Skip to main content
Log in

Targeting Retinoid Receptors to Treat Schizophrenia: Rationale and Progress to Date

  • Leading Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

This review provides the rationale and reports on the progress to date regarding the targeting of retinoid receptors for the treatment of schizophrenia and schizoaffective disorder and the role of retinoic acid in functions of the normal brain, and in psychotic states. After a brief introduction, we describe the normal function of retinoic acid in the brain. We then examine the evidence regarding retinoid dysregulation in schizophrenia. Finally, findings from two add-on clinical trials with a retinoid (bexarotene) are discussed. The authors of this review suggest that targeting retinoid receptors may be a novel approach to treat schizophrenia and schizoaffective disorder. Further studies are warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. van Os J, Kenis G, Rutten BP. The environment and schizophrenia. Nature. 2010;468:203–12.

    Article  PubMed  CAS  Google Scholar 

  2. Walker E, Kestler L, Bollini A, Hochman KM. Schizophrenia: etiology and course. Annu Rev Psychol. 2004;55:401–30.

    Article  PubMed  Google Scholar 

  3. Goff DC, Freudenreich O, Evins AE. Augmentation strategies in the treatment of schizophrenia. CNS Spectr. 2001;6(904):907–11.

    Google Scholar 

  4. Lerner V, Libov I, Kotler M, Strous RD. Combination of “atypical” antipsychotic medication in the management of treatment-resistant schizophrenia and schizoaffective disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2004;28:89–98.

    Article  CAS  PubMed  Google Scholar 

  5. Ritsner MS, Lerner V. Advancing neuroprotective-based treatments for schizophrenia. In: Ritsner MS, editor. Handbook of schizophrenia spectrum disorders. Therapeutic approaches, comorbidity, and outcomes, vol. III. Heidelberg: Springer; 2011. p. 51–80.

    Chapter  Google Scholar 

  6. Jarskog LF, Miyamoto S, Lieberman JA. Schizophrenia: new pathological insights and therapies. Annu Rev Med. 2007;58:49–61.

    Article  CAS  PubMed  Google Scholar 

  7. Lang UE, Puls I, Muller DJ, Strutz-Seebohm N, Gallinat J. Molecular mechanisms of schizophrenia. Cell Physiol Biochem. 2007;20:687–702.

    Article  CAS  PubMed  Google Scholar 

  8. Bakhshi K, Chance SA. The neuropathology of schizophrenia: a selective review of past studies and emerging themes in brain structure and cytoarchitecture. Neuroscience. 2015;303:82–102.

    Article  CAS  PubMed  Google Scholar 

  9. Laurens KR, Luo L, Matheson SL, Carr VJ, Raudino A, Harris F, Green MJ. Common or distinct pathways to psychosis? A systematic review of evidence from prospective studies for developmental risk factors and antecedents of the schizophrenia spectrum disorders and affective psychoses. BMC Psychiatry. 2015;15:205.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Brown AS, Susser ES. Prenatal nutritional deficiency and risk of adult schizophrenia. Schizophr Bull. 2008;34:1054–63.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bailey SJ, McCaffery PJ. Retinoic acid signalling in neuropsychiatric disease: possible markers and treatment agents. In: Ritsner MS, editor. The handbook of neuropsychiatric biomarkers, endophenotypes, and genes, volume III: metabolic and peripheral biomarkers, vol. 3. The Netherlands: Springer; 2009. p. 171–89.

    Chapter  Google Scholar 

  12. Chiang MY, Misner D, Kempermann G, Schikorski T, Giguere V, Sucov HM, Gage FH, Stevens CF, Evans RM. An essential role for retinoid receptors RARbeta and RXRgamma in long-term potentiation and depression. Neuron. 1998;21:1353–61.

    Article  CAS  PubMed  Google Scholar 

  13. Corcoran JP, So PL, Maden M. Disruption of the retinoid signalling pathway causes a deposition of amyloid beta in the adult rat brain. Eur J Neurosci. 2004;20:896–902.

    Article  PubMed  Google Scholar 

  14. Goodman AB. Retinoid dysregulation may result in abnormal expression of glutamic acid decarboxylase in schizophrenia. Arch Gen Psychiatry. 1996;53:653.

    Article  CAS  PubMed  Google Scholar 

  15. Jacobs S, Lie DC, DeCicco KL, Shi Y, DeLuca LM, Gage FH, Evans RM. Retinoic acid is required early during adult neurogenesis in the dentate gyrus. Proc Natl Acad Sci USA. 2006;103:3902–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kushida A, Tamura H. Retinoic acids induce neurosteroid biosynthesis in human glial GI-1 Cells via the induction of steroidogenic genes. J Biochem. 2009;146:917–23.

    Article  CAS  PubMed  Google Scholar 

  17. Lane MA, Bailey SJ. Role of retinoid signalling in the adult brain. Prog Neurobiol. 2005;75:275–93.

    Article  CAS  PubMed  Google Scholar 

  18. Maden M. Retinoid signalling in the development of the central nervous system. Nat Rev Neurosci. 2002;3:843–53.

    Article  CAS  PubMed  Google Scholar 

  19. McCaffery P, Zhang J, Crandall JE. Retinoic acid signaling and function in the adult hippocampus. J Neurobiol. 2006;66:780–91.

    Article  CAS  PubMed  Google Scholar 

  20. Romand R, Dolle P, Hashino E. Retinoid signaling in inner ear development. J Neurobiol. 2006;66:687–704.

    Article  CAS  PubMed  Google Scholar 

  21. Ross SA, McCaffery PJ, Drager UC, De Luca LM. Retinoids in embryonal development. Physiol Rev. 2000;80:1021–54.

    CAS  PubMed  Google Scholar 

  22. Susser E, Neugebauer R, Hoek HW, Brown AS, Lin S, Labovitz D, Gorman JM. Schizophrenia after prenatal famine. Further evidence. Arch Gen Psychiatry. 1996;53:25–31.

    Article  CAS  PubMed  Google Scholar 

  23. Wagner E, Luo T, Drager UC. Retinoic acid synthesis in the postnatal mouse brain marks distinct developmental stages and functional systems. Cereb Cortex. 2002;12:1244–53.

    Article  PubMed  Google Scholar 

  24. Wan C, Yang Y, Li H, La Y, Zhu H, Jiang L, Chen Y, Feng G, He L. Dysregulation of retinoid transporters expression in body fluids of schizophrenia patients. J Proteome Res. 2006;5:3213–6.

    Article  CAS  PubMed  Google Scholar 

  25. Goodman AB. Three independent lines of evidence suggest retinoids as causal to schizophrenia. Proc Natl Acad Sci USA. 1998;95:7240–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Arens JF, Van Dorp DA. Activity of vitamin A-acid in the rat. Nature. 1946;158:622.

    Article  CAS  PubMed  Google Scholar 

  27. Van Dorp DA, Arens JF. Biological activity of vitamin A acid. Nature. 1946;158:60.

    Article  Google Scholar 

  28. Anzano MA, Lamb AJ, Olson JA. Growth, appetite, sequence of pathological signs and survival following the induction of rapid, synchronous vitamin A deficiency in the rat. J Nutr. 1979;109:1419–31.

    CAS  PubMed  Google Scholar 

  29. Werner EA, Deluca HF. Retinoic acid is detected at relatively high levels in the CNS of adult rats. Am J Physiol Endocrinol Metab. 2002;282:E672–8.

    Article  CAS  PubMed  Google Scholar 

  30. Fragoso YD, Shearer KD, Sementilli A, de Carvalho LV, McCaffery PJ. High expression of retinoic acid receptors and synthetic enzymes in the human hippocampus. Brain Struct Funct. 2012;217:473–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stoney PN, Fragoso YD, Saeed RB, Ashton A, Goodman T, Simons C, Gomaa MS, Sementilli A, Sementilli L, Ross AW, Morgan PJ, McCaffery PJ. Expression of the retinoic acid catabolic enzyme CYP26B1 in the human brain to maintain signaling homeostasis. Brain Struct Funct. 2015 [E-pub ahead of print].

  32. Sun H, Kawaguchi R. The membrane receptor for plasma retinol-binding protein, a new type of cell-surface receptor. Int Rev Cell Mol Biol. 2011;288:1–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Goodman T, Crandall JE, Nanescu SE, Quadro L, Shearer K, Ross A, McCaffery P. Patterning of retinoic acid signaling and cell proliferation in the hippocampus. Hippocampus. 2012;22:2171–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schreiber R, Taschler U, Preiss-Landl K, Wongsiriroj N, Zimmermann R, Lass A. Retinyl ester hydrolases and their roles in vitamin A homeostasis. Biochim Biophys Acta. 2012;1821:113–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kane MA, Folias AE, Napoli JL. HPLC/UV quantitation of retinal, retinol, and retinyl esters in serum and tissues. Anal Biochem. 2008;378:71–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Samad TA, Krezel W, Chambon P, Borrelli E. Regulation of dopaminergic pathways by retinoids: activation of the D2 receptor promoter by members of the retinoic acid receptor-retinoid X receptor family. Proc Natl Acad Sci USA. 1997;94:14349–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Crandall JE, Goodman T, McCarthy DM, Duester G, Bhide PG, Drager UC, McCaffery P. Retinoic acid influences neuronal migration from the ganglionic eminence to the cerebral cortex. J Neurochem. 2011;119:723–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bi J, Hu X, Loh HH, Wei LN. Regulation of mouse kappa opioid receptor gene expression by retinoids. J Neurosci. 2001;21:1590–9.

    CAS  PubMed  Google Scholar 

  39. Mukhopadhyay B, Liu J, Osei-Hyiaman D, Godlewski G, Mukhopadhyay P, Wang L, Jeong WI, Gao B, Duester G, Mackie K, Kojima S, Kunos G. Transcriptional regulation of cannabinoid receptor-1 expression in the liver by retinoic acid acting via retinoic acid receptor-gamma. J Biol Chem. 2010;285:19002–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Enderlin V, Vallortigara J, Alfos S, Feart C, Pallet V, Higueret P. Retinoic acid reverses the PTU related decrease in neurogranin level in mice brain. J Physiol Biochem. 2004;60:191–8.

    Article  CAS  PubMed  Google Scholar 

  41. Husson M, Enderlin V, Alfos S, Boucheron C, Pallet V, Higueret P. Expression of neurogranin and neuromodulin is affected in the striatum of vitamin A-deprived rats. Brain Res Mol Brain Res. 2004;123:7–17.

    Article  CAS  PubMed  Google Scholar 

  42. Iniguez MA, Morte B, Rodriguez-Pena A, Munoz A, Gerendasy D, Sutcliffe JG, Bernal J. Characterization of the promoter region and flanking sequences of the neuron-specific gene RC3 (neurogranin). Brain Res Mol Brain Res. 1994;27:205–14.

    Article  CAS  PubMed  Google Scholar 

  43. Diez-Guerra FJ. Neurogranin, a link between calcium/calmodulin and protein kinase C signaling in synaptic plasticity. IUBMB Life. 2010;62:597–606.

    Article  CAS  PubMed  Google Scholar 

  44. Poon MM, Chen L. Retinoic acid-gated sequence-specific translational control by RARalpha. Proc Natl Acad Sci USA. 2008;105:20303–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pan J, Kao YL, Joshi S, Jeetendran S, Dipette D, Singh US. Activation of Rac1 by phosphatidylinositol 3-kinase in vivo: role in activation of mitogen-activated protein kinase (MAPK) pathways and retinoic acid-induced neuronal differentiation of SH-SY5Y cells. J Neurochem. 2005;93:571–83.

    Article  CAS  PubMed  Google Scholar 

  46. Lee JH, Kim KT. Induction of cyclin-dependent kinase 5 and its activator p35 through the extracellular-signal-regulated kinase and protein kinase A pathways during retinoic-acid mediated neuronal differentiation in human neuroblastoma SK-N-BE(2)C cells. J Neurochem. 2004;91:634–47.

    Article  CAS  PubMed  Google Scholar 

  47. Kampmann E, Johann S, van Neerven S, Beyer C, Mey J. Anti-inflammatory effect of retinoic acid on prostaglandin synthesis in cultured cortical astrocytes. J Neurochem. 2008;106:320–32.

    Article  CAS  PubMed  Google Scholar 

  48. van Neerven S, Nemes A, Imholz P, Regen T, Denecke B, Johann S, Beyer C, Hanisch UK, Mey J. Inflammatory cytokine release of astrocytes in vitro is reduced by all-trans retinoic acid. J Neuroimmunol. 2010;229:169–79.

    Article  PubMed  CAS  Google Scholar 

  49. van Neerven S, Regen T, Wolf D, Nemes A, Johann S, Beyer C, Hanisch UK, Mey J. Inflammatory chemokine release of astrocytes in vitro is reduced by all-trans retinoic acid. J Neurochem. 2010;114:1511–26.

    PubMed  Google Scholar 

  50. Choi WH, Ji KA, Jeon SB, Yang MS, Kim H, Min KJ, Shong M, Jou I, Joe EH. Anti-inflammatory roles of retinoic acid in rat brain astrocytes: suppression of interferon-gamma-induced JAK/STAT phosphorylation. Biochem Biophys Res Commun. 2005;329:125–31.

    Article  CAS  PubMed  Google Scholar 

  51. Katsuki H, Kurimoto E, Takemori S, Kurauchi Y, Hisatsune A, Isohama Y, Izumi Y, Kume T, Shudo K, Akaike A. Retinoic acid receptor stimulation protects midbrain dopaminergic neurons from inflammatory degeneration via BDNF-mediated signaling. J Neurochem. 2009;110:707–18.

    Article  CAS  PubMed  Google Scholar 

  52. Giulian D, Baker TJ. Characterization of ameboid microglia isolated from developing mammalian brain. J Neurosci. 1986;6:2163–78.

    CAS  PubMed  Google Scholar 

  53. Matsushita H, Hijioka M, Hisatsune A, Isohama Y, Shudo K, Katsuki H. Natural and synthetic retinoids afford therapeutic effects on intracerebral hemorrhage in mice. Eur J Pharmacol. 2012;683:125–31.

    Article  CAS  PubMed  Google Scholar 

  54. Hellmann-Regen J, Kronenberg G, Uhlemann R, Freyer D, Endres M, Gertz K. Accelerated degradation of retinoic acid by activated microglia. J Neuroimmunol. 2013;256:1–6.

    Article  CAS  PubMed  Google Scholar 

  55. Harrison-Uy SJ, Siegenthaler JA, Faedo A, Rubenstein JL, Pleasure SJ. CoupTFI interacts with retinoic acid signaling during cortical development. PLoS One. 2013;8:e58219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jiang W, Wen EY, Gong M, Shi Y, Chen L, Bi Y, Zhang Y, Liu YF, Chen J, Qu P, Liu YX, Wei XP, Li TY. The pattern of retinoic acid receptor expression and subcellular, anatomic and functional area translocation during the postnatal development of the rat cerebral cortex and white matter. Brain Res. 2011;1382:77–87.

    Article  CAS  PubMed  Google Scholar 

  57. Wagner E, Luo T, Sakai Y, Parada LF, Drager UC. Retinoic acid delineates the topography of neuronal plasticity in postnatal cerebral cortex. Eur J Neurosci. 2006;24:329–40.

    Article  PubMed  Google Scholar 

  58. Abu-Abed S, MacLean G, Fraulob V, Chambon P, Petkovich M, Dolle P. Differential expression of the retinoic acid-metabolizing enzymes CYP26A1 and CYP26B1 during murine organogenesis. Mech Dev. 2002;110:173–7.

    Article  CAS  PubMed  Google Scholar 

  59. Haybaeck J, Postruznik M, Miller CL, Dulay JR, Llenos IC, Weis S. Increased expression of retinoic acid-induced gene 1 in the dorsolateral prefrontal cortex in schizophrenia, bipolar disorder, and major depression. Neuropsychiatr Dis Treat. 2015;11:279–89.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Fragoso YD, Stoney PN, Shearer KD, Sementilli A, Nanescu SE, Sementilli P, McCaffery P. Expression in the human brain of retinoic acid induced 1, a protein associated with neurobehavioural disorders. Brain Struct Funct. 2015;220:1195–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Darvekar S, Rekdal C, Johansen T, Sjottem E. A phylogenetic study of SPBP and RAI1: evolutionary conservation of chromatin binding modules. PLoS One. 2013;8:e78907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Qi XR, Zhao J, Liu J, Fang H, Swaab DF, Zhou JN. Abnormal retinoid and TrkB signaling in the prefrontal cortex in mood disorders. Cereb Cortex. 2015;25:75–83.

    Article  PubMed  Google Scholar 

  63. Dalgard CL, Jacobowitz DM, Singh VK, Saleem KS, Ursano RJ, Starr JM, Pollard HB. A novel analytical brain block tool to enable functional annotation of discriminatory transcript biomarkers among discrete regions of the fronto-limbic circuit in primate brain. Brain Res. 2015;1600:42–58.

    Article  CAS  PubMed  Google Scholar 

  64. Maret S, Franken P, Dauvilliers Y, Ghyselinck NB, Chambon P, Tafti M. Retinoic acid signaling affects cortical synchrony during sleep. Science. 2005;310:111–3.

    Article  CAS  PubMed  Google Scholar 

  65. Kitaoka K, Shimizu M, Shimizu N, Chikahisa S, Nakagomi M, Shudo K, Yoshizaki K, Sei H. Retinoic acid receptor antagonist LE540 attenuates wakefulness via the dopamine D1 receptor in mice. Brain Res. 2011;1423:10–6.

    Article  CAS  PubMed  Google Scholar 

  66. Nomoto M, Takeda Y, Uchida S, Mitsuda K, Enomoto H, Saito K, Choi T, Watabe AM, Kobayashi S, Masushige S, Manabe T, Kida S. Dysfunction of the RAR/RXR signaling pathway in the forebrain impairs hippocampal memory and synaptic plasticity. Mol Brain. 2012;5:8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Etchamendy N, Enderlin V, Marighetto A, Vouimba RM, Pallet V, Jaffard R, Higueret P. Alleviation of a selective age-related relational memory deficit in mice by pharmacologically induced normalization of brain retinoid signaling. J Neurosci. 2001;21:6423–9.

    CAS  PubMed  Google Scholar 

  68. Enderlin V, Pallet V, Alfos S, Dargelos E, Jaffard R, Garcin H, Higueret P. Age-related decreases in mRNA for brain nuclear receptors and target genes are reversed by retinoic acid treatment. Neurosci Lett. 1997;229:125–9.

    Article  CAS  PubMed  Google Scholar 

  69. Yau SY, Li A, So KF. Involvement of adult hippocampal neurogenesis in learning and forgetting. Neural Plast. 2015;2015:717958.

    PubMed  PubMed Central  Google Scholar 

  70. Yu S, Levi L, Siegel R, Noy N. Retinoic acid induces neurogenesis by activating both retinoic acid receptors (RARs) and peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta). J Biol Chem. 2012;287:42195–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Crandall J, Sakai Y, Zhang J, Koul O, Mineur Y, Crusio WE, McCaffery P. 13-cis-retinoic acid suppresses hippocampal cell division and hippocampal-dependent learning in mice. Proc Natl Acad Sci USA. 2004;101:5111–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ormerod AD, Thind CK, Rice SA, Reid IC, Williams JH, McCaffery PJ. Influence of isotretinoin on hippocampal-based learning in human subjects. Psychopharmacology (Berl). 2012;221:667–74.

    Article  CAS  Google Scholar 

  73. Chen N, Napoli JL. All-trans-retinoic acid stimulates translation and induces spine formation in hippocampal neurons through a membrane-associated RARalpha. FASEB J. 2008;22:236–45.

    Article  CAS  PubMed  Google Scholar 

  74. Maghsoodi B, Poon MM, Nam CI, Aoto J, Ting P, Chen L. Retinoic acid regulates RARalpha-mediated control of translation in dendritic RNA granules during homeostatic synaptic plasticity. Proc Natl Acad Sci USA. 2008;105:16015–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang HL, Zhang Z, Hintze M, Chen L. Decrease in calcium concentration triggers neuronal retinoic acid synthesis during homeostatic synaptic plasticity. J Neurosci. 2011;31:17764–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ransom J, Morgan PJ, McCaffery PJ, Stoney PN. The rhythm of retinoids in the brain. J Neurochem. 2014;129:366–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Eckel-Mahan KL, Phan T, Han S, Wang H, Chan GC, Scheiner ZS, Storm DR. Circadian oscillation of hippocampal MAPK activity and cAmp: implications for memory persistence. Nat Neurosci. 2008;11:1074–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Navigatore-Fonzo LS, Golini RL, Ponce IT, Delgado SM, Plateo-Pignatari MG, Gimenez MS, Anzulovich AC. Retinoic acid receptors move in time with the clock in the hippocampus. Effect of a vitamin-A-deficient diet. J Nutr Biochem. 2013;24:859–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fonzo LS, Golini RS, Delgado SM, Ponce IT, Bonomi MR, Rezza IG, Gimenez MS, Anzulovich AC. Temporal patterns of lipoperoxidation and antioxidant enzymes are modified in the hippocampus of vitamin A-deficient rats. Hippocampus. 2009;19:869–80.

    Article  CAS  PubMed  Google Scholar 

  80. Golini RS, Delgado SM, Navigatore Fonzo LS, Ponce IT, Lacoste MG, Anzulovich AC. Daily patterns of clock and cognition-related factors are modified in the hippocampus of vitamin A-deficient rats. Hippocampus. 2012;22:1720–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li H, Wagner E, McCaffery P, Smith D, Andreadis A, Drager UC. A retinoic acid synthesizing enzyme in ventral retina and telencephalon of the embryonic mouse. Mech Dev. 2000;95:283–9.

    Article  CAS  PubMed  Google Scholar 

  82. McCaffery P, Drager DC. High level of a retinoic acid-generating dehydrogenase in the meso telencephalic dopamine system. Proc Natl Acad Sci USA. 1994;91:7772–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jacobs FM, Smits SM, Noorlander CW, von Oerthel L, van der Linden AJ, Burbach JP, Smidt MP. Retinoic acid counteracts developmental defects in the substantia nigra caused by Pitx3 deficiency. Development. 2007;134:2673–84.

    Article  CAS  PubMed  Google Scholar 

  84. Liao WL, Tsai HC, Wang HF, Chang J, Lu KM, Wu HL, Lee YC, Tsai TF, Takahashi H, Wagner M, Ghyselinck NB, Chambon P, Liu FC. Modular patterning of structure and function of the striatum by retinoid receptor signaling. Proc Natl Acad Sci USA. 2008;105:6765–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Krezel W, Ghyselinck N, Samad TA, Dupe V, Kastner P, Borrelli E, Chambon P. Impaired locomotion and dopamine signaling in retinoid receptor mutant mice. Science. 1998;279:863–7.

    Article  CAS  PubMed  Google Scholar 

  86. Willner P. The dopamine hypothesis of schizophrenia: current status, future prospects. Int Clin Psychopharmacol. 1997;12:297–308.

    Article  CAS  PubMed  Google Scholar 

  87. Cramer PE, Cirrito JR, Wesson DW, Lee CY, Karlo JC, Zinn AE, Casali BT, Restivo JL, Goebel WD, James MJ, Brunden KR, Wilson DA, Landreth GE. ApoE-directed therapeutics rapidly clear beta-amyloid and reverse deficits in AD mouse models. Science. 2012;335:1503–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Goodman AB. Microarray results suggest altered transport and lowered synthesis of retinoic acid in schizophrenia. Mol Psychiatry. 2005;10:620–1.

    Article  CAS  PubMed  Google Scholar 

  89. Palha JA, Goodman AB. Thyroid hormones and retinoids: a possible link between genes and environment in schizophrenia. Brain Res Brain Res Rev. 2006;51:61–71.

    Article  CAS  Google Scholar 

  90. Rioux L, Arnold SE. The expression of retinoic acid receptor alpha is increased in the granule cells of the dentate gyrus in schizophrenia. Psychiatry Res. 2005;133:13–21.

    Article  CAS  PubMed  Google Scholar 

  91. Davis KL, Kahn RS, Ko G, Davidson M. Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry. 1991;148:1474–86.

    Article  CAS  PubMed  Google Scholar 

  92. Lodge DJ, Grace AA. Hippocampal dysregulation of dopamine system function and the pathophysiology of schizophrenia. Trends Pharmacol Sci. 2011;32:507–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Perez-Costas E, Melendez-Ferro M, Roberts RC. Basal ganglia pathology in schizophrenia: dopamine connections and anomalies. J Neurochem. 2010;113:287–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yoon JH, Minzenberg MJ, Raouf S, D’Esposito M, Carter CS. Impaired prefrontal-basal ganglia functional connectivity and substantia nigra hyperactivity in schizophrenia. Biol Psychiatry. 2013;74:122–9.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Goodman AB. Congenital anomalies in relatives of schizophrenic probands may indicate a retinoid pathology. Schizophr Res. 1996;19:163–70.

    Article  CAS  PubMed  Google Scholar 

  96. Wolf G. Vitamin A functions in the regulation of the dopaminergic system in the brain and pituitary gland. Nutr Rev. 1998;56:354–5.

    Article  CAS  PubMed  Google Scholar 

  97. Carfagno ML, Hoskins LA, Pinto ME, Yeh JC, Raffa RB. Indirect modulation of dopamine D2 receptors as potential pharmacotherapy for schizophrenia: II. Glutamate (Ant)agonists. Ann Pharmacother. 2000;34:788–97.

    Article  CAS  PubMed  Google Scholar 

  98. Dixon DA, Fenix LA, Kim DM, Raffa RB. Indirect modulation of dopamine D2 receptors as potential pharmacotherapy for schizophrenia: I. Adenosine agonists. Ann Pharmacother. 1999;33:480–8.

    Article  CAS  PubMed  Google Scholar 

  99. Wan C, Shi Y, Zhao X, Tang W, Zhang M, Ji B, Zhu H, Xu Y, Li H, Feng G, He L. Positive association between ALDH1A2 and schizophrenia in the Chinese population. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33:1491–5.

    Article  CAS  PubMed  Google Scholar 

  100. Livera G, Pairault C, Lambrot R, Lelievre-Pegorier M, Saez JM, Habert R, Rouiller-Fabre V. Retinoid-sensitive steps in steroidogenesis in fetal and neonatal rat testes: in vitro and in vivo studies. Biol Reprod. 2004;70:1814–21.

    Article  CAS  PubMed  Google Scholar 

  101. MacKenzie EM, Odontiadis J, Le Melledo JM, Prior TI, Baker GB. The relevance of neuroactive steroids in schizophrenia, depression, and anxiety disorders. Cell Mol Neurobiol. 2007;27:541–74.

    Article  CAS  PubMed  Google Scholar 

  102. Shulman Y, Tibbo PG. Neuroactive steroids in schizophrenia. Can J Psychiatry. 2005;50:695–702.

    PubMed  Google Scholar 

  103. Ritsner MS, Gibel A, Ratner Y, Weizman A. Dehydroepiandrosterone and pregnenolone alterations in schizophrenia. In: Ritsner MS, Weizman A, editors. Neuroactive steroids in brain functions, and mental health. New perspectives for research and treatment. New York: LLC, Springer; 2008. p. 251–98.

    Google Scholar 

  104. Marx CE, Stevens RD, Shampine LJ, Uzunova V, Trost WT, Butterfield MI, Massing MW, Hamer RM, Morrow AL, Lieberman JA. Neuroactive steroids are altered in schizophrenia and bipolar disorder: relevance to pathophysiology and therapeutics. Neuropsychopharmacology. 2006;31:1249–63.

    CAS  PubMed  Google Scholar 

  105. LaMantia AS. Forebrain induction, retinoic acid, and vulnerability to schizophrenia: insights from molecular and genetic analysis in developing mice. Biol Psychiatry. 1999;46:19–30.

    Article  CAS  PubMed  Google Scholar 

  106. Goldman-Rakic PS, Selemon LD. Functional and anatomical aspects of prefrontal pathology in schizophrenia. Schizophr Bull. 1997;23:437–58.

    Article  CAS  PubMed  Google Scholar 

  107. Heckers S. Neuropathology of schizophrenia: cortex, thalamus, basal ganglia, and neurotransmitter-specific projection systems. Schizophr Bull. 1997;23:403–21.

    Article  CAS  PubMed  Google Scholar 

  108. Pallet V, Touyarot K. Vitamin A and cognitive processes. Nutrition Aging 2015;3:21–31.

    Article  CAS  Google Scholar 

  109. Bonhomme D, Pallet V, Dominguez G, Servant L, Henkous N, Lafenetre P, Higueret P, Beracochea D, Touyarot K. Retinoic acid modulates intrahippocampal levels of corticosterone in middle-aged mice: consequences on hippocampal plasticity and contextual memory. Front Aging Neurosci. 2014;6:6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Joober R, Benkelfat C, Toulouse A, Lafreniere RG, Lal S, Ajroud S, Turecki G, Bloom D, Labelle A, Lalonde P, Alda M, Morgan K, Palmour R, Rouleau GA. Analysis of 14 CAG repeat-containing genes in schizophrenia. Am J Med Genet. 1999;88:694–9.

    Article  CAS  PubMed  Google Scholar 

  111. Lerner V, Miodownik C, Gibel A, Kovalyonok E, Shleifer T, Goodman AB, Ritsner MS. Bexarotene as add-on to antipsychotic treatment in schizophrenia patients: a pilot open-label trial. Clin Neuropharmacol. 2008;31:25–33.

    Article  CAS  PubMed  Google Scholar 

  112. Lerner V, Miodownik C, Gibel A, Sirota P, Bush I, Elliot H, Benatov R, Ritsner MS. The retinoid X receptor agonist bexarotene relieves positive symptoms of schizophrenia: a 6-week, randomized, double-blind, placebo-controlled multicenter trial. J Clin Psychiatry. 2013;74:1224–32.

    Article  CAS  PubMed  Google Scholar 

  113. Malaspina A, Michael-Titus AT. Is the modulation of retinoid and retinoid-associated signaling a future therapeutic strategy in neurological trauma and neurodegeneration? J Neurochem. 2008;104:584–95.

    CAS  PubMed  Google Scholar 

  114. Gniadecki R, Assaf C, Bagot M, Dummer R, Duvic M, Knobler R, Ranki A, Schwandt P, Whittaker S. The optimal use of bexarotene in cutaneous T-cell lymphoma. Br J Dermatol. 2007;157:433–40.

    Article  CAS  PubMed  Google Scholar 

  115. Jawed SI, Myskowski PL, Horwitz S, Moskowitz A, Querfeld C. Primary cutaneous T-cell lymphoma (mycosis fungoides and Sezary syndrome): part II. Prognosis, management, and future directions. J Am Acad Dermatol. 2014;70:223 e1–17 (quiz 240–2).

  116. Panchal MR, Scarisbrick JJ. The utility of bexarotene in mycosis fungoides and Sezary syndrome. Onco Targets Ther. 2015;8:367–73.

    PubMed  PubMed Central  Google Scholar 

  117. Esteva FJ, Glaspy J, Baidas S, Laufman L, Hutchins L, Dickler M, Tripathy D, Cohen R, DeMichele A, Yocum RC, Osborne CK, Hayes DF, Hortobagyi GN, Winer E, Demetri GD. Multicenter phase II study of oral bexarotene for patients with metastatic breast cancer. J Clin Oncol. 2003;21:999–1006.

    Article  CAS  PubMed  Google Scholar 

  118. Hurst RE. Bexarotene ligand pharmaceuticals. Curr Opin Investig Drugs. 2000;1:514–23.

    CAS  PubMed  Google Scholar 

  119. Connolly RM, Nguyen NK, Sukumar S. Molecular pathways: current role and future directions of the retinoic acid pathway in cancer prevention and treatment. Clin Cancer Res. 2013;19:1651–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hong WK, Lippman SM, Itri LM, Karp DD, Lee JS, Byers RM, Schantz SP, Kramer AM, Lotan R, Peters LJ, et al. Prevention of second primary tumors with isotretinoin in squamous-cell carcinoma of the head and neck. N Engl J Med. 1990;323:795–801.

    Article  CAS  PubMed  Google Scholar 

  121. Prince HM, McCormack C, Ryan G, Baker C, Rotstein H, Davison J, Yocum R. Bexarotene capsules and gel for previously treated patients with cutaneous T-cell lymphoma: results of the Australian patients treated on phase II trials. Australas J Dermatol. 2001;42:91–7.

    Article  CAS  PubMed  Google Scholar 

  122. Rigas JR, Maurer LH, Meyer LP, Hammond SM, Crisp MR, Parker BA, Truglia JA. Targretin, a selective retinoid X receptor ligand (LGD1069), vinorelbine and cisplatin for the treatment of non small cell lung cancer (NSCLC): a phase I/II trial. Proc Annu Meet Am Soc Clin Oncol, 1997.

  123. Torino F, Barnabei A, Paragliola R, Baldelli R, Appetecchia M, Corsello SM. Thyroid dysfunction as an unintended side effect of anticancer drugs. Thyroid. 2013;23:1345–66.

    Article  CAS  PubMed  Google Scholar 

  124. Janssen JS, Sharma V, Pugazhenthi U, Sladek C, Wood WM, Haugen BR. A rexinoid antagonist increases the hypothalamic-pituitary-thyroid set point in mice and thyrotrope cells. Mol Cell Endocrinol. 2011;339:1–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Graeppi-Dulac J, Vlaeminck-Guillem V, Perier-Muzet M, Dalle S, Orgiazzi J. Endocrine side-effects of anti-cancer drugs: the impact of retinoids on the thyroid axis. Eur J Endocrinol. 2014;170:R253–62.

    Article  CAS  PubMed  Google Scholar 

  126. Lilley JS, Linton MF, Fazio S. Oral retinoids and plasma lipids. Dermatol Ther. 2013;26:404–10.

    Article  PubMed  Google Scholar 

  127. Casali BT, Corona AW, Mariani MM, Karlo JC, Ghosal K, Landreth GE. Omega-3 fatty acids augment the actions of nuclear receptor agonists in a mouse model of Alzheimer’s disease. J Neurosci. 2015;35:9173–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Shalita AR. Mucocutaneous and systemic toxicity of retinoids: monitoring and management. Dermatologica. 1987;175(Suppl 1):151–7.

    Article  PubMed  Google Scholar 

  129. MedlinePlus, Health, Information. Drug information: bexarotene (systemic). Access: 2003, July 31.

  130. Scarisbrick JJ, Morris S, Azurdia R, Illidge T, Parry E, Graham-Brown R, Cowan R, Gallop-Evans E, Wachsmuth R, Eagle M, Wierzbicki AS, Soran H, Whittaker S, Wain EM. UK consensus statement on safe clinical prescribing of bexarotene for patients with cutaneous T-cell lymphoma. Br J Dermatol. 2013;168:192–200.

    Article  CAS  PubMed  Google Scholar 

  131. Aoto J, Nam CI, Poon MM, Ting P, Chen L. Synaptic signaling by all-trans retinoic acid in homeostatic synaptic plasticity. Neuron. 2008;60:308–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author thanks Rena Kurs B. A. (Sha’ar Menashe Mental Health Center, Israel) for editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Ritsner.

Ethics declarations

Funding

No sources of funding were used to prepare the review.

Conflict of interest

Vladimir Lerner, Peter J. A. McCaffery, and Michael S. Ritsner declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lerner, V., McCaffery, P.J.A. & Ritsner, M.S. Targeting Retinoid Receptors to Treat Schizophrenia: Rationale and Progress to Date. CNS Drugs 30, 269–280 (2016). https://doi.org/10.1007/s40263-016-0316-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-016-0316-9

Keywords

Navigation