Skip to main content
Log in

Effect of Gold on the Adsorption Properties of Acetaldehyde on Clean and h-BN Covered Rh(111) Surface

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Auger electron spectroscopy, high-resolution electron energy loss spectroscopy and temperature programmed desorption methods have been used in order to investigate the adsorption properties and reactions of acetaldehyde on gold decorated rhodium and BN/Rh(111) surfaces. Scanning tunneling microscopy and X-ray photoelectron spectroscopy measurements were carried out to characterize the gold nanoparticles on clean and hexagonal boron nitride (h-BN) covered Rh(111). The adsorption of acetaldehyde was not completely hindered by gold atoms; however, depending on the structure of the outermost bimetallic layer (surface alloy) the dissociation of the parent molecule was suppressed, namely the production of carbon monoxide was inhibited by the gold domains. Our measurements with acetaldehyde on Au/h-BN/Rh(111) confirmed the observation that the lack of suitable adsorption sites eliminates the formation of CO. Nevertheless, increased coverage of gold enhanced the amount of adsorbed aldehyde at low temperature. We may predict that the low reactivity of acetaldehyde on Au/h-BN/Rh(111) significantly determine the ethanol decomposition mechanism on this surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Davis JL, Barteau MA (1987) Decarbonylation and decomposition pathways of alcohol’s on Pd(111). Surf Sci 187:387–406. https://doi.org/10.1016/S0039-6028(87)80064-X

    Article  CAS  Google Scholar 

  2. Davis JL, Barteau MA (1988) The influence of oxygen on the selectivity of alcohol conversion on the Pd(111) surface. Surf Sci 197:123–152. https://doi.org/10.1016/0039-6028(88)90577-8

    Article  CAS  Google Scholar 

  3. McCabe RW, Dimaggio CL, Madix RJ (1985) Adsorption and reactions of acetaldehyde on Pt(S)-[6(111) X (100)]. J Phys Chem 89:854–861. https://doi.org/10.1021/j100251a028

    Article  CAS  Google Scholar 

  4. Mavrikakis M, Barteau MA (1998) Oxygenate reaction pathways on transition metal surfaces. J Mol Catal A Chem 131:135–147. https://doi.org/10.1016/S1381-1169(97)00261-6

    Article  CAS  Google Scholar 

  5. Raskó J, Kiss J (2005) Adsorption and surface reactions of acetaldehyde on alumina-supported noble metal catalysts. Catal Lett 101:71–77. https://doi.org/10.1007/s10562-004-3752-y

    Article  CAS  Google Scholar 

  6. Raskó J, Kecskés T, Kiss J (2005) FT-IR and mass spectrometric studies on the interaction of acetaldehyde with TiO2-supported noble metal catalysts. Appl Catal A Gen 287:244–251. https://doi.org/10.1016/j.apcata.2005.04.004

    Article  CAS  Google Scholar 

  7. Roberts JM (1990) The atmospheric chemistry of organic nitrates. Atmos Environ 24A:243–287. https://doi.org/10.1016/0960-1686(90)90108-Y

    Article  CAS  Google Scholar 

  8. Altshuller AP (1993) Production of aldehydes as primary emissions and from secondary atmospheric reactions of alkenes and alkanes during the night and early morning hours. Atmos Environ Part A Gen Top 27:21–32. https://doi.org/10.1016/0960-1686(93)90067-9

    Article  Google Scholar 

  9. Yee A, Morrison SJ, Idriss H (2000) Reactions of ethanol over M/CeO2 catalysts. Evidence of carbon-carbon bond dissociation at low temperatures over Rh/CeO2. Catal Today 63:327–335. https://doi.org/10.1016/S0920-5861(00)00476-4

    Article  CAS  Google Scholar 

  10. Mattos LV, Jacobs G, Davis BH, Noronha FB (2012) Production of hydrogen from ethanol: review of reaction mechanism and catalyst deactivation. Chem Rev 112:4094–4123

    Article  CAS  PubMed  Google Scholar 

  11. Ferencz Z, Erdohelyi A, Baán K et al (2014) Effects of support and Rh additive on co-based catalysts in the ethanol steam reforming reaction. ACS Catal 4:1205–1218. https://doi.org/10.1021/cs500045z

    Article  CAS  Google Scholar 

  12. De Lima AFF, Colman RC, Zotin FMZ, Appel LG (2010) Acetaldehyde behavior over platinum based catalyst in hydrogen stream generated by ethanol reforming. Int J Hydrog Energy 35:13200–13205. https://doi.org/10.1016/j.ijhydene.2010.09.030

    Article  CAS  Google Scholar 

  13. Varga E, Ferencz Z, Oszkó A et al (2015) Oxidation states of active catalytic centers in ethanol steam reforming reaction on ceria based Rh promoted Co catalysts: an XPS study. J Mol Catal A Chem 397:127–133. https://doi.org/10.1016/j.molcata.2014.11.010

    Article  CAS  Google Scholar 

  14. Henderson MA, Zhou Y, White JM (1989) Polymerization and decomposition of acetaldehyde on Ru(001). J Am Chem Soc 111:1185–1193. https://doi.org/10.1021/ja00186a004

    Article  Google Scholar 

  15. Davis JL, Barteau MA (1989) Polymerization and decarbonylation reactions of aldehydes on the Pd(111) surface. J Am Chem Soc 111:1782–1792. https://doi.org/10.1021/ja00187a035

    Article  CAS  Google Scholar 

  16. Houtman CJ, Barteau MA (1991) Divergent pathways of acetaldehyde and ethanol decarbonylation on the Rh(111) surface. J Catal 130:528–546. https://doi.org/10.1016/0021-9517(91)90133-O

    Article  CAS  Google Scholar 

  17. Kovács I, Farkas AP, Szitás Á et al (2017) Adsorption, polymerization and decomposition of acetaldehyde on clean and carbon-covered Rh(111) surfaces. Surf Sci. https://doi.org/10.1016/j.susc.2017.05.016

    Article  Google Scholar 

  18. Karatok M, Vovk EI, Shah AA et al (2016) Erratum: acetaldehyde partial oxidation on the Au(111) model catalyst surface: C-C bond activation and formation of methyl acetate as an oxidative coupling product (Surface Science (2015) 641 (289-293) DOI: 10.1016/j.susc.2015.04.005). Surf Sci 649:152. https://doi.org/10.1016/j.susc.2016.01.011.

    Article  CAS  Google Scholar 

  19. Meng Q, Shen Y, Xu J et al (2012) Mechanistic understanding of hydrogenation of acetaldehyde on Au(111): a DFT investigation. Surf Sci 606:1608–1617. https://doi.org/10.1016/j.susc.2012.06.014

    Article  CAS  Google Scholar 

  20. Pan M, Flaherty DW, Mullins CB (2011) Low-temperature hydrogenation of acetaldehyde to ethanol on H-precovered Au(111). J Phys Chem Lett 2:1363–1367. https://doi.org/10.1021/jz200577n

    Article  CAS  Google Scholar 

  21. Valden M (1998) Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281:1647–1650. https://doi.org/10.1126/science.281.5383.1647

    Article  CAS  PubMed  Google Scholar 

  22. Haruta M (1997) Size- and support-dependency in the catalysis of gold. Catal Today 36:153–166. https://doi.org/10.1016/S0920-5861(96)00208-8

    Article  CAS  Google Scholar 

  23. Haruta M, Daté M (2001) Advances in the catalysis of Au nanoparticles. Appl Catal A Gen 222:427–437. https://doi.org/10.1016/S0926-860X(01)00847-X

    Article  CAS  Google Scholar 

  24. Dumbuya K, Cabailh G, Lazzari R et al (2012) Evidence for an active oxygen species on Au/TiO2(110) model catalysts during investigation with in situ X-ray photoelectron spectroscopy. Catal Today 181:20–25. https://doi.org/10.1016/j.cattod.2011.09.035

    Article  CAS  Google Scholar 

  25. Liu L, Zhou Z, Guo Q et al (2011) The 2-D growth of gold on single-layer graphene/Ru(0001): enhancement of CO adsorption. Surf Sci 605:L47–L50. https://doi.org/10.1016/j.susc.2011.04.040

    Article  CAS  Google Scholar 

  26. Zhang Y, Zhang Y, Ma D et al (2013) Mn atomic layers under inert covers of graphene and hexagonal boron nitride prepared on Rh(111). Nano Res 6:887–896. https://doi.org/10.1007/s12274-013-0365-z

    Article  CAS  Google Scholar 

  27. Gotterbarm K, Spath F, Bauer U et al (2015) Reactivity of graphene-supported Pt nanocluster arrays. ACS Catal 5:2397–2403. https://doi.org/10.1021/acscatal.5b00245

    Article  CAS  Google Scholar 

  28. Corso M (2004) Boron nitride nanomesh. Science 303:217–220. https://doi.org/10.1126/science.1091979

    Article  CAS  PubMed  Google Scholar 

  29. Ng ML, Preobrajenski AB, Vinogradov AS, Mårtensson N (2008) Formation and temperature evolution of Au nanoparticles supported on the h-BN nanomesh. Surf Sci 602:1250–1255. https://doi.org/10.1016/j.susc.2008.01.028

    Article  CAS  Google Scholar 

  30. Koch HP, Laskowski R, Blaha P, Schwarz K (2011) Adsorption of gold atoms on the h-BN/Rh(111) nanomesh. Phys Rev B 84:1–7. https://doi.org/10.1103/PhysRevB.84.245410

    Article  CAS  Google Scholar 

  31. Koch HP, Laskowski R, Blaha P, Schwarz K (2012) Adsorption of small gold clusters on the h-BN/Rh(111) nanomesh. Phys Rev B 86:1–7. https://doi.org/10.1103/PhysRevB.86.155404

    Article  CAS  Google Scholar 

  32. Patterson MC, Habenicht BF, Kurtz RL et al (2014) Formation and stability of dense arrays of Au nanoclusters on hexagonal boron nitride/Rh(111). Phys Rev B 89:1–10. https://doi.org/10.1103/PhysRevB.89.205423

    Article  CAS  Google Scholar 

  33. Farkas AP, Török P, Solymosi F et al (2015) Investigation of the adsorption properties of borazine and characterisation of boron nitride on Rh(111) by electron spectroscopic methods. Appl Surf Sci 354:367–372. https://doi.org/10.1016/j.apsusc.2015.05.060

    Article  CAS  Google Scholar 

  34. McKee WC, Patterson MC, Huang D et al (2016) CO adsorption on Au nanoparticles grown on hexagonal boron nitride/Rh(111). J Phys Chem C 120:10909–10918. https://doi.org/10.1021/acs.jpcc.6b01645

    Article  CAS  Google Scholar 

  35. Gubó R, Vári G, Kiss J et al (2018) Tailoring the hexagonal boron nitride nanomesh on Rh(111) by gold. Phys Chem Chem Phys. https://doi.org/10.1039/C8CP00790J

    Article  PubMed  Google Scholar 

  36. Gazsi A, Koós A, Bánsági T, Solymosi F (2011) Adsorption and decomposition of ethanol on supported Au catalysts. Catal Today 160:70–78. https://doi.org/10.1016/j.cattod.2010.05.007

    Article  CAS  Google Scholar 

  37. Óvári L, Berkó A, Vári G et al (2016) The growth and thermal properties of Au deposited on Rh(111): formation of an ordered surface alloy. Phys Chem Chem Phys 18:25230–25240. https://doi.org/10.1039/C6CP02128J

    Article  CAS  PubMed  Google Scholar 

  38. Furukawa J, Saegusa T, Fujii H et al (1960) Crystalline polyaldehydes. Die Makromol Chem 37:149–152. https://doi.org/10.1002/macp.1960.020370114

    Article  CAS  Google Scholar 

  39. Zhao H, Kim J, Koel BE (2003) Adsorption and reaction of acetaldehyde on Pt(1 1 1) and Sn/Pt(1 1 1) surface alloys. Surf Sci 538:147–159. https://doi.org/10.1016/S0039-6028(03)00602-2

    Article  CAS  Google Scholar 

  40. Guan Y, Hensen EJM (2013) Selective oxidation of ethanol to acetaldehyde by Au-Ir catalysts. J Catal 305:135–145. https://doi.org/10.1016/j.jcat.2013.04.023

    Article  CAS  Google Scholar 

  41. Henderson MA, Radloff PL, White JM, Mims CA (1988) Surface chemistry of ketene on Ru(001). 1. Surface structures. J Phys Chem 92:11–41. https://doi.org/10.1021/j100325a025

    Article  Google Scholar 

  42. Ćavar E, Westerström R, Mikkelsen A et al (2008) A single h-BN layer on Pt(1 1 1). Surf Sci 602:1722–1726. https://doi.org/10.1016/j.susc.2008.03.008

    Article  CAS  Google Scholar 

  43. Frank M, Wolter K, Magg N et al (2001) Phonons of clean and metal-modified oxide films: an infrared and HREELS study. Surf Sci 492:270–284. https://doi.org/10.1016/S0039-6028(01)01475-3

    Article  CAS  Google Scholar 

  44. Rokuta E, Hasegawa Y, Suzuki K et al (1997) Phonon dispersion of an epitaxial monolayer film of hexagonal boron nitride on Ni(111). Phys Rev Lett 79:4609–4612. https://doi.org/10.1103/PhysRevLett.79.4609

    Article  CAS  Google Scholar 

  45. Berner S, Corso M, Widmer R et al (2007) Boron nitride nanomesh: functionality from a corrugated monolayer. Angew Chem Int Ed 46:5115–5119. https://doi.org/10.1002/anie.200700234

    Article  CAS  Google Scholar 

  46. Bus E, Miller JT, Van Bokhoven JA (2005) Hydrogen chemisorption on Al2O3-supported gold catalysts. J Phys Chem B 109:14581–14587. https://doi.org/10.1021/jp051660z

    Article  CAS  PubMed  Google Scholar 

  47. Mavrikakis M, Stoltze P, Nørskov JK (2000) Making gold less noble. Catal Lett 64:101–106. https://doi.org/10.1023/A:1019028229377

    Article  CAS  Google Scholar 

  48. Yoon B (2005) Charging effects on bonding and catalyzed oxidation of CO on Au8 clusters on MgO. Science 307:403–407. https://doi.org/10.1126/science.1104168

    Article  CAS  PubMed  Google Scholar 

  49. Chen M, Cai Y, Yan Z, Goodman DW (2006) On the origin of the unique properties of supported Au nanoparticles. J Am Chem Soc 128:6341–6346. https://doi.org/10.1021/ja0557536

    Article  CAS  PubMed  Google Scholar 

  50. Sterrer M, Yulikov M, Risse T et al (2006) When the reporter induces the effect: unusual IR spectra of CO on Au 1/MgO(001)/Mo(001). Angew Chem Int Ed 45:2633–2635. https://doi.org/10.1002/anie.200504473

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support of this work by the Hungarian Research Development and Innovation Office through grants GINOP-2.3.2-15-2016-00013 and NKFIH OTKA K120115 is gratefully acknowledged. The ELI-ALPS project (GINOP-2.3.6-15-2015-00001) is supported by the European Union and co-financed by the European Regional Development Fund. This research was also supported by the European Social Fund in the framework of TÁMOP-4.2.4.A/ 2–11/1-2012-0001 ‘National Excellence Program’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold Péter Farkas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farkas, A.P., Szitás, Á., Vári, G. et al. Effect of Gold on the Adsorption Properties of Acetaldehyde on Clean and h-BN Covered Rh(111) Surface. Top Catal 61, 1247–1256 (2018). https://doi.org/10.1007/s11244-018-0979-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-0979-1

Keywords

Navigation