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Abstract. Facing global changes, modeling and predicting digeamics of soil carbon stock of forest
ecosystems is vital but challenging work. Yassa0@oinsidered as one of the most promising modelsufch a
purpose. We aim at examining the prediction acguiefcYasso07 on soil carbon dynamics over the whole
French metropolitan territory at a decennial tircale.

We used the dataset from 101 RENECOFOR sites nkfwdiich encompass most of the French temperate
forests. The data include (i) measured yearlyrligggantity from aboveground organs part from 1994@08,
and soil carbon stocks twice at an interval of t&years (early 1990s versus around 2010). Usagsd07, we
simulated the stock changes (tC*ha™) per site and compared them with the measured. dFescarried out
meta-analyses to reveal the variability in litteodhemistry between different tree organs for censifand
broadleaves. We also performed sensitivity analysesxplore Yasso07’s sensitivity to inputs, inéhgllitter
carbon quality and initial carbon stocks.

At the national level, the simulated annual carlswtk changes (ACC, +0.45 + 0.09 tC’hgeaf!, mean *
standard error) stayed in the same order of magmiwith the observed ones (+0.34 + 0.06 tC feaf’). The
correlation between predicted and measured ACC irmdaweak (R? <0.1). There was significant
overestimation for broadleaves sites and underastim for conifers sites. Sensitivity analyses sbdwhat the
final carbon stock was weakly affected by litterbzn quality, but a strongly affected by simulatiength to

investigate and initial soil carbon quality.
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We revealed both interest and challenges of applyiasso07 for temperate forests, which reflected th
whole state-of-the-art of soil carbon modelling dodacking knowledge or data on soil and litterbea

quality and fine root litter quantity, renderingyhiuncertainties for model inputs.
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Nomenclature and abbreviations

Name

M eaning

carbon stock
carbon stock change

annual carbon stock

change (ACC)

carbon pools

coarse woody litter

fine non-woody litter

litter carbon quality
litter quantity
soil carbon quality

Quantity of soil organic carbon stfokC ha’)

Increment (positive value)erement (negative value) of soil organic
carbon stock from the year t1 to the year t2 (im&f)

carbon stock change standardized by duration (imtG/ear?)

The Yasso07 model contains a serieggahic compounds differing in
solubility in solvents and mean residence timegoaimposition processes:
water soluble compounds (W), acid-hydrolysable coumpls (A); hon-polar
solvent, ethanol or dichloromethane compoundsr{&);soluble and non-
hydrolyzable compounds (N). For soil, there is @ineerecalcitrant pool
named “humus” (H)

Litter yield from either coagdmoveground residues due to either harvests or
storms (including coarse branches, defined as heghof >4 cm in diameter
and miscellaneous) and coarse roots (defined ae thio>5 mm in diameter)

Litter yield from either nafl above-ground litterfall (leaves, small
branches) or fine roots activities

Composition of litter carbbelonging to A, W, E and N carbon pools (in %)
Annual litter input (in tC Hayear")

Composition of soil carbon beng to A, W, E, N and H carbon pools
(in %)
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1 Introduction

The carbon stock in global soils, including liteard peatlands is 1500 to 2400 GtC, greatly
exceeding that in vegetation (350 a 550 GtC, maimlfjorests) and in the atmosphere (829
GtC in 2011, IPCC, 2014). Soils share a commonfeate with all the other spheres and play
a key role in driving the global carbon cycle. Smrbon stock dynamics are directly related
to the greenhouse gas emissions (notably carboiddi¢CQ)) that are leading to the global
warming effect (IPCC, 2014). An accurate estimatbsoil carbon stock dynamics allows us
to better understand the turnover rate and fatsodfcarbon flux at both local and global
geographical scales. Facing global changes, tkis i essential for the evaluation of the
climate change mitigation potentials of forests d@hd support of environmental policy
decisions.

Significant challenges exist for accurate estinmatd soil carbon stock changes. Current soil
monitoring networks are generally not able to detdanges on timescales of less than 10
years (Saby et al. 2008). To obtain soil C stocknge estimates at shorter intervals such as
for the annual reporting to the United Nations Feamork Convention on Climate Change and
the Kyoto Protocol, the use of models is encourgge@C, 2011). Numerous models have
been elaborated for evaluating soil carbon dynaigitasizoni and Porporato, 2009). The vast
majority of terrestrial soil carbon models develd the global or at the plot scales, e.g.,
CENTURY (Parton et al 1987), RothC (Coleman and Jenkinson, 1996) and KIREE
(Krinner et al., 2005), assume that decompositiothé first order decay process accounting
for the size of soil carbon pools. The dynamicsafbon pools depend on the quantity and
quality of litter inputs and on temperature, sodisture and other soil parameters, e.g. texture,
structure, chemical richness, pH etc. (Todd-Brownak, 2012). Incorporating explicit
mechanisms such as microbial activities or carbmteption by the soil matrix into soil
carbon models has repeatedly been suggested liasthgears (Schmidt et al., 2011; Lehmann
and Kleber, 2015). However, for forest ecosystesugh refined mechanistic input data
remain often limited. Accordingly, the typical tirs¢ep for litter input demanded by most of
soil carbon models for forests is year, not mofiht Ssee RothC, Coleman and Jenkinson,
1996) or day (but see Romul, Chertov et al., 20@ijlion et al., 2016). At this yearly-
timescale, it is common to consider microbial comities and processes as a relatively
stable factor (Todd-brown et al, 2012), and thauagtion of carbon dynamics governed by
first order decay may therefore be reasonable.

This is the choice made by the group who built Yeesso model (Liski et al., 2005) and
Yasso07 model (Tuomi et al., 2009; 2011la and 2Qlild)an improved version of Yasso
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with more refined carbon pooling and abundant datacalibration. The intention of the
models’ developers is to let their models be siatdbr general forestry applications by
taking into account the low availability of forestil and litter data (Liski et al., 2005).
Yasso07 explicitly defines several chemical podisleemical compounds in litter carbon
(Tuomi et al., 2011b) and possesses well-definéalpdiical meaningful and measurable

parameters. Due to these qualities, Yasso and Yassere applied in more than 70 case

studies (URL: http://www.syke.fi/en-
US/Research __Development/Research _and_developmejectp/Projects/Soil_carbon_mod

el_Yasso/) in forest ecosystems in the northernismere with generally high satisfaction
levels in comparison with measured carbon valugs arhu et al., 2011 ; Rantakari et al.,
2012; Ortiz et al., 2013 ; Didion et al., 2014; étal., 2015; Wu et al., 2015). Yet, so far most
of these applications have been limited to locakcstudies, especially those on cold forests
with limited tree species diversity (e.g. boreal montane forests). Rarely have previous
studies validated Yasso07 based on data (i) ofterrg observations (here defined as data of
>10 years), (ii) from temperate forests with a maafher diversity of tree species or (iii) on
carbon stock changes (in tC*hgear?). This is partially due to the lack of extensivag
term soil carbon monitoring in forest ecosystemsctvidiffer in climatic and soil conditions
and species, stretch over a large territorial sddéertheless, Yasso07 has been considered
as one of potential models appropriate for evahgatiational and continental inventories of
forest carbon balance in Europe (Herndndez etl7R It is therefore of high interest to
assess the ability of Yasso07 to reflect the carbalance in different European forest
ecosystems at large spatial-temporal scales. Mereoas a carbon pool based model,
Yasso07 shares certain similar principles to otirerailing soil carbon models in the same
genre (e.g., RothC, CENTURY etc.). Via YassoO7rasxample, we may also learn from this
application case for future carbon modelling fonperate forests

The measured data of carbon stock and litter giyadginamics from the RENECOFOR
network (URL: http://www.onf.fr/renecofor/@ @indexafl), National Forest Management

Agency (ONF), France, offered us a valuable oppdrtifor model validation. The used 101
forest sites belonging to the network are locatiéd\ser the French metropolitan territory
covering the most common forest types and treeiepeeor each site, annual observations of
litterfall were available in addition to two invemtes of soil organic carbon stock with an
average interval of 15 years (minimum 12 yearsraadimum 20 years). These data allowed
us to use site-specific observed soil carbon sttt above-ground litterfall dynamics as
model input estimates, thus reducing the unceiésinof the model input, which were

5
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identified as a major source of uncertainties fadel estimates of soil carbon stock changes
(Ortiz et al. 2013). By minimizing this source afaertainty, we were able to focus on the
inherent model structure. To our best knowledges, thight be the unique dataset available
for the fit of the model.

Consistent with our objective to contribute to thether development of soil carbon
modeling, we aim at (i) testing and characterizimg ability of Yasso07 to model soil carbon
stock dynamics for temperate forests (ii) identifylimitations and providing suggestions for
a better adaptation of the model for C dynamicbadth deciduous and evergreen temperate
forests and (iii) discussing the perspectives basethe current state-of-the-art of soil carbon
modelling. Associated with the above aims, our myfbotheses are as follows: (i) Yasso07
predicts accurate and unbiased carbon stock chandke national scale and (ii) the model’s
fit residuals (predicted data minus observed ddiaye null relationships with site

characteristics (e.g. location, climate, foresetysoil type and initial carbon stock).
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1 2 Materials and methods

2 2.1 The model Y asso07

3 The dynamic soil carbon model Yasso07 is basedhengeneral assumption that the soil
4  carbon stock is driven by decomposition of différitter types, which may differ in quantity
and quality, and by climatic conditions. Litter ban quality is represented by four chemical
compound groups which have different decompositites (Tuomi et al., 2009). Soil organic
carbon is divided into these four relatively labdarbon pools and one recalcitrant pool
named “humus” (H) (Figure 1). The five pools differ specific mass loss rates and mass

O 00 N O

flows among them. Some mass flows correspond tpr€l@ase (microbial respiration). The
10 mean residence time of carbon in these pools véoes several months (i.e., water soluble
11  compounds, W), a few years (i.e., acid-hydrolysatdenpounds, A; non-polar solvent,
12 ethanol or dichloromethane compounds, E), seveeshdes (i.e., non-soluble and non-
13 hydrolyzable compounds, N), or even several cegdufie., H).

14 Mathematically, the kernel equation of YassoO7 lmanvritten as follows:

15 X(t) = AK(O)X(®) + I(t) (Eq. 1a)
16  where, symbols in capital letters in bold denotkegivectors or matrices whilst those in small
17  letters in parentheses denote scal¥@) andX(t) are vectors describing the masses of the
18 five carbon pools (A, W, E, N, H) and carbon masanges in soil at timez), respectively;

19 A, is mass flow matrix describing carbon allocationoag pools;K(c) is decomposition

20 matrix describing the decomposition rates as atfonof climatic conditionsd); | (t) is litter

21 input to the soil, with the last element equal t@® “H” does not exist in litters. (Eg. 1a) can

22 be expressed in a more detailed form:

dx,/0t -1 Pwos Pesa Pyoa O ky 0 0 0 O X4 I
Oxy /0L Pasw —1  Peow Pyow 0O 0 ky 0 0 O Xy By
dxp /Ot |=| Pase DPw—r -1 pysp O 0 0 kg O 0 Xp |+ | I
Axy /0t Pasn Pw—n Pe-n —1 0 0 0 0 ky O Xy T
Oxy/0t/ \Pasg Pw-n Pe-# Pnv-g —1/ N0 0 0 0 ky/ \¥m 0

23
24 (Eq. 1b)

25  where,pp_r is the relative mass flow parameters between twasspdromF to T; F and T
26  can be any two pools in A, W, E, N and H) in thé @mensionlessp,_ €[0, 1]).
27  Temperature and precipitation are supposed nofféctahe mass flowg, but influence the

28 mass loss ratdg (i = A, W, E, N or H) according to:
29 ki(c) = a;exp(BiT + ,T?)[1 — exp(yF)] (Ea. 2)
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where,q; is the mass loss rate parameter of the chemialipg,, §, andy are parameters
related to temperaturd,(in °C) and precipitation?j, in mm).

To consider the effect of litter size on the decosifion rate of littersk; was multiplied by a
litter size factor lfs), which allows making the distinction between eli#int types of litters,
e.g. foliage, coarse woody, stem etc., which diffesiameterd, in mm):

hs(d) = min{(1 + ¢,d + ¢,d?)", 1} (Ea. 3)
where,p;, @, andr are parameters related to litter size.

Yasso07 has 44 parameters calibrated using theadMathkain Monte Carlo (MCMC) method
with the Metropolis-Hastings algorithm (Tuomi et,&011a). Currently, several calibrated
parameter sets for YassoQ7 are available, inclutliegtwo most recent sets published by
Tuomi et al. (2011) and Rantakari et al. (2012)this present study, the Tuomi 2011 set was
chosen to fit the RENECOFOR dataset containingouariforest species, as it had been
calibrated using a wider range of observed foliage root decomposition data. The Tuomi
2011 set was calibrated using a combination ofetlsi@urces of dataset: (i) a global dataset
(n >9000) of litterbags for mass loss of non-woodietts from approximately 100 sites in
Europe, Northern and Central America. These sitesred a wide range of climate and soil
conditions, forest types and tree species; (iiqtaset 1§ > 2000) of mass loss of decomposing
woody litter measured in Northern Europe; (iii) rme@ed accumulation rate of soil carbon
pools of forest sites along a 5300 year soil chseqaence in southern Finland, for
determining the residence time of the H carbon .pbloé Tuomi 2011 parameter set contains
10000 parameter vectors (each vector containsdhes of all the 44 Yasso07 parameters),

which are randomly generated to take into accowthsistic effect.

2.2 RENECOFOR network

The RENECOFOR network is part of the Level Il netiwof the International Cooperative
Program on Assessment and Monitoring of Air PadintEffects on Forests (ICP Forest). The
used 101 sites (Fig. 2) cover almost all the mashroon types of forest ecosystems in
France, including even-aged forests in plain goge plantations and uneven-aged mountain
forests. They also cover the majority of tree spedn France and central Europe, including
Quercus robur. Quercus petraea, Pseudotsuga Menziesii, Picea abies, Fagus sylvatica, Pinus
pinaster, Pinus sylvestris and Abies alba. At each site, annual forest woody and non-woody
litter quantities have been either directly meaduog estimated based on the existing

dendrometric data.
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2.2.1 Soil carbon data

At each site, soil carbon stocks were measuredetwith an interval of approximately 15
years (1993 — 95 for the first assessment and 2007 for the second one). The temporal
evolution of soil carbon stocks was analyzed byaddmet al. (2017). At each site and for each
assessment, soils were sampled from five pointsctl in each of the five subplots and
divided into layers until a depth of 0.4 m, inclagiboth organic layer and mineral soil layers;
composite samples were produced for each layersabglot, and analyzed for mass, bulk
density and soil organic carbon. Table 2 providegrahesis of the data source for each of the
101 sites of the RENECOFOR network (URL:
http://www.onf.fr/renecofor/sommaire/renecofor/ras£0090119-130815-
828957/@@index.html). More detailed information atb@ach site and soil sampling

procedure is available in Supplementary Mater{@lable S1) and Jonard et al. (2017).

2.2.2 Climate data

Necessary climate data required by YassoO7 incladesial mean precipitation (mm) and
annual maximum, mean and minimum temperature (FG3se measured data were obtained
from the nearest national meteorological stations f oMétéo-France
(http://www.meteofrance.com) for each RENECOFOR.sit

2.3 Litter quantity

Litter input (in tC ha yr') comes from several sources (Table 2) as folldg conversion
factor between biomass (dry matter) and carbonasasmed to be 0.5 (Thomas and Martin,
2012).

Aboveground litter input from living trees, inclundj leaves for broadleaves and needles for
conifers, small branches, fruits and miscellanefaig., flower, bud etc.). Aboveground
litterfall mass was annually measured between E3@412008. For sites where litter quantity
data from 1992 — 1993 and 2009 — 2012 were lackirgyused mean litter quantity of all the
other years of the same site. The observed bramehirs this category is below 2 cm (fine
branches). Branches and stems bigger than 2 cntodoatural mortality should be rare (as
some of them can be salvaged) and thus were riatied.

Woody residues due to harvest or storms were efgiman the basis of repeated stand
inventory data and species specific height-girtth biomass. Coarse woody litter inputs from
harvesting residues or storms were estimated fidhirfventories performed by ONF since

1991. Missing years of litter input of this categare gap-filled using the average over the
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period. On average 3 years are missing per sitéhleué are high differences amongst sites.
The mode is one year, and 6 sites have 10-11 rgissars. These residuals are assumed to
be coarse branches (> 4 cm in diameter, confirmiéfd @NF) as a function of aboveground
tree characteristics. Litter input from stems weeéto 0, since in most cases stemwood was
removed from the site after storm damage. Littputrfrom coarse woody roots is considered
to be equal to total root biomass, which could s&neated using meta-analysis based
allometric equations proposed by Cairns et al. {199ore detailed information about forest
inventories and storm events occurring at eachisitailable in Supplementary Material |
(Table S1). Litter input from fine roots (here aefil as roots ok 5 mm in diameter),
especially those finest ones with diamet@ mm, can significantly contribute to carbon
sequestration in soils (Brunner et al., 2013; Kégehbner et al., 2002; Berg and
McClaugherty, 2008). Fine root litter was supposedde proportional to that of foliage,
which was measured on the RENECOFOR sites. Jortaatl €2017) suggested using the
generic equation published by Raich and Nadelhdffé89) and, simultaneously, adopting
the hypothesis that fine root litter production esmnts about one third of the carbon
allocated to roots (Nadelhoffer and Raich, 1992):

Itine root = 0.333 X (1.92 x (100 x Itoliage) + 130) x 0.01 (Eq. 4)
Where,lrine roor @NdIr4iq4e are litter input of fine root and foliage, respeely (in tC ha*
year?).

However, the relationship between fine root anéaf@ litter inputs can be highly variable as
a function of tree species, stand characteristidsciimate (Raich and Nadelhoffer, 2007) and
such variability may not be represented in the gereguation. Therefore, here we estimated
litter input for Yasso07 simulations using fine réaliage ratios ranging from 0.1 to 4.0.
Based on a sensitivity an analysis on the effedinef root:foliage ratio, we found that ratios
of 0.1 for broadleaves and 1.9 for conifers achietlee best fit between simulated and
observed soil C stock changes (Fig. S1). We dectdefix such ratio at 1.0 for all the
modelling and simulation work, because the use .0f () achieved a slightly worst, but
comparable model fit for both broadleaved and @onifs sites (Fig. S1); (ii) coincidentally
corresponded to the median (1.0) and mean (1.Ql)-ratios calculated using Raich and
Nadelhoffer (1989)'s equation (Eq. (4)) over ale tRENECOFOR sites (Fig. S2) and (iii)
facilitate computation and comparisons betweers diiffering in dominant tree functional

types.

10
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1  24Litter carbon quality

There are no measured data of litter carbon qualifined as composition of litter carbon
belonging to different carbon pools (A, W, E and M) the RENECOFOR network.

Therefore, we carried out a meta-analysis on the dallected in literature where authors

A~ W N

(6]

measured litter carbon quality via chemical fragitig procedures or near-infrared
spectroscopy (NIRS) techniques. This data collacti@s restricted to non-tropical areas.
Chemical data on litters of tree coarse organs. @sms, coarse branches) are relatively

scanty, so we used tree stemwood data compiledtierBen (1984), Rowell et al., (2005) and

O 00 N O

Rowell (2012). Assembly of these works covers aewihge of temperate tree species from
10  North America, Japan and Russia, but no data aa#ahle for Europe. Data on foliage and
11  root litter carbon quality were manually searchednf either networks, e.g. CIDET
12 (Trofymow et al., 1998) and LIDET
13 (http://andrewsforest.oregonstate.edu/researchgitgdidet.htm) or independent studies in

14  northern hemisphere, including Europe. The datalfas¢he meta-analysis is available in
15  Supplementary Material Il. Root diameter or branghorder can play a significant role in
16  modifying the composition of the chemical compouriBahay et al., 1988; Tingey et al.,
17 2003; Guo et al., 2004). All the measurements o@ilin the meta-analysis on roots refer to
18 fine roots (diameter < 5.0 mm), although in sevstatlies, e.g. Aber et al. (1990), Aulen et
19 al. (2011) and Stump and Binkley (1993), root sizs not clearly indicated. Yet, we still
20 included the data from these above studies, adahlmiroot data are less abundant than
21 foliage. The collected coarse roots data in liteatwere too few for a meaningful meta-
22 analysis and thus values for stemwood were usegads

23 We then used the litter carbon quality databasessign the quality of litter input of each site
24 of our study. Partitioning of litter inputs in bimemical classes respects the following order of
25  priority: (i) values for the target species, wheaiible in the database (ii) mean values of the
26  species from the same genus, if data for the tameties are absent, and (iii) mean values of
27 the species from the same tree functional type if@snversus broadleaves), if data are

28 available at neither species nor genus level target species (see Table 1).

29 2.5 Initialization of soil carbon quality

30 To calculate steady-state carbon stock, we useahalytical approach on the basis of (Eq. 1a).

31 At steady-state carbon stodk=(ts), carbon gain is equal to carbon loss. Setkifig) = 0,

32 (Eq. 1a) becomes:

33 A,K(c)X(ty) +1(t,) =0 (Eq. 5)

11
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Solving (Eqg. 5), we obtained steady-state carbocksat timets: X (t,):

X(ts) = —(ApK(c) U (t,) (Eq. 6)
Wherel(t,) is a constant vector.

This steady-state carbon stock (tC*havas only used to calculate the soil carbon qualit
distribution, here defined as the composition df sarbon pools (A, W, E, N and H). Such
calculation was performed for each site and foheandomly chosen Yasso07 parameter
vector (see Sect. 2.7). Regarding the initial sailbon quantity, we used the measured one
during the first period of assessment of the RENEOR network. Measurement
uncertainties of soil carbon quantity were not adered as a source of stochastic effect when
Yasso07 was fed, as we were more interested inutput uncertainties related to the model
per se (i.e., the choice of model parameter set)tlaat of root:foliage ratios, on which huge

knowledge gaps in ecology still exist.

2.6 Senditivity analyses of litter and soil carbon pool composition

To assess the effects of initial litter and soilbom quality on model outputs, we conducted

two modules of sensitivity analyses differing (betow).

2.6.1 Modulel - Effect of litter carbon quality on steady-state carbon stock

First, we investigated the effect of all the theioed possibilities of litter carbon quality on
steady-state carbon quality. For this, we permthedcarbon percentage in each pool with the
following constraint: the minimal and maximum perges are 5 and 85%, respectively (In
permutations, the unitary increment or decrememiash pool is + 5 %).

Second, we investigated the impact of tree funefidype on the steady state of soil carbon
quality. For this, we used the mean and standavihtien of broadleaved and coniferous
litter carbon quality calculated from the meta-gsi in Sect. 2.4. To only focus on the effect
of litter carbon quality, the litter quantity waket same for broadleaves and conifers.
Outcomes were calculated using the matrix methatkdtin Sect. 2.5 and the Tuomi-2011
parameter set. Possible correlations between A,BANand N were not considered in

simulations.

2.6.2Modulell - Effect of initial soil carbon quality and simulation length on final soil carbon stock

With a fixed initial soil carbon stock, we carriedt simulations on both the effect of initial
soil carbon quality and that of simulation lengthfmal soil carbon quantity and quality. For

this, we permuted the initial percentage of chehpomls with the following constraint: the
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minimal and maximum percentages are 5% and 80%pectsely. For the effect of

simulation length, we used 1 to 10000 years foheammbination of soil carbon quality

distribution. We created a virtual site where tHienatic condition and litter input were
constant and equal to the average value of all@esites. For carbon dynamics analysis, the
initial carbon stock was fixed to 100 tC “hand this quantity is in the same order of
magnitude of all the measured carbon stocks. Regatte setting of litter input during the
simulation length, the following two scenarios weested:

S1: mean broadleaved litter carbon quality (obthifrem the meta-analysis, idem for the
other scenarios) and mean litter input quantityalbthe broadleaves dominated sites (of
the RENECOFOR network, idem for the other scengrios

S2: mean coniferous litter carbon quality and maer input quantity of all the conifers
dominated sites.

In the present paper, only the results of S1 aesgmted, as results between conifers and

broadleaves did not change much, especially in teng.

2.7 Running Yasso07 and statistical analyses

We used the same FORTRAN code of the Yasso07 vetsibl used in Didion et al. (2014)
for all the model simulations. For each analysesthbRENECOFOR site specific and
sensitivity analyses), we conducted 10 simulatiom&ach simulation, one parameter vector
was randomly chosen from the 10 000 parameter r&cto

For each site, we calculated annual carbon stoakggs (ACC, in tC hhyeat'), i.e., the
difference of carbon stock between the two natiomaéntories standardized by the temporal
interval ¢; - t;) as follows:

{ACCobs = (Csobs,tz - Csobs,tl)/(tz - tl)
ACCsim = (CSsim,tZ - CSobs,tl)/(tZ - t1)

Where,CSgim 2, CSopst2 aNACS,ps 1 are the simulated carbon stock at the ygambserved

(Ea. 7)

carbon stock at the yesrandt;, which are around the year of 1994 and 2010 depgrah
each site, respectively. In simulations, while obed soil carbon stock df was used as
input, soil carbon quality at steady state achiebgdthe analytical matrix transformation
approach (see Sect. 2.5) was used.

Two reasons account for our preference of compaki@Gsm with ACCyps Over comparing
CSsim 2 With CS, 5. First, the parameter sets of Yasso07 were cédibréor a maximum
soil depth of 1.0 m, while carbon stocks at the EEMDFOR sites were only estimated down

to 0.4 m. It is thus reasonable to speculate thatdbserved carbon stock data are not

13
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comparable with Yasso07 estimates. However, fogusimcarbon changes instead of carbon
stocks may largely erase this bias, because prevétudies have evidenced that carbon
dynamics are much less active at deep soil layens &t superficial layers (Balesdent et al.,
submitted). Second, ACC indicates if a site is ig@nor losing soil carbon and this
information is sometimes more important than the'sicarbon stock value. Using a
standardized metric (by year) such as ACC can fasilitate result comparison for future
studies. The only exception came to the sensitaitglysis on the effect of initial soil carbon
quality (Sect. 2.6.2), in which we showéS;,, ., instead ofACCgp, as the initial soil carbon
stock was fixed at 100 tC Ha

In order to test the performance of YassoO7 inmeting soil carbon changes at the
RENECOFOR sites, we analyzed the residuals of cachanges, i.e. difference between the
simulated and observed values, using analysis oian@e (ANOVA). The following
environmental and biological factors were testeite geographical location (latitude,
longitude, and altitude), climatic conditions (teeniture and precipitation), soil types, tree
functional type and tree species. Before each ANQWVétested the normality of data using a
Shapiro — Wilk test. For the sensitivity analyse®, performed loess regressions (Fox and
Weisberg, 2011) to characterize the variation @f sarbon stock as a function of initial soil
carbon stock settings and simulation length (1 ©0D0years). Statistical analyses were
performed using R 2.13.0 (R Core Team, 2013).

14
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3 Results

3.1 Litter carbon quality of northern temperate tree species

Our meta-analysis (Fig. 3) showed that the lit@bon quality, i.e., carbon composition, of
northern temperate tree species significantly diffebetween tree organs. For woody litters
(only using stem data) the percentage of A carlmi attained up to 80% of the total carbon
pool; the sum of A and N carbon pools took at least5% and, in most cases, >90%,
rendering small percentages of W and E (Fig. 3a\kextheless, this dominance of A and N
over W and E was much less pronounced in foliage ot litters (Figs. 3b and 3c).
Generally, the different tree organs can be rardambrding to the sum of the proportions of
A and N as follows: wood (>90%) > roots (70 — 80%pliage (60 — 70%, Fig. 3d).

The effect of tree functional type on litter carbaqumality strongly interacted with that of tree
organs. For wood, broadleaves and conifers hadrlgleshifted point clouds for the
relationship between A and N carbon pools: greateportion of A, but lower proportion of
N in broadleaves compared to those in coniferdoliage and root litter, the effect of tree
functional type on proportions of A and W was I@ssnounced than in wood. The main
difference between broadleaves and conifers oatuimeN rather than in A (Fig. 3d).
Broadleaves litter had lower proportion of N thamiders litter regardless of tree organ (Fig.
3d). The proportions of A and N relative to thogeEoand W were quite stable between

broadleaves and conifers regardless of tree on@ags3d).

3.2 Smulated versus observed data of carbon changes

The choice of fine root:foliage ratio significantipfluenced Yasso07’'s performance in
predicting soil C changes (Fig. S1). Based on tfter@m of minimum root mean square error
(RMSE), the ideal ratio for conifers appeared betwé&.8 and 2.2, while the ideal ratio for
broadleaves was the smallest ratio tested (0.1).

When simulated annual carbon stock changes wetteglagainst observed ones, the point
clouds were distributed around the 1:1 diagona Liespite fairly high dispersion (Fig. 4).
The correlation between predicted and measured feB@ined weak (R2 < 0.1). The mean
observed and simulated annual carbon stock cha@ges) of all sites are +0.34 + 0.06 tC
ha® year* (+0.20 + 0.06 tC hayear" for broadleaves dominated sites and +0.48 + OC10 t
ha year" for conifers dominated sites) and +0.45+ 0.09 & yeaf* (+0.96 + 0.10 tC ha
year! for broadleaves dominated sites and -0.05 + 0C1B&" yeaf* for conifers dominated

sites), respectively. 48% of broadleaves dominées and 39% of conifers dominant sites
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showed significant differences between observedsimdlated ACC (Fig. 4a). In only c.a.
25% of the sites, ACC were significantly differdrmm 0 for both simulated and observed
results (i.e. the case 3 in Fig. 4b). There isgaicant effect of the tree functional type on
the observed and simulated values. The model tendlenverestimate the carbon stock
changes at broadleaves dominated sites but to estdeate the carbon stock changes at
conifers dominated sites. The quantity of sitesvitich estimates and observed carbon stock
changes share the same tendency (i.e. data poitke izone |, 1V, lll and VI, Fig. 4) was
approximately two thirds of the total sites. c.aedhird of sites are in the remaining zones
(I, and V) where the predicted tendency was contia the observed tendency.

The simulated carbon stock changes exhibited ativegiinear relationship with the initial
soil carbon stock (Fig. 5b), whereas this tendemag not observed for the observed carbon
stock changes (Fig. 5a). Storm damage and soil ¢gpdéd not provide clear tendencies in
explaining the residuals. Only for conifer dominagites, residuals showed significantly
differences among the three major types of soibf(sites >5): cambisol > luvisol > podzol
(Fig. S3). Tree ages in conifers dominant sitesl tienbe smaller than those in broadleaves.
When considering both tree functional types ane tages, neither the latter nor their
interaction had a significant effect on residuaiith all sites together, residuals become
higher with increasing latitude, indicating thamsiated ACC was more overestimated in
northern zones (ANCOVA, F = 14.9<0.001). This pattern was particularly strong for
broadleaves dominated sites, with the exceptioseuéral ones in Pyrenees Mountains (Fig.
S4a). Yet, this tendency was not clear for coniemminant sites (Fig. S4e). Identical residual
sign is generally present in clusters in all of thain species (Fig. S4b, S4c, S4d, S4f, S4g
and S4h). Broadleaves and conifers dominated gitffered in their responses to
environmental factors: for conifers, both tempemtand precipitation had no effect on
residuals (Fig. S5a), whilst for broadleaves, miafion was negatively correlated with
residuals (ANCOVA, F = 7.1 R<0.001, Fig. S5b).

3.3 Effect of litter carbon quality on model prediction (Sensitivity analyses 2.6.1)

Variation of litter carbon quality (without distition of original organ) altered the steady-
state distribution of soil carbon pools (Fig. 6heTcarbon belonging to soil A, W and E
carbon pools remained below 15%, whatever the limistry of litter inputs. The
percentages of soil N and H were more susceptiblbe variation of litter carbon quality.
The size of soil N and H always varied between 28% 65% of, whenever the pools in litter
varied from 5% to 80% (Fig. 6).
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The strong sensitivity of the carbon steady stag&ridution to litter carbon quality wade

facto greatly discounted in reality, because the vammiin chemical composition of tree
species was very limited (Fig. 3). Using averagmpaositions of broadleaves and conifers
species, we found that, at the steady state, thedHcontains 30 — 40% of soil carbon, the N
pool 45 to 55 %, the A pool <5% and W and E pod8e<Fig. 7). Broadleaves dominated
sites differed from conifers dominated sites withlightly lower percentage N-carbon in the

steady-state soil carbon stock, but a higher p&agenof H-carbon (Fig. 7).

3.4 Impact of initial condition of soil carbon stock on model prediction (Sensitivity analyses 2.6.2)

Fig. 8 obtained from the sensitivity analysis vigex all the theoretically possible final
carbon stocks by varying initial carbon stocks amdulation length (from 1 to 10 000 years).
The initial soil carbon quality had a pronouncegautt on the final soil organic carbon stocks
(including both total stock and stocks in each dicafrpools) at annual and decennial scales.
For example, when the initial proportion of A pdakreased from 0 to 80%, the final
proportion of A could increase by +30 to +40 tC'IfRig. 8a) and the final total carbon stock
could decrease by c.a. -20 to -30 tC'(kég. 8u) at annual (i.e., axis log(Year) = 0) and
decennial (i.e., axis log(Year) = 1) scales. Wherutations were performed over millennium
timescale, the initial soil carbon quality did notpact the final soil carbon quality anymore.
In other words, the same final soil carbon qualigs obtained regardless what the initial soil
quality was (Fig. 8). The final stocks of A and then of W and E were generally much less
sensitive to the variations of initial soil carbguoality than did the final stocks of N and H

(Fig. 8, the T'and 2% rows versus the3and 4" rows).
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4 Discussion

4.1 Agreement between simulated and observed annual soil carbon stock changes

Testing widely popularized soil carbon models udarge dataset is highly meaningful work
that enables not only assessing the model’s alailigr various climatic and ecosystem types,
but also providing lessons and implications foufatmodelling work. Here, based on the on
average 15 year interval between the measuremérntgoosoil carbon stock change at the
RENECOFOR site, the simulated annual carbon stbelges (ACC) using Yasso07 were
significantly biased for more than one third of fiench RENECOFOR sites. Particularly,
Yasso07 generally overestimated the ACC at thedbeases dominated sites located in the
north of France (Fig. 6a-d) and the overestimatan be exacerbated with lower
precipitation. We would expect slightly better perhance of Yasso07 at conifers dominated
sites than at the broadleaves dominated ones, #iecmodel's estimates have shown good
correspondence to measurements (of stocks andéoigek) in coniferous forests, especially
the Nordic boreal ones (e.g., Karhu et al., 201&izCt al., 2013). Yet, Yasso07 tended to
underestimate the ACC at conifers dominant sitesceft for tree functional type and
geographical location (e.g. latitude), ecologicatiables that are assumed as key factors
influencing carbon sequestration processes, eif.tygme (except for conifers dominated
sites), storm damage and stand age, did not shear téndencies in explaining residuals.
Note that those factors were not fully crossedhim 101 sites, rendering testing each signer
factor difficult. The simulated ACC showed stronglggative correlation with the initial soil
carbon stock which was served as input in Yassé8g. 6). Such phenomenon can be
logically explained by the model mechanism: witbreasing initial carbon stock, there is also
an increase in the quantity of those easily decaaiple compounds, i.e. A, W and E, in soil,
which triggers a more substantial mass loss inféHewing years. However, the observed
data on carbon stock changes did not support thielf suggesting that initial soil carbon
pool size is not a controlling factor for soil carbaccumulation at these sites.

Despite Yasso0Q7’s significant prediction bias atienber of sites, it is unreasonable to simply
attribute the bias to the modpér se, as multiple uncertainties affecting the qualifytioe
model’s input data can be identified (see Secs—44.4). These uncertainties can occur not
only with Yasso07, but also with other prevailingaels one may choose, highlighting large

knowledge gaps in ecology and soil carbon modelling
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4.2 Soil carbon quality: arecurrent challengein soil carbon modelling

A great uncertainty is associated with the modiliization of soil carbon quality, as it was
not measured, but obtained by matrix inversion li assumption that the litter input has
been the same for decades. Compared to totalabibe stock, measuring soil carbon quality
is much labour intensive and time-consuming. Moegpwdata of soil carbon quality from
different sources are sometimes incompatible ooritarable due to the use of different
chemical pools or protocols of fractionation (Bleitral., 1995). Therefore, measured data of
soil carbon quality are generally lacking at worldevscale. Such lack of information is a
recurrent issue for soil carbon dynamics modelgeg (Elliot et al. (1996), who has discussed
the issue of “Measuring the modelable”). Nearlyth# existing soil carbon models require
setting carbon quality besides carbon quantity,, &gmul (Chertov et al., 2001), RothC
(Coleman and Jenkinson, 1996), CENTURY versiondoRaet al., 1987; Metherell et al.,
1993, CBM-CFS3 (Kurz et al., 2009). Inappropriagéting of carbon quality in models may
greatly change carbon stock predicts (Wutzler aaith®tein, 2007; Carvalhais et al., 2008;
2010).

In the present study, soil carbon quality data weravailable at the French RENECOFOR
sites. As a result, we used the simulated carbalitgat steady-state to feed Yasso07. This is
a strong, but widely adopted hypothesis in soiboarmodelling work (Foereid et al., 2012).
In order to know YassoQ7’s sensitivity to initiabils carbon quality, we conducted a
sensitivity analysis that computed the final sodrton stocks using all the possible
combinations of the composition of chemical podlsis sensitivity analysis confirmed the
high influence of initial soil carbon quality onikoarbon stock estimates (Fig. 8), notably at
short temporal scales (i.e., yearly and decennidi)s result is in line with the previous
carbon stock modelling studies (Parton et al., 19G3ly et al., 1997; Smith et al., 2009;
Foereid et al., 2012), confirming that it is a geh@roblem for all of the chemical pool based
carbon models. Besides this consensus, our setysénalysis further showed that such effect
of initial composition carbon stocks will graduallgnish with increasing length of simulation
and especially when the length is up to severatuces or millenniums. Our analysis
provides new insights on the sensitivity of modstireated carbon stocks to the method and
assumptions used in model initialization. Such ysial can be transplanted to the other
carbon models to test their theoretical performaarue robustness of each model at different
temporal scales and also, to compare models als@sworthwhile to mention that Yasso07's
particular model configuration, i.e. the use of mgable chemical pools, may open the
possibility of using measured datd soil carbon quality for model initialization iread of
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simulated steady-state ones. Future measuremestslararbon quality of the RENECOFOR
sites may offer an ideal opportunity to compareithpact of the two sources of soil carbon

quality on Yasso07’s predictions.

4.3 A precise estimation of root litter quantity may greatly improve YassoO7 prediction

An important source of uncertainty in the estimatéditter quantity at the RENECOFOR
sites was the fine root litter input. Many studies/e revealed that fine roots act as a major
source contributing to total litter quantity duetheir fast turnover rates (Brunner et al., 2013;
Kogel-Knabner et al., 2002; Berg and McClaughe2§08). In some forest ecosystems, the
proportion of fine root litter is even comparaldethhat of foliage (Freschet et al., 2013; Xia et
al. 2015). However, estimating fine root litter untp is, again, a time-consuming and
challenging task. Due to this reason, so far ranelye national wide forest inventory projects
ever incorporated direct measurement of the dyraofid¢ine root litter input (i.e. the case of
RENECOFOR network). Fine root turn-overs of forgptcies are variable depending on
climate, tree species and management scenarioeikdgbner et al., 2002; Litton et al.,
2003; Mokany et al., 2006), rending the choice afdel input values highly subjective and
difficult. By testing variable fine root:foliage tras of litter input, we observed a significant
shift in the predicted carbon stock changes by d@Bs(Fig. S1). This finding not only
highlights the importance of precisely quantificatiof fine root litter input, but also suggests
that broadleaves and conifers may have separagatification of fine root litter input with
regard to that of foliage, although here we chdse dame ratio for both broadleaves and
conifers dominant sites. We also noted that usimg ratio per tree functional type (conifers
versus broadleaves) could only change the overatligtion baseline, but cannot reduce the
data dispersion. Consequently, it is of great ggketo estimate root litter input quantity at
species level on the basis of direct measuremehtream couple specific data with Yasso07.
Another potentially important litter inputs may cenfrom the understory shrubby and
herbaceous species, which were not taken into at@ouhis study due to data unavailability.
Herb and shrub layer are typically not estimatefbiest inventories but they can contribute
significantly to the annual litter production inrésts (eg. de Wit et al. 2006, Gilliam 2007,
Lehtonen et al. 2016). Muukkonen and Méakipaa (2@mated that the carbon inputs from
herb and shrub vegetation in Finnish forests weréhé range of 0.50 to 0.66 tC hgear.
Such value is apparently high, as it attains 1228% of the mean total tree litter inputs of all
the RENECOFOR sites (Table 1). This is in line whlbk preliminary data from Etzold et al.
(2014), who suggested that understory vegetatiotriboted c.a. 12% (0.1 to 36.8%) to the
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total observed annual C turnover at six sites ef ltbng-term Forest Ecosystem Research
Programme LWF (ICP-Level Il plots).

Also, Yasso07's parameter set was calibrated usiregof the richest litterbag datasets in the
world in terms of number of observation. The staft¢he-art of soil carbon modeling is based
on the litter input and decomposition processesthes driving forces in soil carbon
accumulation where measured mass loss of litteusisd to fit model parameters. Our
knowledge on the importance of other sources dbbioal carbon input, e.g. soil fauna and
rhizodepostion, as well as how to take them intmant in modelling processes still remains
poor. Accordingly, whether and to which extent thias of Yasso07 is related to these

alternative sources of biological carbon inputi&nown.

4.4 Limited but potentially strong effect of litter carbon quality on Yasso07 prediction

Litter carbon quality, especially the content dfeli carbon in the N carbon pool, controls the
bulk litter decomposition rate and this has beeti-krwn (De Deyn et al., 2008). Indeed,
the meta-analysis (Fig. 3) confirmed the significdisparity of carbon allocation between
broadleaves and conifers litter in all the investiigl organs. However, little has been known
about how this disparity of litter carbon qualitgttveen broadleaves and conifers dominated
sites will be projected into the long-term prediatiof soil carbon stock. Our sensitivity
analysis Module | (Sect. 2.6.1) with Yasso07 showedenerally limited impact of such
disparity on the soil carbon quality of steadyest@tig. 6) and this impact only occurred in N
and H pools (Fig. 7). Litter carbon quality seemb¢ a less important factor determining the
model predictions via affecting soil stock initiediion. This is especially true for the three
more labile carbon pools (i.e. A, W and E) and rtheean residence time has quite low
disparity between themselves (Fig. 1). This seemmdre or less weaken the meaningfulness
of splitting litter and soil labile carbon compownidto the three carbon pools (A, W and E) in
YassoO07.

4.5 Suggestions for model improvement in the future

First of all, we found the model structure and alhon good, clear and simple to operate and
this goes along well with the positive remarks tmiv&asso and YassoO7 in literature

(Rantakari et al., 2012; Didion et al., 2014; Luaét 2015; Wu et al., 2015). Fig. 1 only

showed the mass flows that are statistically sigaift for the case of using the Tuomi 2011
parameter set. Yasso07 keeps all the theoreticas rilew possibilities in theé\, matrix in

(Eqg. 1b). However, a mass flow parameter with &istteal significance does not signify that
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it is biologically meaningful. For this we can qadhe flow N> A of the model (Fig. 1), for
which the modeler had assigned an astonishingly higrcentagepy_ 4 = 83%. This
guantity is disputable in the angle of soil bioclsny, because as lignin, i.e. the major
component constituting the N carbon pool, likelyeslanot turn into the A pool, but would
condense with other nearby phenol, peptides othsaictes (Burns et al., 2013).

As a model aiming at predicting soil carbon dynamnitasso07 is still highly simple in the
description of soil variables that are known to ampdecomposition processes in soil, For
example, the effect of soil mineralogy or aggremathave not been considered in Yasso07
yet. Indeed, the model was often applied on saildyfrich in organic matter (e.g., Karhu et
al., 2011), where the consideration of soil mingnalperties was not particularly relevant,
and where the authors’ assumption that litter gtiaist a good proxy for soil properties was
reasonable. In addition, when Yasso, i.e., Yassopitotype, came up in 2005 (Liski et al.,
2005), information on mineral soil properties ire tharious forest soil horizons was not
commonly available, but nowadays it is easier taioht, although there is still a lack of such
detailed data for consistent application acroggelaegions or at the national scale (Didion et
al., 2016).

In spite of the lack of explicit description of kwariables, the framework of Yasso07, based
on a chemical partitioning of soil organic carboptits and pools, holds two advantages: (i) it
enables the measurement of the model pools, gnid diifers a clear structure based on litter
and soil chemistry. These advantages make the napgebpriate for future improvement by
incorporating the most recent findings with regardhe mechanisms on soil organic carbon
dynamics. Indeed, the chemistry of organic sulesdratles the interaction level with mineral
surfaces, and thus the level of protection fromraegtion. It also regulates the interactions

with extracellular enzymes, and thus the soil oigaarbon degradation rates.
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5 Conclusions

We tested the performance of the soil carbon mgeeto07 using the decennial scale French
national wide forest data thank to the RENECOFORvokk, as well as a meta-analysis
database for litter carbon quality and sensitigityalyses to characterize the effect of inputs of
initial litter and soil carbon quality on the modepredicts. We showed that while the
model’s predicts of the annual soil organic carbbanges (ACC) stay within the same order
of magnitude with the observed ones, correlatiomvéen the observed and simulated ACC
remained weak. There was a bias of model predid¢tiothe carbon change tendency at more
than one third of the French sites. The performarfc¥asso07, as well as the other soil
carbon models, should be examined before theiricgimn for management guidelines and
policy-making for forest ecosystems at any studjesc

Such bias can be attributed to multiple reasonseming model input, such as (i) large
uncertainty in the measured soil carbon stock dahges; (ii) lack of information on initial
soil carbon quality at the site level and (iii) kaof information on below ground litter
production. For the latter two aspects, their inigoce was explicitly confirmed by our
sensitivity analyses. These reasons are valid Hervthole state-of-the-art of soil carbon
modelling, regardless of the model that one useseSof the model’'s parameters governing
the transfer among soil pools are statisticallywaer but not directly measured, and thus may
poorly represent the real biochemical processeeodmposition.

These findings allow us to provide a series of sgtigns to modelers, users and policy
makers:

¢ To Yasso07 modelers, we suggest keeping the cumedel structure, algorithm and
parameter natures, but incorporating more refinethes biochemical processes,
including (i) revising certain mass flows to actédwoth statistically and biologically
meaningful process (especially the>NA flow) and (ii) refining decomposition
process (i.e., the residence times between the And\E soil carbon pools).

* To Yasso07 users, we suggest working in conjunatiiih modelers in order to better
reduce the uncertainties in both model initialiaatiof soil carbon stock. We also
suggest using measurement based forest litter oymality and quantity, especially the
belowground fine root litter data.

¢ To policy makers, we suggest keeping prudent towhagnosis from based on a
single carbon model, especially when long termdrenpredicted. Predictions from
multiple models served as a cross-validation promedre preconized for both global

and local scales areas.
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Our decennial observation sites spreading at aelaptial scale that covers different
ecosystems can facilitate and provide good oppitiggrfor future calibration, improvement,
and re-evaluation of the model. Finally, taking ¥@&37 as an example, this work highlighted
both the interest and methodologies of testingather soil carbon models using sensitivity
analyses, which enable us to better understandinttits of the model and of data input for

future improvements in soil organic carbon modellin
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Tables
Func.tional Species Organ Case _\'o.‘ot'obs.' )’Igan (%) _ Sp(%) _
type A W E N A W E N A W E N
Broadleaves Fagus sylvatica L. wood 4 4 4 4 4 745 28 12 215 14 1 05 14
leaf 2 21 1 2 39.6 22.1 12.5 258 35 NA NA 17
root 3 1 9 91 31.5 8.8 186 41.1 NA 12 12 NA
Quercus petraea (Matt.) Liebl. wood 4 19 19 19 19 67.5 6.1 3.5 229 49 23 1.7 226
leaf 4 12 12 12 12 40.8 16.3 14.2 28.7 35 47 93 71
root 5 15 9 915 349 7.6 162 413 8.0 1.1 1.1 10.4
Quercus robur L. wood 4 19 19 19 19 67.5 6.1 3.5 229 49 23 17 26
leaf 2 112 12 1 37.7 21.6 17.3 234 NA 73 73 NA
root 3 1 9 91 28.6 11.1 23.4 369 NA 15 15 NA
Conifers Abies alba Mill. wood 4 14 14 14 14 66.7 2.7 24 282 19 13 08 13
leaf 2 1 6 6 1 32.4 26.4 10.7 305 NA 14 14 NA
root 3 113 13 1 253 19.1 21.5 341 NA 6.2 62 NA
Larix deciduas Mill. wood 4 6 6 6 6 653 59 19 269 32 24 09 15
leaf 2 2 4 4 2 33.3 30.2 10.1 264 25 16 16 7.7
root 3 113 13 1 325 16.2 182 33.1 NA 52 52 NA
Picea abies (L.) H. Karst wood 1 1 1 1 1 69.5 19 1.0 276 NA NA NA NA
leaf 2 1 6 6 1 37.0 29.5 12.0 21.5 NA 22 22 NA
root 3 313 13 3 36.6 14.8 16.6 32.0 7.8 8 48 2
Pseudotsuga menziesii (Mirb.) Franco wood 1 1 1 1 1 65.3 4.0 4.0 26.7 NA NA NA NA
leaf 1 6 6 6 6 36.4 25.1 109 276 6.8 13.1 1.2 63
root 1 2 2 2 2 41.7 169 8.4 33.0 24 55 03 33
Pinus nigravar. corsicana (J.W. Loudon) Hyl.  wood 4 22 22 22 22 66.6 3.3 4.0 26.1 29 15 24 13
leaf 2 12727 1 47.1 15.2 13.8 23.9 NA 63 63 NA
root 4 10 10 10 10 36.0 9.2 11.9 429 49 44 31 73
Pinus pinaster Aiton wood 4 22 22 22 22 66.6 3.3 4.0 26.1 29 15 24 13
leaf 2 12727 1 43.2 182 165 22.1 NA 75 75 NA
root 4 10 10 10 10 36.0 9.2 119 429 49 44 31 73
Pinus sylvestris L. wood 1 1 1 1 1 71.7 09 1.0 264 NA NA NA NA
leaf 1 3 3 3 3 40.7 17.0 16.0 26.3 38 75 65 24
root 2 4 10 10 4 51.2 44 6.0 384 3.7 14 14 45

Table 1 Litter carbon quality of the

species prédanthe French RENCOFOR network

estimated based on literature. In the column “Cassch number corresponds to one case of
data availability in literature: 1- at least oneadet of complete chemical composition (i.e. for
AWEN) exists at species level; 2 - at least onegktt of incomplete chemical composition
(only for A, N and the sum of W and E) exists aedps level; in this case, the mean
proportion of W and E at genus level is used; d-data are available at species level, but at
least one complete dataset of chemical compos#iaists at genus level; 4 - no data are
available at species level, but at least one datfsehemical composition exists at genus
level; in this case, the mean proportion of W arat Eee functional type level is used; 5 — no

data are available at neither species nor genusl, léw this case, the mean AWEN

composition at tree functional type level is usethm Case 1 to 5 is in descending order of

priority.
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Observed litter input quantity Year
{mean = SD, in tC ha'lyr?)
Dasa Zf ¥ ¥ 2 2 £ S5 <2 £ 3 B3 Tz $ogoz
o ] €2 & &8 8 § 8 8 8 & R 8 8 R 8 E & =
(51 sites) (50 sites)
Climate M M M M M M M M M M M M M M M M M
Organic matter inputs via forests
Fruits and miscellansous 036=028 064=041 M M M M M M M
Leaves 1.12=033 128=031 M M M M M M M
Fine branches 020=0.14 045=0.14 M M M M M M M
Coarse wopdy branches® 0.32=0.14 072029 M M M M M M M M M M M M M
Stems* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Coarse woody ropts* 083036 103038 E E E E E E E M M M M M M
Fine ropts. - E E E E E E E
Sol caben stock Ll M
8 Table 2A summary of the data used for Yasso07 simulationthe present study. In the
9 “Year” columns: M - measured data; E - estimateth decording to the measured ones; 0 —
10 noted, but the contribution to litter is ignorabker soil carbon stock measurement, dashed
11 line zones denote the inventory duration. For gar, each symbol (M and E) only account
12 for the general case and hence it is possiblentetsurement was occasionally omitted at
13 some sites. * - litter input caused by harvesttomss were included (once they occurresid
14 - standard deviation; litter inputs are dry matt®®mmeters used for defining each litter type:
15 <2 cm for fine branches, >4 cm for coarse woody tias, > 5 mm for coarse woody roots
16  and<5 mm for fine roots.
17
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3 Figure 1 Partitioning of soil carbon pools in Ya@sdafterTuomi et al., (2011h)Letters: A:
4  hydrolysable in Acid; W: soluble in Water; E: so@bEthanol; N: Non-soluble; H:
5 recalcitrant Humus. Solid arrows represented thieoraflows that are statistically significant
6 from zero. Dashed arrows refer to the carbon flesygard H. Values in each pool is an
7 example inverse of mean residence titik, (n year) estimated using Yasso07 parameters.
8
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1

2 Figure 2 Geographical distribution of the site REENECOFOR network used for testing the
3 performance of Yasso07 (see alemard et al., 2017rorested areas are represented in green.
4  Each circle represents one site; the color reptegbe dominant tree species of the plot. In
5 each pair of parentheses, the species abbreviatioh number of sites by species are
6 indicated.
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2 Figure 3 A meta-analysis of the carbon composifamnorthern temperate tree species:

3 axis represents the percentage of acid-hydrolysadbtgounds (e.g. cellulose, noted by A, in
4 %) andy-axis represent the percentage of non-soluble anehgdrolyzable compround (e.qg.
5 lignin, noted by N, in %). The oblique dashed rieéd notify the sum of A and N, the values
6 of which are shown here. The remaining percentegel00 - A - N, refers to the portion of
7 compounds like non-polar extractives, ethanol dndimmethane (E), or in water (W). (a)
8 Analysis conducted for wood (106 data points fardoiieaves; 79 for conifers), (b) for foliage
9 litter (b, 106 data points for broadleaves; 83donifers) and (c) for root litter (58 data points
10 for broadleaves; 49 for conifers); (d) is a statatsynthesis (symbols — means and error bars
11 - 1.96 * standard error) of wood (W), foliage (Fdaroots (R) in a common coordinates
12 system. Attention to the use of different axis gi@tbns in each plot. Segupplementary
13 Material Il for the data sources. Note the different y-axéesc
14
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2 Figure 4 Comparison between simulated and obsemedal carbon stock changes (ACC, in
3 tha'year'). Round and triangle symbols represent broadleand<conifers dominated sites,
4 respectively. The chosen fine root:foliage ratio froadleaves and conifers is 1.0. To
5 facilitate discussions, we set Roman numbers (I-ddhoting the six zones in which data
6 points are distributed. In (a), error bars represtandard errors; hollow and filled points
7  represents non-significant and significant diffeen between simulated and observed ACC
8 according to t-test (at 95% confidence level). b €ase of significance: 1 — no significant
9 difference from O for neither observed nor simuaf&CC; 2 - a significant difference from 0
10 for either observed or simulated ACC and 3: - anifitpnt difference from 0 for both
11 observed and simulated ACC.
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Figure 5 Observed/{axis, a) and simulated annual change changesi$, b) plotted against
the observed carbon stockdxis) during the first soil carbon stock inventoRegressionsy
=-0.00X + 0.360 (R2 = 0.00) for observed values of broadbs dominated siteg= 0.0004&

+ 0.440 (R2 = -0.02) for observed values of cosifdominated sitey; = -0.02% + 2.881 (R?
= 0.62) for simulated values of broadleaves domsithaitesy = -0.01& + 1.449 (R2 = 0.60)
for simulated values of conifers dominated sites;
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Figure 6 Variation of soil carbon quality at steadgte (y-axis) in response to fully
theoretical permutation of carbon pool compositiofitter. From (a) to (d) — permutations of
proportion of litter A, W, E and N carbon poolsspectively. Outcomes were calculated
using the matrix method. For each permutatiorerlitiput quantity was fixed to a constant.
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2 Figure 7 Sensitivity analysis of the impact ofditsource (broadleaves and conifers differing
3 in litter carbon pool compositions) on soil carkmrality at the theoretical steady state. 1000
4  permutations were performed based on the meantandasd deviation of the percentage of
5 each pool. For each boxplot, the lower and top exfgae box corresponds to the™2&nd

6 75" percentile data points; lower and top bars the Virthin the box represents the median
7  and the hollow points indicate outliers.
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Figure 8 Sensitivity analysis of the impact of aarlpool composition of initial soil C stock
(x-axis (v"), in %) and simulation lengthy4axis (—), in logarithmic years) on final soil
carbon stock Zaxis (1), in tC ha). Here, the results are generated using the mean
broadleaves litter input quantity and quality oé tRENECOFOR sites. Initial soil carbon
stock was fixed to 100 tC HaSubplots in each row show the final stock evolutof one
type of soil carbon pools (i.e. A, W, E, N and Rharticularly, in the 2 row W and E were
combined due to their weak quantities in most afesa Subplots in each column show the
effect of one type of soil chemical groups on thmalf stocks of the five soil carbon pools
(each of them for the first four and the last omethe total stock). In each subplot, a
membrane (with grids for three-dimensional effecpresents the loess fit (polynomial
equation) toz (in tC ha') as a function ok andy; the color of the membrane represent the
relative value ofz (in %), i.e. the proportion of one soil carbon paadthin the total soil
carbon stock. No color is assigned to the membraméke last row, because the relative
value is 100 %. Blue lollipops denote the standirdations of the simulated mean z (on the
membrane surface) given each (X, y) locations, iwfotlow a systematic distribution.
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1 Supplementary Materials

2 Supplementary Materials|: Supplementary tables and figures.

3 Supplementary Materials|l: Database for the meta-analysis of wood and littendcal
composition.
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