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Kurzfassung

Der Mensch hat eine prägende Rolle in der Produktion. Moderne Automatisierungstech-
nik hat schon große Teile der Belegschaft in Fabriken ersetzt. Jedoch gibt es Szenarien,
wo eine Vollautomatisierung nicht realisiert werden kann. Zum Beispiel sind die hohen
Rekonfigurationskosten der sich ständig ändernden Produktionslinien für Unternehmen,
die ein breites Spektrum an Produkten anbieten, oft wirtschaftlich schwer darstellbar.
Des Weiteren gibt es immer noch Aufgaben, wie das Handhaben flexibler Bauteile, die
noch nicht effektiv automatisiert werden können. Erfahrene Werker sind im Gegen-
satz zur Maschine in der Lage, neue Aufgaben in kurzer Zeit zu erlernen. Ausserdem
besitzen sie kognitive und sensormotorische Fähigkeiten, die derzeit von keiner Mas-
chine kopiert werden können. Andererseits stellt der Erhalt der Werkergesundheit eine
Herausforderung dar. Arbeitsbezogene Muskel- und Skelletterkrankungen sind die vor-
wiegende Ursache von Fehltagen bei Werkern. Sie führen zu hohen finanziellen Verlusten
bei Staat und Unternehmen. Eine wesentliche Ursache dieser Erkrankungen ist, dass die
Tätigkeiten das Einnehmen von Zwangshaltungen erfordern.

Aufgrund ihrer großen Bedeutung standen Zwangshaltungen und deren Vermeidung
bereits in der Vergangenheit im wissenschaftlichen Fokus. Bisher vorgestellte Lösungen
führten zu einer signifikanten Verbesserung der Situation. Jedoch ist die Umsetzung der
effektivsten Ansätze aufwändig und schränkt die Flexibilität der Fertigungslinie ein. Mit
anderen Worten: Effektive Lösungen müssen an Tätigkeit und Arbeitsplatz angepasst
werden. Zwar gibt es Lösungsansätze, die sich automatisch an neue Tätigkeiten anpassen
können. Diese sind jedoch wesentlich ineffektiver. In der vorliegenden Arbeit wird dieses
geschilderte Dilemma als ”effectiveness-flexibility trade-off” bezeichnet.

Diese Dissertation versucht den oben beschriebenen Zielkonflikt zu überbrücken. Es
wurde der Working Posture Controller (WPC) vorgestellt. Dieses neuartige Arbeitsmit-
tel imitiert die Tätigkeit von Arbeitsplatzgestaltern. Der WPC bewertet automatisch die
Körperhaltung des Werkers während der Ausführung der Arbeit. Tritt eine ergonomisch
ungünstige Situation auf, schlägt der WPC eine Umgestaltung des Arbeitsplatzes vor,
die dem Werker eine Ausführung der gleichen Tätigkeiten in einer ergonomisch besseren
Haltung ermöglicht. Der eigentliche Umgestaltungsprozess kann dann mittels einer Ak-
torik realisiert werden. In der vorliegenden Arbeit wurden Systemkonzept und Basisal-
gorithmen zur Realisierung eines solchen Systems entwickelt. Im Detail wurden Meth-
oden vorgeschlagen, um automatisch sowohl ergonomische Haltungsbewertungen mit
einer Tiefenkamera durchzuführen als auch diese Haltung durch Umgestaltung des Ar-
beitsplatzes zu optimieren. Da die Rechenzeit nur wenige Sekunden beträgt, kann das
System kurz nach Eintreten der Situation reagieren.

Die Systemkomponenten wurden sowohl individuell als auch in einem Demonstra-
torszenario evaluiert. Experimentelle Untersuchungen haben gezeigt, dass die Ergeb-
nisse der automatischen Haltungsbewertung vergleichbar mit denen der manuellen sind.
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Des Weiteren war die Methode zur automatischen Haltungsoptimierung in der Lage, die
meisten Haltungen mit hoher Belastung in Haltungen mit niedriger Belastung umzuwan-
deln.

Abgesehen von ihrem Einsatz im WPC können die Grundlagenmethoden, die in dieser
Arbeit entwickelt worden sind, auch in anderen Anwendungen im Bereich der Er-
gonomie und Mensch-Roboter-Kollaboration verwendet werden.
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Abstract

The human worker plays a vital role on the production line. Although modern automa-
tion technology has succeeded in replacing much of the workforce in factories, there are
scenarios where full automation cannot be realised. For example, enterprises offering a
broad portfolio of varying products can often not afford the reconfiguration costs of fre-
quently changing manufacturing facilities. Moreover, there are still tasks, such as dealing
with highly flexible workpieces, which cannot be effectively automatised. Experienced
human workers, in contrast to machinery, are able to adapt to new tasks in a short time
and possess cognitive and sensorimotor skills that, at the present time, cannot be im-
itated by machines. However, maintaining the health of the workforce is a challenge.
Work-related musculoskeletal disorders (WMSDs) are the dominant reason for worker
absenteeism, leading to large financial losses for states and companies. One fundamental
risk factor for these disorders is work that requires awkward postures.

For this reason, extensive research has been conducted into preventing awkward postures
in the workplace. The solutions proposed thus far have achieved a significant improve-
ment of the situation. However, implementing the most effectual solutions is labour-
intensive and impairs the flexibility of the production line. In brief, robust solutions must
be individualised to the specific task and workplace. Although there are approaches that
are able to facilitate automatically adapting to new tasks, they are far less effective. In the
present thesis, this dilemma is referred to as the ”effectiveness-flexibility trade-off”.

This thesis strives to bridge this trade-off. Herein, the Working Posture Controller (WPC),
a novel type of equipment that imitates the measures performed by workplace designers,
was proposed. The WPC automatically monitors the worker’s posture when performing
a task at hand. In the case of an ergonomically unfavourable situation, the device pro-
poses a re-adjustment of the workplace layout, enabling the worker to perform the same
task while maintaining an ergonomically superior posture. The actual re-adjustment can
then be realised by an actuator. Here, system concepts and algorithms to produce such a
piece of equipment were developed. In detail, the proposed methods can perform posture
assessments automatically using a depth camera and optimise posture through work-
place layout adjustments. As the computation time needed for these components is just a
few seconds, the system is capable of reacting immediately.

The system components were evaluated in isolation as well as in a demonstrator scenario.
The experiments revealed that the automated posture assessment results were compara-
ble to a manual assessment. Furthermore, the automated posture optimisation was seem-
ingly able to transform most postures with high physical load into low-load postures.

Apart from their role with the WPC, the fundamental algorithms developed in this thesis
can also be applied in other applications in the field of ergonomics and human-robot
collaboration.
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1 Introduction

1.1 Work-related Musculoskeletal Disorders

The human worker has always played and still plays a vital role on the production line.
Despite successes in creating automated systems that are able to outperform humans in
carrying out monotonous and high precision tasks, a fully automated manufacturing sys-
tem is still unthinkable in the majority of cases. In particular, companies with a busi-
ness model that relies on mass customisation face problems replacing the workforce with
technology. The high variance of their products demands a frequent reconfiguration of
the equipment, which is expensive and time-consuming. A skilled worker, in contrast, is
able to adapt to new tasks in a short period of time. In addition to the problem of limited
flexibility, there are tasks which still cannot be automated with today’s technology. The
human being’s sensorimotor skills currently appear irreplaceable.

Although having a skilled workforce is advantageous, maintaining the health of each
employee requires additional investment. One of the most serious occupational health
threats are work-related musculoskeletal disorders (WMSDs). The European Agency for
Safety and Health at Work [14] defines the term musculoskeletal disorders (MSDs) as
”health problems of the locomotor apparatus, i.e., muscles, tendons, the skeleton, car-
tilage, the vascular system, ligaments and nerves”. Work-related or occupational mus-
culoskeletal disorders encompass all MSDs that are caused or worsened by work. The
most commonly affected body regions are the lower back, the neck, the shoulders, the
forearm and the hands. The lower extremities are more rarely involved with a decreased
prevalence in the 20% - 30% range [15].

According to statistics, like those from the ”Fourth European Working Conditions Sur-
vey” [16], WMSDs account for a major proportion of work-related diseases. In a different
study, Punnett and Wegman [15] stated that one-third or more of all registered occupa-
tional diseases in the United States, Japan and Nordic countries are WMSDs. WMSDs
negatively affect both the employee and employer. For the workforce, MSDs results in
figures of work absenteeism higher than any other cause. In Germany, WMSDs are re-
sponsible for almost one-third of yearly absence days [1] (see fig. 1.1). In the EU, the
number of lost days stemming from these disorders is approximately 350 million [7]. As
well, for enterprises, WMSDs incur significant costs. According to Bevan [17], health ex-
penses in the EU are estimated at 240€ billion, which translates to up to 2% of the EU
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GDP. Falck et al. [18] concluded in their study at an automotive factory plant that poor
working conditions led to 3.0 to 3.7 times more quality errors during assembly, which
resulted in 6.5 to 7.9 times higher costs to correct them.

Figure 1.1: Reasons for worker absenteeism in Germany in 2009 according to the German
Public Health Fund (AOK) ordered by prevalence (adapted from Badura et al. [1]).

As a consequence of its significant impact, ergonomists, engineers and physicians have
searched for solutions to reduce the damage caused by WMSDs. Through their work,
significant successes have been achieved. Goggins et al. [5] proposed that on average,
the measures implemented have turned out to cover their total costs in less than one year.
However, effective measures are work intensive and require expertise. Each has to be
tailored specifically to the problem. As an example, Falck et al. [18] put forth that multiple
ergonomists, team leaders, quality engineers, specialist operators and production leaders
have been involved in their ergonomics improvement processes. Small- and medium-
sized enterprises (SMEs) cannot afford such a large number of qualified personnel. Even
if the enterprise possesses the required manpower, improving every process becomes
expensive and time-consuming. The volume of solutions to be created and evaluated
grows exponentially with the number of design options for the solution [19]. To sum up
the problem, effective MSD prevention exists and is in great demand, though its price
cannot be paid by every company.
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1.2 Contribution of this Thesis

Effective WMSD prevention is costly, especially in flexible production scenarios with high
process variety. Recent developments in intelligent systems and computer vision have
opened up opportunities to outsource parts of the tedious work to computers. Such sys-
tems can reduce the required expertise and manpower for WMSD prevention and expe-
dite the measure implementation process.

More precisely, this thesis proposes a system to simplify WMSD prevention. A novel
type of equipment was developed that attempts to automatically reduce posture-related
WMSDs by usage of intelligent sensors and actuators. It was named the Working Posture
Controller (WPC). The WPC continuously monitors the work process and detects situa-
tions where the worker has to adopt unfavourable postures to perform the task at hand.
Upon occurrence of such an ergonomically unfavourable situation, the WPC adjusts the
workplace layout and enables the worker to carry out the same task in an ergonomically
superior posture. As well, this thesis developed the algorithmic framework to realise
such a device.

The innovation of the present work lies in the realisation and integration of two com-
ponents - an automated, marker-less in-process posture assessment algorithm and an
algorithm to automatically adjust the workplace layout. Through its automated pos-
ture assessment and workplace design routines, the WPC attempts to imitate the work
of qualified ergonomists. However, its algorithms were designed in such a way that their
run-time is only a few seconds in total. Thus, the WPC is able accelerate the measure
implementation process, enabling immediate feedback.

To sum up, the scientific contributions of this thesis are:

• The concept for a novel type of manufacturing equipment to prevent posture-
related WMSDs was proposed.

• A posture assessment method was put forth that is able to provide immediate feed-
back.

• A workplace layout optimisation method capable of supplying immediate feedback
was submitted.

1.3 Thesis Outline

To present the own work and scientific results, the following structure has been chosen:
Initially, a summary of the existing solutions to prevent WMSDs is presented. The result
of a literature research demonstrated that there is a scientific gap to be filled - as stated
in the introduction, effective solutions to reduce the impact of WMSDs exist, however,
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they are costly, work-intensive and require a high degree of expert knowledge. This gap
is elaborated on in order to identify specific research goals.

Thereafter, the design of the own solution is outlined. A top-down structure was chosen
to explain the details. First, the overall concept of the solution is described. Specifically,
there is an explanation how to imagine the device and why it was designed in a particular
way. Next, the technical details are covered. Technologically, the solution consists of two
main components, and this is why there are two chapters on them. Having explained the
whole concept, including the discrete algorithmic details, the prototypical implementa-
tion is presented.

To show that the final solution fulfils the defined scientific goals, the evaluation methods
and results are presented. Finally, the experimental results obtained are discussed and
conclusions are drawn. Overall, this thesis is structured as follows:

• Chapter 2 provides an overview of the approaches proposed by different research
areas to prevent WMSDs.

• Chapter 3 summarises the state of the art and reveals the need for a novel type of
solution. Moreover, it defines the research questions investigated in this thesis.

• Chapter 4 describes the overall concept of the WPC.

• Chapters 5 and 6 delve into the algorithmic details of each component.

• Chapter 7 covers how a demonstrator system was realised, embodying the WPC
concept.

• Chapter 8 describes the process of creating evaluation data and assessments of the
system and its algorithms.

• Chapter 9 states to what extent the self-given goal has been achieved. Moreover,
it puts forth the strengths and weaknesses of the proposed approach. Finally, the
impact this work potentially has on other fields of research is addressed.
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2 State of the art

This chapter outlines how different areas of research have proposed to approach WMSDs.
It summarises the state of the art methods from different scientific disciplines developed
to detect and prevent WMSDs. In general, the prevention requires two problems to be
solved. The first involves understanding the problems’ source. In this thesis, the causes
of WMSDs are referred to as risk factors. In order to implement effective measures, it
is essential to understand the underlying exposure types, which are often a composition
of different risk factors. This task is also referred as ergonomic assessment. Knowing the
risk factors, one has to choose from a variety of measures to eliminate them. The measures
are addressed in human factors literature as ergonomic interventions. The second part of
the chapter describes the existing manual as well as automated intervention techniques
and presents a way to rank them according to their efficacy. Finally, this chapter presents
studies that have investigated the effects of various ergonomic interventions and their
impact in practice.

2.1 Terminology

Before delving into specific methods, this section introduces terms specifying the words
risk factor and exposure. The terms are used throughout the chapter and sketch the focus
of this thesis. Winkel and Mathiassen [2] mention three types of WMSD risk factors:
physical, psychosocial and individual factors.

The focus here is on physical factors. Most researchers agree that there is a link between
physical exposure at work and WMSD risk [15]. Winkel and Mathiassen [2] stated that
physical factors exercise their effects through mechanical forces from the body. These
forces may then lead to physiological changes. To exactly describe these forces, one
would need to express them as a continuous signal containing the magnitude and direc-
tion of all force vectors (see Figure 2.1a). In practice, this exposure representation would
be too complex. Therefore, the Winkel and Mathiassen [2] proposal was to use a three-
dimensional model to describe the exposure signal (see Fig. 2.1b). The dimensions are
level, repetitiveness and duration. Exposure level refers to magnitude. Repetitiveness
alludes to frequency of level changes. Duration represents the time elapsed during the
exposure. Correctly assessing the physical risk factors necessitates documenting all three
dimensions.
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(a) Physical exposure signal (b) Exposure dimensions

Figure 2.1: Physical exposure dimensions (adapted from Winkel and Mathiassen [2]).

In delving further into physical risk factors, Putz-Anderson et al. [20] mentioned three
different cases: force exertion, monotonous strain and awkward working posture. For
the sake of simplicity, this thesis refers to these risk factors as force, repetition and pos-
ture. The risk factor force is either defined as an external load or as an internal force on
a body structure. This factor especially corresponds to the exposure dimension ”level”.
The authors had noted that forceful work imposes a physical load by abduction, flex-
ion, extension or rotation of muscles and other body structures. Repetition characterises
monotonous strain originating from cyclical work, which involves repetitive movement.
Hence, this risk factor is related to the exposure dimension, ”repetitiveness”. The WMSD
risk is from cyclical flexion, extension, abduction and rotation of muscles and joints. Most
studies consider repetition with concurrent risk factors. Therefore, it shall not be consid-
ered a primary factor, but always in combination with posture or force [20, 21].

The focus of this thesis is on the risk factor, posture. This factor becomes more prominent
when workers adopt awkward static postures for many hours a day, often in combina-
tion with forceful work and highly repetitive actions [7]. In practice, we frequently en-
counter combinations of all three factors. Therefore, this chapter also discusses force and
repetition. Figure 2.2 visualises the existing risk factors and exposure dimensions and
highlights the focus of this thesis.

2.2 Ergonomic Assessment

The task of ergonomic assessment is to detect potential risk factors at a workplace and as-
sess the exposure dimensions. Thereby, it has to be considered that different workers can
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Risk factors

Psychosocial Physical

Posture Force exertionRepetition

Individual

Figure 2.2: Classification of WMSD risk factors and the focus of the current work.

be differently affected by the same exposure. Nevertheless, assessment cannot consider
individual physiological responses to the load.

The field of ergonomic assessment is vivid within the discipline of human factors. Re-
searchers have proposed many methods to recognise and assess the WMSD risk factors
in the workplace. Li and Buckle [3] and David [22] have both published detailed review
papers. The methods put forth can be grouped into three categories: self-reports, direct
measurement methods and observational methods (see Figure 2.3). The upcoming sec-
tions describe each category in more detail.

Ergonomic
assessment

Self-reports Observational
methods

Coarse
screening
methods

Specific
screening
methods

Expert
screening
methods

Direct methods

Measurements
in the

workplace
Measurements
in laboratories

Practicioners Experts Researchers

Figure 2.3: Overview of ergonomic assessment methods according to Li and Buckle [3]
(second row) and Ellegast [4] (third row). The roles in the arrow denote the user groups
the tools are targeting.
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2.2.1 Self-Reports

Self-reports assess exposure by asking the worker about their subjective perception of the
load while performing the task. This can be done by various methods such as diaries,
interviews and standardised and non-standardised questionnaires [22]. Other common
methods are rating scales, body maps or check lists [3]. Questionnaires are the most com-
monly used methods to assess risks due to their simplicity [3]. Moreover, their validity is
supported by the worker’s approval. David et al. [22] state that the biggest advantages of
self-reports are a straightforward usage, the applicability on a wide range of working sit-
uations and low cost. In contrast, the result of self-reports can be strongly affected by the
individual perception of the situation, lowering the validity and relevance of the state-
ments [3]. Therefore, large sample sizes are needed in order to perform a representative
statement. Finally, it is hard to create intermediate results during the task, which prevents
realising in-process ergonomic interventions.

2.2.2 Direct Methods

Direct methods express the exposure through physical or geometric quantities acquired
from sensors or measurement devices. A summary of the most commonly used tools can
be found in Dempsey et al. [23]. They are primarily employed to assess the posture risk
factor. The posture can be assessed by Electromyography (EMG) or dynamometers.

Posture assessment methods obtain the data from manual measurement or sensor de-
vices [3]. Goniometers or incliniometers are mechanical tools attached to the body. They
indicate the angle between neighbouring parts of the body, and describing a posture can
be established by the set of measured angles. Manual devices are inexpensive, but the
human operator has to read and note each value by hand. Hence, these devices are only
suitable for capturing static postures.

Examples of sensor devices for posture assessment are the Lumbar Motion Monitor
(LMM) [24] and CUELA [25] (see Fig. 2.4 for illustration). The LMM makes use of po-
tentiometers whereas CUELA determines the subject’s motion by a combination of ac-
celerometers, gyroscopes and potentiometers. The sensors of posture assessment systems
are able to yield a continuous stream of data that describes the ergonomic parameters at
a granular level of detail. However, most methods require time to calibrate the devices
and are susceptible to external interferences. This is impractical for analyses in the fac-
tory. Finally, the sensor devices often have to be attached to the body, limiting freedom of
movement. This potentially leads to a change in the postural behaviour of the subject [3].

EMG methods measure muscular strain, which can be translated into force. An overview
of EMG for ergonomic assessment can be located in Gazzoni [26]. An advantage of EMG
is that exposure is directly represented by responses of muscles. However, the measure-
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(a) Lumbar motion
monitor (LMM) (source:
Marras et al. [24])

(b) CUELA system presented by Ellegast et al. [25]

Figure 2.4: Examples of direct methods.

ments are only realisable in a clinical environment based on a tedious calibration process.
Furthermore, the signal behaviour is non-linear and varies between individuals, making
it difficult to compare the exposure of different muscle groups and workers [3].

Gripping and pinch forces exerted by the hand can be quantified using a dynamometer,
e.g., [27]. Dynanometers can measure small forces from light touch (< 0.05N) up to power
grip forces larger than 500N.

Briefly, direct methods are a worthy choice for a detailed analysis. However, one must
consider the remarkable investment necessary for acquiring and maintaining the equip-
ment. As a vast amount of data is created, the effort required to evaluate the process
can be high. Furthermore, based on the tedious calibration routine and the susceptibility
to physical interferences, this technology has recently been deemed inappropriate as a
monitoring system in a factory.

2.2.3 Observational Methods

Observational methods, as inferred by their name, obtain exposure through observation
of tasks. These assessment tools feature a set of pre-defined exposure criteria that a hu-
man operator needs to pay attention to. Following the observation of the process, they fill
out a worksheet stating whether and how severely each criterion applies. Figure A.2 de-
picts an exemplary worksheet for postural criteria. Observational methods are primarily
used for assessing static posture [3]. However, there are methods that also evaluate force
and repetition.

Within the literature, there are various proposed and established observational assess-
ment tools. Examples include RULA [28], REBA [29], OWAS [30], OCRA [31], PATH [32],
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LUBA [33] or EAWS [34]. Based on the fact that assessing exposure requires analysing the
interplay between multiple risk factors [3], most tools have specific criteria for different
factors. Additionally, these criteria distinguish different regions of the body. However,
certain methods focus on particular risk factors, such as posture [35, 28, 29, 30], repetition
[31] or lifting/material handling [36].

Observational methods can be classified according to their operational principle - they
are either event-focused or work sampling-based [37]. Event-focused methods, such as
RULA [28], separately assess each event of the process. An event could be the worker
adopting a unique static posture or performing a particular action. Often, a process is
distinguished by multiple heterogeneous working situations. As such, the time share of
a situation influences the overall exposure. Awkward working posture over a greater
amount of time increases the risk. These aspects are not taken into account with event-
focused methods, which makes them easier to use but produces less nuanced evaluations.
To overcome this limitation, work sampling-based techniques [34, 32, 30] have been de-
veloped. They consider the process as a set of events sampled over the evaluation period.
The final assessment is obtained by accumulating the evaluation results of each event.
Although offering more detail, this approach does indeed demand more effort. Table 2.1
classifies the mentioned observational methods according to addressed body regions, risk
factors and operational principle.

Table 2.1: Summary of observational methods.
Method Body region Risk factor Operation principle

RULA [28] upper body posture, force event-focused
REBA [29] whole body posture, force event-focused
OCRA [31] upper limbs posture, force, repeti-

tion
event-focused

LUBA [33] upper body posture event-focused
NIOSH [36] not specific force (lifting) event-focused
PATH [32] trunk, arms, lower

body, neck
posture work sampling-based

OWAS [30] trunk, arms, lower
body, neck

posture work sampling-based

EAWS [34] whole body posture, force, repeti-
tionx

work sampling-based

Ellegast [4] differentiated observational methods by their level of complexity. The
methods were placed into four unique categories: ”Grob-Screening-Verfahren” (coarse
methods), ”Spezielle-Screening-Verfahren” (specific methods), ”Expert-Screening” (ex-
pert methods) and ”Messverfahren” (direct methods). The methods are recommended
based on the different user groups. Ellegast distinguished the user groups as practition-
ers, experts and researchers. Figure 2.3 (bottom row and arrow) portrays a visualisation
of Ellegast’s taxonomy. The intention was to reduce the assessment effort by first ap-
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plying the inexpensive but rough methods. Afterwards, the finer but more expensive
methods are employed to further analyse the ”hot spots”. In the following, each level of
complexity is roughly characterised.

Coarse methods are used to quickly obtain an ergonomic overview. They are the simplest
and most time-efficient way to evaluate the exposure. Unfortunately, they do not provide
a numeric risk score, rendering them too inaccurate to monitor the effects of workplace
design [3]. When risk has been detected by coarse methods, specific methods or expert
methods can be utilised for a more sophisticated assessment of these problems. Specific
methods offer fewer details, though they are easier to use in comparison to expert meth-
ods. Expert methods offer a higher level of detail at the cost of more complexity for the
user. Ellegast [4] noted that a clear distinction between both groups is hard. Rather, there
is a smooth transition between specific and expert methods. An advantage of both is that
they express risk as a numeric value that represents either the specific physical load for
different risk factors or the overall load. Such a score is necessary to quantify the effect of
ergonomic interventions [3].

Although many factors can be quantified and detected by expert methods, there are prob-
lem cases that cannot be satisfactorily covered. These are namely 3D postures or asym-
metry effects involving torsion or lateral bending (see Figure A.4) and motion over time.
This is where direct methods come into play - they offer the greatest level of detail with a
high cost investment. Additionally, as described previously in Section 2.2.2, direct meth-
ods often have a limited application area and are principally used in the laboratory.

In general, the biggest advantages of observational methods are that they are inexpen-
sive to apply and can be used in industrial as well as clinical environments. Yet, their
reliability and their ability to precisely predict risk remains unclear [3]. The weighting of
each risk factor when combined into an overall result is often described as ”hypothetical”.
Multiple trials with different subjects and analysts are needed to overcome the subjective
bias of such results. Seeing that the subjective estimation variance is especially high in
dynamic movements, these methods are mostly employed for assessing static tasks. Fi-
nally, despite the many efforts to optimise workflows, observational methods continue
to be work intensive because they require a manual analysis of the process or the video
material.

2.2.4 Summary of Ergonomic Assessment Methods

An ergonomist can choose from three ergonomic assessment method families: self-
reports, observational methods and direct methods. These tools differ with regards to
cost, versatility, generality and exactness [2].

Self-reports are a cost-efficient means to assess various risk factors - only questionnaires
are used. As the design of questionnaires is not standardised, one can create individu-
alised assessments concentrating on the features of interest. The disadvantage, however,
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is that self-reports are highly subjective - the data collection is performed by the subjects
themselves, leading to a limited validity of the results.

Direct methods are a stark contrast to self-reports. The equipment needed to conduct the
studies is quite expensive. Direct methods focus on specific details of the risk factors that
can be measured through physical quantities. The consequence is that risk factors, which
cannot be exactly represented by measurable physical quantities, cannot be assessed, sig-
nificantly restricting generality. However, the results produced are exact and objective if
the relationship between risk factor and physical quantity is valid.

Finally, observational methods represent a compromise between the aforementioned ex-
tremes. The cost is moderate - expensive specialised equipment is not required. However,
trained specialists are needed to perform the data acquisition task. There are a variety of
different observational tools (see Tab. 2.1). The aspects assessed in these tools are anal-
ysed in a standardised way, which does not allow an assessor to incorporate additional
features. Hence, the versatility of these tools is lower than in self-reports. As well, because
the assessment for different subjects is chiefly performed by one or a few specialists, the
results are expected to be more exact than those from self-reports. Nevertheless, it is
worth noting that the assessments of different specialists are subjective. Figure 2.5 sum-
marises the advantages and disadvantages of various ergonomic assessment methods.

Figure 2.5: Summary of ergonomic assessment methods (adapted from Winkel and Math-
iassen [2]).
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2.3 Ergonomic Intervention

Having gained insights into which risk factors are present and their extent, appropri-
ate measures can be initiated. Ergonomic intervention is a broad field of research where
countless studies have been published. Describing each method in detail would be out-
side the scope of this work. Rather than providing an extensive review, the purpose of
this section is to present a taxonomy classifying intervention techniques from human fac-
tors and engineering according to their effectiveness and mention examples. The main
goal is to derive a ”dead spot” where further research is necessary.

Review papers on ergonomic intervention techniques can be found in [38, 39, 40, 21, 41,
42, 43]. The methods can be classified according to the risk factor they address. More-
over, Van der Molen et al. [38] distinguished the categories as: technical, organisational
and individual measures. Technical measures refer to the design of workplaces or the in-
troduction of equipment and aids. Organisational measures involve job scheduling and
actions changing the composition of a worker’s tasks. Individual measures mean train-
ing and education of the workforce. Similarly, Bergamasco et al. [40] used the categories,
structural measures (e.g., workplace design), organisational measures and training.

Considering the variety of approaches, Goggins et al. [5] proposed a categorical scale to
rank the effectiveness of intervention methods. This guide is intended to simplify the
choice of a method for planners and engineers. The scale comprises four levels - methods
that eliminate the exposure (level 1), methods that reduce the level of exposure (level
2), methods that reduce the time of exposure (level 3) and methods where success relies
merely on the behaviour of the worker (level 4).

At the outset, methods are preferred that eliminate exposure (level 1). Examples are au-
tomating or mechanising the exposure-intensive parts of the task or designing them out
through workplace layout arrangement. If an elimination is not feasible, interventions
are opted for, which reduce the level of exposure (level 2). One example is diminishing
weight to be lifted. At the next-best level, there are methods which reduce the dura-
tion of exposure (level 3). This can be attained by job rotation where tasks are arranged
such that they contain different amounts of exposure or no exposure at all. This avoids
monotonous strain of particular body structures. Finally, if all the aforementioned mea-
sures are not feasible, one has to rely on methods that require the active participation of
the worker (level 4), such as worker training. The downside of this intervention type is
that its effect is dependent on the worker’s behaviour and their willingness to constantly
apply the measures. Figure 2.6 summarises the categories.

The following sections (2.3.1 - 2.3.3) present exemplary conventional intervention meth-
ods. They primarily rely on human actions and are classified according to the risk factor
they address. Subsequently, there is a closer look at methods using computers and au-
tomation technology in Sec. 2.3.4, as this topic is a core element of the present work.
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Ergonomic
interventions

Level 4
Behaviour

Level 3
Time

Level 2
Intensity

Level 1
Elimination

Effectiveness increases

Effort increases

Figure 2.6: Classification of ergonomic interventions according to Goggins et al. [5].

As a number of computer-aided techniques cover multiple risk factors or only support
conventional measures, they are not ordered by risk factor.

2.3.1 Interventions against Force Exposure

To reduce the severity of the risk factor force, the components of a job where force ex-
ertion exceeds an acceptable level have to be separated from the worker. Alternatively,
the exposure level can be reduced to an acceptable value. Schaub et al. [44] empirically
determined the maximum recommended force limits for each force direction and thus
provided a clear definition for what is meant by ”acceptable”.

The complete separation of the worker from the force (level 1) is accomplished by struc-
tural measures, including automation or mechanisation of the forceful tasks. Schmidtler
et al. [45] called the devices used lifting aids or transport assistance. Mechanical lifting
aids have been previously introduced in earlier studies, such as Marras et al. [46].

Methods that alter the process design are considered level 1 - 2 methods. For example,
decreasing the weight of objects to be handled [38] can either abolish the risk factor or
at least diminish the exposure level. Exposure time (level 3) can be reduced by allowing
longer breaks or by introducing job rotation. Finally, ergonomic interventions have often
featured lifting technique training [47] to attenuate strain on critical parts of the body
(level 4).

2.3.2 Interventions against Repetition

For the repetition risk factor, a full elimination (level 1) can only be reached by signifi-
cantly lowering the number of repetitions or completely automating the process. Bergam-
asco et al. [40] put forth level 1 - 2 methods from the group of structural measures. These
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are namely workplace layout optimisation and the introduction of aids. The purpose is
to decrease the utility of force, awkward postures and general movements. Furthermore,
there are organisational measures (level 3) to lower task frequency or time or to increase
rest periods. Job rotation is a prominent member of this group. Moreover, worker train-
ing (level 4) can be employed to address the correct motion while performing the task.
Additionally, equipment can be introduced that encourages the worker to take a break
after a pre-defined duration of working time [48]. Although automation is involved in
this measure, it is considered as a level 4 method, as the human being has to ultimately
perform the action.

2.3.3 Interventions against Awkward Posture

The key to eliminating the postural load is to enable the worker to adopt a ”neutral”
posture. With a neutral posture, the joints are not bent and the spine is aligned and not
twisted. It places the least physical load on the body. The method of choice is work-
place layout design. In most cases, workplace geometry has to guarantee that ergonomic
guidelines apply for a range of anthropometric properties [49]. If a single design cannot
cover all anthropometric variants, lift tables and other geometric adapting devices can be
employed [50]. In the best case, the layout design can completely do away with the risk
(level 1). Otherwise, it can at least diminish exposure intensity (level 2).

Another interesting level 1 - 2 approach comes from Weidner et al. [6], who established
the concept of human-hybrid robot (HHR). Their main idea was to attach technical kine-
matic chains to the body to transmit the force from vulnerable parts of the body to more
robust areas. The kinematic chains have a modular structure such that they can be com-
bined and tailored depending on the task to be supported. In their article, an exemplary
use case is described where a module supports the arms for overhead work.

By employing job rotation schemes, the time spent in awkward postures can be decreased
(level 3). Finally, training the subject to regularly alternate between postures (level 4) can
aid in reducing risk. As a consummate guideline, Neuhaus et al. [51] encouraged the
worker to sit half of the time and stand the other half.

2.3.4 Computer-Aided Ergonomic Intervention

Sections 2.3.1, 2.3.2 and 2.3.3 have mostly presented intervention measures, all of which
are manually executed. This section covers interventions that use computer technology as
they are relevant to the present work. Ergonomic interventions purely reliant on human
beings have drawbacks. First of all, ergonomic assessment and intervention design are
time-consuming tasks. Assessing ergonomics with self-reports and observational meth-
ods require tedious manual analysis of the acquired data. In addition, properly designing
workplaces is time-consuming because it involves iteratively testing multiple prototypes
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[7]. Workplace designers are frequently experts with specialised training. Even when
the solutions developed are effective, they are indeed costly. Furthermore, level 4 inter-
vention methods primarily depend on the behaviour of the worker, and if they do not
consistently apply the techniques learned, the desired effect is weakened.

With the development of computers and software algorithms, systems can be realised
that are able to support ergonomic interventions. Through heavy processing power, they
can even perform human tasks in significantly shorter amounts of time. Herein, three
examples of how computers, sensors and actuators have been integrated into ergonomic
interventions are discussed. The technologies are digital human models, in-process feed-
back systems and human-robot collaboration. These examples have been chosen as they
are the most similar to the present work.

Digital Human Models and Simulation Tools

DHMs are a virtual representation of the real worker integrated into factory simulation
tools. DHMs allow the designer to simulate the human in a virtual workplace to perform
task-related as well as ergonomics-related analyses. Using DHMs, the risk factors of force,
repetitiveness as well as posture can be identified.

Delleman et al. [7] gave four reasons for why these techniques were created. First of
all, DHMs offers an opportunity to reduce development costs. Designing and producing
hardware prototypes is laborious and cost-intensive. When multiple physical prototypes
have to be evaluated, this means the traditional design process becomes even more ex-
pensive. Moreover, these costs rise when designs are incrementally improved. While
requiring greater effort to digitise the prototypes, DHMs pays off during the later stages
of development (see Fig. 2.7). Secondly, verifying prototypical workplaces necessitates a
large population with different anthropometrics and capabilities. DHMs provide an effi-
cient way to test the setup with different virtual individuals. Thirdly, the 3D representa-
tion of the DHM enables additional visualisations. For example, a worker’s field-of-view
can be displayed, which is hard to obtain using traditional assessment methods. Finally,
DHMs feature a common platform for various specialists, e.g., physicists, engineers or
experts in human psychology, to contribute to workplace design. Hence, it facilitates a
common means of communication.

Meanwhile, DHMs have matured to such a state that they are widely used in the plan-
ning of manufacturing processes. With this, software developers have released a variety
of commercially available DHM tools. Examples include AnyBody [52, 53, 54], Santos
Human [55], RAMSIS [56], Jack [57] and ema [58]. The DHM tools are employed in the
design, modification, visualisation and analysis of virtual workplaces or product inter-
actions [59]. Typical tasks are determining maximum reach, clearance or analyses of the
line-of-sight and work ergonomics [7]. DHMs can be utilised for analyses in prospective
(designing a new workplace from scratch before the physical prototype exists) or in ret-
rospective (ergonomic analyses of existing workplaces) scenarios. The ability to simulate
multiple ”what if” scenarios with different worker populations in an acceptable amount



2 STATE OF THE ART 18

Figure 2.7: Comparison of traditional workplace development costs with DHM work-
place development costs (adapted from Delleman et al. [7]).

of time [7] significantly reduces the costs of the planning process. Exemplary ergonomic
simulations and assessments have been conducted for PC assembly [60], manufacturing
work cells [61], car assembly processes [62, 63], railway coach assembly workplaces [64]
and human-robot collaboration workplaces [65, 10]. Additionally, ergonomic assessment
and optimisation of products can be accomplished through DHMs. As a case in point,
Rasmussen et al. [52] have analysed and optimised the forces coming from the usage of a
saw with their tool, ”AnyBody®”.

Besides ergonomic assessment, DHMs have been featured with methods to conduct auto-
mated workplace layout design. Abdel-Malek et al. [8] expressed the layout design task
as a mathematical optimisation problem where target points are specified in the working
environment. For given workplace geometry and motion ranges of the DHM, a number
of objects, like boxes, workpieces or tool holders, have to be located such that certain
ergonomic criteria are fulfilled. The solution to this problem can then be determined
through genetic algorithms [66], non-linear programming [67] or Monte Carlo simula-
tions [68]. Lämkull et al. [59] stated that DHMs are increasingly becoming the major
means for the ergonomic analysis of assembly processes. However, there are certain chal-
lenges that still need to be tackled in order to make this tool more effective. Firstly, using
DHMs requires expertise. Engineers working with DHMs have to possess skills in er-
gonomics as well as CAD modelling. One significant reason for the grand development
costs in the concept, design and engineering phase (see fig. 2.7) is the amount of time
required to model a realistic behaviour of the DHM during the process. Accurate pro-
gramming of the DHM motion and behaviour is tedious. A DHM contains a two-place
number of joints, which in themselves contain three coordinates. Programming a mo-
tion corresponds to setting the position coordinates for each joint at each point in time.
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Thereby, kinematic constraints of the body have to be considered and it needs to be guar-
anteed that the DHM does not collide with objects in the digital environment.

There have been numerous attempts to reduce the complexity of DHM programming by
motion capture and automated motion generation methods. The motion capture system
observes a human subject performing the working motion and tracks the positions of
the limbs. Normally, the test subject has to wear markers that are then recognised by
the motion capture system. Thus, the programming of the DHM behaviour is by simply
demonstrating the motion. It is either applied directly in the process or via a mock-up
workplace. Härtel et al. [69] applied a Vicon® motion capture system to transfer motions
to the DHM Alaska/Dynamicus [70]. Similarly, Daphalapurkar et al. [71] developed a
multi Kinect® system that interfaces with the Jack DHM [57]. Unlike expensive marker-
based systems, the Kinect® sensor operates without markers but with a compromise of
reduced accuracy and robustness.

The idea behind the motion generation approach is to manually define high-level tasks
and let the computer generate specific low-level motions. Thus, the behaviour can be
programmed without caring about the motion in detail. There are two options to cre-
ate the motion - either fundamental motions are pre-programmed and assembled into
a high-level task or they are generated by Inverse Kinematics. When pre-programming
fundamental motions, the main effort is invested in creating realistic small motion blocks,
which can then be assembled to create process motions. Fundamental motions are then
often recorded by accurate motion capture techniques supported by biomechanical stud-
ies to validate the motion for different environmental conditions. However, the creation
of a fundamental motion requires a large number of samples in order to be able to repre-
sent the variance between individuals. As an example, Manns et al. [72] have estimated
a lower bound of 149 motion capture takes for a simple picking motion.

A way to escape this data requirement is to incorporate assumptions and simplifications
regarding the motion that concern the environment and relevant biomechanics. Mård-
berg et al. [73] expressed the space of feasible motions as a formal language. Each high-
level task is defined as a composition of low-level motions. In turn, each motion needs
a particular environmental state and manipulates the environment in a unique way. A
human operator only has to define the sequence of tasks. Employing the task definitions,
the algorithm automatically searches for a feasible sequence of motions that always sat-
isfies the environmental conditions. Furthermore, a manually generated sequence can be
formally verified to guarantee that the motions do not contradict one another. For in-
stance, an object can only be grasped if it lies within the target place. To demonstrate
their idea, the authors applied the formal language motion generation approach on a ca-
ble assembly use case. Nishiwaki et al. [74] proposed an approach for motion generation
specific to humanoid robots. With their method, reach motions for robots were produced.
The main idea was to have pre-programmed basic reach postures that were adapted to an
unknown scenario. The generation of the new motion involved selecting a suitable pre-
programmed posture and modifying it using inverse kinematics. Additional steps, such
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as balance compensation, were introduced to make certain the robot had a firm stance.
Kuo and Wang [75] utilised the Methods Time Measurement (MTM) system as a basis for
generating the motion. The MTM defines a set of elementary motions which can be com-
bined to describe working tasks. A typical use case of MTM is to measure the required
cycle time for a task by summing up the expected times for the elementary motions. The
authors first converted a task represented by MTM-UAS codes into corresponding mo-
tion templates. The templates were constrained by inputting the task type. Afterwards,
the motions were refined using Inverse Kinematics. Finally, a user could manually edit
the generated motions and correct small errors therein. The DHM ema [62] creates mo-
tions from small building blocks representing common operations. Examples are sitting
down, walking or picking up an object [76]. The fabrication of realistic building blocks
is supported by biomechanical studies and motion capture devices. The blocks can be
parametrised to individualise the motion to a particular task, such as an an object pick
that can then be manifested using the right or left hand.

The Inverse Kinematics approach is used for more low-level motions where joint trajecto-
ries have to be adapted. The underlying rationale is to diminish the programming effort
by only defining target points or trajectories for particular joints. Additionally, constraints
for the trajectories, like minimal and maximal joint angles, can be added into the model.
The other joint trajectories are then computed through solving an optimisation problem.
The realism of the motion depends on how well the constraints on the motions represent
the reality. Miyata et al. [77] used Inverse Kinematics to generate lift motions. First, they
recorded the trajectory of the hand using motion capture techniques. Afterwards, the
whole body motion was generated by solving a control problem of a redundant manip-
ulator with a given end-effector trajectory. Similarly, Hue et al. [78], Fourquet et al. [79]
and Abdel-Malek et al. [80] modeled the motion generation problem as an optimisation
problem. The algorithm takes target points for limbs as the input and outputs a motion
or posture that moves the target limbs to the target points. The objective function consid-
ers the distance between limbs and target points as well as additional constraints on the
joints and trajectories.

Despite the motion generation techniques integrated in DHMs, the realism of the sim-
ulation results remain questionable. Lämkull et al. [59] performed a study for 155 use
cases where ergonomic assessments with DHMs were compared with manual ergonomic
analyses. Their findings were that in about 48% of all cases, both approaches were in
agreement. These were mostly processes containing standing or unconstrained working
postures. Unconstrained postures comprised tasks without external forces or weights.
Thus, working height optimisation tasks could be supported. Nevertheless, the simula-
tion accuracy for constrained postures or dynamic motions still require further improve-
ments. For example, balance prediction has been considered a problematic use case.
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In-process Feedback Systems

In-process feedback systems, or alert systems, are referred to as tools which acquire data
from ergonomic assessment tasks and are able to supply immediate feedback to the user.
In-process feedback systems, for the most part, determine and assess working postures.
Either image-based methods [81] or acceleration/inertia sensor-based technology [82, 83,
9] have been employed for ergonomic assessment. While image-based methods do not
restrict freedom of movement, they have only been tested in controlled environments. In
utilising Inertial Measurement Units (IMUs), in contrast, the posture assessment is robust
enough to be applied in an industrial environment. However, they require wearing bulky
equipment. The data acquired can be used for further analysis by specialists [83].

Martin et al. [81] presented a system to teach workers the effect of their lifting and car-
rying techniques. It uses the Microsoft Kinect® sensor in combination with its joint lo-
calisation algorithm [11] from the Kinect Software Development Kit. The postures are
evaluated according to the OSHA model [84], and the system has been evaluated on var-
ious exemplary lifting postures in a laboratory environment.

Vignais et al. [9] created a system that performs in-process ergonomics assessment in
industrial environments (see Figure 2.8). It utilises IMUs to submit an analysis accord-
ing to RULA [28]. Visual feedback is provided by a head-mounted display depicting
which limbs are in a critical posture. The authors conducted a user study that came to
the conclusion that the system was able to reduce the risk score while simultaneously not
significantly increasing execution time of the studied process.

In Lins et al. [83], wearable IMUs were employed to assess the posture of the upper body.
The emphasis of their work was on designing sensor networks that limit the freedom of
movement as little as possible. The authors saw the most important application during
the early detection and prevention of gonarthrosis and lower back pain. The data ac-
quired by the wearable was analysed by physicists or used for warning purposes, with
which the user could then attempt to actively alter the posture or, if that was not possible,
take a break.

Human-Robot Collaboration

Human-robot collaboration can reduce WMSD risk by delegating the forceful and mono-
tonic parts of a task to robotic manipulators, so-called intelligent assist systems (IASs) or
intelligent automation devices (IADs) [85]. With elaborate safety mechanisms, human be-
ings and robots can share the workplace, combining human flexibility and dexterity with
robots‘ force and accuracy. In this work, two types are distinguished:

The first type uses a separate robot manipulator [86, 85, 87, 45, 10]. A sub-category of
this group are Collaborative Robots (Cobots), introduced by Peshkin and Colgate [86].
Cobots are handling systems that combine the characteristics of industrial robots and
handheld manipulators [45] (see Figure 2.9a for an example). They are haptically guided
by a human force exerted onto a control interface. Their task is to provide power support
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Figure 2.8: Visual feedback for working postures proposed by Vignais et al. [9].

and guidance [85, 45] to the worker in handling tasks, like lifting or transporting heavy
objects. In addition to force reduction, cobots possess advanced safety mechanisms for
avoiding collisions with the environment.

A particularly interesting approach was presented by Busch [89]. An assistance system
consisting of multiple robots was produced to decrease the labour-intensive manual han-
dling of heavy parts during welding. The idea was to employ the robots in holding the
parts in such a manner that the welder could process it without the need to adopt awk-
ward postures. Based on the shape of the workpiece and the welding task, robot motion
could be programmed offline which permitted the worker to adopt a neutral working
posture. Motion planning was possible with the robot cell planning software, FAMOS, of
Carat Robotic Innovation GmbH [90]. The character animation software, EmotionFX, by
Mystic Game Development [91] was employed to model realistic human motion during
the task. Although this simulation approach provides a lower level of detail in com-
parison to established DHMs, it represents a cost-effective and sufficiently accurate so-
lution to plan the workplace. To assess ergonomics in each scenario, the tool, OWAS
[30], was used. The complete exercise was carried out when planning the workplace as
a pre-process intervention (see Fig. 2.10 for illustration). In contrast to Cobots and other
handling aids, this system specifically targets the posture risk factor.

The second group of human-robot collaboration solutions are exo-skeletons, designed as
external mechanical structures (see Figure 2.9b for an example). Its joints correspond to
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(a) Cobot (source: Krüger et al. [85]) (b) HAL5 exo-
skeleton (source:
Yang et al. [88])

Figure 2.9: Illustration of Cobots and exo-skeletons.

those of the human body [88]. Weidner et al. [6] presented a modular exo-skeleton system
for assembly tasks. Their work began with the introduction of kinematic chains that
provided force support and reduced the postural exposure through transmission of the
force to less vulnerable parts. Active modules, which operate similar to traditional exo-
skeletons, were the core component. Additionally, there were passive modules, mostly
for force transmission, which acted as more cost-efficient alternative. The main advantage
of this technology is that the modules can be arbitrarily combined and tailored to the
process, making the solution flexible for different use cases.

Similar to Cobots, the main duty of exo-skeletons is to provide power support for the
worker while maintaining safety. The major benefits of them is that they are designed to
be mobile, thus being able to supply support where needed. However, this comes with
the challenge of an autonomous energy supply and greater complexity in controller de-
sign along with adaptation to the human body [85, 45]. Apart from industrial workplaces,
their potential has already been applied in medical areas, such as rehabilitation [92].

In order to correctly provide support, the worker’s intention has to be accurately un-
derstood within a short period of time. This is mostly possible with force-torque sensors.
Force profile data can be employed for haptic feedback, making the task supervision com-
ponent for humans more intuitive.

2.3.5 Impact of Ergonomic Interventions

As described throughout the chapter, researchers have proposed variety of ergonomic in-
tervention measures. There have been a number of approaches to estimate the effective-
ness of these methods. Nevertheless, a theoretical scale on its own does not necessarily
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Figure 2.10: Safety and ergonomics simulation of a robot cell described in Thomas et al.
[10].

predict impact in practice. Hence, in the literature, there are studies that have reported
various ergonomic interventions in practice. The objective of this section is to summarise
these results and answer the following questions:

• What are effects of ergonomic interventions? Do they pay off?

• Which types of interventions achieve the greatest effect in practice?

• How can a managing board of a company be persuaded to invest in ergonomic
interventions?

Goggins et al. [5] proposed a scale for measuring the effectiveness of ergonomic interven-
tions (see Sec. 2.3 for a detailed explanation). This scale was derived from a predictive
cost-benefit analysis, of which the results were published in the same article. The analysis
included 250 studies from ergonomics programmes in offices as well as in industrial en-
vironments. The authors conducted an evaluation before and after the intervention and
considered various performance measures, such as WMSD incidence rate, absence days
or compensation costs. In almost all cases, dramatic improvements were documented.
For example, incidence rates dropped by 65% on average and companies had to pay 68%
less the original compensation costs subsequent to the intervention. Additionally, pro-
ductivity of the workforce and the quality of the products was enhanced. The remarkable
fact was that the benefits were realised in less than a year.

Van der Molen et al. [38] concentrated on analysing the long-term effectiveness of man-
ual handling tasks. This systematic review included 44 studies, and, like Goggins et al.,
improvements in working conditions and WMSD symptoms were noticed quite quickly.
The most significant reductions of physical load were achieved when lifting devices were
employed. Furthermore, most studies described an improvement in worker behaviour -
participants started to actively circumvent exposure from bad techniques.
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Keyserling et al. [50] studied an automotive corporation, evaluating 151 jobs in total. The
goal was to develop an intervention program for avoiding awkward postures. Every six
months, an evaluation was performed. Overall, the results indicated a successful diminu-
tion of awkward trunk and shoulder postures. However, interventions for neck postures
were less effectual. Out of all intervention types, workplace design demonstrated the
highest efficacy.

Engels et al. [47] evaluated ergonomics education courses in nursing. Awkward postures
at work were assessed for 12 subjects before and after the intervention. Additionally,
there was a control group that comprised 12 subjects that did not receive an educational
course. The authors observed that the group which received educational courses had
a significant decrease in adopting a number of harmful postures and committing errors
versus the control group.

Falck et al. [18] looked at the impact of ergonomics on quality in car manufacturing. The
assembly quality of over 24,000 cars was examined. Their results showed that there was
a strong correlation between ergonomic load and quality, as well as cost. Medium and
high physical load assemblies increased the risk of an assembly error by 3- and 3.7-fold,
leading to 8.2- and 8.7-fold more total action costs than low physical load tasks.

Despite many investigations verifying the positive effects of ergonomic interventions,
there are also studies that did not describe a significant improvement. Driessen et al.
[48] performed a review on ergonomic interventions for averting lower back and neck
pain. The authors chose only studies containing randomised controlled trials. In total, 10
studies were analysed, and there was not much evidence that an intervention significantly
decreased neck pain intensity compared to cases of no ergonomic intervention.

In brief, there are various studies that observed positive effects of ergonomic interven-
tions as well as those that have not demonstrated their merits. However, over the course
of the literature research for this thesis, papers from the first group dominated by a sub-
stantial margin. In addition, it has to be noted that the papers where it was not possible to
definitively establish improvement took into account fewer studies than those featuring
positive reviews.

2.3.6 Summary of Ergonomic Intervention Methods

Ergonomic interventions constitute a vibrant field of research. Studies have shown their
positive impacts on worker health, productivity and costs. However, not all measures
are equally effective. The aforementioned ergonomic intervention techniques are sum-
marised in Tab. 2.2 and classified according to the risk factor they address and the best
level of effectiveness they can accomplish. Note that depending on the specific imple-
mentation, certain methods can belong to different levels of effectiveness.
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Table 2.2: Interventions classified according to effectiveness and addressed risk factor.
Level Posture Force Repetition

1 - eliminate Workplace layout de-
sign,
HHR modules

Process design e.g.
reduce weight,
Cobots,
Exo-Skeletons,
Lifting aids

Process design e.g.
automatisation

2 - intensity Process design e.g.
reduce weight

reduce force and
postural load
per cycle

3 - time Job rotation Job rotation Job rotation
4 - behaviour In-process feedback

systems, training e.g.
alternate posture

training e.g.
lifting technique

In-process feedback
systems, training e.g.
technique

An interesting fact of ergonomic intervention techniques is that they either require prepa-
ration before the worker performs the task (e.g., when planning the workstation) or can
be directly applied during the task - either by the worker or by equipment. Examples for
the first category include workplace design techniques or worker training. In the follow-
ing, these methods are referred to as pre-process techniques. Cobots, lifting aids or alert
systems are examples for the second category, referred to as in-process methods. Table
2.3 lists examples of both pre-process and in-process measures. In brief, pre-process in-

Table 2.3: Interventions assigned to either pre-process or in-process measures.
Pre-process In-process

Posture Workplace layout design, Job ro-
tation, Training, HHR kinematic
modules

In-process feedback systems

Force Process design, Lifting technique
training

Cobots, Exo-Skeletons, Transport
assistance

Repetition Process design, Job rotation In-process feedback systems

terventions result in higher effectiveness whereas in-process techniques are more flexible
during their application as they need not be tailored to each task. However, the appli-
cable area of in-process interventions is currently limited to handling tasks and worker
notification.

Table 2.4 depicts the best achievable level of effectiveness for each risk factor for pre-
process techniques and in-process techniques. Whereas force, as a risk factor, can be
eliminated by both types of methods, posture and repetition lack such latitude.

To sum up, for the risk factor posture, there are either effective solutions or flexible ones.
According to the literature review performed, a method combining both sets of advan-



2 STATE OF THE ART 27

tages has not been established as of yet. In the present work, this dilemma is referred to as
the ‘’effectiveness-flexibility trade-off”. The goal of this thesis was to bridge the trade-off
by designing automation technology in a way such that it can eliminate or at least reduce
the intensity of the postural load while still allowing workers to operate in-process.

Table 2.4: Maximum achievable effectiveness level for different risk factors. The cell
colours correspond to the effectiveness levels depicted in Fig. 2.6.

Pre-process In-process
Posture 1 - eliminate 4 - behaviour
Force 1 - eliminate 1 - eliminate

Repetition 1 - eliminate 4 - behaviour

2.4 Conclusions

This chapter has provided an overview of how to tackle the problem of WMSDs at work.
The workflow is comprised of two steps - ergonomic assessment to obtain an overview
of the risk factors and ergonomic interventions, which represent concrete measures to di-
minish particular types of exposure. It is important to note that different risk factors, such
as posture, force and repetition, have varying characteristics, requiring the development
of tailored solutions.

Concerning ergonomic assessment methods, there are a variety of tools to choose from.
Many of them are specialised for detecting particular aspects, while others provide an
overall analysis. When selecting the appropriate method, it is important to consider
whether the assessment has to be performed in an industrial or clinical/laboratory envi-
ronment. Moreover, there is a trade-off between the detail of the results and the required
investment. Finally, although previous research has reported evidence that assessments
correlate to real WMSD risk [93, 34], the validity of each single criterion has not been fully
proven to date.

Moreover, there are a variety of ergonomic intervention approaches for dealing with dif-
ferent risk factors. However, predominant solutions that match every situation have not
been found. To make matters worse, the effectiveness-flexibility trade-off has been iden-
tified, which is based upon the fact that there are essentially either effective solutions or
flexible solutions. An approach bestowed with both for the posture and repetition risk
factors is not yet available.
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3 Research Goal

In this chapter, the goal of the present thesis is stated. First, the scientific gap is identified,
which was revealed through a literature research on the state of the art of WMSD preven-
tion. To bridge this gap, a central hypothesis to be proven is formulated. The hypothesis
is used as basis for defining the specific research questions. Finally, the research approach
for each task and the structure of the upcoming chapters are described.

3.1 Research Gap

Chapter 2 provided an outline of the WMSD prevention strategies proposed. The most
important lesson learned was that there is no dominant approach able to be applied to all
problems. Each solution addressed different risk factors and differed in effectiveness, cost
and flexibility. Unfortunately, effectiveness and flexibility have been demonstrated to be
contradictory goals. Flexible solutions lack effectiveness and effective WMSD prevention
demands a larger share of manual work from experts.

As an example, consider the effective workplace design measure: Ergonomists and work
place designers have to first gain knowledge on the underlying exposure of the task by
using ergonomic assessment methods. The assessment involves analysing information
recorded or observed from the task at hand. Thereafter, measures must be chosen and
tailored to the workplace. These two tasks require a sizeable share of manual actions and
expertise. The effort is multiplied with the amount of tasks to be (re-)designed. In flexible
production scenarios, where product lines and tasks often change on a daily basis [94],
ergonomic measures become the bottleneck and are thus neglected or unsatisfactorily
implemented.

In-process prevention techniques are interesting as they are designed to be adaptable to
changing situations and avoid tedious re-configuring of the workplace. However, their
current area of application is limited to a few special cases. Moreover, as can be seen in
Tab. 2.4, pre-process solutions outperform in-process solutions in terms of effectiveness
by a wide margin. Especially for the posture and repetition risk factors, there is still a
significant trade-off between effectiveness and flexibility. Only in case of force researchers
and engineers have succeeded to resolve the effectiveness-flexibility trade-off.
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Why has it been possible to realise an in-process measure addressing the risk factor, force,
with high effectiveness? One answer is that the described solution possesses two essential
components - a sensor system that can automatically detect the unfavourable situation
and an actuator system which can automatically resolve the problem. A solution that
misses one of these two components requires human involvement in order to function.

To reach an effective in-process system that addresses the posture risk factor, there is one
piece of the puzzle missing - whereas there are promising approaches to detect critical
postures, methods to achieve automated in-process workplace layout design are a definite
research gap. Another issue is that in-process posture assessment, so far, primarily relies
on IMUs. The drawback is that the sensors need to be worn and calibrated. In industrial
environments, this is problematic. Worn devices limit freedom of movement. Every time
a worker uses the system, it has to be prepared in advance, which includes a correct
placement of the sensors and a potential calibration routine.

Ultimately, this thesis focuses on these two research gaps. In order to enable the realisa-
tion of an effective in-process solution, the topics of automated in-process workplace de-
sign and the image-based methods for in-process ergonomic assessment were addressed.

3.2 Research Hypotheses

Inspired by the concepts of human robot collaboration, the goal of this thesis was to de-
velop a novel type of equipment capable of accomplishing WMSD prevention at effec-
tiveness level 1 - 2 for the posture risk factor with the flexibility of an in-process method.
Instead of IMUs, image-based methods were used to detect the critical posture. Thus,
the method specifically avoids a tedious preparation and calibration process. Moreover,
unlike inertial-based methods, image-based methods allow to additionally monitor the
whole production environment including workplace and workpiece. On the other hand,
the image-based approach possesses a variety of technological problems needing to be
solved. It is challenging to design systems that accurately process images with strong
variations in the appearance of subject and environment, illumination and other environ-
mental parameters.

Nevertheless, such a technology can dramatically simplify the implementation of
posture-related ergonomic interventions as time-consuming tasks are delegated to the
computing system. In particular, enterprises operating flexible production lines can pre-
vent their workers from posture-related WMSDs without the need for frequent workplace
re-design. Overall, such a development would decrease the effectiveness gap between in-
process and pre-process measures. To sum up, table 3.1 depicts the desired state of the
art.

The goal of the present work can be summarised into the central research hypothesis:
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It is possible to realise an in-process WMSD prevention measure addressing the risk fac-
tor, posture, at an intensity level of 1 - 2 on the effectiveness scale according to Goggins et
al. by combining image-based ergonomic assessment with in-process workplace layout
design.

A system built to fulfil this hypothesis has to be experimentally verified (see Chap-
ter 8). In particular, its in-process ability has to be verified by an execution time analysis
of its components. The effectiveness has to be verified by applying the system on
exemplary cases.

Table 3.1: Maximum achievable level of effectiveness after successful accomplishment of
the research goal.

Pre-process In-process
Posture 1 - eliminate 1/2 - eliminate/intensity
Force 1 - eliminate 1 - eliminate

Repetition 1 - eliminate 4- behaviour

To exhibit the central hypothesis, there are multiple research questions that must be an-
swered:

• RQ1: How does an in-process system look like which eliminates or reduces the
exposure caused by awkward posture shortly after occurrence?

• RQ2: How can an automated image-based ergonomics assessment be realised?

• RQ3: How can an automated and adaptive in-process workplace design be realised
on various types of actuators?

In the following, each research question is elaborated upon to outline which sub-tasks it
implies.

RQ1: How does an in-process system look like which eliminates or reduces the expo-
sure caused by awkward posture shortly after occurrence?

As the proposed solution represents a novel type of equipment, the first task is to create
a vision of how such a device would look and operate. First, its tasks, use cases and
requirements have to be identified. To implement such a device, the overall workflow
has to be broken down into sub-problems that can then be technically solved. Moreover,
a system able to react and initiate measures over a short time cannot be used when it
poses hazards to the worker. Severe injuries have to be avoided at all costs. Hence, safety
mechanisms must be integrated that prevent the worker from such threats. Additionally,
these mechanisms have to be capable of compensating for human errors.
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RQ2: How can an automated image-based ergonomics assessment be realised?

In order to appropriately react to the situation, it is essential that the ergonomic situation
is appropriately assessed. Inertial sensor-based systems have their shortcomings in local-
isation accuracy. This leads to the problem that safety monitoring of the worker has to be
realised by additional sensor systems. Moreover, before usage, these systems have to be
calibrated to the user’s anthropometry. Image-based methods, in contrast, can be applied
to fulfil both aforementioned functions, which is why, in this thesis, the given task is ap-
proached by analysing the camera image. In terms of working postures, the posture the
worker adopts must be recognised and evaluated. The recognition method needs to be
robust to variations in human anthropometrics and environmental conditions.

RQ3: How can an automated and adaptive in-process workplace design be realised on
various types of actuators?

Most level 1 - 2 measures addressing the posture risk factor require careful manual work
place planning and design. Therefore, to create an in-process measure requires automat-
ing this designing process. The process of automatically creating solutions has to be fast
enough to provide immediate feedback to the worker. The focus lies on providing the re-
quired data to manifest the feedback, but not the feedback itself. The task of designing an
appropriate presentation of the information to the human being is outside of the scope of
this thesis. To adapt a workplace layout, manipulators or actuators have to be employed.
There are different types of actuators, such as height-adjustable platforms, robot manip-
ulators or tilting platforms. The developed method has to arrive at acceptable solutions
with different available Degrees of Freedom (DoF).

3.3 Research Approach

The upcoming chapters derive answers to the research questions posed. Chapter 4 pro-
vides an answer to RQ1. In detail, use cases and requirements are developed from RQ1.
Afterwards, the system concept is presented identifying the technological components
to be implemented. Chapter 5 concentrates on finding an answer to research question,
RQ2. The posture assessment algorithm is a core component of the WPC system. The
developed algorithm is put forth, including the design decisions made. Finally, Chapter
6 presents an answer to RQ3. The chapter documents the algorithmic framework de-
veloped for the WPC to optimise workplace layout. This framework is then adapted to
operate with various actuators. Finally, the dynamic behaviour of such a system is anal-
ysed.

The concept chapters are structured in a standardised manner containing four parts:
”problem statement”, ”design alternatives”, the solution itself and ”conclusions”. The
section, ”problem statement” reformulates the research question to be investigated.
Rather than repeating it, there is an attempt to elaborate upon and transform the given
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task into known scientific and engineering problems. Thus, the problems can be solved
with existing engineering methods. The ”design alternatives” sections summarise the re-
lated work to the transformed problem outlining design decisions made. Furthermore,
the criteria for how the design alternatives for the WPC were chosen are described in the
sub-sections dubbed ”selected approach”. Although the method selection was based on
a detailed discussion among available alternatives, it does not mean that it is the per-
fect choice. Sub-section ”risk analysis” attempts to identify potential scientific risks when
realising the elected methods. The following sections present the concept of the specific
solution. The structure for this part is not standardised, but rather depends on the content
of the presented solution. Finally, each chapter ends with a ”conclusions” section where
the most relevant outcomes are summarised.



33

4 The Working Posture Controller

This chapter describes the concept underlying the novel type of equipment envisioned in
the research goal chapter 3. This device is referred to as the ”Working Posture Controller”
(WPC). The task of the WPC is to enable workers to adopt neutral working postures while
performing their tasks at hand. Situations where the worker adopts an awkward posture
for a long time are to be avoided.

4.1 Problem Statement

This chapter attempts to address research question, RQ1:

How does an in-process system look like which eliminates or reduces the exposure caused
by awkward posture shortly after occurrence?

To determine the sub-tasks, the question is analysed word by word:

Firstly, the term ”in-process” indicates that the system must detect the ergonomically
unfavourable situation shortly after it happens. In this case, the unfavourable situation is
an awkward posture adopted by the worker. By ”shortly”, a maximum duration of a few
seconds is meant. Secondly, the words, ”eliminate” and ”reduce exposure”, imply that the
WPC has to actively intervene. Being passive and leaving the intervention to the worker
would not result in a level 1 - 2 measure (see Sec. 2.3 for definition). Additionally, as the
system actively intervenes, it has to be ensured that the intervention is safe for the human
being. Thirdly, the word ”How” suggests the question concerns the operation principle
and the workflow of the system. To illustrate this principle and to identify requirements,
potential use cases of the WPC are derived. Figure 4.1 summarises the research questions
to be answered in this chapter.
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RQ1: How does an in-process system look like which eliminates or reduces
the exposure caused by awkward posture shortly after occurrence?

How to detect an awkward working posture within a few seconds?

How to eliminate or at least reduce the level of exposure?

How does the interaction and communication between worker and system
look?

In which potential use cases can the system be effectively employed?

Which mechanisms make certain that the worker is not injured by the sys-
tem’s actions?

Figure 4.1: Summary of the sub-research questions RQ1 implies.

4.2 Design Alternatives

4.2.1 Detecting an Awkward Posture

The task of detecting an awkward posture can be accomplished by applying ergonomic
assessment methods that evaluate the present posture. Li and Buckle [3] classified er-
gonomic assessment tools into the categories self-reports, direct methods and observa-
tional methods. The tools mentioned and discussed in Sec. 2.2 represent the available
alternatives.

Selected Approach

First of all, self-reports as design option for the WPC can be excluded. Self-reports neces-
sitate the worker to recognise the posture by themselves. If the WPC awkward posture
detection merely relied on the estimation of the worker, it would be a level 4 intervention.
The remaining two methods are both suitable for use in the WPC system. Direct methods
have the advantage that the relevant variables can be automatically measured. However,
they often require a calibration routine. In addition, the user must wear bulky equipment.
More complex observational methods provide a detailed analysis of the posture and do
not limit freedom of movement. Yet, they currently need trained personnel to properly
use the tools.

In this work, direct methods were combined with observational methods. The awkward
posture was detected by the observation of the process. However, a direct method was
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used to acquire the data necessary to automatically fill out the worksheet. Among the
various observational assessment tools, the static posture assessment section of the ”er-
gonomics assessment worksheet” (EAWS) [34] was chosen. The EAWS is a method that
provides numeric risk scores. As described in Sec. 2.2, a numeric assessment result is im-
perative for performing effective workplace design as it is sufficiently nuanced to depict
the level of success of an intervention. The EAWS is one of the most detailed expert-
screening methods [4]. Further, the creators of the EAWS stated that it was designed to
be compliant with other internationally accepted posture assessment methods, such as
RULA [28] and OWAS [30].

Unlike the alternatives RULA and REBA, the EAWS applies the work-sampling scheme
containing additional information about the duration of postures adopted. Work-
sampling is vital for continuous ergonomic monitoring, since it avoids that the system
frequently intervenes even when the duration of the awkward posture is only marginal.
Section 6.8 discusses this issue in detail.

Alternatively, OWAS or the PATH method [32] could have been chosen. The EAWS
posture section is nearly identical to OWAS. However, EAWS encompasses further er-
gonomic aspects, such as action forces, material handling and repetition. A postural anal-
ysis using the EAWS, therefore, could complement other assessments. PATH is more
nuanced than EAWS and OWAS as it even considers neck postures. However, it does not
provide a decision rule when to intervene. Thus, it is more suitable for tasks where the
goal is to compare different workplace designs.

Table 4.1 summarises the criteria that were considered for the selection of the awkward
posture detection approach.

Table 4.1: Overview of awkward posture detection alternatives. Columns highlighted in
green represent the selected approach.
Criterion Self-reports Observational

methods
Direct methods

Can be automated no yes yes
Exactness [2] low medium high
Bulky equipment required no no yes
Calibration required no no yes

Risk Analysis

The EAWS belongs to the group of observational ergonomics assessment tools. Although
it is one of the most elaborate members of its group, the ability of observational methods
to accurately predict the WMSD risks is controversial. Schaub et al. [34] state that the
EAWS agrees to important European guidelines and that its practical relevance has been
tested using ergonomists as ground truth. Nevertheless, no large scale study has been
found to statistically prove its validity. Furthermore, automatising the EAWS requires
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developing a system, which is able to detect 16 postures excluding the asymmetry effects
(see Sec. A of the Appendix). This task poses a remarkable challenge for the automated
posture assessment component.

4.2.2 Measures against Postural Load

The literature features three main options for avoiding postural load: working differently
(job rotation or pausing), changing human behaviour (training or warning systems) or
modifying the working environment (workplace design). A summary of these methods
was provided in Sec. 2.3. An outline of the available options is provided in Figure 4.2.

Reduce
postural load

Pausing
(level 3)

Change
behaviour
(level 4)

Change
environment
(level 1 - 2)

Adapt hu-
man pose

Adapt work-
piece pose

Figure 4.2: Measures for avoiding awkward postures.

Selected Approach

While job rotations or pauses are organisational measures that, at most, achieve level 3
on the effectiveness scale, measures relying on a change in human behaviour are rated as
level 4. Only altering the work environment is able to achieve an improvement at level
1 - 2. In terms of postural load, it implies refining the spatial relationship between hu-
man and the object to be processed, e.g., the workpiece. This change can be realised in
two ways - either relocate the worker or the workpiece. An example for the first case
would be the worker standing on a movable platform. While altering height or distance
to the workpiece can be realised, problems arise as the actuator cannot safely tilt a hu-
man. Hence, the degrees of freedom of such a system are limited. The other alternative is
changing the pose of the workpiece, which offers more freedom of movement. Inspired
by the work of Busch [89], adapting the workpiece pose was chosen as approach. How-
ever, the goal is to realise the motion planning of the actuator in-process instead of in
the design stage. An illustration of this can be found in Fig. 4.3. The left panel exhibits
a non-optimal pose of the workpiece forcing the human to adopt an awkward posture
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when working on it. The right panel portrays the configuration that leads to a neutral
working posture. Table 4.2 outlines the criteria for the selected WPC measure to reduce
the postural load.

Figure 4.3: An actuator holding the workpiece is used to adjust the workplace. The
left panel illustrates an ergonomically unfavourable actuator configuration, which is cor-
rected in the right panel.

Table 4.2: Overview of awkward posture avoidance alternatives. Columns highlighted in
green represent the selected approach.

Criterion Break Change
behaviour

Adapt human
pose

Adapt work-
piece pose

Effectiveness level 3 4 1- 2 1 - 2
Realisable DoF none none relocation relocation and

tilting

Risk Analysis

Adapting the workpiece pose has been elected as the WPC measure to avoid or diminish
postural load. In order to realise a workpiece pose adjustment, an actuator is required,
which is powerful enough to carry heavy workpieces. However, such powerful actuators
pose safety threads which have to be carefully controlled. Furthermore, one challenge
in realising the WPC is actually proving its financial justification. Using robot actuators
implies investing a five to six digit amount of Euros, which then has to be compensated
by an at least equally powerful benefit. One solution could be using height-adjustable
actuators available for a lower price. Unfortunately, such a type of actuator only supports
a limited range of adjustments.



4 THE WORKING POSTURE CONTROLLER 38

4.3 System Concept of the WPC

Section 4.1 concluded that the WPC requires a system to detect awkward postures as well
as one to steer clear of remaining in awkward working postures. In the following, the
former is referred to as the posture assessment component and the latter as the posture
optimisation component. The following approach from Sec. 4.2 has been derived - to
perceive the awkward posture, a combination of observational and direct methods were
chosen. If level 1 - 2 interventions are targeted, the equipment must automatically ma-
nipulate the environment. A manipulation of the workpiece pose is preferred based on
more opportunities for adjusting the workpiece pose. Additionally, manipulators with
more degrees of freedom can be applied. In this section, the workflow is described at a
higher level. The specific algorithms to reach automated posture assessment and posture
optimisation will be addressed in the chapters 5 and 6, respectively.

The workflow of the WPC is designed as follows (see Fig. 4.4 for visualisation) - the pos-
ture assessment component continuously monitors the posture of the worker and yields
a posture-related risk score according to a modified version of the EAWS [34]. Posture
optimisation comes into play when the worker is forced to adopt awkward postures in
order to accomplish the task. A user has to adopt an awkward posture when the tar-
geted region on the workpiece to be processed is hardly visible or not accessible. As a
consequence, the spatial relationship between the worker and workpiece has to be modi-
fied such that the task requirements can be met even when adopting the desired posture.
To find this adjustment, the task at hand needs to be considered. The WPC must know
which region on the workpiece the worker intends to interact with. Furthermore, it has to
recognise the direction of the working movement. These parameters were extracted from
the worker’s current posture. Localising the hands permits targeting the region whereas
estimating forearm orientation yields an approximation of the working motion direction.
The modification of the spatial relationship between worker and workpiece is executed by
a manipulator that holds the part. Depending on the available type of actuator, such as an
industrial robot, a height-adjustable platform or a tilting table, the posture optimisation
considers the available DoF and determines the best solution within these limitations.

Subsequently, the loop starts anew - the posture assessment component observes the new
behaviour of the worker. When the current environmental parameters do not produce
an acceptable posture assessment result, the WPC initiates a new adjustment. As this
behaviour resembles a control loop, the name of this system has been chosen accordingly.

4.4 Use Cases

After having described the functional principle of the WPC, scenarios were derived where
this type of equipment could help reducing postural load. Here, four possible use cases
are presented, but no claim of completeness is raised.
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Figure 4.4: The basic WPC control loop.

Avoidance of Forced Posture

When workpieces to be processed are not in range or not visible for inspection, the worker
is forced to adopt awkward postures. Especially in the case of large products, this serves
as a threat because actions have to be likely performed at different sides and parts. For
example, when welding pipes, the torch held by the worker has to move around the
workpieces [89] resulting in a constant change of location and working direction. More-
over, a worker modifying electric engines of dimensions 1m x 1m x 1m might need to
first disassemble parts from the top. Afterwards, repair operations might require access
via the bottom of the engine. Every time the worker has to process a part at a distant
location for a longer time, the WPC would change the pose of the workpiece to facilitate
the worker accomplishing the job in a neutral posture.

Matching the Working Height and Posture to the Type of Task

According to Schmidtke and Jastrzebska-Fraczek [95], the effective working heights for
a standing worker are based on the type of task being engaged in. For precision work,
including visual inspection and quick motions, a working height between 100cm – 120cm
is recommended. Work containing forceful motions is best fulfilled at a height between
90cm – 110cm and heavy work containing whole-body movements suits heights between
70cm – 90cm. The exact value depends on the worker’s anthropometry. Note that these
recommendations assume working with products of smaller dimensions. If the product is
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bigger, the range of recommended working heights becomes broader. If the system knows
the type of task and product size, it can incorporate this information into the posture
optimisation algorithm.

Enable a Convenient Direction of Force Exertion

According to Schaub et al. [44], the maximum acceptable force exposure depends on
the worker’s posture and the direction the force is being applied in. For instance, when
standing upright, larger force exertions are acceptable compared to bent postures. Addi-
tionally, higher maximum forces can be tolerated if the force direction points downwards
rather than upwards. A task that originally requires an upward force direction can be
transformed into one requiring a downward direction simply by flipping the workpiece.

Initiating a Dynamic Postural Change

Although upright standing postures and upright sitting postures are the most favourable
according to the EAWS [34], remaining in one posture for the whole working day causes
monotonous strain. Hence, it is essential that the worker changes posture from time to
time. As commendable guideline, Neuhaus et al. [51] encouraged sitting 50% of the
time and standing upright for the other half. The WPC could automatically identify the
current posture and measure the time the worker has remained in it. If the time exceeds a
threshold, the WPC changes the workpiece pose, which in turn allows the worker to alter
his or her posture.

4.5 Safety Mechanisms

The actuators of the WPC share a common workspace with the worker. Humans and
systems are coupled to each other through the workpiece. Specifically robot manipula-
tors are able to generate high forces, torques and speeds. This creates lethal threats in
the case of clamping or when the actuator collides with the human. Haddadin et al. [96]
mentioned the following possible contact scenarios to consider - unconstrained impacts,
partially constrained impacts and resulting secondary impacts. Thereby, constrained im-
pacts, such as clamping in robot structures or walls, are highly dangerous and possibly
result in life-endangering situations. Another safety issue to be considered is when a
robot holds the workpiece such that certain parts are not completely fixed. If the object is
tilted, these parts could potentially fall, leading to damage or injuries.

Taking into account these hazards, integrating safety mechanism is mandatory. In the fol-
lowing, three mechanisms that can enhance the safety of the WPC when interacting with
humans are briefly described. Fully implementing all mechanisms would significantly
slow down the workflow. However, the focus of this thesis was not on developing a time
and safety optimised concept, but instead to ensure basic safety. The selection of which
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mechanism to include in the final system depends on the specific use case. The safety
mechanisms are derived from robot and machine safety standards:

• DIN EN ISO 10218-1 [97]

• DIN EN 60204-1:2014-10 [98]

• ISO/TS 15066 [99]

The following sections further elaborate upon the mechanisms. Figure 4.5 summarises
the presented mechanisms and which threat they address.

Human
confirmation Reduced DoF Reduced speed

Constrained
impact

Unconstrained
impact Secondary impact Unfixed parts

Figure 4.5: Summary of safety mechanisms and the threats they address.

Human Confirmation for Adjustments

Unexpected behaviour that brings about injuries can be dramatically reduced when ev-
ery action of the system must be confirmed by the human worker. A movement of the
actuator while the worker is nearby can lead to confusion or a contact scenario in the
worst case. A confirmation mechanism makes certain that the worker at least expects the
motion of the actuator. Moreover, an alternative manual operation mode of the system
can be instituted where the user completely controls the actuator. In any case, the con-
trol interface is recommended to be placed outside of the manipulator’s range so as to
eliminate contact risk. The actuator has to cease its motion as soon as the human enters
the workplace, and there is no collaborative workspace. Moreover, the standard DIN EN
ISO 10218-1 [97] requires the confirmation mechanism to work according to a three-phase
confirmation regimen. In situations where the confirmation is unintended and a human
being is in a shock situation, they can end the motion by either releasing the switch or
pushing it further. Figure 4.6 illustrates the human confirmation mechanism integrated
into the original WPC workflow.
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Figure 4.6: Safety enhanced WPC workflow.

Reduced Degrees of Freedom

Limiting the DoF reduces the range of the actuator and renders motions more predictable.
If the human being stands in front of the system, the chance of a collision is markedly
reduced when the actuator is only permitted to move vertically. By restricting the global
orientation of the workpiece, this mechanism can also prevent unfixed parts from falling
out. The limitation of the end effector orientation can be incorporated into the hardware
and the posture optimisation algorithm.
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Reduced Speed

In the case the rather conservative confirmation mechanism unacceptably reduces the
efficiency of the process, the WPC system can be designed as a collaborative system
where the actuator initiates an adjustment although the user is located in the collabo-
rative space. In this design, the system must fulfil the rules defined in ISO/TS 15066 [99].
This standard defines required protective measures and stopping functions for collabora-
tive workspaces.

One crucial control for the safety of the interaction within the collaborative workspace is
the speed of the actuator. According to ISO 10218-1 [97], the maximum allowed speed of
the end effector in physical cooperation scenarios is 250 mm/s. This rather conservative
threshold has been selected so the worker may react in cases of an unexpected motion
taking place [96]. In situations of contact, the reduced speed results in a lesser force
released onto the worker. ISO/TS 15066 [99] attempts to provide a more nuanced scheme.
A formula is supplied to calculate the permissible speed depending on the protective
separation distance and the distance of the actuator to the human being. Furthermore,
maximum tolerable threshold values for contact situations depending on force, pressure,
contact surface and part of the body are defined.

4.6 Conclusions

In this chapter, the overall concept of the WPC has been put forth. Ultimately, the idea
is to have a system with an automated ergonomics analysis module and an automated
posture optimisation module, which adapts the workplace layout. To foster the auto-
mated ergonomic assessment, the manual assessment process was taken as a model and
the EAWS was chosen as the reference tool. The automated workplace layout design was
then realised through an actuator holding the workpiece. Both components require to be
computationally efficient so feedback can be provided within a few seconds.

The interaction workflow between a user and the system was then presented. Derived
from this high-level system concept, use case scenarios for the WPC were provided that
were mostly comprised of matching the posture to the process and enabling the worker to
better apply force. As the worker and the system’s actuator share a workspace, the WPC
has to fulfil certain safety criteria. To reach this goal, safety mechanisms were proposed.
One of the most effective ways, in general, is to integrate a human confirmation mecha-
nism where the worker is outside of the danger area. Decreasing the degrees of freedom
and end effector speed further diminishes the risk of injuries.
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5 Posture Assessment

This chapter explains the algorithms developed to formulate the posture assessment com-
ponent of the WPC. The focus was on developing a method to estimate the location of the
joint angles, which are vital for recognising the posture. Having identified those postures
in a process, the standard EAWS scheme can be applied to obtain a numeric risk score.

5.1 Problem Statement

This chapter addresses the research question RQ2:

How can an automated image-based ergonomics assessment be realised?

As Chapter 4.2 stated, one core component of the WPC was an algorithm able to
provide a numeric score representing the postural risk. In order to initiate an in-process
intervention, the assessment must be able to continuously determine the ergonomic risk
scores over short time intervals. Due to its numeric result format and the work-sampling
operation principle, the EAWS [34] was selected as the method to be automated (see
Sec. 4.2.1 for a detailed discussion). As a side condition, Chapter 3 has put forth that
an image-based approach was selected. A manual assessment according to the EAWS
requires the ergonomist to determine which postures a subject has adopted and for
how long. Although the EAWS does not contain all feasible postures of the human
body, the present use case assumes that all the observed postures in the process can
be assigned an EAWS posture. An automated assessment would simulate the manual
process by automatically determining over short durations which posture the recorded
image depicts. The recognised postures and their time share since the beginning of
the recording can then be translated into intermediate posture scores. The sum of the
intermediate posture scores yields the current risk score. An example assessment is
performed in Sec. A of the Appendix.

The task of automatically recognising a particular posture from a given finite set of op-
tions is known in machine learning literature as classification. Classification is charac-
terised as the task of establishing which pre-defined category an observation belongs to.
The decision can either be made on the basis of a set of manually developed rules (as in
the case of manual EAWS assessment) or by an algorithm learning the decision pattern
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from a set of training observations. In the training data, the corresponding categories are
known. The training data-based approach was centred around as the given observations
were images. Decision rules derived from the raw input pixels were expected to be highly
complex and hard to manually formulate. For the posture classification problem, the ob-
servations correspond to the images acquired by the image sensor. The categories are the
postures to be identified. Based on the fact that there were more than two postures in the
EAWS, this is a multi-class classification problem. Normally, classifying raw image data
does not produce robust results. Rather, the key to high accuracy is to find features which
invariantly and uniquely represent a posture category [100]. The features described in
this chapter require a sophisticated method to extract, which is why a large proportion of
this chapter will deal with the actual obtaining of them, including the camera setup and
the algorithm used.

Figure 5.1 summarises the research questions to be answered in this chapter.

RQ2: How can an automated image-based ergonomics assessment be re-
alised?

Which camera setup is recommended for the given posture assessment task?

Which features can be employed for recognising postures defined in the
EAWS from images?

How can these features be extracted from the image data?

Which method can be applied to classify the posture given the feature vec-
tors?

Figure 5.1: Summary of sub-research questions RQ2 implies.

5.2 Design Alternatives

5.2.1 Posture Classification

Classification approaches have been proposed to recognise exemplary postures, such
as ”standing”, ”bending”, ”sitting”, ”lying”, ”crouching” or ”squatting” [101, 102, 103,
104, 105, 106, 107]. Certain posture classifiers have been developed in the context of a
specific application area. For instance, there are works on home care [102, 103] or the
translation of hand sign language [108, 109]. Strongly related to posture classification
is the task of action recognition, where a motion is labelled as an action category. In
this case, methods are used that consider a combination of postures. Action recognition
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approaches are included in this overview because the features extracted are similar to
those used in posture classification. In order to realise a posture classifier, two compo-
nents must be selected - the classifier and the features. A variety of classifiers have been
utilised: neural networks and their variants [110, 111, 102, 103], support vector machines
[112, 105, 113], random forests [109], nearest neighbour-based classifiers with various dis-
tance measures [114, 106], threshold-based classifiers [104], linear classifiers [108] and
Naïve Bayes [115, 116]. Conversely, in the field of human action recognition, which is
basically a classification task over a sequence of postures, hidden Markov models are the
favoured technique [101, 117, 118, 107, 119, 120].

Similar to classification algorithms, a variety of different image features for posture clas-
sification have been proposed. Figure 5.2 summarises the existing approaches. Briefly,
the posture classification features can be categorised into two groups - features that are
directly computed from the image (direct features) and features computed from interme-
diate features, including locations of the parts of the body (indirect features).

Posture
classification

features

Direct

Silhouette Depth

Indirect

Angle Orientation Displacement

Figure 5.2: Overview of feature types used for posture classification.

Direct Features

Most direct features are computed from silhouette images [110, 101, 117, 111, 102, 103]
or depth images [104, 118, 109]. Zerrouki and Houacine [103] and Just et al. [108] used
Red Green Blue (RGB) colour images. Over the period of the development of the posture
assessment component (2012 - 2014), RGB images as input modalities were not as popular
as depth or silhouette images as the appearance of the subject varied depending on their
clothes and environmental illumination. Only recent developments, such as in Taylor et
al. [121], suggested methods relying on RGB images, which achieve promising results.
For this reason, RGB features were excluded as alternatives.

Silhouettes (see Figure 5.3a for an example) represent the segmented person or object in
the image and can be procured by background subtraction or another segmentation algo-
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rithm. Silhouettes are signified by binary images where a pixel value indicates whether
the pixel belongs to the foreground or background. Rather than isolated pixels, a fore-
ground normally comprises connected regions. Thus, most features attempt to describe
the shape of such regions. A popular approach for capturing the shape is probabilistic
projection mapping [101, 117, 102]. The silhouette is projected onto the principal axes.
The resulting 1D profiles represent the minimum or maximum foreground extent in each
row or column of the image. Line-wise histograms were then created to express the vari-
ance between silhouettes of the same posture class. As a result of silhouette edges possi-
bly being be non-smooth and noisy, an accepted post-processing step is to apply a Fourier
transformation onto the profiles and filter out the high-frequency components of the sig-
nal [102]. A different approach to creating features from silhouettes are shock graphs (see
Figure 5.3b), just as used in Hussain et al. [111]. Shock graphs [122] are produced by the
skeletonisation of the silhouette. A skeletonisation algorithm successively applies mor-
phological erosion operations onto the image until only tree-like structures of the width
of one pixel remain. Using shock graphs, concave and convex structures can be detected.

(a) Silhouette image (b) Shock graph by Hussain et al. [111]

Figure 5.3: Examples of direct features for posture classification.

Processing depth images or depth maps has recently become popular because of the
release of low-priced Red Green Blue - Depth (RGBD) sensors, such as the Microsoft
Kinect®. The value of a depth map pixel denotes the distance along a ray from the pixel
on the camera sensor to the first obstacle the ray collides with. Therefore, depth images
contain 2.5D information. Additionally, background subtraction within depth images
constructs a silhouette image. This processing technique is a popular choice [11, 123]
as depth images vary less under illumination changes compared to RGB images. Thus,
depth images possess 2.5D information as well as silhouette information, allowing the
use of the techniques mentioned before. Employing 2.5D information, Diraco et al. [104]
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created a Reeb graph. This structure can be seen as the shock graph derived from 2.5D
data. Kuznetsova et al. [109] put forward computing ESF descriptors, a statistical ap-
proach to describing the data. The depth image was first masked out by the silhouette.
Subsequently, random pairs and triplets of points were sampled from the region and their
3D distance, angular and area measurements computed. The histogram representing the
distribution of these computed measurements was used as the feature vector. Another ap-
proach is to compute a histogram of oriented gradient (HOG) [124] on depth data [119].
HOGs are state of the art features in RGB images, e.g., for the localisation of human be-
ings.

Indirect Features

The methods described earlier directly extract the features for posture classification from
the image. However, many approaches [104, 112, 114, 105, 106, 107, 125, 126, 119, 113,
120, 115, 116] prefer indirect features. First, distinctive parts of the body, in particular
joints, are localised. Afterwards, features are computed from combinations of the identi-
fied positions. Exemplary joints are ”centre of the left hand”, ”left elbow” or ”left ankle”.
The joint positions are described by 3D coordinates. A problem is that joint coordinates
indicative of the same posture vary depending on the position of the subject, the size of
the body segments and the global orientation of the body. Features computed from joint
coordinates attempt transformation of the position coordinates into an invariant repre-
sentation. This invariance can be achieved with joint angles [112, 106, 105, 125, 107]. Joint
angles are the angles computed between two neighbouring body segments. Their advan-
tage is that they can be easily interpreted by human beings. Incorporating prior knowl-
edge, such as typical angles for specific postures or debugging the classification, is simpli-
fied. Joint angles are invariant to body segment sizes as the same angle between different
segment lengths produces the identical feature vector. Unfortunately, ”unwanted invari-
ances” are obtained. Joint angle features can be ambiguous, as three 3D position vectors (
nine-dimensional space) are mapped into one scalar value ( one-dimensional space). This
potentially results in distinct postures represented by the same angular values (see Fig.
5.4 for an example).

Joint or segment orientations [119, 120] are another invariant representation. The idea
is to compute the normalised 3D direction vector of each body segment. Whereas joint
angles signify the relative rotation between two neighbouring segments, joint orienta-
tions denote the rotation in the global coordinate system. By transforming the orientation
vectors into polar coordinates [120], one dimension per segment can be discarded. An-
other way to introduce invariance is by using relative position displacements. Reyes et
al. [126] set a fixed reference point on the skeleton and expressed all other joint coordi-
nates relative to this reference. Alternatively, rather than fixing the reference point, the
feature vector comprises pairwise distances between joints [113, 115, 116]. As the full
feature space of pairwise joint combinations is high, Yang and Tian [115, 116] thought
to apply a principal component analysis on the feature space by only selecting the pairs
with the highest variance. When dealing with relative joint coordinates, it is important to
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Figure 5.4: Ambiguity of joint angle features. Both postures are represented by the same
joint angle vector as the joint angle values q1 and q2 are similar.

normalise them, otherwise, subjects with varied body sizes would result in different fea-
tures. However, normalising does not guarantee invariance to different ratios of segment
sizes, e.g., in the case of exceptionally longer arms or legs. Another approach is to take
the plane orientation from triplets of joints, just as performed by Yao et al. [127]. Three
points are needed to construct a plane and the orientation of the plane is represented by
its normal. Using joint displacements, human expertise can be incorporated into the fea-
tures by pre-classifying them into categories, such as ”hand is near X” or ”hand is above
X” [119], where X represents a particular joint.

Selected Approach

Summarising the overview on posture classification features, direct features, in contrast
to the indirect ones, have the advantage that they do not require an intermediate joint
localisation step. However, methods from this family cannot provide body size and view
point invariance. As joint positions have to be determined for the posture optimisation
method (see Chapter 6), anyways, the indirect feature approach was followed. Using
these types of features enables reusing the computed joint positions.

Among the indirect features, there was the choice between joint angles, joint orienta-
tions and displacement features. Joint angle features, versus displacement features, have
the advantage of being invariant to body size and viewpoint. In comparison to orienta-
tion features, they represent similar information. Finally, joint angle features were imple-
mented. In 3D, the joint angles were combined with orientation features to resolve the
ambiguity of two postures having the same angular representation. In 2D, orientation
features were not used, as a particular parametrisation scheme can avoid ambiguities.
Table 5.1 summarises the criteria considered when selecting features for the posture clas-
sification component.
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Table 5.1: Overview of alternative features for posture classification. Columns high-
lighted in green represent the selected approach.

Criterion SilhouetteDepth Angle Orientation Displacement
Compute joint positions no no yes yes yes
Body size invariance no no yes yes no
View point invariance no no yes yes no
Ambiguous representation no no yes no no
Parameters per joint 1 2 (3D) 3 (3D)

Risk Analysis

Indirect features heavily depend on the robustness and accuracy of the joint localisation
algorithm used, which is still an open problem in the field of computer vision. If the
correctness of the computed joint positions cannot be ensured, postures cannot be reli-
ably classified. Furthermore, although the EAWS recommends a human practitioner to
use joint angles and locations to distinguish the defined postures, it does not mean that
these features themselves are sufficient to correctly classify each posture. A trained er-
gonomist might internally recognise the stance based on additional features, which are
not explicitly expressed in the guidelines.

5.2.2 Joint Localisation

As stated before, the indirect posture classification approach requires a routine to iden-
tify the 3D positions of the joints of interest. In context of this thesis, this task is referred
to as joint localisation. The biggest challenge in joint localisation is variance - identical
postures can be depicted by countless different input images. A localisation algorithm
has to localise the body parts under varying circumstances. Poppe [128] mentioned that
motion and appearance of the subject can strongly vary. Additionally, the algorithm has
to operate under unique environmental conditions, such as varying camera viewpoint,
illumination and occluded view. The general approach to dealing with this variance is
to introduce assumptions regarding subject and environment. A subset of conditions are
fixed to reduce the overall variance. Moeslund and Granum [129] provided a list of the
most common assumptions ranked according to their prevalence. There are extensive sur-
veys [129, 128, 130] giving a detailed overview on joint localisation methods. In general,
the approaches proposed in the literature can be categorised into three groups [131]: dis-
criminative approaches, filtering approaches and generative methods. In the following,
the main idea of every approach is outlined. The input of every method is a silhouette, a
depth or an RGB image. In the following, the notation I is used to represent the image.
The goal is to determine the joint locations and joint angles, which will be referred to as
model parameters. The model parameters are denoted by the symbol q.
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Figure 5.5: Shotton et al. [11] used intermediate body part maps to compute joint coordi-
nates.

Discriminative Approaches

Discriminative approaches attempt to learn a mapping q(I) between an image I of the
image space and model parameters q of the parameter space from a set of examples
{(I1, q1), ..., (In, qn)}. As image space, as well as parameter space, can be high dimen-
sional, a large amount of densely sampled data is required. Discriminative methods can
be divided into two groups - classification [11, 132, 133, 134] and regression approaches
[135, 136, 137]. Regression methods strive to directly learn the mapping between image
and parameters whereas classification methods learn discrete high-level features from the
data and employ these features in computing the target model parameters. One example
of a classification approach is featured in Shotton et al. [11] - they learned a mapping be-
tween a single pixel in the image and the part of the body it belonged to. After classifica-
tion of each pixel, cluster centres in the resulting image represented the model parameters
(see fig. 5.5).

The greatest advantage of discriminative methods is that, once the mapping has been
learned, they can perform quickly and are able to deal with occlusions if the correspond-
ing examples are included into the data set. However, the greatest challenge with them
lies in developing methods for generating a massive amount of labelled data that contains
all the necessary variation. As an example, Shotton et al. [11] produced around one mil-
lion depth images containing subjects of various anthropometry. Each image contained
annotations where each pixel was assigned the part of the body it belonged to. Manually
creating such a data set is simply not feasible. Automatically creating this sort of data set
requires computer graphics tools for human modelling. If there are postures that signifi-
cantly differ from the examples utilised for training, the localisation can be inaccurate or
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Figure 5.6: Shortcomings of the joint localisation algorithm of Shotton et al. [11] and their
implementation in the Primesense NiTE library. The middle picture suggests that the
posture adopted was not present in the training data set and, thus, cannot be recognised.

incorrect. Figure 5.6 provides examples where the algorithm in Shotton et al. was applied
on postures and viewpoints that differed from the training set.

Filtering Approaches

Filtering or tracking approaches [138] assume a temporal coherence between successive
results and work best when the motion between image frames is small. Gall et al. [131]
described the filtering task as the estimation of an unknown state, the model parameters,
from a sequence of noisy observations. One can imagine that the algorithms filter out the
noise from the signal I such that only the state information q remains. The core idea of fil-
tering algorithms is to assume that the state sequence q follows an underlying stochastic
process.

The techniques to solve this filtering problem can be divided into single hypothesis and
multiple hypothesis methods. Single hypothesis methods [139] are based on the Kalman
filter [140] or the extended Kalman filter and output only the most probable parame-
ter set for the current frame. The model parameter estimations of the upcoming frame
are strictly based on this hypothesis. The benefit of single hypothesis approaches is that
there is a closed-form solution for the underlying mathematical problem, which can be
efficiently determined. The main disadvantage is that incorrect or inaccurate estimations
are propagated to further frames. In other words, once the system goes into an erroneous
state, it cannot recover. Multiple hypothesis approaches [141, 142, 143] are based on se-
quential Monte Carlo methods. As opposed to single hypothesis methods, they propagate
multiple guesses over time. Each hypothesis is assigned a weight that represents its prob-
ability of being the correct estimation. For the current estimation, the hypothesis with the
heaviest weight or the mean of all hypotheses is computed. Multiple hypothesis-based
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approaches are capable of better recovering from failures than single hypothesis methods
because the ”backup hypotheses” are kept, which can be used when the current one has
shown to be wrong. Moreover, the weighting makes certain that incorrect hypotheses
have little influence on the final estimation. Yet, multiple hypothesis methods are more
computationally demanding than single hypothesis algorithms.

The key advantage of filtering methods is that they use additional information from pre-
vious frames. This can make the estimation of the parameters more robust. However,
single hypothesis methods are especially susceptible to incorrect estimations in the past
frames. Moreover, if the initial frame contains a non-optimal estimation, all subsequent
frames will base their estimations on the incorrect frame. Multi-hypothesis approaches
attempt to provide more robustness, however, with growing parameter space, a large
amount of hypotheses have to be generated and evaluated.

Generative Approaches

Generative approaches operate following the analysis-by-synthesis principle[12]. The ob-
jective is to find the model parameters that best explain the image data. Generative ap-
proaches require two components to be designed. First, an operation has to be developed
that creates a model image out of the current model parameters. Moreover, an objective
function has to be designed representing the similarity or dissimilarity between the input
image and the model image. The generative method strives to determine model param-
eters that optimise the objective function. In this thesis, the convention is maintained
that an objective function shall be minimised. For the optimisation process, local search
strategies or global search strategies are applied.

Local search methods [144, 145, 146, 147, 148] are based on computing the derivatives of
the objective function subject to the parameters and iteratively updating the parameters
towards directions where the objective function decreases. Local methods achieve solu-
tions which are very near to a local optimum. However, the main downside is that the
solution can be a local minimum of the objective function. A local minimum can still be
a ”bad” solution as it leads to an unacceptably high objective function value. In order
to reach a minimum that yields an objective function value similar to the global mini-
mum, a parameter initialisation near the target is essential. For promising initialisations,
generative approaches are combined with discriminative or filtering frameworks. The
resulting methods are hybrid approaches. As an example, initialisations can be realised
from the estimation of the previous frames [146] (similar to filtering). Discriminative and
generative approaches were combined in Sharp et al. [132], where the authors used the
algorithm proposed by Shotton et al. [11] to create initial hypotheses and refined them
with a generative method. Alternatively, specialised part detection algorithms can be ap-
plied. Qian et al. [149] detected finger tips and Elhayek et al. [150] localised specific body
parts to guide subsequent generative algorithms.

Global search strategies attempt to overcome the problem of local minima by dis-
cretising the search space [151] or applying multiple hypothesis optimisation methods
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[152, 153, 154, 155, 156]. Discrete methods ensure the global minimum of the search space
is limited to a finite set of candidates. However, depending on the sampling rate of the
search space, the accuracy might not be sufficient for a given task or may only be achiev-
able through exhaustive computational effort. What global optimisation strategies have
in common is that they are computationally intensive. Similar to multiple hypotheses
filtering approaches, the number of objective function evaluations is many times higher
than in local search approaches. Only recent parallel computing architectures have made
it possible to achieve real-time performance with global search strategies.

Generative approaches can deal with fast movements or can estimate postures from a sin-
gle image when a reliable initialisation is available. Moreover, they can address the vari-
ance of motions through automated search of the parameter space. This makes tedious
manual generation of training examples, like in the case of discriminative approaches,
obsolete. On the other hand, the computational cost of generative approaches is high
because of the frequent creation of the model images. Moreover, the quality of the esti-
mations is highly dependent on the initialisation of the hypotheses.

Selected Approach

As described previously, discriminative approaches require a large amount of labelled
data. Obtaining such data is too expensive, which is why this approach was discarded.
Filtering and generative approaches seemed to be comparably attractive. However,
looking at recent publications related to joint localisation from 2011 - 2016, generative
[132, 146, 148, 152, 154] and discriminative [11, 132, 137, 135, 136] approaches were clearly
preferable to filtering [141]. This is why the generative approach was elected for the joint
localisation component. For the developed 2D approach, a discrete method was used,
which does not require any intialisation. In the 3D joint localisation approach, generative
localisation was combined with an initialisation through previous estimations (filtering-
like approach). Table 5.2 summarises the criteria used for the choice of the joint localisa-
tion approach.

Table 5.2: Overview of joint localisation alternatives. Columns highlighted in green rep-
resent the selected approach.

Criterion Discriminative Filtering Generative
Training data required yes no no
Computational complexity low low - high high
Dependent on initialisation no beginning

of recording
yes
(except discrete
methods)
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Risk Analysis

The problem of localising human joints in an image is still not fully solved. In the current
state of the art, there is no general method, which provides robust estimations in all sit-
uations. Rather, acceptable quality of the joint localisations has been reported for special
cases with controlled setup. Whether the posture assessment task can be transformed into
one of these fortunate cases remains a subject of investigation. Since the objective func-
tions used in generative methods are normally too complex to derive or guarantee mathe-
matical properties, the only way to evaluate the feasibility of this approach is conducting
experiments. Not only is achieving sufficient accuracy and robustness a challenge, but
maintaining the runtime of generative approaches at a few seconds per frame requires
the application of elaborate algorithmic transformations and parallelisation techniques.

5.2.3 Image Acquisition Devices

This section discusses which image acquisition devices could be used for generating the
input data for the localisation algorithm. The first question answered is whether to use
colour (RGB) or depth images (see fig. 5.7). RGB images contain 2D information of the
scene. Depth images are considered as 2.5D information, as a single image cannot capture
the subject from all perspectives. However, the captured part contains 3D data. In order
to obtain ”real” 3D data, multiple RGB or depth images from different viewing points
have to be merged. In the scope of this thesis, only algorithms operating on a single im-
age were considered. Poppe [128] stated that solving the joint localisation task on 2D data
leads to ambiguities, which can be hard to algorithmically resolve. Hence, the depth data
format was preferred as it better preserves the 3D information than RGB images. Another
problem was that RGB images have more variance in situations of different environmen-
tal illumination or clothing than depth images unnecessarily increasing the difficulty of
the localisation task. Finally, recent successful joint localisation methods mostly count on
2.5D depth data [11, 132, 137, 135, 136, 148, 152, 132]. Bearing in mind the arguments
given, the search was concentrated on modalities that generated depth images.

There are a variety of approaches to acquiring depth images. The most common tech-
niques are discussed with regards to their suitability for the given joint localisation task.
This list is not claimed to be complete. Among the so-called shape-from-x methods, where
x denotes the features used,

• Time-of-Flight (ToF)

• Shape from focus

• Shape from shading

• Shape from texture

• Photometric stereo
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Figure 5.7: Colour image (left) and corresponding depth image (right) from the Microsoft
Kinect® sensor.

• Structured light

• Stereo vision

• Shape from motion

• Light field technology

were discussed.

Pre-Selection of Relevant 2.5D Image Acquisition Modalities

In order to find candidate devices, the method of elimination was employed. In brief,
options were eliminated for three reasons: high cost, low frame rate and infeasible envi-
ronmental conditions: Initially, the light field cameras were discarded because acquiring
the hardware was financially rather expensive. As an example, the company ”Raytrix”
offered in 2012 light field cameras starting from around 4000 Euros without lenses. Fur-
ther, there were methods abandoned because the achievable frame rate was too low -
depth from focus is an interesting approach, but requires a long period of time for the
generation of the focal stack, the succession of images with different foci utilised to de-
termine the depth information. In addition, the computation itself is remarkably lengthy.
Suwajanakorn et al. [157] observed an overall computing time of around 20 minutes per
image on a single CPU in a recent publication. Finally, there were methods needing exclu-
sion because the given use case could not guarantee the environmental conditions they
required. Photometric stereo approaches need multiple images with different lighting.
Tracking 3D motion would require quickly altering, through different lighting, setups in
the scene. This continuous switch would rapidly confuse the worker. Shape from shad-
ing is mostly used in controlled environments where the lighting parameters are known
[158]. Even recent approaches, such as Han et al.’s [158], require objects with uniform
albedo. Unfortunately, determining the lighting or guaranteeing the colour of the ob-
ject of interest to be uniform is mostly not possible for real world images. Shape from
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texture requires a regular texture on the scene, which can also not be definite at an as-
sembly workplace. Last but not least, the use case contained many situations where the
subject was static. As there was only a little motion in the scene, the depth from motion
approach was expected to encounter problems. Having eliminated most of the methods,
there were three viable options to obtain depth information from the scene: stereo vision,
structured light and ToF. In the following, the principles and their characteristics will be
briefly described.

Stereo Vision

The stereo vision approach obtains depth information by reconstructing a 3D point from
the corresponding 2D points from two different views. Stereo cameras consist of two
mono or RGB cameras often placed in parallel. The depth of a point in the scene can be re-
constructed when it is visible by both cameras. The reconstruction process is called trian-
gulation. The most important step for stereo cameras is to find the points in both images
that correspond to the same 3D point. This process is called stereo matching. Scharstein
and Szeliski [159] published the Middlebury dataset for comparing stereo matching algo-
rithms with one another. On the webpage www.middlebury.edu/stereo mentioned in their
paper, a continuously updated overview of stereo matching the techniques can be found.
In general, the characteristics of the stereo vision systems, e.g., Field of View (FOV) of the
depth image or depth resolution, depend on the characteristics of the cameras used. The
depth resolution can be computed using the following formula [160]:

dZ =
dD · Z2

f · B
(5.1)

As can be seen in Eq. 5.1, the size of a depth element, dZ, which corresponds to the
depth resolution, is dependent on the distance of the 3D point to the cameras, Z, the
focal length of the cameras, f , and the baseline between the cameras, B. Moreover, the
achievable disparity resolution, dD, is an essential factor. This resolution depends on the
stereo-matching algorithm employed and can either lie in pixel or sub-pixel range. The
biggest advantage of stereo cameras is that they are a passive technology. Hence, mul-
tiple stereo cameras from different viewing angles do not interfere with their respective
signals, unlike that which occurs with active technologies. Additionally, high-depth res-
olutions can be achieved, even at greater distances, if the resolution of the cameras, the
baseline or the focal length are high. The main disadvantages of stereo cameras are that
varying the illumination or a lack of texture in the scene can disturb the reconstruction.
Moreover, a time-consuming calibration process is often needed. Last but not least, the
computational complexity of stereo-matching algorithms is high, which adds to the time
to the overall computation.

Structured Light

Structured light systems follow an active stereo approach. The underlying idea is to
project a known pattern onto the scene that becomes distorted by the scene geometry.
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One notable example of a structured light sensor is the Kinect. Since its release, the
Kinect has dramatically advanced the area of computer vision [161]. The reasons for this
trend are low price, not needing calibration of the system and low computational costs in
the depth-generation process. Moreover, on the software site, Shotton et al. [11] accom-
plished a breakthrough in the field of real-time motion anaylsis with this device. Yet, the
Kinect has its shortcomings in terms of accuracy. Especially for distances above 4m, their
area of application is limited because of the low-depth resolution and, additionally, the
high variance in depth values. According to Khoselsham and Elberink [162], the depth
resolution at distances of 4m is 5cm with a standard deviation of 2.5cm. Furthermore, this
technology does not allow for the creation of a dense depth image with a measured value
for each pixel. According to Sarbolandi et al. [163], the depth information for each pixel is
estimated from the local image information in a 7x7 or 9x9 window. Finally, when using
multiple Kinects to resolve occluded parts of the body, one has to contend with the prob-
lem that the sensors interfere with each other. The interference of signals results in dead
spots within the depth images. Resolving this problem requires modifying the hardware,
such as multiplexing of the sensors [164] or periodically shaking the devices [165, 166].

Time-of-Flight

Similar to the structured light approach, the ToF technology is also an active technique.
The main rationale is to emit light onto the scene and measure the time it travels to the
object and back to the sensor array. The travel time can then be converted into a depth
value [163]. After the release of the first Kinect sensor, Microsoft refined its depth sensor
technology and altered the depth image acquisition principle from structured light to ToF.
Consequently, the Kinect v2 or Kinect One was released in 2014.

After its release, the Kinect v2 was investigated by several groups [167, 163]. The Kinect
v2 offers a higher FOV (70.6◦ in the horizontal direction and 60◦ in the vertical direction)
than its predecessor. Furthermore, Yang et al. [167] observed the depth resolution to
be higher, especially at longer distances (4mm - 5mm at a distance of 4m). With this
all being said, the Kinect v2 has the same advantages as its predecessor. Additionally,
it corrects the weakness of low accuracy. The device now creates a dense depth map
that permits a detailed analysis of the scene. Nevertheless, vulnerabilities in terms of
particular environmental conditions continue [163].

Selected Approach

Among the alternatives, the first generation Kinect was chosen for depth image acquisi-
tion. This modality was preferred to stereo vision approaches because no calibration is
required and the computational complexity for depth image acquisition is significantly
lower, leaving more capacity for the motion analysis algorithms. The Kinect v2 is an even
more interesting alternative than the first Kinect, however, at the time of the algorithm
design, it had not yet been released. Nevertheless, because the methods developed are
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device independent, the shift to the Kinect v2 could be easily realised. Table 5.3 sum-
marises the criteria for the selection of the image acquisition device.

Table 5.3: Overview of image acquisition device alternatives. Columns highlighted in
green represent the selected approach.

Criterion Stereo Time-of-Flight
(Kinect v2)

Structured
Light
(Kinect v1)

Calibration required yes no no
Computational complexity high low low
Availability at development time yes no yes

Risk Analysis

As researchers [11, 148, 152] have shown, the accuracy of the Kinect v1 is sufficient to
localise joints in distances below 3m. However, the use cases discussed in the paper en-
abled the Kinect to be placed at a rather small distance in highly controlled environment.
It has to be examined whether the technical properties of the Kinect v1, such as resolution
and robustness to external influences, satisfy the application case of the present work.

5.3 Posture Classification Workflow

Section 5.2 has derived how the algorithmic base for the posture assessment method
would look. First, the section has argued that an indirect posture classification method
was most suitable for the given task because the upcoming posture optimisation method
required 3D joint coordinates, anyway. Using indirect features, a joint localisation method
had to be selected, which obtains these coordinates. The generative approach was se-
lected as it does not require a massive amount of training data and has proven to be
effective according to recent literature. Finally, the question which image acquisition de-
vice to use has been discussed. The selected device was the first generation Kinect sensor
as it was cost-efficient, simple to use and does not require a massive amount of computing
resources.

In the upcoming sections, the concept of the posture classification algorithm is presented.
The workflow is depicted in Figure 5.8. The method contains three parts: camera setup,
joint localisation and posture classification including EAWS computation.

Kinect
depth image

Joint
localisation

Joint angle
features

Posture
classification

Figure 5.8: Illustration of the developed posture classification workflow.
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5.4 Camera Setup

At the beginning of the pipeline is the depth image. This section tackles the question of
which viewpoint to select. The answer was derived in three steps: 1) the theoretically
required minimal spatial resolution (in mm or cm) of a 2.5D camera to properly recognise
each posture was determined; 2) the spatial resolutions possible with a camera setup fea-
turing the Kinect was discussed; and 3) using required and achievable spatial resolutions,
possible options for the placement were evaluated. For the explanations throughout the
sections, the camera coordinate system notation depicted in Figure 5.9 is used.

Figure 5.9: Camera coordinate system notation used in this thesis.

Required Spatial Resolution

First, the theoretical spatial resolution of the data required to properly use the posture
assessment tools, was calculated. For the analysis, the exemplary ergonomics assess-
ment tools, REBA [29] and EAWS [34], were chosen. With these tools, the posture classes
are identified from the values of the joint angles. The starting point of the analysis was
to determine the smallest joint angle resolution required in order to be able to properly
distinguish each posture class. Both tools work in such a way that a posture class is de-
termined by identifying the combination of joint angle intervals. The assessment tools
define fixed intervals for each joint angle. An exemplary visualisation of joint angle inter-
vals for the back joint can be seen in Figure 5.10a. In EAWS, a back angle in the green area
(< 20◦) means an upright posture, in the yellow area (20◦ − 60◦), a bent-forward posture,
and in the red area (> 60◦), a strongly bent-forward posture. Additionally, the angles of
the lower limbs define whether the subject is sitting or standing bent forward. Finally,
the angles of the shoulder joint decide whether the arms are below, at or above shoulder
level. Thus, a posture is basically a combination of joint angle intervals.

This posture class representation makes it obsolete to confirm the spatial resolution for
each posture in isolation. Rather, it suffices to consider the intervals for each relevant
joint. Table A.1 in the Appendix lists the angle intervals and minimal angular resolution
required (αmin) for EAWS and REBA. As can be observed, the EAWS is less precise than
REBA in the description of the angular classes. Taking into account the manual usage of
such a worksheet where the observing practitioner has no opportunity to determine the
exact angular values, this representation seems to be more intuitive. For automating this
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(a) Back joint angle intervals for EAWS

∆min

(b) Minimal spatial resolution (in this case, in the
x-direction)

Figure 5.10: Visualisation of variables influencing the required spatial resolution.

assessment, however, the ill-definition of angles posed a challenge. In order to obtain a
required spatial resolution from the minimal angular resolutions, the lengths of the body
segments had to be considered. The segment lengths were derived from the German
standard, ”DIN 33402-2:2005-12 - Ergonomie - Körpermaße des Menschen - Teil 2: Werte”
[168], which posits typical anthropometric values for the 18 to 65-year-old population in
Germany. The length values of particular segments for the 5th percentile (smallest 5%)
are depicted in Table B.1 in the Appendix. Using the minimal angular values, αmin, and
the lengths of the body parts, l, the minimal required spatial resolution, ∆min (see Fig.
5.10b for visualisation) can be calculated as

∆min = l · sin αmin (5.2)

Table A.1 in the Appendix shows the calculated ∆min for each part of the body with each
tool.

Achievable Spatial Resolution with a Kinect

In the next step, the spatial resolutions which could be theoretically captured with a
Kinect were determined. The properties of the Kinect have been intensively investigated
by researchers [162, 163]. The depth resolution lies in the magnitude of millimetres when
the distance to the scene is below 1m. However, it quickly decreases with increasing ob-
ject distance. The same applies for the accuracy of the depth values, which drop to 4cm
at a distance of 4.5m. The depth resolution of the image acquisition device was signifi-
cantly lower versus the resolution in the x or y directions (horizontal or vertical). Hence,
the depth component was focused on. The depth resolution of the Kinect depends on its
distance to the scene. The resolution decreases the further the Kinect is placed. In order
to decide whether the Kinect is able to attain the required depth resolution, the minimum
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distance of the Kinect to the scene where it is still possible to fully capture the worker,
was calculated. The dimensions of the minimum plane to be captured were defined with
-2m to 2m in the x-direction and -1.25m to 1.25m in the y-direction. Given the minimum
extent to be captured, a, and the FOV of the device, αFOV , the minimum distance, zmin,
could be computed as follows (see Figure 5.11 for visualisation):

zmin =
a

2 tan αFOV
2

(5.3)

In the present case, the minimum extent was ax = 4m in the x-direction and ay = 2.5m
in the y-direction. The Kinect has a FOV of 58.5◦ in the x-direction and 46.6◦ in the y-
direction. Inputting these values into Eq. 5.3, the Kinect had to be positioned approxi-
mately zmin ≈ 3.5m from the scene.

Camera centre

a

zmin

αFOV

Figure 5.11: Illustration of the variables zmin, αFOV and a.

At this distance, zmin, the spatial resolution (smaller than 5cm) including variances of
2cm [162] theoretically were sufficient for capturing the features for almost all postures in
the EAWS. However, postures relating to lateral bending or rotation of the trunk would
have been hard to distinguish when only considering depth data. Within the scope of this
thesis, detecting these postures is not covered. This leads to a potential loss of 30 points
in the EAWS and four points in RULA and REBA.

Evaluation of Viewpoint Options

Apart from the choice of the distance to the scene, the viewpoint of the camera was an-
other design alternative necessitating consideration. There are four options for choosing
the observation perspective: observing from the front or back, the side, the top or an iso-
metric perspective, where the latter is a mixture of the aforementioned options. The front
perspective has the disadvantage that bigger workpieces to be processed by the worker
will occlude the view of the human. From the back perspective, the trunk itself will often
obstruct the view on the upper limbs. The top perspective will create a situation such
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that the most distinctive features of the body, such as orientation of the back, will heavily
rely on the depth resolution. Finally, the isometric perspective would be a fair compro-
mise, however, 3D joint localisation algorithms are definitely required in this case, which
are more challenging to develop than 2D joint localisation methods. As lateral bending
and trunk rotation were not considered, the side perspective was selected - it captures the
most distinct features of a posture with the highest possible resolution along the x-axis.

5.5 Joint Localisation

Having obtained the depth image from the side perspective, the next step was to ap-
ply the joint localisation algorithm. Although there are existing implementations of joint
localisation algorithms for the Kinect [169], experience gathered from pre-experiments
suggested that they fail to provide robust and accurate joint position estimations dur-
ing application (see Fig. 5.6 for examples). Thus, an own joint localisation algorithm
was developed tailored to the given requirements. This section describes the methods
developed to determine the 3D positions of the joints from a given depth image. First,
the pre-processing steps to support and simplify the localisation problem are explained.
Afterwards, the mathematical notation used throughout the algorithmic descriptions is
introduced. Finally, the approaches themselves are described. Two methods have been
developed which both assume that there is only one subject in the observed space.

A 2D joint localisation approach was selected. The rationale behind was that for deter-
mining most postures of the EAWS, 2D information is sufficient. Besides, in comparison
to generative 3D joint localisation approaches, the number of parameters to be deter-
mined is lower, which simplifies the core optimisation problem. The 2D joint localisa-
tion method assumes that all motions of the worker are performed along the x-y plane.
This assumption does not impede the task of recognising the 2D postures of the EAWS.
However, it does reduce the model parameters for determination. As a consequence, the
algorithm becomes more robust and computation is more efficient. Furthermore, a 3D
joint localisation method was developed based on recent approaches using the Particle
Swarm Optimisation (PSO) method [152]. Designing this method followed the intention
to test a state of the art baseline according to its suitability for the given posture assess-
ment task. Both methods follow the generative localisation approach. This framework
contains four components [12]: image features, model, model image and distance mea-
sure between image features and model image. The realisation of these components will
be separately described for each localisation method. In addition, the method used to
optimise the model parameters to minimise the distance measure is explained.
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5.5.1 Pre-processing of the Image Data

As input data, the localisation algorithm provides a depth image acquired by the Kinect
(see Figure 5.12b). However, the raw image does not suit the task as it contains a high
amount of information about the background scene. Therefore, the first task was to seg-
ment the human out of this scene. Fortunately, this human segmentation image, which is
referred to as a user mask, could be robustly obtained by background subtraction applied
on the depth image (see Figure 5.12c). The built-in routine from the NiTE2 middleware
[169] was used, which was shipped with the OpenNI2 framework [170]). This implemen-
tation is able to provide segmentations of up to six subjects. The only requirement is that
the subject has to make an initial motion before the segmentation starts. It suffices that
the subject enters the scene or simply moves forward. Having obtained the binary user

(a) Colour image (b) Depth image

(c) Masked image (d) Image to determine the foot point

Figure 5.12: Intermediate results of the pre-processing pipeline.

mask and the masked depth image, the depth image was thresholded in the x, y and z
directions. The reason for this was to remove subjects observed by the sensor but located
outside of the space to be monitored. As such, the system could focus on the worker in
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the monitored space. In order to obtain the 2D point where the foot was located, mor-
phological erosions followed by dilations were first performed on the mask to remove
speckles and decrease noise on the mask (see Figure 5.12d). After that, the image was
scanned from the bottom looking for the first row where there is a foreground pixel. A
connected component analysis was run on all pixels located in this row. The centroids of
the components obtained represented the foot-point candidates. In most cases, there was
only one component. In case where there were multiple components, the leftmost one in
the image was taken. The pre-processing pipeline is summarised in Figure 5.13.

Kinect
depth image

Background
subtraction

Coordinate
thresholding

Remove
noise

Foot point
search

Figure 5.13: Illustration of the pre-processing workflow.

5.5.2 Notation

In the following, the skeleton to be obtained is represented by a kinematic model sym-
bolised by M. The parameters of M, namely the rotational angles of the joints, are com-
posed into the parameter vector q. Moreover, each segment of the skeleton is covered
by a ”wrapper” S , representing an approximation of the subject’s shape. As S can be
an arbitrary shape, their parametrisation varies. The model and wrapper are depicted in
Figure 5.14.

Figure 5.14: Human model terminology used in the following sections.

Referring to the input data, the notation I will be used to indicate a 2D image. I can
either be a depth image, a binary mask (where 0 denotes a background and 1 represents
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a foreground pixel) or an RGB image. If indexing is relevant, the notation I(x,y) will be
employed. Moreover, the operation, |I(x, y)|, denotes the number of non-zero pixels of
I. For the sections, 5.5.3 and 5.5.4, operations will be specified that create a model image
IM from a given model M. Finally, a distance measure between two images d(I1, I2) is
defined, which returns 0 if I1 = I2 and bigger values the more I1 differs from I2. This
distance measure is then minimised yielding the optimal parameters q∗.

5.5.3 2D Joint Localisation

The 2D joint localisation algorithm acquires the silhouette image, which will be called
user mask, as input and returns joint angles along the camera x-y plane for foot, knee,
hip, shoulder and elbow (see Fig. 5.15). This approach was inspired by the method of Li
et al. [151].

(a) Colour image (b) Silhouette image (c) Fitted kinematic model

Figure 5.15: Workflow of the 2D joint localisation approach.

Image Features

As image features, the pre-processed user mask containing the worker pixel region (see
Fig. 5.15b), was used. The generation of the user mask was described in Sec. 5.5.1. The
core assumption of this approach is that the 2D postures can be purely recognised by 2D
silhouette information. Adding 2.5D information might have helped, but because of the
poor accuracy of the Kinect sensor, there was the danger that more noise would be added
than usable information.

Model

A human model was composed from two kinematic chains (see Fig. 5.16a):
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• MBody = (S1, ...,S4) and

• MArm = (S5,S6).

MBody (depicted in green) represents one lower limb, torso and head. MArm (depicted in
red) indicates one upper limb. Only the more highly located upper limb and one lower
limb can be tracked. Though simplified, this model sufficed to provide enough informa-
tion for ergonomic assessments using EAWS. In the EAWS, only the more highly located
hand and its corresponding upper limb are of interest. These parts represent the more
significant physical load. The joint localisation procedure is able to capture this limb no
matter whether it is the arm facing the camera or the other one. As soon as the part of
the body is visible in the silhouette, it will be localised. Even if both arms are visible,
the optimisation routine can be programmed to prefer solutions where the higher arm is
captured.

For lower limbs, there are two commonly occurring cases - legs in identical poses (sitting,
kneeling, standing) or one leg stepped forward (standing). In both scenarios, the physical
load can be determined analysing only one of the two legs. As can be seen later, the
proposed algorithm mostly certifies that only the limb with the largest load is tracked.
For the 2D model, the angular parametrisation depicted in Fig. 5.16b was employed.

(a) Visualisation of kinematic chains

q1

q2

q3

q4

q5

(b) Angular notation

Figure 5.16: Visualisation of the 2D human model.

Model Image

The model image was created by generating the silhouette of the kinematic chain. The
wrappers were modelled as rectangular boxes. The parameters, wj and hj, of wrapper, Sj,
denote its 2D width and height. The angle, qj, signifies the rectangle’s 2D orientation:

Sj = (qj, wj, hj) j ∈ 1..J (5.4)
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A silhouette image IM can be computed by inspecting whether each pixel lies inside
of one of the two triangular segments of the rectangle (see Figure 5.17). This inclusion
check is accomplished by transforming the 2D pixel location into barycentric coordinates
[171] of the corresponding triangle and determing whether every barycentric coordinate
is found in the interval between 0 and 1. In order to further speed up the process, the set
of pixels to be checked can be reduced to the pixels lying in the region of the maximum
and minimum 2D coordinates of the rectangle.

Figure 5.17: Silhouette image and overlayed model triangles.

Distance Measure

The distance measure considers the overlapping region between the silhouette and model
image. The region can be expressed by the ratio between two pixel set sizes:

d2D(I, IM(q)) = 1 − |I ∩ IM(q)|
|I ∪ IM(q)| (5.5)

The term, |I ∩ IM(q)|, contains the number of pixels that have the value 1 in the silhouette
image, I, as well as in the model silhouette IM. Therefore, it represents the intersection
of both silhouettes. The term, |I ∪ IM(q)|, constitutes the size of the union of both pixel
sets. To garner a distance measure where low values represent highly similar images, the
computed ratio was subtracted from the value 1.

Optimisation

The localisation task can be defined as finding the optimal model parameters q∗ to the
optimisation problem.

q∗ = arg min
q

d2D(I, IM(q)) (5.6)

A discrete optimisation strategy was applied to obtain the optimal solution. In compar-
ison to continuous optimisation procedures they might achieve lower accuracies. An
example case where the discrete sampling of candidate solutions impairs accuracy can
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be observed in Fig. 5.15c. The upper arm is slightly bent although the subject in the
image is reaching forward. Due to the sampling of the candidate space, the algorithm
has to decide between suboptimal candidates. Nevertheless, a big disadvantage of con-
tinuous optimisation approaches is that they cannot make certain that the solution is a
global minimum of d2D. Contrastingly, discrete optimisation methods can deliver a glob-
ally optimal solution for a finite solution set. In the case of posture classification, a high
accuracy advantage is not necessary as a minimal angular resolution is provided (see
Tab. A.1 Appendix). The drawback of discrete optimisation approaches is that they are
computationally expensive. The approach requires drawing candidate samples from the
continuous solution space of each joint angle. A naïve solution algorithm would have to
evaluate all combinations of joint samples to find which is optimal. The size of the candi-
date solutions grows exponentially with respect to number of parameters. If the number
of parameters is n and the number of samples per joint is m, the number of combina-
tions to evaluate is mn. Although computationally demanding, this approach was still
preferred for two reasons - the number of parameters, n, was only 5 for the given model.
Besides, the problem could be modified to attain significant speed enhancements.

The algorithm was sped up by approximating the original distance measure, d2D by a
distance function dApprox2D, which corresponded to the mean overlap per wrapper. First,
the width, wj, and the height, hj, of a wrapper, Sj, were assumed to be known. The
modified distance function compared the input silhouette I with each model image of an
isolated segment, ISj(q), and computes the mean of the obtained distances:

d2D(I, IM(q)) ≈ dApprox2D(I, IM(q)) =
1
J

J

∑
j=1

(
1 −

|I ∩ ISi(q)|
wj · hi

)
(5.7)

The transformed optimisation problem:

q∗ = arg min
q

dApprox2D(I, IM(q)) (5.8)

is comprised of a sum of single terms where each only depends on the previous model
parameters of the kinematic chain. For instance, the pose of a back segment (S3) can be
established by only considering the foot (q1), knee (q2) and back (q3) joint angles. The
joint angle parameters for shoulder and elbow are not required. For further illustration,
refer to Fig. 5.16b. In general, the pose of Sj can be computed by just considering qk with
k ∈ 1..j. This functional property was exploited by applying an improved optimisation
strategy. Instead of evaluating all combinations of parameters, all alternatives for the foot
angle were assessed first and the results saved. Next, the saved values were reused for
all alternatives containing the foot and knee. The next joint was then subsequently added
in the kinematic chain. The analysis for the upper limb model was performed similarly.
This scheme led to a lower number of evaluations. Taking advantage of this alternative
distance function, the optimisation problem was transformed into a shortest path prob-
lem in a graph, which can be efficiently solved by dynamic programming algorithms. The
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n-th joint angle sample of joint j is denoted with:

qj,n j ∈ 1..J, n ∈ 1..N (5.9)

Out of all angle values in the solution set, qj,n, a graph is constructed: Let G = (V, E)
be this graph represented by a set of vertices, V, and a set of edges, E. The vertices and
edges are constructed as follows:

• Each qj,n is represented by a vertex, vj,n ∈ V. Hence, the set of vertices represents
all possible angle values for each joint. For j > 1, there are multiple copies of qj,n.
The number of copies is N j (see Fig. 5.18 third node row for example). The graph
represents a search tree containing all possible combinations of joint angles.

• There are edges connecting vertices that have neighbouring joint IDs. An edge con-
nects vj,n with one copy of vj+1,n∀n.

• The distance between the silhouette image, I, and the model image of a single wrap-
per, ISj , with the parameters, q1,n, .., qj,n, is defined as:

1 −
|I ∩ ISj(q1,n, .., qj,n)|

wj · hj

This value is assigned to the edge weight pointing to the corresponding vertex (see
Fig. 5.18 for an exemplary edge and its weight coloured in red).

• Finally, a start vertex vs ∈ E and a terminal vertex vt ∈ E are added to the search
tree. The start vertex has no edges pointing to it, but all edges from vs point to the
vertices representing the first segment of the kinematic chain (vs, v1,n). The same
scheme applies to the terminal vertex. Here, G has only edges (vJ,n, vt).

A path in G from vs to vt symbolises a legal model configuration, where its length (sum
of all edge weights on the path) represents the overall cost dApprox2D. Finding the shortest
path or the configuration with the lowest cost can be realised by the A* algorithm [172].
The advantage of A* search is that it does not need the whole graph in advance. Rather,
the nodes and edges are iteratively built when they appear to be relevant to figuring out
the shortest path. Hence, only a fraction of nodes and edges are generated to find the
minimum value. This speeds up computation and reduces memory consumption.

A set of extensions was applied to the algorithm that demonstrably improved accuracy,
robustness and computation time of the localisation:

• First of all, minimum and maximum values were added for each angle. These con-
straints were used to sort out biomechanically infeasible postures. A further ad-
vantage was that for a constant sampling rate, the angular resolution was increased
because the samples concentrated on the interval of the feasible angles. Therefore,
the accuracy could be increased without increasing computational complexity.
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v1,1 v1,2
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v2,1 v2,2 v2,1 v2,2

1 −
|I∩ISj

(q1,2,q2,2)|
w2·h2

Figure 5.18: Visualisation of the graph built from a solution set with J = 2 and N = 2. An
exemplary path from vs to vt is coloured in green.

• A hierarchical optimisation scheme was used assuming that the posture of the
lower limbs and torso could be distinctively recognised even without knowing the
posture of the upper limbs. Thus, the optimisation of the parameters was split
into two steps. Having obtained the parameters of MBody, the algorithm initi-
ated a second optimisation procedure to identify the posture of MArm for a fixed
MBody. As preparation of the upper limb optimisation, all body model image pix-
els, IBody

M (q∗) = 1, in the input image, I, were set to zero. This was done to avoid a
solution where the optimised upper limb lies in the body. The preparation workflow
is illustrated in Figures 5.19a, 5.19b and 5.19c.

(a) Input silhouette image (b) Subtracted body model (c) Fitted upper limb

Figure 5.19: Intermediate results while preparing the fitting of the upper limb model.

This split-up of the optimisation process was advantageous in that the search space
was decreased. For example, if there were N = 10 samples of each joint for J = 5
joints, the search space would be 105 = 10000. In contrast, splitting the search into
two steps with J1 = 3 and J2 = 2 would result in a search space of 103 + 102 =

1100 << 10000.
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• As can be seen in Eq. 5.7, the segment dimensions, wi and hi, played an important
role in computing the distance. It was important for the localisation quality that
these parameters correspond to the antropometric dimensions of the subject. To
estimate the parameters, a base model was created first, that had the parameters
matching those from the standard, DIN 33402-2 (see Tab. B.1 Appendix). The length
and width of each segment were assumed to change, but their ratio among each
other should remain similar. When initiating the localisation process, the subject
was expected to stand upright. Hence, the height of the subject could be determined
from the silhouette image and then the parameters of the base model could be scaled
according to that measured height.

• A problem was that the proposed method was susceptible when the upper limbs
pointed towards or away from the image plane. As a result of the projection of a
3D object into 2D image space, the 2D length of the arm shortens. The 2D model
does not consider this change in terms of segment length. The outcome was that
the algorithm computed incorrect angular values. Figure 5.20a shows an exemplary
case.
Three approaches were devised to solve this problem. First, a separate method spe-
cialised in locating the hand [173] was developed. The method determined an ex-
pected torso width and classified all silhouette points lying outside of this width
interval as the hand. Afterwards, the distance measure was extended to account for
the detected hand in the optimisation task. While the detection of the hand worked
well, as soon as they were slightly apart from the body, localising the elbow proved
to be challenging. However, without recognising the elbow, it cannot be guaranteed
that the algorithm recognised the correct posture. A second approach was to incor-
porate the segment length as the parameter to optimise. Unfortunately, this led to a
set of unforeseen, incorrect solutions - the optimiser had more degrees of freedom in
which to find illogical configurations. Besides, there were a variety of cases where
adding these parameters dramatically elevated computation time.
The third and final approach produced acceptable results. Upon closer inspection,
the observation could be made that every time the shortening of the upper limb took
place, the arm in the 2D image was smaller than the model arm. This led to a lower
overlap between input image and model arm and resulted in a high distance value,
dApprox2D(I, IArm

M (q∗)). Thus, a standard posture for the arm (see Figure 5.20b) was
defined. In case the distance between the model image and image features was
above a given threshold, the model parameters were assigned with the standard
arm parameters. An advantage of this approach was that it enabled the limb with
the highest physical load was tracked. In case both hands were below the shoulder
height, the distance measure would be high for the upper limb. Therefore, the algo-
rithm assumed that the upper limb posture was akin to the standard configuration.
From an ergonomic assessment point of view, the standard arm and the current con-
figuration would then be equal. In case the upper limb was located above shoulder
level reaching forward, the optimisation algorithm could find a small distance mea-
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sure. Thus, the optimised configuration was then employed instead of the standard
configuration.

(a) Example of the shortened 2D length of the up-
per limb

(b) Standard arm posture

Figure 5.20: The problem of the shortened upper limb and the most successful solution.

Figure 5.23a summarises the 2D joint localisation workflow.

5.5.4 3D Joint Localisation

As described in Sec. 5.5.3, the disadvantage of the 2D localisation algorithm was that the
model assumes a fixed 2D segment length and ignores variations based on the projection
of the 3D limbs. The localisation method assumes that the subject is always located at
the same distance to the camera being observed from the side perspective. As such, a 3D
joint localisation approach was developed to overcome these limitations. The 3D method
employed the analysis-by-synthesis approach and integrated the work of Oikonomidis et
al. [152] with task specific modifications.

Image Features

The image data came from the depth image created by the Kinect sensor. The masked
depth image obtained according to Sec. 5.5.1 was used. The top-left panel of Figure 5.22
illustrates an example of such a masked depth image.

Model

The model M consisted of a 3D kinematic tree with joint angle ranges corresponding
to the degrees of freedom of a human body. Ellipsoid wrappers were modelled around
each segment of the skeleton (see Fig. 5.14 for a schematic example). The advantage of
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this shape was that there is an analytical representation. The creation of the depth image
from the model could be expressed in a closed-form solution. This enabled computing
the exact depth value in arbitrarily sized images.

Model Image

The model image, IM(q), was produced by ray-casting. Ray-casting is a commonly used
method in computer graphics to artificially create an image through imitating the under-
lying physical process.

Figure 5.21: Visualisation of the ray-casting approach.

Rays from the camera centre are traced through each pixel of the image plane (see Fig.
5.21). Their intersection point with each wrapper surface is computed. The depth value
is the length of the vector from the pixel on the image plane to the nearest point of the
intersection. In the following, the formula for computing the depth value for ellipsoid
wrappers is derived. First, consider the simplest case - the intersection between a spher-
ical wrapper S and a ray with the origin e and the direction vector d. The wrapper has
a radius of 1 and its centre lies in the origin, (0, 0, 0). Each point on the ray x(t) can be
described with the vector equation:

x(t) = e + td (5.10)

where t denotes a scalar variable. For each point x(t) on the surface of the sphere, the
condition:

x(t) · x(t) = 1 (5.11)
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applies, where ‘·’ denotes a scalar product. Combining the equations 5.10 and 5.11 results
in the intersection point equation:

x(t) · x(t) = 1

(e + td) · (e + td) = 1

t2(d · d) + t(2e · d) + (e · e − 1) = 0

(5.12)

, where t is the sought-after parameter corresponding to the depth value. Equation 5.12
can be solved using the quadratic formula:

t∗ =
−b −

√
b2 − 4ac

2a
(5.13)

with a = d · d, b = 2e · d and c = e · e − 1. If there is no intersection point between the
sphere and ray, the term under the square root becomes negative.

Next, the generalised ray-ellipsoid intersection formula is derived. To compute the in-
tersection point of the ray with an arbitrary ellipsoid, the original ray-sphere intersection
equation 5.12 had to be modified. Given an ellipsoid wrapper:

S = (c(q), R(q), S) (5.14)

with the centroid, c(q) = (cy, cy, cz), the orientation expressed by the rotation matrix,
R(q), and the extent in the three dimensions expressed by the diagonal scaling matrix,
S = diag(sx, sy, sz). First, the ray was transformed with:

e∗ = S−1R−1(e − c)

d∗ = S−1R−1d
(5.15)

Thereafter, the intersection point was computed by solving Eq. 5.12 with the transformed
ray parameters, e∗ and d∗. To apply the algorithm on a Kinect image, the intrinsic pa-
rameters were incorporated into the formula. The device-specific direction vector, d, had
to be determined for each pixel. A depth image was initially created with a fixed-depth
value for all pixels and converted the pixel coordinates into global coordinates of the
Kinect system. The Kinect coordinate system assumed the depth camera centre to be at
the coordinate origin. The axis orientations were characterised according to Fig. 5.9. The
coordinate conversion was implemented in the driver library [170]. Then, the global co-
ordinates were interpreted as direction vectors and normalised to have a length of 1. The
resulting vectors represented d. To obtain a full depth image, the generation process had
to be completed for every pixel and wrapper. First, e and d need to be transformed into e∗

and d∗ for every wrapper. Subsequently, eqs. 5.12 have to be solved. Finally, the smallest
t among each wrapper has to be determined. To conclude, the number of intersection
computations is the number of pixels times the number of wrappers.
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Distance Measure

The distance measure between the images is a weighted sum of two terms:

d3D(I, IM) = c1dDepth(I, IM) + c2dOverlap(I, IM) (5.16)

dDepth signifies the depth difference between model image and masked depth image and
is defined as

dDepth(I, IM) = ∑
x,y

f1(x, y)min(|I(x, y)− IM(x, y)|, DMax)

with f1(x, y) =

{
1, if I(x, y) > 0 ∧ IM(x, y) > 0,

0, else.

(5.17)

Oikonomidis et al. [152] contended it was important to clip the depth distance in each
pixel as soon as it exceeds a threshold, DMax, to avoid outliers. dOverlap is the number of
pixels where only one image had a depth value:

dOverlap = ∑
x,y

f2(x, y)

with f2(x, y) =

⎧⎪⎪⎨⎪⎪⎩
1, if I(x, y) = 0 ∧ IM(x, y) > 0,

1, if I(x, y) > 0 ∧ IM(x, y) = 0,

0, else.

(5.18)

It is similar to the overlap distance measure of the 2D joint localisation algorithm.

Optimisation

Similar to the 2D algorithm, there was the option to choose between different optimisa-
tion strategies. At the outset, discrete optimisation was eliminated. Contrary to the 2D
problem, roughly 60 parameters had to be optimised. Even with elaborated algorithms,
this computation time became unacceptably high as artificial depth image generation is
more computationally expensive than 2D silhouette generation. Furthermore, derivative-
based approaches, such as gradient descent methods, could not be used. In that case, the
derivative of the objective function (Eq. 5.16) with reference to the parameters had to be
computed. As the equations, 5.17 and 5.18, are piecewise functions that include binary
conditions, it could not be guaranteed that the objective function would be differentiable
in all domains, and this is the reason this option was discarded. Following [123], the
PSO was applied. This stochastic optimisation method was introduced by Eberhart and
Shi [174]. Contrary to derivative-based optimisation methods, the algorithm does not
compute the derivative of the distance measure. PSO evaluates multiple hypotheses and
computes the search direction through the interaction of the hypotheses.

The basic principle behind this is that p hypotheses, qt,1, . . . , qt,p, in the search space,
which are called particles, are iteratively moved towards the final solution. In each itera-
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tion, t, the particles move in the direction of the velocity vector, vt,i:

qt+1,i = qt,i + vt,i. (5.19)

The velocity vector is a weighted sum of three components:

vt,i = csocial · r1 · (qglobal − qt,i) + ccognitive · r2 · (qlocal,i − qt,i) + cinertial · vt−1,i (5.20)

The first component is the movement towards the currently best particle, qglobal. It is
called the social component. The second is the movement of a particle towards its own
best position ever achieved qlocal,i. The literature sometimes refers to it as the cognitive
component. The last component is the velocity vector of the last iteration, the inertial
component. The variables, r1 and r2, are random numbers between 0 and 1. In their ex-
periments on standard optimisation benchmarks, Bastos et al. [175] put forth that without
using random numbers, the PSO operates significantly worse.

To improve the performance for the particular task, several modifications to the core al-
gorithm were introduced:

• All components of the search space were normalised to 0 – 1. The particles con-
tained translational and rotational parameters with different units (mm and rad)
and magnitudes. The normalisation resulted in appropriate scaling of each param-
eter’s movement.

• While updating the particles, they may leave the solution space. The ”damping”
method [176] was used to reset them into the solution space.

• The temporal coherence of the video stream was leveraged by uniformly initialising
the particles in the first iteration, q1,i, with values around the determined parame-
ters, qglobal, from the last depth frame.

• Similar to the 2D approach (see Sec. 5.5.3), a two-step hierarchical search space
decomposition scheme was applied. During the first step, the model was optimised
by holding the upper limb parameters fixed. With the second step, the torso and
lower limb parameters were fixed and the upper limb parameters were optimised.
The number of variables to be optimised and, thus the search space, became smaller
and decreased the likelihood of running into local minima.

Figure 5.22 depicts the result of the 3D joint localisation algorithm for one frame. The
qualitative result shows that the ellipsoid wrapper shape is not an optimal approxima-
tion of the human body. Poppe [128] lists alternative wrapper shapes used in literature,
such as cylinders, quadrics or meshes of human models. In the scope of this thesis, these
alternatives have not been tested due to two reasons: Firstly, changing the wrapper shape
requires altering the model image generation process. In order to achieve acceptable com-
putation time, the rendering process has to be parallelised on the GPU. The parallel imple-
mentation for each alternative is challenging and tedious. As an example, using meshes
involved a reimplementation of the whole PSO routine [177]. Secondly, the potential ben-
efit does not justify the required implementation effort. Using a different wrapper type
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does not necessarily improve the quality or robustness of the joint localisation. A better
fitting shape might achieve a lower distance measure value, however, does not guarantee
more accurate model parameters. Thus, the difficulty of the optimisation problem will
likely remain despite the use of better approximations of the human body.

Figure 5.22: Exemplary result of the 3D joint localisation algorithm.

Summing up, the overall workflow is portrayed in Fig. 5.23b.

5.6 Posture Classification

Having obtained the model parameters for the current frame, they were used to classify
the posture. For the 2D case, the joint angles were directly employed as inputs for the
classifiers. In the 3D situation, joint orientations were added to the feature vector.

A variety of classifiers were used to test the classification algorithm. The difference be-
tween the classifiers was rooted in the way they represented the learned knowledge:

• The K-Nearest Neighbour (KNN) classifiers represent an instance-based approach
where a new data point is compared with all data points of the training dataset
according to a pre-defined similarity metric. The euclidean distance was used as
the dimensions are bestowed with an equal range. The data point is assigned to the
label of the most similar data point in the training dataset.

• The Support Vector Machine (SVM) with linear kernel (LIN-SVM) is a method that
symbolises the knowledge as linear decision boundaries between the classes. Based
on the small number of trainable parameters compared to more sophisticated meth-
ods, linear classifiers require only a small dataset and are less prone to overfitting.
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Figure 5.23: Flow diagram of 2D and 3D joint localisation approach.

• The SVM with radial basis kernel (RBF-SVM) also represents the knowledge by de-
cision boundaries. However, the boundary is not necessarily linear, enhancing the
expressiveness of the model, but also the likelihood to overfit the training data.
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• The Random Forest (RF) does not explicitly rely on distance measures. Rather than
comparing the whole data points, it selects relevant features that best separate the
dataset and identify interesting value ranges. Shotton et al. [11] showed they are
among the best performing classifiers in recent years.

5.7 Conclusions

This chapter presented the pipeline of the automated vision-based posture classification
component, the core of the posture assessment component. The central task was to recog-
nise the worker’s posture in the image. Based on the minimal spatial distance require-
ment of the EAWS, the conclusion was made that a camera observing the worker from
the side at a distance of around 3.5m suited the task.

A literature research uncovered that using joint angle features was appropriate for the
task as the joint position coordinates to be extracted were needed for the posture op-
timisation, as well. Determining the joint angle values necessitated a joint localisation
algorithm. The generative localisation approach was favoured as it needs no training
data and has been the method of choice over the last years.

Two joint localisation approaches were proposed to attain the joint positions. Both are
unified by the generative framework, which makes them easily modifiable. A quick 2D
approach and a slower approach able to obtain 3D coordinates of the joints have been put
forth. In their base versions, both approaches have limitations concerning robustness and
runtime. Hence, slight modifications were introduced to resolve these issues. The major
challenge was to deal with changing 2D lengths of the segments because of projections
onto the image plane.

Having obtained the joint positions, computing the joint angles and applying classifying
algorithms is straight-forward. Thereby, multiple classification algorithms (KNN, LIN-
SVM, RBF-SVM, RF) were proposed to be tested.
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6 Posture optimisation

This chapter discusses the posture optimisation component of the WPC, which comes
into play when the result of the posture assessment algorithm indicates the need to re-
adjust the workplace. The aim of the posture optimisation method is to find a pose for
the workpiece that permits accomplishing the task at hand in an ergonomically superior
posture.

6.1 Problem Statement

This chapter addresses the research question, RQ3:

How can an automated and adaptive in-process workplace design be realised on various
types of actuators?

The algorithm takes the human model obtained from Sec. 5.5 including estimated
joint angles and segment lengths as input (see Fig. 6.1a). The fitted model was used to
identify the characteristics of the actual task the user intends to accomplish. The posture
optimisation algorithm finds an alternative workpiece pose, which enables the worker to
maintain a more health-preserving posture while accomplishing this reference task. In
brief, the algorithm outputs the necessary actuator configuration and shows what this
”ergonomically superior posture” resembles (see Figure 6.1b). Figure 6.1c exhibits an
exemplary situation with input and output postures visualised.

The difficulty of this task is that the posture the human worker will adopt after a hypo-
thetical workplace adjustment is not known beforehand - the system has to predict this
working posture. Furthermore, an approach is necessary which searches for the work-
piece pose, resulting in an ergonomically preferred posture. An alternative approach to
searching for human posture and workpiece pose simultaneously is to fix the human
posture to an ergonomically preferred one and only search for the corresponding actua-
tor parameters. This procedure can work for some cases. However, there is no backup
solution when an appropriate adjustment is not feasible for the given posture. When the
algorithm has the possibility to slightly adjust the worker’s posture, it can find backup
solutions in case the optimal posture cannot be realised. This is why adjusting worker
posture as well as parameters is preferred.
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Figure 6.1: Input and output of the posture optimisation algorithm for the example of a
height-adjustable actuator.

In order to properly avoid physical load, the developed method must be able to provide a
feedback within a few seconds. One additional requirement was that the algorithm con-
siders the capabilities and available DoF of the actuator employed. Apart from optimising
the workplace for one posture, the dynamic behaviour of the WPC has to be taken into
consideration. While frequent adjustments of the workpiece pose can minimise the pos-
tural load, they also introduce annoying interruptions that impede the process’ efficiency.
The optimisation criteria, ”ergonomics” and ”flexibility”, contradict each other. Hence,
the task was to develop a control strategy that outputs when a computed workplace ad-
justment is needed. The control strategy strives to determine an acceptable compromise
between postural load and adjustment time. Figure 6.2 summarises the research ques-
tions to be answered in this chapter.

6.2 Design Alternatives

6.2.1 Posture Prediction

Posture prediction methods output a hypothesised posture given an input 3D point,
which the human being touches [80]. This task is especially prominent in the field
of DHMs, where it is used to determine ergonomic parameters through simulation.
The approaches proposed in the previous literature can be clustered into two groups -
optimisation-based methods [178, 179, 180, 80, 181, 182, 60] and learning-based methods
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RQ3: How can an automated and adaptive in-process workplace design be
realised on various types of actuators?

How can a human working posture be predicted based on a pre-defined pose
of the workpiece?

How to find the pose of the workpiece that results in a predicted posture
meeting ergonomic requirements?

How to adapt the posture optimisation algorithm for different actuator types
and available degrees of freedom?

How to design a control strategy able to maintain ergonomics while keeping
the interruptions through adjustments at an acceptable level?

Figure 6.2: Summary of sub-research questions RQ3 implies.

[183, 184, 185, 186]. Optimisation-based approaches establish the predicted posture as the
solution of an optimisation problem encoding the criteria and conditions for most likely
postures. The optimisation problem has to be manually modelled. Human engineers
and researchers are required to design the objective function and the constraints. In ba-
sic terms, the behaviour has to be translated into mathematical terms. Fortunately, the
ergonomic guidelines provide heuristics. As an example, the EAWS directly defines the
most preferable posture as it assigns the lowest score to it. Another advantage is that data
generation is not necessary. Finally, as the mathematical formulation of the objective func-
tion is already present, the search for an appropriate workpiece pose can be realised with
a variety of standard optimisers. The extension from posture prediction into a workpiece
pose search is natural.

As the modelling of realistic human behaviour with objective functions is challenging,
learning-based methods have been proposed. Instead of modelling the constraints and
objective functions by hand, the system is provided a set of exemplary workpiece poses
and the corresponding posture. The posture prediction algorithm then learns the map-
ping between workpiece pose and posture. Learning-based methods appear to be easier
to use. The system behaviour is modelled by examples instead of encoding the knowl-
edge into mathematical formulae. Moreover, with optimisation-based approaches, the
designer has to work with all the objective and constraint parameters, such as the weight-
ing of different criteria. If the number of parameters are high, manual modelling becomes
tedious. In learning-based methods, the system automatically deals with these parame-
ters. Therefore, they can be addressed with more complex behaviour with satisfactory
effort. Although diminishing the effort for modelling, the advantage of learning-based
methods is offset by the required amount of data. The data generation process is tedious.
The space of possible workpiece poses has to be densely sampled and the corresponding
joint angle values of the worker have to be determined. In addition, a variety of subjects
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with different anthropometrics have to be considered. Having learned the postural map-
ping, the options for searching for the best workpiece pose are limited. As a result of the
learned mapping not necessarily being explicitly expressed in a mathematical function,
only black-box optimisation approaches remain the viable option.

Selected Approach

The optimisation-based approach was selected. Initially, there are existing ergonomic
rules used to design the objective function. Hence, the modelling effort for the given
case was reduced. Moreover, the tedious data generation process becomes obsolete. Still,
reference posture examples can be seamlessly integrated into the approach. Table 6.1
outlines the criteria employed to choose a posture prediction approach.

Table 6.1: Overview of posture prediction alternatives. Columns highlighted in green
represent the selected approach.
Criterion Learning-Based Optimisation-Based
Training data required yes no
Computational complexity low low
Incorporate ergonomic knowl-
edge

by training examples by mathematical modelling or
training examples

Risk Analysis

The optimisation-based approach requires each decision criterion to be stated by the
means of formal language. However, there might be essential ergonomic guidelines,
which are too complex to be expressed by a formula leading to an incomplete decision
model. Furthermore, as the posture prediction problem is presumably non-linear, there
is no guarantee that an optimiser will always terminate in a desired local minimum.

6.2.2 Workpiece Pose Search and Workplace Design

The task of the WPC is to discover a workpiece pose that would permit the worker to
perform the task at hand in a comfortable posture. This problem has not been intensively
treated in the literature. The only publication found was Mainprice et al. [13] who devel-
oped a method to plan the best path to hand over an object to a human being. Therein,
ergonomic criteria were included in the robot’s handing over posture. However, the ob-
jective used to guide the posture of the end effector was rather simple - it encompassed
just the distance to the hands and visibility criteria. Postural ergonomics was not consid-
ered (see Fig. 6.3).

Strongly related to the present task is the procedure of designing a workplace layout.
Hence, this field was investigated attempting to find a solution that could be modified
for the original workpiece pose search task. Workplace layout design adheres to a more
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Figure 6.3: Mainprice et al. [13] used an optimisation based approach, however, the ob-
jective function does not consider the posture of the subject.

or less standardised procedure, which is sometimes referred to as methods engineering
[187] in literature. The workflow consists of five steps [19]: project definition, data gath-
ering and analysis, formulation of alternative solutions and methods, evaluation and re-
finement of the best alternative according to the evaluation (see Fig. 6.4).

Project
definition

Data
gathering

Alternative
solutions Evaluation Refine best

Figure 6.4: Methods engineering workflow.

As would be obvious, the project or the target has to be defined. In the present case,
this could be designing the workplace geometry such that awkward back postures do
not need to be adopted to accomplish any tasks. Afterwards, data from the existing or
initial solution needs to be obtained. In the present case, this would be an ergonomic
assessment of the processes executed at the target workplace. Next, one of the most work-
intensive steps has to be carried out - alternative methods or workplace layouts have to be
designed. Control variables (factors), like height of the workplace or height of the chair
or placement of a particular box, are selected and their possible values are formulated.
Given n control variables with m possible values each, there are theoretically mn solutions
to be appraised. This factorial design becomes exponentially work intensive in relation
to the factor size - if factor values are continuous, discretisation or regression approaches
[19] have to be applied. The problem worsens as the criteria for evaluation are highly
complex. In terms of workplace layout, there are many criteria to be considered. The
criteria to be optimised are often contradictory, such as safety and efficiency [188]. As
well, layouts must be tested with a variety of anthropometrics [7]. Building physical
prototypes is expensive, which is why DHMs have been widely used. Finally, the most
promising alternative has to be designed in detail. The process is not necessarily linear
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but the steps might be repeated multiple times. For example, evaluations and refinements
of the alternatives can be conducted in an iterative manner [189]. Concerning the task of
finding a workplace layout design to meet ergonomic goals, the literature has presented
four approaches: selection out of manually chosen alternatives [61, 64, 53], expert systems
[190], brute-force search [60] or non-linear optimisation [8].

Selected Approach

Manually chosen alternatives require a human operator to select the possible solutions.
As mentioned earlier, a factorial design requires the evaluation of a large number of alter-
natives. To speed up the design process, specialised heuristics have been applied [189].
Although reducing the search space, the proposed method still contains a remarkable
proportion of brute-force search. The efficiency problem also arises with brute-force ap-
proaches, where the computer evaluates all solutions. As the number of options grows
exponentially with the number of factors and parameters, brute-force search is only vi-
able if the search space is small. Expert systems apply a set of rules to find a solution
for the given problem, thus the search for a solution is efficient. However, the system
needs a tremendous human effort to create data and the set of rules. Finally, there are
optimisation-based approaches. As described in Sec. 6.2.1, the posture prediction prob-
lem can be naturally extended to the workpiece pose search problem and effectively re-
solved with standard non-linear optimisation algorithms. As the optimisation-based ap-
proach was used for posture prediction, it would be straightforward to further follow this
path for the workpiece pose search. Table 6.2 shows the criteria applied to determine a
workpiece pose search approach.

Table 6.2: Overview of workpiece pose search alternatives. Columns highlighted in green
represent the selected approach.
Criterion Manual Brute-force Expert system Optimisation
Human intervention required yes no no no
Manual development effort high low high low
Computational complexity low high low low

Risk Analysis

Similar to the risks of the selected posture prediction approach, a central problem will
be whether the proposed approach is sufficiently robust against becoming trapped into
undesired local minima during the optimisation process.

6.2.3 Control Strategy

Consider a process where the worker has to perform tasks on different regions of the
workpiece. If the workpiece dimensions are longer than the length of an arm, the worker
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probably has to adopt different postures from kneeling down to reaching up in order to
accomplish each step. Each time the posture has changed, a re-adjustment of the actuator
is proposed. Especially when the worker is moving, there are frequent adjustments - the
posture changes in each frame. Even when the worker remains in a completely static
posture, the tracking algorithm might introduce slight inaccuracies leading to a jittering
of the estimated body parameters, which again result in adjustment proposals.

A system that proposes a new actuator configuration for every frame introduces an unac-
ceptable amount of workflow interruptions. Most of these adjustments might be unnec-
essary as the time that remains in the awkward posture is low. Their ergonomic improve-
ment could also be negligible. Further, slight adjustments when the worker’s current
posture is near the optimum would introduce more costs than benefits. Frequent false
alarms lead to the cry wolf effect [191] - workers mostly ignore the proposals. Hence, the
expected effect on health is lost.

The WPC has to recognise the most relevant ergonomically critical situations and only
propose an adjustment then. The problem is that with recent ergonomic assessment tools,
the criticality of a process can only be found out after the process has ended. For example,
the EAWS refers to the accumulated physical load after all tasks have been accomplished.
The decision whether to initiate an adjustment, however, has to be made during the pro-
cess. The research field most related to the present task is optimal control. Optimal control
methods attempt to determine a control strategy for a dynamic system that optimises the
performance index represented by L and ϕ:

arg min
u(t)

∫ tEnd

0
L(x(t), u(t))dt + ϕ(x(tEnd))

subject to

ẋ(t) = f (u(t), x(t))

x(0) = x0

(6.1)

The functions, x(t) and u(t), indicate a state of the system and a control function, re-
spectively. The performance index is represented by L, which denotes the cost for the
particular control function, u(t), and ϕ, which signifies the cost of the resulting system
state at a particular time, tEnd. The general optimal control task is to minimise this func-
tional subject to the state equation, ˙x(t), which is indicative of the system behaviour and
a given initial state, x0.

Selected Approach

Translating the general definition of the optimal control problem to the present task re-
sults in the following instantiations:

• x(t) contains the joint angles of the worker, q, and the EAWS score at time t

• u(t) denotes the actuator configuration, p, at time t

• L signifies the path of the actuator,
∫

u(t)dt
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• the terminal cost, ϕ, refers to the EAWS score after the process

• ẋ(t) represents the scheme to compute the joint angles after the workplace layout
has been adjusted through actuator configuration, u(t)

Optimal control methods normally require at least a computable gradient of the optimisa-
tion problem [192]. However, as a result of the complexity of the state equation, ẋ(t), this
is not possible. Computing ẋ(t) necessitates predicting the joint angles after adjustment,
u(t), which is a highly non-linear function. It is not even analytically expressible (see Sec.
6.2.1). In order to continue to find a reasonable control strategy, the structure of the EAWS
was exploited deriving simple control rules to reduce the ergonomic load as well as the
actuator activity.

Risk Analysis

Finding an optimal control strategy with reference to a particular task normally requires
knowing all occurring postures. However, when operating in-process, complete informa-
tion is not available. Hence, the control strategy has to base its decisions on data from
the present and the past. This problem of incomplete information might impair the abil-
ity of the control strategy to find a fair compromise between ergonomic soundness and
flexibility.

6.3 Optimisation-Based Approach

The optimisation-based approach was chosen to solve the posture prediction and work-
piece pose optimisation task. This section discusses how to mathematically state the op-
timisation problem. The mathematical objectives and constraints were partly derived
from the EAWS guidelines as well as from own assumptions of the task. Although there
is no "the" ideal posture to be adopted, there are a set of guidelines in the ergonomics
literature describing how ”preferable” postures and workpiece poses look. For example,
Schmidtke and Jastrzebska-Fraczek [95] approximated preferred working heights for par-
ticular tasks. Moreover, the EAWS [34] scoring scheme leads to the observation that the
postures ”standing and walking in alternation” and ”standing with body support” (see
Fig. 6.6) yield the lowest scores. Thus, they are considered the most preferred postures.
Similarly, other observational ergonomic assessment tools, including REBA [29], define
what they interpret as the ”ideal posture”. The ideal posture also depends on the pos-
tures adopted beforehand: Neuhaus et al. [51] stated that a worker shall only sit for 50%
of the time and stand for the remainder. These examples suggest that although being able
to properly translate the guidelines into formulae, this does not guarantee that the system
always finds the ”best” solution - the ”ideal posture” is ambiguously defined.

The idea of an ideal posture is simplified by using the EAWS posture with the lowest
score. If there is another posture better suited as an ideal posture, the optimisation prob-
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lem could be adapted without effort. When necessary, the mathematical modelling allows
multiple ideal postures. The rest of this chapter is structured as follows. First, the gen-
eral optimisation-based framework for posture prediction is described. Then, objectives
and constraints are specified and their mathematical properties are analysed. Next, the
posture prediction problem is extended into a workpiece pose search problem and the
algorithm to solve it is outlined. Finally, the dynamic behaviour of such a workpiece pose
selection algorithm is evaluated and an approach to diminish the amount and time of
interruptions through adjustment is presented.

The optimisation-based approach models the choice of the worker’s posture by an ob-
jective function, f (q, p). This function takes the posture parameters, q, and the actuator
parameters, p, as inputs and returns high values for unlikely postures and low values for
likely postures. Additionally, there can be equality constraints, such as gi(q, p) = 0, or
inequality constraints, such as hj(q, p) ≤ 0, which limit the space of feasible postures and
actuator configurations. The solution to the possibly non-linear and non-convex problem
is:

q∗, p∗ = arg min
q,p

f (q, p)

subject to

gi(q, p) = 0

hj(q, p) ≤ 0

(6.2)

where p∗ represents the actuator adjustment and q∗ the predicted posture.

In the following, the definition for a segment Sj = (qj, wj, hj) from Eq. 5.4 is used. The
posture optimisation algorithm takes the tracked posture, q, and the segment lengths, hj,
as input. A visualisation of q is shown in Fig. 5.16b. The values, qi, represent the angle
between a segment (straight line) and its predecessor in the kinematic chain (dashed line).
The angle, q1, represents the angle between the foot segment and the global y axis. Note
that qi can be positive as well as negative depending on which side of the local y axis the
current segment lies in. There are two body landmarks that play an essential role: 1) there
is the 2D location of the foot, which in the following is notated as xFoot; and 2) there is the
position of the hand, xHand (see Fig. 6.5a). In order to model the human as a kinematic
chain instead of a tree, the assumption was made that hands and feet are aligned such
that left and right limbs represent the same 2D point. Given the 2D point of the foot,
xFoot, the hand position, xHand, could be calculated using 2D forward kinematics:

xHand(q) =xFoot +
J

∑
j=1

R(
j

∑
i=0

qi) ∗ hj

with

R(qi) =

(
cos qi − sin qi
sin qi cos qi

)
.

(6.3)
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Moreover, the term ”working direction”, dw, is introduced. In Enomoto et al. [60], this
vector is referred to as the assembly motion vector. A visualisation of dw can be found
in Fig. 6.5b. The working direction, dw, denotes the direction the forearm of the worker
is pointing at. It represents the direction of the assembly motion. Note that dw does not
provide information on the exact pose of the wrist - it is only an approximation. Often,
dw will not be used in vector representation, but as Φ(dw), the angle in reference to the
global y axis. Φ(dw) is computed as:

Φ(dw) = ∑
j

qj (6.4)

q1

q2

q3

q4

q5

xHand

xFoot

(a) Joint angles and body landmarks

Φ(dw)

(b) Working direction

Figure 6.5: Notations used for describing the details of the posture optimisation approach.

6.4 Optimisation Objectives

This section describes the specific appearance of the objective function, f (q, p). In fact,
human behaviour cannot be modelled by one goal, but requires stating multiple, pos-
sibly competing goals [180]. Apart from the ergonomic soundness of the posture, the
optimisation has to make certain that the task can be properly executed. Thus, a Multiple
Objective Optimisation (MOO) problem had to be stated. Modelling and solving pos-
ture prediction as MOO problems was previously investigated by Yang et al. [179] and
Marler et al. [180]. Both observed that stating the problem as MOO leads to more realis-
tic postures than independently optimising each objective. Their studies proposed three
schemes to approach a MOO. These are namely ”weighted sum”, ”min-max method” and
”global criterion”. However, in their experimental results, they stated that the postures
computed only marginally differed. In this work, the weighted sum method was elected
as it was considered as the easiest to implement. In order to transfer this multi-objective
optimisation problem into a problem solvable by single-objective solvers, f (q, p) was
modelled as a weighted sum of particular objective functions, fi(q, p). The final objective
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function could then be acquired by computing the weighted sum of the partial goals:

f (q, p) = ∑
i

ci fi(q, p) with ∑
i

ci = 1. (6.5)

Changing the weights, ci, yield different pareto-optimal solutions. This thesis concen-
trates on determining one pareto-optimal solution, leaving the weighting task to the
workplace designer.

6.4.1 Posture Objective

The posture objective models the goal of the human being to adapt a posture considered
comfortable and “ergonomic“. In human factors literature, this posture is occasionally
referred to as a “neutral“ posture. The posture objective is independent from the actuator
configuration as it only analyses the predicted posture. As stated in Sec. 6.3, there is no
definition of an ideal posture. Since the EAWS was employed to assess the postures, the
ideal posture was defined as that with the lowest EAWS points (see Fig. 6.6 for visuali-
sation). Hence, the objective function was the distance of the current posture to the ideal
posture, qideal:

fPosture(q) = ∥q − qideal∥2. (6.6)

There are other options for designing a distance function between the current posture
and the ideal one, such as the absolute value, ∥q − qideal∥. Quadratic terms have the
advantage that they are twice differentiable over the whole space of q, which is not the
case for absolute functions. This mathematical property was useful when applying op-
timisation algorithms that utilise function derivatives to establish the search direction.
Another property of the function is that a large deviation of one joint angle is penalised
more severely than several small deviations of all joint angles.

Figure 6.6: Visualisation of the ”ideal” posture, qideal, defined in the EAWS.
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If multiple ideal postures exist, one way to incorporate them into the model is through
solving the optimisation problem for different values for qideal and choose the solution
producing the lowest objective function value.

6.4.2 Centroid Objective

The algorithm presupposes that the subject chooses a posture that would enable them to
keep their balance. Similar to the posture objective, the centroid objective only analyses
the predicted posture. The stability of a stance was described by the location of the cen-
troid of the model. For simplicity, all segments in the model are assumed to have the
same density. Thus, the centroid of a segment only depended on its length. The centroid
of the whole body can be computed as:

xCentroid(q) =
1
2

J

∑
j=2

(xj(q)− xj−1(q)). (6.7)

The higher the horizontal distance of the centroid to the foot, the more weight will be
shifted away from the foot, meaning it would be harder to maintain a stable stance (see
Fig. 6.7 for visualisation). Therefore, the centroid objective attempts to keep the centroid
of the model near the foot in the horizontal direction:

fCentroid(q) = (xFoot,x − xCentroid,x(q))2. (6.8)

xCentroid

xFoot

(a) Possible solution without centroid objective

xCentroid

xFoot

(b) Solution with centroid objective

Figure 6.7: Visualisation of the centroid objective.

6.4.3 Working Direction Objective

A proposed adjustment not only must guarantee that the adopted posture is ergonomic.
It also needs to ensure that the worker can properly perform the task. The most health-
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preserving posture will not be adopted if accomplishing the current task with it is not
possible. For example, if the worker intends to drill a hole into the bottom of the work-
piece, there is no use in doing so when the top faces the user after adjustment. Hence,
the first step before computing the adjustment is to discern which task needs to be ac-
complished. The task interpretation was derived from the original posture. The spatial
relationship between workpiece and working direction were of particular interest. Let-
ting ϕDir(p) be the orientation of the workpiece encoded as an angle to the global y-axis,
the working direction objective is defined as:

fDir(q, p) = ((ϕ(dw)− ϕDir(p))− (ϕ(dwBe f ore)− ϕDir(pBe f ore)))
2

= ((∑
j

qj − ϕDir(p))− (∑
j

qBe f ore,j − ϕDir(pBe f ore)))
2 (6.9)

where pBe f ore and qBe f ore denote the input actuator and posture parameters. In brief, the
working direction objective strives to maintain the same spatial relationship between the
workpiece and working direction before as well as after the adjustment of the workplace.
If this relationship, for whatever reason, is less critical, it can be weighted less or even
left out in extreme cases. As the particular definition of the working direction objective
is dependent on the type of the actuator, the objective will be specified in the relevant
sections.

6.4.4 Contact Point Objective

Similar to the working direction objective, the contact point objective ensures that the
user is able to fulfil the given task after workplace adjustment. In the present case, the
reachability of the contact point is the focus. The contact point, xContact, determines the
location on the workpiece where the current operation takes place. Similar to the working
direction objective, it is extracted from the input posture. However, as the contact point is
given relative to the workpiece, the workpiece dimension is required. The contact point
objective is modelled as:

f (q, p) = (xContact(q, p)− xContact(qBe f ore, pBe f ore))
2. (6.10)

The computation of the contact point is actuator specific - it depends on the degrees of
freedom supplied. Therefore, the specific implementation of this function will be dis-
cussed in the sections specialised on each actuator.

6.5 Modelling for Height-Adjustable Workplaces

This section adapts the general optimisation problem presented in Sec. 6.3 for a height-
adjustable platform carrying the workpiece. An example of such an actuator type is an
actuated table. The actuator parameters, p, constitute only one value representing the
height of the platform. This height value is expressed by the height difference from the
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platform height before optimisation. Also, the term ”offset” will be used for this differ-
ence. Using this relative height notation rather than the absolute height value facilitates
simplifying the terms considering the actuator parameters. The starting point is the gen-
eral objective function:

f (q, p) = c1 fPosture(q)

+ c2 fCentroid(q)

+ c3 fDir(q, p)

+ c4 fContact(q, p) with ∑
i

ci = 1

(6.11)

First of all, the working direction objective, fDir(q, p), is simplified. As there is no degree
of freedom to tilt the work piece, the workpiece orientation always remains the same
(ϕDir(p) = ϕDir(pBe f ore)). This leads to the working direction objective:

fDir(q, p) = ((ϕ(dw)− ϕDir(p))− (ϕ(dwBe f ore)− ϕDir(pBe f ore)))
2

= ((ϕ(dw)− ϕ(dwBe f ore))
2

= (∑
j

qj − ∑
j

qBe f ore,j)
2.

(6.12)

Second, the contact point objective, fContact(q, p), is simplified. Assuming that the work-
piece 2D shape is modelled as a rectangle in perpendicular orientation to the global x-
and y-axes , a vertical motion of the actuator does not change the x-direction of the con-
tact point. Therefore, the horizontal component of the contact point can be omitted:

fContact(q, p) = (xContact,y(q, p)− xContact,y(qBe f ore, pBe f ore))
2 (6.13)

Furthermore, the contact point was not expressed in global coordinates, but as the point
relative to the bottom of the workpiece or the platform. As mentioned before, the platform
height, p, was modelled as relative height offset by the platform height before optimisa-
tion via xPlat f orm,y(pBe f ore). Combining these two expressions yields:

xContact,y(q, p) = xHand,y(q)− xPlat f orm,y(p)

= xHand,y(q)− (xPlat f orm,y(pBe f ore) + p).
(6.14)

Finally, the height offset was computed by subtracting the height of the hands before
optimisation from height after optimisation:

p = xHand,y(q)− xHand,y(qBe f ore). (6.15)
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Substituting equations 6.14 and 6.15 into 6.13 leads to the result that fContact is always
zero, meaning that the term can be omitted:

fContact(q, p) =

[(
xHand,y(q)−

(
xPlat f orm,y(pBe f ore) + xHand,y(q)− xHand,y(qBe f ore)

))

−
(

xHand,y(qBe f ore)− xPlat f orm,y(pBe f ore)

)]2

= 0.
(6.16)

As can be seen after simplification, fDir and fContact did not depend on p. Therefore,
the posture optimisation task can be solved by strictly optimising q and inserting the
solution, q∗, into 6.15 to obtain the actuator parameters. Having derived the objectives,
the constraints were then designed. To start, the range of the joint angles, q, was limited
to exclude the space of infeasible postures:

qmin ≤ q ≤ qmax (6.17)

For the height-adjustable workplace, the range of height of the actuator needed to be
restricted, and this could be realised by adding the inequality constraints

hmin ≤ xPlat f orm(p) + xHand(q)− xHand(qBe f ore) ≤ hmax. (6.18)

The final optimisation problem for the height-adjustable platform is summarised by:

q∗ = arg min
q

∥q − qideal∥2

+ (xFoot,x − xCentroid,x)
2

+ (∑
j

q − ∑
j

qBe f ore,j)
2

subject to

qmin ≤ q ≤ qmax

hmin ≤ xPlat f orm(p) + xHand(q)− xHand(qBe f ore) ≤ hmax.

(6.19)

Having obtained q∗, the height offset, p∗, can be found with:

p∗ = xHand,y(q∗)− xHand,y(qBe f ore) (6.20)

6.6 Modelling for Robot Kinematics

In this section, the objective function is adapted to solve the posture optimisation problem
for six-axis robot actuators. Among the six axes, only three are used. As with the human
model, the robot actuator is described as a kinematic chain containing of segments and
parametrised with a joint angle vector, p. Determining the robot parameters required an
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inverse kinematics computation. In order to directly obtain p, it was integrated into the
optimisation problem.

p1

p2
p3

workpiece

Figure 6.8: Robot model notation used to describe the proposed approach.

Again, the modelling started with the formulation of the general optimisation problem:

f (q, p) = c1 fPosture(q)

+ c2 fCentroid(q)

+ c3 fDir(q, p)

+ c4 fContact(q, p) with ∑
i

ci = 1.

In contrast to the height-adjustable platform, the simplification of the work direction ob-
jective could not be applied here. Hence, the full definition stated in Eq. 6.9 had to be
used. The calculation of the contact point had to consider both human and actuator joint
angles. Let xE f f be the position and dE f f the orientation of the end effector. Moreover, let
wDir represent the width of the workpiece. The object front point, xObj (see Fig. 6.9), is
then introduced. It is computed as:

xObj = xE f f + wDirϕ(dE f f )

= xRoot +
JRobot

∑
j=1

R(
j

∑
i=0

pi) ∗ hRobot,j + wDir

JRobot

∑
j

pj.
(6.21)

Further the direction vector perpendicular to the end effector orientation, dE f f⊥ was com-
puted:

dE f f⊥ =
1

∥dE f f ∥
·
(

dE f f ,y
−dE f f ,x

)
(6.22)

The contact point was defined as the point where the human hand and the workpiece
touch. Especially interesting for the optimisation was the y component, or the height of
the contact point. The x-component can always be adjusted as the human being can move
horizontally. This contact height was encoded relative to the object front, xObj, because the
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xContact

xE f f

xObj

wWP

dE f f lContact · dE f f⊥

Figure 6.9: Visualisation of the variables used in the optimisation problem for the robot
actuator.

region of the workpiece to be processed was of interest and not the absolute hand height.
Hence, the object front was allowed to move, however, the contact point had to remain
statically positioned. The condition described before can be expressed by the equation:

xHand,y(q) = xObj,y(p) + xContact,y(q, p)

= xObj,y(p) + lContact(q, p) · dE f f⊥,y(p)

.

(6.23)

where lContact denotes the (signed) length from xObj to xContact along the object front (see
Fig. 6.9 marked in red). Isolating lContact in Eq. 6.23, yields:

lContact(q, p) =
xHand,y(q)− xObj,y(p)

dE f f⊥,y(p)
. (6.24)

Equation 6.24 was then used in the contact point objective Eq. 6.10:

fContact(q, p) = (lContact(q, p)− lContact(qBe f ore, pBe f ore))
2

In short, the contact point objective for the robot suggested that the signed height differ-
ence of the contact point relative to the object front point (see Fig. 6.9 red arrow) was
to remain similar. Note that this condition assumed that the worker processes the ob-
ject front, though if the worker processes a different side of the workpiece, further object
front points could be introduced for the top and bottom sides. Once the objective function
was derived, the constraints were designed. At first, there were minimum and maximum
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angles for human and robot joints.

qmin ≤ q ≤ qmax

pmin ≤ p ≤ pmax

.

(6.25)

When tilting the workpiece, a problem could surface - posture and contact point may
be correct, however, the posture would still not be feasible as parts of the body collide
with the workpiece. Hence a collision constraint had to be introduced. The reason for
this constraint is that every point of the body has to reside on the side of the object front
different from the robot front. This can be carried out using the Hessian normal form of
the object front. The constraints ensure that each point of the body (e.g., the front of the
head) substituted in the object front plane definition is always positive.

(xHead(q)− xObj(p)) · dE f f⊥ ≥ 0. (6.26)

Briefly , the optimisation problem for the robot kinematics is defined as:

q∗, p∗ = arg min
q,p

(q − qBe f ore)2

+ (xFoot − xCentroid(q))2

+ ((
J

∑
j

qj −
JRobot

∑
j

pj)− (
J

∑
j

qBe f ore,j −
JRobot

∑
j

pBe f ore,j))
2

+ (xContact,y(q, p)− xContact,y(qBe f ore, pBe f ore))
2

subject to

qmin ≤ q ≤ qmax

pmin ≤ p ≤ pmax

(xHead(q)− xObj(p)) · dE f f⊥ ≥ 0.

(6.27)

6.7 Solving the Optimisation Problem

Having defined the optimisation problems, an algorithm was required to obtain the so-
lutions. The proposed formulations were an optimisation problem with non-linear con-
straints. Specifically with regards to the computation of the position vectors, xHead and
xHand, they needed the application of a non-linear forward kinematics function in the an-
gular space. Based on the fact that objective functions and constraints contained trigono-
metric functions from the rotation matrix, the stated problems were also non-convex and
including multiple local minima. The choice of solvers for non-linear problems with non-
linear constraints is limited to a subset of algorithms. Algorithms implementing the Se-
quential Quadratic Programming (SQP) approach (see Sec. C of the Appendix for a de-
tailed explanation) were utilised. SQP is widely used for non-linear constrained optimi-
sation problems, especially in the field of posture prediction [8, 80]. A superb report of the
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algorithm framework can be found in numerical optimisation literature, such as Nocedal
and Wright [193]. The main concept is to iteratively find the solution by successively ap-
proximating the original non-linear program with a quadratic program containing linear
constraints.

Considering initialisation, various postures were tested, including the ideal posture,
qideal, the current posture, q, and convex combinations thereof. Empirical analyses indi-
cated that initialising with the ideal posture, qideal, generated the most favourable results
for the present task.

6.8 Control Strategies

In this section, the design of a so-called control strategy, which decides whether to pro-
pose a workplace layout to the worker or not, is examined. Its purpose is to keep the
postural load as well as the amount of workflow interruptions emanating from work-
place adjustments at an acceptable level. As stated in Secs. 6.2.3, the control strategy
outputs the actuator configuration, p, at each point of time, t. As such, there are two
possible cases - either the strategy decides to propose a layout change by activating an al-
ternative actuator configuration or it settles upon maintaining the layout. The derivation
of the alternative actuator configuration was already discussed in Sec. 6.5 and 6.6. Here,
the design of the algorithm is explained. In particular, an answer is provided addressing
the question of how the method decides when to activate the configuration and when not
to. The control strategy was integrated into the WPC loop (see Fig. 6.12).

The task was to design a decision function, dadj(P(t)) ∈ 0, 1. This function dadj returns
1, to ascertain when the WPC should notify the worker with proposition of adaptation
of the workplace and 0 when the current layout would best be maintained. The decision
was based on the current posture sequence, P(t) = {P1, ..., Pt}, obtained from the pos-
ture classification component. The aim was to keep the final EAWS score, SEAWS(tEnd), as
well as the accumulated distance of the actuator path (ADAP) at an reasonable level. The
ADAP is introduced as a measure of how much the actuator moved. The measure can be
directly transformed into the interruption time. The ADAP denotes the length of the path
the actuator travelled. For example, for a height-adjustable actuator, the ADAP is the sum
of all height offsets during the WPC loop. For a robot actuator, one could use the length
of the path the end effector travels, including its rotation. Alternatively, the angular dis-
placements of the robot joints could be accumulated. The challenge was to predict which
type of effect an alternative configuration would have on the final EAWS score. Omitting
the layout adjustment can have a fatal impact on the ergonomic assessment as well as be
negligible. In the following, two decision strategies are proposed which attempt to pre-
dict the effect of the current posture sequence P(t) on the final EAWS score and employ
them to build the decision function, dadj.
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6.8.1 Temporal EAWS Threshold (TET) Control Strategy

The EAWS computes the score at the end of the recording by analysing the time share of
each posture class adopted. The principal rationale of this strategy was to use the tempo-
ral EAWS score, SEAWS(t), to derive a decision. The temporal EAWS score is computed
by applying the EAWS computation scheme to the posture sequence adopted from the
beginning of the recording until the current point in time, t. When SEAWS(t) exceeds an
acceptable threshold, T, the strategy proposes the alternative actuator configuration:

dadj(P) =

{
1, if SEAWS(t) > T,

0, else.
(6.28)

SEAWS(t) at the current time, t, is computed by applying the EAWS computation scheme
(see Fig. A.2 of the Appendix) on the current posture sequence, P(t). The lower the value
of T, the more likely the final EAWS score is reduced. Figure 6.10 illustrates the relation-
ship between T and SEAWS using an exemplary simulated process (see Sec. 8.4.2 for real-
isation of the simulation process). A worker periodically adopts a sequence of postures
to accomplish the tasks at hand. The workpiece is assumed to be height-adjustable. The
progression of the EAWS score is depicted by the blue line whereas the red line indicates
the movement of the actuator.

Figure 6.10a represents the case where no adjustment is initiated. After around 400 sec-
onds, a pattern of the EAWS curve can be identified indicating that the worker period-
ically alternates between ergonomically different postures. However, the EAWS score
always remains at an unacceptable level (above 50 points).

Figure 6.10b shows the case where an adjustment is initiated every time the EAWS score
exceeds the value 30. As can be seen, the score remains below 50 points as the working
height is continuously adapted to match the current task. However, the number of ad-
justments increases, leading to a higher ADAP. Furthermore, the figure suggests that the
score changes less the longer the process endures. This behaviour is typical for the EAWS
(see Sec 6.8.2 for explanation). The implication is that if the temporal score settles to a
value above the given threshold, as in the present case, the control strategy will contin-
uously suggest an adjustment. In conclusion, ineffectual workplace adaptations will be
made in the later stages of the process.

To sum up, the implicit assumption of the Temporal EAWS Threshold (TET) strategy is
that the EAWS score at the end will be basically the same as the current one. When there
is no interference from the WPC, the ergonomic assessment result will remain.

6.8.2 Decaying Temporal EAWS Threshold (DTET) Control Strategy

One property of the EAWS calculation scheme is that the longer the recording endures,
the less the final score changes (see Fig. 6.10b). A simple example which explains how
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(a) T = 90

(b) T = 30

Figure 6.10: Visualisation of EAWS score (black lines denote EAWS scores 25 and 50) and
height-adjustable actuator offset over time for the TET strategy.

to calculate the EAWS has been presented in Fig. A.2 of the Appendix. The final EAWS
score is computed as the sum of partial EAWS scores for each posture class, p:

EAWS =∑
p

EAWSp. (6.29)

Each partial score, EAWSp, is dependent on the time proportion, τp, spent in posture, p.
The partial score is computed through a lookup-table function, LUT (see Appendix A.1
for the complete EAWS lookup table), which assigns a partial score depending on the bin
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τp is located in:
EAWSp = LUTp(τp). (6.30)

Given the entire process as a sequence of n image frames and the posture labelling for
each, the time proportion, τp, can be computed as:

τp =
np

n
. (6.31)

where np refers to the number of frames containing posture, p. When the worker adopts
a new posture for ∆np frames, the fractional change, ∆τp, can be computed as:

∆τp =
np + ∆np

n + ∆np
−

np

n
. (6.32)

The longer the recording time, n, the less influence ∆np has on ∆τp. The Decaying Tempo-
ral EAWS Threshold (DTET) strategy begins with a rather low temporal EAWS threshold,
TStart, and increases it over time until a final threshold, TEnd. The current threshold, Tt, at
time, t, is computed as:

Tt =

{
T = TStart +

t
tTotal

(TEnd − TStart) , if t < tTotal,

TEnd, , else.
(6.33)

The parameter, tTotal, indicates how fast the threshold approaches the final value. The
computed threshold, Tt, was utilised as a threshold in the TET control strategy explained
in Sec. 6.8.1. The longer the process endures, the less the WPC intervenes - the final
EAWS is less influenced. To illustrate this effect, Fig. 6.11 depicts the progression of
EAWS score and actuator movement using the DTET strategy. The underlying process is
the same as used in Fig. 6.10. It is worth pointing out that the frequency of adjustments
gradually decays until actuator movements completely cease after roughly 700 seconds.
In exchange, the EAWS score first decreases, but then continues to grow due to a lack of
intervention.

A further modification was added to the DTET control strategy. As seen in Figure 6.11,
the actuator activity stopped towards the end of the recording. The last used actuator
configuration was then fixed for the rest of the process. This configuration could have
been unsuitable for the remaining postures to be adopted. In assuming that the remain-
ing posture sequence was similar to the former, a standard actuator configuration was
initiated after tTotal was reached. As standard configuration, the mean or the median of
all actuator configurations set until the current time, was employed.



6 POSTURE OPTIMISATION 103

Figure 6.11: Visualisation of EAWS and height-adjustable actuator offset over time for the
DTET strategy.

6.9 Conclusions

This chapter has covered how to compute workpiece pose configurations, enabling com-
fortable working conditions. The major challenge was to predict the worker’s posture
after adjustment.

The optimisation-based approach was elected as it seamlessly integrates into the work-
piece pose search task. Similarly, the workpiece pose search task was solved by stating
an optimisation problem with a solution that represented the actuator configuration. In
addition to the actuator configuration, the proposed posture was computed. To find the
appropriate workpiece posture, the application of the SQP algorithm was suggested. The
proposed approach was adapted for a height-adjustable actuator along with a robot ac-
tuator. In effect, both algorithms differed with regards to implementation of the working
direction objective and the contact point objective.

Furthermore, this chapter has put forward that the dynamic behaviour of the WPC has
to be accounted for. Frequent adjustments unacceptably slow down the workflow. It is
important to optimise ergonomics as well as minimise actuator activity through a chosen
control strategy. This problem can be interpreted as an optimal control problem, however
the approaches seen in the literature are not suited for the type of dynamic system this
thesis is focused on. Hence, the TET and DTET control strategies were proposed. Both
exploit the properties of the EAWS method in order to reduce the score while keeping the
interruptions at a reasonable level.
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Figure 6.12: Control strategy integrated into the WPC loop.



105

7 Implementation

This chapter describes the implementation details of the WPC. Specifically, the software
architecture used to build the WPC is explained. Besides this, the chapter outlines how
the methods developed were integrated into a demonstrator scenario.

7.1 Scenario

Consider an assembly task where a worker is processing a workpiece. The workpiece is
fixed on an actuator that can manipulate its spatial pose. The worker performs tasks on
different regions of the workpiece. The workpiece dimensions should be large enough
that it is not possible to perform all tasks in an ergonomic posture without any workpiece
adjustment. An example could be a bicycle frame as depicted in Fig. 7.1. If tasks must be
performed at the top of the frame as well as at its bottom, the user normally needs to bend
forward as well as raise their arms to shoulder height. As soon as the worker enters the
sensors’ FOV, the background subtraction algorithm (see Sec. 5.5.1) segments the worker.
A foot switch is placed under the workpiece and when the user presses the button, the
joint localisation (see Sec. 5.5.3) is initialised. During this initialisation phase, body sizes
are estimated from the worker’s height. Hence, the worker is expected to stand upright
when activating the foot switch. After initialisation, the WPC loop starts.

Once the WPC loop has begun, the worker performs the tasks at hand while the system
records his or her posture. The system displays the RGB image stream with an overlay of
the worker’s posture to provide visual feedback to the user. The WPC notifies the worker
when the control strategy proposes an adjustment of the workpiece pose. The worker
can either confirm or decline the adjustment. Upon agreement, the system waits until the
worker steps out of the scene and pushes a confirmation button to initiate the adjustment.
In the case of a manually adjusted actuator, the WPC overlays markers on the screen in
order to guide the worker in adjusting the workplace. After adjustment, the WPC loop
starts anew.
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Figure 7.1: The WPC demonstrator scenario.

7.2 Hardware

This section describes the hardware devices necessary to build the demonstrator scenario
in Sec. 7.1. First, a RGBD sensor is needed to capture the scene. A Microsoft Kinect®
sensor v1 was chosen, which is simply referred to as Kinect in this work. When research
in the scope of this thesis started, the Kinect v2 or other notable RGBD devices were
not yet available. A computer is needed to process the image stream and compute and
initiate adjustments. The WPC algorithms were tested on a laptop containing a two-core
i5 CPU (Intel Corp., Santa Clara, CA, USA). For the 3D localisation, a desktop computer
containing an i7 CPU (Intel Corp., Santa Clara, CA, USA) and a Geforce GTX 580 GPU
(Nvidia Corp., Santa Clara, CA, USA) were used. A foot switch was employed as a control
interface for the worker.

Finally, the WPC system needed actuators to adjust the workpiece pose. The actuators
tested were a bicycle frame holder where the worker could manually tilt the workpiece
along the z-axis (see Fig. 7.2) and a lightweight robot manipulator (see Fig. 7.3). In the
following, the components are explained in more detail.

7.2.1 Sensor and Input Device

Kinect v1 Sensor

The Kinect v1 is a low-cost RGBD sensor that was initially released in 2010. Originally,
it was utilised to accommodate gesture input for video games. The bundled software
offers marker-less joint localisation from the front perspective, which has made the device
interesting for human-machine interaction applications beyond video games. The sensor
acquires colour images with a resolution of 640x480 pixels and depth images of 320x240
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pixels via the structured light approach (see Sec. 5.2.3). The average frame rate is around
30 frames per second. The sensor was placed on a tripod at approximately 30cm height
with about 3.5m of distance from the worker.

Foot Switch

A USB Triple Foot Switch II (Scythe Co., Ltd., Tokyo, Japan) provided the user an input in-
terface where the hands would remain free. The foot switch provides three programmable
buttons that emulate a mouse or keyboard input. The supplied software allows assign-
ing each button with a keyboard or mouse button. This has the advantage that when
debugging the program in the laboratory, foot switch activations could be simulated by
pressing the keyboard.

7.2.2 Actuators

Bicycle Frame Holder

The bicycle frame holder was used to fix a bicycle frame such that it stood in front of the
worker. The frame can be tilted by manually releasing the lock and rotating the frame.
The workpiece pose can be set from almost horizontal to vertical, which yields a tilting
range of almost 90◦ (see Fig 7.2 for visualisation of the range). Considering common
bicycle frame dimensions, the lower part of the frame can be raised up to around 30cm.

Figure 7.2: Motion range of the bicycle frame holder.
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Light-Weight Robot Manipulator

To demonstrate the WPC function with a robot manipulator, the Universal Robot UR5
manipulator [194] was utilised. The UR5 has a payload of 5kgs and a maximal reach
radius of 850mm. As the maximum payload is stated to be 5kg, including gripper and
sensors, a real workpiece could not be used, but instead only a dummy object.

Figure 7.3: Robot actuator used in the demonstrator scenario.

7.3 Software

This section outlines the software architecture of the WPC and reports the concepts be-
hind. Section D.0.1 of the Appendix describes the concrete tools and implementations
used.

7.3.1 WPC System Architecture

The C++ language dominates the WPC code. C++ offers object oriented programming
features that permit building reusable modules. As the high-level code is compiled into
optimised low-level instructions, the execution performance is faster in comparison to in-
terpreted languages. One limitation is that low-level instructions mostly cause operating
system dependence. However, libraries with an abstraction layer help to maintain the
code platform independence.
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The software architecture was designed with three goals in mind. For one, the code has to
be easily understandable and result in a reduced learning effort for a developer reusing or
extending the software. As well, modules should be readily integrated into other projects
and platforms, and this includes an easy deployment of the software to other computers.
Finally, if a user needs a new feature, the code must offer aids to extend it. In summary,
the goals were:

• clarity,

• re-usability,

• extensibility.

This is why the code was structured and modularised into isolated units named “pack-
ages” (see Sec. D.0.2 of the Appendix for details). The WPC system software is divided
into four packages:

• RGBDSensor

• PostureLib

• WPCApp

• Experiments

Figure 7.4 provides a visual overview of the dependent packages.

WPCApp

RGBDSensor PostureLib

Experiments

Figure 7.4: Package dependencies within the WPC.

The RGBDSensor package contains classes to interface RGBD sensors to obtain colour
and depth images. Currently, an interface to the Kinect v1 is implemented that wraps
the libraries, OpenNI2 and NiTE2. The package also features routines to obtain human
segmentation masks and joint coordinates with the NiTE2 middleware. Furthermore, the
package can emulate a camera by successively reading images from an input folder. This
function supports creating experimental setups to validate the algorithms developed.

The PostureLib package contains implementations of algorithms to assess and optimise
postures. It offers data structures representing the human kinematic chain for 2D joint
localisation and the kinematic tree for 3D joint localisation. The posture optimisation
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classes interface the numerical optimisation library, NLOpt. The algorithms have been
sped up using parallel processing techniques (see Sec. D.0.3 for details).

The Experiments package has tools that allowed to conduct experiments on the WPC sys-
tem (see Chapter 8). Specifically, it contains executables to acquire joint coordinates from
the developed methods as well as those from the NiTE2 library. Furthermore, the tem-
poral EAWS score and the optimised posture can be recorded for each frame of an image
stream. The tools can process multiple datasets in a row with different algorithm param-
eters. Configurations are read from xml files to avoid re-compiling the code in case the
parameters change. Furthermore, the tools can take snapshots from visualisations from
every n-th frame to provide data for qualitative analysis of the results. The experiment
tools are normally applied to recorded data rather than live data in order to guarantee
reproducibility.

The package, WPCApp, features an executable that integrates the algorithmic blocks into
the WPC loop. It depends on the packages RGBDSensor and PostureLib. A Graphical
User Interface (GUI) visualises the current posture, optimised posture and current EAWS
score overlayed onto the current camera image. The WPCApp also offers functions to
record image data.

7.3.2 The WPCApp

The WPCApp integrates posture assessment, optimisation and control strategy into one
system. This executable file controls the WPC hardware. One of the goals for the WPC
system was to be modular and capable of being applied to different actuators, posture
assessment algorithms and control strategies.

The WPCApp GUI

The WPCApp GUI (see fig. 7.5 for a screenshot) provides the user with visual feedback.
It displays the current RGB image overlayed with the current EAWS score, the current
posture, the optimised posture and the proposed actuator adjustment. Hence, it shows
the correct posture for the task at hand and explains to the user how the environment will
change.

The Model-View-Controller (MVC) Design Pattern

The WPC was designed as a generic system which can be used with various input and
output components. Inputs can origin from different types of cameras or user input de-
vices. Physical actuators, their virtual visualisations and the GUI are output components.
Whereas the core behaviour of the WPC remains the same, input and output components
vary among different configurations. In order to foster flexibility enabling different input
and output components to be plugged into the system without changing the core, the
Model-View-Controller MVC design pattern [195] was employed. The MVC is an archi-
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Figure 7.5: The WPCApp graphical user interface.

tectural design pattern mostly found in user interfaces. It separates the internal represen-
tation of the data and program logic from the user interface. The MVC pattern proposes
dividing the system into three interconnected components: model, view and controller.

View:
GUI

Actuators

Model

Controller:
Camera

Keyboard

User

ManipulatesUpdates

Sees Uses

Figure 7.6: Visualisation of the MVC pattern.

The model assimilates the state of the system and the data stored. The state of the WPC
system is represented by variables, such as the current EAWS score, posture sequence
or actuator configuration. Furthermore, the model possesses program logic, like pos-
ture assessment and optimisation routines, that manipulate the state of the WPC system.
Multiple controllers handle the inputs from the user or devices. Inputs can be new frames
from the sensor as well as user input. Exemplary controller objects are the camera or the
keyboard input. Finally, there can be one or multiple views. Each view presents particu-
lar parts of the model state to the user. When the model has been changed, it updates the
views. Examples for the views are GUI visualisations or the physical actuator control. The
communication interface between models, views and controllers is standardised, such
that different implementations of views or controllers are interchangeable.
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Communication between the MVC Components

Concerning the communication workflow of the MVC components, the focus was put
on two requirements: For one, the flow of information was to be managed automatically.
Once one model receives user or camera device inputs, it executes the corresponding pro-
gram routines, which change its state variables. Once particular state variables have been
modified, the model updates the views interested in these variables. As there is a large
amount of possible control paths to be activated, automatically triggering each compo-
nent was preferred to having their order of execution hard-coded. Second, over the course
of the development process, the structure of the model and controller frequently change.
For example, the set of state variables can be extended or there are new parts in the pro-
gram logic. Hence, it is necessary to achieve the least dependency possible between each
component. These two requirements can be met using the observer pattern [196]. The
observer pattern separates the interacting components into two groups - subject and ob-
server. Observers register on subjects. A subject can notify all of its observers, of which
their ”update” methods are then executed. A component is incorporated into the system
by deriving from the subject or observer base classes implementing the required inter-
faces. It is possible that components are subjects as well as observers, as necessary in the
case of the model. Figure 7.7 shows an example of how a model and a view interact with
each other within the observer pattern.

Subject
registerObserver()

notify()

Model

Observer
update()

View

notify() calls update()

Figure 7.7: Observer pattern applied when the model updates the view.

The model is registered as the observer of the controller and the views are registered as
observers of the model. So as to not notify all views at each change in the subject, the
views register to specific events rather than the model itself. Events can then be regis-
tered to specific parts of the model or control components. Using this event system, the
components can vary without breaking the interfaces between one another. Furthermore,
the computation overhead is reduced as only the parts to be updated are actually notified.



113

8 Evaluation

This chapter presents and discusses the results of the experimental evaluations con-
ducted on the components of the WPC system. Before delving into the setup and results,
the purpose of the evaluations is stated. The central research goal of this thesis has been
delineated in Chapter 3 as:

It is possible to realise an in-process WMSD prevention measure addressing the risk fac-
tor, posture, at an intensity level of 1 - 2 on the effectiveness scale according to Goggins et
al. by combining image-based ergonomic assessment with in-process workplace layout
design.

The purpose of the experiments is to determine whether the self-stated goal has
been achieved. Thereby, the focus lies on analysing the aspects marked in bold. First,
there is a need to prove that the algorithms were able to supply immediate feedback,
such that the system can directly support the worker during the process. Secondly, the
system shall reliably detect a critical situation by image-based ergonomic assessment. In
the best case, the assessment results shall be comparable to what a human being would
conclude. Finally, the postural risk level should have been eliminated, or at least reduced,
through workplace layout adjustments proposed. An experimental setup which shows
that these three aspects apply has to comprise three groups of experiments:

It is possible to realise an in-process MSD prevention measure addressing
the risk factor, posture for elimination to intensity level (1 - 2) on the
effectiveness scale according to Goggins et al. by combining image-based
ergonomic assessment with in-process workplace layout design

How long does it take to process one frame?

How similar are the assessments of the posture assessment algorithm in com-
parison to manual assessments?

How effectively does the posture optimisation component reduce the postural
load?

Figure 8.1: Research questions to be answered in the evaluation experiments.
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8.1 Experimental Datasets

Having stated the required experiments, the datasets for evaluation were collected. The
sensor was placed at a distance of roughly 3.5m from the scene, recording the subject
from a side perspective. In total, three datasets were generated that concentrated on the
specific evaluation aspects. Table 8.1 summarises the datasets created and the features
they address.

Table 8.1: Summary of datasets (number of sequences and content) and their usage in the
experiments.
Dataset Seqs Content Purpose
DAT1 9 Image data of standing posture se-

quences of an approximately one
minute duration.

• Measure processing time per
frame.

• Compare posture assessment
of standing postures in a se-
quence with human assess-
ment.

• Evaluate standing postures
before and after posture opti-
misation.

DAT2 32 Image data of standing, sitting and
kneeling postures in isolation, in-
cluding motion capture data.

• Compare posture assessment
of standing, sitting and kneel-
ing EAWS postures with a
commercial DHM tool.

DAT3 18 Joint angle sequences of standing
postures with a duration of roughly
24 minutes.

• Determine the relationship
between EAWS and ADAP
for different control strate-
gies at a height-adjustable
actuator.

DAT1: Posture Sequences

The first dataset (DAT1) was employed to evaluate processing time, posture assessment
as well as posture optimisation. Figure 8.2 portrays sample frames from DAT1. The
dataset contains image sequences of nine subjects (one female and eight males) with an-
thropometric heights roughly between 1.5m and 2m performing the five different stand-
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ing EAWS postures ( ”standing”, ”bent forward”, ”strongly bent forward”, ”upright with
elbow at shoulder level” and ”upright with hands above head level”). The postures
adopted in this dataset were intended for assessing the algorithms with reference to the
demonstration scenario presented in Sec. 7.1. Thus, either a height-adjustable actuator
or a robot actuator were expected to hold the workpiece. As the degrees of freedom
were mostly suitable for standing postures, sitting and kneeling postures were excluded
from this dataset. Each subject adopted a sequence of postures in a randomised order.
The duration of each posture was arbitrarily chosen to amount to between one and three
seconds. The hand heights recorded ranged from 0cm (strongly bent) to roughly 250cm
(hands above head). The postures from the video sequences were classified by a person
different from that who selected the order of the postures. With this design, it was en-
forced that the human classifier only assigns labels based on the image data and not on
the known sequence.

DAT2: Complete Posture Set

The second dataset (DAT2) features more details on the posture assessment. Of particu-
lar interest was the question of how accurately the posture was predicted in comparison
to current DHM tools using motion capture systems. In contrast to DAT1, DAT2 con-
tained 11 EAWS postures, excluding ”standing and walking in alteration”, ”sitting up-
right with back support”, ”sitting upright with hands above head level”, ”lying on back”
and ”climbing”. The postures were performed by three male subjects with anthropomet-
ric heights roughly ranging from 160cm to 180cm. Figure 8.3 shows exemplary frames.

The postures adopted were simultaneously recorded by the Kinect and a Vicon MX3+
motion capture system (Vicon Motion Systems Ltd., Oxford, UK). The Vicon system re-
quires that the subject recorded wears a set of markers located at pre-defined positions of
the body (see Fig. 8.4a for marker placement setup). The system then tracks these mark-
ers at a spatial resolution of 100Hz, which are then used to automatically reconstruct a
full body motion (see Fig. 8.4b). This motion is then classified into postures using the
commercial tool Alaska/EAWS [70] (see Fig. 8.4c). A single posture per video sequence
was recorded instead of a whole sequence. This ensures that frames where the subject
transitions from one posture to another are not considered in the evaluation. In total, 32
videos were obtained where the subjects performed a single posture each.

DAT3: Processes over Several Minutes

The third dataset (DAT3) was utilised to evaluate the control strategies developed for the
WPC. As a basis, the posture sequences from DAT1 were used. While being sufficient to
evaluate the principal functions of the WPC, they do not realistically simulate a process
as the total duration of each sequence of nearly one minute is too short. Sample processes
of several minutes were created from the DAT1 posture sequences by repeating them and
lowering the number of frames per second. DAT3 does not contain image data - only
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(a) RGB images

(b) Silhouettes

Figure 8.2: Sample frames from DAT1.

the tracked joint angles. This dataset featured two types of processes - those comprising
postures with durations mostly lower than 30s (short postures) and processes with pos-
tures of durations over several minutes (long postures). A process either contains one
long posture sequence or 10 short posture sequences executed in a row. The mean du-
ration of a process was around 1400 seconds or 24 minutes. As DAT1 comprised nine
posture sequences, the total number of DAT3 processes was 18. Each DAT1 sequence was
transformed into a corresponding DAT3 process with short postures and another with
long postures. Figure 8.5 shows an example of how a posture sequence from DAT1 was
converted into DAT3.
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Figure 8.3: Sample frames from DAT2.

(a) Subject with markers attached (b) Postures transferred to the DHM[70]

(c) Posture classification result

Figure 8.4: Workflow to obtain EAWS postures from subject motions.

8.2 Processing Time

Runtime tests were conducted using the WPCApp. The test system was a laptop with
an Intel Core i5 2520m CPU with two 2.5GHz cores. The system accessed 8GB RAM
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(a) Sequence from DAT1

(b) Long posture process

(c) Short posture process

Figure 8.5: One exemplary posture sequence from DAT1 converted into a DAT3 sequence.

and ran on the Windows 10 operating system. The runtime measurements were con-
ducted through a test video sequence from DAT1. As performance measures, the mean
and standard deviation of the processing time for a frame were determined. A WPC pro-
cessing loop includes data acquisition, pre-processing, posture assessment and posture
optimisation. The two latter stages took up the majority of the processing time. Posture
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assessment using the 2D localisation algorithm takes 197± 69ms, while using 3D features
consumes roughly 10s per frame. Posture optimisation with a height-adjustable actuator
takes 0.6 ± 3ms. The computation of an adjustment for the robot actuator is on aver-
age 8 ± 8ms long. Hence, the posture assessment component dominates the computation
time.

Result Summary

In total, the WPC processes one loop in less than 300ms. Considering that the EAWS
requires a time granularity of one to four seconds [34], this performance is sufficient.

8.3 Posture Assessment

8.3.1 Standing Postures (DAT1)

First, the performance of each posture classification approach was determined. A leave-
one-out cross-validation setup was used where in each round or fold, one posture se-
quence was employed as test set and eight sequences were utilised to train the classifier.
To obtain the end result, the intermediate results from all folds were averaged. With
this setup, the rather small dataset can be fully exploited. Each of the 9 sequences can
be used for training as well as for testing without distorting the outcome. The compari-
son comprised the joint angle features computed from the 2D joint localisation, 3D joint
localisation and NiTE2 joint localisation [169] algorithm. The classifiers included:

• K-Nearest Neighbours with K=5 (KNN) and Euclidean Distance

• Support Vector Machine with Linear Kernel (LIN-SVM)

• Support Vector Machine with Radial Basis Function Kernel (RBF-SVM)

• Random Forests (RF) with 10 Trees

To obtain the best SVM parameters, a grid search was applied on the training data. The
Scikit-Learn library [197] provided the classifier implementations.

Posture Classification Accuracy

To quantitatively evaluate the results, the classification accuracy measure was leveraged.
Let nCorrect,i denote the number of correctly classified samples in fold, i, and nWrong,i the
number of wrongly classified samples, respectively . The accuracy score, acci, for fold, i,
was computed as:

acci =
nCorrect,i

nCorrect,i + nWrong,i
(8.1)
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The overall accuracy over all N folds was computed as:

acc =
1
N

N

∑
i=1

acci (8.2)

Table 8.2 lists the accuracy scores for all feature-classifier combinations tested. The results

Table 8.2: Mean accuracy and mean EAWS differences for the tested feature-classifier
combinations. Best values are marked bold.

Feature Classifier Accuracy (acc) Mean difference in EAWS points
2D RBF-SVM 0.95 3.2
2D LIN-SVM 0.90 3.8
2D RF 0.95 3.7
2D KNN 0.95 3.8
3D RBF-SVM 0.44 18.8
3D LIN-SVM 0.40 19
3D RF 0.56 12.4
3D KNN 0.44 13.3

NiTE2 RBF-SVM 0.29 11.3
NiTE2 LIN-SVM 0.29 9.8
NiTE2 RF 0.32 10.1
NiTE2 KNN 0.28 10.3

from the experiments suggested that the 2D features were superior for the application
case in this thesis. Supportive evidence was found for this assumption by visualising
each feature type with the t-distributed stochastic neighbour embedding (t-SNE) tech-
nique [198]. In contrast to the similar dimensionality reduction technique, principle com-
ponent analysis (PCA), t-SNE computes a non-linear mapping, which better represents
the real distances between the data points. Figure 8.6 depicts the joint angle vectors trans-
formed into 2D space. The result plots clearly indicate that 2D features and 3D features
are better separable by a classifier than NiTE2 features, where posture regions heavily
overlap. Conversely to the classification results, 2D features and 3D features seem to be
comparably well separable.

Interesting insight can be obtained by viewing the confusion matrices. A confusion ma-
trix, C, with the indexing Cij indicates how many samples of the posture class, i, were
classified as class j. Figure 8.7 depicts the results for the 2D, 3D and NiTE2 features in
combination with the RBF-SVM. The amounts were normalised by the total number of
class i samples, meaning the value Cij was divided by ∑j Cij. According to the confusion
matrices, there was one dominant error category for the 2D features - ”Standing” postures
were often confused with ”upright with elbow at shoulder level”. Presumably, this error
pattern corresponded to the problem that 2D features were susceptible to changes in the
length of the upper limbs due to projection. The confusion matrices for the other features
depicted more equally distributed error types.
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Figure 8.6: Visualisation of the feature space for different approaches using t-SNE. Differ-
ent colours refer to varying class labels.

Comparison of Automatically and Manually Determined EAWS Scores

In considering the assessment of ergonomics, the classification accuracy itself had limited
significance. If two postures which shared similar EAWS scores are confused, the assess-
ment will not be severely affected. The same cross-validation setup as described earlier
was used, but the EAWS was directly computed on the classified posture sequence. The
fourth column of Tab. 8.2 outlines the mean of absolute differences of EAWS scores be-
tween the automated posture assessment algorithm and the manually determined scores.
For a more detailed view, the EAWS differences for each video sequence were visualised
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Figure 8.7: Confusion matrices achieved with joint angle features from different localisers.

for an exemplary feature-classifier combination in Fig. 8.8. In order to better under-
stand the units of the EAWS score difference, consider the risk classification scheme of
the EAWS (see Sec. A of the Appendix). Tasks yielding 0 to 25 points are classified as
low risk. If the EAWS score value is between 25 and 50 points, the task is considered as
possibly risky. Finally, EAWS values above 50 points indicate a task from the high risk
category. Thus, a low one-digit EAWS difference value unlikely leads to a misclassifi-
cation of a task whereas higher mean differences increase the likelihood of classification
errors.
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Figure 8.8: EAWS score comparison for the 2D + RBF-SVM combination.

Result Summary

According to the results, 2D features yielded the best classification accuracies as well as
the most precise EAWS computations by high margin (see Tab. 8.2 first row). Figure 8.7
supports this statement. In the ”2D + RBF-SVM” case, the highest values are concentrated
on the main diagonal of the confusion matrix. In contrast, the other feature types result
in values distributed all over the matrix. 3D features produced better classification accu-
racies than the ones computed from the NiTE2 library (see Tab. 8.2 third column, rows
5-8 versus rows 9-12), however the classification errors had a more severe impact on the
EAWS accuracy versus NiTE2 features. Finally, it could be seen that the best classifiers
for these features are RBF-SVM and RF. Whereas both offer comparable results on the 2D
features, RF slightly outperforms RBF-SVM on 3D and NiTE2 features. In terms of run-
time, all the algorithms using 2D features or features from the NiTE2 library are able to
output classifications in roughly 300ms. When using 3D features, most of the computa-
tion time is dedicated to the feature extraction step, which takes up to 10s per frame on
a state-of-the-art GPU whereas classification is performed in less than 200ms. If feature
extraction is not included into training time, all proposed algorithms can be trained on
the whole dataset of around 6000 data points in less than 3 minutes.
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8.3.2 Comparison to Alaska/EAWS Assessment (DAT2)

Experiments on DAT1 indicated that 2D body angle features in combination with an SVM
classifier (2D + RBF-SVM) performed best. Its classification accuracy was investigated
more in detail via DAT2. Testing other feature-classifier combinations was skipped due
to the clear results on DAT1. As a result of the higher number of labels, the classification
problem here was expected to be more challenging than in DAT1.

Comparison of 2D + RBF-SVM and Manual Posture Classification

As mentioned in Sec. 8.1, each video in the DAT2 dataset contained only one posture
class. Thus, there was one manually determined posture label per video sequence. To
obtain the 2D + RBF-SVM posture labels, the posture classifier was applied on each frame
and the most frequently occurring label was computed. In comparison to the manual
labelling, the developed algorithm achieved an accuracy of 75%. The resulting confusion
matrix is depicted in Fig. 8.9. As can be observed, most errors occured with sitting and
kneeling postures, especially when the upper limb posture was ”elbow at shoulder level”.
A possible interpretation is that the criteria for determining this posture are less clearly
stated in the EAWS than for other postures. In particular, no angle intervals are provided
for the upper limb posture classification. Therefore, the way subjects perform this posture
is more variant than in other cases, making a precise classification more challenging.

Comparison of 2D + RBF-SVM and Alaska/EAWS Posture Classification

The classification performance of the posture assessment algorithm was compared with
posture classifications from the commercial DHM software, Alaska/EAWS [70]. For both
classifiers, the most frequently occurring posture of one sequence was set as the video
label. The resulting confusion matrix is found in Figure 8.10. When using Alaska/EAWS
as a ground- truth label, the classification performance of the algorithm decreased to 47%.
At first glance , it stands out that Alaska/EAWS rarely classified upper limb postures as
”elbow at shoulder level”. A discussion with the software support team revealed that
the software selects this upper limb posture when only one arm is at shoulder level.
As the subjects performed symmetric upper limb postures, this label was technically
not included in the dataset. Furthermore, back postures classified as ”bent forward” by
Alaska/EAWS are often misclassified by the algorithm developed in this thesis. However,
these postures are also the ones where manually created labels and the labels generated
by Alaska/EAWS were in least alignment. A possible explanation is that when bending
the back forward, the visibility of certain markers is impaired, leading to misclassifica-
tions of Alaska/EAWS. In fact, both ground-truth labels only coincided in 19 out of 32
cases (58%). Figure 8.11 presents the confusion matrix between manually determined
labels and those labels determined by Alaska/EAWS.
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Figure 8.9: Difference between 2D+RBF-SVM labelling and manual labelling.

Result Summary

In comparison to DAT1, the posture assessment algorithm performed worse on DAT2.
In particular, when employing the Alaska/EAWS labelling as ground truth, the classi-
fication accuracy was dramatically diminished. This can be partially explained by the
lack of marker visibilities in the ”bent forward” postures, leading to erroneous classifica-
tions by Alaska/EAWS. However, it was also observed that manual and Alaska/EAWS
labellings strongly diverged. In conclusion, the feature set created for posture assessment
was strongly tailored to the own understanding of the postures. Adapting the algorithm
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Figure 8.10: Difference between 2D+RBF-SVM labelling and Alaska/EAWS labelling.

to the Alaska/EAWS ground truth would require a fundamental re-design of the feature
extraction pipeline.
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Figure 8.11: Difference between manual labelling and Alaska/EAWS labelling.

8.4 Posture Optimisation

8.4.1 Comparison of Height-Adjustable Actuator and Robot Actuator
(DAT1)

With DAT1, the performance of the posture optimisation component was evaluated. First,
the workpiece pose search routine was analysed. Posture optimisations were run on all
frames of each video containing a human subject. Figure 8.12 shows selected frames con-
taining the predicted posture. The red human model visualises the original posture. The
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green human model denotes the posture when employing a height-adjustable actuator.
The cyan human model presents the resulting posture with a robot actuator.

Figure 8.12: Qualitative posture optimisation results.

Posture Distribution Before and After Optimisation

To obtain quantitative results, the distribution of posture labels before and after optimi-
sation was analysed. Specifically, the number of cases of a particular label that had been
transformed into another, was determined. Figure 8.13 describes the statistics.

In contrast to the stated expectations, the results suggested that the height-adjustable ac-
tuator led to more robust ergonomic results than the robot actuator. In particular, the
robot actuator did not manage to improve postures where the arm was raised. One in-
terpretation is that the posture optimisation problem formulated for the robot actuator is
more complex, resulting in problems with local minimum solutions. In the robot actuator
optimisation problem (see Eq. 6.27), the actuator configuration, p, had to be optimised,
which can be determined in a simpler way for the height-adjustable actuator. However,
additional analyses in this section (see Fig. 8.16) suggest that the better postures achieved
by the height-adjustable actuator can be caused by an anomaly case of the algorithm. The
optimisation of the height-adjustable actuator was trapped into a local minimum right at
the point of initialisation, which was defined as the ergonomically ideal posture. To sum
up, non-linearities from the kinematics of human model and actuator lead to a complex
optimisation problem with a high number of local minima in both cases. This problem can
be mitigated by a routine which outputs an initialisation depending on the posture be-
fore optimisation. Machine learning approaches could determine the mapping between
posture before optimisation and appropriate initial parameters from data.
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Figure 8.13: Distribution of postures before and after optimisation for height-adjustable
and robot actuator.

Difference in Working Direction

The motivation for using a robot actuator instead of a height-adjustable actuator was that
it would enable tilting of the workpiece. The assumption behind was that additional DoF
allowed better maintaining of the original working direction. Thus, the robot would bet-
ter enable the worker to perform the task at hand. As an indicator of whether the worker
could perform this task after optimisation, the difference between working direction and
workpiece orientation before and after adjustment was measured. In theory, the lower
this angle difference was, the better the worker could perform the task as the workplace
layout was more similar to the original.

The distribution of working direction angles before posture optimisation (original work-
ing direction) is shown in Fig. 8.14. The angle values roughly ranged from −250◦ to
0◦. Figure 8.15 outlines the mean absolute working direction difference as a function of
the original direction. Both graphs have a U-like shape indicating that the actuator algo-
rithms work best in the angle interval between roughly −150◦ and −70◦.

Contrary to the initial intuition, the graphs imply that the height-adjustable actuator bet-
ter maintains the original working direction in most cases. Only if the original working
direction is higher than −90◦, the robot actuator is a better choice. Angle values higher
than −90◦ occur when the subject has to access the workpiece from below. The only way
for a height-adjustable actuator to enable processing the workpiece from below is by rais-
ing the working height above the torso. However, this leads to postures where arms are
required to be located at shoulder level or even above head level, which are ruled out by
the algorithm due to unacceptable ergonomic costs. The robot actuator is able to slightly
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Figure 8.14: Distribution of working direction angles in DAT1 before posture optimisa-
tion.

better maintain the working direction difference through its ability to tilt the workpiece.
Nevertheless, the working direction maintenance still poses significant ergonomic costs
(see Fig. 8.13). Presumably, the superior performance of the height-adjustable actuator for
angle values below −90◦ is because of the more complex optimisation problems needing
to be solved for the robot actuator. Especially omitting the contact point objective helps
to reduce the difficulty of the optimisation.

Figure 8.15: Mean absolute difference of working directions as a function of the original
working direction value.



8 EVALUATION 131

Figure 8.16 provides a more in-depth insight into the error structure. It expresses the dis-
tribution of working direction angles before and after optimisation. Each working angle
combination is represented by one data point. Working direction angles before optimi-
sation are represented by the x-value. The point’s y-value denotes the corresponding
angle after optimisation. An algorithm perfectly maintains the working direction if all
of its data points are located along the visualised diagonal line. There is an anomaly
case where both algorithms, independently from the original direction, output a posture
with a working direction at around −100◦ (see region between dashed horizontal lines).
These working directions correspond to the initialisation parameters of the optimisation
routine. It is conjectured that the present implementation of the SQP algorithm from the
NLOpt library gets trapped into a local minimum near the initial parameters. Besides, the
figure suggests that the height-adjustable actuator hardly outputs configurations where
the optimised working direction is above −90◦.

Figure 8.16: Distribution of working direction values before and after optimisation. The
lower the transparency of the data points the higher the density.

Result Summary

The posture optimisation algorithm managed to find more ergonomic postures especially
for cases where the worker would need to bend forward (see Fig. 8.15). Despite hav-
ing fewer DoF, the algorithm for the height-adjustable actuator outperformed that for the
robot actuator in terms of working direction maintenance. For cases where the workpiece
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is located too high, the results are more controversial. The robot actuator with its tilting
ability had the potential to better support task accomplishment (see Fig. 8.15). However,
this benefit comes with significant ergonomic costs (see Fig. 8.13). In general, both al-
gorithms struggle with the problem that there is an undesired local minimum near the
initial parameters, which becomes the outputted solution (see Fig. 8.16).

8.4.2 Comparison of TET and DTET Control Strategies (DAT3)

The performance of the developed control strategies was evaluated on dataset DAT3.
Simulation experiments were employed to determine the performance of each control
strategy and its parameters. Simulations have the advantage that they enable extensive
testing with a variety of parameter sets with reasonable time effort. Furthermore, the
ergonomic score and the overall ADAP can be recorded without additional effort. On
the other hand, a simulation does not replace tests with subjects after development of the
workplace.

Simulation Environment

The WPC components (control strategy, posture assessment and workpiece pose search)
were integrated into a testbench (see Fig. 8.17 for overview). Human behaviour was ap-
proximated by a component that attempts to predict the worker’s posture for the current
task depending on given actuator parameters. The newly predicted posture triggers a
loop, resulting in an actuator parameter update. Besides this, the EAWS score and the
ADAP are recorded. The following paragraphs briefly describe each element of the test-
bench:

Consider the sequence of postures adopted when the actuator parameter remains at
the initial height. These postures are referred to as original postures, representing the
worker’s behaviour when there was no adjustment at all. From an original posture in a
frame, the contact point, xContact (see Fig. 6.9 for visualisation), was established. Having
computed the current contact point, xContact(t), for frame, t, the component passes the
original posture parameters, qorig(t) and xContact(t), to the posture prediction component.

The posture prediction component simulates human behaviour by predicting the posture
angles, q

′
(t), from the current actuator parameter, p

′
(t), and the original posture param-

eters, qorig(t) and xContact(t). The approach used is similar to that described in Sec. 6.3. In
the case of the height-adjustable workplace, the predicted body angles are the outcome
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Figure 8.17: Interaction between the testbench components.

of solving the optimisation problem akin to Eq. 6.19:

q
′
= arg min

q

∥q − qideal∥2

+ (xFoot,x − xCentroid,x)
2

+ (∑
j

q − ∑
j

qBe f ore,j)
2

subject to

qmin ≤ q ≤ qmax

hmin ≤ xPlat f orm(p) + xHand(q)− xHand(qBe f ore) ≤ hmax

xPlat f orm(p) + xContact − ϵ ≤ xHand(q) ≤ xPlat f orm(p) + xContact + ϵ

(8.3)

The posture prediction problem formulation, Eq. 8.3, adds an additional constraint to the
original problem (marked in red) by forcing the position of the hand, xHand(q), to remain
in a neighbourhood of the computed contact point, xcontact . This ensures that the worker
will opt for a posture that enables processing the same contact point.

The posture assessment component is identical to that described in Chapter 5. The pos-
ture classifier uses the joint angle features, q

′
(t), from the posture prediction component.

The posture assessment component outputs the temporal EAWS SEAWS(t) and the cur-
rently classified sequence of postures, P(t).
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The posture optimisation component was equal to that from Sec. 6.5. The predicted pos-
ture, q

′
, was set as the input posture and the input actuator parameters were obtained

from the last control strategy step, p
′
(t − 1). The predicted posture of the posture opti-

misation component was discarded as it did not take the contact point of the next frame
t + 1 into consideration. Rather, the predicted posture, q

′
(t), was used for the next loop.

Finally, from the temporal EAWS score SEAWS(t) and the posture sequence, P(t), the con-
trol strategy pursued whether to utilise the proposed actuator adjustment from the pos-
ture optimisation component or not. It outputs the signal, dadj.

Test Setup

The control strategies were evaluated in combination with a height-adjustable actuator.
Based on the fact that the control strategy did not depend on actual actuator configura-
tions, but only on the ergonomic scores, experiments were strictly conducted with the
height-adjustable actuator without losing generality. Two configurations of the actuator
were simulated. They differed in terms of adjustable height ranges. A small range ac-
tuator was able to set the platform height between 50cm − 150cm, while a hypothetical
large range actuator was set to implement platform heights between 0cm − 200cm. The
actuators do not correspond to real world devices. Rather, the purpose of these experi-
ments was to theoretically investigate influence of the range on the quality of the posture
optimisation.

The TET and DTET control strategies were appraised on each of the DAT3 processes,
recording the EAWS score as well as the ADAP in cm. The experimental setup assumed a
50 percentile human according to DIN 33402-2 [168]. The actuator height at the beginning
of the simulation was set to 80cm.

The experiments were carried out adhering to different control strategy parameters. For
the TET strategy, T was increased from 20 to 90 points in 10 point steps. For the DTET
strategy, tTotal varied from 20% − 100% of the total process time. In each of the DTET
experiments, the parameters TStart = 20 and TEnd = 100 were assumed.

Overall Control Strategy Performance

For each combination of dataset, posture length (short and long) and standard actuator
configuration (none, mean height, median height), the final ADAP and EAWS score were
determined. In total, 180 data points (10 posture sequences x 18 parameter and standard
actuator configuration combinations) were obtained. Out of these data points, the pareto
front was computed by removing the dominated points. Dominated data points are cases
where there was another data point with a lower EAWS as well as ADAP. The number
of non-dominated data points belonging to the TET and DTET strategy were then deter-
mined. In all cases except one, the TET strategy had a higher contribution to the pareto
front than the DTET strategy. Table 8.3 compared the numbers of non-dominated points
between the TET and different variants of DTET strategies.
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Table 8.3: Number of non-dominated TET and DTET data points for various posture
length and standard height strategies.

Posture length standard actuator configuration TET DTET
Short none 37 32
Short mean height 36 34
Short median height 34 38
Long none 37 32
Long mean height 54 36
Long median height 48 32

This result does not necessarily mean that the DTET strategy is inferior. When looking
at the ADAP-EAWS graph portraying the non-dominated points in all experiments (see
Fig. 8.18), the regions with low ADAP (< 100cm) or high ADAP (> 1500cm) appear to be
dominated by the TET strategy. However, in the central ADAP regions, where an accept-
able tradeoff between EAWS and ADAP (250cm − 1000cm) lies, there are mostly DTET
data points. In other words, if the application requires a high amount of intervention to
keep the ergonomics score as low as possible or if the intervention should be kept at a
minimum level, then the TET strategy is recommended. The DTET strategy, meanwhile,
is better for achieving compromised settings in between.

Figure 8.18: Distribution of non-dominated points.
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Influence of Control Strategy Parameters

The TET strategy clearly poses a trade-off between final EAWS score and ADAP based
on the temporal EAWS threshold parameter, T (see Fig. E.1a in the Appendix). The more
often the actuator was adjusted, the lower and thus better the EAWS score was. This ob-
servation agrees with the intention of the control strategy described in Sec. 6.8.1. In tasks
where appropriate working heights significantly vary over time, such as in the DAT3
dataset, adjusting the actuator for each new posture enables the worker to more often
adopt ergonomically favourable postures. Hence, frequent adjustments lead to a low fi-
nal EAWS score. However, there were exceptions - in a number of cases, a worse EAWS
score was achieved despite a lower T. The problem lies in the calculation scheme of the
EAWS (see Appendix A for a detailed explanation). Whereas the relationship between
ADAP and EAWS can be clearly observed for the TET strategy, this tendency is not as
present for the DTET strategy (see Fig. E.1b of the Appendix). The relationship is more
readily apparent when applied to the short posture processes versus the long posture se-
quences. It should be emphasised that the posture sequence after tTotal heavily influences
the outcome of the experiment. When the postures with high load are present after tEnd,
they cannot be treated, leading to a significant EAWS score increase.

Influence of Actuator Range

In general, the actuator range has an impact on the achievable EAWS when the control
strategy encourages frequent adjustments (see Fig. E.2 of the Appendix). With the TET
strategy, especially the lower temporal EAWS thresholds profit from a higher range. The
DTET strategy, contrastingly, does not profit as well from a higher range as the number
of adjustments is reduced. The larger the range of possible actuator configurations, the
higher the chance of achieving superior ergonomic results. Yet, especially when com-
monly used, the ADAP increases.

Comparison of Different Posture Durations

In general, both control strategies accomplished similar results independent from posture
duration. The only difference was that the ADAP was significantly higher for short pos-
tures when the processes endured the same amount of time. Naturally, this came from the
need for more frequent adjustment of the workplace. A representative result is depicted
in Fig. E.3 of the Appendix.

Result Summary

To sum up, a TET control strategy with low T is advised when the goal is to minimise
the EAWS score. Alternatively, the TET strategy can be applied to minimising ADAP by
instituting a high T value. However, the relationship between T and the EAWS score
are not perfectly monotonic because of the computation scheme of the EAWS, which pe-
nalises a high share of medium-load postures more than a low share of high-load pos-
tures. When searching for compromises between EAWS and ADAP, the DTET strategy is
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a better choice than the TET strategy. In addition to the control strategy, one of the most
influential factors on the EAWS is the actuator range.

8.5 Conclusions

This chapter has experimentally evaluated the components of the WPC. Three datasets
to assess each relevant element have been presented. The runtime analysis has demon-
strated that even on a standard laptop, an evaluation loop can be realised in less than
300ms, which is sufficient for the stated application case.

The posture assessment experiments compared the various joint localisation approaches
and their influence on the assessment results. As ground truth, manual assessments have
been compiled. The results uncovered that features from 2D joint localisation in com-
bination with a non-linear classifier were most suited for this application. 2D features
even surpass the standard localisation implementation for the Kinect [169]. In compar-
ison to the commercial software Alaska/EAWS, which uses the posture data from a Vi-
con system, the developed algorithm significantly disagrees in the posture classification.
However, the Alaska/EAWS results also differ from the manual posture labellings. In
general, the quality of the ground truth data turns out to be an issue. Due to the errors
produced by the motion capture system, it cannot be guaranteed that the Alaska/EAWS
labellings are completely correct. The manual labelling can be distorted by the fact that
the labeller was not an expert. The only way to produce high quality ground truth data
is having one or multiple trained EAWS practitioners, which were not available during
this project. The scientific risks stated in Sec. 5.2 have turned out to be mostly resolvable.
Only the question whether joint angles suffice as posture classification feature cannot be
satisfactorily answered, as seen by the contradictory results between manual assessment
and Alaska/EAWS assessments.

Experiments on the posture optimisation component demonstrated that the developed al-
gorithm was able to transform most unfavourable postures into those that would be more
favourable, especially when the workpiece was to be accessed from above. Contrary to
stated expectations, the robot actuator algorithm fared worse with respect to ergonomics
as well as the maintenance of the working direction. However, additional degrees of
freedom can simplify accomplishing the original task when the object has to be accessed
from below. As stated in Sec. 6.2.1 and 6.2.2, local minima turned out to be an unsolved
problem, which impede the quality of the adjustments.

Finally, the dynamic behaviour of the WPC was analysed with different control strate-
gies. As it is tedious to evaluate multiple setups using human subjects, a testbench was
proposed to conduct evaluations through simulation. These simulated results revealed
that the DTET control strategy is the method of choice when searching for a compromise
between ergonomics and intervention frequency. The TET strategy is appropriate when
ergonomics has an essential role. Furthermore, the influence of the strategy parameters,
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average posture durations and actuator ranges on the results was discussed. In conclu-
sion, the scientific risk described in Sec. 6.2.3 can be partly discounted, as the tested case
only considers a cyclic task.
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9 Conclusions and Outlook

This chapter reviews the work of this thesis and outlines the achievements as well as
shortcomings. First, the golden thread of this thesis is summarised. The sections go
over what has been accomplished and where the limits were. Thereafter, this chapter
fast-forwards in an attempt to predict the impact this work could have on other areas
of research. In particular, open questions that can potentially be of material for future
research projects, are covered.

9.1 Summary

The starting point of this thesis was the prevalent problem of WMSDs at industrial work-
places, one of the most harmful work-related disorders. WMSDs heavily affect employees
as well as employers. They are the main cause for worker absenteeism and lead to costs at
the magnitude of hundreds of billions of Euros. Research has shown that one major rea-
son for such prevalence of WMSDs is poor workplace layout design, forcing the worker
to adopt awkward postures to accomplish the task at hand.

As a consequence of its significance, there has been extensive work on reducing the ef-
fect of WMSDs. A literature research on existing solutions has revealed a fundamental
problem - either the solutions proposed are affordable but ineffective or they are effec-
tive albeit costly. Therefore, the access to effective WMSD prevention is restricted. This
dilemma is called the ”effectiveness-flexibility trade-off”.

To extend the state of the art of WMSD prevention, the goal of this thesis was to bridge
this trade-off. The hypothesis of this work was that it is possible to develop an intelligent
system that automatically performs the costly work of specialised ergonomists in a few
seconds, resulting in an effective as well as flexible solution.

The WPC, a novel type of equipment to eliminate, or at least reduce, postural load at
work, has been presented. The core idea is to automate the tasks of posture assessment
and workplace layout planning and optimise their runtime such that the system is able
to analyse the situation and produce a solution within a few seconds. A workflow has
been proposed for the WPC system that ensures a safe and efficient interaction with the
worker.
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Afterwards, the algorithmic manifestations of each component have been described. To
realise automated posture assessment, two joint localisation algorithms based on the gen-
erative approach were developed. A feasibility analysis of potential image sensors led to
the Microsoft Kinect v1 as the input device of choice. The localisation algorithms use
Kinect depth images as input and compute the posture parameters. To speed up the
parameter estimation, algorithmic modifications as well as parallel computing, were ap-
plied. Classifiers were trained to predict the worker’s posture from the extracted param-
eters. Based on the sequence of occurring postures, a simplified version of the EAWS was
computed.

To attain the posture optimisation component, an approach was developed that trans-
forms the layout design task into a non-linear optimisation problem solvable by the SQP
algorithm. Alternative problem formulations were discussed and tailored to operate on
a height-adjustable actuator as well as a robot actuator. Furthermore, the statement was
made that frequently adjusting the workplace, although ergonomically sound, results
in unacceptably frequent interruptions of the workflow. Therefore, a rule-based control
strategy has been proposed to reduce the postural load and simultaneously keep the ad-
justment activity at a minimum. After elaborating upon the concepts behind each compo-
nent, the own prototypical implementation of the WPC has been presented. Special focus
has been put on the design of a software architecture to promote clarity, re-usability and
extensibility. The system was designed to be reconfigurable for future application cases.

Finally, the effectiveness of the algorithms under the hood of the WPC was evaluated
on video datasets as well as in simulations. Experiments were performed and discussed
on the aspects system runtime, posture assessment accuracy and posture optimisation
effectiveness to discern whether the original goals of this thesis were reached.

9.2 Achievements of this Thesis

A novel way to prevent awkward postures at work has been presented. In contrast to
approaches presented to date, the developed solution is able to solve the effectiveness-
flexibility trade-off using intelligent sensors, motion analysis algorithms and actuators.
A workflow of the system has been proposed that would make certain there is safety in
communication between the worker and the system. The system is capable of automat-
ically performing ergonomic assessments and provides immediate feedback. Moreover,
an image-based method to perform ergonomic posture assessments has been developed.
In contrast to available solutions, it does not require bulky motion capture equipment or
inertial sensor systems to be worn. Furthermore, it is able to operate with a single depth
camera. Also, a theoretical framework has been devised to compute a workplace adjust-
ment that would permit the worker to carry out tasks in a more health-preserving manner.
This framework was specified for a height-adjustable platform and a robot manipulator.
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The evaluations showed that the joint localisation algorithm outperformed the commer-
cially available software in the case of ergonomic assessment using the EAWS. Experi-
ments on posture optimisation demonstrated that the algorithms find a layout that makes
it possible to accomplish the original task in an ergonomically sound manner. In order to
arrive at what was achieved, the research questions posed in Chapter 3 are reviewed and
answers derived from the research outcome are provided:

• RQ1: How does an in-process system look like which eliminates or reduces the
exposure caused by awkward posture shortly after occurrence?

• RQ2: How can an automated image-based ergonomics assessment be realised?

• RQ3: How can an automated and adaptive in-process workplace design be realised
on various types of actuators?

RQ1: How does an in-process system look like which eliminates or reduces the expo-
sure caused by awkward posture shortly after occurrence?

A system which meets these requirements has to fulfil two properties: First, the system
has to be able to automatically identify ergonomically critical situations. This can be
achieved through applying ergonomic assessment tools on human models obtained by a
joint localisation algorithm. Algorithmic optimisations and parallel computing foster the
reduction of runtime such that immediate feedback can be provided. Second, such a sys-
tem must be able to automatically manipulate the workplace layout. One way to achieve
this is by attaching the workpiece to a holding actuator, such as a height-adjustable plat-
form or a robot manipulator. The task of establishing the appropriate actuator parameters
can be modelled as a non-linear optimisation problem, which can then be solved by the
SQP algorithm.

When the human being interacts with the system, safety is a fundamental necessity. A
safe interaction can be achieved via various mechanisms. For one, actuator motions de-
mand a human confirmation in order to be executed. This guarantees that the worker
is aware of the moving actuator. Next, reducing the motion space or the degrees of free-
dom of the actuator can avoid dangerous configurations. Finally, reducing actuator speed
makes certain that even in contact scenarios, the risk of injury is significantly diminished.
Additionally, speed reduction allows the human to better react to the actuator motion.

RQ2: How can an automated image-based ergonomics assessment be realised?

Automated ergonomic assessments require that the system automatically classifies pos-
tures taking place in a process. Joint angles are suitable features to train the classifier on
when it can be ensured that the localisation of the joints in the image is robust. There-
fore, observing the human from the side perspective and applying 2D joint localisation
algorithms supply a sufficient level of granularity while being more robust than 3D ap-
proaches. Generative methods have shown to be suitable and practical for joint localisa-
tion - they do not require training data.
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RQ3: How can an automated and adaptive in-process workplace design be realised on
various types of actuators?

Workplace design is comprised of identifying a set of feasible design options and opting
for the most appropriate one. This process can be modelled by transforming the design
task into a non-linear optimisation problem, of which the solution is the new workplace
layout adjustment. In contrast to a brute-force search, optimisation algorithms can be
applied, leading to a significantly lower runtime. Different types of actuators need dis-
crete modelling of the optimisation problem terms. Although the optimisation problem
formulated varies, the same non-linear solver can be applied.

9.3 Limitations of this Thesis

Answers have been supplied to the self-given research questions. However, a claim can-
not be made for the completeness of the developed solution. Although essentially bridg-
ing the effectiveness-flexibility trade-off, the system necessitates strict technical and non-
technical conditions to operate. Additionally, open questions arose during the course of
this work. This section highlights the questions and problems that could not be solved in
this thesis.

9.3.1 Focus on Posture

This work focused on preventing posture-related WMSDs. However, the risk factors,
repetition and force exertion, have a similar influence on the worker’s health [20]. Com-
prehensive WMSD prevention requires dealing with all risk factors. Addressing the other
two was not possible as there were several technical problems beyond the scope of this
thesis. Firstly, measuring all types of exposure requires further sensor modalities. Au-
tomatically estimating the force from image sensors has not been addressed in entirety
as of yet. Secondly, different intervention schemes than the proposed method are neces-
sary. While an actuator can reduce the force exerted by the worker, there is no intuitive
answer regarding how it can decrease the physical load caused by monotonous work and
repetition. Besides, it cannot be guaranteed that the developed solution will reduce pos-
tural load, as the ergonomic assessment tools it bases on are still a matter of discussion
in the Human Factors area. The scientific risk described in Sec. 4.2.1 remains relevant.
Nevertheless, the a solution has to be submitted by biomechanists and ergonomists.

9.3.2 3D Joint Localisation Algorithms

The realisation of the WPC is tailored to a specific camera setup. The subject is required
to be captured from the side perspective, not changing the distance to the camera. The
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weakest point is the joint localisation, which becomes highly challenging when required
to operate in 3D. In contrast to 2D approaches, more parameters have to be simultane-
ously estimated. This makes the task more computationally expensive as well as harder
to solve because of a higher amount of local minima. 3D real-time joint localisation algo-
rithms have recently started to yield promising results (see Taylor et al. [121]). They have
not been integrated, yet, as their implementation is challenging. Most algorithms from
the new generation apply elaborated optimisation schemes and require a high amount
of training data. Nevertheless, it can be expected that there will be available software
libraries in the future conducive to this end.

9.3.3 Mathematical Modelling of Human Behaviour

A theoretical framework to predict human behaviour has been put forth. Although fea-
turing promising results, this approach has two weaknesses: 1) each extension of the
model requires manually formulating and adding new terms to the optimisation prob-
lem. The achievable level of complexity is limited based on the necessity to hand-craft
the functional terms. A potential solution can be incorporating machine-learning meth-
ods to model complex features using a set of examples; 2) there is no theoretical guarantee
concerning the quality of the solution because of the non-linear nature of the problem. A
means around this could be transforming the non-linear optimisation problem into a lin-
ear or a convex one, where it can be theoretically guaranteed that the solution has a global
optimum; and 3) the practicability of the approach used remains unevaluated. User stud-
ies are needed.

9.3.4 Financial Amortisation

This thesis has identified a problem and has come up with a solution from an academic
perspective. The decisions made are mostly based on academic literature and studies.
However, when transferring such a technology into a tangible product employed in man-
ufacturing lines all over the world, economic aspects must be considered. The economic
challenge here lies in persuading corporate decision makers that the benefits gained from
such a technology surpass the costs [199]. Costs and benefits can be monetary as well as
non-monetary. An example of a non-monetary benefit is employee satisfaction. Unfortu-
nately, non-monetary costs and benefits are hard to quantify and compare with those that
are monetary. Whereas costs, such as capital investment and maintenance, can be imme-
diately noticed, the benefits are mostly non-monetary and transmit their effects after a
certain period of time, e.g., around one year (according to Goggins et al. [5]). To make
matters worse, first experimental results described in Sec. 8.4 imply that expensive robot
actuators using the current approach do not pay off. The risk stated in Sec. 4.2.2 could not
be fully resolved. Falck et al. [18] report that a way out of this dilemma requires conduct-
ing cost-benefit analyses. Another way to deal with this problem could be by introducing
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governmental incentives for prevention measurements, such as lower taxes or subsidies
for such technologies in order to create a quantifiable short-term benefits.

9.3.5 Ethical, Social, Legal implications (ELSI)

The WPC is a technology that requires continuous camera-based monitoring of the
worker. This raises various questions concerning worker acceptance and legal implica-
tions [199]. As laws differ from country to country, this discussion is based on the case of
Germany. For the WPC, one of the most relevant laws is stated in ”§6b Bundesdaten-
schutzgesetz (BDSG)”, which deals with general conditions for optical and electronic
monitoring in public spaces. In brief, it states the following:

• First of all, the monitoring space has to be marked such that workers are aware of
being observed by the system.

• Furthermore, if a worker can be identified by the data acquired, they have to be
informed.

• When the data is no longer needed, it has to be immediately deleted.

• Finally, monitoring is only allowed when interests worth being protected
(”schutzwürdige Interessen”) do not dominate.

Technical solutions can help to realise the first three conditions. For instance, RGB images,
which allow unambiguously identifying a worker, are not required by the WPC. Thus,
only depth and silhouette images can be used for further processing. After extracting the
joint angles, even all image data can be discarded. The system has to make certain that
the image data does not leak outside. The final stated condition can only be achieved
in a dialogue among stakeholders (management, employee board and workforce), as the
interests worth being protected, the privacy threats and the benefits of the system have
to be specified and gauged against one another. This discussion is most certainly outside
the scope of this thesis.

9.4 Outlook

The WPC has been a specialised area of research. However, the techniques developed
can benefit various other fields. Posture-related ergonomics is also a vital factor in other
applications of human-robot interaction. In hand-over scenarios, it has to be guaranteed
that the human can hand and receive an object in an ergonomically friendly posture.
An ergonomically favourable posture is also important when humans and robots handle
objects in cooperation. The advantage of the optimisation-based framework is that al-
ternative goals can be formulated without changing the algorithm. For example, robots
can facilitate the worker to apply as much force as possible or move as little as necessary
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between work steps. The key value is that goals can vary while the algorithm to find the
robot action remains the same.

Systems to assist ergonomic education have already been presented in Vignais et al. [9]
or Lins et al. [83]. However, these solutions only notify the user that a posture is not ideal
without proposing an alternative solution. The posture optimisation algorithm is able to
propose to work more ergonomically, even if there is no actuator to adjust the workplace.
By paying attention to the feedback, the user can learn proper working postures.

Finally, there is potential of the developed algorithms enhancing the manual workplace
design process. The posture assessment component is a cost-effective way to quickly
record data to be transferred into digital factory tools. The posture optimisation algo-
rithm makes possible a digital factory tool automatically proposing promising designs
that decrease the effort of workplace designers evaluating all possible options. Overall,
there are prospective opportunities for this work to influence the fields of human-robot
interaction as well as ergonomics.
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A Posture Assessment using EAWS

The static posture section of the EAWS [34] is depicted in Fig. A.1.

The postures defined in the ergonomic assessment tools, RULA and EAWS, are charac-
terised by the angle intervals of particular joints. Table A.1 lists the relevant angle inter-
vals. A posture is identified by the angle intervals its joint angle values belong to. As an
example, a ”bent forward” posture can be independently classified from the lower limb
posture (standing, sitting or kneeling) by a back angle of 20◦− 60◦. The 3D trunk postures
are explained later in this section (see Figure A.4).

Table A.1: Angle intervals of posture classes (in degrees) for joints in EAWS and REBA.
Part of the body Class 1 Class 2 Class 3 Class 4 Min angle αmin ∆min (cm)

EAWS
Back 0 − 20 20 − 60 > 60 20 18.8

Trunk (2D) 0 1 − 20 20 − 60 > 60 20 18.8
Trunk (3D) < 10 10 − 15 15 − 25 25 − 30 5 4.8

REBA
Upper arm 0 − 20 20 − 45 45 − 90 20 10
Lower arm 0 − 60 60 − 100 > 100 40 19

Neck 0 − 10 10 − 20 > 20 10 10
Trunk 0 1 − 20 20 − 60 > 60 20 18.8
Legs 0 − 20 20 − 60 > 60 20 10.6

Having identified the postures from the angle intervals in each frame, the EAWS score
can be computed. Figure A.2 outlines an example how to calculate an ergonomic score for
2D postures using the EAWS. The occurring postures and their time share within a shift
have to be determined. Each posture is then assigned an intemediate score depending on
its proportion of total assessment time. In the current example, the subject bends their
back without suitable support half of the time and raises their arms to shoulder level the
other half. The resulting scores are 23 and 38, respectively. The final score (61 points)
is calculated by summing up all intermediate scores. In order to classify a score value
into one of the three risk classes, a thresholding scheme is applied. All scores below 25
points are considered as low risk processes where no action is needed. Scores from 25 to
50 points indicate a possible risk and recommend measures. Finally, if the score exceeds
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50 points, the process is classified as high risk, which definitely requires action. Hence,
the current example case is classified as high risk task.

Normally, the higher the EAWS, the higher the share of high-load postures. However,
there are exceptions - an exemplary error case is depicted in Fig. A.3. Assume that the
worker periodically performs a task where they have to adopt the posture, ”elbow at
shoulder level”, for the majority of the time and raise their hands above their head for
just a short time. The EAWS computation results of this exemplary posture sequence is
written in red. Through workplace design techniques, it is possible to convert a part of
the ”hands above head” share into a ”elbow at shoulder level” posture, which normally
has a lower physical load. The EAWS results after improvements are depicted in green.
As can be seen, the EAWS penalises higher proportions of a medium-load posture more
than smaller proportions of a high-load posture. Hence, accepting a small occurrence
of the posture ”hands above head” is preferable to having a larger share of the posture,
”elbow at shoulder level”.

In addition to an assessment of 2D postures, the EAWS features a tool to assess asymme-
try effects and 3D postures (see Fig. A.4). The load points caused by asymmetry effects
are dependent on the intensity of the effect (angular value) and the duration (fraction of
time spent in the posture). In total, asymmetry effects can lead to up to 30 EAWS posture
points.



A POSTURE ASSESSMENT USING EAWS 148

Figure A.1: Posture section of the EAWS.
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Figure A.2: Example of how to calculate an ergonomic risk score.
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Figure A.3: Exemplary case where a higher EAWS score does not represent a higher share
of high-load postures.

Figure A.4: Assymmetry effects (3D postures) defined in the EAWS.
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B DIN 33402: Mean Lengths of Body
Parts in cm

Table B.1: Lengths of parts of the body (fifth percentile) according DIN 33402.
Part of the body Male Female Min length

Upper arm 33 29 29
Lower arm 32.5 29.5 29.5

Trunk 58.5 55 55
Upper Leg 33 31 31
Lower Leg 43 40 40
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C The SQP Framework

Given a non-linear program :

min
x

f (x)

subject to

gi(x) = 0

hj(x) ≤ 0

(C.1)

where f , gi and hj are possibly non-linear functions. The constraints, gi and hj, are com-
bined into the vector-valued functions, g and h. To reformulate a constrained problem
into a non-constrained problem, the Lagrangian of problem C.1 is introduced as:

L(x, λ, σ) = f (x)− λTg(x)− σTh(x) (C.2)

where λ and σ are Lagrange multipliers. In iteration, k, with the current solution, xk, the
SQP algorithm in its basic form approximates problem C.1 with the following quadratic
optimisation problem or quadratic program (QP):

min
d

f (xk)−∇ f (xk)
Td +

1
2

dT Hess f (xk)d

subject to

g(xk) +∇g(xk)
Td = 0

h(xk) +∇h(xk)
Td ≤ 0

(C.3)

where d denotes the search direction for the new iteration, xk+1, ∇ f (xk), the gradient of f
at xk and Hess f (xk), the Hessian matrix of f at xk. Problem C.3 is the result of a second-
order Taylor approximation of the objective, f , and a first-order approximation of the
constraints, g and h. The QP C.3 has to be solved to attain the search direction, d. Given
the rewritten QP:

d∗ = min
d

1
2

dTQd + dTc

subject to

Ad ≤ b

(C.4)

with its Lagrangian

L(d, λ, σ) =
1
2

dTQd + dTc − λ(Ad − b) (C.5)
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To minimise the Lagrangian, its partial derivatives, ∇d and ∇λ, are set to zero:

∇dL = Qd + c + ATd = 0

∇λL = Ad + b = 0
(C.6)

Rewriting eq. C.6 yields the system of linear equations:[
Q AT

A 0

] [
d
λ

]
=

[
−c
b

]
(C.7)

Having determined the search direction, d, line search methods [193] can be employed to
find the step size, α. Afterwards, the current iteration is updated with:

xk+1 = xk + αd (C.8)

The final solution is reached when xk converges. The original non-linear program C.1
possibly contains multiple local minima. Which of the minima the algorithm arrives at
depends on the implementation of the framework used and on the initialisation, x0.
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D Implementation Details

D.0.1 Libraries and Tools

The demonstrator system was programmed in C++ to meet the performance require-
ments. Moreover, the external libraries for the WPC software necessitated a C++ inter-
face. The code was implemented on a Windows 10 (Microsoft Corporation, Redmond,
WA, USA) system, however, porting the software to other operating systems is possible
as platform-independent code and libraries were employed. In Windows, the Visual Stu-
dio 12 (Microsoft Corporation, Redmond, WA, USA) compiler was used. Similarly, the
g++ compiler could be applied in Linux.

CMake

An important tool to achieve platform independence is CMake. CMake sets up the devel-
opment environment and automatically configures paths to development tools and de-
pendent libraries. The code uses CMake configuration files (dubbed CMakeLists.txt) to
find the required libraries and development tools. CMake then utilises this information to
create system-dependent development environments. Hence, only abstract configuration
commands had to be written whereas the tool formulated the system specific commands.

OpenCV

OpenCV (Open Source Computer Vision Library) [200] is a library offering runtime-
optimised implementations of computer vision and machine learning algorithms. Along
with the algorithms, OpenCV serves up efficient data structures for images and matrices.
The ”cv::Mat” data structure was extensively used to exchange data between the algo-
rithms. Moreover, the OpenCV morphological operator implementations were employed
in the pre-processing step of the joint localisation algorithm.

OpenNI 2

To acquire images from the Kinect sensor, OpenNI2 [170], an open-source library to stan-
dardise an interface for natural user interfaces, was made use of. Apart from routines to
acquire the image data, OpenNI2 features the proprietary middleware NiTE2 [169] to per-
form joint localisation. Note that only the person segmentation routine from the NiTE2
middleware was leveraged.
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NLOpt

A SQP optimiser from the library, NLOpt [201, 202], was applied to solve the posture
optimisation problem. Apart from the SQP implementation, NLOpt is endowed with a
variety of other optimisation algorithms for various sorts of problems.

Doxygen

Doxygen was used for creating the API documentations. Doxygen enabled directly in-
corporating descriptions of each function into the code and acted as a tool to create class
diagrams and header file descriptions from the source code.

Googletest

Exemplary unit tests were implemented in order to provide developers additional docu-
mentation and an aid when altering the code. Googletest (Google Inc., Mountain View,
CA, USA) was the test framework used.

D.0.2 Division of Components into Packages

A package is a file directory containing the source, binaries, dependent libraries and test
data. A user can integrate packages into their own code with CMake. The package con-
cept can be applied in arbitrary types of projects where an exchange of different technol-
ogy modules is desired.

In order to minimise the possibility that the same code was present in different packages,
a packages has the ability to depend on one another. A package has a standardised di-
rectory structure where each subdirectory serves a defined purpose. Hence, a user that
must use an unseen package knows where to start. Furthermore, the directory structure
convention also acts as a specification for how to create new packages. A template pack-
age was incorporated such that creators of new packages can use it as a basis. In the
following, the directories with their functions are listed:

• build: The build folder stores intermediate files created through the compilation
process. Hence, the other folders are not polluted with temporary files.

• doc: The doc folder contains a short package documentation and API documenta-
tion created with Doxygen.

• ext: The ext folder features binaries of external libraries the package depends on
along with test datasets.

• install: After compilation, the binaries, the interface definitions, dependent libraries
from the ext folder and the test data are automatically copied into the install folder.
This folder houses the deployable software.
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• src: The src folder is where the source code is found. This includes files for unit tests
located in the sub-folder, ”test”.

In addition to these folders, each package has configuration scripts based on CMake.
These scripts configure compilers depending on the operating system and the compiler
version used. Additionally, the scripts initiate copy operations of the built binaries and
test data into the install folder. When further packages are needed, the configuration posts
a request to the user to input their location. Furthermore, unit tests were implemented.
The tests serve as an additional documentation by providing examples of how to use the
API. Further, a user can monitor the feature extension process by testing the code after
each feature is added. When the user introduces a bug into the existing code, particular
tests are expected to fail. The testing concept requires that the user who extends the
package also writes tests for the new features.

D.0.3 Performance Optimisations through Parallel Computing

For the purposes of achieving immediate feedback from the WPC algorithms, all compo-
nents had to efficiently process their inputs. This turned out to be especially challenging
for the joint localisation algorithms. Generative localisation requires creating and eval-
uating hundreds of candidate solutions in each frame. Fortunately, these operations are
similar and only vary with respect to the data they are applied to. This class of problems
can be well parallelised with single-instruction multiple data (SIMD) processors. Specifi-
cally, parallelisation techniques were utilised in two cases:

Multi-Core Programming using OpenMP

In the first case, the candidate search of the 2D joint localisation algorithm was paral-
lelised using the OpenMP API [203]. OpenMP possesses functions for parallel processing
on multiple processor architectures. The threads communicate across shared memory.
One main drawback of OpenMP is that the communication overhead between the threads
is time-intensive. This often results in worsened performance of the multi-threaded ver-
sion in comparison to the single-threaded version. It is advised to a perform a large par-
tition of work rather than multiple small partitions within the threads. In the A* search
routine, the first level of the search tree was divided into separate search trees, which were
then processed in parallel by each thread (see Figure D.1). Afterwards, the solution with
the lowest cost among each tree was computed by a single core. Starting the threads in an
early phase of the search supported a speed-up of around three for an angular resolution
of 10 samples with each joint.

GPU Parallelisation using the Nvidia CUDA Framework

In the second application case, the cost function for the 3D joint localisation was paral-
lelised with the CUDA framework [204] (Nvidia Corp., Santa Clara, CA, USA). Comput-
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Figure D.1: Parallelisation of the tree search. One CPU core processes the green nodes
while the other processes the gray nodes.

ing the cost function commences with the generation of the artificial depth image through
ray-casting. For each ray, the collision point has to be computed by solving Eq. 5.12.
Based on the fact that the computation of each ray is comprised of a sequence of simple
operations, this solving step was parallelised on GPU hardware. In comparison to the
CPU, the GPU consisted of simpler cores with low computational capacity in their own
right. However, their amount was around two to three magnitudes higher and creating
threads for each processing unit took significantly less time than on a CPU core. Still,
there were two bottlenecks:

The first bottleneck was data transfer overhead. As the data was processed on the GPU,
it had to be transferred to the GPU memory and back. Even though the GPU bandwidth,
with hundreds of gigabytes per second, was sufficiently high, a call of the transfer routine
adds overhead and latency, which surpasses the latency induced by the transfer. There-
fore, data was to be transferred using as few partitions as possible. The second issue
was the communication between the CUDA threads. Whereas the ray-object intersection
computation was able to be performed independently for each thread, accumulating the
values into a mean value required synchronisation between threads. The accumulation
operation is called reduce operation, which is critical because multiple threads access the
same memory address block. As one thread needs to wait for the intermediate result of
the other, the algorithm cannot profit as strongly from the parallel processing as it does in
the intersection computation step. Optimised reduce routines from CUDA’s standard li-
brary, thrust [205] (Nvidia Corp., Santa Clara, CA, USA), were used. With parallelisation
on GPU, the computation times of the 3D joint localisation algorithm could be decreased
from a few minutes on a CPU to a few seconds per image. Although the GPU had nearly
hundreds of cores, the speed-up was roughly 50 times based on the costly data transfer
and reduce operations.
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E Supplementary Experimental Results

(a) TET (T)

(b) DTET (tTotal)

Figure E.1: Influence of strategy parameters on EAWS and ADAP.
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(a) Short actuator range

(b) Long actuator range

Figure E.2: Influence of actuator range on EAWS and ADAP.
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(a) Short posture duration

(b) Long posture duration

Figure E.3: Influence of posture duration on EAWS and ADAP.
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