang, W. (2010). Performance analysis of selective opportunistic spectrum access with traffic prediction. IEEE Transactions on Vehicular Technology, 59(4), 1949–1959.

    Article  Google Scholar 

  25. Min, A., & Shin, K. (2008). Exploiting multi channel diversity in spectrum agile networks. In INFOCOM.

  26. Saleem, Y., & Rehmani, M. H. (2014). Primary radio user activity models for cognitive radio networks: A survey. Journal of Network and Computer Applications, 43, 1–16.

    Article  Google Scholar 

  27. Kim, H., & Shin, K. (2008). Fast discovery of spectrum opportunities in cognitive radio networks. In IEEE DySPAN.

  28. Mehanna, O., Sultan, A., & Gamal, H. (2009). Cognitive MAC protocols for general primary network models, Technical Report. Cornell University.

  29. Zahmati, A., Fernando, X., & Grami, A. (2010). Steady-state Markov Chain analysis for heterogeneous cognitive radio networks. In Sarnoff.

  30. Adas, A. (1997). Traffic models in broadband networks. IEEE Communications Magazine, 35(7), 82–89.

    Article  Google Scholar 

  31. Vujicic, B., Cackov, N., Vujicic, S., & Trajkovic, L. (2005). Modeling and characterization of traffic in public safety wireless networks. In SPECTS.

  32. Kim, H., & Shin, K. (2008). Efficient discovery of spectrum opportunities with mac layer sensing in cognitive radio networks. IEEE Transactions on Mobile Computing, 7, 533–545.

    Article  Google Scholar 

  33. Sriram, K., & Whitt, W. (1986). Characterizing superposition arrival processes in packet multiplexers for voice and data. IEEE Journal on Selected Areas in Communications, 4(6), 833–846.

    Article  Google Scholar 

  34. Rehmani, M. H., Viana, A. C., Khalife, H., & Fdida, S. (2013). SURF: A distributed channel selection strategy for data dissemination in multi-hop cognitive radio networks. Computer Communications, 36(10), 1172–1185.

    Article  Google Scholar 

  35. Yucek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communications Surveys & Tutorials, 11(1), 116–130.

    Article  Google Scholar 

  36. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.

    Article  Google Scholar 

  37. Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.

    Article  Google Scholar 

  38. Chandra, R., Mahajan, R., Moscibroda, J., Raghavendra, R., & Bahl, P. (2008). A case for adapting channel width in wireless networks. ACM SIGCOMM Computer Communication Review, 38(4), 135–146.

    Article  Google Scholar 

  39. Yuan, Y., Bahl, P., Chandra, R., & Chou, P. (2007). KNOWS: Cognitive radio networks over white spaces. In International symposium on new frontiers in dynamic spectrum access networks (pp. 416–427).

  40. Keranidis, S., Chounos, K., Korakis, T., Koutsopoulos, I., & Tassiulas, L. (2014). Demo: Enabling agile spectrum adaptation in commercial 802.11 WLAN deployments. In Proceedings of the 20th annual international conference on Mobile computing and networking (pp. 295–298).

  41. Bukhari, S. H. R., Siraj, S., & Rehmani, M. H. (2018). NS-2 based simulation framework for cognitive radio sensor networks. Wireless Networks. https://doi.org/10.1007/s11276-016-1418-5.

    Article  Google Scholar 

  42. Shah, G. A., & Akan, O. B. (2015). Cognitive adaptive medium access control in cognitive radio sensor networks. IEEE Transactions on Vehicular Technology, 64(2), 757–767.

    Article  Google Scholar 

  43. Li, X., Wang, D., McNair, J., & Chen, J. (2011). Residual energy aware channel assignment in cognitive radio sensor networks. In IEEE wireless communications and networking conference (pp. 398–403). IEEE.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Hashim Raza Bukhari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bukhari, S.H.R., Rehmani, M.H. & Siraj, S. Remaining idle time aware intelligent channel bonding schemes for cognitive radio sensor networks. Wireless Netw 25, 4523–4539 (2019). https://doi.org/10.1007/s11276-018-1745-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-018-1745-9

Keywords

Navigation