
 Foundations of computing Volume 6

Universitätsverlag der TU Berlin

Jiehua Chen

Exploiting Structure in
Computationally Hard Voting Problems

Jiehua Chen
陈洁花

Exploiting Structure in
Computationally Hard Voting Problems

Die Schriftenreihe Foundations of Computing der Technischen Universität Berlin
wird herausgegeben von:
Prof. Dr. Stephan Kreutzer,
Prof. Dr. Uwe Nestmann,
Prof. Dr. Rolf Niedermeier.

Foundations of Computing | 06

Jiehua Chen
陈洁花

Exploiting Structure in
Computationally Hard Voting Problems

Universitätsverlag der TU Berlin

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet über http://dnb.dnb.de abrufbar.

Universitätsverlag der TU Berlin, 2016
http://www.verlag.tu-berlin.de

Fasanenstr. 88, 10623 Berlin
Tel.: +49 (0)30 314 76131 / Fax: -76133
E-Mail: publikationen@ub.tu-berlin.de

Zugl.: Berlin, Techn. Univ., Diss., 2015
1. Gutachter: Prof. Dr. Rolf Niedermeier
2. Gutachter: Prof. Dr. Jérôme Lang
3. Gutachterin: Dr. Edith Elkind
Die Arbeit wurde am 18. Dezember 2015 an der Fakultät IV unter Vorsitz
von Prof. Dr. Stefan Tai erfolgreich verteidigt.

Das Manuskript ist urheberrechtlich geschützt.

Druck: docupoint GmbH
Satz/Layout: Jiehua Chen

Umschlagfoto:
Jiehua Chen, 2016

ISBN 978-3-7983-2825-9 (print)
ISBN 978-3-7983-2826-6 (online)

ISSN 2199-5249 (print)
ISSN 2199-5257 (online)

Zugleich online veröffentlicht auf dem institutionellen Repositorium
der Technischen Universität Berlin:
DOI 10.14279/depositonce-5113
http://dx.doi.org/10.14279/depositonce-5113

http://dnb.dnb.de
http://www.verlag.tu-berlin.de
mailto:publikationen@ub.tu-berlin.de
http://dx.doi.org/10.14279/depositonce-5113

Zusammenfassung
Die vorliegende Arbeit beschäftigt sich mit Wahlproblemen und den darin auftre-

tenden Strukturen. Einige dieser Strukturen finden sich in den Wählerpräferenzen,
wie zum Beispiel die in der Sozialwahltheorie (engl. social choice theory) intensiv
erforschten domain restrictions [ASS02, ASS10], wo die Wählerpräferenzen eine be-
stimmte eingeschränkte Struktur haben. Andere Strukturen lassen sich wiederum
mittels Problemparametern quantitativ ausdrücken, was sie einer parametrisierten
Komplexitätsanalyse zugänglich macht [Cyg+15, DF13, FG06, Nie06].

Dieser Zweiteilung folgend ist die Arbeit in zwei Themengebiete untergliedert. Das
erste Gebiet beinhaltet Betrachtungen zu Strukturen in Wählerpräferenzen, wie z.B.
Single-Crossing-Strukturen oder eindimensionale euklidische Strukturen. Es wird in
den Kapiteln 3 bis 5 abgehandelt.

Das zweite Themengebiet umfasst die parametrisierte Komplexitätsanalyse zweier
NP-schwerer Wahlprobleme, wobei die neu gewonnenen Erkenntnisse zu den im
ersten Teil der Arbeit untersuchten Strukturen verwendet werden. Es beschäftigt sich
außerdem mit Fragen sowohl zur klassischen als auch zur parametrisierten Komple-
xität mehrerer Wahlprobleme für zwei in der Praxis weit verbreitete parlamentarische
Wahlverfahren. Dieser Teil der Arbeit erstreckt sich über die Kapitel 6 bis 8.

Kapitel 3 untersucht die Single-Crossing-Eigenschaft. Diese beschreibt eine Anord-
nung der Wähler, bei der es für jedes Paar von Alternativen höchstens zwei aufeinan-
derfolgende Wähler gibt, die unterschiedlicher Meinung über die Reihenfolge dieser
beiden Alternativen sind. Wie sich herausstellt, lässt sich diese Eigenschaft durch
eine endliche Anzahl von verbotenen Strukturen charakterisieren. Ein Wählerprofil
ist genau dann single-crossing, wenn es keine dieser Strukturen beinhaltet. Es wird
außerdem ein Algorithmus vorgestellt, der die Single-Crossing-Eigenschaft unter
Verwendung von PQ trees [BL76] in O(n ·m2) Schritten erkennt, wobei n die Anzahl
der Wähler und m die Anzahl der Alternativen ist.

Kapitel 4 behandelt Wählerprofile, die eindimensional-euklidisch sind, d.h. für
die sich die Alternativen und Wähler so auf die reelle Achse abbilden lassen, dass
für jeden Wähler und je zwei Alternativen diejenige näher zum Wähler abgebildet
wird, die er der anderen vorzieht. Es stellt sich heraus, dass es im Gegensatz zur
Single-Crossing-Eigenschaft nicht möglich ist, eindimensionale euklidische Profile
durch endlich viele verbotene Strukturen zu charakterisieren.

Kapitel 5 beschäftigt sich mit der Frage, wie berechnungsschwer es ist, eine be-
stimmte strukturelle Eigenschaft wie z.B. die Single-Crossing-Eigenschaft zu errei-

i

chen, indem man eine möglichst kleine Anzahl von Wählern oder Kandidaten aus
einem Profil entfernt. Es zeigt sich, dass dieses Problem für die Single-Crossing-
Eigenschaft durch das Löschen von Wählern zwar in polynomieller Zeit gelöst wer-
den kann, es durch das Löschen von Kandidaten jedoch NP-schwer ist. Für alle
anderen Eigenschaften sind beide Varianten des Löschens ebenfalls NP-schwer. Al-
lerdings lässt sich für jedes der Probleme auf triviale Weise mittels des Parameters
„Anzahl der zu löschenden Wähler bzw. Alternativen“ fixed-parameter tractability
zeigen. Das bedeutet, dass sie effizient lösbar sind, wenn der Parameter klein ist.
Der Grund dafür ist, dass sich alle hier betrachteten Eigenschaften durch eine end-
liche Anzahl verbotener Strukturen charakterisieren lassen, deren Zerstörung die
gewünschte Eigenschaft herstellt.

Kapitel 6 führt die kombinatorische Variante des bekannten Problems CONTROL

BY ADDING VOTERS ein, das erstmals durch Bartholdi III, Tovey und Trick [BTT92]
beschrieben wurde. In der klassischen Problemstellung gibt es eine Menge von
nichtregistrierten Wählern mit bekannten Präferenzen, und es wird eine kleinste
Teilmenge von nichtregistrierten Wählern gesucht, sodass deren Hinzufügen zu
einem gegebenen Profil einen bestimmten Kandidaten zum Gewinner macht. In
der hier beschriebenen Variante wird zusätzlich angenommen, dass für jeden hinzu-
gefügten Wähler auch eine Menge von weiteren Wählern „kostenlos“ hinzugefügt
werden kann. Dieses Problem wird für die beiden bekannten Wahlregeln Condorcet-
Wahl und Mehrheitswahl untersucht. Wie sich herausstellt, ist die Problemstellung
schon für zwei Alternativen NP-schwer. Desweiteren werden Parameter identifiziert,
die sich aus den kombinatorischen Eigenschaften dieses Problems ergeben. Für
diese lässt sich eine beinahe erschöpfende Beschreibung der parametrisierten Kom-
plexität des Problems erstellen. In einem Fall, bleibt unser Problem für sogenannte
Single-Peaked-Präferenzen berechnungsschwer, während es für Single-Crossing-
Präferenzen in polynomieller Zeit lösbar ist.

Kapitel 7 untersucht, wie verschiedene natürliche Parameter und Preisfunktionen
die Berechnungskomplexität des SHIFT BRIBERY-Problems [EFS09] beeinflussen.
Darin fragt man, ob eine gegebene Alternative zum Gewinner gemacht werden kann,
indem sie in den Präferenzen einiger Wähler nach vorne verschoben wird. Jede
Verschiebung hat einen Preis, und das Ziel ist es, ein gegebenes Budget nicht zu
überschreiten. Die Ergebnisse sind gemischt: einige Parameter erlauben effiziente
Algorithmen, während für andere das Problem schwer bleibt, z.B. für den Parameter
„Anzahl der beeinflussten Wähler“ ist das Problem sogar W[2]-schwer. Für die Op-
timierungsvariante von SHIFT BRIBERY, bei der das verwendete Budget minimiert
wird, erzielen wir einen Approximationsalgorithmus mit einem Approximationsfak-
tor von (1+ε), dessen Laufzeit in ihrem nicht-polynomiellen Anteil nur von ε und

ii

der Anzahl der Wähler abhängt.
Kapitel 8 konzentriert sich auf zwei weitverbreitete parlamentarische Wahlregeln:

die successive rule und die amendment rule. Beide Regeln verwenden eine lineare
Ordnung der Alternativen, auch Agenda genannt. Es werden drei Probleme unter-
sucht: COALITIONAL MANIPULATION fragt nach der kleinstmöglichen Anzahl von
Wählern mit beliebigen Präferenzen, deren Hinzufügung einen bestimmten Kandi-
daten zum Gewinner macht; AGENDA CONTROL fragt, ob es möglich ist, eine Agenda
derart festzulegen, dass ein bestimmter Kandidat gewinnt; POSSIBLE/NECESSARY

WINNER fragt für unvollständige Wählerpräferenzen und/oder eine nur teilweise
festgelegte Agenda, ob eine bestimmte Alternative überhaupt bzw. sicher zum Sie-
ger machen kann. Es stellt sich heraus, dass sowohl COALITIONAL MANIPULATION

als auch AGENDA CONTROL für beide Wahlregeln in polynomieller Zeit lösbar sind.
Allerdings deuten die Ergebnisse einer auf realem Wählerverhalten basierenden, ex-
perimentellen Studie darauf hin, dass die meisten Profile nicht durch einige wenige
Wähler manipuliert werden können, und dass eine erfolgreiche Kontrolle mittels
Agenda typischerweise nicht möglich ist. POSSIBLE WINNER ist für beide Regeln
NP-schwer, während NECESSARY WINNER für die amendment rule coNP-schwer und
für die successive rule in polynomieller Zeit lösbar ist.

iii

Abstract
This thesis explores and exploits structure inherent in voting problems. Some

of these structures are found in the preferences of the voters, such as the domain
restrictions, which have been widely studied in social choice theory [ASS02, ASS10].
Others can be expressed as quantifiable measures (or parameters) of the input, which
make them accessible to a parameterized complexity analysis [Cyg+15, DF13, FG06,
Nie06].

Accordingly, the thesis deals with two major topics. The first topic revolves around
preference structures, for instance, the single-crossing or the one-dimensional Eu-
clidean structures. It is covered in Chapters 3 to 5. The second topic includes the
parameterized complexity analysis of two computationally hard voting problems,
making use of some of the structural properties studied in the first part of the thesis.
It also investigates questions on the computational complexity, both classical and
parameterized, of several voting problems for two widely used parliamentary voting
rules. It is covered in Chapters 6 to 8.

In Chapter 3, we study the single-crossing property which describes a natural
order of the voters such that for each pair of alternatives, there are at most two
consecutive voters along this order which differ in their relative ordering of the two
alternatives. We find finitely many forbidden subprofiles whose absence from a
profile is necessary and sufficient for the existence of single-crossingness. Using this
result, we can detect single-crossingness without probing every possible order of
the voters. We also present an algorithm for the detection of single-crossingness in
O(n ·m2) time via PQ trees [BL76], where n denotes the number of voters and m the
number of alternatives.

In Chapter 4, we study the one-dimensional Euclidean property which describes
an embedding of the alternatives and voters into the real numbers such that every
voter prefers alternatives that are embedded closer to him to those which are em-
bedded farther away. We show that, contrary to our results for the single-crossing
property, finitely many forbidden subprofiles are not sufficient to characterize the
one-dimensional Euclidean property.

In Chapter 5, we study the computational question of achieving a certain property,
as for instance single-crossingness, by deleting the fewest number of either alter-
natives or voters. We show that while achieving single-crossingness by deleting the
fewest number of voters can be done in polynomial time, it is NP-hard to achieve
this if we delete alternatives instead. Both problem variants are NP-hard for the

v

remaining popular properties, such as single-crossingness or value-restriction. All
these problems are trivially fixed-parameter tractable for the parameter “number
of alternatives to delete” (resp. “number of voters to delete”) because for each stud-
ied property there are finitely many forbidden subprofiles whose removal makes a
profile possess this property.

In Chapter 6, we introduce a combinatorial variant of CONTROL BY ADDING VOT-
ERS. In CONTROL BY ADDING VOTERS as introduced by Bartholdi III, Tovey, and
Trick [BTT92], there is a set of unregistered voters (with known preference orders),
and the goal is to add the fewest number of unregistered voters to a given profile
such that a specific alternative wins. In our new model, we additionally assume that
adding a voter means also adding a bundle (that is, a subset) of other voters for free.
We focus on two prominent voting rules, the plurality rule and the Condorcet rule.
Our problem turns out to be extremely hard; it is NP-hard for even two alternatives.
We identify different parameters arising from the combinatorial model and obtain
an almost complete picture of the parameterized complexity landscape. For the case
where the bundles of voters have a certain structure, our problem remains hard for
single-peaked preferences, while it is polynomial-time solvable for single-crossing
preferences.

In Chapter 7, we investigate how different natural parameters and price function
families influence the computational complexity of SHIFT BRIBERY [EFS09], which
asks whether it is possible to make a specific alternative win by shifting it higher in
the preference orders of some voters. Each shift has a price, and the goal is not to
exceed the budget. We obtain both fixed-parameter tractability and parameterized
intractability results. We also study the optimization variant of SHIFT BRIBERY which
seeks to minimize the budget spent, and present an approximation algorithm which
approximates the budget within a factor of (1+ε) and has a running time whose
super-polynomial part depends only on the approximation parameter ε and the
parameter “number of voters”.

In Chapter 8, we turn our focus to two prominent parliamentary voting rules, the
successive rule and the amendment rule. Both rules proceed according to a linear
order of the alternatives, called the agenda. We investigate COALITIONAL MANIPU-
LATION (which asks to add the fewest number of voters with arbitrary preference
orders to make a specific alternative win), AGENDA CONTROL (which asks to design
an appropriate agenda for a specific alternative to win), and POSSIBLE/NECESSARY

WINNER (which asks whether a specific alternative wins in a/every completion of
the profile and the agenda). We show that while COALITIONAL MANIPULATION

and AGENDA CONTROL are polynomial-time solvable for both rules, our real-world
experimental results indicate that most profiles cannot be manipulated by only

vi

few voters, and that a successful agenda control is typically impossible. POSSIBLE

WINNER is NP-hard for both rules. While NECESSARY WINNER is coNP-hard for
the amendment rule, it is polynomial-time solvable for the successive rule. All
computationally hard problems are fixed-parameter tractable for the parameter
“number of alternatives”.

vii

Preface
This thesis summarizes a large part of my research work from September 2011

to August 2015. During this time, I have been a member of the research group of
Prof. Rolf Niedermeier at TU Berlin. I am very grateful to the Studienstiftung des
Deutschen Volkes (2011-10-01 to 2014-03-31) and TU Berlin (since 2014-04-01) for
financial support.

As the title suggests, my intention in pursuing a Ph.D. was to exploit structures
arising in computationally hard voting problems. I attack this goal in two steps. In
the first step, I look into voter preferences and their structures. This is a field of
active research both in social choice and political sciences [ASS02, ASS10, Bla48,
Gae09]. I study structured (Chapters 3 and 4) and nearly structured preferences
(Chapter 5). In the second step, I study two computationally hard voting problems
(Chapters 6 and 7) and two sequential voting rules together with some computational
questions surrounding them (Chapter 8).

Obviously, my research was not done in isolation. Most of the results I present
in this thesis have already been published in conference proceedings and journals,
resulting from the cooperation with my co-authors. In the following, I will go through
every chapter of the main part of my thesis, partly telling some of the history behind
the research projects, partly pointing out the main differences between published
articles and the results presented in this thesis, and most of all explaining my specific
contributions to these results. I do this in the chronological order of when the
projects behind the chapters were started, instead of the order of the chapters in this
thesis.

Chapter 3: Single-crossing preferences. In the 2012 Dagstuhl seminar on “Com-
putation and Incentives in Social Choice”, I gave my first scientific talk. At this
seminar, there was a talk on clone structures in elections [EFS12] which was given by
Piotr Faliszewski (AGH University of Science & Technology, Krakow). In his talk, Piotr
mentioned single-peaked preferences and single-crossing preferences. Right after
the talk, knowing that my colleague Robert Bredereck (TU Berlin) and I had recently
worked on nearly single-peaked preferences, Gerhard Woeginger (TU Eindhoven)
approached us and asked whether we knew the characterization of single-crossing
preferences; this was inspired by the work of Ballester and Haeringer [BH11] who
characterized single-peaked preferences through two forbidden substructures. I
was always fascinated by the idea of Ballester and Haeringer and was of course very

ix

curious about whether this also holds for single-crossing preferences. In the same
evening, we started searching for small subprofiles precluding which makes a pro-
file single-crossing. We were successful and could characterize the single-crossing
preference by finitely many forbidden substructures. We also found that a single-
crossing profile with m alternatives can have at most (m · (m − 1)/2+ 1) different
preference orders. But, we did not know how to construct one. I thought about this
question overnight and found an approach which turned out to be part of the Bruhat
order construction approach (Example 3.2). Back in Berlin, I thought more about
the proof of the characterization and I discovered that we could directly use the PQ
tree algorithm to detect the single-crossing property (Section 3.7). All these results
are covered in the journal Social Choice and Welfare [BCW13a].

Chapter 5: Nearly structured preferences. Before I started pursuing my Ph.D,
Nadja Betzler (who also was my supervisor Rolf Niedermeier’s student, but has
since January 2011 quit academics) and Robert Bredereck investigated the problem
of achieving single-peakedness. They found that deleting the fewest number of
voters to achieve single-peakedness is NP-hard, but it is fixed-parameter tractable
and admits a polynomial-time kernel for the parameter “number n of voters” to
delete. After successfully characterizing single-crossing preferences (Chapter 3),
Gerhard Woeginger asked in an email about the computational complexity of achiev-
ing the single-crossing property by deleting either the fewest number of voters
or the fewest number of alternatives. For the case of voter deletion, his idea was
to reduce our problem to finding a maximum-weight path in an directed acyclic
graph, which is polynomial-time solvable. When Gerhard visited our research group
as a Humboldt award winner, starting from October 2012, we—Robert, Gerhard,
and me—continued our research on nearly structured preferences. Besides single-
peakedness and single-crossingness, we also considered other preference structures,
as for instance worst-restriction, medium-restriction, best-restriction, and group-
separability. Later on, I discovered a reduction for β-restricted preferences which
is similar to the one given for value-restricted preferences; the β-restriction is nec-
essary for group-separability. The results of this research are presented at the 23rd
International Joint Conference on Artificial Intelligence 2013 (IJCAI ’13) [BCW13b],
and appear in the journal Mathematical Social Sciences [BCW16].

Chapter 4: One-dimensional Euclidean preferences. At about the time when
we were discussing the voter deletion problem for the single-crossing property
(Theorem 5.12), Gerhard Woeginger mentioned the one-dimensional Euclidean

x

structure and asked whether it is possible to characterize it as we did for single-
crossingness. I found that the one-dimensional Euclidean structure is a restriction
of single-peakedness and single-crossingness, and conjectured that it is equivalent
to the single-peaked and single-crossing structure. Soon after I announced my naive
conjecture, I discovered (with the help of a program written by Robert) a single-
peaked and single-crossing profile with six alternatives and fifteen voters that is
non-1D-Euclidean; I later shrunk this profile to only three voters and six alternatives,
which is the smallest single-peaked and single-crossing profile known to us that is
non-1D-Euclidean.

In June 2013, Kirk Pruhs (University of Pittsburgh) visited us in Berlin. After one
week of intense research, we—Kirk, Gerhard, and me—came up with an idea of
what prevents a single-peaked and single-crossing profile with an arbitrary but even
number of alternatives from being 1D-Euclidean. Thus, we could construct single-
peaked and single-crossing profiles which are non-1D-Euclidean, but we could not
prove that they are minimal with respect to voter deletion. As it turned out, indeed
they are not. I found another way of constructing a non-1D-Euclidean profile for an
arbitrary number 4k of alternatives (Section 4.6), and I could show that deleting any
voter makes these profiles 1D-Euclidean. I later managed to generalize the idea of
my construction to other non-1D-Euclidean profiles, some of which I could show
are minimal with respect to voter deletion, which implies that profiles constructed
in Section 4.6 are not sufficient to characterize Euclideanness. Thus, the question
of a set of forbidden substructures to characterize the 1D-Euclideanness remains
open. The journal version of Chapter 4 appears in the journal Social Choice and
Welfare [CPW16].

Chapter 7: Shift bribery problems. Piotr Faliszewski visited us in Berlin as a DFG
Mercator fellow from fall 2013 to spring 2014. He is an expert in computational
social choice including the study of various bribery and control problems. Knowing
that our group’s research background is parameterized complexity theory, Piotr
suggested to have a more fine-grained study of the shift bribery problem, which is
computationally hard for many popular voting rules [EFS09]. We—Piotr, Robert,
Rolf, André Nichterlein (TU Berlin), and me—studied two aspects of this problem:
parameterization and price functions. After intense discussions, we came up with
many interesting parameters and price function families for the voters. Among
our numerous results I was chiefly responsible for the fixed-parameter tractability
result for the parameter “number t of total unit shifts”, and the corresponding partial
kernelizations. The results of this research are presented at the 28th AAAI Conference

xi

on Artificial Intelligence 2014 (AAAI ’14) [Bre+14b]. The results of this research are
published in the journal Information and Computation [Bre+16a].

Chapter 6: Combinatorial voter control problems. After a successful collabora-
tion with Piotr in the study the parameterized shift bribery problem, Nimrod Talmon
joined our group in Berlin and received some reading material from Rolf Nieder-
meier, one of which is about combinational auctions [RPH98]. Nimrod suggested to
consider voting problems with combinatorial flavor. Piotr found that this idea suited
control problems, such as control by adding voters, very well. We soon focused on
combinatorial voter control, where adding a voter also means adding a subset of
other voters for free; the preference orders of the added voters are not changeable.
We studied this problem for the plurality rule and the Condorcet rule. In March
2014, when I visited Piotr in Krakow, we identified several interesting parameters
for our combinatorial voter control problem. We also considered the case with
single-peaked preferences and with single-crossing preferences. Among our many
results, one I obtained in cooperation with Laurent Bulteau (CNRS, Marne-la-Vallée)
is particularly noteworthy. We could show that the problems remain NP-complete
even when each added voter may result in at most one additional voter to also join
the voting. After we presented our results at the 39th International Symposium
on Mathematical Foundations of Computer Science 2014 (MFCS ’14) [Che+14], we
managed to further show that for the same setting where each added voter results in
at most one more additional added voter, the problem is fixed-parameter tractable
for the parameter “number of subsets of voters allowed to add”. The results of this
research are published in the journal Theoretical Computer Science [Bul+15].

Chapter 8: Problems around two parliamentary voting rules. While staying in
Berlin as a Humboldt award winner in the summer of 2014, Toby Walsh (NICTA and
the University of New South Wales) proposed to work on some problems for two
parliamentary voting rules, the successive rule and the amendment rule. He already
had found out that for both voting rules, coalitional manipulation is polynomial-
time solvable while deciding whether an alternative may possibly win with weighted
voters is weakly NP-hard. He wanted to know the computational complexity of
agenda control and possible/necessary winner. I could show that agenda control
is also polynomial-time solvable for both rules. Later I found out that one of my
results was already covered in a paper by Miller [Mil80]. Robert Bredereck also joined
our research efforts. I am mostly responsible for the polynomial-time solvability
results. I also conducted an empirical study for the manipulation and agenda control

xii

problems. The results were presented at the 24th International Joint Conference on
Artificial Intelligence (IJCAI ’15) [Bre+15b].

Besides the work presented in this thesis, I have also worked on several different
problems in computational social choice [Alo+13, Alo+15, Bev+14b, Bev+15a, Bre+12,
Bre+14c, Che+15a] and several computationally hard problems regarding graphs
and hypergraphs [Bev+14a, Bev+16, Che+13, Che+15b], set covering [Bev+15b], team
formation [Bre+16b], and matrix explanation [Bre+13, Bre+15a].

xiii

Dedicated to my mother 张秀群, to my father 陈海涛, to my sister 陈洁蓉,
and to my best friend Sven Grottke

Contents

1. Introduction and Overview 1
1.1. Thesis overview . 4
1.2. Published papers . 6

2. Preliminaries and Notation 11
2.1. Relations and orders . 11
2.2. Graphs . 12
2.3. Preference profiles . 13
2.4. Voting rules and their properties . 14
2.5. Computational complexity . 16
2.6. Parameterized complexity . 17

I. Structured and Nearly Structured Preferences 23

3. Single-Crossing Preferences 25
3.1. Introduction . 25
3.2. Results . 26
3.3. Chapter outline . 27
3.4. Definitions, notations, and examples . 27
3.5. A characterization through forbidden configurations 31
3.6. The size of forbidden configurations . 34
3.7. Recognizing the single-crossing property 35
3.8. Concluding remarks . 37

4. One-Dimensional Euclidean Preferences 39
4.1. Introduction . 39
4.2. Results . 42
4.3. Chapter outline . 42
4.4. Definitions, notations, and examples . 43
4.5. Statement of the main results . 47
4.6. Definition of the profiles . 48
4.7. The profiles are not 1-D Euclidean . 50
4.8. Definition of the 1-D Euclidean embeddings 52

xv

4.9. A collection of technical results . 56
4.10.Correctness of the 1-D Euclidean embeddings 59
4.11.Other profiles that are not 1-D Euclidean 67
4.12.Concluding remarks . 69

5. Nearly Structured Preferences 71
5.1. Introduction . 71
5.2. Results . 73
5.3. Related work . 74
5.4. Chapter outline . 76
5.5. Preliminaries and basic notations . 77
5.6. Value-restricted properties . 82
5.7. Single-peaked, single-caved, and group-separable properties 87
5.8. Single-crossing properties . 92
5.9. Concluding remarks . 100

II. Computationally Hard Voting Problems 103

6. Combinatorial Voter Control 105
6.1. Introduction . 105
6.2. Chapter outline . 109
6.3. Definitions, notations, and examples . 110
6.4. Central problem and results . 113
6.5. Canonical parameterizations . 116
6.6. Parameterization by the maximum bundle size and by the swap distance124
6.7. Single-peaked and single-crossing cases 141
6.8. Concluding remarks . 149

7. Shift Bribery 151
7.1. Introduction . 151
7.2. Results . 154
7.3. Chapter outline . 156
7.4. Definitions, notations and examples . 157
7.5. Parameterizations by solution cost measures 163
7.6. Parameterizations by the preference profile measures 175
7.7. Concluding remarks . 182

xvi

8. Parliamentary Voting Rules 185
8.1. Introduction . 186
8.2. Results . 189
8.3. Chapter outline . 190
8.4. Specific notations and definitions . 191
8.5. Agenda Control . 194
8.6. Manipulation . 199
8.7. Possible/Necessary Winner . 203
8.8. Empirical study of AGENDA CONTROL and COALITIONAL MANIPULATION222
8.9. Concluding remarks . 226

9. Conclusion 229
9.1. Main contributions . 230
9.2. Outlook and open questions . 232

A. Problem Compendium 253

Acknowledgments 258

xvii

List of Figures

2.1. Undirected graph and directed graph examples 13

3.1. A single-crossing profile with seven voters and four alternatives 28
3.2. A preference profile and its 0-1 matrix representation 36

4.1. A one-dimensional Euclidean profile with three alternatives and four
voters . 40

4.2. A one-dimensional Euclidean representation for the profile from Ex-
ample 4.1 with voters v2 and v3 . 46

4.3. The relation of the distances between two neighboring alternatives 2i +
1 and 2i +2 . 52

5.1. Hasse diagram of the relations between the different properties 77
5.2. Illustration of the reduction from VERTEX COVER to VALUE-RESTRICTED

MAVERICK DELETION (Theorem 5.1) . 84
5.3. A profile with three alternatives and five voters, and a corresponding

weighted directed graph constructed in the proof of Theorem 5.12 . . 101

6.1. Example illustrating the concept of bundling functions and bundling
graphs. 110

6.2. Part of the construction used in the proof of Theorem 6.13 126
6.3. Part of the construction used in the proof of Theorem 6.21 140

7.1. Hasse diagram of the inclusion relationship among the price function
families . 162

8.1. Part of the construction used in Theorem 8.14 207
8.2. The weighted majority graph of an reduced instance according to the

construction in the proof of Theorem 8.15 208

xix

List of Tables

4.1. The table that is discussed in Example 4.4 and illustrates the 1-D Eu-
clidean embedding of the alternatives in profile P ∗

4 54

5.1. Summary of results of Chapter 5 . 75
5.2. A reduced instance used for Theorem 5.9. 97

6.1. Computational complexity classification of COMBINATORIAL CON-
STRUCTIVE CONTROL BY ADDING VOTERS (C-CC-AV) for the plurality
rule . 115

7.1. Parameterized complexity of SHIFT BRIBERY and of SHIFT BRIBERY(O)
for Borda (B), maximin (M), and Copelandα 156

7.2. An illustration of the concept of price functions 161

8.1. Computational complexity classification of the voting problems stud-
ied in Chapter 8 for two parliamentary voting rules 190

8.2. The instance obtained from the graph in Figure 8.1a, according the
construction in the proof of Theorem 8.15 210

8.3. Experiments on agenda control with real-world data 224
8.4. Experiments on manipulation with real-world data 225

xxi

CHAPTER 1

Introduction and Overview

I’m the kind of person that believes there’s a part of your voting
that has to be purely on principle, and there’s a part that has to be
on strategy.

Michael Moore

Whenever faced with more than one choice (or alternative), different individuals
may have different opinions upon which choice is better than another. This is true
even in daily activities. As a working example, suppose that every day at noon, the
employees of a company have to choose where to have lunch. There are three places
to go, the nearby (U)niversity’s cafeteria, the (I)talian restaurant at the corner, or the
(S)taff canteen upstairs. As a new employee, Alex prefers to go to the cheap cafeteria,
followed by the staff canteen, and to the Italian restaurant only as a last resort. Ben,
being a big fan of fine Italian cuisine, loves dining at the Italian restaurant, followed
by the cafeteria because it is outside. Chris is a workaholic who prefers to go upstairs
and eat at the staff canteen over going to the other two places. The preferences can
be expressed as follows,

Alex : (U)inversity ≻ (S)taff ≻ (I)talian,
Ben : (I)talian ≻ (U)inversity ≻ (S)taff,
Chris : (S)taff ≻ {

(I)talian , (U)inversity
}
,

where ≻ is used to express that the alternative in front of ≻ is strictly preferred to the
alternative behind it, and alternatives are grouped together inside { } when neither is
preferred to the other.

To decide on a dining place, a “winner”, we need a voting rule to aggregate all
these preferences. For example, a very intuitive choice of a winner is the alternative
which is preferred to every other alternative by a majority of the voters. This rule
was originally proposed by de Condorcet [Con85], and it remains one of the most
widely studied voting rules in social choice and political sciences. Applying it to our

1

1. Introduction and Overview

example requires Chris to decide between I and U as his second and third choice.
If he prefers U to I , then U wins: Alex and Chris prefer it to I , and Alex and Ben
prefer it to S. If, however, Chris prefers I to U , then we run into a problem known
as a majority cycle, also called the Condorcet paradox: Alex and Ben prefer U to S,
Alex and Chris prefer S to I , and Ben and Chris prefer I to U . Thus, no alternative
is preferred to every other alternative by a majority of the voters, and there is no
Condorcet winner. This kind of paradox was already observed by Condorcet [Con85].

Not being able to choose a winner is problematic in many scenarios other than just
deciding on a dining place. One cause of this issue is that we assume no restrictions
on the individuals’ preferences. There are, however, several well known preference
restrictions/properties which rule out the existence of a majority cycle, thus ensur-
ing the existence of a Condorcet winner [Bla48, Pat71, Rob77, Sen70]. For instance,
Black [Bla48] observed the so-called single-peaked structure in political electorates:
the alternatives can be ordered from left to right such that each individual’s pref-
erences along this order are either always increasing (that is, he always prefers an
alternative to those further to the left), always decreasing (that is, he always prefers
an alternative to those further to the right), or first increasing and then decreasing. In
our example, if Chris prefers U over I , then the preferences are indeed single-peaked
regarding the following left-to-right order:

(S, U , I).

While dealing with income taxation, Mirrlees [Mir71] and Roberts [Rob77] ob-
served that individuals’ preferences are likely to be single-crossing. This requires
a permutation of the individuals such that for each pair of tax rates (alternatives),
there are at most two consecutive individuals along this permutation which differ
in their relative ordering of the two rates. Our example, again with Chris having
preferences S ≻U ≻ I , is single-crossing regarding the following permutation:

(Alex, Ben, Chris).

For instance, Alex and Ben are the only consecutive individuals that differ in the
relative ordering of I and S, as shown in the following figure: the thick gray lines
intersect at a point between Alex and Ben, illustrating that the permutation (Alex,
Ben, Chris) is single-crossing with respect to {I ,S}.

Alex : I U S

Ben : U S I

Chris : S U I

2

Individuals and alternatives may even display some kind of spatial structure [BL07,
EH08, Poo89, Sto63]. For instance, suppose that the inhabitants in a district need
to decide on the location of a new hospital. Typically, for each two options, an
inhabitant will prefer the one that is closer to his home. This is an example of
so-called two-dimensional Euclidean preferences.

Of course, there are other voting rules besides the Condorcet rule, so why do we
choose one which may not have a winner? Unfortunately, many classical impossi-
bility results [Arr50, Gib73, Sat75] from social choice theory indicate that designing
a “perfect” voting rule is actually impossible: these results show that voting rules
cannot satisfy several natural requirements simultaneously, with one of the require-
ments being that every preference order is allowed.

Even when leaving this difficult issue aside, after having decided on a voting rule,
we may encounter questions on the computational cost of problems such as how
to determine the outcome, whether it is possible for some individual to obtain an
outcome that he prefers more (or even most, in the best case) by voting strategically,
or whether the outcome can be manipulated by altering, for instance, the set of
alternatives.

For example, in many real-world scenarios, having an efficient algorithm for
winner determination or rank aggregation is very important. Consider a meta search
engine that computes a consensus ranking by aggregating the results of several
independent search engines. Few people would be willing to use the meta search
engine if they need to wait several minutes to see a result.

As another example, suppose an online marketplace where customers can rate
products, and products are ranked according to an aggregation of these ratings based
on a voting rule. A company may try to improve its sales by creating fake customers
who give the company’s products favorable ratings. Even though Gibbard [Gib73]
and Satterthwaite [Sat75] did show that similar manipulations even by just one voter
are possible for any reasonable voting rule, showing NP-hardness for the problem of
deciding whether a manipulation is successful may still prevent it from being carried
out in practice.

Many of such computational problems turn out to have a very high computational
complexity. For instance, Bartholdi III, Tovey, and Trick [BTT89] showed that it
is NP-hard to decide whether a specific alternative can win under each of several
popular voting rules, including a well-known one designed by Charles Lutwidge
Dodgson.1 Bartholdi III and Orlin [BO91] showed that strategic voting for the single
transferable voting (STV) rule, which is also known as the Hare system and whose

1He is better known as Lewis Carroll, the author of the novel “Alice’s Adventures in Wonderland”.

3

1. Introduction and Overview

variants are used in political elections in several countries is NP-hard as well.
All these intractability results typically assume that the individuals may have ar-

bitrary preferences, and that both the number of individuals and the number of
alternatives are unbounded. This beckons the question whether these assumptions
are reasonable. How do we characterize preferences which possess structural proper-
ties such as single-peakedness? How do we model situations where preferences are
close to having a certain structure? Do computationally hard voting problems remain
hard for these kinds of preferences? Or can we tackle their apparent intractability
by exploiting their structure? We provide some answers to these questions in the
remainder of this thesis.

1.1 Thesis overview

Chapter 2 presents relevant notations and concepts that will be used throughout
the whole thesis. Chapters 3 to 8 constitute the core of this work and are built around
two main topic. The first topic, which is discussed in Part I (Chapters 3 to 5), revolves
around structured and nearly structured preferences, including single-peakedness
and single-crossingness as introduced at the beginning of this chapter. The second
topic, which is covered in Part II (Chapters 6 to 8), deals with computationally hard
voting problems that mainly concern manipulative attacks. Chapter 9 concludes
this thesis with some future research directions.

In the remainder of this section, we briefly summarize the highlights of Chapters 3
to 8. We remark that throughout this work, except for Chapter 8, we assume that
each individual, whom we refer to as a voter, ranks the alternatives according to a
linear order; we call this order a preference order.

1.1.1 Part I: Structured and nearly structured preferences

The first main topic of this thesis, presented in Part I (Chapters 3 to 5), is about
the study of specific preference structures, including single-peakedness, single-
crossingness, and one-dimensional Euclideanness. These three structures were
described informally at the beginning of the introduction.

Single-crossing preferences. In Chapter 3, we characterize the single-crossing
property. In particular, we provide finitely many forbidden substructures whose
absence from a profile is sufficient and necessary to make this profile single-crossing.
We also present a polynomial-time algorithm for detecting the single-crossing prop-
erty which is based on the PQ tree algorithm [LB62]. Notably, the single-peaked
property can also be decided in polynomial time using a similar approach [BT86].

4

1.1. Thesis overview

One-dimensional Euclidean preferences. In Chapter 4, we study the one-dimen-
sional Euclidean property that models the spatial perception of voters’ preferences:
Voters and alternatives can be placed on the real line such that each voter has a
stronger preference for an alternative that is closer to him than for another one that
is further away. This property is a restriction of the single-peaked and the single-
crossing properties. We show that, contrary to the single-crossing property from
Chapter 3, the one-dimensional Euclidean property cannot be characterized by
finitely many forbidden substructures. In our proof, we construct an infinite se-
quence of sets of preferences such that (a) each of these sets is not one-dimensional
Euclidean, but (b) any strict subset of it is one-dimensional Euclidean. This con-
struction uses a so-called cyclic relation technique. Interestingly, we can use the
same technique to construct other infinite sequences which fulfill Condition (a). We
can show Condition (b) for some constructed sets of preferences. This implies that
the absence of the constructed sequence is necessary, but not sufficient for a profile
to be one-dimensional Euclidean.

Nearly structured preferences. In Chapter 5, we study computational questions
arising from the problem of deciding the distance from general preferences to the
nearest structured ones, such as single-peaked preferences or single-crossing prefer-
ences. We look into two distance measures: the minimum number of voters, and the
minimum number of alternatives to delete from a profile to obtain a given property.
We show that all considered problems, except for deciding the distance to the nearest
single-crossing profile by deleting the minimum number of voters, are NP-hard.

1.1.2 Part II: Computationally hard voting problems

The second main topic of this thesis, presented in Part II (Chapters 6 to 8), deals
with computational questions around manipulative attacks, as for instance alter-
ing the outcome by adding some unregistered voters, or by shifting some specific
alternative higher in the preference orders of some voters.

Combinatorial voter control problems. The voter control problem was intro-
duced by Bartholdi III, Tovey, and Trick, who ask whether it is possible to make
a specific alternative win by adding (resp. deleting) a given number of voters from
a specific pre-described set. In Chapter 6, we introduce a combinatorial variant
of voter control. Specifically, we focus on the problem of making an alternative
win by adding voters, where adding a voter also means adding a bundle of other
voters at unit cost. Because of its combinatorial nature, this problem turns out to be

5

1. Introduction and Overview

computationally hard even for only two alternatives and for the plurality rule under
which an alternative is a winner if and only if it is ranked in first position by most of
the voters. This result is widely applicable since for two alternatives, any reasonable
voting rule resembles the plurality rule. Nevertheless, we study the structure of this
highly intractable problem and identify several tractable special cases.

Shift bribery problems. While the combinatorial voter control problem is about
changing the profile by adding voters (with pre-determined preferences), the shift
bribery problem [EFS09] is about changing the profile by changing the preferences
of the voters. More specifically, shift bribery asks whether it is possible to make a
specific alternative win by shifting it higher in the preference order of some voters.
Each such shift has a price and the goal is not to exceed a given budget. In Chapter 7,
we explore restricted special cases where the prices of the voters or the input may
have common structures. For example, each single shift may come at a unit price, or
the number of alternatives may be a small constant.

Problems around two parliamentary voting rules. After examining manipulative
attacks on arbitrary voting rules, in Chapter 8 we focus on two sequential voting
rules which are used in the parliaments of various countries. Both rules use a so-
called agenda which is a linear order over the alternatives. We study three types of
computational problems for both rules. The first type asks whether it is possible
to make a specific alternative win by adding a given number of manipulators (with
arbitrary preference orders). The second type asks whether it is possible to make
a specific alternative win under an appropriately designed agenda. The last type
deals with the situation where voters may have incomplete preferences, and asks
whether a specific alternative can possibly or necessarily win despite uncertainty in
the preferences. We complement our theoretical findings with an empirical study on
the first two types of problems using real-world data.2

1.2 Published papers

This thesis is based on the following peer-reviewed publications and technical
reports.

2See Section 9.2 for an explanation why we did not carry out such studies for the problems in Chap-
ters 6 and 7.

6

1.2. Published papers

Chapter 3: Single-crossing preferences

[BCW13a] R. Bredereck, J. Chen, and G. J. Woeginger. “A Characterization of the Single-
Crossing Domain”. In: Social Choice and Welfare 41(4), 2013, pp. 989–998.

Chapter 4: One-dimensional Euclidean preferences

[CPW15] J. Chen, K. Pruhs, and G. J. Woeginger. “The one-dimensional Euclidean domain:
Finitely many obstructions are not enough”. Technical Report: arXiv:1506.03838v1
[cs.GT], 2015.

[CPW16] J. Chen, K. Pruhs, and G. J. Woeginger. “The one-dimensional Euclidean domain:
Finitely many obstructions are not enough”. In: Social Choice and Welfare, 2016, to
appear.

Chapter 5: Nearly structured preferences

[BCW13b] R. Bredereck, J. Chen, and G. J. Woeginger. “Are There Any Nicely Structured
Preference Profiles Nearby?” In: Proceedings of the 23rd International Joint Conference
on Artificial Intelligence (IJCAI ’13), 2013, pp. 62–68.

[BCW16] R. Bredereck, J. Chen, and G. J. Woeginger. “Are There Any Nicely Structured
Preference Profiles Nearby?” In: Mathematical Social Sciences 79, 2016, pp. 61–73.

Chapter 6: Combinatorial voter control problems

[Che+14] J. Chen, P. Faliszewski, R. Niedermeier, and N. Talmon. “Combinatorial Voter Con-
trol in Elections”. In: Proceedings of the 39th International Symposium on Mathematical
Foundations of Computer Science (MFCS ’14), 2014, pp. 153–164.

[Bul+15] L. Bulteau, J. Chen, P. Faliszewski, R. Niedermeier, and N. Talmon. “Combinatorial
Voter Control in Elections”. In: Theoretical Computer Science 589, 2015, pp. 99–120.

Chapter 7: Shift bribery problems

[Bre+14b] R. Bredereck, J. Chen, P. Faliszewski, A. Nichterlein, and R. Niedermeier. “Prices
Matter for the Parameterized Complexity of Shift Bribery”. In: Proceedings of the 28th
AAAI Conference on Artificial Intelligence (AAAI ’14), 2014, pp. 1398–1404.

[Bre+16a] R. Bredereck, J. Chen, P. Faliszewski, A. Nichterlein, and R. Niedermeier. “Prices
Matter for the Parameterized Complexity of Shift Bribery”. In: Information and Com-
putation, 2016, to appear.

7

1. Introduction and Overview

Chapter 8: Problems around two parliamentary voting rules

[Bre+15b] R. Bredereck, J. Chen, R. Niedermeier, and T. Walsh. “Parliamentary Voting Proce-
dures: Agenda Control, Manipulation, and Uncertainty”. In: Proceedings of the 24th
International Joint Conference on Artificial Intelligence (IJCAI ’15), 2015, pp. 164–170.

I also contributed to the following peer-reviewed publications which are not cov-
ered in this thesis.

[Alo+13] N. Alon, R. Bredereck, J. Chen, S. Kratsch, R. Niedermeier, and G. J. Woeginger.
“How to put through your agenda in collective binary decisions”. In: Proceedings of
the 3rd International Conference on Algorithmic Decision Theory. Vol. 8176. Lecture
Notes in Computer Science. 2013, pp. 30–44.

[Alo+15] N. Alon, R. Bredereck, J. Chen, S. Kratsch, R. Niedermeier, and G. J. Woeginger.
“How to put through your agenda in collective binary decisions”. In: ACM Transac-
tions on Economics and Computation 4(1) (2015), pp. 1–28.

[Bev+14a] R. van Bevern, R. Bredereck, L. Bulteau, J. Chen, V. Froese, R. Niedermeier, and
G. J. Woeginger. “Star partitions of perfect graphs”. In: Proceedings of the 41st
International Colloquium on Automata, Languages, and Programming (ICALP ’14).
Vol. 8572. Lecture Notes in Computer Science. Springer, 2014, pp. 174–185.

[Bev+14b] R. van Bevern, R. Bredereck, J. Chen, V. Froese, R. Niedermeier, and G. J. J. Woegin-
ger. “Network-based dissolution”. In: Proceedings of the 39th International Sym-
posium on Mathematical Foundations of Computer Science (MFCS ’14). Vol. 8635.
LNCS. Springer, 2014, pp. 69–80.

[Bev+15a] R. van Bevern, R. Bredereck, J. Chen, V. Froese, R. Niedermeier, and G. J. Woeginger.
“Network-based vertex dissolution”. In: SIAM Journal on Discrete Mathematics
29(2) (2015), pp. 888–914.

[Bev+15b] R. van Bevern, J. Chen, F. Hüffner, S. Kratsch, N. Talmon, and G. J. Woeginger.
“Approximability and parameterized complexity of multicover by c-intervals”. In:
Information Processing Letters 115(10) (2015), pp. 744–749.

[Bev+16] R. van Bevern, R. Bredereck, L. Bulteau, J. Chen, V. Froese, R. Niedermeier, and
G. J. Woeginger. “Star partitions of perfect graphs”. In: Journal of Graph Theory
(2016). Accepted.

[Bre+12] R. Bredereck, J. Chen, S. Hartung, S. Kratsch, R. Niedermeier, and O. Suchý. “A
multivariate complexity analysis of lobbying in multiple referenda”. In: Proceedings
of the 26th Conference on Artificial Intelligence. AAAI Press, 2012, pp. 1292–1298.

[Bre+13] R. Bredereck, J. Chen, S. Hartung, C. Komusiewicz, R. Niedermeier, and O. Suchý.
“On explaining integer vectors by few homogenous segments”. In: Proceedings of
the 13th International Workshop on Algorithms and Data Structures (WADS ’13).
Vol. 8037. Lecture Notes in Computer Science. Springer, 2013, pp. 207–218.

8

1.2. Published papers

[Bre+14c] R. Bredereck, J. Chen, S. Hartung, S. Kratsch, R. Niedermeier, O. Suchý, and G. J.
Woeginger. “A multivariate complexity analysis of lobbying in multiple referenda”.
In: Journal of Artificial Intelligence Research 50 (2014), pp. 409–446.

[Bre+15a] R. Bredereck, J. Chen, S. Hartung, C. Komusiewicz, R. Niedermeier, and O. Suchý.
“On explaining integer vectors by few homogeneous segments”. In: Journal of
Computer and System Sciences 81(4) (2015), pp. 766–782.

[Bre+16b] R. Bredereck, J. Chen, F. Hüffner, and S. Kratsch. “Parameterized complexity of team
formation in social networks”. In: Proceedings of the 11th International Conference
on Algorithmic Aspects in Information and Management (AAIM ’16). Vol. 9778.
Lecture Notes in Computer Science. Springer, 2016, pp. 137–149.

[Che+13] J. Chen, C. Komusiewicz, R. Niedermeier, M. Sorge, O. Suchý, and M. Weller. “Effec-
tive and efficient data reduction for the subset interconnection design problem”. In:
Proceedings of the 24th International Symposium on Algorithms and Computation
(ISAAC ’07). Vol. 8283. Lecture Notes in Computer Science. 2013, pp. 361–371.

[Che+15a] J. Chen, P. Faliszewski, R. Niedermeier, and N. Talmon. “Elections with few voters:
Candidate control can be easy”. In: Proceedings of the 29th AAAI Conference on
Artificial Intelligence (AAAI ’15). AAAI Press, 2015, pp. 2045–2051.

[Che+15b] J. Chen, C. Komusiewicz, R. Niedermeier, M. Sorge, O. Suchý, and M. Weller.
“Polynomial-time data reduction for the subset interconnection design problem”.
In: SIAM Journal on Discrete Mathematics 29(1) (2015), pp. 1–25.

9

CHAPTER 2

Preliminaries and Notation

We could, of course, use any notation we want; do not laugh at
notations; invent them, they are powerful. In fact, mathematics is,
to a large extent, invention of better notations.

Richard P. Feynman, 1963

In this section, we introduce concepts and basic notation that will be used through-
out the thesis.

2.1 Relations and orders

We recall some basic definitions from set theory. Consider a finite set X of elements.
A relation R, short for binary relation, over X is a set of ordered pairs of elements
from X . We sometimes omit the underlying set X for the relation R if it is clear from
the context.

A binary relation R on X may satisfy one or more of the following properties.

Reflexivity ∀x ∈ X : (x, x) ∈ R.

Antisymmetry ∀x ̸= y ∈ X : (x, y) ∈ R ⇒ (y, x) ∉ R.

Transitivity ∀x, y, z ∈ R : (x, y), (y, z) ∈ R ⇒ (x, z) ∈ R.

Totality ∀x, y ∈ R : (x, y) ∉ R ⇒ (y, x) ∈ R.

A partial order is a reflexive, antisymmetric, and transitive relation. A linear (or total)
order is a total partial order. For the same set of elements, there are many more
partial orders than linear orders. For instance, for a set of 3 elements, by routine
calculation, we see that the number of different partial orders is 19 while the number
of different linear orders is 6.

In Section 2.3, we introduce the concept of preference orders, which are basically
partial orders, over alternatives. There, we use infix notation to indicate the relation
of two distinct alternatives.

11

2. Preliminaries and Notation

2.2 Graphs

We recall some basic definitions from graph theory. We consider two types of
graphs: one with undirected edges and the other with directed edges (or arcs).

2.2.1 Undirected graphs

A graph G, short for undirected graph, is a tuple (V ,E) consisting of a set V of
vertices and a set E ⊆ (V

2

)
of edges (that is, unordered pairs of vertices) where each

edge connects two distinct vertices, and there is at most one edge between two
vertices. We also denote the vertex set of G by V (G) :=V and the edge set by E(G) := E .
Two vertices u, v ∈V (G) are adjacent, or neighbors, if {u, v} is an edge in E(G). We also
say that vertices u and v are incident with edge {u, v}.

A path L in a graph G is a sequence of vertices 〈u1,u2, . . . ,ut 〉, t ≥ 1, where for
each i ∈ {1,2, . . . , t − 1}, it holds that {ui ,ui+1} ∈ E(G). We also say that L is a path
between vertices u1 and ut . Graph G is connected if it contains a path between each
pair of vertices u, v ∈V (G).

By deleting some of the vertices and edges of graph G, we can obtain a subgraph
of G. Formally, if V (G ′) ⊆ V (G) and E(G ′) ⊆ E(G), then graph G ′ is a subgraph of G,
denoted G ′ ⊆G, and G is a supergraph of G ′.

We consider two special subgraphs G ′ of G . If G ′ contains all edges e ∈ E(G) with e ⊆
V (G ′), then G ′ is an induced subgraph of G; we also say that G ′ is induced by V (G ′)
in G. A subset V ′ ⊆V (G) of r vertices is an r -clique if it induces a subgraph such that
any two vertices u, v ∈ V ′ are adjacent. We sometimes also call the corresponding
induced subgraph a clique of order r . If G is a |V (G)|-clique, then G is complete.

2.2.2 Directed graph

A directed graph F is a tuple consisting of a set of vertices and a set of directed
edges, called arcs, where each arc is an ordered pair of two distinct vertices. Just
as for undirected graphs, we denote the vertex set of F by V (F) and the arc set of
F by E(F). Subgraphs of a directed graph are defined in the same way as those of
an undirected graph. Given an arc (u, v) ∈ E(F), we say that u is v ’s in-neighbor and
that v is u’s out-neighbor. The in-degree (resp. out-degree) of a vertex u is the number
of its in-neighbors (resp. out-neighbors).

If F contains exactly one arc between any two distinct vertices, then F is a tourna-
ment, short for tournament graph.

We sometimes label each edge (or arc) with a non-negative integer which we call a
weight. In this case, we call the corresponding graph a weighted graph.

The underlying undirected graph of a directed graph F is an undirected graph G ′

12

2.3. Preference profiles

a b c

(a)

a b c
1 2

3

(b)

Figure 2.1.: (a) An undirected graph on vertex set {a,b,c}. The circles with labels denote the
vertices. The lines between two circles denote the edges. It is a complete graph. (b) A weighted
directed graph for the same vertex set. It is a tournament.

with the same vertex set V (G ′) :=V (F) and edge set E(G ′) := {{a,b} | (a,b) ∈ E(F)}.

Example 2.1. Figure 2.1(a) depicts a complete graph G with three vertices, a,b,c,
and Figure 2.1(b) a weighted directed graph F with the same vertices. Note that
graph G is complete and graph F is a tournament. Graph G can also be seen as the
underlying undirected graph of graph F .

We use the standard definitions of connectivity and connected components for
directed graphs: A directed graph F is connected, short for weakly connected, if its
underlying undirected graph is connected. A strongly connected component of F is a
subgraph of F , maximal with respect to inclusion of vertex sets, such that for each
two vertices a,b ∈V (F), there is a directed path from a to b.

2.3 Preference profiles

Let A = {a1, a2, . . . , am} be a set of m alternatives and let V = {v1, v2, . . . , vn } be a set
of n voters, m,n ≥ 2. A preference order over A, denoted ≻, is a partial order of A. We
call a preference order ≻ complete or linear if it is a linear order. Otherwise, we call it
incomplete.

Definition 2.1 (Preference profiles). A preference profile P over a set V of voters and
a set A of alternatives specifies the preferences of each of the voters, that is, each
voter vi ∈V ranks the alternatives A according to a partial order ≻i over A. We say
that ≻i is the preference order of voter vi . We write A (P) to denote the alternative
set A, V (P) to denote the voter set V , and R(P) to denote the corresponding collec-
tion (≻1,≻2, . . . ,≻n) of preference orders. We sometimes simply write ≻ instead of ≻i

if it is clear whose preference order we refer to. We call a preference profile with n
voters and m alternatives an n ×m profile.

For two alternatives b,c ∈ A, the relation b ≻i c means that voter vi strictly prefers b
over c. The relation b ∼i c means that voter vi regards b and c are incomparable

13

2. Preliminaries and Notation

to each other. We say that a voter ranks an alternative in the first (resp. second,
third, etc.) position if this alternative is his most (resp. second most, third most, etc.)
preferred alternative. Given two disjoint subsets B ,C ⊆ A of alternatives, we write
B ≻i C to express that voter vi prefers each alternative b ∈ B to each alternative c ∈C ,
that is, b ≻i c, and all alternatives in B (resp. C) are incomparable to each other. We
write B ≻i c as shorthand for B ≻i {c}, and c ≻i B for {c} ≻i B . If not stated explicitly,
we write 〈B〉 to denote an arbitrary but fixed preference order over B . We write

←−−〈B〉 to
denote the corresponding reverse order.

We illustrate the concept of preference profiles in the following example.

Example 2.2. Consider three alternatives a,b,c and two voters v1 and v2 with the
following preference orders:

voter v1 : a ≻1 b ≻1 c,
voter v2 : {c,b} ≻2 a.

The first voter’s preference order is complete while the second voter’s is not. A
preference profile P with alternative set A (P) := {a,b,c}, voter set V (P) := {v1, v2},
and preference order collection R(P) := (≻1,≻2) is a 2×3 profile.

2.4 Voting rules and their properties

In the previous section, we have defined how voters may express their opinions
on the ranking of the alternatives. Still, we require some rule to aggregate the voter
preferences to decide on an overall winner. Formally, a voting rule is a function that
takes as input a preference profile P with complete preference orders and outputs a
subset A′ ⊆A (P) of alternatives as co-winners. Note that we implicitly assume that
all voting rules that we consider are anonymous. That is, their outcomes depend only
on the numbers of voters with particular preference orders and not on the identities
of the particular voters that cast them.

In this section, we describe three popular voting rules. Note that they all assume
complete preference orders.

Definition 2.2 (Plurality and majority rules). Given a profile P with complete pref-
erence orders, let the score of an alternative a ∈ A (P), written scoreP (a), be the
number of voters that rank this alternative in the first position. A plurality winner is
an alternative with maximum score. A majority winner is an alternative whose score
is more than the half of the number of voters.

It is easy to see that a majority winner is also a plurality winner. While a profile
may not have a majority winner, if there is one, then she is unique.

14

2.4. Voting rules and their properties

Example 2.3. Consider the 3×4 profile depicted as follows.

voter v1 : a ≻1 d ≻1 b ≻1 c,
voter v2 : c ≻2 d ≻2 a ≻2 b,
voter v3 : b ≻3 d ≻3 c ≻3 a.

It has three plurality winners, a, b, and c, but no majority winner.

The next voting rule is based on pairwise comparisons of any two alternatives.

Definition 2.3 (Condorcet rule [Con85]). Given a profile P with complete preference
orders, we say that an alternative a ∈A (P) beats another alternative b ∈A (P) if a
majority of voters prefers a to b. Accordingly, we say b loses to a. A Condorcet winner
is an alternative that beats all other alternatives.

Just as for the majority winner, a profile may not have a Condorcet winner. If it
has one, then she is unique. Alternative d is a (and the only) Condorcet winner of the
3×4 profile depicted in Example 2.3. A majority winner is necessarily a Condorcet
winner.

We may want our voting rules to possess some nice properties which are so natural
that some of them even called axioms in the literature [ASS02, Gae09].

Condorcet consistency The voting rule selects the Condorcet winner as a winner if
she exist.

Non-dictatorship No voter can determine the winner alone.

Weak Pareto efficiency An alternative is not a winner if all voters prefer another
one to it.

Strategy-proofness (or non-manipulability) No voter can obtain a better outcome
by altering his preference order.

Surjectivity Every alternative can be a winner for some preference pro-
file.

While these properties are desirable, the well-known Gibbard-Satterthwaite theo-
rem [Gib73, Sat75] showed that basically any surjective, non-dictatorial voting rule is
manipulable. One possibility to circumvent this situation is through computational
complexity. The goal is to show that it is computationally hard to manipulate a given
voting rule. In the next section, we recall some basic definitions from the theory of
computational complexity.

We close this section by mentioning that in this thesis, we mainly focus on choice
functions, that is, voting rules which decide upon a subset of co-winners; the plu-
rality rule decides at least one co-winner while the majority rule and the Condorcet

15

2. Preliminaries and Notation

rule may have empty co-winners. Yet, sometimes, we need a welfare function to
aggregate preferences into a joint preference order. We can extend an arbitrary
choice function to construct such an order by repeatedly computing a set of co-
winners, and removing them from the profile; co-winners are ranked according to
some tie-breaking rule. Similarly to the choice functions, welfare functions also face
the fate that basically the only welfare function to satisfy some natural properties,
including for instance, a preference order variant of the weak Pareto efficiency, is
dictatorial [Arr50].

2.5 Computational complexity

Given a preference profile and a voting rule, it is interesting to know the computa-
tional complexity of determining a winner, of manipulating this voting rule, or of
determining a possible (or necessary) winner when the profile has incomplete pref-
erences. To understand this, we need a framework to formalize the computational
complexity [AB09, GJ79, Pap94]. We recall some basic notions from computational
complexity theory.

Consider a decision problem L over a finite alphabet Σ. We say that problem L is
polynomial-time solvable, and hence, belongs to the complexity class P, if there is an
algorithm that decides whether a given instance x ∈Σ∗ is a yes-instance of L in |x|O(1)

time. In this case, we say that the algorithm is efficient, and L is tractable.
We say that L belongs to the complexity class NP if there is a polynomial-time

algorithm that, given an instance and a polynomial-size information (a certificate)
about this instance, can verify whether this instance is a yes-instance of L. We say
that problem L is NP-hard if for each problem L′ ⊆Σ∗ in NP, there is a polynomial
reduction from L′ to L:

Definition 2.4 (Polynomial reductions). Given two finite alphabets Γ and Σ, a poly-
nomial reduction from problem L′ ⊆ Γ∗ to problem L ⊆ Σ is a mapping f from Γ∗

to Σ∗ which maps each instance x ∈ Γ∗ to an instance f (x) ∈Σ∗ such that x is a yes-
instance of L′ if and only if f (x) is a yes-instance of L with f being a polynomial-time
computable algorithm. We sometimes abbreviate polynomial reductions to just
reductions.

Bartholdi III, Tovey, and Trick [BTT89] show that it is NP-hard to determine
whether an alternative is a winner under a Condorcet-consistent voting rule de-
signed by Lewis Carroll. NP-complete problems are problems that are NP-hard and
belong to NP. Strictly speaking, the complexity class P only concerns decision prob-
lems. Sometimes, we also say that some search problem belongs to P, meaning that

16

2.6. Parameterized complexity

there is a polynomial-time algorithm finding a solution to the problem. For instance,
finding a plurality winner can be done in linear-time. Accordingly, we say that some
search problem is NP-hard if its decision variant is NP-hard, that is deciding “is there
a solution?” or “is there a solution of a certain quality?” is NP-hard.

2.6 Parameterized complexity

Every known algorithm solving an NP-hard problem requires superpolynomial
running time. Nevertheless, a refined analysis of the problem may yield an algo-
rithm that runs in polynomial time if some problem-specific integer parameter is a
constant, where the degree of the polynomial in the running time is independent of
the parameter. Parameterized complexity theory deals with such refined analysis.

Definition 2.5 (Parameterized problems and fixed-parameter tractability). Given a
finite alphabet Σ, a parameterized problem L is a subset L ⊂Σ∗×N, and the second
entry of an instance in Σ∗×N is called parameter. We say that L is fixed-parameter
tractable if there is an algorithm deciding whether a given instance (x,k) ∈ Σ∗×N
belongs to L in f (k) · |x|O(1) time, where f is a computable function depending on
the parameter k only. We also call such algorithms fixed-parameter algorithms. The
class FPT contains all parameterized problems that are fixed-parameter tractable.

To illustrate the concept of fixed-parameter tractability, let us consider the follow-
ing NP-complete problem, which is perhaps the most and the best studied problem
in the field of fixed-parameter algorithms.

VERTEX COVER

Input: An undirected graph G = (U ,E) and an integer k ≤ |U |.
Question: Is there a vertex cover U ′ ⊆U of at most k vertices, that is, |U ′| ≤ k
and ∀e ∈ E : e ∩U ′ ̸= ;?

It is easy to design a recursive algorithm that runs in O(2k · |G|) time, where k is the
size of the vertex cover and |G| is the size of the input graph: Begin with an empty
set U ′ of vertices. Then, recursively pick an arbitrary edge {u, v} that is not covered
by U ′, that is, {u, v}∩U ′ =;, and branch into two cases: add either u or v to the set U ′.
Stop when the size of U ′ exceeds k. Thus, VERTEX COVER parameterized by the vertex
cover size k is fixed-parameter tractable.

We emphasize that a fixed-parameter algorithm is in general more efficient than an
algorithm that runs in polynomial time for constant parameters and that a running
time of the form |x| f (k) does not show fixed-parameter tractability. Problems which
can be solved by the second kind of algorithms form the complexity class XP.

17

2. Preliminaries and Notation

2.6.1 Fixed-parameter algorithms and polynomial kernel lower bounds

Systematic approaches to finding fixed-parameter algorithms include problem
kernelization, bounded search tree, and integer linear programming, to name but a
few. We describe these three techniques briefly.

Problem kernelization. The basic idea behind problem kernelization is to “shrink”
in polynomial time the input instance to an equivalent instance whose size is upper-
bounded by a function f of the parameter.

Definition 2.6 (Kernelization algorithms). A parameterized problem L ⊂Σ∗×N for
a given finite alphabet Σ admits a kernelization algorithm, or simply kernelization, if
there is an algorithm that, given an instance (I ,k) of L runs in polynomial time in the
instance size |(I ,k)| and returns an instance (I ′,k ′) of L such that

• |(I ′,k ′)| ≤ f (k) for some computable function f and

• (I ,k) ∈ L if and only if (I ′,k ′) ∈ L.

We will see an application of kernelization in Section 7.5.1.
We call the shrunk (equivalent) instances (I ′,k ′) problem kernels. It has been shown

that being fixed-parameter tractable is equivalent to admitting a problem kernel (see
[FG06]). Often, the problem kernels we obtain are of super-polynomial size. It is,
however, interesting to search for kernelization algorithms that produce problem
kernels with size polynomial in the parameter, that is, the function f in Definition 2.6
is a polynomial. For example, using the Buss kernelization [BG93], we can obtain a
problem kernel of size O(k2) for VERTEX COVER, where k is the size of the vertex cover;
see, for instance, the work of Niedermeier [Nie06, Chapter 7] for a detailed analysis
of the problem kernel. A polynomial kernel reflects in a sense the effectiveness of the
kernelization, or preprocessing. However, sometimes we cannot find a polynomial
kernel. In fact, there are parameterized problems that do not admit polynomial ker-
nels under some complexity-theoretic assumptions (that is, NP ̸⊆ coNP/poly) [BJK14,
Bod+09, FS11]. It is known that NP⊆ coNP/poly would imply a collapse of the poly-
nomial hierarchy to its third level [Yap83]. Bodlaender et al. [Bod+09] introduced
the so-called composition technique. Later, Bodlaender, Thomassé, and Yeo [BTY11]
introduced the concept of polynomial-parameter transformation, which describes a
reduction from one parameterized problem to another one that produces polyno-
mial problem kernels.

Definition 2.7 (Polynomial-parameter transformation). Let L and L′ ⊆ Σ∗ ×N be
two parameterized problems for some finite alphabet Σ. A polynomial-parameter

18

2.6. Parameterized complexity

transformation from L to L′ is an algorithm that, given an instance (I ,k) ∈ Σ∗×N,
computes an instance (I ′,k ′) ∈Σ∗×N in time polynomial in |(I ,k)| such that

• k ′ is polynomially bounded in k, and

• (I ,k) ∈ L if and only if (I ′,k ′) ∈ L′.

We can show the absence of polynomial kernels by providing a polynomial-param-
eter transformation from a parameterized problem that is known not to possess a
polynomial kernel:

Proposition 2.1 ([BTY11]). Let L and L′ ⊆Σ∗×N be two parameterized problems for
some finite alphabet Σ such that the unparameterized versions of both L and L′ are
NP-complete. If there is a polynomial-parameter transformation from L to L′, then L
admits a polynomial kernel if L′ admits a polynomial kernel.

We discuss the issue of whether there is a polynomial kernel for some parame-
terized problems in Chapters 6 to 8. We refer to the work of Cygan et al. [Cyg+15,
Chapter 15] for more information on this issue.

Search tree. The search tree technique is of recursive nature. In a nutshell, a search
tree algorithm maintains “partial solutions” and recursively calls itself on several
subproblems, extending the current partial solution by at least one “element”. In this
way, the algorithm traverses a tree where the root represents an initial empty solution,
each node represents a partial solution and each edge represents the extension from
a corresponding partial solution to another. If (1) extending a partial solution can be
done in polynomial time, and (2) the number of children of each node and the height
of the tree is upper-bounded in a function that only depends on the parameter, then
we can easily verify that our algorithm runs in “FPT time”. We call such algorithm
a bounded search tree. We have already seen a simple search tree algorithm for the
VERTEX COVER problem parameterized by the vertex cover size at the beginning of
Section 2.6.

Integer-linear programming approach. Integer-linear programming centers on
the following NP-complete problem [GJ79].

Definition 2.8. INTEGER LINEAR PROGRAMMING FEASIBILITY

Input: An integer m′×n′-matrix A ∈Zm′×n′
and an integer vector b ∈Zm′

.
Question: Is there an integer vector x ∈Zn′

with A · x ≤ b?

19

2. Preliminaries and Notation

The search variant of INTEGER LINEAR PROGRAMMING FEASIBILITY aims at finding
an integer vector of n′ variables fulfilling the constraints indicated by the constraint
matrix A and the goal vector b. Despite the NP-hardness, a famous algorithm by
Lenstra [Len83] shows that any INTEGER LINEAR PROGRAMMING FEASIBILITY in-
stance with an m′×n′-matrix A and goal vector b can be solved in f (n′) · |(A,b)|O(1)

time, where f is a function solely dependent on n′, and |(A,b)| denotes the number
of bits in the binary representation of A and b. In other words, Lenstra’s result di-
rectly implies fixed-parameter tractability for the parameter “number n′ of variables”.
Frank and Tardos [FT87] and Kannan [Kan87] improve the FPT running time. To-
gether, we obtain the following, which contributes to the best known FPT running
time for this setting.

Theorem 2.2 ([FT87, Kan87, Len83]). INTEGER LINEAR PROGRAMMING FEASIBILITY

can be solved in O((n′)2.5·n′+o(n′) · |(A,b)|) time, where A denotes the input matrix with
n′ columns, b denotes the goal vector, and |(A,b)| denotes the number of bits in the
binary representation of A and b.

Throughout this thesis, we use the function ilp(ρ1,ρ2,ρ3) to denote the running
time of an INTEGER LINEAR PROGRAMMING FEASIBILITY instance with A being a
constraint matrix with ρ1 columns and ρ2 rows, and b being a goal vector, such that
the absolute value of each coefficient in A and of each entry in b is at most ρ3.

If we can reduce a given parameterized problem to INTEGER LINEAR PROGRAM-
MING FEASIBILITY such that the number ρ1 of variables depends only on our parame-
ter (and ρ2, ρ3 are not excessively large), then we immediately obtain fixed-parameter
tractability for the desired parameter. We utilize the integer-linear programming
technique to obtain fixed-parameter tractability results, as stated for instance in The-
orem 6.10, and Corollaries 8.17 and 8.23. Obviously, the running time of our relevant
problem depends heavily on the running time of INTEGER LINEAR PROGRAMMING

FEASIBILITY (with the appropriate instance setting). Thus, we call the corresponding
fixed-parameter tractability class ILP-FPT.

2.6.2 Parameterized intractability

Parameterized complexity theory also provides a hierarchy of hardness classes,
starting with W[1], such that

FPT⊆W[1] ⊆W[2] ⊆ . . . ⊆XP.

One can show that a parameterized problem L is (presumably) not fixed-parameter
tractable by devising a parameterized reduction from a W[1]-hard (or a W[2]-hard
problem) to L.

20

2.6. Parameterized complexity

Definition 2.9 (Parameterized reduction). A parameterized reduction from a param-
eterized problem L to another parameterized problem L′ is a function that, given an
instance (x,k), computes an instance (x ′,k ′) in f (k) · |x|O(1) time such that

• k ′ ≤ g (k) and

• (x,k) ∈ L if and only if (x ′,k ′) ∈ L′,

where f and g are two computable functions.

The class W[1] contains all parameterized problems L such that there is a param-
eterized reduction from L to CLIQUE parameterized by the clique size h, which is
complete for W[1].

CLIQUE

Input: An undirected graph G = (V (G),E(G)) and a non-negative integer
h ∈N.
Question: Does G admit a size-h clique, that is, a size-h vertex subset U ⊆
V (G) such that G[U] is complete?

The class W[2] contains all parameterized problems L′ such that there is a parame-
terized reduction from L′ to SET COVER parameterized by the set cover size h, which
is complete for W[2].

SET COVER

Input: A family F = (S1, . . . ,Sr) of sets over a universe U = {u1, . . . ,us } of
elements and a non-negative integer h ≥ 0.
Question: Is there a size-at-most-h set cover, that is, a collection F ′ of h sets
in F whose union is U ?

Unless W[1] = FPT (resp. W[2] = FPT), no fixed-parameter algorithms exist for
W[1]-complete (resp. W[2]-complete) problems.

We refer the reader to the textbooks of Cygan et al. [Cyg+15], Downey and Fel-
lows [DF13], Flum and Grohe [FG06], and Niedermeier [Nie06] for more information
on parameterized complexity and algorithms. Besides this, Betzler et al. [Bet+12] and
Bredereck et al. [Bre+14a] survey voting problems and research challenges involving
parameterized algorithms. We use parameterized complexity analysis for voting
problems in Chapters 6 to 8.

Finally, we refer the readers to the books of Brandt et al. [Bra+16] and Rothe [Rot15]
for general accounts on computational social choice.

21

陈
洁
蓉

Part I

Structured and
Nearly Structured

Preferences

CHAPTER 3

Single-Crossing Preferences

It may be noted that the assumption requires that there be a
‘natural’ ordering of individuals, whereas single-peakedness
requires that there be a ‘natural’ ordering of options.

Kevin W.S. Roberts, 1977

We characterize single-crossing profiles in terms of two forbidden substructures,
one containing three voters and six alternatives, and the other one containing four
voters and four alternatives. We also provide an efficient way to decide whether a
preference profile is single-crossing.

3.1 Introduction

Single-peaked and single-crossing preferences have become standard domain
restrictions in many political, economic, and psychological models[Bla48, Coo64,
Mir71, Rob77]. A preference profile is single-peaked if there is a linear order of
the alternatives such that every voter’s preferences over the alternatives along this
order is either always strictly increasing, always strictly decreasing, or first strictly
increasing and then strictly decreasing. A preference profile is single-crossing if there
is a linear order of the voters such that each pair of alternatives separates this order
into two sub-orders where in each sub-order, all voters agree on the relative order of
this pair (see Figure 3.1 for an illustration of this concept). In many situations, these
assumptions guarantee the existence of a strategy-proof voting rule, or the existence
of a Condorcet winner.

Single-peaked preferences go back to the work of Black [Bla48] and have been
studied extensively over the years. Single-peakedness implies a number of nice
properties, as for instance strategy-proofness of a family of voting rules [Mou80] and
transitivity of the majority relation [Ina69] (also known as Condorcet principle; we

This chapter is based on “A Characterization of the Single-Crossing Domain” by R. Bredereck, J. Chen,
and G. J. Woeginger, Social Choice and Welfare [BCW13a] .

25

3. Single-Crossing Preferences

discuss this in Chapter 5). Single-crossing preferences go back to the work of Karlin
[Kar68] in applied mathematics and the papers of Mirrlees [Mir71] and Roberts
[Rob77] on income taxation. Grandmont [Gra78], Rothstein [Rot90], and Gans and
Smart [GS96] analyzed various aspects of the majority rule under single-crossing
preferences. Furthermore, single-crossing preferences play a role in the areas of in-
come redistribution [MR81], coalition formation [Dem94, Kun06], local public goods
distribution and stratification [EP98, Wes77], and in the choice of constitutional
voting rules [BJ04]. Saporiti and Tohmé [ST06] studied single-crossing preferences
in the context of strategic voting and the median choice rule, and Saporiti [Sap09]
investigated them in the context of strategy proof social choice functions. Barberà
and Moreno [BM11] developed the concept of top monotonicity as a common gener-
alization of single-peakedness and single-crossingness (and of several other domain
restrictions).

Forbidden substructures. Sometimes mathematical structures allow characteriza-
tions through forbidden substructures. For example, Kuratowski’s theorem [Kur30]
characterizes planar graphs in terms of forbidden subgraphs: a graph is planar if
and only if it does not contain a subdivision of K5 or K3,3. In a similar spirit, Lekkerk-
erker and Boland [LB62] characterized interval graphs through five (infinite) families
of forbidden induced subgraphs, and Földes and Hammer [FH77] characterized
split graphs in terms of three forbidden induced subgraphs. Hoffman, Kolen, and
Sakarovitch [HKS85] characterized totally-balanced 0-1-matrices in terms of certain
forbidden submatrices. The characterizations of split graphs and totally-balanced
0-1-matrices use a finite number of obstructions, while the characterizations of
planar graphs and interval graphs both involve infinitely many obstructions.

In the area of social choice, Ballester and Haeringer [BH11] characterize single-
peaked preference profiles in terms of two forbidden substructures. The first for-
bidden substructure consists of three voters and three alternatives, where no two
voters rank the same alternative worst. The second forbidden substructure consists
of two voters and four alternatives, where (informally speaking) both voters rank the
first three alternatives in opposite ways with the second alternative in the middle,
but prefer the fourth alternative to the second one. We refer the interested reader to
Chapters 4 and 5 for concrete definitions of these two substructures.

3.2 Results

Inspired by the approach and the results of Ballester and Haeringer [BH11], we
present a characterization of single-crossing preference profiles by two forbidden

26

3.3. Chapter outline

substructures. One of our forbidden substructures consists of three voters and
six alternatives (as described in Example 3.4) and the other one consists of four
voters and four alternatives (as described in Example 3.5). We point out that the
six (resp. four) alternatives in the first (resp. second) forbidden substructure are not
necessarily distinct: The substructures only partially specify the preference orders
of the involved voters; hence by identifying and collapsing some of the alternatives
involved we can easily generate a number of smaller forbidden substructures (which
of course are just special cases of our larger forbidden substructures). Finally, we
will discuss the close relationship between single-crossing preference profiles and
consecutive ones matrices. A 0-1-matrix has the consecutive ones property if its
columns can be permuted such that the 1-values in each row are consecutive.

3.3 Chapter outline

In Section 3.4 we summarize basic definitions and provide some examples. In
Section 3.5 we formulate and prove our main result (Theorem 3.2). In Section 3.6
we discuss the tightness of our characterization, and we argue that there is no
characterization that works with smaller forbidden substructures. In Section 3.7 we
briefly discuss some approaches to finding a single-crossing order of the voters in
polynomial time. We conclude in Section 3.8.

3.4 Definitions, notations, and examples

Consider a preference profile with complete preference orders. An unordered
pair of two distinct alternatives is called a couple. A subset V ⊆ V (P) of the voters
is mixed with respect to couple {a,b} if V contains two voters, one preferring a to b,
and the other one preferring b to a. If V is not mixed with respect to {a,b}, then it
is said to be pure with respect to {a,b}. Hence, an empty set of voters is pure with
respect to every possible couple. A couple {a,b} separates two sets V1 and V2 of voters
from each other if no voter in V1 agrees with any voter in V2 on the relative ordering
of a and b; in other words, sets V1 and V2 must both be pure with respect to {a,b},
and if both are non-empty then their union V1 ∪V2 is mixed.

Definition 3.1 (Single-crossing profiles). A linear order of the voters is single-crossing
with respect to couple {a,b} if it can be split into an initial piece and a final piece
that are separated by {a,b}. An order of the voters is single-crossing if it is single-
crossing with respect to every possible couple. Finally, a preference profile is single-
crossing if there is a single-crossing order L of the voters. We call a profile maximally
single-crossing if this profile is single-crossing, and adding another voter with any
preference order not yet in the profile makes it non-single-crossing.

27

3. Single-Crossing Preferences

v1 v2 v3 v4 v5 v6 v7

1 1 3 3 3 3 4

2 3 1 2 2 4 3

3 2 2 1 4 2 2

4 4 4 4 1 1 1

Figure 3.1.: A single-crossing profile with seven voters and four alternatives. The gray shadow
lines illustrate that the order of the voters from left to right is single-crossing with respect to
the pair {1,4} of alternatives.

Example 3.1. Let us take a look at the 7×4 profile given in Figure 3.1. The preference
orders are written from top to bottom. For instance, voter v1’s preference order
is 1 ≻ 2 ≻ 3 ≻ 4. This profile is single-crossing, and a single-crossing order of the
voters is 〈v1, v2, . . . , v7〉 as already shown in the figure (from left to right). For instance,
couple {1,4} separates this order (see the shadow lines) into two parts: the voters up
to and including v4 prefer 1 to 4 while the voters from v5 onwards prefer 4 to 1. In
Section 3.4.1 we show that this single-crossing profile is maximal.

It is easy to see that single-crossingness is a monotone property of preference
profiles:

Observation 3.1. Let P be a preference profile, and let P ′ result from P by removing
some alternatives and/or voters. If P is single-crossing, then P ′ is also single-crossing.

In the remaining part of this section we present several instructive examples of
preference profiles which are single-crossing (Section 3.4.1), and some which are
not (Section 3.4.2).

3.4.1 Profiles from weak Bruhat orders

Let Sm denote the set of permutations of the integers 1,2, . . . ,m (note that a permu-
tation is also a linear order; we use the term permutation instead of linear order in or-
der to avoid confusion with Bruhat orders). We specify permutations π ∈ Sm by listing
the entries as π= 〈π(1),π(2), . . . ,π(m)〉. The identity permutation 〈1,2, . . . ,m〉 arranges
the integers in increasing order. The order reversing permutation 〈m,m −1, . . . ,2,1〉
arranges them in decreasing order. An inversion in π is a pair (π(i),π(j)) of two
entries with i < j and π(i) > π(j) and a descent in π is a pair (π(i),π(i +1)) of con-
secutive entries with π(i) >π(i +1). By definition, a descent (π(i),π(i +1)) is also an
inversion. For instance, the inversions in the permutation 〈2,3,1〉 are (2,1) and (3,1),

28

3.4. Definitions, notations, and examples

but only (3,1) is a descent. We write π◁ρ if permutation π can be obtained from
permutation ρ by a series of swaps, each swapping two elements of a descent.

The partially ordered set (Sm ,◁) is known as a weak Bruhat order; see for in-
stance [Bon04]. The weak Bruhat order has the identity permutation as the mini-
mum element and the order reversing permutation as the maximum element. Every
maximal chain (that is, every maximal subset of pairwise comparable permuta-
tions) in the weak Bruhat order has length 1

2 m · (m −1)+1 and contains the identity
permutation and the order reversing permutation.

Example 3.2 illustrates the connection between weak Bruhat orders and single-
crossing preference profiles; we refer to the works of Abello [Abe91] and Galambos
and Reiner [GR08a] for more information.

Example 3.2. Let C = (π1 ◁π2 ◁ · · ·◁πn) be a maximal chain (that is, a maximal
totally ordered subset) with n = 1

2 m · (m −1)+1 permutations in the weak Bruhat
order (Sm ,◁). We construct a profile by using 1,2, . . . ,m as alternatives, and by in-
terpreting every permutation π as preference order π(1) ≻π(2) ≻ . . . ≻π(n) over the
alternatives. Voter vi has preference order πi . See Figure 3.1 for an illustration with
m = 4 alternatives and n = 7 voters (in a vertical fashion).

The resulting profile is single-crossing: each two alternatives a and b start off in
the right order in the identity permutation π1, eventually are swapped into the wrong
order, and then can never be swapped back again at later steps. Furthermore, the
profile contains n = 1

2 m · (m −1)+1 voters with pairwise distinct preference orders.

If we start the construction in Example 3.2 from arbitrary (not necessarily maximal)
chains in the weak Bruhat order, then we can generate every possible single-crossing
preference profile (up to isomorphism). This is another well-known connection,
which follows from the fact that π◁ρ if and only if every inversion of permutation π

also is an inversion of permutation ρ [GR08a].

3.4.2 Some profiles that are not single-crossing

We provide three examples of profiles that are not single-crossing. The first ex-
ample is due to the work of Saporiti and Tohmé [ST06] and shows a profile that
is single-peaked but not single-crossing. The other two examples introduce two
principal concepts of this thesis.

Example 3.3. Consider four alternatives 1,2,3,4 and three voters v1, v2, v3 with the
following preference orders:

29

3. Single-Crossing Preferences

voter v1 : 2 ≻1 3 ≻1 4 ≻1 1,
voter v2 : 4 ≻2 3 ≻2 2 ≻2 1,
voter v3 : 3 ≻3 2 ≻3 1 ≻3 4.

Below we will see that this profile is not single-crossing but single-peaked (with
respect to the order 〈1,2,3,4〉 of alternatives, for instance).

From now on, when we speak of configurations, we mean some forbidden profiles
we will use for the characterization. An n ×m configuration is a profile with n voters
and m alternatives.

Example 3.4 (γ-Configuration).
A profile with three voters v1, v2, v3 and six (not necessarily distinct) alternatives
a,b,c,d ,e, f is a γ-configuration if it satisfies the following:

voter v1 : b ≻1 a and c ≻1 d and e ≻1 f ,
voter v2 : a ≻2 b and d ≻2 c and e ≻2 f ,
voter v3 : a ≻3 b and c ≻3 d and f ≻3 e.

The γ-configuration represents a situation where each voter disagrees with the
other two voters on the order of exactly two distinct alternatives. The profile is
not single-crossing as none of the three voters can be put between the other two:
couple {a,b} prevents us from putting v1 into the middle, couple {c,d} prevents
voter v2 in the middle, and couple {e, f } prevents v3 in the middle.

Example 3.4 provides an easy proof that the profile in Example 3.3 is not single-
crossing, as this profile contains a γ-configuration with a = 3, b = c = 2, d = e = 4, and
f = 1.

Example 3.5 (δ-Configuration).
A profile with four voters v1, v2, v3, v4 and four (not necessarily distinct) alternatives
a,b,c,d is a δ-configuration if it satisfies the following:

voter v1 : a ≻1 b and c ≻1 d ,
voter v2 : a ≻2 b and d ≻2 c,
voter v3 : b ≻3 a and c ≻3 d ,
voter v4 : b ≻4 a and d ≻4 c.

The δ-configuration shows a different kind of voter behavior: Two voters disagree
with the other two voters on the order of two alternatives, but also disagree between
each other on the order of two further alternatives. This profile is not single-crossing,

30

3.5. A characterization through forbidden configurations

as couple {a,b} forces us to place v1 and v2 next to each other, and to put v3 and v4

next to each other; couple {c,d} forces us to place v1 and v3 next to each other, and
to put v2 and v4 next to each other. This means that no voter can be placed in the
first position.

3.5 A characterization through forbidden configurations

Examples 3.4 and 3.5 demonstrate that preference profiles that contain a γ-config-
uration or a δ-configuration cannot be single-crossing. It turns out that these two
configurations are the only obstructions for the single-crossing property.

Theorem 3.2. A preference profile P is single-crossing if and only if P contains
neither a γ-configuration nor a δ-configuration.

Proof. The (only if) part immediately follows from the monotonicity of the single-
crossing property (Observation 3.1) and from the observations stated in Exam-
ples 3.4 and 3.5.

For the (if) part, we first introduce some additional definitions and notations. An
ordered partition 〈X1, . . . , Xp〉 of the voters v1, . . . , vn satisfies the following properties:
every part Xi is a non-empty set, distinct parts are disjoint, the union of all parts
is the set of all voters, and the arrangement of the parts Xi in the ordered partition
is crucial. The trivial ordered partition has p = 1 and hence consists of a single
part {v1, . . . , vn }. We let {ak ,bk } with 1 ≤ k ≤ 1

2 m · (m − 1) be an enumeration of all
possible couples, and we define Ck as the set containing the first k couples in this
enumeration.

Now let us prove the (if) part of the theorem. We consider some arbitrary pref-
erence profile P that contains neither γ-configurations nor δ-configurations. Our
argument is algorithmic in nature. We start from the trivial partition X (0) of the
voters, and then refine this partition step by step while working through 1

2 m · (m −1)
phases. The k th such phase generates an ordered partition X (k) = 〈X (k)

1 , . . . , X (k)
p 〉 of the

voters that satisfies the following two properties.

(i) For each index j with 1 ≤ j ≤ p −1, the union of parts X (k)
1 , . . . , X (k)

j is separated

from the union of parts X (k)
j+1, . . . , X (k)

p by one of the couples in Ck .

(ii) For each couple in Ck , there is an index j with 1 ≤ j ≤ p −1 such that the couple
separates the union of X (k)

1 , . . . , X (k)
j from the union of X (k)

j+1, . . . , X (k)
p .

Note that property (ii) implies that every part X (k)
j is pure with respect to every couple

in Ck .

31

3. Single-Crossing Preferences

The following four statements summarize some useful combinatorial observations
on the ordered partition X (k) and how it relates to the couple {ak+1,bk+1}.

Claim 3.3. At most one part in the ordered partition X (k) is mixed with respect to
couple {ak+1,bk+1}.

Proof of Claim 3.3. Suppose for the sake of contradiction that the parts X (k)
s and X (k)

t

with 1 ≤ s < t ≤ p both are mixed with respect to couple {ak+1,bk+1}. In other words,
part X (k)

s contains a voter v ′
1 with ak+1 ≻ bk+1 and another voter v ′

2 with bk+1 ≻ ak+1,
and part X (k)

t contains a voter v ′
3 with ak+1 ≻ bk+1 and another voter v ′

4 with bk+1 ≻ ak+1.
Property (i) yields the existence of a couple {x, y} ∈Ck that separates the union of

parts X (k)
1 , . . . , X (k)

s from the union of the parts X (k)
s+1, . . . , X (k)

p . In particular, this couple
separates X (k)

s from X (k)
t . This implies that voters v ′

1 and v ′
2 agree on the order of

couple {x, y} (say, with x ≻ y), whereas voters v ′
3 and v ′

4 have the opposite ordering
(say y ≻ x). Then the four voters v ′

1, v ′
2, v ′

3, and v ′
4 together with the four alternatives

ak+1, bk+1, x, and y form a δ-configuration; this yields the desired contradiction.
(of Claim 3.3) ⋄

While the last claim is about the “mixed” property of one part, the next two claims
are about the “mixed” property across three parts.

Claim 3.4. Consider two indices s and t with 2 ≤ s < t ≤ p. If some voter v ′
1 in part X (k)

1

ranks ak+1 ≻ bk+1 and if some voter v ′
2 in part X (k)

s ranks bk+1 ≻ ak+1, then every voter v ′
3

in part X (k)
t ranks bk+1 ≻ ak+1.

Proof of Claim 3.4. Suppose for the sake of contradiction that there is a voter v ′
3 from

part X (k)
t that ranks ak+1 ≻ bk+1. Then the couple {ak+1,bk+1} separates {v ′

2} from {v ′
1, v ′

3}.
Property (i) yields a couple {x, y} ∈Ck that separates X (k)

1 from the union set X (k)
s ∪X (k)

t ;
this couple separates {v ′

1} from {v ′
2, v ′

3}. Property (i) also yields a couple {x ′, y ′} ∈Ck

that separates X (k)
t from the union set X (k)

1 ∪X (k)
s ; this couple separates v ′

3 from {v ′
1, v ′

2}.
Then the three voters v ′

1, v ′
2, and v ′

3 together with the six alternatives ak+1, bk+1, x,
y , x ′, and y ′ form a γ-configuration; a contradiction. (of Claim 3.4) ⋄

The statement of the following claim is symmetric to the statement of Claim 3.4,
and it can be proven by symmetric arguments.

Claim 3.5. Consider two indices s and t with 1 ≤ s < t ≤ p −1. If some voter v ′
2 in

part X (k)
t ranks ak+1 ≻ bk+1 and some voter v ′

3 in part X (k)
p ranks bk+1 ≻ ak+1, then every

voter v ′
1 in part X (k)

s ranks ak+1 ≻ bk+1.

32

3.5. A characterization through forbidden configurations

The next statement shows the existence of a “separation point” for the cou-
ple {ak+1,bk+1}.

Claim 3.6. There exists an index ℓ with 1 ≤ ℓ ≤ p such that the couple {ak+1,bk+1}
separates the union of parts X (k)

1 , . . . , X (k)
ℓ−1 from the union of parts X (k)

ℓ+1, . . . , X (k)
p .

Proof of Claim 3.6. If p = 1 or if all voters in the profile agree on the relative order of
ak+1 and bk+1, then ℓ= 1. Hence we assume that p ≥ 2 and that there are two voters
who disagree on the relative order of ak+1 and bk+1. By Claim 3.3 the parts X (k)

1 and
X (k)

p cannot both be mixed with respect to {ak+1,bk+1}.
If the first part X (k)

1 is pure with respect to {ak+1,bk+1}, we pick an arbitrary voter v ′
1

from X (k)
1 . We choose ℓ as the smallest index for which X (k)

ℓ
contains some voter v ′

2

who ranks ak+1 versus bk+1 differently from voter v ′
1. Then Claim 3.4 implies that

every voter v ′
3 in the parts X (k)

ℓ+1, . . . , X (k)
p must rank ak+1 versus bk+1 differently from

voter v ′
1. Hence the chosen index ℓ has all desired properties, and this case is closed.

In the remaining case the last part X (k)
p is pure with respect to {ak+1,bk+1}; this case

can be settled in the same fashion using Claim 3.5. (of Claim 3.6) ⋄

Now let us finally describe how to construct the ordered partition X (k+1) in the
(k +1)st phase. Our starting point is the ordered partition X (k), and we determine an
index ℓ as defined in Claim 3.6. If part X (k)

ℓ
is pure with respect to {ak+1,bk+1}, then

we make the new partition X (k+1) coincide with the old partition X (k); Properties
(i) and (ii) are satisfied in X (k+1). If part X (k)

ℓ
is mixed with respect to {ak+1,bk+1},

then we subdivide it into two parts Y and Z so that {ak+1,bk+1} separates the union
of parts X (k)

1 , . . . , X (k)
ℓ−1,Y from the union of parts Z , X (k)

ℓ+1, . . . , X (k)
p . Then the resulting

partition
X (k+1) = 〈X (k)

1 , . . . , X (k)
ℓ−1, Y , Z , X (k)

ℓ+1, . . . , X (k)
p 〉

satisfies Properties (i) and (ii) by construction.
We keep working like this and complete phase after phase. After the very last

phase k = 1
2 m · (m −1) we generate the final ordered partition X ∗ = 〈X ∗

1 , . . . , X ∗
q 〉. We

construct an order π∗ of the voters that lists the voters in every part X ∗
j before all the

voters in part X ∗
j+1 (1 ≤ j ≤ q −1). Property (ii) guarantees that every couple separates

an initial piece of partition X ∗ from the complementary final piece, which implies
that the order π∗ for the voters in P is single-crossing. This completes the proof of
Theorem 3.2.

We conclude this section with two comments on this proof; they deal with the
uniqueness of single-crossing orders. If P is a single-crossing profile where all voters
have distinct preference orders, then there are exactly two single-crossing orders of

33

3. Single-Crossing Preferences

the voters and they are mirror images of each other. This follows directly from the
last part of the proof of Theorem 3.2. Note that in contrast to the single-crossing
property, a single-peaked profile may admit more than two single-peaked orders.

By Property (i), every two consecutive parts X ∗
j and X ∗

j+1 must be separated by

one of the couples. Since there are 1
2 m · (m −1) distinct couples, there are at most

1
2 m · (m − 1)+ 1 parts in the final partition. This implies that in a single-crossing
preference profile the number of distinct preference orders of the voters is at most
1
2 m ·(m−1)+1. Of course, this bound is already known from the connection between
single-crossing profiles and weak Bruhat orders as indicated in Section 3.4.1.

3.6 The size of forbidden configurations

Recall that we denote a profile with n voters and m alternatives as an n ×m con-
figuration. Theorem 3.2 characterizes single-crossing preference profiles through
certain forbidden 3×6 and 4×4 configurations. Are there perhaps other characteriza-
tions that work with smaller forbidden configurations? The following lemma shows
that this is not the case, and hence our characterization uses the smallest possible
forbidden configurations.

Lemma 3.7. Every characterization of single-crossing preference profiles through
forbidden configurations must forbid

(i) some n ×m configuration with n ≥ 3 and m ≥ 6 and

(ii) some n ×m configuration with n ≥ 4 and m ≥ 4.

Proof. Consider an arbitrary characterization of single-crossing profiles with forbid-
den configurations F1, . . . ,Fk . Consider the following 3×6 configuration C :

voter v1 : b ≻1 a ≻1 c ≻1 d ≻1 e ≻1 f ,
voter v2 : a ≻2 b ≻2 d ≻2 c ≻2 e ≻2 f .
voter v3 : a ≻3 b ≻3 c ≻3 d ≻3 f ≻3 e.

This profile contains a γ-configuration and thus is not single-crossing. If we remove
any alternative from C , then the resulting 3×5 configuration is single-crossing and
cannot be forbidden. If we remove any voter from C , then the resulting 2×6 configu-
ration is also single-crossing and cannot be forbidden. Hence, the only possibility
for correctly recognizing C as not single-crossing is by either forbidding C itself
or by forbidding appropriate larger configurations that contain C . This proves (i).
The proof of (ii) is based on the following 4× 4 configuration C ′ which contains
a δ-configuration:

34

3.7. Recognizing the single-crossing property

voter v1 : a ≻1 b ≻1 c ≻1 d ,
voter v2 : a ≻2 b ≻2 d ≻2 c,
voter v3 : b ≻3 a ≻3 c ≻3 d ,
voter v4 : b ≻4 a ≻4 d ≻4 c.

Since the argument closely follows the one in (i), we omit the details.

3.7 Recognizing the single-crossing property

As we already mentioned, the arguments in Section 3.5 implicitly describe an
O(n ·m2) algorithm which decides whether a given voter profile is single-crossing
and, if so, computes a single-crossing order; recall that n denotes the number of
voters and m denotes the number of alternatives. To show an extremely simple
connection between single-crossing orderings and the so-called consecutive ones
matrix property, we sketch an alternative way of recognizing single-crossing profiles
by utilizing the PQ-tree algorithm of Booth and Lueker [BL76]. The PQ-tree algorithm
was designed to recognize, for instance, consecutive ones 0-1-matrices. A 0-1-matrix
has the consecutive ones property if its columns can be permuted so that the ones in
each row are consecutive (and hence form an interval).

Given an arbitrary n ×m preference profile P where no two voters have the same
preference orders, and where n denotes the number of voters and m the number
alternatives, we transform it into a 0-1-matrix M(P) with m · (m − 1) rows and n
columns in the following way. For each voter, the matrix M(P) contains a corre-
sponding column. For each ordered pair 〈a,b〉 of alternatives, matrix M(P) has
a corresponding row with value 1 at column j if voter j ranks a ≻ b, and value 0
otherwise.

Example 3.6. Consider a single-crossing profile with four voters and three alterna-
tives as depicted in Figure 3.2a. We can construct a corresponding 0-1-matrix M(P)
for this profile which is depicted in Figure 3.2b. By applying the PQ-tree algorithm
by Booth and Lueker [BL76], we can find all permutations of the columns with
the consecutive ones property. One possible consecutive ones permutation of the
columns is 〈v1, v4, v2, v3〉. As we can easily verify, this is also a single-crossing order of
the voters in the original profile.

We show the close relation between the single-crossing property and the consecu-
tive ones property.

Lemma 3.8. A preference profile P is single-crossing if and only if the corresponding
0-1-matrix M(P) has the consecutive ones property.

35

3. Single-Crossing Preferences

voter v1 : 3 ≻1 1 ≻1 2,

voter v2 : 2 ≻2 3 ≻2 1,

voter v3 : 2 ≻3 1 ≻3 3,

voter v4 : 3 ≻4 2 ≻4 1.

(a) A 4×3 preference profile

v1 v2 v3 v4

〈1,2〉 1 0 0 0
〈2,1〉 0 1 1 1
〈1,3〉 0 0 1 0
〈3,1〉 1 1 0 1
〈2,3〉 0 1 1 0
〈3,2〉 1 0 0 1

(b) The corresponding 0-1 matrix

Figure 3.2.: A preference profile with four voters and three alternatives and its 0-1 matrix
representation with six rows and four columns.

Proof. For the “only if” part, suppose that P is single-crossing and let L be a single-
crossing order of the voters. We permute the columns of M(P) according to the
order L to obtain M ′ and we show that in each row of M ′ all ones are consecutive.
Consider an arbitrary ordered pair 〈a,b〉 of alternatives. Then, by the definition of
single-crossingness, it follows that 〈a,b〉 separates L into two pieces L1 and L2. This
means that, by the definition of M(P) and M ′, all ones in row 〈a,b〉 of M ′ are either
in L1 or in L2.

For the “if” part, suppose that the columns in M(P) can be permuted to obtain
matrix M ′ so that the ones in each row of M ′ are consecutive. Let L be the order of
the voters that corresponds to the arrangement of the columns (from left to right)
in M ′. We show that L is single-crossing. Suppose for the sake of contradiction
that a pair {a,b} of the alternatives is not single-crossing with respect to L. This
means that there are three voters vi , v j , vk with vi ≻L v j ≻L vk such that vi and vk rank
a ≻ b, but v j ranks b ≻ a. This implies that the ones in row 〈a,b〉 of matrix M ′ are
not consecutive as the row vector restricted to the corresponding three columns is
〈1,0,1〉; a contradiction.

Since deciding whether a matrix has the consecutive ones property can be done in
polynomial time [BL76], we can derive the following.

Theorem 3.9. Finding a single-crossing for a profile with n voters and m alternatives
can be done in O(n ·m2) time.

Proof. The PQ-algorithm by [BL76] solves the consecutive ones matrix problem in
O(x + y + z) time, where x is the number of columns, y is the number of rows, and

36

3.8. Concluding remarks

z is the total number of 1s in the matrix. Hence, single-crossing profiles can be
recognized in O(m2 +n +n ·m2) =O(n ·m2) time.

We conclude this section by remarking that, first, the PQ-tree algorithm is not
only useful for deciding the single-crossing property. For instance, Bartholdi III
and Trick [BT86] used it to decide the single-peaked property. Second, Doignon
and Falmagne [DF94] and Elkind, Faliszewski, and Slinko [EFS12] also presented
polynomial-time algorithms to recognize the single-crossing property, avoiding the
usage of PQ-tree algorithms. The running time of the algorithm by Doignon and
Falmagne is O(n2 +n ·m · log(m)). Elkind, Faliszewski, and Slinko do not provide an
analysis of the running time of their algorithm, but a straightforward implementation
of their algorithm runs in O(n3 ·m2).

3.8 Concluding remarks

Following the research line of Ballester and Haeringer [BH11] who characterized
single-peaked profiles by two finite forbidden substructures, we likewise character-
ized single-crossing profiles by two finite forbidden substructures. We also presented
an efficient algorithm to recognize the single-crossing property.

For profiles which are not single-peaked or single-crossing, we may be interested
in approximating these properties by deleting the fewest possible number of voters
or alternatives. The resulting computational questions are the focus of Chapter 5.
There, we model the concept of nearly nicely structured profiles and study the
computational complexity of finding such profiles.

37

CHAPTER 4

One-Dimensional Euclidean Preferences

If a seller increases his price too far he will gradually lose business
to his rivals, but he does not lose all his trade instantly when he
raises his price only a trifle. Many customers will still prefer to
trade with him because they live nearer to his store than to the
others, . . .

Harold Hotelling, 1929

We show that one-dimensional Euclidean preference profiles cannot be charac-
terized in terms of finitely many forbidden substructures. This result is in strong
contrast to the case of single-peaked and single-crossing preference profiles, for
which such finite characterizations have been derived (see the work of Ballester and
Haeringer [BH11] and Theorem 3.2 in Chapter 3).

4.1 Introduction

Single-peakedness, single-crossingness, and one-dimensional Euclideanness are
popular domain restrictions that show up in a variety of models in the social sciences
and in economics [Bla48, Hot29, Rob77]. In many situations, these domain restric-
tions guarantee the existence of a desirable entity that would not exist without the
restriction, as for instance a strategy-proof voting rule or a weak Condorcet winner.

As already discussed in Section 3.1, single-peakedness describes a natural order
of the alternatives, while single-crossingness describes a natural order of the voters.
In this chapter, we study a third domain restriction, one-dimensional Euclidean
preferences, that describes an embedding of voters and alternatives into the real
numbers, such that every voter prefers alternatives that are embedded close to him to
alternatives that are embedded farther away. For three alternatives, a single-crossing
profile with the largest voter set where no two voters have the same preference order

This chapter is based on “The one-dimensional Euclidean domain: Finitely many obstructions are not
enough” by J. Chen, K. Pruhs, and G. J. Woeginger, Social Choice and Welfare [CPW16] .

39

4. One-Dimensional Euclidean Preferences

a b c

ab ac bc

a
b
c

b
a
c

b
c
a

c
b
a

Alternatives

Preference
orders

Midpoints

Figure 4.1.: A one-dimensional Euclidean representation of three alternatives: a, b, and c,
and four voters with pairwise different preference orders: a ≻ b ≻ c, b ≻ a ≻ c, b ≻ c ≻ a, and
c ≻ b ≻ a. The alternatives are embedded from left to right into the real number line so that
the midpoints of each pair of the alternatives divide the real line into four intervals. Each
of these four intervals can contain at most one of these four voters. For instance, the voter
with preference order b ≻ a ≻ c (read from top to bottom) prefers b to a, implying that he
must be embedded at a point to the right of the midpoint of a and b. He also prefers a to c,
implying that he must be embedded at a point to the left of the midpoint of a and c . Thus, he
can be embedded at any point in the open interval between the midpoint of a and b, and the
midpoint of a and c.

consists of four voters. Indeed, this coincides with the size of the maximum one-
dimensional Euclidean profile, that is, a one-dimensional Euclidean profile with the
largest voter set such that no two voters have the same preference order.

Figure 4.1 illustrates such a situation. Three alternatives, a,b,c, and four voters
v1, v2, v3, v4 with preference orders

voter v1 : a ≻ b ≻ c,

voter v2 : b ≻ a ≻ c,

voter v3 : b ≻ c ≻ a,

voter v4 : c ≻ b ≻ a,

are embedded into the real number line so that each voter prefers one alternative x
to another y if his distance to x is shorter than to y .

One-dimensional Euclidean preferences go back to Hotelling [Hot29]. They have
been discussed by Coombs [Coo64] under the name unidimensional unfolding repre-
sentations, and they are restrictions of single-peaked and single-crossing preferences.
Doignon and Falmagne [DF94] discussed Euclidean preferences in the context of
behavioral sciences, and Brams, Jones, and Kilgour [BJK02] discussed them in the
context of coalition formation.

40

4.1. Introduction

Forbidden substructures. As already discussed in the previous chapter, mathe-
matical structures allow characterizations through forbidden substructures. There,
we have seen that single-crossing preferences can be characterized by finitely many
forbidden substructures. Let us stress that every monotone property of profiles
(that is, every property that is preserved under the removal of voters and/or alterna-
tives) can be characterized by a set of forbidden substructures. For many monotone
properties, however, the number of forbidden substructures may be infinite. The
Condorcet principle, that is, the existence of a Condorcet winner, is a typical non-
monotone example of a property in Social Choice that cannot be characterized at all
through forbidden substructures because after the deletion of one or more voters, a
Condorcet winner may no longer exist.

A characterization by finitely many forbidden substructures has many positive
consequences. Whenever a family F of combinatorial objects allows such a finite
characterization, this directly implies the existence of a polynomial time algorithm
for recognizing the members of F : one may simply work through the forbidden
substructures one by one, and check whether the object in question contains the
substructure. By looking deeper into the combinatorial structure of such families
F , one usually manages to find recognition algorithms that are much faster than
this simple approach. As an example, there are algorithms for recognizing single-
peaked preference profiles that are due to Bartholdi III and Trick [BT86], Doignon
and Falmagne [DF94], and Escoffier, Lang, and Öztürk [ELÖ08]. Single-crossingness
can also be recognized very efficiently; see Doignon and Falmagne [DF94], Elkind,
Faliszewski, and Slinko [EFS12], and Bredereck, Chen, and Woeginger [BCW13a] and
Chapter 3.

As another positive consequence, a characterization by finitely many forbidden
substructures often helps in understanding the algorithmic and combinatorial be-
havior of family F . For example, in the next chapter, we will investigate the problem
of deciding whether a given preference profile is close to having a nice structure.
The distance is measured by the number of voters or alternatives that have to be
deleted from the given profile in order to reach a nicely structured profile. For the
cases where ‘nicely structured’ means single-peaked or single-crossing, our proofs
are heavily based on characterizations ([BH11] and Chapter 3) by finitely many for-
bidden substructures. We will see more results on this issue in Chapter 5. Elkind and
Lackner [EL14] studied similar questions and derive approximation algorithms for
the number of deleted voters or alternatives. All of their results are centered around
preference profiles that can be characterized by a finite number of forbidden sub-
structures, and some of the theorems are parameterized by the number of forbidden
substructures.

41

4. One-Dimensional Euclidean Preferences

4.2 Results

As one-dimensional Euclidean profiles form a special case of single-peaked and
single-crossing profiles (see Section 4.4 for more information on this, and see
Section 3.4 for more information on single-crossing preferences), every forbid-
den substructure to single-peakedness and every forbidden substructure to single-
crossingness will automatically also form a forbidden substructure to one-dimen-
sional Euclideanness. Now the question arises: “Are there any further forbidden
substructures to one-dimensional Euclideanness?” Coombs [Coo64] answered this
back in 1964: “Yes, there are!” (see Section 4.4.3 for more information). This immedi-
ately takes us to another question: “Is there a characterization of one-dimensional
Euclideanness in terms of finitely many forbidden substructures?” The answer to this
second question is negative, as we are going to show in this chapter.

To this end, we construct an infinite sequence of preference profiles that have
two crucial properties. First, none of these profiles is one-dimensional Euclidean.
Secondly, every such profile just barely violates one-dimensional Euclideanness, as
the deletion of an arbitrary voter immediately makes the profile one-dimensional
Euclidean. The second property implies that each profile in the sequence is on the
edge of being Euclidean, and that the reason for its non-Euclideanness must lie in
its overall structure. In other words, each of these infinitely many profiles yields
a separate forbidden substructure for one-dimensional Euclideanness, and this is
exactly what we want to establish.

The definition of the infinite profile sequence and the resulting analysis are quite
involved. Ironically, the complicatedness of our proof is a consequence of the very
statement we are going to prove. As part of our proof, we have to argue that the
deletion of an arbitrary voter from an arbitrary profile in the sequence yields a one-
dimensional Euclidean profile. If there was a characterization of one-dimensional
Euclideanness by finitely many forbidden substructures, then the following argu-
ment would be relatively easy to get through: we could simply analyze the preference
profile and show that the deletion of any voter removes all forbidden substructures.
But unfortunately, such a characterization does not exist. The only viable (and fairly
tedious) approach is to explicitly specify the corresponding Euclidean representa-
tions (one representation per deleted voter!) and to prove by case distinctions that
each such representation correctly encodes the preferences of all remaining voters.

4.3 Chapter outline

In Section 4.4, we review single-peakedness and single-crossingness, and intro-
duce one-dimensional Euclideanness. We also refer the reader to the previous

42

4.4. Definitions, notations, and examples

chapter, where we characterize single-crossing preference profiles. In Section 4.5 we
formulate our main results in Theorems 4.3 and 4.4, and we show how Theorem 4.4
follows from Theorem 4.3. Sections 4.6 through 4.10 present the long and technical
proof of Theorem 4.3. More precisely, Section 4.6 defines an infinite sequence of
profiles which are shown not to be one-dimensional Euclidean in Section 4.7. Sec-
tion 4.8 gives, for each voter, an embedding for the profile resulting from the deletion
of this voter. Section 4.9 contains some important but very technical lemmas which
are used in Section 4.10 to show the correctness of these embeddings.

We remark that to follow the main idea of this chapter, it is sufficient to read
through Sections 4.5 to 4.7.

Section 4.11 shows how to construct other infinite sequences of non-one-dimen-
sional Euclidean profiles. Section 4.12 completes the chapter with some discussion
on future research work.

4.4 Definitions, notations, and examples

In this section, we introduce the three major concepts used in this chapter: single-
peaked profiles, single-crossing profiles, and one-dimensional Euclidean profiles.

4.4.1 Single-peaked profiles

A linear order of the alternatives is single-peaked with respect to a fixed voter v ,
if the preferences of v taken along this order have a single local maximum, that is,
the preferences along this order never increase again once decreased. A preference
profile is single-peaked, if it allows an order L of the alternatives that is single-peaked
with respect to every voter v . Formally, L is single-peaked with respect to v if for
each three distinct alternatives a,b,c ∈ A with a ≻L b ≻L c it holds that

a ≻L b ≻L c implies that if a ≻v b, then b ≻v c.

Note that for every single-peaked permutation 〈π(1),π(2), . . . ,π(m)〉 of the alterna-
tives, the reverse permutation 〈π(m), . . . ,π(2),π(1)〉 is also single-peaked. We refer the
reader to Section 5.5.2 for more information on single-peakedness and its character-
ization.

4.4.2 Single-crossing profiles

The single-crossing property describes a linear order of the voters that can be
separated by every (unordered) pair of alternatives. For further information, we refer
to Chapter 3, where we formally define the single-crossing property and characterize
it through two finite forbidden substructures introduced in Examples 3.4 and 3.5.

43

4. One-Dimensional Euclidean Preferences

4.4.3 One-dimensional Euclidean profiles

The one-dimensional Euclidean property describes the situation where voters
rank alternatives according to their spatial perception.

Definition 4.1 (One-dimensional Euclidean profiles). Consider a common embed-
ding (E ,F) of the voters and alternatives into the real number line, which assigns to
every alternative j a real number E [j], and to every voter vi a real number F [i]. A
preference profile is one-dimensional Euclidean or simply 1-D Euclidean (as we only
consider the one-dimensional case) if there is a common embedding of the voters
and alternatives such that for every voter vi and for every pair a and b of alternatives,
a ≻i b holds if and only if the distance from F [i] to E [a] is strictly smaller than the
distance from F [i] to E [b], that is,

|F [i]−E [a]| < |F [i]−E [b]|.
In other words, small spatial distances from the point F [i] indicate strong preferences
of voter vi . We subsequently also call this 1-D Euclidean embedding (E ,F) a 1-D
Euclidean representation.

It is well-known (and easy to see) that every one-dimensional Euclidean profile is
single-peaked and single-crossing: the left-to-right order of the alternatives along
the 1-D Euclidean representation is single-peaked, and the left-to-right order of
the voters along the 1-D Euclidean representation is single-crossing. Thus, a 1-D
Euclidean preference profile can have at most m · (m −1)/2+1 voters with different
preference orders as a single-crossing profile can have at most m · (m−1)/2+1 voters
with different preference orders, where m denotes the number of alternatives (see the
discussion at the end of Section 3.5). Figure 4.1 shows a 1-D Euclidean representation
for a 1-D Euclidean preference profile with m = 3 alternatives and 3 ·2/2+1 = 4 voters
with different preference orders.

Coombs [Coo64, page 91] discussed a preference profile with 16 voters and 6 al-
ternatives which is both single-peaked and single-crossing, but fails to be one-
dimensional Euclidean. The following example contains the smallest profile known
to us that has these intriguing properties.1

Example 4.1. Consider the following 3×6 profile P :

voter v1 : c ≻ b ≻ a ≻ d ≻ e ≻ f ,
voter v2 : c ≻ d ≻ b ≻ e ≻ f ≻ a,
voter v3 : e ≻ d ≻ c ≻ f ≻ b ≻ a.

1Indeed, Bulteau and Chen [BC] recently showed that every single-peaked and single-crossing profile
with up to two voters or with up to five alternatives is 1-D Euclidean.

44

4.4. Definitions, notations, and examples

This profile P is single-peaked with respect to the order 〈a,b,c,d ,e, f 〉 of alternatives,
and it is single-crossing with respect to the ordering 〈v1, v2, v3〉 of voters. Furthermore,
we will see below (Example 4.2) that P is not 1-D Euclidean, but deleting any single
voter makes the profile 1-D Euclidean.

As the profile in Example 4.1 is single-peaked and single-crossing, it does not
contain any of the forbidden substructures listed in Definitions 5.3 and 5.5 and in
Examples 3.4 and 3.5. Hence, there must be some other forbidden substructure
contained in it, that is responsible for its non-1-D Euclideanness. Example 4.1 and
the 16×6 profile by Coombs provide first indications that the forbidden substructures
for one-dimensional Euclideanness might be complex and intricate to analyze.

The following two propositions state simple observations that will be used repeat-
edly in our arguments.

Proposition 4.1. Let (E ,F) be a 1-D Euclidean representation of some profile and let a
and b be two alternatives in the profile with E [a] < E [b]. Then, voter vi prefers a to b if
and only if F [i] < 1

2 (E [a]+E [b]), and he prefers b to a if and only if F [i] > 1
2 (E [a]+E [b]).

Proof. By the definition of 1-D Euclideanness, voter vi prefers a to b if and only if

|F [i]−E [a]| < |F [i]−E [b]| (⋆)

holds. Since E [a] < E [b], (⋆) holds if and only if F [i] < 1
2 (E [a]+E [b]). The case of vi

preferring b to a can be shown using symmetric reasoning.

Proposition 4.1 describes how to embed the voters if we know the relative order of
the alternatives in the embedding. For instance, in Figure 4.1, since E(a) < E(b), a
voter preferring a ≻ b must be embedded left to the midpoint of E(a) and E(b), that
is, 1

2 (E [a]+E [b]). The next result is derived from the single-peaked property that
every 1-D Euclidean profile must possess.

Proposition 4.2. Let (E ,F) be a 1-D Euclidean representation of some preference
profile and let a,b,c be three alternatives in the profile with E [a] < E [b] < E [c].

• If voter vi prefers a ≻i b, then he also prefers b ≻i c.

• If voter vi prefers c ≻i b, then he also prefers b ≻i a.

Proof. By the definition of 1-D Euclideanness, the left-to-right order of the alter-
natives obtained from the embedding E is a single-peaked order. Then, the two
statements follow immediately from the definition of single-peakedness.

45

4. One-Dimensional Euclidean Preferences

a b c d e f

c
d
b
e
f
a

e
d
c
f
b
a

bd

a f

cd

be

de

b f

c f

Alternatives

Preference
orders

Midpoints

Figure 4.2.: An embedding showing that the profile from Example 4.1 with voters v2 and v3,
with preference orders c ≻ d ≻ b ≻ e ≻ f ≻ a and e ≻ d ≻ c ≻ f ≻ b ≻ a, is 1-D Euclidean. The
embedding of alternatives a,b, . . . , f is depicted explicitly. Voter v2 (resp. v3) can be embedded
at any point in the open interval between the midpoint of b and d , and the midpoint of c and
d (resp. the midpoint of d and e, and the midpoint of c and f).

Example 4.2. We continue our discussion of Example 4.1. Suppose for the sake of
contradiction that the profile in Example 4.1 is one-dimensional Euclidean. Let (E ,F)
be such a 1-D Euclidean representation. We can verify that the only single-peaked
orders of the alternatives are 〈a,b,c,d ,e, f 〉 and its reverse. By Proposition 4.1 and by
the fact that voter v1 ranks c ≻ b and a ≻ d , it follows that

E [b]+E [c] < 2F [1] < E [a]+E [d]. (4.1)

Again, by Proposition 4.1 and by the fact that voter v2 ranks f ≻ a and b ≻ e, it follows
that

E [a]+E [f] < 2F [2] < E [b]+E [e]. (4.2)

Finally, by Proposition 4.1 and by the fact that voter v3 ranks e ≻ d and c ≻ f , it follows
that

E [d]+E [e] < 2F [3] < E [c]+E [f]. (4.3)

If we add up the inequalities (4.1)–(4.3), then we obtain the contradiction

f∑
x=a

E [x] <
f∑

x=a
E [x].

46

4.5. Statement of the main results

As for the minimal non-1-D Euclideanness, Figure 4.2 shows a possible 1-D Eu-
clidean representation of the profile without voter v1. For the profile without voter v2,
we can verify that the following embedding is 1-D Euclidean:

E [a] = 0, E [b] = 1, E [c] = 3, E [d] = 6, E [e] = 7, E [f] = 12,

F [v1] = 2.5, F [v3] = 7.

For the profile without voter v3, we can verify that the following embedding is 1-D
Euclidean:

E [a] = 0, E [b] = 3, E [c] = 5, E [d] = 10, E [e] = 12, E [f] = 13,

F [v1] = 4.5, F [v3] = 7.

Finally, we mention that the (mathematical) literature on one-dimensional Eu-
clidean preference profiles is scarce. Doignon and Falmagne [DF94], Knoblauch
[Kno10], and Elkind and Faliszewski [EF14] designed polynomial-time algorithms
for deciding whether a given preference profile has a one-dimensional Euclidean
representation. Their approaches are not purely combinatorial, as they are partially
based on linear programming formulations. In the first phase, while the approaches
of Doignon and Falmagne [DF94] and of Elkind and Faliszewski [EF14] first construct
a single-crossing order and then a single-peaked order, the approach of Knoblauch
[Kno10] first constructs a single-peakd order and then a single-crossing order. In
the second phase, they use linear programming to find an embedding satisfying the
order found in phase one, and the 1-D Euclideanness.

4.5 Statement of the main results

In this section we formulate the two closely related main results of this chapter.
The first result is technical and states the existence of infinitely many non-1-D
Euclidean profiles that are minimal with respect to voter deletion.

Theorem 4.3. For any integer k ≥ 2, there exists a preference profile P ∗
k with n = 2k

voters and m = 4k alternatives, such that the following holds.

(a) Profile P ∗
k is not one-dimensional Euclidean.

(b) Profile P ∗
k is minimal in the following sense: the deletion of an arbitrary voter

from P ∗
k yields a one-dimensional Euclidean profile.

47

4. One-Dimensional Euclidean Preferences

The proof of Theorem 4.3 is long and will fill most of the rest of this chapter. Here
is a quick overview of this proof: Section 4.6 describes the profiles P ∗

k . Section 4.7
shows that every profile P ∗

k satisfies Property (a) in Theorem 4.3, while the three
Sections 4.8 through 4.10 establish Property (b). Section 4.8 defines the underlying 1-
D Euclidean embeddings, Section 4.9 lists a number of technical auxiliary statements,
and Section 4.10 establishes the correctness of the 1-D Euclidean embeddings.

To grasp the general idea of why the embeddings defined in Section 4.8 are indeed
1-D Euclidean, the reader can safely skip sections 4.9 and 4.10 to the introduction
of Section 4.10 and Section 4.10.1. The latter presents the first subproof of a total of
four subproofs in Section 4.10.

As an immediate consequence of Theorem 4.3, we derive our second main result
as stated in the following theorem.

Theorem 4.4. One-dimensional Euclidean preference profiles cannot be characterized
in terms of finitely many forbidden substructures.

Proof. Suppose for the sake of contradiction that such a characterization with finitely
many forbidden substructures exists. Let t denote the largest number of voters in any
forbidden substructure, and consider a profile P ∗

k from Theorem 4.3 with k ≥ t . As
P ∗

k is not one-dimensional Euclidean, by Property (a), it must contain one of these
finitely many forbidden substructures with at most t voters. As profile P ∗

k contains
2k > t +1 voters, one of its voters is not part of this forbidden substructure. If we
delete this voter, the resulting profile will still contain the forbidden substructure;
hence it is not one-dimensional Euclidean, which contradicts Property (b).

4.6 Definition of the profiles

In this section, we begin the proof of Theorem 4.3 by defining the underlying
profiles P ∗

k . Properties (a) and (b) stated in Theorem 4.3 will be established in the
next sections.

We consider n = 2k voters v1, v2, . . . , v2k together with m = 4k alternatives 1, 2, 3, . . .,
4k. The preference orders of the voters will be constructed from pieces Xi , Yi , Zi with
1 ≤ i ≤ k:

Xi := 2k +2i −2 ≻ 2k +2i −3 ≻ 2k +2i −4 ≻ . . . ≻ 2i +2,

Yi := 2i −2 ≻ 2i −3 ≻ 2i −4 ≻ . . . ≻ 1,

Zi := 2k +2i +1 ≻ 2k +2i +2 ≻ 2k +2i +3 ≻ . . . ≻ 4k.

48

4.6. Definition of the profiles

Note that for every i = 1, . . . ,k, the three pieces Xi , Yi , Zi cover contiguous intervals
of 2k −3, 2i −2, and 2k −2i alternatives, respectively. Together, the three pieces cover
4k −5 of the alternatives, and only the five alternatives in the set

Ui = {2i −1, 2i , 2i +1} ∪ {2k +2i −1, 2k +2i }

remain uncovered. Also note that the pieces Y1 and Zk are empty. The preference
orders of the voters are defined as follows. The two voters v2i−1 and v2i always form
a couple with fairly similar preferences. For 1 ≤ i ≤ k −1, these voters v2i−1 and v2i

have the following preferences:

v2i−1 : Xi ≻ 2i +1 ≻ 2k +2i −1 ≻ 2i ≻ 2i −1 ≻ 2k +2i ≻ Yi ≻ Zi , (4.4a)

v2i : Xi ≻ 2k +2i −1 ≻ 2k +2i ≻ 2i +1 ≻ 2i ≻ 2i −1 ≻ Yi ≻ Zi . (4.4b)

Note that the voters v2i−1 and v2i both rank the three alternatives 2i +1, 2i , 2i −1 in
Ui in the same decreasing order, with the two other alternatives 2k+2i −1 and 2k+2i
shuffled into that order. The last two voters v2k−1 and v2k are defined separately:

v2k−1 : Xk ≻ 2k +1 ≻ 4k −1 ≻ 2k ≻ 2k −1 ≻ 4k ≻ Yk , (4.5a)

v2k : Xk ≻ 2k +1 ≻ 2k ≻ . . . ≻ 3 ≻ 2 ≻ 4k −1 ≻ 4k ≻ 1. (4.5b)

Since piece Zk is empty, the preferences of voter v2k−1 in (4.5a) are actually very
similar to the preferences of the other odd-numbered voters v2i−1 with 1 ≤ i ≤ k −
1 in (4.4a). The last voter v2k , however, behaves quite differently from the other
even-numbered voters: on top of his preference order, there are the alternatives in
Xk , followed by an intermingling of the alternatives in Yk and Uk (the alternatives
2k +1, . . . ,2 in decreasing order, and then the three alternatives 4k −1, 4k, and 1).

Example 4.3. For k = 4, the preference profile P ∗
4 has n = 8 voters and m = 16 alter-

natives and looks as follows (for the sake of readability, we omitted the preference
symbol ≻ between the alternatives, and for each preference order, we list the alterna-
tives from left to right starting with the most preferred alternative):

49

4. One-Dimensional Euclidean Preferences

v1 : 8 7 6 5 4 3 9 2 1 10 11 12 13 14 15 16

v2 : 8 7 6 5 4 9 10 3 2 1 11 12 13 14 15 16

v3 : 10 9 8 7 6 5 11 4 3 12 2 1 13 14 15 16

v4 : 10 9 8 7 6 11 12 5 4 3 2 1 13 14 15 16

v5 : 12 11 10 9 8 7 13 6 5 14 4 3 2 1 15 16

v6 : 12 11 10 9 8 13 14 7 6 5 4 3 2 1 15 16

v7 : 14 13 12 11 10 9 15 8 7 16 6 5 4 3 2 1

v8 : 14 13 12 11 10 9 8 7 6 5 4 3 2 15 16 1

The alternatives in the five leftmost columns form the pieces Xi . In the first seven
rows, the five columns in the center correspond to the sets Ui , while the remaining
six columns make up the pieces the Yi and Zi . The last row illustrates the unique
behavior of the last voter v8.

4.7 The profiles are not 1-D Euclidean

In this section, we will discuss the single-crossing, single-peaked and one-dimen-
sional Euclidean properties of the profiles P ∗

k . First, we can verify that every pro-
file P ∗

k with k ≥ 2 is single-crossing with respect to the order

〈v1, v2, . . . , v2k−2, v2k , v2k−1〉

of the voters (that is, the natural order of voters by increasing index, but with the
last two voters v2k−1 and v2k swapped). As this single-crossing property is of no
relevance to our further considerations, the simple proof is omitted. Next, let us turn
to single-peakedness, which is crucial for the construction of our embeddings in
Section 4.8.

Lemma 4.5. For k ≥ 2, the profile P ∗
k is single-peaked. Furthermore, the only two

single-peaked orders of the alternatives are the increasing order 1,2,3, . . . ,4k and the
decreasing order 4k, . . . ,3,2,1.

Proof. Every voter v2i−1 and v2i with 1 ≤ i ≤ k ranks 2k +2i −2 in the first position.
Furthermore, he ranks the small alternatives 1,2, . . . ,2k +2i −2 in decreasing order,
and he ranks the large alternatives 2k +2i −2,2k +2i −1, . . . ,4k in increasing order.
Hence, P ∗

k indeed is single-peaked with respect to the permutations

〈1,2, . . . ,4k〉 and 〈4k, . . . ,2,1〉.

50

4.7. The profiles are not 1-D Euclidean

Next, consider an arbitrary single-peaked permutation 〈π(1),π(2), . . . ,π(4k)〉 of the
alternatives. Since 4k and 1 are the least preferred alternatives of voters v1 and v2k , re-
spectively, these two alternatives must be extremal in the single-peaked permutation;
by symmetry we assume that π(1) = 1 and π(4k) = 4k.

• Voter v1 ranks 1 ≻ 2k + 2 ≻ 2k + 3 ≻ . . . ≻ 4k, without any other alternatives
ranked in-between. This implies π(x) = x for 2k +2 ≤ x ≤ 4k.

• Voter v2k−1 ranks 2k +2 ≻ 2k +1 ≻ 2k ≻ . . . ≻ 3 ≻ 2 ≻ 1. This implies π(x) = x for
the remaining alternatives x with 1 ≤ x ≤ 2k +1.

Summarizing, we have π(x) = x for all x, which completes the proof.

The following lemma shows that every profile P ∗
k satisfies Property (a) of Theo-

rem 4.3.

Lemma 4.6. For k ≥ 2, the profile P ∗
k is not one-dimensional Euclidean.

Proof. We suppose for the sake of contradiction that profile P ∗
k is 1-D Euclidean. Let

F [j] for j = 1, . . . ,2k and E [i] for i = 1, . . . ,4k denote a 1-D Euclidean representation of
the voters and alternatives. As the 1-D Euclidean representation induces a single-
peaked order of the alternatives, we will assume by Lemma 4.5 that the alternatives
are embedded in increasing order with

E [1] < E [2] < E [3] < . . . < E [4k −1] < E [4k]. (4.6)

Next, we claim that in any 1-D Euclidean representation under (4.6), the embedded
alternatives satisfy the following inequalities:

E [2k +2i −1]+E [2i] < E [2k +2i]+E [2i −1] for 1 ≤ i ≤ k (4.7a)

E [2k +2i]+E [2i +1] < E [2k +2i −1]+E [2i +2] for 1 ≤ i ≤ k −1 (4.7b)

E [4k]+E [1] < E [4k −1]+E [2] (4.7c)

We show the correctness of this claim as follows. For each i = 1, . . . ,k, voter v2i−1 ranks
2k +2i −1 ≻ 2i and 2i −1 ≻ 2k +2i , which by Proposition 4.1 yields

1

2
(E [2k +2i −1]+E [2i]) < F [2i −1] < 1

2
(E [2k +2i]+E [2i −1]) ,

which in turn implies (4.7a). Similarly, for i = 1, . . . ,k − 1, voter v2i ranks 2i +2 ≻
2k +2i −1 and 2k +2i ≻ 2i +1 which leads to (4.7b). Finally, voter v2k ranks 2 ≻ 4k −1

51

4. One-Dimensional Euclidean Preferences

1 2 3 4 2k −3 2k −2 2k −1 2k. . .

. . .

2k +1 2k +2 2k +3 2k +4 4k −3 4k −2 4k −1 4k. . .

Figure 4.3.: The “smaller” relation of the distances between two neighboring alternatives 2i+1
and 2i +2. Arrow “→” indicates the “smaller than (<)” relation. For the sake of readability, the
top line depicts the real line up to 2k, and the bottom line depicts the real line starting from
2k +1.

and 4k ≻ 1, which implies (4.7c). This shows the correctness of the inequalities (4.7a)–
(4.7c). By adding up all the inequalities, we derive the contradiction

∑4k
x=1 E [x] <∑4k

x=1 E [x].

Before we move on to the next section where we discuss the 1-D Euclidean em-
beddings, let us take a closer look at the cause of the non-1-D Euclideanness of our
constructed profile. First, we rearrange the terms of the inequalities (4.7a)–(4.7c) to
obtain the following.

E [2i]−E [2i −1] < E [2k +2i]−E [2k +2i −1] for 1 ≤ i ≤ k (4.8a)

E [2k +2i]−E [2k +2i −1] < E [2i +2]−E [2i +1] for 1 ≤ i ≤ k −1 (4.8b)

E [4k]−E [4k −1] < E [2]−E [1] (4.8c)

By the chain of inequalities (4.6), the alternatives 1,2, . . . ,4k are embedded from left
to right in increasing order. Thus, both the left-hand side and the right-hand side of
the inequalities (4.8a)–(4.8c) refer to distances of two neighboring alternatives 2i −1
and 2i in the embedding. Thus, if we consider the “smaller than (<)” relation of these
distances, then we find that this relation is cyclic, which is impossible for any 1-D
Euclidean representation. See Figure 4.3 for an illustration. In fact, any preference
profile with a “cyclic” relation is not 1-D Euclidean. We will discuss this issue in
Section 4.11.

4.8 Definition of the 1-D Euclidean embeddings

This section, as well as the following two sections, contains mostly technical results
which, while important, are not necessary to read in order to follow the general idea
of this chapter.

52

4.8. Definition of the 1-D Euclidean embeddings

We fix an integer s with 1 ≤ s ≤ 2k and construct 1-D Euclidean embeddings Fs

and Es of the voters and alternatives in profile P ∗
k . We show that Fs (minus voter vs ’s

embedding) and Es together form a 1-D Euclidean representation of the profile
obtained from P ∗

k by deleting vs .
We start by defining the 1-D Euclidean embedding Es of the alternatives. We

anchor the embedding by placing the first alternative at the position

Es [1] = 0. (4.9)

The remaining values Es [2], . . . ,Es [4k] are defined recursively by the equations (4.10)–
(4.15) below. For 1 ≤ i ≤ k −1, we set

Es [2i +1]−Es [2i] = 2 (4.10)

and for 1 ≤ i ≤ k we set

Es [2i]−Es [2i −1] = (4i −2s −3 mod 4k). (4.11)

Note that the relations (4.9)–(4.11) define Es [x] for all x ≤ 2k. For 1 ≤ i ≤ k −1, we set

Es [2k +2i −1]−Es [2k +2i −2]

=
{

Es [2k +2i −3]−Es [2i +1]+2 if s ̸= 2i −1

Es [2k +2i −3]−Es [2i +2]+2 if s = 2i −1.
(4.12)

For 1 ≤ i ≤ k −1, we define

Es [2k +2i]−Es [2k +2i −1] = (4i −2s −1 mod 4k). (4.13)

Note that the relations (4.12) and (4.13) define Es [x] for all x with 2k +1 ≤ x ≤ 4k −2.
Finally, we define the 1-D Euclidean embedding of the last two alternatives as

Es [4k −1]−Es [4k −2] =
{

Es [4k −3]−Es [2]+2 if s ̸= 2k

Es [4k −3]−Es [2k +1]+2 if s = 2k
(4.14)

and

Es [4k]−Es [4k −1] =
{

Es [2]−Es [1]−2 if s ̸= 2k

Es [2k +1]−Es [2k −1] if s = 2k.
(4.15)

This completes the description of the 1-D Euclidean embedding Es of the alternatives.
Note that Es [x] is integer for all alternatives x.

53

4. One-Dimensional Euclidean Preferences

d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16

E1 : 15 2 3 2 7 2 11 13 1 35 5 62 9 145 13

E2 : 13 2 1 2 5 2 9 12 15 30 3 68 7 151 11

E3 : 11 2 15 2 3 2 7 24 13 35 1 81 5 187 9

E4 : 9 2 13 2 1 2 5 20 11 30 15 68 3 171 7

E5 : 7 2 11 2 15 2 3 32 9 54 13 97 1 242 5

E6 : 5 2 9 2 13 2 1 28 7 46 11 84 15 207 3

E7 : 3 2 7 2 11 2 15 24 5 54 9 100 13 233 1

E8 : 1 2 5 2 9 2 13 20 3 46 7 84 11 142 33

Table 4.1.: This table is discussed in Example 4.4 and illustrates the 1-D Euclidean embedding
of the alternatives in profile P ∗

4 . Every row is labeled with the corresponding embedding Es .
If a column is labeled di , then its entries show the 1-D Euclidean distances Es [i]−Es [i −1]
between the two consecutively embedded alternatives i −1 and i .

Lemma 4.7. The embedding Es satisfies Es [x] < Es [y] for all alternatives x and y with
1 ≤ x < y ≤ 4k. In other words, Es satisfies the inequalities in (4.6).

Proof. The statement follows from (4.9)–(4.15) by an inductive argument. The right-
hand sides in (4.10), (4.11), and (4.13) are all positive. The right-hand sides in (4.12)
and (4.14) can be shown to be positive by induction. Finally for i = 1 and s ̸= 2k, the
right-hand side of (4.11) is a positive odd integer greater than 1; this yields Es [2] ≥ 3
which implies that the right-hand side Es [2]−Es [1]−2 in (4.15) is positive, too.

Example 4.4. We continue our discussion of profile P ∗
4 from Example 4.3. For every

embedding Es with 1 ≤ s ≤ 8, the corresponding row in Table 4.1 lists the distances
di = Es [i]−Es [i −1] between pairs of consecutive alternatives according to formulas
(4.10)–(4.15). For instance, the intersection of row E5 and column d4 contains an
entry with value 11; this means that in the 1-D Euclidean representation E5, the
distance E5[4]−E5[3] between the embedded alternatives 3 and 4 equals 11. As
Es [1] = 0, we see that for 2 ≤ i ≤ 4k, Es [i] equals d2 +d3 +·· ·+di . For instance in E5,
alternative 4 will be embedded at E5[4] = 7+2+11 = 20.

The reader will notice the periodic structure of part of the data in Table 4.1. For
instance, every even-numbered column except the last one contains a circular shift
of the eight numbers 15, 13, 11, 9, 7, 5, 3, 1 as shown in boldface, which results from

54

4.8. Definition of the 1-D Euclidean embeddings

equations (4.11) and (4.13). Furthermore, all entries in the three columns d3, d5, d7

have the same value 2 because of (4.10). The values in other parts of the table look
somewhat irregular and chaotic, which is caused by formula (4.12). For us, the most
convenient way of analyzing this data is via the recursive definitions (4.9)–(4.15).

Now let us turn to the 1-D Euclidean embedding of the voters. The Euclidean
position Fs [j] of every voter v j is the average of exactly four embedded alternatives.
For 1 ≤ i ≤ k −1, we define

Fs [2i −1] = 1

4
(Es [2i −1]+Es [2i]+Es [2k +2i −1]+Es [2k +2i]) . (4.16)

Similarly, for 1 ≤ i ≤ k −1, we define

Fs [2i] = 1

4
(Es [2i +1]+Es [2i +2]+Es [2k +2i −1]+Es [2k +2i]) . (4.17)

If s ̸= 2k, then we embed voter v2k−1 according to (4.16), while for s = 2k, we embed it
in a slightly different way. More precisely, we set

Fs [2k −1] =
{

1
4 (Es [2k −1]+Es [2k]+Es [4k −1]+Es [4k]) if s ̸= 2k
1
4 (Es [2k −2]+Es [2k +1]+Es [4k −1]+Es [4k]) if s = 2k.

(4.18)

Finally, the very last voter v2k is placed at

Fs [2k] = 1

4
(Es [1]+Es [2]+Es [4k −1]+Es [4k]) . (4.19)

Equations (4.16)–(4.19) define Fs [j] for all voters v j with 1 ≤ j ≤ 2k. This completes
the description of the 1-D Euclidean representation Fs of the voters.

We note that the location Fs [s] of voter vs has been specified, but will be irrelevant
to our further arguments. We show that Fs and Es together constitute a correct 1-D
Euclidean representation of the 2k −1 voters in {v1, . . . , v2k }\{vs } together with all 4k
alternatives 1,2, . . . ,4k. In other words, the deletion of voter vs from profile P ∗

k yields
a one-dimensional Euclidean profile, which completes the proof of Property (b)
in Theorem 4.3. To this end, we establish the following lemma which we prove in
Section 4.10.

Lemma 4.8. For all r and s with 1 ≤ r ̸= s ≤ 2k, the Es and Fs together form a 1-D
Euclidean representation of the preferences of voter vr .

55

4. One-Dimensional Euclidean Preferences

The correctness of Lemma 4.8 for small profiles P ∗
k with k ∈ {2,3,4} can be easily

verified by a computer program (or by a human going through a lot of tedious case
distinctions). Hence, from now on we assume that

k ≥ 5. (4.20)

This assumption will considerably shorten and simplify our arguments. Further-
more, note that the proof of our main result in Theorem 4.4 is not affected by this
assumption, as it builds on the profiles P ∗

k for which k is large and tends towards
infinity.

4.9 A collection of technical results

The embeddings we defined in the previous section are compact but hard to
comprehend. In order to show that they are indeed one-dimensional Euclidean,
it suffices to know the distance between two alternatives instead of their exact
positions. Thus, in this section, we state five technical lemmas which basically
restate or summarize the distances of two alternatives in the embeddings. We will
see that they are extensively used in Section 4.10, where we show the correctness of
the embeddings we defined.

We briefly explain the purpose of each of these five lemmas. Lemmas 4.9 and
4.10 summarize a number of useful identities which basically rewrite the distances
between two consecutive alternatives in the embeddings. They serve as references
in our later analysis. Lemmas 4.11 through 4.13 state important inequalities that
will be central to our proofs of the 1-D Euclideanness of the embeddings defined in
Section 4.8; the proofs are shown in Section 4.10. Readers can thus use the results
of this section as a sort of black box and skip to the introduction of Section 4.10 in
order to follow the narrative of this chapter.

Recall that throughout we assume that k ≥ 5 (4.20) and that from Section 4.8, for
each integer s, 1 ≤ s ≤ 2k, we construct Fs and Es for the profile obtained from P ∗

k by
deleting the voter vs .

Lemma 4.9. For 1 ≤ s ≤ 2k, the 1-D Euclidean embedding Es satisfies the following.

Es [2] = 4k −2s +1 (4.21a)

Es [3] = 4k −2s +3 (4.21b)

Es [4] =
{

4k −4s +8 if s ∈ {1,2}

8k −4s +8 if s ≥ 3.
(4.21c)

56

4.9. A collection of technical results

Furthermore, for s ∈ {1,2}, the embedding Es satisfies the following.

Es [2k −2]−Es [2k −3] = 4k −2s −7 (4.22a)

Es [2k −4]−Es [2k −5] = 4k −2s −11 (4.22b)

Proof. These statements follow by straightforward calculations from (4.9)–(4.13).

Lemma 4.10. If (a) 1 ≤ i ≤ k −1 and s ̸= 2i −1, or if (b) i = k and s ∉ {2k −1,2k}, then
the following holds:

Es [2k +2i]−Es [2k +2i −1] = Es [2i]−Es [2i −1]+2 (4.23a)

If (c) 1 ≤ i ≤ k −1 and s ̸= 2i , the following holds:

Es [2k +2i]−Es [2k +2i −1] = Es [2i +2]−Es [2i +1]−2 (4.23b)

Proof. We distinguish five cases. The first case assumes s = 2i −1. In the setting of
this lemma, this case can only occur under (c) with 1 ≤ i ≤ k −1. Then (4.13) yields
Es [2k+2i]−Es [2k+2i −1] = 1, while (4.11) yields Es [2i +2]−Es [2i +1] = 3. This implies
the desired equality (4.23b) for this case.

The second case assumes s = 2i . In the setting of this lemma, this case can only
occur under (a) with 1 ≤ i ≤ k−1. Then (4.13) yields Es [2k+2i]−Es [2k+2i −1] = 4k−1,
while (4.11) yields Es [2i]−Es [2i −1] = 4k−3. This implies the desired equality (4.23a).

The third case assumes i = k. In the setting of this lemma, this case can only
occur under (b) with 1 ≤ s ≤ 2k −2. Then (4.15) and (4.21a) yield Es [4k]−Es [4k −1] =
4k −2s−1, while (4.11) yields Es [2k]−Es [2k −1] = 4k −2s−3. This implies the desired
equality (4.23a).

In the remaining cases we always have s ∉ {2i −1,2i }. The fourth case assumes that
1 ≤ i ≤ k −1 and that s = 2ℓ−1 is odd, where 1 ≤ ℓ≤ k and ℓ ̸= i . In the setting of this
lemma, this case can only occur under (a) and (b). Then (4.13) yields

Es [2k +2i]−Es [2k +2i −1] = 4(i −ℓ)+1 mod 4k, (4.24)

while (4.11) yields Es [2i]−Es [2i −1] = 4(i −ℓ)−1 mod 4k. Since i −ℓ ̸= 0, these two
equations together yield (4.23a). Furthermore, (4.11) yields Es [2i +2]−Es [2i +1] =
4(i −ℓ)+3 mod 4k, which together with (4.24) gives (4.23b).

The fifth case assumes that 1 ≤ i ≤ k −1 and that s = 2ℓ is even, where 1 ≤ ℓ≤ k and
ℓ ̸= i . In the setting of this lemma, this case can only occur under (a) and (c). Then
(4.13) yields

Es [2k +2i]−Es [2k +2i −1] = 4(i −ℓ)−1 mod 4k, (4.25)

57

4. One-Dimensional Euclidean Preferences

while (4.11) yields Es [2i]−Es [2i −1] = 4(i −ℓ)−3 mod 4k. Since i −ℓ ̸= 0, these two
statements together imply (4.23a). Finally, (4.11) yields Es [2i +2]−Es [2i +1] = 4(i −
ℓ)+1 mod 4k. As i −ℓ ̸= 0, this inequality together with (4.25) yields (4.23b). This
completes the proof.

Lemma 4.11. For all alternatives x and y with 1 ≤ y ≤ x ≤ 4k, the embedding Es

satisfies the inequality Es [x]−Es [y] ≥ x − y .

Proof. This follows from Lemma 4.7 and the integrality of Es .

Lemma 4.12. All i and s with 1 ≤ i ≤ 2k − 1 and 1 ≤ s ≤ 2k satisfy the following
inequality.

Es [2i +1]−Es [2i] ≥ 2. (4.26)

Proof. For 1 ≤ i ≤ k−1, this follows directly from (4.10). For k ≤ i ≤ 2k−1, this follows
from (4.12) and (4.14) in combination with Lemma 4.11.

Lemma 4.13. All i and s with 1 ≤ i ≤ k−1 and 1 ≤ s ≤ 2k satisfy the following inequal-
ity.

Es [2k +2i −1] ≥ Es [2k]+Es [2i]+2. (4.27)

Proof. We show the inequality by induction on i = 1, . . . ,k −1. For the inductive base
case i = 1 we distinguish between two cases for the value of s. The first case assumes
s ∈ {1,2}. Then (4.12) and k ≥ 5, together with (4.10), (4.22a), (4.22b), and (4.21a) yield

Es [2k +2i −1]−Es [2k] ≥ Es [2k −1]−Es [4]+2

≥ (Es [2k −1]−Es [2k −2])+ (Es [2k −2]−Es [2k −3])

+(Es [2k −3]−Es [2k −4])+ (Es [2k −4]−Es [2k −5])+2

= 2+ (4k −2s −7)+2+ (4k −2s −11)+2

= 8k −4s −12 > (4k −2s +1)+2 = Es [2]+2.

The second case assumes s ≥ 3. Then, the first line of (4.12) together with k ≥ 5,
(4.21c), (4.21b) and (4.21a) yields

Es [2k +2i −1]−Es [2k] = Es [2k −1]−Es [3]+2

≥ Es [4]−Es [3]+2 = (8k −4s +8)− (4k −2s +3)+2

= 4k −2s +7 > Es [2]+2.

58

4.10. Correctness of the 1-D Euclidean embeddings

Summarizing, in both cases we have established the desired inequality (4.27). This
completes the analysis of the inductive base case i = 1. Next, let us state the inductive
assumption as

Es [2k +2i −3] ≥ Es [2k]+Es [2i −2]+2. (4.28)

In the inductive step, we will use the following implication of (4.12):

Es [2k +2i −1]−Es [2k +2i −2] ≥ Es [2k +2i −3]−Es [2i +2]+2. (4.29)

Furthermore, by (4.13), the left-hand side of the following inequality equals (4i −
2s−5 mod 4k), while by (4.11), its right-hand side equals (4i −2s−3 mod 4k)−2. This
implies

Es [2k +2i −2]−Es [2k +2i −3] ≥ Es [2i]−Es [2i −1]−2. (4.30)

Adding up (4.28), (4.29) and (4.30), and rearranging and simplifying the resulting
inequality yields

Es [2k +2i −1]−Es [2k]−Es [2i]−2

≥ Es [2k +2i −3]−Es [2i +2]+Es [2i −2]−Es [2i −1]

≥ (2k +2i −3)− (2i +2)−2 = 2k −7 > 0.

Here we use Lemma 4.11 to bound Es [2k+2i−3]−Es [2i+2], and we use equality (4.10)
to get rid of Es [2i−2]−Es [2i−1]. As this implies equality (4.27), the inductive argument
is complete.

4.10 Correctness of the 1-D Euclidean embeddings

In this section, we prove Lemma 4.8, that is, we show that the embeddings defined
in Section 4.8 are one-dimensional Euclidean. This directly implies Property (b) of
Theorem 4.3, one of our main contribution.

Let vr and vs be two arbitrary voters with r ̸= s. We recall that by Lemma 4.7 the
1-D Euclidean representation Es embeds the alternatives 1, . . . ,4k in increasing order
from left to right. We show that any two alternatives x and y with x ≻r y which are
consecutive in the preference order of voter vr satisfy

2Fs [r] < Es [x]+Es [y] whenever x < y , (4.31a)

2Fs [r] > Es [x]+Es [y] whenever x > y . (4.31b)

59

4. One-Dimensional Euclidean Preferences

By our construction, all preference orders in profile P ∗
k contain long monotonously

increasing or decreasing runs of alternatives. By Proposition 4.2, it is therefore suffi-
cient to establish (4.31a) and (4.31b) at the few turning points where the preference
order of voter vr changes its monotonicity behavior. We emphasize that the first pair
of alternatives in every preference order forms a turning point by default.

Our proof distinguishes between four cases which are handled separately in the
following four subsections. Sections 4.10.1 and 4.10.2 deal with the cases with odd r ,
while Sections 4.10.3 and 4.10.4 deal with the cases where r is even.

Again, we remark that this section consists of four parts of long technical proofs.
To better follow the main idea of this chapter, it may be worthwhile to skip to the next
section where we show an interesting technique of how to obtain non-1-D Euclidean
profiles for the so-called “cyclic relation” mentioned at the end of Section 4.7.

4.10.1 The cases with odd r (with a single exception)

In this section we assume that r = 2i − 1 for 1 ≤ i ≤ k, implying that s ̸= 2i − 1
because vs is the deleted voter. If i = k (and hence r = 2k −1), then we additionally
assume s ̸= 2k; the remaining case with i = k and s = 2k will be dealt with in the next
subsection. Note that under these assumptions, the value Fs [2i −1] is given by (4.16).
Furthermore (4.23a) in Lemma 4.10 yields

Es [2k +2i]+Es [2i −1] = Es [2i]+Es [2k +2i −1]+2. (4.32)

In order to prove (4.31a) and (4.31b) for the preference orders in (4.4a) and (4.5a), it
is sufficient to establish the following six inequalities for the turning points.

2Fs [2i −1] > Es [2k +2i −2]+Es [2k +2i −3] (4.33a)

2Fs [2i −1] < Es [2i +1]+Es [2k +2i −1] (4.33b)

2Fs [2i −1] > Es [2k +2i −1]+Es [2i] (4.33c)

2Fs [2i −1] < Es [2i −1]+Es [2k +2i] (4.33d)

2Fs [2i −1] > Es [2k +2i]+Es [2i −2] (4.33e)

2Fs [2i −1] < Es [1]+Es [2k +2i +1] (4.33f)

Note that for i = 1, inequality (4.33e) vanishes as Y1 is empty, and that for i = k
inequality (4.33f) vanishes as Zk is empty. We use equation (4.16) or the first line of
equation (4.18) together with equation (4.32), and rewrite the left-hand side of all

60

4.10. Correctness of the 1-D Euclidean embeddings

inequalities (4.33a)–(4.33f) as

2Fs [2i −1] = 1

2
(Es [2i −1]+Es [2i]+Es [2k +2i −1]+Es [2k +2i])

= Es [2i]+Es [2k +2i −1]+1 = Es [2i −1]+Es [2k +2i]−1. (4.34)

For (4.33a), we distinguish between two subcases. The first subcase assumes i ≤ k−1.
We use (4.34), (4.12) with s ̸= 2i −1, and (4.10) to obtain

2Fs [2i −1]−Es [2k +2i −2]−Es [2k +2i −3]

= (Es [2i]+Es [2k +2i −1]+1)−Es [2k +2i −2]−Es [2k +2i −3]

= Es [2i]+1−Es [2i +1]+2 = 1 > 0.

The second subcase deals with the remaining case i = k. We use (4.34), the first line
in (4.14), and Lemma 4.7 to obtain

2Fs [2i −1]−Es [2k +2i −2]−Es [2k +2i −3]

= (Es [2k]+Es [4k −1]+1)−Es [4k −2]−Es [4k −3]

= (Es [2k]+1)+ (−Es [2]+2) = (Es [2k]−Es [2])+3 > 0.

For (4.33b), using (4.34) and (4.26) yields

2Fs [2i −1]−Es [2i +1]−Es [2k +2i −1]

= (Es [2i]+Es [2k +2i −1]+1)−Es [2i +1]−Es [2k +2i −1] < 0.

For (4.33c), from (4.34) we obtain

2Fs [2i −1]−Es [2k +2i −1]−Es [2i]

= (Es [2i]+Es [2k +2i −1]+1)−Es [2k +2i −1]−Es [2i] = 1 > 0.

For (4.33d), we use (4.34) and get

2Fs [2i −1]−Es [2i −1]−Es [2k +2i]

= (Es [2i −1]+Es [2k +2i]−1)−Es [2i −1]−Es [2k +2i] = −1 < 0.

For (4.33e) with i ≥ 2, using (4.34) and (4.10) we obtain

2Fs [2i −1]−Es [2k +2i]−Es [2i −2]

= (Es [2i −1]+Es [2k +2i]−1)−Es [2k +2i]−Es [2i −2] = 1 > 0.

61

4. One-Dimensional Euclidean Preferences

It remains to prove inequality (4.33f) which takes more effort. Since (4.33f) van-
ishes for i = k, we assume i ≤ k −1. We first use (4.34) and (4.9) to derive

2Fs [2i −1]−Es [1]−Es [2k +2i +1]

= Es [2i −1]−1− (Es [2k +2i +1]−Es [2k +2i]). (4.35)

Our goal is to show that the value in (4.35) is strictly negative, and for this we dis-
tinguish between three subcases. The first subcase assumes i ≤ k −2. We use (4.12),
(4.27), and Lemma 4.7 to obtain

Es [2i −1]−1− (Es [2k +2i +1]−Es [2k +2i])

≤ Es [2i −1]−1− (Es [2k +2i −1]−Es [2i +4]+2)

≤ Es [2i −1]−3+Es [2i +4]− (Es [2k]+Es [2i]+2)

= (Es [2i +4]−Es [2k])+ (Es [2i −1]−Es [2i])−5 < 0.

The second subcase assumes i = k−1 and s ̸= 2k. We use (4.14), (4.27), and Lemma 4.7
to obtain

Es [2i −1]−1− (Es [2k +2i +1]−Es [2k +2i])

= Es [2k −3]−1− (Es [4k −1]−Es [4k −2])

= Es [2k −3]−1− (Es [4k −3]−Es [2]+2)

≤ Es [2k −3]−3+Es [2]− (Es [2k]+Es [2k −2]+2)

= (Es [2k −3]−Es [2k])+ (Es [2]−Es [2k −2])−5 < 0.

The third and last subcase assumes i = k −1 and s = 2k. We use the second line of
(4.14), the first line of (4.12), inequality (4.27), equality (4.10), and Lemma 4.7 to
obtain

Es [2i −1]−1− (Es [2k +2i +1]−Es [2k +2i])

= Es [2k −3]−1− (Es [4k −1]−Es [4k −2])

= Es [2k −3]−1− (Es [4k −3]−Es [2k +1]+2)

= Es [2k −3]−3+Es [2k +1]− (Es [4k −4]+Es [4k −5]−Es [2k −1]+2)

≤ Es [2k −3]−5+Es [2k +1]−Es [4k −4]

+Es [2k −1]− (Es [2k]+Es [2k −4]+2)

= (Es [2k +1]−Es [4k −4])+ (Es [2k −1]−Es [2k])−5 < 0.

62

4.10. Correctness of the 1-D Euclidean embeddings

As (4.35) is strictly negative in each of the three subcases, the proof of (4.33f) is
complete. Together, Es and Fs form a 1-D Euclidean representation of the preferences
of voter vr .

4.10.2 The exceptional case with odd r

In this section we consider the special case when i = k (and hence r = 2k − 1)
and s = 2k, which has been left open in the previous subsection. In this case, the
embedding Fs [2k −1] is given by the second option in formula (4.18). Furthermore,
(4.15) and (4.10) yield

Es [4k]−Es [4k −1] = Es [2k +1]−Es [2k −2]−2.

Altogether this leads to

2Fs [2k −1] = 1

2
(Es [2k −2]+Es [2k +1]+Es [4k −1]+Es [4k])

= Es [2k −2]+Es [4k]+1 = Es [2k +1]+Es [4k −1]−1. (4.36)

As inequality (4.33f) vanishes for i = k, our goal in this section is to establish the five
inequalities (4.33a)–(4.33e) for i = k and s = 2k. For (4.33a), we use (4.36) and (4.14)
and get

2Fs [2k −1]−Es [4k −2]−Es [4k −3]

= (Es [2k +1]+Es [4k −1]−1)−Es [4k −2]−Es [4k −3]

= Es [2k +1]−Es [4k −3]−1+ (Es [4k −3]−Es [2k +1]+2) = 1 > 0.

For (4.33b), we use (4.36) and obtain

2Fs [2k −1]−Es [2k +1]−Es [4k −1]

= (Es [2k +1]+Es [4k −1]−1)−Es [2k +1]−Es [4k −1] = −1 < 0.

For (4.33c), using (4.36) and (4.26) yields

2Fs [2k −1]−Es [4k −1]−Es [2k]

= (Es [2k +1]+Es [4k −1]−1)−Es [4k −1]−Es [2k] > 0.

For (4.33d), we use (4.36) and (4.10) and get

2Fs [2k −1]−Es [2k −1]−Es [4k]

= (Es [2k −2]+Es [4k]+1)−Es [2k −1]−Es [4k] = −1 < 0.

63

4. One-Dimensional Euclidean Preferences

For (4.33e), from (4.36) we obtain

2Fs [2k −1]−Es [4k]−Es [2k −2]

= (Es [2k −2]+Es [4k]+1)−Es [4k]−Es [2k −2] = 1 > 0.

This completes the analysis of the special case with odd r . In this case as well, Es and
Fs together form a 1-D Euclidean representation of preferences of voter vr .

4.10.3 The cases with even r (with a single exception)

In this section, we consider the cases of even r = 2i for 1 ≤ i ≤ k −1, and of s ̸= 2i .
We deal with the remaining case where r = 2k in the next subsection. Note that
in this case, the value Fs [2i] is given by (4.17). Furthermore (4.23b) in Lemma 4.10
yields

Es [2i +1]+Es [2k +2i] = Es [2i +2]+Es [2k +2i −1]−2. (4.37)

In order to prove (4.31a) and (4.31b) for the preference orders in (4.4b), it is sufficient
to show that the following four inequalities for the turning points hold.

2Fs [2i] > Es [2k +2i −2]+Es [2k +2i −3], (4.38a)

2Fs [2i] < Es [2i +2]+Es [2k +2i −1], (4.38b)

2Fs [2i] > Es [2k +2i]+Es [2i +1], (4.38c)

2Fs [2i] < Es [1]+Es [2k +2i +1]. (4.38d)

We use the definition of Fs [2i] in (4.17) together with (4.37) to rewrite the left-hand
side of all inequalities (4.38a)–(4.38d) as

2Fs [2i] = 1

2
(Es [2i +1]+Es [2i +2]+Es [2k +2i −1]+Es [2k +2i])

= Es [2i +1]+Es [2k +2i]+1 = Es [2i +2]+Es [2k +2i −1]−1. (4.39)

For (4.38a), we use (4.39) and (4.12) to obtain

2Fs [2i]−Es [2k +2i −2]−Es [2k +2i −3]

= (Es [2i +2]+Es [2k +2i −1]−1)−Es [2k +2i −2]−Es [2k +2i −3]

≥ Es [2i +2]−Es [2k +2i −3]−1+ (Es [2k +2i −3]−Es [2i +2]+2) = 1 > 0.

64

4.10. Correctness of the 1-D Euclidean embeddings

For (4.38b), from (4.39) we get

2Fs [2i]−Es [2i +2]−Es [2k +2i −1]

= (Es [2i +2]+Es [2k +2i −1]−1)−Es [2i +2]−Es [2k +2i −1] =−1 < 0.

For (4.38c), using (4.39) yields

2Fs [2i]−Es [2k +2i]−Es [2i +1]

= (Es [2i +1]+Es [2k +2i]+1)−Es [2k +2i]−Es [2i +1] = 1 > 0.

It remains to prove inequality (4.38d) which takes a considerable amount of work.
We distinguish between three subcases. The first subcase assumes 1 ≤ i ≤ k −2. Then
Lemma 4.7 implies Es [2i +4] ≤ Es [2k]. We use (4.39), (4.9), (4.12), (4.27) and (4.10) to
derive

2Fs [2i]−Es [1]−Es [2k +2i +1]

= (Es [2i +1]+Es [2k +2i]+1)−Es [2k +2i +1]

≤ Es [2i +1]+1− (Es [2k +2i −1]−Es [2i +4]+2)

≤ Es [2i +1]+Es [2i +4]−1− (Es [2k]+Es [2i]+2)

= Es [2i +4]−Es [2k]−1 < 0.

The second subcase assumes i = k −1 and s ̸= 2k. To prove (4.38d), we use (4.39),
(4.9), (4.14), (4.27) and (4.10) and obtain

2Fs [2k −2]−Es [1]−Es [4k −1]

= (Es [2k −1]+Es [4k −2]+1)−Es [4k −1]

= Es [2k −1]+1− (Es [4k −3]−Es [2]+2)

≤ Es [2k −1]+Es [2]−1− (Es [2k]+Es [2k −2]+2)

= Es [2]−Es [2k]−1 < 0.

The third and last subcase assumes i = k − 1 and s = 2k. We begin by deriving
a number of auxiliary equations and inequalities. First, we obtain Es [3] = 3 from
(4.21b), and use (4.12) and (4.10) to get

Es [2k +1]−Es [2k −2]

= (Es [2k +1]−Es [2k])+ (Es [2k]−Es [2k −1])+ (Es [2k −1]−Es [2k −2])

= (Es [2k −1]−Es [3]+2)+ (Es [2k]−Es [2k −1])+2 = Es [2k]+1. (4.40)

65

4. One-Dimensional Euclidean Preferences

Next, (4.23b) gives us

Es [2k −2]−Es [2k −3]−2 = Es [4k −4]−Es [4k −5]. (4.41)

We express Es [4k −3] once by the first line of (4.12) and once by the second line of
(4.14), which by equating yields

Es [4k −4]+Es [4k −5]−Es [2k −1]+2

= Es [2k +1]−2+Es [4k −1]−Es [4k −2]. (4.42)

Next, we add (4.40), (4.41), (4.42) and rearrange the result to obtain

Es [2k −1]+Es [4k −2]−Es [4k −1]+1

= 2Es [2k −1]+Es [2k]+Es [2k −3]−2Es [4k −5]. (4.43)

We obtain Es [2k]−Es [2k −1] = 4k −3 and Es [2k −2]−Es [2k −3] = 4k −7 from (4.11),
and use these together with (4.10) to get

Es [2k −1]−Es [2k −4]+Es [2k −1]−Es [2k]

= (Es [2k −2]+2)− (Es [2k −3]−2)− (Es [2k]−Es [2k −1])

= 2+ (4k −7)+2− (4k −3) = 0. (4.44)

In the third and last subcase, to finally prove (4.38d), we use (4.39), (4.9), (4.43),
(4.27), (4.44) and (4.10) to obtain

2Fs [2k −2]−Es [1]−Es [4k −1]

= (Es [2k −1]+Es [4k −2]+1)−Es [4k −1]

= 2Es [2k −1]+Es [2k]+Es [2k −3]−2Es [4k −5]

≤ 2Es [2k −1]+Es [2k]+Es [2k −3]−2(Es [2k]+Es [2k −4]+2)

= Es [2k −3]−Es [2k −4]−4 = −2 < 0.

This completes the proof of inequality (4.38d). Summarizing, Es and Fs together
form a 1-D Euclidean representation of the preferences of vr .

4.10.4 The exceptional case with even r

In this section, we consider the last remaining case of even r , where r = 2k and
s ̸= 2k. In order to prove (4.31a) and (4.31b) for the preference orders in (4.5b), it is

66

4.11. Other profiles that are not 1-D Euclidean

sufficient to establish the following three inequalities for the turning points.

2Fs [2k] > Es [4k −2]+Es [4k −3], (4.45a)

2Fs [2k] < Es [2]+Es [4k −1], (4.45b)

2Fs [2k] > Es [4k]+Es [1]. (4.45c)

For the common left-hand side of (4.45a)–(4.45c), the definition of Fs [2k] in (4.19),
and (4.15) with s ̸= 2k yield that

2Fs [2k] = 1

2
(Es [1]+Es [2]+Es [4k −1]+Es [4k])

= Es [4k]+Es [1]+1 = Es [4k −1]+Es [2]−1. (4.46)

For (4.45a), we use (4.46) and (4.14) with s ̸= 2k to obtain

2Fs [2k]−Es [4k −2]−Es [4k −3]

= (Es [4k −1]+Es [2]−1)−Es [4k −2]−Es [4k −3]

= Es [2]−Es [4k −3]−1+ (Es [4k −3]−Es [2]+2) = 1 > 0.

For (4.45b), using (4.46) we get

2Fs [2k]−Es [2]−Es [4k −1]

= (Es [4k −1]+Es [2]−1)−Es [2]−Es [4k −1] = −1 < 0.

For (4.45c), using (4.46) we obtain

2Fs [2k]−Es [4k]+Es [1]

= (Es [4k]+Es [1]+1)−Es [4k]−Es [1] = 1 > 0.

This settles the last case. The proof of Lemma 4.8 and with it the proof of Theorem 4.3
are finally completed.

4.11 Other profiles that are not 1-D Euclidean

We have just shown that one-dimensional Euclidean preferences cannot be char-
acterized by finitely many forbidden substructures. We achieved this by providing
an infinite sequence of 2k ×4k profiles which fail to be 1-D Euclidean, but deleting
any arbitrary voter makes them 1-D Euclidean. This naturally leads to the follow-
ing question: “Is this infinite sequence of profiles, together with the four forbidden

67

4. One-Dimensional Euclidean Preferences

substructures for the single-peakedness and single-crossingness, sufficient to char-
acterize one-dimensional Euclideanness?” The answer to this question is “no”. For
instance, the 3×6 profile shown in Example 4.1 is a forbidden substructure for 1-D
Euclideanness, but it is not part of the sequence of profiles we constructed. In fact,
any forbidden substructure with an odd number of voters cannot be constructed in
that way. But how did we find the 3×6 profile? To answer this, let us take a closer
look at the profiles constructed in Section 4.6. We observe that in any 1-D Euclidean
embedding, the distances of two consecutive alternatives of such profiles display a
so-called cyclic relation: (4.8a)–(4.8c), whose existence precludes 1-D Euclideanness.
Indeed, we can construct an infinite sequence of non-1-D Euclidean n ×2n profiles
using the cyclic relations discussed at the end of Section 4.7. We consider n voters
v1,v2, . . . ,vn and 2n alternatives 1,2, . . . ,2n. We assume that the single-peaked orders
of the alternatives are 〈1,2, . . . ,2n〉 and its reverse. First, we observe that any cyclic re-
lation of the distances between neighboring alternatives 2i −1 and 2i , 1 ≤ i ≤ n, in the
single-peaked order can be considered as a permutation over the numbers 1,2, . . . ,n.
For instance, the cyclic relation of the 8×16 profile P in Example 4.3 is

E [2]−E [1] < E [10]−E [9] < E [4]−E [3] < E [12]−E [11] < E [6]−E [5]

< E [14]−E [13] < E [8]−E [7] < E [16]−E [15] < E [2]−E [1].

It corresponds to the permutation 〈1,5,2,6,3,7,4,8〉. We have shown that this profile P

is not 1-D Euclidean (Lemma 4.6). In fact, we can show that every profile with a
unique single-peaked order and with a cyclic relation with respect to this order is
non-1-D Euclidean. But how do we obtain this profile given a permutation that
corresponds to a cyclic relation?

In the remainder of this section, we show how to construct an infinite sequence
of non-1-D Euclidean profiles for a given permutation 〈σ(1),σ(2), . . . ,σ(n)〉 of the
numbers 1,2, . . . ,n. For each index i with 1 ≤ i ≤ n, let min(i) and max(i) denote the
minimum resp. maximum of the two numbers σ(i) and σ(i +1 mod n). Just as in
Section 4.6, we define three preference pieces Ri ,Si ,Ti .

Ri := 2max(i)−2 ≻ 2max(i)−3 ≻ . . . ≻ 2min(i)+1

Si := 2min(i)−2 ≻ 2min(i)−3 ≻ . . . ≻ 1

Ti := 2max(i)+1 ≻ 2max(i)+2 ≻ . . . ≻ 2n

Note that for every i = 1, . . . ,n, the pieces Xi , Yi , Zi cover contiguous intervals of
respectively 2max(i)−2min(i)−2, 2min(i)−2 and 2n −2max(i) alternatives. Hence,

68

4.12. Concluding remarks

they jointly cover 2n −4 of the alternatives, and only the four alternatives 2min(i)−
1,2min(i),2max(i)−1,2max(i) remain uncovered. We set

Ui :=
{

2min(i) ≻ 2max(i)−1 ≻ 2max(i) ≻ 2min(i)−1 if min(i) ̸=σ(i)

2max(i)−1 ≻ 2min(i) ≻ 2min(i)−1 ≻ 2max(i) if min(i) =σ(i).
(4.47)

As to the preference orders of the voters, for 1 ≤ i ≤ n, voter vi has the following
preferences:

vi : Ri ≻Ui ≻ Si ≻ Ti . (4.48)

Using a similar reasoning as in the proof of Lemma 4.6, we can show that the profile
with voters v1, v2, . . . , v2n whose preference orders are given by (4.48) is single-peaked
and single-crossing, but not 1-D Euclidean. The 3×6 profile in Example 4.1 was
constructed using this approach for alternatives a = 1,b = 2,c = 3,d = 4,e = 5, f =
6 and for the permutation 〈1,2,3〉. Furthermore, the profiles in Section 4.6 were
constructed using the permutation 〈1,k +1,2,k +2, . . . ,k,2k〉.

We conclude this section by conjecturing that the profile we constructed is min-
imal non-1-D Euclidean with respect to voter deletion (see Property (b) of Theo-
rem 4.3). One possible approach to proving this conjecture would require, similarly
to the one for the profiles constructed in Section 4.6, for each voter vi , a 1-D Eu-
clidean representation of the profile without this voter vi . Such representations are,
however, not easy to obtain.

4.12 Concluding remarks

We have shown that one-dimensional Euclidean preference profiles cannot be
characterized in terms of finitely many forbidden substructures. This is similar
to interval graphs, which also cannot be characterized by finitely many forbidden
substructures. For interval graphs, however, we have a full understanding of all
the forbidden substructures that are minimal with respect to vertex deletion; see
Lekkerkerker and Boland [LB62]. In a similar vein, it would be interesting to deter-
mine all (infinitely many) forbidden substructures for one-dimensional Euclidean
preferences that are minimal with respect to deletion of voters or alternatives. At the
moment, we only know how to construct non-1-D Euclidean, but single-peaked and
single-crossing profiles using our cyclic construction (Section 4.11). We can neither
show that such profiles are minimal with respect to voter deletion, nor can we show
that they are sufficient to characterize the one-dimensional Euclidean property.

As for general d-dimensional Euclidean preference profiles, we feel that the situa-
tion should be similar to the one-dimensional case: we conjecture that for each fixed

69

4. One-Dimensional Euclidean Preferences

value of d ≥ 2, there will be no characterization of d-dimensional Euclidean profiles
through finitely many forbidden substructures. However, we see no realistic way of
generalizing our current approach to the higher-dimensional situations. Recently,
Peters [Pet16] confirms our conjecture for each fixed d ≥ 2. We remind the reader
that in a d-dimensional Euclidean preference profile, the voters and alternatives are
embedded in d-dimensional Euclidean space, such that small distance corresponds
to strong preference; see for instance the work of Bogomolnaia and Laslier [BL07].

Despite the uncertainty of whether higher-dimensional Euclidean properties can
be characterized by finitely many forbidden substructures, Bulteau and Chen [BC]
study small non-Euclidean profiles for the two-dimensional case. In particular, they
show (via Computer program) that any 3×7 profile, that is, a profile with three voters
and up to seven alternatives is 2-dimensional Euclidean. The corresponding proof is
based on brute-force search trough all possible profiles via computer programs. They
also provide a non-2-dimensional Euclidean profile with three voters and 28 alterna-
tives. It would be interesting to know the exact boundary between Euclideanness
and non-Euclideanness.

70

CHAPTER 5

Nearly Structured Preferences

萝卜白菜,各有所爱。
Every man has his hobbyhorse.

Chinese proverb

In the previous two chapters, we dealt with restricted domains of nicely structured
profiles, and we showed that single-crossing profiles can be characterized by finitely
many forbidden substructures while one-dimensional Euclidean profiles can not. In
this chapter, we focus on a slightly different setting where the profiles themselves
are not yet nicely structured. We investigate the computational problem of deciding
whether they are close to ones that have a nice structure, as for instance single-
peaked, single-crossing, value-restricted, or group-separable profiles. We measure
this distance by the number of voters or alternatives that have to be deleted to obtain
a nicely structured profile. Our results classify the problem variants with respect
to their computational complexity, and draw a clear line between computationally
tractable (polynomial-time solvable) and computationally intractable (NP-hard)
questions.

5.1 Introduction

The area of Social Choice (and in particular the subarea of Computational So-
cial Choice) is full of so-called negative results. On the one hand, there are many
axiomatic impossibility results, and, on the other hand, there are just as many com-
putational intractability results. For instance, the famous impossibility result of
Arrow [Arr50] states that any “fair” social welfare function, which satisfies certain
desirable properties, is dictatorial; see the end of Section 2.4 for some discussion on
this. As another example, Bartholdi III, Tovey, and Trick [BTT89] established that
it is computationally intractable (NP-hard) to determine whether some particular

This chapter is based on “Are There Any Nicely Structured Preference Profiles Nearby?” by R. Bredereck,
J. Chen, and G. J. Woeginger, Mathematical Social Sciences [BCW16] .

71

5. Nearly Structured Preferences

alternative is a winner of a profile under a voting rule designed by Lewis Carroll. Most
of these negative results hold for general preference profiles where any combination
of preference orders may occur.

One branch of Social Choice studies restricted domains [ASS02, Chapter 3] of
preference profiles, where only certain nicely structured combinations of preference
orders are admissible. The standard example for this approach are single-peaked
preference profiles as introduced by Black [Bla48] (also see Section 4.4.1 for more
discussion on the single-peaked property).

Single-peakedness implies a number of nice properties, as for instance strate-
gy-proofness of a family of voting rules [Mou80] and the absence of majority cy-
cles [Ina69] (also known as the Condorcet principle; see the discussion on our
working example of Chapter 1). Furthermore, Arrow’s impossibility result collapses
for single-peaked profiles. In a similar spirit (but in the algorithmic branch), Walsh
[Wal07], Brandt et al. [Bra+15], and Faliszewski et al. [Fal+11] showed that many
electoral bribery, control, and manipulation problems that are NP-hard in the gen-
eral case become tractable under single-peaked profiles. Besides the single-peaked
domain, the literature contains many other restricted domains of nicely structured
preference profiles (see Section 5.5 for precise mathematical definitions).

• Sen [Sen66] and Sen and Pattanaik [SP69] introduced the domain of value-
restricted preference profiles which satisfy the following: for every triple of
alternatives, one alternative is not preferred most by any individual (best-
restricted profile), or one is not preferred least by any individual (worst-restrict-
ed profile), or one is not ranked as the intermediate alternative by any individ-
ual (medium-restricted profile).

• Inada [Ina64, Ina69] described the domain of group-separable preference
profiles where the alternatives can be split into two groups such that every
voter prefers every alternative in the first group to those in the second group,
or prefers every alternative in the second group to those in the first group.
Every group-separable profile is also medium-restricted.

• Single-caved preference profiles are derived from single-peaked profiles by
reversing the preferences of every voter. Sometimes single-caved profiles are
also called single-dipped [KPS97].

• Single-crossing preference profiles go back to the work of Karlin [Kar68] in
applied mathematics and the papers of Mirrlees [Mir71] and Roberts [Rob77]
on income taxation. We refer the reader to Chapter 3 for more discussion on

72

5.2. Results

this profile. There, we also show that recognizing the single-crossing prop-
erty is polynomial-time solvable. Doignon and Falmagne [DF94] and Elkind,
Faliszewski, and Slinko [EFS12] obtained similar polynomial-time solvability
results.

Unfortunately, real-world preference profiles are almost never single-peaked,
value-restricted, group-separable, single-caved, or single-crossing. Usually there are
maverick voters whose preferences are determined for instance by culture, religion,
or gender, destroying all nice structures in the preference profile. In a very recent
line of research, Faliszewski, Hemaspaandra, and Hemaspaandra [FHH14] searched
for a cure against such mavericks, and arrived at nearly single-peaked preference
profiles: a profile is nearly single-peaked if it is very close to a single-peaked profile.
Of course there are many mathematical ways of measuring the closeness of profiles.
Natural ways to make a given profile single-peaked are (i) by deletion of voters and
(ii) by deletion of alternatives. This leads to the two central problems of our work for
a specific property Π and a given number k:

(i) The Π MAVERICK DELETION problem asks whether it is possible to delete at
most k voters to make a given profile satisfy the Π-property.

(ii) The Π ALTERNATIVE DELETION problem asks whether it is possible to delete at
most k alternatives to make a given profile satisfy the Π-property.

In this chapter, we consider classical properties Π that can be characterized by
finitely many forbidden substructures; the one-dimensional Euclidean represen-
tation from Chapter 4 thus does not fall into this category. We have Π ∈ {worst-
restricted, medium-restricted, best-restricted, value-restricted, single-peaked, sing-
le-caved, single-crossing, group-separable, β-restricted}. We provide the formal
definitions of these properties in Section 5.5.

5.2 Results

We investigate the problem of deciding how close (by deletion of maverick voters
or by deletion of alternatives) a given preference profile is to having a nice structure
(such as being single-peaked, or single-crossing, or group-separable). We focus on
the most fundamental definitions of closeness and on the most popular restricted
domains. Our results draw a clear line between polynomial-time solvable and NP-
hard problems as they classify all considered problem variants with respect to their
computational complexity. In most cases, both of our central problems are shown
to be NP-complete (with the exceptions of maverick deletion when the specific

73

5. Nearly Structured Preferences

property Π is single-crossing, and of alternative deletion when Π is either single-
peaked or single-caved).1 We also find that except for the case with the group-
separability, a more restricted preference property seems to have a stronger effect on
lowering the complexity of at least one of the computational questions. For instance,
while the single-crossing property is more restricted than the γ-restriction (every
single-crossing profile is γ-restricted, but not all γ-restricted profiles are single-
crossing), maverick deletion is polynomial-time solvable for the single-crossing
property, but it is NP-hard for the γ-restriction.

All properties studied in this chapter can be characterized by a fixed number of
small forbidden substructures. Thus, by branching over all possible voters (resp.
alternatives) of each forbidden substructure in the profile, we can solve all our
problems in ck · |I |O(1) time, where c is a constant value, |I | denotes the input size, and
k denotes the respective distance measure parameter (that is, either the number of
maverick voters or the number of alternatives to delete). Moreover, there are trivial
brute-forcing algorithms that try all possible subsets of the voters or the alternatives
and run in 2O(n+m) time, where n and m denote the number of alternatives and
voters. However, subexponential running time algorithms seem unlikely: We will
see from the proofs for the NP-hardness results that the reduction from VERTEX

COVER is actually a linear-time reduction. By the subexponential time hypothesis
and by the sparsification lemma [IPZ01]–which implies that VERTEX COVER cannot
be solved within 2o(|U |+|E |) time (|U | and |E | are the number of vertices and edges,
respectively)–it follows that except SINGLE-CROSSING ALTERNATIVE DELETION, all
our NP-complete problems cannot be solved in 2o(n+m) · |I |O(1) time. Our results are
summarized in Table 5.1.

5.3 Related work

As for different notions of closeness to restricted domains, Erdélyi, Lackner, and
Pfandler [ELP13] study various concepts of nearly single-peakedness. Besides dele-
tion of voters and deletion of alternatives, they also study closeness measures that
are based on swapping alternatives in the preference orders of some voters, or on
introducing additional political axes. Yang and Guo [YG14] study k-peaked domains,
where every preference order can have at most k peaks (that is, at most k rising
streaks that alternate with falling streaks). Cornaz, Galand, and Spanjaard [CGS12,
CGS13] introduce a closeness measure, the width, for single-peaked, single-crossing,
and group-separable profiles which is based on the notion of a clone set [Tid87]. For

1The NP-completeness result for SINGLE-PEAKED MAVERICK DELETION was jointly established with
Nadja Betzler.

74

5.3. Related work

Restriction Maverick deletion Alternative deletion

Single-peaked NP-complete (*, Cor 5.5) O(n5 ·m) (*, ♢)
Single-caved NP-complete (*, Cor 5.5) O(n5 ·m) (*)
Group-separable NP-complete (Cor 5.5) NP-complete (Cor 5.6)
Single-crossing O(n3 ·m2) (Thm 5.12) NP-complete (Thm 5.9)

Value-restricted NP-complete (Thm 5.1) NP-complete (Thm 5.3)
Best-restricted NP-complete (Pro 5.2) NP-complete (Pro 5.4)
Worst-restricted NP-complete (Pro 5.2) NP-complete (Pro 5.4)
Medium-restricted NP-complete (Pro 5.2) NP-complete (Pro 5.4)
β-restricted NP-complete (Thm 5.7) NP-complete (Thm 5.8)

Table 5.1.: Summary of the complexity results. The variables n and m denote the number
of voters and the number of alternatives, respectively. Entries marked by “*” and by “♢”
are due to Erdélyi, Lackner, and Pfandler [ELP13] and Przedmojski [Prz16], respectively.
Przedmojski [Prz16] improves on Erdélyi, Lackner, and Pfandler’s O(n5 ·m) time algorithm for
SINGLE-PEAKED ALTERNATIVE DELETION to an O(n3 ·m) time algorithm. The definitions of
the respective domain restrictions can be found in Section 5.5.

instance, the single-peaked width of a preference profile is the smallest number k
such that partitioning all alternatives into disjoint intervals, each with size at most
k + 1, and replacing each of these intervals with a single alternative, results in a
single-peaked profile. An interval of alternatives is a set of alternatives that appear
consecutively (in any order) in the preference orders of all voters.

There are several generalizations of the single-peaked property. For instance,
Barberà, Gul, and Ennio [BGE93] introduced the concept of multi-dimensional
single-peaked domains. The 1-dimensional special case is equivalent to our single-
peaked property. Sui, Francois-Nienaber, and Boutilier [SFB13] studied this concept
empirically. They present polynomial-time approximation algorithms (for several
optimization goals) of finding multi-dimensional single-peaked profiles and show
that their two real-world data sets are far from being single-peaked but are nearly 2-
dimensional single-peaked. While Erdélyi, Lackner, and Pfandler [ELP13] and this
chapter show that deciding the distance to restricted domains is NP-complete in
most cases (with disjoint results), Elkind and Lackner [EL14] presented efficient ap-
proximation and fixed-parameter algorithms for deciding the distance to restricted
domains studied in this chapter with the exception of the β-restricted property.

75

5. Nearly Structured Preferences

Finally, we remark that the closeness concept can also be used to characterize
voting rules [Bai87, EFS12, MN08]. The basic idea is to first fix a specific property,
for instance, the Condorcet principle, and then to define a closeness measure from
a given profile to the “nearest” profile with this specific property such that the
relevant voting rule always selects the same winner in both profiles. For instance, the
Young rule [You77] takes the subprofile that is closest to being Condorcet consistent
by deleting the fewest number of voters and selects the corresponding Condorcet
winner as a winner; see Elkind, Faliszewski, and Slinko [EFS12] for more information
on this.

For restricted and nearly restricted domains, there are various studies on single-
winner determination [Bra+15], on multi-winner determination [BSU13, Sko+15],
on control, manipulation, and bribery [Bra+15, ELP15, Fal+11, FHH14] (also see
Section 6.7 where we study control problems for single-peaked profiles and single-
crossing profiles), and on possible/necessary winner problems [Wal07]. Usually,
the expectation is that domain restrictions help in lowering the computational
complexity of many voting problems. Many publications, however, report that this is
not always the case. For instance, Faliszewski, Hemaspaandra, and Hemaspaandra
[FHH14] showed that the computational complexity of “controlling approval-based
rules” for nearly single-peaked profiles is polynomial-time solvable if the distance
to single-peaked is a constant, and thus, coincides with the one for single-peaked
profiles, whereas the computational complexity of “manipulating the veto rule” for
nearly single-peaked profiles is still NP-complete and thus, coincides with the one
for unrestricted profiles. In Section 6.7, we show that for some special case, the
combinatorial control problem remains intractable for single-peaked profiles while
it becomes polynomial-time solvable for single-crossing profiles.

5.4 Chapter outline

Section 5.5 summarizes all additional basic definitions and notations. Our results
are presented in Sections 5.6 to 5.8:

Section 5.6 presents results for the value-restricted, best-restricted, worst-restrict-
ed, and medium-restricted properties. All results are NP-completeness results and
are obtained through reduction from the NP-complete VERTEX COVER problem (see
the beginning of Section 5.6 for the definition).

Section 5.7 shows results for single-peakedness, single-cavedness, and group-
separability. In addition, this section shows results for the β-restricted property, a
necessary condition for group-separability. Again, all results are NP-completeness
results and are obtained through reduction from VERTEX COVER.

76

5.5. Preliminaries and basic notations

value-
restricted

medium-
restricted

ᾱ-
restricted

best-
restricted

β-
restricted

worst-
restricted

α-
restricted

single-
caved

group-
separable

single-
peaked

γ-
restricted

δ-
restricted

single-
crossing

Figure 5.1.: Hasse diagram of the relations between the different properties. An edge between
two properties means that a profile with the property in the lower tier implies the property in
the upper tier. For instance, there is an edge between “value-restricted” and “best-restricted”,
because a best-restricted profile is also value-restricted. If there is no edge between two
properties, then they are not comparable to each other.

Section 5.8 shows that achieving the single-crossing property by deleting as few
alternatives as possible is NP-hard; the reduction is from the NP-complete MAXIMUM

2-SATISFIABILITY problem (see the beginning of Section 5.8 for the definition), and
shows that finding a single-crossing profile with the largest voter set is polynomial-
time solvable; this is done by reducing the problem to finding a longest path in a
directed acyclic graph.

We conclude with some future research directions in Section 5.9.

5.5 Preliminaries and basic notations

In this section we review some preference structures with special properties stud-
ied in the literature [BH11, Ina64, Ina69, Sen66, SP69] and in Chapter 3. The main
use of these structures is to characterize nicely structured profiles such as single-
peaked or single-crossing preferences. Recall that we use configurations to denote
such preference structures. We use them to characterize some properties of the
preference profiles and we illustrate the relation between the respective properties
in Figure 5.1.

77

5. Nearly Structured Preferences

5.5.1 Value-restriction

The first three configurations [BH11] describe profiles with three alternatives
where each alternative is in the best, medium, or worst position in some voter’s
preference order.

Definition 5.1 (Best-diverse configuration). A profile with three voters v1, v2, v3,
and three distinct alternatives a, b, c is a best-diverse configuration if it satisfies the
following:

voter v1 : a ≻ {b,c},
voter v2 : b ≻ {a,c},
voter v3 : c ≻ {a,b}.

Definition 5.2 (Medium-diverse configuration). A profile with three voters v1, v2, v3,
and three distinct alternatives a,b,c is a medium-diverse configuration if it satisfies
the following:

voter v1 : b ≻ a ≻ c or c ≻ a ≻ b,
voter v2 : a ≻ b ≻ c or c ≻ b ≻ a,
voter v3 : a ≻ c ≻ b or b ≻ c ≻ a.

Definition 5.3 (Worst-diverse configuration). A profile with three voters v1, v2, v3

and three distinct alternatives a,b,c is a worst-diverse configuration if it satisfies the
following:

voter v1 : {b,c} ≻ a,
voter v2 : {a,c} ≻ b,
voter v3 : {a,b} ≻ c.

We use these three configurations to characterize several restricted domains: A
profile is best-restricted (resp. medium-restricted, worst-restricted) with respect to a
triple of alternatives if it contains no three voters that form a best-diverse configu-
ration (resp. a medium-diverse configuration, a worst-diverse configuration) with
respect to this triple. A profile is best-restricted (resp. medium-restricted, worst-res-
tricted) if it is best-restricted (resp. medium-restricted, worst-restricted) with respect
to every possible triple of alternatives.

A profile is value-restricted [Sen66] if for every triple T of alternatives, it is best-
restricted, medium-restricted, or worst-restricted with respect to T . In other words,
a profile is not value-restricted if and only if it contains a triple of alternatives and
three voters v1, v2, v3 that form a best-diverse configuration, a medium-diverse
configuration, and a worst-diverse configuration with respect to this triple.

78

5.5. Preliminaries and basic notations

Definition 5.4 (Cyclic configuration). A profile with three voters v1, v2, v3 and three
distinct alternatives a,b,c is a cyclic configuration if it satisfies the following:

voter v1 : a ≻ b ≻ c,
voter v2 : b ≻ c ≻ a,
voter v3 : c ≻ a ≻ b.

Value-restricted profiles with pairwise different preference orders are also known
as acyclic domain of linear orders. Many research groups [AJ84, GR08b, Mon09,
PS15] investigated maximal acyclic domains for a given number m of alternatives,
where an acyclic domain is maximal if adding any new linear order destroys the
value-restricted property.

5.5.2 Single-peakedness and single-cavedness

Given a set A of alternatives and a linear order L over A, we say that a voter v is
single-peaked with respect to L if his preference along L is always strictly increasing,
always strictly decreasing, or first strictly increasing and then strictly decreasing.
Formally, a voter v is single-peaked with respect to L if for each three distinct alter-
natives a, b, c ∈ A, it holds that

(a ≻L b ≻L c or c ≻L b ≻L a) implies that if a ≻v b, then b ≻v c.

A profile with the alternative set A is single-peaked if there is a linear order over A
such that every voter is single-peaked with respect to this order. Single-peaked
profiles are necessarily worst-restricted. To see this, we observe that in a profile with
at least three alternatives, the alternative that is ranked last by at least one voter
must not be placed between the other two along any single-peaked order. But then,
none of the alternatives a, b, and c from a worst-diverse configuration can be placed
between the other two in any single-peaked order. Thus, a profile with worst-diverse
configurations cannot be single-peaked.

To fully characterize the single-peaked domain, we need the following configura-
tion.

Definition 5.5 (α-configuration). A profile with two voters v1 and v2, and four dis-
tinct alternatives a, b, c, d is an α-configuration if it satisfies the following:

voter v1 : {a,d} ≻ b ≻ c,
voter v2 : {c,d} ≻ b ≻ a.

Theα-configuration describes a situation where two voters have opposite opinions
on the order of three alternatives a, b and c but agree that a fourth alternative d is

79

5. Nearly Structured Preferences

“better” than the one ranked in the middle. A profile with this configuration is not
single-peaked as we must put alternatives b and d between alternatives a and c, but
then voter v1 prevents us from putting b next to a and voter v2 prevents us from
putting b next to c.

A profile is single-peaked if and only if it contains neither worst-diverse config-
urations nor α-configurations [BH11]. Since reversing the preference orders of a
single-peaked profile results in a single-caved one, an analogous characterization
of single-caved profiles follows. A profile is single-caved if and only if it contains
neither best-diverse configurations nor ᾱ-configurations where an ᾱ-configuration
is an α-configuration with both partial preference orders being inverted:

Definition 5.6 (ᾱ-configuration). A profile with two voters v1 and v2, and four dis-
tinct alternatives a, b, c, d is an ᾱ-configuration if it satisfies the following:

voter v1 : a ≻ b ≻ {c,d},
voter v2 : c ≻ b ≻ {a,d}.

5.5.3 Group-separability

Given a profile with A being the set of alternatives, the group-separable property
requires that every size-at-least-three subset A′ ⊆ A can be partitioned into two
disjoint non-empty subsets A′

1 and A′
2 such that for each voter vi , either A′

1 ≻i A′
2 or

A′
2 ≻i A′

1 holds. One can verify that group-separable profiles are necessarily medium-
restricted. Ballester and Haeringer [BH11] characterized the group-separable prop-
erty using the following configuration.

Definition 5.7 (β-configuration).
A profile with two voters v1 and v2 and four distinct alternatives a, b, c, d is a β-
configuration if it satisfies the following:

voter v1 : a ≻ b ≻ c ≻ d ,
voter v2 : b ≻ d ≻ a ≻ c.

The β-configuration describes a situation where the most preferred alternative
and the least preferred alternative of voter v1 are a and d which are different from
the ones of voter v2: b and c. Both voters agree that b is better than c, but disagree on
whether d is better than a. This profile is not group-separable: We can not partition
{a,b,c,d} into one singleton and one set of three alternatives as each alternative is
ranked in the middle once, but neither can we partition them into two sets each of
size two since voter v1 prevents us from putting alternatives a and c or alternatives a

80

5.5. Preliminaries and basic notations

and d together and voter v2 prevents us from putting alternatives a and b together.
Profiles without β-configurations are called β-restricted [BH11].

A profile is group-separable if and only if it contains neither medium-diverse
configurations nor β-configurations [BH11].

5.5.4 Single-crossingness

The single-crossing property describes the existence of a “natural” linear order of
the voters. A preference profile is single-crossing if there exists a single-crossing order
of the voters, that is, a linear order L of the voters, such that each pair of alternatives
separates L into two sub-orders where in each sub-order, all voters agree on the
relative order of this pair. Formally, this means that for each pair of alternatives a and
b such that the first voter along the order L prefers a to b and for each two voters v ,
v ′ with v ≻L v ′,

b ≻v a implies b ≻v ′ a.

In Chapter 3, we define the single-crossing property (Definition 3.1) and introduce
two configurations, γ-configurations and δ-configurations (Examples 3.4 and 3.5)
and show that a profile is single-crossing if and only if it contains neither γ-configura-
tions nor δ-configurations (Theorem 3.2).

5.5.5 Two central problems

As already discussed before, two natural ways of measuring the closeness of pro-
files to some restricted domains are to count the number of voters resp. alternatives
which have to be deleted to make a profile single-crossing. Hence, for Π∈{worst-res-
tricted, medium-restricted, best-restricted, value-restricted, single-peaked, single-
caved, single-crossing, group-separable, β-restricted}, we study the following two
decision problems: Π MAVERICK DELETION and Π ALTERNATIVE DELETION.

Π MAVERICK DELETION

Input: A profile with n voters and a non-negative integer k ≤ n.
Question: Can we delete at most k voters so that the resulting profile satis-
fies the Π-property?

Π ALTERNATIVE DELETION

Input: A profile with m alternatives and a non-negative integer k ≤ m.
Question: Can we delete at most k alternatives so that the resulting profile
satisfies the Π-property?

81

5. Nearly Structured Preferences

An upper bound on the computational complexity of Π MAVERICK DELETION and
Π ALTERNATIVE DELETION is easy to see. Both problems are contained in NP for each
property Π we study: given a preference profile one can check in polynomial time
whether it has property Π since Π is characterized by a finite set of forbidden finite
substructures. Thus, in order to show NP-completeness of Π MAVERICK DELETION

and Π ALTERNATIVE DELETION, we only have to show their NP-hardness.

5.6 Value-restricted properties

In this section, we show NP-hardness for the value-restricted, best-restricted,
worst-restricted, and medium-restricted domains, respectively. Notably, we show all
these results by reducing from the NP-complete VERTEX COVER problem [GJ79].

VERTEX COVER

Input: An undirected graph G = (U ,E) and an integer k ≤ |U |.
Question: Is there a vertex cover U ′ ⊆U of at most k vertices, that is, |U ′| ≤ k
and ∀e ∈ E : e ∩U ′ ̸= ;?

In every reduction from VERTEX COVER we describe, the vertex cover size k coin-
cides with the maximum number k of voters (resp. alternatives) to delete. Hence, we
use the same variable name.

We first deal with the case of maverick voter deletion (Section 5.6.1) and then, with
the case of deleting alternatives (Section 5.6.2). In both cases, the general idea is to
transform every edge of a given graph into an appropriate forbidden configuration.

5.6.1 Maverick Voter Deletion

Theorem 5.1. VALUE-RESTRICTED MAVERICK DELETION is NP-complete.

Proof. We provide a polynomial-time reduction from VERTEX COVER to show NP-
hardness. We present an example (see Figure 5.2) for the reduction right after this
proof.

Let (G = (U ,E),k) denote a VERTEX COVER instance with vertex set U = {u1, . . . ,ur }
and edge set E = {e1, . . . ,es }; without loss of generality we assume that the input
graph G is connected and that graph G has at least four vertices, that is, r ≥ 4, and
that k ≤ r −3.

The set of alternatives consists of three edge alternatives a j , b j , and c j for each
edge e j ∈ E . For each vertex in U , we construct one voter. We define A := {a j ,b j ,c j |
e j ∈ E } and V := {vi | ui ∈ U }. In total, the number m of alternatives is 3s and the
number n of voters is r .

82

5.6. Value-restricted properties

Every voter prefers {a j ,b j , c j } to {a j ′ ,b j ′ ,c j ′ } whenever j < j ′. For each edge e j with
two incident vertices ui and ui ′ , i < i ′, and for each non-incident vertex ui ′′ ∉ e j , the
following holds:

voter vi : c j ≻ a j ≻ b j ,

voter vi ′ : b j ≻ c j ≻ a j ,

voter vi ′′ : a j ≻ b j ≻ c j .

In this way, the two vertex voters that correspond to the vertices in e j and any
voter vz not in e j form a cyclic configuration with regard to the three edge alterna-
tives a j , b j , and c j . By the definition of cyclic configurations, this configuration is
also best-diverse, medium-diverse, and worst-diverse.

Let the maximum number of voters to delete equal the maximum vertex cover
size k. This completes the construction which can be done in linear time.

It remains to show the correctness. In particular, we show that (G = (U ,E),k) has
a vertex cover of size at most k if and only if the constructed profile can be made
value-restricted by deleting at most k voters.

For the “only if” part, suppose that U ′ ⊆ U with |U ′| ≤ k is a vertex cover. We
show that, after deleting the voters corresponding to the vertices in U ′ the resulting
profile is value-restricted. Suppose for the sake of contradiction that the resulting
profile is not value-restricted. That is, it still contains a cyclic configuration σ. By
the definition of cyclic configurations, for each pair of alternatives x and y in σ,
there are two voters, one preferring x to y and the other preferring y to x. Together
with the fact that all voters agree on the relative order of two edge alternatives that
correspond to different edges, this implies that the three alternatives a j , b j , and c j in
σ correspond to the same edge e j . Furthermore, σ involves two voters corresponding
to the incident vertices of e j , and one other voter, because all voters corresponding
to vertices not in e j have the same ranking a j ≻ b j ≻ c j . Then, edge e j is not covered
by any vertex in U ′—a contradiction.

For the “if” part, suppose that the profile becomes value-restricted after the re-
moval of a subset V ′ ⊆V of voters with |V ′| ≤ k. That is, no three remaining voters
form a cyclic configuration. We show by contradiction that V ′ corresponds to a vertex
cover of graph G. Assume towards a contradiction that an edge e j is not covered by
the vertices corresponding to the voters in V ′. Then, the two voters corresponding to
the vertices that are incident with edge e j together with a third voter form a cyclic
configuration with regard to the three alternatives a j , b j , and c j —a contradiction.
Thus, V ′ corresponds to a vertex cover of graph G and its size is at most k.

83

5. Nearly Structured Preferences

u1

u2

u3u4

u5

e1

e2

e3

e4

e5

(a)

voter v1 : c1≻a1≻b1≻a2≻b2≻c2≻a3≻b3≻c3≻a4≻b4≻c4≻c5≻a5≻b5

voter v2 : b1≻c1≻a1≻c2≻a2≻b2≻a3≻b3≻c3≻a4≻b4≻c4≻a5≻b5≻c5

voter v3 : a1≻b1≻c1≻b2≻c2≻a2≻c3≻a3≻b3≻a4≻b4≻c4≻a5≻b5≻c5

voter v4 : a1≻b1≻c1≻a2≻b2≻c2≻b3≻c3≻a3≻c4≻a4≻b4≻b5≻c5≻a5

voter v5 : a1≻b1≻c1≻a2≻b2≻c2≻a3≻b3≻c3≻b4≻c4≻a4≻a5≻b5≻c5

(b)

Figure 5.2.: An illustration of the reduction from VERTEX COVER to VALUE-RESTRICTED MAV-
ERICK DELETION (Theorem 5.1). (a) An undirected graph with five vertices and five edges. The
graph has a vertex cover of size 2 (filled in gray). (b) A reduced instance ((A,V),k = 2) of VALUE-
RESTRICTED MAVERICK DELETION, where A = {ai ,bi ,ci | 1 ≤ i ≤ 5} and V = {v1, v2, v3, v4, v5}.
Deleting v2 and v4 results in a value-restricted profile. In fact, the resulting profile is also
best-restricted, single-peaked (and hence worst-restricted), and group-separable (and hence
medium-restricted).

We illustrate our reduction through an example. Figure 5.2(a) depicts an undi-
rected graph with 5 vertices and 4 edges. Vertices u2 and u4 form a vertex cover
of size two. Figure 5.2(b) shows the reduced instance with 5 voters and 3 · 4 = 12
alternatives. Deleting voters v2 and v4 results in a value-restricted profile which is
also best-restricted, single-peaked for instance with respect to the order

(b5, a5, a4,b3, a3,c2,b2,b1, a1,c1, a2,c3,b4,c4,c5)

(and hence worst-restricted), and group-separable (and hence medium-restricted).

Taking a closer look at the reduction shown in the proof of Theorem 5.1, the
constructed profile contains cyclic configurations which are simultaneously best-
diverse, worst-diverse, and medium-diverse. It turns out that we can use the same
construction to show the following three NP-hardness results with regard to the
best-restricted, worst-restricted, and medium-restricted properties.

Proposition 5.2. Π MAVERICK DELETION is NP-complete for every property Π ∈
{best-restricted, worst-restricted, medium-restricted}.

Proof. Let (G = (U ,E),k) be a VERTEX COVER instance and let A and V be the set
of alternatives and the set of voters that are constructed in the same way as in the
proof of Theorem 5.1. Let k be the number of voters to be deleted. As we already
observed in that proof, for each edge e j ∈ E , the two vertex voters that correspond

84

5.6. Value-restricted properties

to the vertices in e j and any other voter vz form a cyclic configuration, that is, a
best-diverse, worst-diverse, and medium-diverse configuration. It remains to show
that (G = (U ,E),k) has a vertex cover of size at most k if and only if the constructed
profile can be made best-restricted (or worst-restricted or medium-restricted) by
deleting at most k voters.

For the “if” part, suppose that the profile becomes best-restricted (or worst-res-
tricted or medium-restricted) by deleting a subset V ′ ⊆ V of voters with |V ′| ≤ k.
Then, the resulting profile is also value-restricted. Thus, we can use the “if” part in
the proof of Theorem 5.1 and obtain that the vertices corresponding to V ′ form a
vertex cover of size at most k.

For the “only if” part, suppose that U ′ ⊆ U with |U ′| ≤ k is a vertex cover. As
in the “only if” part proof of Theorem 5.1, we can show that deleting the voters
corresponding to U ′ results in a best-restricted and a worst-restricted profile.

As for the medium-restricted property, suppose towards a contradiction that after
deleting the voters corresponding to the vertices in U ′ there is still a medium-diverse
configuration σ. By the definition of medium-diverse configurations, we know that
in σ, each alternative is ranked between the other two by one voter. This implies that
σ involves three alternatives that correspond to the same edge e j and involves two
voters that correspond to e j ’s incident vertices. Thus, e j is an uncovered edge—a
contradiction.

5.6.2 Alternative Deletion

Next, we consider the case of deleting alternatives. Just as for the voter deletion
case, we first show NP-hardness of deciding the distance to value-restricted profiles.
Then, we show how to adapt the reduction to also work for deciding the distance to
best-restricted, worst-restricted, and medium-restricted profiles, respectively.

Theorem 5.3. VALUE-RESTRICTED ALTERNATIVE DELETION is NP-complete.

Proof. We reduce from VERTEX COVER to VALUE-RESTRICTED ALTERNATIVE DELE-
TION. Let (G = (U ,E),k) be a VERTEX COVER instance with vertex set U = {u1, . . . ,ur }
and edge set E = {e1, . . . ,es }. The set of alternatives consists of one vertex alternative a j

for each vertex u j in U and of k +1 additional dummy alternatives. Let A denote
the set of all vertex alternatives and let D denote the set of all dummy alternatives.
We arbitrarily fix a canonical order 〈D〉 of D and we set 〈A〉 := a1 ≻ a2 ≻ . . . ≻ ar . The
number m of constructed alternatives is r +k +1.

We introduce a voter v0 with the canonical preference order 〈D〉 ≻ 〈A〉. For each
edge ei = {u j ,u j ′ } with j < j ′, we introduce two edge voters v2i−1 and v2i with prefer-

85

5. Nearly Structured Preferences

ence orders

voter v2i−1 : a j ≻ a j ′ ≻ 〈D〉 ≻ 〈A \ {a j , a j ′ }〉,
voter v2i : a j ′ ≻ 〈D〉 ≻ 〈A \ {a j ′ }〉.

Together with voter v0, the two voters v2i−1 and v2i form a cyclic configuration with
respect to the two vertex alternatives a j , a j ′ , and an arbitrary dummy alternative
from D. Let V denote the set of all voters. In total, the number n of constructed
voters is 2s +1. To finalize the construction, let the maximum number of alternatives
to delete equal the maximum vertex cover size k.

Our reduction runs in linear time. It remains to show that graph G has a vertex
cover of size at most k if and only if the constructed profile can be made value-
restricted by deleting at most k alternatives.

For the “only if” part, suppose that U ′ ⊆U with |U ′| ≤ k is a vertex cover. We show
that after deleting the vertex alternatives corresponding to U ′, the resulting profile
is value-restricted. Suppose for the sake of contradiction that the resulting profile
is not value-restricted, that is, it contains a cyclic configuration σ. By definition, it
must hold that for each pair of alternatives x and y in σ, there are two voters, one
preferring x to y and the other preferring y to x. Together with the fact that each
voter agrees on the relative order of two distinct dummy alternatives, this implies
that σ contains at most one dummy alternative. But if σ contains one dummy
alternative d ∈ D, then there is a voter with preferences a j ≻ a j ′ ≻ d where a j , a j ′ ∈ A,
which means that edge {u j ,u j ′ } is not covered by U ′. Hence, σ contains no dummy
alternative. This means that σ contains three vertex alternatives a j , a j ′ , and a j ′′ with
j < j ′ < j ′′ and, by the definition of cyclic configurations, σ involves three voters with
preferences {a j , a j ′ } ≻ a j ′′ , {a j , a j ′′ } ≻ a j ′ , and {a j ′ , a j ′′ } ≻ a j , respectively. However,
the last preference implies that {u j ′ ,u j ′′ } is an edge which is not covered by U ′—a
contradiction.

For the “if” part, suppose that the constructed profile is a yes-instance of VALUE-
RESTRICTED ALTERNATIVE DELETION. Let A′ ⊆ A ∪D be the set of deleted vertex
alternatives with |A′| ≤ k. We show that the vertex set U ′ corresponding to A′ forms a
vertex cover of graph G and has size at most k. Clearly, |U ′| ≤ k. Assume towards a
contradiction that ei = {u j ,u j ′ }, j < j ′, is not covered by U ′. Since |D| > k, at least one
dummy alternative d is not deleted. Then, v0 and the two edge voters v2i−1 and v2i

form a cyclic configuration with regard to a j , a j ′ , d—a contradiction.

Using the same construction as in the last proof, we can show that achieving best-
restriction, worst-restriction, or medium-restriction via deleting the fewest number
of alternatives is intractable.

86

5.7. Single-peaked, single-caved, and group-separable properties

Proposition 5.4. Π ALTERNATIVE DELETION is NP-complete for every property Π ∈
{best-restricted, worst-restricted, medium-restricted}.

Proof. Let ((U ,E),k) denote a VERTEX COVER instance with vertex set U = {u1, . . . ,ur }
and edge set E = {e1, . . . ,es }. Let A, D, and V be the sets constructed in the same way
as in the proof of Theorem 5.3.

It remains to show that ((U ,E),k) has a vertex cover of size at most k if and only if
the constructed profile can be made best-restricted (or worst-restricted or medium-
restricted) by deleting at most k alternatives.

For the “if” part, suppose that the profile becomes best-restricted (or worst-res-
tricted or medium-restricted) after deleting a set A′ ⊆ A∪D of at most k alternatives.
Then, the resulting profile is also value-restricted. Thus, we can use the “if” part in
the proof of Theorem 5.3 and obtain that the vertex set corresponding to A′ forms a
vertex set of size at most k.

For the “only if” part, suppose that U ′ ⊆U with |U ′| ≤ k is a vertex cover. Just as in
the “only if” part proof of Theorem 5.3, we can show that deleting the alternatives
corresponding to U ′ results in a best-restricted and a worst-restricted profile.

As for the medium-restricted property, suppose for the sake of contradiction that
the resulting profile is not medium-restricted, that is, it contains a medium-diverse
configuration σ. Since all voters rank 〈D〉 and since no voter ranks d ≻ a j ≻ d ′ with
d , d ′ ∈ D and a j ∈ A, configuration σ contains at most one dummy alternative. Now,
if σ involves one dummy alternative d ∈ D and two vertex alternatives a j , a j ′ ∈ A
with j < j ′, then the voter ranking a j ′ between a j and d must rank a j ≻ a j ′ ≻ d . But
this means that edge {u j ,u j ′ } is uncovered—a contradiction. Hence, σ contains no
dummy alternative. This means that σ involves three vertex alternatives a j , a j ′ , a j ′′

with j < j ′ < j ′′. By the definition of medium-diverse configurations, σ must contain
a voter that ranks a j ′′ between a j and a j ′ , that is, a voter ranks either a j ≻ a j ′′ ≻ a j ′

or a j ′ ≻ a j ′′ ≻ a j . This, however, implies that either edge {u j ,u j ′′ } or edge {u j ′ ,u j ′′ } is
uncovered—a contradiction.

5.7 Single-peaked, single-caved, and group-separable properties

Since single-peaked, group-separable, and single-caved profiles are necessarily
worst-restricted, medium-restricted, and best-restricted, respectively, it seems rea-
sonable to expect that the intractability result (Proposition 5.2) transfers. Indeed,
we can show that this immediately follows from the proofs of Proposition 5.2 (and
hence of Theorem 5.1) because the profile constructed in the NP-hardness reduction
contains neither α-configurations nor β-configurations nor ᾱ-configurations.

87

5. Nearly Structured Preferences

Corollary 5.5. Π MAVERICK DELETION is NP-complete for every property Π ∈ {single-
peaked, single-caved, group-separable}.

Proof. First, the profile constructed in the proof of Proposition 5.2 does not contain
any three alternatives x, y , and z such that there is one voter with x ≻ y ≻ z and
one voter with z ≻ y ≻ x. Thus, the profile contains neither α-configurations nor
ᾱ-configurations.

Second, one can partition every set T of four alternatives into two non-empty
subsets T1 and T2 such that T1 ≻ T2 holds for each voter because at most three
alternatives can correspond to the same edge and all voters have the same ranking
over the alternatives that correspond to different edges. However, this is not possible
in a β-configuration. Thus, the profile does not contain any α-configuration, ᾱ-
configuration, or β-configuration.

As a consequence, the reduction in the proof of Proposition 5.2 also works for
SINGLE-PEAKED MAVERICK DELETION, SINGLE-CROSSING MAVERICK DELETION, and
GROUP-SEPARABLE MAVERICK DELETION.

Note that NP-hardness of SINGLE-PEAKED MAVERICK DELETION is already known
by a different proof of Erdélyi, Lackner, and Pfandler [ELP13]. However, their proof
does not work for Π MAVERICK DELETION with Π ∈ {best-restricted, medium-restrict-
ed, worst-restricted, group-separable}.

Just as the result for the maverick deletion, the NP-hardness result of MEDIUM-
RESTRICTED ALTERNATIVE DELETION also transfers to the group-separable case.
After deleting the alternatives corresponding to a vertex cover, the resulting profile
from the proof of Proposition 5.4 does not contain any β-configurations. Thus, the
following holds.

Corollary 5.6. GROUP-SEPARABLE ALTERNATIVE DELETION is NP-complete.

Proof. The profile constructed in the proof of Proposition 5.4 may contain β-config-
urations, but we show that destroying all medium-diverse configurations by deleting
at most k alternatives also destroys all β-configurations. Consider the profile P after
the deletion of the alternatives. Assume towards a contradiction that profile P con-
tains a β-configuration which involves four alternatives w , x, y , z and two voters v ,
v ′ with preferences

voter v : w ≻ x ≻ y ≻ z and voter v ′ : x ≻ z ≻ w ≻ y.

Observe that a β-configuration may contain at most one dummy alternative be-
cause no two alternatives appear consecutively in both preference orders of a β-
configuration, but all dummy alternatives appear consecutively in all preference

88

5.7. Single-peaked, single-caved, and group-separable properties

orders of the profile P . Furthermore, w , y , and z are vertex alternatives since in P ,
no voter prefers more than one vertex alternative to a dummy alternative. By the
definition of β-configurations, voter v ranks a j ≻ x ≻ a j ′ ≻ a j ′′ and voter v ′ ranks
x ≻ a j ′′ ≻ a j ≻ a j ′ with a j , a j ′ , a j ′′ ∈ A. However, the preference order of voter v
implies that j ′ < j ′′ and the preference order of voter v ′ implies that j ′′ < j ′—a con-
tradiction. As consequence, the reduction in the proof of Proposition 5.4 also works
for GROUP-SEPARABLE MAVERICK DELETION.

In order to be group-separable, a preference profile must be medium-restricted
and β-restricted. As already shown in Corollary 5.5 and in Corollary 5.6, deleting
as few maverick voters (or alternatives) as possible to obtain the group-separable
property is NP-hard. Alternatively, we can also derive this intractability result from
the following two theorems.

Theorem 5.7. β-RESTRICTED MAVERICK DELETION is NP-complete.

Proof. We reduce from VERTEX COVER to show NP-hardness. Let (G = (U ,E),k)
denote a VERTEX COVER instance with vertex set U = {u1, . . . ,ur } and edge set E =
{e1, . . . ,es }; without loss of generality, we assume that the input graph G is connected
and that it has at least four vertices, that is, r ≥ 4. The set of alternatives consists
of four edge alternatives a j , b j , c j , d j for each edge e j ∈ E . For each vertex in U , we
construct one voter. That is, we define A := {a j ,b j ,c j ,d j | e j ∈ E } and V := {vi | ui ∈U }.
In total, the number m of alternatives is 4s and the number n of voters is r .

Now we specify the preference order of each voter. Every voter prefers {a j ,b j , c j ,
d j } to {a j ′ , b j ′ , c j ′ ,d j ′ } whenever j < j ′. For each edge e j with two incident vertices ui

and ui ′ , i < i ′, and for each non-incident vertex ui ′′ ∉ e j , the following holds:

voter vi : a j ≻ b j ≻ c j ≻ d j ,

voter vi ′ : b j ≻ d j ≻ a j ≻ c j ,

voter vi ′′ : d j ≻ a j ≻ b j ≻ c j .

In this way, any β-configuration regarding alternatives a j , b j , c j , d j must involve
voters vi and vi ′ . To finalize the construction, let the maximum number of voters to
delete equal the maximum vertex cover size k.

Clearly, the whole construction runs in linear time. It remains to show that (G =
(U ,E),k) has a vertex cover of size at most k if and only if the constructed profile can
be made β-restricted by deleting at most k voters.

For the “only if” part, suppose that U ′ ⊆U with |U ′| ≤ k is a vertex cover. We show
that after deleting the voters corresponding to the vertices in U ′ the resulting profile

89

5. Nearly Structured Preferences

is β-restricted. Suppose for the sake of contradiction that the resulting profile is
not β-restricted. That is, it still contains a β-configuration σ. Since all voters prefer
{a j ,b j ,c j ,d j } to {a j ′ ,b j ′ ,c j ′′ ,d j ′′′ } whenever j < j ′, the profile restricted to every four
alternatives that correspond to at least two edges is group-separable. But since σ is
not group-separable, σ involves four alternatives a j , b j , c j , and d j that correspond
to a single edge e j . As already observed, any β-configuration regarding the four
alternatives a j , b j , c j , d j must involve voters vi and vi ′ that correspond to both
endpoints of e j . Then, edge e j is not covered by any vertex in U ′—a contradiction.

For the “if” part, suppose that the profile becomes β-restricted by deleting a
subset V ′ ⊆V of voters with |V ′| ≤ k. That is, no two voters form a β-configuration.
We show by contradiction that V ′ corresponds to a vertex cover of graph G and has
size at most k. Clearly, |V ′| ≤ k. Assume towards a contradiction that an edge e j is
not covered by the vertices corresponding to the voters in V ′. Then, the two voters
corresponding to the vertices that are incident with edge e j form a β-configuration
with regard to a j , b j , c j , and d j —a contradiction. Thus, voter set V ′ corresponds to a
vertex cover of graph G and its size is at most k.

Theorem 5.8. β-RESTRICTED ALTERNATIVE DELETION is NP-complete.

Proof. We reduce from VERTEX COVER to β-RESTRICTED ALTERNATIVE DELETION.
Let (G = (U ,E),k) denote a VERTEX COVER instance with vertex set U = {u1, . . . ,ur }
and edge set E = {e1, . . . ,es }; without loss of generality we assume that the input
graph G is connected and that r ≥ k +2. The set of alternatives consists of one vertex
alternative a j and one dummy alternative d j for each vertex u j in U . Let A denote
the set of all vertex alternatives and let D denote the set of all dummy alternatives.
The number m of constructed alternatives is 2r .

We fix the canonical order of A∪D to be

〈A∪D〉 := d1 ≻ a1 ≻ d2 ≻ a2 ≻ . . . ≻ dr ≻ ar .

We introduce a voter v0 with the preference order 〈A∪D〉. For each edge ei = {u j ,u j ′ }
with j < j ′, we introduce one edge voter vi with preference order

a j ≻ a j ′ ≻ 〈A∪D \ {a j , a j ′ }〉.
Observe that voter v0 and vi form a β-configuration with respect to the four alterna-
tives corresponding to the vertices in edge {u j ,u j ′ } with j < j ′, that is, with respect to
a j , a j ′ , d j , and d j ′ :

voter v0 : d j ≻ a j ≻ d j ′ ≻ a j ′ ,

voter vi : a j ≻ a j ′ ≻ d j ≻ d j ′ .

90

5.7. Single-peaked, single-caved, and group-separable properties

Furthermore, for each pair of alternatives a and b, if there is a voter v preferring a
to b, then the following holds:

(i) If neither a nor b is in the first two positions of voter v ’s preference order, then
a and b correspond to two (not necessarily distinct) vertices u j and u j ′ with
j ≤ j ′.

(ii) If a and b correspond to two vertices u j and u j ′ with j > j ′ and if there is a third
alternative c such that v prefers c to a, then c and a correspond to two adjacent
vertices.

We utilize these two facts several times to show some contradictions.
Let V denote the set of all voters. In total, the number n of constructed voters is

s +1. To finalize the construction, let the maximum number of alternatives to delete
equal the maximum vertex cover size k.

Our construction runs in linear time. It remains to show that (G = (U ,E),k) has
a vertex cover of size at most k if and only if the constructed profile can be made
β-restricted by deleting at most k alternatives.

For the “only if” part, suppose that U ′ ⊆U with |U ′| ≤ k is a vertex cover of graph G .
We show that after deleting the vertex alternatives corresponding to U ′, denoted by
A′, the resulting profile is β-restricted. Suppose for the sake of contradiction that the
resulting profile still contains a β-configuration σ with regard to four alternatives w ,
x, y , z and two voters v , v ′ with preferences

voter v : w ≻ x ≻ y ≻ z and voter v ′ : x ≻ z ≻ w ≻ y.

Let w , x, y , and z correspond to four non-deleted vertices u j , u j ′ , u j ′′ , and u j ′′′ ,
respectively. By Property (i), the preference order of voter v implies j ′′ ≤ j ′′′ (note
that voter v ranks neither y nor z in the first two positions) and the preference
order of voter v ′ implies that j ≤ j ′′ (note that voter v ′ ranks neither w nor y in the
first two positions). Since x, y , and z correspond to at least two distinct vertices, it
follows that j < j ′′′. Since voter v ′ ranks x ≻ z ≻ w ≻ y , by Property (ii) the inequality
j < j ′′′ implies that u j ′ and u j ′′′ are adjacent—a contradiction to U ′ being a vertex
cover. Indeed, the resulting profile is group-separable. To see this, note that any
size-at-least-three subset T ⊆ (A∪D) \ A′ of alternatives can be partitioned into two
non-empty subsets {a} and T \ {a} with a being the last alternative in the canonical
order restricted to the alternatives in set T .

For the “if” part, suppose that the constructed profile is a yes-instance of β-
RESTRICTED ALTERNATIVE DELETION. Let A′ ⊆ A∪D be the set of deleted alternatives

91

5. Nearly Structured Preferences

with |A′| ≤ k. Consider the vertex set U ′ containing all vertices corresponding to a
vertex alternative or to a dummy alternative in A′, that is, U ′ := {u j | a j ∈ A′∨d j ∈ A′}.
Obviously, |U ′| ≤ k. We show that set U ′ is a vertex cover. Suppose towards a contra-
diction that there is an uncovered edge ei = {u j ,u j ′ } with j < j ′. By the definition of
U ′, we have that A′∩{d j , a j ,d j ′ , a j ′ } =;. Then, voters v0 and vi form a β-configuration
with respect to the four alternatives d j , a j , d j ′ , and a j ′—a contradiction.

5.8 Single-crossing properties

In this section, we show that for the single-crossing property, the alternative
deletion problem is NP-hard while the maverick deletion problem is polynomial-
time solvable. The NP-hardness proof is based on the NP-complete MAXIMUM

2-SATISFIABILITY (MAX2SAT) problem [GJ79].

MAXIMUM 2-SATISFIABILITY (MAX2SAT)
Input: A set U of Boolean variables, a collection C of size-two clauses over U
and a positive integer h.
Question: Is there a truth assignment for U which satisfy at least h clauses
in C ?

Theorem 5.9. SINGLE-CROSSING ALTERNATIVE DELETION is NP-complete.

Proof. For the NP-hardness result we reduce from MAX2SAT [GJ79]. We provide an
example for the reduction (Table 5.2) right after this proof.

Let (U ,C ,h) be a MAX2SAT instance with variable set U = {x1, . . . , xr } and clause
set C = {c1, . . . ,cs }. We construct two sets O and O of dummy alternatives with |O| =
|O| = 2(r · s + r + s)+1 . For each variable xi ∈U , we construct two sets Xi and Xi of
variable alternatives with |Xi | = |Xi | = s +1. We say that Xi corresponds to xi and that
Xi corresponds to xi . The canonical orders 〈O〉, 〈O〉, 〈Xi 〉, and 〈Xi 〉, i ∈ {1, . . . ,r }, are
arbitrary but fixed. Let X be the union

⋃r
i=1 Xi ∪Xi of all variable alternatives. The

canonical order 〈X 〉 is defined as

〈X 〉 := 〈X1〉 ≻ 〈X1〉 ≻ 〈X2〉 ≻ 〈X2〉 ≻ . . . ≻ 〈Xr 〉 ≻ 〈Xr 〉.

For each clause c j ∈C , we construct two clause alternatives a j and b j . Let A denote
the set of all clause alternatives. The canonical order 〈A〉 is defined as

〈A〉 := a1 ≻ b1 ≻ a2 ≻ b2 ≻ . . . ≻ as ≻ bs .

The total number m of alternatives is 6(r · s + r + s)+2.
We introduce voters and their preference orders such that

92

5.8. Single-crossing properties

(1) deleting all alternatives in Xi corresponds to setting variable xi to true,

(2) deleting all alternatives in Xi corresponds to setting variable xi to false, and

(3) deleting b j or a j corresponds to clause c j not being satisfied.

We construct two sets V and W of voters with |V | = 2r and |W | = 4s. Voter set V
consists of two voters v2i−1 and v2i for each variable xi , 1 ≤ i ≤ r . Their preference
orders are

〈O〉 ≻ 〈O〉 ≻ 〈X1〉 ≻ 〈X1〉 ≻ . . . ≻ 〈Xi−1〉 ≻ 〈Xi−1〉 ≻
〈Xi 〉 ≻ 〈Xi 〉 ≻ 〈Xi+1〉 ≻ 〈Xi+1〉 ≻ . . . ≻ 〈Xr 〉 ≻ 〈Xr 〉 ≻ 〈A〉,

〈O〉 ≻ 〈O〉 ≻ 〈X1〉 ≻ 〈X1〉 ≻ . . . ≻ 〈Xi−1〉 ≻ 〈Xi−1〉 ≻
〈Xi 〉 ≻ 〈Xi 〉 ≻ 〈Xi+1〉 ≻ 〈Xi+1〉 ≻ . . . ≻ 〈Xr 〉 ≻ 〈Xr 〉 ≻ 〈A〉,

respectively. These two voters together with any other two voters vℓ and vℓ′ ∈ V \
{v2i−1, v2i } with odd number ℓ and even number ℓ′ form a δ-configuration with regard
to each four alternatives o, o, x, x where o ∈O, o ∈O, x ∈ Xi , x ∈ Xi :

voter v2i−1 : o ≻ o and x ≻ x,

voter v2i : o ≻ o and x ≻ x,

voter vℓ : o ≻ o and x ≻ x,

voter vℓ′ : o ≻ o and x ≻ x.

Voter set W consists of four voters w4 j−3, w4 j−2, w4 j−1, w4 j for each clause c j , 1 ≤ j ≤ s.
These four voters have the same preference order

〈O〉 ≻ 〈O〉 ≻ 〈A1〉 ≻ 〈X 〉 ≻ 〈A2〉

over the set O ∪O ∪ A1 ∪ A2 ∪ X , where A1 = {a j ′ ,b j ′ | j ′ < j } and A2 = {a j ′ ,b j ′ | j ′ > j }.
Note that A1 ∪ A2 = A \ {a j ,b j }. Thus, it remains to specify the exact positions of
a j and b j in the four voters’ preference orders: Let X̂ j

1 denote the set of variable
alternatives corresponding to the literal in c j with the lower index and X̂ j

2 denote the
set of variable alternatives corresponding to the literal in c j with the higher index.
For instance, if c j = x2 ∨x4, then X̂ j

1 equals X2 and X̂ j
2 equals X4.

Voters w4 j−3 and w4 j−2 rank the clause alternative a j right below the last alternative
in 〈X̂ j

1 〉 while voters w4 j−1 and w4 j rank it right above the first alternative in 〈X̂ j
1 〉.

As for alternative b j , voters w4 j−3 and w4 j−1 rank b j right above the first variable

93

5. Nearly Structured Preferences

alternative in 〈X̂ j
2 〉 while voters w4 j−2 and w4 j rank it right below the last variable

alternative in 〈X̂ j
2 〉. Thus, these four voters form a δ-configuration with regard to a j ,

b j , x, and y , where x ∈ X̂ j
1 and y ∈ X̂ j

2 :

voter w4 j−3 : x ≻ a j and b j ≻ y ,

voter w4 j−2 : x ≻ a j and y ≻ b j],

voter w4 j−1 : a j ≻ x and b j ≻ y ,

voter w4 j : a j ≻ x and y ≻ b j .

We complete the construction by setting the number k of alternatives that may be
deleted to k := r (s +1)+ (s −h).

The construction clearly runs in polynomial time. It remains to show that (U ,C ,h)
is a yes-instance of MAX2SAT if and only if the constructed profile together with k is
a yes-instance of SINGLE-CROSSING ALTERNATIVE DELETION.

For the “only if” part, suppose that there is a truth assignment U → {true, false}r

of the variables such that at least h clauses are satisfied. We delete all variable
alternatives in Xi if xi is assigned to true. Otherwise, we delete all variable alternatives
in Xi . Furthermore, we delete the clause alternative b j if c j is not satisfied by the
assignment. Let Xrem be the set of remaining variable alternatives, and let Arem be the
set of remaining clause alternatives. Then, |Xrem| = r (s +1) and |A′| ≥ s +h, implying
that the number of deleted alternatives is |X |+|A|−(|Xrem|+|Arem|) ≤ r (s+1)+(s−h) = k.

For each j ∈ {1, . . . , s}, we define 〈z j 〉 = w4 j−2 ≻ w4 j ≻ w4 j−3 ≻ w4 j−1 if the literal in
clause c j with the lower index is satisfied; otherwise, 〈z j 〉 = w4 j−3 ≻ w4 j−2 ≻ w4 j−1 ≻ w4 j .
The resulting profile is single-crossing with respect to the voter order L:

v1 ≻ v3 ≻ . . . ≻ v2r−1 ≻ v2 ≻ v4 ≻ . . . ≻ v2r ≻ 〈z1〉 ≻ 〈z2〉 ≻ . . . ≻ 〈zs〉.

Suppose for the sake of contradiction that L is not a single-crossing order, which
means that there is a pair {a, a′} ⊂O∪O∪Xrem∪Arem of alternatives and three voters u,
v , w with u ≻L v ≻L w such that voter v disagrees with voters u and w on the relative
order of a and a′.

Note that all voters along L up to and including voter v2r−1 rank 〈O〉 ≻ 〈O〉 ≻ 〈X 〉
while all voters from v2 onwards rank 〈O〉 ≻ 〈O〉 ≻ 〈X 〉. Hence, a and a′ can neither
both be in O∪O nor both be in Xrem. Furthermore, a and a′ cannot both be in Arem as
all voters rank 〈A〉. Moreover, since all voters rank (O ∪O) ≻ (X ∪ A), neither a nor a′

belongs to O ∪O. This means, without loss of generality, that a ∈ Xrem and a′ ∈ Arem.
Assume that a′ corresponds to clause c j for some j , that is, a′ ∈ {a j ,b j }. Then, for

each alternative a′′ ∈ Xrem \ (X̂ j
1 ∪ X̂ j

2) that does not correspond to a literal in c j (recall

94

5.8. Single-crossing properties

that X̂ j
1 and X̂ j

2 denote the two sets of variable alternatives corresponding to the
literal in c j with the lower index and the literal in c j with the lower index, respectively),
the following holds. If the first voter in 〈z j 〉 prefers a′′ to a′, which means either that
all voters rank a′′ in front of X̂ j

1 ∪ X̂ j
2 or that all voters rank a′ = a j and a′′ in front of X̂ j

2 ,
then all voters along the order L up to and including the last voter in 〈z j 〉 prefer a′′

to a′ while all remaining voters prefer a′ to a′′; otherwise all voters along the order L
up to and including the last voter in 〈z j−1〉 prefer a′′ to a′ while all remaining voters
prefer a′ to a′′. Thus, alternative a′ cannot be in Xrem \ (X̂ j

1 ∪ X̂ j
2). That is, we have

a ∈ X̂ j
1 ∪ X̂ j

2 . We distinguish four cases regarding a and a′.

(i) If a ∈ X̂ j
1 and if a′ = a j , then the literal corresponding to X̂ j

1 is not satisfied
because X̂ j

1 is not deleted. Thus, 〈z j 〉 is defined as w4 j−3 ≻ w4 j−2 ≻ w4 j−1 ≻ w4 j .
All voters along L up to and including w4 j−2 prefer a to a′, and all remaining
voters prefer a′ to a.

(ii) If a ∈ X̂ j
1 and if a′ = b j , then all voters along L up to and including the last voter

in 〈z j 〉 prefer a to a′, and all remaining voters prefer a′ to a.

(iii) If a ∈ X̂ j
2 and if a′ = a j , then all voters along L up to and including the last voter

in 〈z j−1〉 prefer a to a′, and all remaining voters a′ to a.

(iv) If a ∈ X̂ j
2 and if a′ = b j , then clause c j is satisfied because b j is not deleted.

Furthermore, since X̂ j
2 is not deleted, X̂ j

1 must be deleted because clause c j

is satisfied. This implies that the literal in clause c j with the lower index is
satisfied. Thus, 〈z j 〉 is defined as w4 j−2 ≻ w4 j ≻ w4 j−3 ≻ w4 j−1. All voters along L
up to and including w4 j prefer a to a′, and all remaining voters prefer a′ to a.

In summary, there is single a voter v along the order L such that all voters up to
and including v have the same preference over {a, a′} and all remaining voters have
the same preference over {a, a′}—a contradiction to the assumption that L is not a
single-crossing order.

For the “if” part, suppose that deleting a set K of at most k alternatives makes
the remaining profile single-crossing. Since |O| = |O| ≥ k, at least one pair {o,o}
of dummy alternatives is not deleted, where o ∈ O and o ∈ O. Let Xdel denote the
set of all deleted variable alternatives, and Adel denote the set of all deleted clause
alternatives. Clearly, |Xdel|+ |Adel| ≤ |K |. For each xi ∈U , at least one set of Xi and Xi

must be deleted to destroy all δ-configurations involving alternatives in {o,o}∪Xi ∪Xi .
This means that |Xdel| ≥ r (s+1). Thus, |Adel| ≤ |K |−|Xdel| ≤ k −r (s+1) ≤ s−h. Let Cboth

denote the set of clauses such that neither a j nor b j is deleted, 1 ≤ j ≤ s, that is,

95

5. Nearly Structured Preferences

Cboth := {c j | {a j ,b j }∩ Adel =;}. Set Cboth has cardinality at least h because |Adel| ≤ s −h.
We show that by setting variable xi ∈ U to true if Xi ⊆ Xdel, and false otherwise,
all clauses c j from Cboth are satisfied. Suppose for the sake of contradiction that
clause c j ∈ Cboth is not satisfied. This means that {a j ,b j }∩ Adel = ;, and that both
X̂ j

1 and X̂ j
2 are not completely contained in Xdel. But then, voters w4i−3, w4i−2, w4i−1,

and w4i form a δ-configuration with regard to a j , b j , x, x ′, where x ∈ X̂ j
1 \ Xdel and

x ′ ∈ X̂ j
2 \ Xdel—a contradiction.

We illustrate our NP-hardness reduction through an example. Consider an in-
stance of MAX2SATwith two variables x1 and x2 and four clauses

c1 = x1 ∨x2, c2 = x1 ∨x2, c3 = x1 ∨x2, c4 = x1 ∨x2.

We set the maximum number h of clauses that can be satisfied by a truth assign-
ment to be three. For instance, the truth assignment x1 7→ true and x2 7→ false satisfies
clauses c1, c2, c4. Table 5.2 depicts the reduced instance of SINGLE-CROSSING MAV-
ERICK DELETION with alternative set O ∪O ∪X1 ∪X1 ∪X2 ∪X2 ∪ {ai ,bi | 1 ≤ i ≤ 4} and
voter set {vi , w4i−3, w4i−2, w4i−1, w4i | 1 ≤ i ≤ 4}. The number k of alternatives that may
be deleted is set to 2 · (4+1)+ (4−3) = 11. We can verify that deleting the alternatives
from X1 ∪X2 ∪ {b3} results in a single-crossing profile where a single-crossing order is
v1≻v3≻v2≻v4≻w2≻w4≻w1≻w3≻w6≻w8≻w5≻w7≻w9≻w10≻. . .≻w16.

In contrast to the other NP-hardΠ MAVERICK DELETION problems, SINGLE-CROSS-
ING MAVERICK DELETION is polynomial-time solvable. The algorithm, which is
similar to the single-crossing detection algorithm by Elkind, Faliszewski, and Slinko
[EFS12], not only solves the decision problem, but also the optimization problem
asking for the maximum-size subset of voters such that the profile restricted to this
subset is single-crossing.

Before we proceed to describe the algorithm, we define some notions and make
some observations about single-crossing profiles. We call a set S of preference orders
single-crossing if there is a single-crossing order of the elements in S. We introduce
the notion ∆(≻,≻′) of the set of conflict pairs for two given preference orders ≻ and
≻′∈ S . By ∆(≻,≻′), we denote the set of pairs {a,b} of alternatives whose relative
order differs between preference orders ≻ and ≻′. Formally,

∆(≻,≻′) := {{a,b} | a ≻ b and b ≻′ a}.

For instance, given three alternatives a,b,c, if the preference orders ≻,≻′ are the same,
then ∆(v, v ′) = ;; if the two preference orders are specified as : b ≻ a ≻ c and c ≻′

b ≻′ a, then ∆(≻,≻′) := {{a,c}, {b,c}}.

96

5.8. Single-crossing properties

voter v1 : 〈O〉≻〈O〉≻〈X1〉≻〈X1〉≻〈X2〉≻〈X2〉≻a1≻b1≻a2≻b2≻a3≻b3≻a4≻b4

voter v2 : 〈O〉≻〈O〉≻〈X1〉≻〈X1〉≻〈X2〉≻〈X2〉≻a1≻b1≻a2≻b2≻a3≻b3≻a4≻b4

voter v3 : 〈O〉≻〈O〉≻〈X1〉≻〈X1〉≻〈X2〉≻〈X2〉≻a1≻b1≻a2≻b2≻a3≻b3≻a4≻b4

voter v4 : 〈O〉≻〈O〉≻〈X1〉≻〈X1〉≻〈X2〉≻〈X2〉≻a1≻b1≻a2≻b2≻a3≻b3≻a4≻b4

voter w1 : 〈O〉≻〈O〉≻〈X1〉≻a1≻〈X1〉≻b1≻〈X2〉≻〈X2〉≻a2≻b2≻a3≻b3≻a4≻b4

voter w2 : 〈O〉≻〈O〉≻〈X1〉≻a1≻〈X1〉≻〈X2〉≻b1≻〈X2〉≻a2≻b2≻a3≻b3≻a4≻b4

voter w3 : 〈O〉≻〈O〉≻a1≻〈X1〉≻〈X1〉≻b1≻〈X2〉≻〈X2〉≻a2≻b2≻a3≻b3≻a4≻b4

voter w4 : 〈O〉≻〈O〉≻a1≻〈X1〉≻〈X1〉≻〈X2〉≻b1≻〈X2〉≻a2≻b2≻a3≻b3≻a4≻b4

voter w5 : 〈O〉≻〈O〉≻a1≻b1≻〈X1〉≻a2≻〈X1〉≻〈X2〉≻b2≻〈X2〉≻a3≻b3≻a4≻b4

voter w6 : 〈O〉≻〈O〉≻a1≻b1≻〈X1〉≻a2≻〈X1〉≻〈X2〉≻〈X2〉≻b2≻a3≻b3≻a4≻b4

voter w7 : 〈O〉≻〈O〉≻a1≻b1≻a2≻〈X1〉≻〈X1〉≻〈X2〉≻b2≻〈X2〉≻a3≻b3≻a4≻b4

voter w8 : 〈O〉≻〈O〉≻a1≻b1≻a2≻〈X1〉≻〈X1〉≻〈X2〉≻〈X2〉≻b2≻a3≻b3≻a4≻b4

voter w9 : 〈O〉≻〈O〉≻a1≻b1≻a2≻b2≻〈X1〉≻〈X1〉≻a3≻b3≻〈X2〉≻〈X2〉≻a4≻b4

voter w10 : 〈O〉≻〈O〉≻a1≻b1≻a2≻b2≻〈X1〉≻〈X1〉≻a3≻〈X2〉≻b3≻〈X2〉≻a4≻b4

voter w11 : 〈O〉≻〈O〉≻a1≻b1≻a2≻b2≻〈X1〉≻a3≻〈X1〉≻b3≻〈X2〉≻〈X2〉≻a4≻b4

voter w12 : 〈O〉≻〈O〉≻a1≻b1≻a2≻b2≻〈X1〉≻a3≻〈X1〉≻〈X2〉≻b3≻〈X2〉≻a4≻b4

voter w13 : 〈O〉≻〈O〉≻a1≻b1≻a2≻b2≻a3≻b3≻〈X1〉≻〈X1〉≻a4≻〈X2〉≻b4≻〈X2〉
voter w14 : 〈O〉≻〈O〉≻a1≻b1≻a2≻b2≻a3≻b3≻〈X1〉≻〈X1〉≻a4≻〈X2〉≻〈X2〉≻b4

voter w15 : 〈O〉≻〈O〉≻a1≻b1≻a2≻b2≻a3≻b3≻〈X1〉≻a4≻〈X1〉≻〈X2〉≻b4≻〈X2〉
voter w16 : 〈O〉≻〈O〉≻a1≻b1≻a2≻b2≻a3≻b3≻〈X1〉≻a4≻〈X1〉≻〈X2〉≻〈X2〉≻b4

Table 5.2.: An instance ((A,V),k = 11) with alternative set O ∪O ∪X1 ∪X1 ∪X2 ∪X2 ∪ {ai ,bi |
1 ≤ i ≤ 4} and voter set {vi , w4i−3, w4i−2, w4i−1, w4i | 1 ≤ i ≤ 4} reduced from the MAX2SAT

instance with two variables x1 and x2, and with four clauses c1 = x1 ∨ x2, c2 = x1 ∨ x2, c3 =
x1 ∨x2, and c4 = x1 ∨x2. We set the maximum number h of clauses that can be satisfied by a
truth assignment to be three.

Based on this notion, we can redefine the single-crossing property of a set of
preference orders using set inclusions. For the sake of readability, we use the vector
notation (·, · · · , ·) to denote a linear order over a set of preference orders.

Lemma 5.10. A linear order (≻∗
1 ,≻∗

2 , . . . ,≻∗
n) over a set of n preference orders is single-

crossing if and only if for each two preference orders ≻∗
i and ≻∗

j with 1 ≤ i ≤ j ≤ n it
holds that ∆(≻∗

1 ,≻∗
i) ⊆∆(≻∗

1 ,≻∗
j).

Proof. The “only if” part follows directly from the definition of the single-crossing
property and the set of conflict pairs. For the “if” part, suppose towards a contra-
diction that the order (≻∗

1 ,≻∗
2 , . . . ,≻∗

n) is not single-crossing. This means that there

97

5. Nearly Structured Preferences

are two alternatives a, b, and there are two preference orders ≻∗
i , ≻∗

j with 1 < i < j
such that a ≻∗

1 b and a ≻∗
j b, but b ≻∗

i a. Then it follows that {a,b} ∈ ∆(≻∗
1 ,≻∗

i) but
{a,b} ∉∆(≻∗

1 ,≻∗
j)—a contradiction.

The following observation states that the single-crossing property only depends
on the preference orders, not on the voters.

Observation 5.11. Let V be a set of voters and let w ∉V be an additional voter such
that there is a voter in V who has the same preference order as voter w . Then, the
profile with voter set V is single-crossing if and only if the profile with voter set V ∪ {w}
is single-crossing.

Proof. By the definition of single-crossing orders, a profile is single-crossing if and
only if the set of the preference orders of all voters in this profile is single-crossing.
Since adding voter w to voter set V does not change the set of the preference orders
of all voters in V , the statement follows.

Based on the notions of conflicting pairs and single-crossing sets of preference
orders, and Lemma 5.10 and Observation 5.11, we can solve the maximization variant
of the SINGLE-CROSSING MAVERICK DELETION problem by reducing it to finding a
longest path in an appropriately constructed directed acyclic graph. This implies
the following theorem.

Theorem 5.12. SINGLE-CROSSING MAVERICK DELETION is solvable in O(n3 ·m2) time,
where n denotes the number of voters and m denotes the number of alternatives.

Proof. Suppose that we are given a profile with A being the set of m alternatives and
V being the set of n voters, each voter having a preference order over A. Our goal is
to find a maximum-size subset of voters such that the profile restricted to this subset
is single-crossing. To this end, we use two further notions: Let S (V) := {≻v | v ∈ V }
be the set of the preference orders of all voters from V ; without loss of generality,
let S (V) := {≻1,≻2, . . . ,≻n′ }. For each preference order ≻∈S (V), let #(≻,V) denote the
number of voters in V with the same preference order ≻. By Observation 5.11, it
follows that finding the maximum-size single-crossing voter subset is equivalent to
finding a single-crossing subset S ′ ⊆S (V) of preference orders that maximizes the
sum

∑
≻∈S ′ #(≻,V).

We observe that if ≻ is the first preference order along the single-crossing order
over set S ′, then for each two further preference orders ≻′, ≻′′∈S ′ with ≻′ being the
predecessor of ≻′′ along the single-crossing order, by Lemma 5.10, it holds that ∆(≻
,≻′) ⊆∆(≻,≻′′). This inspires us to build a directed graph based on the set inclusion

98

5.8. Single-crossing properties

relation and, then, to find a maximum-weight path. Thus, the idea of our algorithm is
to first construct a directed graph with weighted arcs and, then, to find a maximum-
weight path on this graph. We provide an example to illustrate this idea right after
this proof.

The construction of the desired directed graph works as follows: For each two
numbers z, i ∈ {1,2, . . . ,n′}, we construct one vertex uz

i ; this vertex will represent the
preference order ≻i in a linear order starting with preference order ≻z . Then, for each
further number i ′ ∈ {1,2, . . . ,n′} with i ̸= i ′, we add an arc with weight #(≻i ′ ,V) from
vertex v z

i to vertex v z
i ′ if ∆(≻z ,≻i) ⊆∆(≻z ,≻i ′). Finally, we construct a root vertex ur ,

and for each number z ∈ {1,2, . . . ,n′}, we add an arc with weight #(≻z ,V) from root ur

to uz
z . This completes the construction. Observe that the constructed directed graph

is acyclic:

1. For each three numbers z, z ′, i ∈ {1,2, . . . ,n′} with z ̸= z ′, there are no arcs
between vertices uz

i and uz′
i .

2. For each three numbers z, i , i ′ ∈ {1,2, . . . ,n′} with i ̸= i ′, a path from uz
i to uz

i ′
implies that ∆(≻z ,≻i) ⊆ ∆(≻z ,≻i ′), while a path from uz

i ′ to uz
i implies that

∆(≻z ,≻i ′) ⊆∆(≻z ,≻i). Thus, both paths cannot exist simultaneously because
≻i ̸=≻i ′ .

Now, an order of the vertices along a maximum-weight directed path corresponds
to a subset S ′ ⊆S (V) of preference orders such that S ′ is single-crossing, and the
sum

∑
≻∈S ′ #(≻,V) is maximum: The second vertex on the maximum-weight path

fixes the first preference order of the single-crossing order. Each successive vertex uz
i

on the path represents the successive preference order ≻i in the single-crossing order
(this is true by Lemma 5.10 and by the way we define an arc). The arc weights ensure
that the sum of the weights on the path equals the total number of represented
voters.

As to the running time analysis, we need O(n ·m) time to compute the set S (V).
Then, for each two (not necessarily distinct) preference orders ≻, ≻′∈ S (V), we
compute ∆(≻,≻′). This can be done by checking the relative order of each pair of
alternatives in O(n2 ·m2) time. Further, we construct the directed graph in O(n3 ·
m2) time. Finally, we compute the maximum-weight path in a directed acyclic graph
with n2 vertices and n3 arcs in O(n3) time. To achieve this, we first replace all positive
weights w with −w , and then use the algorithm in the textbook of Cormen et al.
[Cor+09, Sec 24.2] to find a minimum-weight path. In total, the running time is
O(n3 ·m2).

99

5. Nearly Structured Preferences

We have just seen that SINGLE-CROSSING MAVERICK DELETION is solvable in
polynomial time by reducing our problem to finding a maximum-weight path in an
appropriately constructed directed acyclic graph. Now, we illustrate this approach
with a concrete example.

Example 5.1. Consider a profile P with three alternatives a, b, c, and five voters v1,
v2, v3, v4, v5, whose preference orders are depicted in Figure 5.3(a). This profile is
not single-crossing as it contains a γ-configuration with regard to the three pairs of
alternatives {a,c}, {a, b}, {a,b} and voters v1, v3, v4. The set of the preference orders
of all voters is {a ≻ b ≻ c, b ≻ c ≻ a, c ≻ a ≻ b, c ≻ b ≻ a}. According to our algorithm of
finding a single-crossing profile with maximum number of voters, we first construct a
weighted directed graph as depicted in Figure 5.3(b). Then, we will find a maximum-
weight path in the graph. We can verify that there are four maximum-weight paths,
including the path ur → (a ≻ b ≻ c) → (b ≻ c ≻ a) → (b ≻ c ≻ a) with weight four.
Thus, a single-crossing profile with the largest voter subset contains four voters. For
instance, the profile with voters v1, v2, v3, v5.

5.9 Concluding remarks

We have shown that SINGLE-CROSSING MAVERICK DELETION can be solved in
polynomial time (Theorem 5.12). The algorithm proposed there, first constructs an
arc-weighted acyclic directed graph for a given profile, and then finds a maximum-
weight path on this graph. This rather straight-forward approach yields a running
time of O(n3 ·m2) where n denotes the number of voters and m denotes the number
of alternatives. However, Doignon and Falmagne [DF94] used a special data structure
and proposed an O(n2 +n ·m · log(m)) algorithm for detecting single-crossingness,
which can be interpreted as making a profile single-crossing without deleting any
voters. It would be interesting to know whether their idea can be adapted to our
problem to obtain an algorithm with lower running time.

In contrast to the polynomial-time solvability for SINGLE-CROSSING MAVERICK

DELETION, deciding whether it is possible to make a profile nicely structured by delet-
ing at most k voters or at most k alternatives is NP-complete for all other considered
properties (SINGLE-PEAKED ALTERNATIVE DELETION has been proven NP-complete
by Erdélyi, Lackner, and Pfandler [ELP13]). However, we note that all these problems
become tractable when k is a small constant: All considered properties are char-
acterized by a fixed number of small forbidden substructures. Thus, by branching
over all possible voters (resp. alternatives) of each forbidden substructure in the
profile, we obtain a fixed-parameter algorithm that is efficient for small distances

100

5.9. Concluding remarks

v1 : a≻b≻c,
v2 : a≻b≻c,
v3 : b≻c≻a,
v4 : c≻a≻b,
v5 : c≻b≻a.

(a)

b≻c≻a c≻a≻b

a≻b≻c

c≻b≻a

1 1
1

1 1

a≻b≻c c≻b≻a

c≻a≻b

b≻c≻a

2 1
1

1

a≻b≻c c≻b≻a

c≻a≻b

b≻c≻a

2 1
1

1

b≻c≻a

c≻b≻a

c≻a≻b

a≻b≻c

1
11

22

ur

2 1 1 1

(b)

Figure 5.3.: An example illustrating how to construct a weighted directed graph for a given
profile in order to solve SINGLE-CROSSING MAVERICK DELETION. (a) A profile with four voters
and three alternatives. Note that the first two voters have the same preference order, and this
profile is not single-crossing. (b) A weighted directed graph for the profile in (a). Note that we
label each vertex with its corresponding preference order. The weight of an arc denotes the
number of voters in the profile that have the preference order denoted by the label of the arc’s
target vertex. For instance, there is an arc from the root ur to its left most “child” a≻b≻c with
weight 2. This means that the left profile has two voters with preference order a≻b≻c. Any
path that starts with the root ur and consists of thick arrows is a maximum-weight path.

(see Section 2.6 for more information on parameterized complexity notions). To
complement our theoretical results, it would be interesting to perform an empirical
study on real-world data with regard to two questions. The first question is how close
real-world preference profiles are to having a specific structure. Przedmojski [Prz16]
has recently conducted experiments to measure the minimum number of voters
(resp. alternatives) to delete to make a profile single-peaked (resp. single-crossing).
He found out that almost all of the real-world profiles available from PrefLib [MW13]
are far from being single-peaked or single-crossing. However, since the investigated
profiles are from some special types of non-political elections and since only very few
profiles are investigated (about 300 with different numbers of alternatives and vot-
ers), the finding of little evidence for being close to single-peaked or single-crossing
is not surprising. The second questions is about the exact computational complexity
of finding the distance to the “nearest” structured profile. Of course, empirical study
needs neatly designed algorithms. Thus, it is of practical interest to investigate more
sophisticated and more efficient (fixed-parameter) algorithms to compute the dis-

101

5. Nearly Structured Preferences

tance of a profile to a nicely structured one; work on this has been recently started
by Elkind and Lackner [EL14].

Besides the domain restrictions studied in this chapter, we have looked at the one-
dimensional (1-D) Euclidean property in Chapter 4. One-dimensional Euclidean
profiles are necessarily single-peaked and single-crossing. Like the single-peaked
and single-crossing properties, 1-D Euclidean profiles can be recognized in polyno-
mial time [DF94, EF14, Kno10]. The computational complexity of making a profile
1-D Euclidean using a minimum number of modifications remains unexplored. We
remark that our NP-hardness reduction for the single-peaked property and the mav-
erick deletion case does not work for this property as we can easily verify that the
resulting single-peaked instance is not single-crossing which is a necessary condition
for being 1-D Euclidean.

As already mentioned in the related work section, many voting problems that are
computationally hard for general preference profiles become tractable for nicely
structured preference profiles. It would be interesting to know whether and in
which way such tractability results transfer to profiles that are only close to being
nicely structured (these are the key questions 6 and 7 in [Bre+14a]); see for instance,
Faliszewski, Hemaspaandra, and Hemaspaandra [FHH14] and Menon and Larson
[ML16] for some more discussion of the nearly single-peaked domain.

We close this chapter by remarking that our domain restrictions have also been
studied for dichotomous preference profiles, where each voter says either yes or no
to each of the alternatives [EL15], and for profiles with incomplete preference or-
ders [Elk+15, Lac14]. It would be interesting to investigate nearly restricted domains
for both cases.

102

VOTEVOTE@ 陈洁蓉
Chen Jie rong

CONSTRUCTIVE

c
T

ONTROL

AGENDA

ADDING

 H I F

P

RULE

COM PUTA
TI

ON
AL

ROBLEM

L

P

MANIPULA

TION

R
IC

ES

IAMENTARYHAR D

BRIBERY

STRATEGY

TORIAL

S

COM BINA

 PAR

Part II

Computationally Hard
Voting Problems

CHAPTER 6

Combinatorial Voter Control

Information, knowledge, is power. If you can control information,
you can control people.

Tom Clancy, 1995

Voter control problems model situations in which an external agent tries to affect
a voting result by adding voters, for example, by convincing some voters to vote
who would otherwise not participate. In the standard model, voters are added
one at a time, with the goal of making a distinguished alternative win by adding a
minimum number of voters. In this chapter, we initiate the study of combinatorial
variants of control by adding voters: In our setting, when we choose to add a voter,
we also have to add a whole bundle of voters associated with him. We study the
computational complexity of this problem for two of the most basic voting rules,
namely, the plurality rule and the Condorcet rule.

6.1 Introduction

We study the computational complexity of the control by adding voters prob-
lem [BTT92, HHR07], investigating the case where the sets of voters that we can
add have some combinatorial structure. The problem of control by adding voters
models situations where some agent (for example, a campaign manager of one of
the alternatives) tries to ensure a given alternative’s victory by convincing some
undecided voters to vote. Traditionally, in this problem we are given a description of
a preference profile (that is, a set A of alternatives and a set V of voters who already
decided to vote), and also a set W of undecided voters. For each voter in V ∪W ,
we assume that we know how this voter intends to vote, which is expressed as a
linear order over the set A; while this assumption seems somewhat unrealistic, it is a
standard assumption within computational social choice, and we might have a good

This chapter is based on “Combinatorial Voter Control in Elections” by L. Bulteau, J. Chen, P. Faliszewski,
R. Niedermeier, and N. Talmon, Theoretical Computer Science [Bul+15] .

105

6. Combinatorial Voter Control

approximation of this knowledge from pre-election polls. Our goal is to ensure that
our preferred alternative p becomes a winner by convincing as few voters from W as
possible to vote—provided that it is at all possible to ensure p’s victory in this way.

Control by adding voters corresponds, for example, to situations where supporters
of a given alternative make direct appeals to other supporters of the alternative to
vote. For example, they may stress the importance of voting or help with the voting
process by offering rides to the voting locations. Unfortunately, in its traditional
phrasing, control by adding voters does not model larger-scale attempts at convinc-
ing people to vote. For instance, a campaign manager might be interested in airing
a TV advertisement that would motivate supporters of a given alternative to vote
(though, of course, it might also motivate some of this alternative’s enemies), or
maybe launch viral campaigns, where friends convince their own friends to vote.
In many scenarios, the sets of voters we can add have some specific combinatorial
structure, basically meaning that it is possible to add a combination (subset) of
voters at a unit price. For instance, a TV advertisement appeals to a particular group
of voters so that we can add all of them at the unit cost of airing the advertisement; a
public speech in a given neighborhood will convince a particular group of people to
vote at the unit cost of organizing the meeting; convincing an outgoing person to
vote will “for free” also convince her friends to vote.

The goal of this chapter is to formally define an appropriate computational prob-
lem that models a combinatorial variant of control by adding voters, and to study
its computational complexity. Specifically, we focus on the plurality rule and the
Condorcet rule, mainly because the plurality rule is the most widely used rule in
practice and the Condorcet rule models a large family of Condorcet-consistent rules.
Moreover, for the plurality rule the standard variant of control by adding voters is
solvable in linear time [BTT92]. This makes it one of only a few rules for which this
problem is solvable in polynomial time. For the Condorcet rule, the standard variant
of the control by adding voters problem changes from being NP-complete [BTT92] to
polynomial-time solvable if we assume that the profiles are single-peaked [Bra+15]
or single-crossing [MF14] (see Section 4.4.1 and Section 3.4 for the definition of
single-peaked and single-crossing profiles). For both the plurality and the Con-
dorcet rules and for the combinatorial variant, where adding a voter may cause some
additional voters being added at a unit cost, we obtain hardness results for very
restricted scenarios (Theorem 6.6 and Theorem 6.25) . All these hardness results for
the Condorcet rule directly translate to all Condorcet-consistent voting rules, a large
and important family of voting rules.

We defer the formal details, definitions, and concrete results to the following sec-
tions. Instead, we state the high-level main messages of our work. Herein, we assume

106

6.1. Introduction

that adding an unregistered voter means adding a bundle (subset) of unregistered
voters; in this way, it is easy to see that the standard variant of control by adding vot-
ers is a special case of the combinatorial variant (set the bundle of each unregistered
voter to be a singleton consisting of this single voter):

1. Many typical variants of combinatorial control by adding voters are intractable,
but there is also a rich landscape of tractable cases. For instance, the problem is
NP-complete already when there are only two alternatives or when the bundle
size is at most two. However, with bundle sizes up to two, the problem is either
fixed-parameter tractable for the parameter “the number k of bundles to add”
or even polynomial-time solvable when requiring the bundling function to
be full-d (see Section 6.3 for the definition; informally, this means that only
voters with roughly the same preference orders can be bundled together).

2. Assuming that voters have single-peaked preferences does not lower the com-
plexity of the problem (even though it does so in many other voting prob-
lems [Bra+15, Con09, Fal+11]). In contrast, assuming single-crossing prefer-
ences does lower the complexity of the problem.

We provide a detailed summary of our contributions at the end of Section 6.4. We
believe that our setting of combinatorial control, and—more generally—of combi-
natorial problems that model manipulative attacks, offers a very fertile ground for
future research and we intend the current chapter to be an initial step.

Related work. Bartholdi III, Tovey, and Trick [BTT92] were the first to study the
concept of voting control by adding/deleting voters/alternatives to a given prefer-
ence profile. They considered the constructive variant of the problem, where the
goal is to ensure a given alternative’s victory (and we focus on this variant of the
problem as well). The destructive variant, where the goal is to prevent someone from
winning, was introduced by Hemaspaandra, Hemaspaandra, and Rothe [HHR07].
These papers focused on the plurality rule and the Condorcet rule (and also the
Approval rule, for the destructive case of Hemaspaandra, Hemaspaandra, and Rothe
[HHR07]). Since then, many other researchers extended these results to a number of
other rules and models [EHH15, Erd+15, Fal+09a, Fal+15, FHH11a, FHH15, Mei+08,
PX12].

We study combinatorial control problems using the tools and methods of parame-
terized complexity theory (see Section 2.5 for more information). Most frequently,
parameterized complexity of control problems is studied for the parameter “number
of alternatives” [Fal+09a, FHH11a, HLM13]. The number of voters has received far

107

6. Combinatorial Voter Control

less attention as a parameter (for the case of control, the parameter appears, for
example, in the work of Betzler and Uhlmann [BU09] and, very recently, in the work
of Chen et al. [Che+15a]; Brandt et al. [Bra+13] considered it in the context of winner
determination). Several authors have also considered other parameters, such as the
solution size (for example, the number of voters one can add). Papers focusing on
this parameter include, for example, those of Liu et al. [Liu+09], Liu and Zhu [LZ10],
and Erdélyi et al. [Erd+15].

Some of our results describe the complexity of voting control for the case where the
voters’ preference orders are either single-peaked [Bla48] or single-crossing [Mir71,
Rob77] (see also Section 3.4 and Section 5.5.2 for more information on these two
domains). The complexity of control for single-peaked profiles was first studied by
Faliszewski et al. [Fal+11] and later by Brandt et al. [Bra+15], Faliszewski, Hemaspaan-
dra, and Hemaspaandra [FHH14], and others. The case of control for single-crossing
profiles was investigated by Magiera and Faliszewski [MF14]. Generally speaking, the
control problems often drop from being NP-complete to being polynomial-time solv-
able when one of these domain restrictions is assumed. Naturally, single-peakedness
and single-crossingness were studied algorithmically in many other contexts as well.
Perhaps the first authors who observed that they may lower the complexity of voting
problems were Walsh [Wal07] and Conitzer [Con09].

In most work on voting control, the authors assume that one could affect each
entity of the preference profile at unit cost only. For example, one could add a
voter at unit cost and adding two voters always is twice as expensive as adding a
single voter. There is one exception known to us: Faliszewski, Hemaspaandra, and
Hemaspaandra [FHH15] studied control with weighted voters, that is, adding a voter
of weight w means adding a group of w voters, each with unit weight. On the one
hand, this weighted voter model does not allow one to express rich combinatorial
structures such as those studied here, while on the other hand, in our study we
consider unweighted voters only (though adding weights to our model would be
seamless). Very recently, Chen et al. [Che+15a] studied the combinatorial variant of
both constructive and destructive control by either adding or deleting alternatives.
They discovered that, with few voters, the complexity of the corresponding control
problem for different voting rules ranges from polynomial-time solvable to NP-hard
even for a constant number of voters.

Erdélyi, Hemaspaandra, and Hemaspaandra [EHH15] also studied a variant of
combinatorial control by adding, deleting, or partitioning of the voters. They used
a slightly different—though also very natural—model of bundling voters, where
each voter has a label and each bundle consists exactly of the voters with a given
label. Formally, our models are incomparable and, indeed, we show hardness results

108

6.2. Chapter outline

for the case of combinatorial control by adding voters with bundles of size two,
whereas in their model this case is easily seen to be polynomial-time solvable. Our
model is loosely related to the safe strategic voting model introduced by Slinko
and White [SW14], where a voter v with preference order ≻v announcing to vote ≻∗

v

instead may motivate several other voters with the same preference order as ≻v to
also vote ≻∗

v . Since the outcome of the manipulated election depends on the voters
who eventually vote ≻∗

v and thus, may be worse for v , the corresponding question is
whether it is ever safe to vote strategically. Adapted to our bundling function, the
potential manipulators in that model are exactly those whose swap distances are
zero to the preference order of voter v .

The specific combinatorial flavor of our model is inspired by the seminal work of
Rothkopf, Pekeč, and Harstad [RPH98]1 on combinatorial auctions (see, for example,
the work of Sandholm [San06] for additional information). There, bidders can place
bids on combinations of items such that the bid on the combination of a set of items
might be less than, equal to, or greater than the sum of the individual bids on each
element from the same set of items. While in combinatorial auctions one “bundles”
items to bid on, in our scenario one bundles voters.

In the computational social choice literature, combinatorial voting is typically
associated with scenarios where voters express opinions over a set of alternatives
that themselves have a specific combinatorial structure (typically, one uses CP-
nets to model preferences over such sets of alternatives [Bou+04]). For example,
Conitzer, Lang, and Xia [CLX09] studied a form of control in this setting and Mat-
tei et al. [Mat+12] studied bribery problems. In contrast, we use the standard model
of preference profiles where all alternatives and preference orders are given explicitly,
but we have a combinatorial structure on the sets of voters which can be added.

6.2 Chapter outline

In Section 6.3, we introduce additional notations relevant to this chapter (see also
Chapter 2 for basic notations including preference profiles, voting rules, etc.). In
Section 6.4, we formally define our central problem and summarize our contribu-
tions. In the following sections, we go on to study the complexity of combinatorial
voter control problems where voters may have arbitrary preference orders: in Sec-
tion 6.5, we focus on the so-called canonical parameters, namely the solution size,
the number of alternatives, and the number of unregistered voters. In Section 6.6 we
focus on parameters arising from the combinatorial structure, that is, the maximum
bundle size and the swap distance. In Section 6.7, we analyze situations where the

1According to Google Scholar, accessed September 2016, cited more than 1000 times.

109

6. Combinatorial Voter Control

w1 : a ≻ b ≻ c

w2 : b ≻ a ≻ c

w3 : a ≻ c ≻ b

w4 : c ≻ a ≻ b

(a)

w1 7→{w1, w4}

w2 7→{w1, w2}

w3 7→{w2, w3}

w4 7→{w1, w3, w4}

(b)

w1 w2

w3w4

(c)

Figure 6.1.: (a): Unregistered voters’ preference orders. (b): A bundling function. (c): The
corresponding bundling graph with the names of the voters as vertex labels.

voters’ preference orders are either single-peaked or single-crossing. We conclude in
Section 6.8 with several future research directions.

6.3 Definitions, notations, and examples

We refer to Sections 2.3 to 2.5 for the definitions of preference profiles, the Con-
dorcet and the plurality rules, and relevant concepts from computational and pa-
rameterized complexity theory. We introduce one new notion regarding the most
preferred alternative of a voter. We call a voter v ∈V a c-voter if alternative c is in the
first position of v ’s preference order. In the following, we use V to refer to a set of
registered voters and W to refer to a set of unregistered voters. Accordingly, we use v
to refer to a registered voter and w to refer to an unregistered voter.

In the following, we focus on the concepts of combinatorial voter control.

Definition 6.1 (Bundling function). Given a voter set W , a combinatorial bundling
function κ : W → 2W (abbreviated as bundling function) is a function assigning to
each voter a subset of voters. For x ∈ W , κ(x) is called x’s bundle and x is called
the leader of this bundle. We assume that x ∈ κ(x) so that κ(x) is never empty. We
typically write b to denote the maximum bundle size under a given κ (which will
always be clear from context). For each subset W ′ ⊆W , we write κ(W ′) :=⋃

x∈W ′ κ(x)
to denote the union of the bundles κ(x) of each voter x ∈W ′.

Intuitively, we use combinatorial bundling functions to describe the sets of voters
that we can add to the preference profile at unit cost. For example, one can think
of κ(x) as the group of voters that are going to vote under x’s influence. Bundling
functions can be represented explicitly: for each voter x, simply list the voters in κ(x).

110

6.3. Definitions, notations, and examples

Example 6.1. Consider a profile P with three alternatives a,b,c, such that the plu-
rality score of a is zero, scoreP (a) = 0, the score of b is one, and the score of c is two.
Let W = {w1, w2, w3, w4} be a set of four unregistered voters whose preference orders
are depicted in Figure 6.1a. Now, consider a bundling function κ (as depicted in
Figure 6.1b) for W . The maximum bundle size is three. In order to make alternative a
a plurality winner, we have to let a gain two points and c gain zero points. Thus, the
only way to make a win is to add the bundles of voters w2 and w3 to the profile.

It is worthwhile to briefly discuss the model of bundling functions here. We could
have defined our problem differently, by having sets of voters as the bundles, without
a distinguished leader (somewhat similarly to the model of Erdélyi, Hemaspaandra,
and Hemaspaandra [EHH15], but with each voter having possibly many labels). We
chose our approach based on the idea that upon convincing a single voter to vote,
the friends of this convinced voter would likely follow. We mention that most of our
results transfer to this other model as well.

We are interested in various special cases of bundling functions.

Definition 6.2 (Properties of bundling functions). We say that κ is leader-anonymous
if each two voters x and y with the same preference orders have the same bundle, that
is, κ(x) = κ(y). We say that κ is follower-anonymous if each two voters x and y with the
same preference orders follow the same leaders, that is, for each voter z, it holds that
x ∈ κ(z) if and only if y ∈ κ(z). We call κ anonymous if it is both leader-anonymous
and follower-anonymous.

One possible way of thinking about an anonymous bundling function is that it
is a function assigning to each preference order appearing in the input a subset of
the preference orders appearing in the input. For example, anonymous bundling
functions naturally model scenarios such as airing TV advertisements that appeal to
particular groups of voters.

To model the situation where only voters with roughly the same preference orders
can be bundled to together, we introduce the notion of swap distances.

Definition 6.3 (Swap distances and full-d bundling functions). For two voters wi

and w j with preference orders ≻i and ≻ j , we define their swap distance as the
number of (unordered) pairs of alternatives that ≻i and ≻ j order differently. Given a
number d ∈N, we call κ : W → 2W a full-d bundling function if for each voter x ∈W ,
bundle κ(x) consists of all voters y ∈W such that x and y have swap distance at most
d , that is,

κ(x) := {y ∈W | x and y has swap distance at most d}.

111

6. Combinatorial Voter Control

The number d in a full-d bundling function describes the similarity of the prefer-
ence orders of a voter and its followers; a smaller value of d means a higher degree of
similarity.

We introduce the concept of the bundling graph of a bundling function, which,
roughly speaking, models how the bundles of two voters interact with each other.

Definition 6.4 (Bundling graphs). Given a bundling function κ (over the set W
of voters), the bundling graph is a directed graph G = (V (G),E(G)) constructed as
follows. For each voter x ∈ W , there is one vertex ux in V (G). For each voter y and
each follower z ∈ κ(z) in his bundle with z ̸= y , there is an arc (uy ,uz) from uy to uz in
the arc set E(G).

Given an alternative c, we say that a vertex is a c-vertex if the corresponding voter
is a c-voter; otherwise we call it a non-c-vertex. Accordingly, we say that an arc is a
(c1, c2)-arc if the source of this arc is a c1-vertex and the target is a c2-vertex.

For a positive integer z, a z-star is a directed graph consisting of (z +1) vertices
and z arcs such that there is a vertex with z (in- or out-) neighbors.

A maximum matching is a largest subset of endpoint-disjoint arcs.

Example 6.2. Let us look at the profile and the bundling function from Example 6.1
again. The bundling function is anonymous as no two voters have the same pref-
erence order. It is not full-d because, for instance, the bundle of voter w1 contains
voter w4 which has a swap distance of two to w1 but it does not contain voter w2

which has a swap distance of one to w1. The corresponding bundling graph is
depicted in Figure 6.1c, where each vertex is labeled with its corresponding voter.

For arbitrary bundling functions, the bundling graph is a directed graph. However,
if bundling function κ is full-d , then we can consider it as an undirected one. The
reason is that in this case for every two unregistered voters x and y we have that
y ∈ κ(x) if and only if x ∈ κ(y). In consequence, for each arc (ux ,uy) in the bundling
graph, the reverse arc (uy ,ux) is also present.

Proposition 6.1. If a bundling function κ is full-d, then for each unregistered voter x
and each voter y ∈ κ(x) it holds that x ∈ κ(y).

Proof. For each two voters x and y , if y ∈ κ(x), then the swap distance between x and
y is at most d . Therefore, since κ is a full-d bundling function and the swap distance
is clearly symmetric, x must belong to the bundle κ(y).

Note that the “mutual containment” property, as stated above, does not hold for
every bundling function. For example, κ with κ(x) = {x, y} and κ(y) = {y} is a valid

112

6.4. Central problem and results

bundling function. The following is easy to observe, as full-d bundling functions
depend only on the preference orders and not on the specific voters:

Proposition 6.2. If a bundling function κ is full-d , then it is also anonymous.

Proof. To show that κ is anonymous we need to show both leader-anonymity and
follower-anonymity. Suppose that κ is a full-d bundling function. Let x, y, z be three
voters such that x and y have the same preference order. If z ∈ κ(x) (resp. if x ∈ κ(z)),
then z has a swap distance of at most d to x, and hence, to y . By the definition of
full-d bundling functions, z ∈ κ(y) (resp. y ∈ κ(z)). This shows the leader-anonymity
(resp. follower-anonymity) of κ.

6.4 Central problem and results

We define our central problem of combinatorial constructive control by adding
voters as follows.

COMBINATORIAL CONSTRUCTIVE CONTROL BY ADDING VOTERS (C-CC-AV)
Input: A preference profile (A,V) with linear preference orders, a set W of
unregistered voters with V ∩W =; such that each unregistered voter has a
linear preference order over A, a bundling function κ : W → 2W , a preferred
alternative p ∈ A, and a non-negative integer k ∈N.
Question: Is there a subset of voters W ′ ⊆W of size at most k such that p is
a winner in the profile with voter set V ∪κ(W ′)?

We investigate two popular voting rules, the plurality rule and the Condorcet
rule, which are defined in Section 2.4. We use the so-called non-unique-winner
model. That is, for a control action to be successful it suffices for p to be one of the
co-winners. Throughout this chapter, we refer to each subset W ′ ⊆W of voters such
that p is a co-winner in the profile (A,V ∪κ(W ′)) and |W ′| ≤ k as a solution. We refer
to k as the solution size (formally, k is an upper bound on the allowed solution size,
but this notation makes the discussion a bit simpler). For the plurality rule, we also
assume that the score difference between the current winner and p does not exceed
the total number of p-voters in W .

COMBINATORIAL CONSTRUCTIVE CONTROL BY ADDING VOTERS (C-CC-AV) is a
generalization of the well-studied problem CONSTRUCTIVE CONTROL BY ADDING

VOTERS (CC-AV) (where, for each voter x ∈W , we have κ(x) = {x}). CC-AV is linear-
time solvable for the plurality rule by a simple calculation [BTT92] (also see the
remark at the beginning of Section 6.6), but it is NP-complete for the Condorcet
rule [Liu+09]. This immediately implies two observations:

113

6. Combinatorial Voter Control

Observation 6.3. For the plurality rule, C-CC-AV is solvable in linear time if the
maximum bundle size b is one.

Observation 6.4. For the Condorcet rule, C-CC-AV is NP-hard even if the maximum
bundle size b is one.

Our contributions. We introduce a new model for combinatorial control in voting.
Our results show that COMBINATORIAL CONSTRUCTIVE CONTROL BY ADDING VOTERS

(C-CC-AV) is NP-hard even for the plurality rule. For this reason, we complement
our study by focusing on a number of different parameters, showing both fixed-
parameter tractability results and parameterized hardness results (see Section 2.5 for
more information on parameterized complexity concepts). We almost completely
resolve the computational complexity status of C-CC-AV for the plurality rule and
the Condorcet rule as a function of the maximum bundle size b and the maximum
swap distance d from a voter v to the farthest element of v ’s bundle. For the plurality
rule, the complexity of the problem depends on b in the following way:

1. If b = 1, then C-CC-AV is linear-time solvable (this is due to Bartholdi III,
Tovey, and Trick [BTT92]; see Observation 6.3).

2. If b = 2, then the complexity of C-CC-AV depends on the bundling function.
If the bundling function is full-d , then the problem is polynomial-time solv-
able (Theorem 6.20). Otherwise, the problem is NP-hard (Theorem 6.13), but
is in FPT for the parameter “solution size” (Theorem 6.17).

3. If b = 3, then C-CC-AV is W[1]-hard even for anonymous bundling functions
(Theorem 6.8), and it is NP-hard for full-d bundling functions, even if d = 3
(Theorem 6.21). The case of the maximum swap distance d equaling two
remains open.

4. For any constant size b ≥ 4, C-CC-AV is NP-hard already for full-d bundling
functions with d = 1 (Theorem 6.22); for d = 0, which in essence means looking
at the weighted control case for the special case of unary-encoded weights,
the problem is polynomial-time solvable [FHH15].

For the Condorcet rule, we obtain NP-hardness even when the input profile has
only two alternatives (of course, this result applies to the plurality rule as well; for
two alternatives the two rules are identical). Furthermore, we show that for the
case of full-d bundling functions, for both the plurality rule and the Condorcet rule,
C-CC-AV remains hard even when restricting the profiles to be single-peaked, but

114

6.4. Central problem and results

Arbitrary function κ Complexity Reference

In general NP-c Thm 6.6
XP (parameter: k) Pro 6.5

Singe-peaked & single-crossing
m = 2, b unbounded, W[2]-h (parameter: k) Thm 6.6, Obs. 6.23
m = 3, b = 3 W[1]-h (parameter: k) Pro 6.9, Obs. 6.24

m unbounded, b = 2 FPT (parameter: k) Thm 6.17

Anonymous function κ, Complexity Reference
m unbounded

In general ILP-FPT (parameter: m) Cor 6.11
Non-full-d function κ

b = 2 NP-c Thm 6.13
b = 3 W[1]-h (parameter: k) Thm 6.8

Full-d function κ

b ≤ 2 P Thm 6.20
b = 3,d = 3 NP-c Thm 6.21
b = 4,d = 1 NP-c Thm 6.22
Single peaked NP-c, W[1]-h (parameter: k) Thm 6.25
Single-crossing P Thm 6.29

Table 6.1.: Computational complexity classification of C-CC-AV for the plurality rule. Since
the non-combinatorial problem CC-AV is already NP-hard for Condorcet’s rule, we focus on
the plurality rule. The parameters shown in the table are “the number m of alternatives”, “the
solution size k”, “the maximum bundle size b”, and “the maximum swap distance d between
the leader and its followers in a bundle”. We distinguish between arbitrary (the upper table)
bundling functions and anonymous bundling functions (the lower table, including full-d).
ILP-FPT means FPT based on a formulation as an integer linear program (see [Len83] and
Theorem 2.2). “NP-c” means “NP-complete” while “W[1]-h (resp. W[2]-h)” means “W[1]-
hard (resp. W[2]-hard)”. The definitions of the parameterized complexity classes are given in
Section 2.6.

that it is polynomial-time solvable when the given profile is single-crossing. Our
results for the plurality rule are summarized in Table 6.1.

Finally, we remark that the combinatorial variants of the voter control problems
that we study are clearly contained in NP. Thus, our NP-hardness results in fact
imply NP-completeness results.

115

6. Combinatorial Voter Control

6.5 Canonical parameterizations

In this section we provide our results for profiles with unrestricted domains, that
is, for the case where voters may have arbitrary preference orders. Later on, in Sec-
tion 6.7, we will look at single-peaked and single-crossing profiles that only allow
“reasonably restricted” preference orders.

6.5.1 Parameterization by the number of unregistered voters and by the solu-
tion size

We start our discussion by considering the parameters “number n of unregistered
voters” and “solution size k”. A simple brute-force algorithm, checking all possible
combinations of k bundles, proves that for both the plurality and the Condorcet
rules, C-CC-AV is in XP for parameter k, and in FPT for parameter n (the latter holds
because k ≤ n). Indeed, the same result holds for all voting rules with polynomial-
time winner-determination procedures.

Proposition 6.5. Let m be the number of alternatives, n′ be the number of registered
voters, n be the number of unregistered voters, and k be the solution size. For the
plurality rule, C-CC-AV is solvable in O(nk ·k · (n +n′)) time. For the Condorcet rule,
C-CC-AV is solvable in O(nk ·k · (n +n′) ·m2) time. Thus, for both the plurality and
the Condorcet rule, CC-AV is in XP for parameter k and in FPT for parameter n.

Proof. We can solve C-CC-AV by considering all preference profiles resulting from
adding one of the

∑k
j=0

(n
j

)≤ k ·nk +1 possible combinations of (up to) k bundles of
unregistered voters. For each combination of (up to) k bundles of voters, we use the
standard winner determination algorithm for the given voting rule. For the plurality
rule, the winner can be computed in time O(n +n′); for the Condorcet rule, the
winner can be computed in time O((n+n′) ·m2): for each pair of alternatives c and c ′,
we compute whether a strict majority of voters prefers c to c ′ or c ′ to c (we can do so
on a voter-by-voter basis by storing the results for each pair of alternatives).

The above XP result parameterized by the solution size k probably cannot be
improved to fixed-parameter tractability. Indeed, for parameter k we show that
the problem is W[2]-hard, even for profiles with only two alternatives. This is quite
remarkable because typically voting problems with a small number of alternatives
are easy (they can be solved either by brute-force or by integer linear programming
employing the famous FPT algorithm of Lenstra [Len83]; see Theorem 2.2 and see
the surveys of Betzler et al. [Bet+12] and Bredereck et al. [Bre+14a] for examples).
Furthermore, since our proof uses only two alternatives, it applies to almost all

116

6.5. Canonical parameterizations

natural voting rules: for two alternatives almost all of them (including the Condorcet
rule) are equivalent to the plurality rule. Also, every preference profile with two
alternatives is trivially single-peaked and single-crossing, thus the next result extends
to these domain restrictions as well.

Theorem 6.6. For the plurality rule, C-CC-AV is NP-complete and W[2]-hard when
parameterized by the solution size k, even for two alternatives.

Proof. We first show the W[2]-hardness result by providing a parameterized reduc-
tion from the W[2]-complete problem SET COVER parameterized by the set cover
size h [DF13] (also see Section 2.6.2 for more information):

SET COVER

Input: A family F = (S1, . . . ,Sr) of sets over a universe U = {u1, . . . ,us } of
elements and a non-negative integer h ≥ 0.
Question: Is there a size-at-most-h set cover, that is, a collection F ′ of h sets
in F whose union is U ?

Let (U ,F ,h) be an instance of SET COVER, where U = {u1, . . . ,ur }, and where F =
(S1, . . . ,Ss) is a collection of subsets of U , and h is a non-negative integer. Without loss
of generality, we assume that no set Si ∈F is empty and every element in U appears
in at least one set Si ∈F . We construct a preference profile (A,V) as follows. We let
the set of alternatives be A = {p, g }, where p is our preferred alternative and g is the
original winner. Since A has only two alternatives, when we speak of a p-voter (resp.
a g -voter), we mean a voter with preference order p ≻ g (respectively, preference
order g ≻ p).

The registered voter set V consists of |U |+h voters with preference order g ≻ p (and
no p-voters). The unregistered voter set W consists of two groups of voters which are
all p-voters. The first group consists of a p-voter for each element u j ∈U , called the
element voter w(u j). We let the bundle of element voter w(u j) be a singleton, that is,
κ(w(u j)) := {w(u j)}. The second group consists of a p-voter for each set Si ∈F , called
the set voter w(Si). We let the bundle of each set voter w(Si) consist of himself and
all element voters w(u j) with u j ∈ Si , that is, w(Si) := {w(S j)}∪ {w(u j) | u j ∈ Si }.

Observe that the plurality score of g is |U |+h while the plurality score of p is zero.
In order to let p win, we have to add bundles to the original preference profile that
will give |U |+h points. Finally, we set k := h.

It is clear that our construction runs in FPT time for the parameter k and it even
runs in polynomial time. It remains to show that (U ,F) has a size-at-most-h set
cover if and only if there is a size-k subset W ′ ⊆W of unregistered voters such that p
is a plurality winner in the profile (A,V ∪κ(W ′)).

117

6. Combinatorial Voter Control

For the “if” part, suppose that there is a voter subset W ′ of size at most k such
that p is a plurality winner of the profile (A,V ∪κ(W ′)). Obviously, κ(W ′) ≥ |U |+h.
Furthermore, if W ′ contains an element voter w(u j), then we can as well replace it
with a set voter w(Si) that “contains” it, that is, u j ∈ Si . Thus, without loss of generality,
we assume that W ′ consists of only set voters. Define F ′ to be the collection of sets
that correspond to the set voters from W ′, that is, F := {Si | w(Si) ∈ W ′}. Then,
|F ′| ≤ k = h. Furthermore, for each element u j ∈U there must be a set Si ∈F which
contains u j since otherwise p will not obtain enough points to become a winner.
This shows that F ′ is a set cover.

For the “only if” part, given a set cover F of size at most h we define W ′ to be
the corresponding voter set, that is, W ′ := {w(Si) | Si ∈ F }. It is easy to verify that
|W ′| ≤ h = k, and p as well as g both win with |U |+h points.

As already mentioned, the parameterized reduction we presented is indeed a poly-
nomial reduction. Since the problem we reduce from is NP-hard, we can conclude
that our problem is NP-hard even for two alternatives.

For two alternatives, the Condorcet rule is equivalent to the majority rule (see
Definition 2.2). That is, one needs to add enough p-voters such that p is preferred to
the second alternative by more than half of the voters. Thus, we can adapt the above
reduction for the plurality rule to also work for the Condorcet rule.

Proposition 6.7. For the Condorcet rule, C-CC-AV is NP-complete and W[2]-hard
when parameterized by the solution size k, even for two alternatives.

Proof. We use the same unregistered voters as described in the proof of Theorem 6.6,
and we construct the input preference profile with (|U |+h−1) g -voters. The correct-
ness proof is along the same lines as the one for Theorem 6.6.

As we can see, the bundles constructed in the proof of Theorem 6.6 are unbounded.
If we require that each bundle has at most three voters and that the bundling function
is anonymous, then for the plurality rule and when parameterized by the solution
size k, C-CC-AV changes from being W[2]-hard to being W[1]-hard. It would be,
however, interesting to know whether it is also contained in W[1].

Theorem 6.8. For the plurality rule, C-CC-AV parameterized by the solution size k is
W[1]-hard, even for anonymous bundling functions with bundles of size at most three.

Proof. To show the W[1]-hardness result, we provide a parameterized reduction
from the W[1]-complete problem CLIQUE parameterized by the clique size h [DF13]
(also see Section 2.6.2 for more information).

118

6.5. Canonical parameterizations

CLIQUE

Input: An undirected graph G = (V (G),E(G)) and a non-negative integer
h ∈N.
Question: Does G admit a size-h clique, that is, a size-h vertex subset U ⊆
V (G) such that G[U] is complete?

We also call the number h of vertices in a clique the order of the clique.
Let (G ,h) be a CLIQUE instance with V (G) being the set of vertices and E(G) being

the set of edges. Without loss of generality, we assume that G is connected, h ≥ 3, and
each vertex in G has degree at least h −1. We construct a preference profile (A,V) as
follows. We let the set A consist of three alternatives p, f , g , and an edge alternative ce

for each edge e ∈ E(G). That is,

A := {p, f , g }∪ {ce | e ∈ E(G)}.

Alternative p is our preferred alternative. We will construct voters such that f is the
original plurality winner, and that there are sufficiently many unregistered g -voters
to force us to add a “clique solution” to the profile. We use the edge alternatives
from {ce | e ∈ E(G)} to ensure that all the unregistered voters have different preference
orders, making the bundling function anonymous.

We introduce registered voters such that initially, f wins with
(h

2

)+h points, g has(h
2

)
points, our preferred alternative p has h points, and all edge alternatives have

zero points. Formally, the registered voter set V consists of

• h voters, each with preference order p ≻ 〈A \ {p}〉,
•

(h
2

)+h voters, each with preference order f ≻ 〈A \ { f }〉, and

•
(h

2

)
voters, each with preference order g ≻ 〈A \ {g }〉.

In this way, we enforce that p needs at least
(h

2

)
points to become a winner. By

carefully constructing the preference orders of the unregistered voters, we can en-
force that the added voters correspond to a clique of size h. To this end, for each
vertex u ∈V (G), we define A(u) := {ce | e ∈ E(G)∧u ∈ e}. That is, A(u) contains all edge
alternatives that correspond to the incident edges of u. Now, we construct the set W
of unregistered voters as follows (recall that for each set A, 〈A〉 denotes an arbitrary
but fixed order):

(1) For each vertex u ∈ V (G), we add an unregistered g -voter wu with preference
order

g ≻ 〈A(u)〉 ≻ p ≻ 〈A \ ({g , p}∪ A(u))〉.

119

6. Combinatorial Voter Control

We call these unregistered voters vertex voters. We set κ(wu) := {wu}.

(2) For each edge e = {u,u′} ∈ E(G), we add an unregistered p-voter we with prefer-
ence order

p ≻ ce ≻ g ≻ 〈A \ {p, g ,ce }〉.

We call these unregistered voters edge voters. We set κ(we) := {wu , wu′ , we }.

Note that all unregistered voters have different preference orders. This implies that
our bundling function κ is anonymous (when all the unregistered voters have differ-
ent preference orders, then every bundling function is anonymous). To complete
our construction, we set k := (h

2

)
.

We show that graph G has a size-h clique if and only if there is a subset W ′ ⊆ W
of unregistered voters of size at most k such that p is a plurality winner in the
profile (A,V ∪κ(W ′)).

For the “if” part, suppose that there is a subset W ′ of at most k voters such that p is
a plurality winner of the profile (A,V ∪κ(W ′)). We show that the vertex set U ′ := {u ∈
V (G) | u ∈ e for some we ∈W ′} is a size-h clique for G. First, we observe that p needs
at least

(h
2

)
points to become a winner because the initial winner f has exactly that

amount of points more than p. By our construction, only bundles which include
an edge voter can increase the score of p by adding one p-voter, while adding two
additional g -voters. Since we can add at most k = (h

2

)
bundles, we must add exactly k

bundles of the edge voters. This means that E(G[U ′]) contains k edges. However, in
order to ensure p’s victory, κ(W ′) may only give at most h additional points to g . By
the construction of the bundles of the edge voters, this means that U ′ contains at
most h vertices. With |E(G[U ′])| ≥ k, we conclude that U ′ is of size h and, hence, is a
size-h clique for G.

For the “only if” part, suppose that U ′ ⊆V (G) is a size-h clique for G. We construct
the subset W ′ by adding to it all edge voters we with e ∈ E(G[U ′]). Obviously, |W ′| = k.
We can verify that p co-wins with both f and g in the profile (A,V ∪κ(W ′)) with
score

(h
2

)+h.

We conclude this section by mentioning that if we drop the anonymity, then we
can adapt the proof of Theorem 6.8 to show that even for only two alternatives, our
problem parameterized by the solution size remains W[1]-hard. Hence, we obtain
the following.

Proposition 6.9. For the Plurality rule, C-CC-AV is W[1]-hard when parameterized
by the solution size k, even for three alternatives and bundle size at most three.

120

6.5. Canonical parameterizations

Proof. We use almost the same reduction as given in the proof of Theorem 6.8 and we
restrict the constructed profile to the three alternatives p, g , and f . The correctness
proof for the plurality rule works analogously.

6.5.2 Parameterization by the number of alternatives

From Theorem 6.6 and Proposition 6.7, we know that our central problem for both
the plurality rule and the Condorcet rule is already NP-hard when the input profile
has only two alternatives. The corresponding proofs use the non-anonymity of the
bundling function in a crucial way. Indeed, if we require the bundling function to be
anonymous, then C-CC-AV can be formulated as an integer linear program (ILP)
where the number of variables and the number of constraints are bounded by some
function dependent only on the number m of alternatives. Finding feasible solutions
for such integer linear programs is in FPT, parameterized by the number of variables,
due to the famous result of Lenstra [Len83].

Theorem 6.10. Let m denote the number of alternatives, n′ denote the number of
registered voters, and n denote the number of unregistered voters. Let ilp(ρ1,ρ2,ρ3)
denote the running time2 of the feasibility problem of an integer linear program which
has ρ1 variables and ρ2 constraints, and where the maximum of the absolute values
of the coefficients and the constant terms is ρ3, ρ1,ρ2,ρ3 ∈N. For the plurality and the
Condorcet rules, C-CC-AV can be solved in ilp(2m!,3n +m,max(n,n′)) time.

Proof. In a given profile P with a set A of m alternatives, there are at most m!
voters with pairwise different preference orders. Since the bundling function is
anonymous and, hence, follower-anonymous, there are at most m! different bundles.
Furthermore, we can assume that all voters in a solution W ′ have pairwise different
preference orders (this is because, due to (leader) anonymity, there is no additional
gain in adding two voters with the same preference order). Due to this, we can use
an integer linear program (ILP) to check whether such a solution W ′ exists.

Let n′ and n denote the number of registered and unregistered voters, respectively.
Let Π be the set of the linear preference orders of the unregistered voters. For each
alternative a ∈ A, we write F (a) to denote the set of preference orders in which a is
ranked first. For each linear preference order ≻, we define the following.

• Let N (≻) be the number of voters in W that have preference order ≻.

2As already noted in Theorem 2.2, the best known running time for this setting is O(ρ1
2.5·ρ1+o(ρ1) ·ρ1 ·

ρ2 · log(ρ3 +2)) [FT87, Kan87, Len83].

121

6. Combinatorial Voter Control

• We introduce two Boolean variables, x(≻) and y(≻). The intended meaning of
x(≻) = 1 is that the sought solution W ′ contains voters with preference order ≻.
The intended meaning of y(≻) = 1 is that κ(W ′) contains voters with preference
order ≻. In our ILP, we use the values of the variables x(≻) to enforce the correct
values of the variables y(≻).

• In what admittedly is a slight abuse of notation, we write κ(≻) to denote the
set of preference orders of the voters included in the bundle of a voter with
preference order ≻. Further, we define κ−1(≻) = {≻′ | ≻ ∈ κ(≻′)} to be the set of
preference orders that “include” ≻ in their bundles.

Now we are ready to state our integer linear program (note that it suffices to find
a feasible solution and, thus, we do not specify any function to minimize). Recall
that for each alternative a, scoreP (a) denotes the number of voters in profile P that
rank a in the first position.

∑
≻∈Π

x(≻) ≤ k, (6.1)

0 ≤ x(≻) ≤ 1, ∀≻∈ Π, (6.2)

0 ≤ y(≻) ≤ 1, ∀≻∈ Π, (6.3)

x(≻) ≤ N (≻), ∀≻∈ Π, (6.4)∑
≻′∈κ−1(≻)

x(≻′) ≤ n · y(≻), ∀≻∈ Π, (6.5)

y(≻) ≤ ∑
≻′∈κ−1(≻)

x(≻′), ∀≻∈ Π, (6.6)

scoreP (a)+∑
≻∈F (a)

N (≻) · y(≻) ≤ scoreP (p)+∑
≻∈F (p)

N (≻) · y(≻), ∀a ∈ A \ {p}. (6.7)

We explain the meaning of the different constraint sets. First, constraint set (6.1)
ensures that at most k voters are added to the solution W ′. constraint sets (6.2) and
(6.3) ensure that the introduced variables are Boolean. constraint set (6.4) ensures
that the voters added to W ′ are indeed present in W . constraint sets (6.5) and (6.6)
ensure that variables y(≻), ≻∈Π, have correct values. Indeed, if for some preference
order ≻′ with ≻′ ∈ κ−1(≻), we have x(≻′) = 1, then constraint set (6.5) ensures that
y(≻) = 1. Otherwise, that is, for each preference order ≻′ with ≻′ ∈ κ−1(≻) it holds that
x(≻′) = 0. Thus, constraint set (6.6) ensures that y(≻) = 0. Finally, constraint set (6.7)
ensures that p has plurality score at least as high as every other alternative (and, thus,

122

6.5. Canonical parameterizations

is a winner). Clearly, there is a solution for this integer linear program if and only if
there is a solution for the input instance.

For the case of the Condorcet rule, we modify constraint set (6.7). Instead of
comparing the plurality scores of the alternatives, we rewrite it to compare how many
voters prefer p to each given alternative a. To this end, for each alternative a ∈ A,
let B(p, a) denote the set of all preference orders in which p is ranked in front of a
and let #P (p, a) be the number of voters in the original profile P that prefer p to a.

The following constraint set

#P (p, a)+∑
≻∈B(p,a)

N (≻) · y(≻) > 1

2

(
n′+∑

≻∈Π
N (≻) · y(≻)

)
, ∀a ∈ A \ {p} (6.8)

ensures that for each alternative a ∈ A \ {p}, more than half of the voters from the
original profile and from the added voter set κ(W ′) must prefer p to a, which means
that p is a Condorcet winner. If we use this constraint to replace constraint (6.7),
then we obtain an ILP for the Condorcet rule.

To analyze the running time, we only need to analyze the size of our ILPs: both
ILPs have at most 2m! variables and at most 3n+5m constraints, and in our ILPs, the
absolute value of each coefficient and each constant term is at most max(n′,n).

As already stated in Footnote 2 and noted in Theorem 2.2, using the famous result
of Lenstra [Len83] (later improved by Kannan [Kan87] and Frank and Tardos [FT87]),
we can derive from Theorem 6.10 the following tractability result because an integer
linear program with ρ1 variables and ρ2 constraints, whose coefficients and constant
terms are between −ρ3 and ρ3, can be encoded O(ρ1 ·ρ2 · log(ρ3 +2)) bits.

Corollary 6.11. For the plurality and the Condorcet rules, C-CC-AV is in FPT for the
parameter “number m of alternatives”.

We close this section by mentioning that unless some complexity-theoretic as-
sumption (that is, NP ̸⊆ coNP/poly) fails, for the case that the bundling function is
anonymous, C-CC-AV parameterized by the number m of alternatives does not
admit a polynomial-size kernel (see Section 2.6.1 for the definition). That is, no
polynomial-time algorithm can, given any instance of C-CC-AV with m alternatives,
compute an equivalent instance whose size is polynomial in m. The reason for the
absence of such polynomial kernels is that adapting the proof of Theorem 6.6, we
can construct a polynomial-parameter transformation from SET COVER parameter-
ized by the size of the universe: we simply make the preferences of each element
voter unique by adding an alternative with the same name, that is ranked between p

123

6. Combinatorial Voter Control

and g , and we proceed similarly with the set voters. Since unless NP ̸⊆ coNP/poly,
SET COVER parameterized by the size of the universe does not admit a polynomial
kernel [DLS14], by Proposition 2.1 we obtain that C-CC-AV also does not admit a
polynomial kernel for the parameter m.

6.6 Parameterization by the maximum bundle size and by the swap
distance

We now focus on the complexity of C-CC-AV for the plurality rule as a function of
two combinatorial parameters:

(a) the maximum size b of each voter’s bundle, and

(b) the maximum swap distance d between the leader and her followers in one
bundle.

By Observation 6.4, for the Condorcet rule the problem is NP-hard already for b = 1,
so we do not consider the Condorcet rule in this section. Throughout this section,
when we speak of C-CC-AV, we mean C-CC-AV for the plurality rule.

Specifically, we show that for the plurality rule, C-CC-AV is polynomial-time
solvable if the maximum bundle size is one (that is, if we are in the non-combinatorial
setting already studied by Bartholdi III, Tovey, and Trick [BTT92]), but it is NP-
hard already when the maximum bundle size is two and the bundling function κ is
anonymous. We also show that when the maximum bundle size is two, the problem
for arbitrary bundling functions, parameterized by the solution size, is in FPT. In
contrast, if the bundling function κ is a full-d (that is, if each bundle contains all the
voters at swap distance at most d from the leader), then the problem is polynomial-
time solvable if the maximum bundle size is two, but it is NP-hard already when the
maximum bundle size is three and the maximum swap distance is three.

6.6.1 Bundle size at most two—an intractability result

First, if b = 1, then as mentioned in Observation 6.3, C-CC-AV reduces to CC-AV
and, thus, can be solved in linear time [BTT92]. Indeed, one only needs to calculate
the score difference of the preferred alternative and the current winner and check
whether k, the maximum number of voters one may add, is at least as large as this
difference and whether there are enough p-voters from the unregistered voter set to
add to the preference profile.

C-CC-AV becomes intractable as soon as the maximum bundle size b is two, even
for anonymous bundling functions. To show this we reduce from the following
restricted variant of 3SAT.

124

6.6. Parameterization by the maximum bundle size and by the swap distance

(2-2)-3SAT
Input: A collection C of clauses over the variable set X = {x1, . . . , xn}, where
each clause has either two or three literals, and each variable appears exactly
four times, twice as a positive literal and twice as a negative literal.
Question: Is there a truth assignment that satisfies all clauses in C ?

As we will show next, this variant remains NP-hard.

Lemma 6.12. (2-2)-3SAT is NP-complete.

Proof. Clearly, the problem belongs to NP. We provide a polynomial reduction from
a variant version of the NP-complete 3SAT problem, where each clause has either
two or three literals, each variable occurs either two or three times, and at most one
time as a negative literal [Tov84, Theorem 2.1].

First, we assume that no variable appears only as a positive literal: if this was the
case for some variable, then we could set it to true and simplify the formula. For each
variable xi that appears three times (two times positively and one time negatively),
we add one new variable yi , and two new clauses {¬xi ,¬yi , yi } and {¬yi , yi }. For each
variable xi that appears two times (one time positively and one time negatively),
we add one new clause {¬xi , xi }. In this way, we obtain a new instance, where each
variable appears two times positively and two times negatively. It is easy to see that
the original instance is a yes-instance if and only if the newly constructed instance is
a yes-instance for (2-2)-3SAT.

Theorem 6.13. For the plurality rule, C-CC-AV is NP-complete even if the bundling
function is anonymous and the maximum bundle size b is two.

Proof. We reduce from the NP-complete problem (2-2)-3SAT (Lemma 6.12). Given
a (2-2)-3SAT instance (C ,X), where C is as set of clauses and X is a set of variables,
we construct an input preference profile (A,V) as follows. We add to the set A our
preferred alternative p and an initial winner, called g . Then, for each clause C j ∈C ,

we add to A one clause alternative c j and four dummy alternatives, d
(1)

j ,d
(2)

j ,d
(3)

j ,d
(4)

j .
That is,

A := {p, g }∪ {ci |Ci ∈C }∪ {d
(1)

j ,d
(2)

j ,d
(3)

j ,d
(4)

j | x j ∈X }.

We use the clause alternatives to make sure that the solution to an input instance
encodes a satisfying truth assignment, and the dummy alternatives to ensure that all
unregistered voters have distinct preference orders (this implies that our bundling
function is anonymous).

125

6. Combinatorial Voter Control

v(j ,ci)

v2(j , p) v(j ,cr) v3(j , p)

v(j ,cs)

v4(j , p)v(j ,ct)v1(j , p)

Figure 6.2.: Part of the construction used in Theorem 6.13. Specifically, we show the cycle
corresponding to variable x j which occurs as a positive literal in clauses Ci and Cs , and as a
negative literal in clauses Cr and Ct .

We construct the set V of registered voters so that the initial score of g is 4|X |, the
initial score of each clause alternative ci is 4|X |− |Ci |+1 (where |Ci | is the number of
literals that clause Ci contains), and the initial score of p is zero. We assume without
loss of generality that no clause contains the same literal more than once.

We construct the set W of unregistered voters as follows (throughout the rest of the
proof, we will often write ℓ j to refer to a literal that contains variable x j ; depending
on the context, ℓ j will mean either x j or ¬x j and the exact meaning will always be
clear). For each variable x j ∈X that occurs as a positive literal x j in clauses Ci and Cs ,
i < s, and as a negative literal ¬x j in clauses Cr and Ct , r < t , we create

(1) four p-voters, denoted by v1(j , p), v2(j , p), v3(j , p), v4(j , p), with the following pref-
erence orders:

voter v1(j , p) : p ≻ d
(1)

j ≻ 〈C \ {p,d
(2)

j }〉,
voter v2(j , p) : p ≻ d

(2)

j ≻ 〈C \ {p,d
(3)

j }〉,
voter v3(j , p) : p ≻ d

(3)

j ≻ 〈C \ {p,d
(4)

j }〉,
voter v4(j , p) : p ≻ d

(4)

j ≻ 〈C \ {p,d
(1)

j }〉;
we call these voters variable voters, and

(2) four clause voters, denoted by v(j ,ci), v(j ,cr), v(j ,cs), v(j ,ct), with the following
preference orders:

voter v(j ,ci) : ci ≻ d
(1)

j ≻ 〈C \ {ci ,d
(1)

j }〉,
voter v(j ,cr) : cr ≻ d

(2)

j ≻ 〈C \ {cr ,d
(2)

j }〉,
voter v(j ,cs) : cs ≻ d

(3)

j ≻ 〈C \ {cs ,d
(3)

j }〉,
voter v(j ,ct) : ct ≻ d

(4)

j ≻ 〈C \ {ct ,d
(4)

j }〉.

126

6.6. Parameterization by the maximum bundle size and by the swap distance

Note that each clause Ci has exactly |Ci | corresponding clause voters.

We now describe our bundling function κ whose corresponding bundling graph
will contain a cycle for each variable (see Figure 6.2 for an illustration). Formally, we
define κ as follows:

κ(v1(j , p)) := {v1(j , p), v(j ,ci)}, κ(v(j ,ci)) := {v(j ,ci), v2(j , p)},

κ(v2(j , p)) := {v2(j , p), v(j ,cr)}, κ(v(j ,cr)) := {v(j ,cr), v3(j , p)},

κ(v3(j , p)) := {v3(j , p), v(j ,cs)}, κ(v(j ,cs)) := {v(j ,cs), v4(j , p)},

κ(v4(j , p)) := {v4(j , p), v(j ,ct)}, κ(v(j ,ct)) := {v(j ,ct), v1(j , p)}.

We complete the reduction by setting the number of unregistered voters which
will be added to the profile, to four times the number of variables in X , k := 4|X |.
Obviously, the reduction runs in polynomial time.

To show the correctness of the construction, the general idea is that in order to
let p win, all unregistered p-voters must be in κ(W ′) and no clause alternative ci

should gain more than (|Ci |−1) points. Formally, we show that (C ,X) has a satisfying
truth assignment if and only if there is a size-k voter subset W ′ ⊆W such that p wins
the election (A,V ∪κ(W ′)) (recall that k = 4|X |).

For the “if” part, let β : X → {true, false} be a satisfying truth assignment function
for (C ,X). Intuitively, β will guide us through constructing the voter set W ′ in
the following way: First, for each variable x j and for each clause that contains
the literal ℓ j but β sets it to false, we add to W ′ the corresponding clause voter.
For instance, if β(x j) = false and x j ∈ Ci , then we add v(j ,ci) to W ′. This way, we
include 2|X | p-voters in κ(W ′), and, for each clause Ci , we include at most (|Ci |−1)
ci -voters as well. The former is true because exactly |X | literals are set to false by
β, each literal is included in exactly two clauses, and adding the corresponding
clause voter to W ′ also includes a unique p-voter in κ(W ′); the latter is true because
if β is a satisfying truth assignment, then each clause Ci contains at most (|Ci |−1)
literals set to false. Then, for each clause voter v already in W ′, we also add the voter
vz (j , p), 1 ≤ z ≤ 4, that contains v in his bundle. This way, we include 2|X | additional
p-voters in κ(W ′) without including additional clause voters. Formally, we define W ′

as follows:

W ′ := {
v(j ,ci), vz (j , p) |β(x j) = T ∧¬x j ∈Ci ∧ v(j ,ci) ∈ κ(

vz (j , p)
)}∪{

v(j ,ci), vz (j , p) |β(x j) = F ∧x j ∈Ci ∧ v(j ,ci) ∈ κ(
vz (j , p)

)}
.

Following our intuitive argument, one can verify that all p-voters are contained
in κ(W ′), and that each clause alternative ci gains at most (|Ci |−1) points.

127

6. Combinatorial Voter Control

For the “only if” part, let W ′ be a subset of voters such that p is a plurality winner
in the profile (A,V ∪κ(W ′)).

We say that a literal ℓ j is selected if at least one voter v(j ,ci) is not in κ(W ′). If, for
some variable x j , all four voters v(j ,ci) are in κ(W ′), then we arbitrarily set variable x j

to be selected. Intuitively, selecting a literal means that it should be set to true to
satisfy the formula. Just as not all literals in a clause Ci can be set to false, it is not
allowed to include all corresponding clause voters v(j ,ci) in κ(W ′).

Before we define the truth assignment, we first prove that for each variable x j ,
literals x j and ¬x j cannot be selected simultaneously. This is clear in the special
case where all four clause voters v(j ,ci) are in κ(W ′). Now we focus on the case
where not all four clause voters v(j ,ci) are in κ(W ′). Recall that κ(W ′) must contain
all unregistered p-voters in order to let p win. This implies that for each two clauses
that contain the same variable but not the same literal, at least one corresponding
clause voter must be added to κ(W ′). Thus, if one clause voter is not contained
in κ(W ′), then both of his “neighboring” (in the sense of having distance two to this
clause voter in the bundling graph, as depicted in Figure 6.2) clause voters must be
included in κ(W ′). That is, for each variable x j , bundle κ(W ′) must contain at least
the two voters of the form v(j ,ci) or the two voters of the form v(j ,ci). In turn, this
means that only one of x j and ¬x j is selected.

We now define the truth assignment β : X → {true, false} such that β(x j) := true
if literal x j is selected and β(x j) := false if ¬x j is selected. Following the previous
arguments, function β is well-defined. It is a satisfying truth assignment function
for (C ,X) because for each clause Ci , by the fact that p is a plurality winner in the
profile (A,V ∪κ(W ′)), we have that for each clause alternative ci , κ(W ′) contains at
most (|Ci |−1) ci -voters. There must be some p-voter that corresponds to a literal ℓ j

from ci which is not contained in κ(W ′). Hence, ℓ j is selected. Thus, this literal is set
to true via β, and clause Ci is satisfied.

Overall, the formula is satisfiable if and only if it is possible to make p win by
adding 2|X | bundles, which completes the reduction.

Taking a closer look at the proof of Theorem 6.13, we observe that the bundling
graph we obtain in the reduction consists only of cycles (disregarding the directions
of the arcs). One natural question is whether this is crucial for the hardness result.
In fact, in a collaboration with Gerhard Woeginger (TU Eindhoven) at the 2015
Dagstuhl seminar on “Computational Social Choice: Theory and Applications”, we
could show that C-CC-AV remains NP-complete even if the corresponding bundling
graph consists of trees (disregarding the directions of the arcs) of height at most two.
We achieve this by reducing from another restricted variant of 3SAT, where each

128

6.6. Parameterization by the maximum bundle size and by the swap distance

clause contains at most three literals and each variable appears exactly three times,
twice as a positive literal and once as a negative literal. This problem variant is also
NP-complete. We omit the corresponding proof.

6.6.2 Bundle size at most two—two tractability results

While we have just shown that C-CC-AV is NP-hard for the plurality rule even if
each bundle has at most two voters, intuitively it seems plausible that some tractabil-
ity should exist for this case, as the setting is very restrictive. We prove this intuition
right by showing the following results.

1. We give a fixed-parameter algorithm for the problem, parameterized by the
solution size k (Theorem 6.17).

2. We give a polynomial-time algorithm for the case where the bundling function
is full-d (Theorem 6.20).

Both results rely on the fact that, for b = 2, we can work with the corresponding
bundling graph in the following way. Intuitively, we should select arcs containing
as many p-vertices as possible. Hence, we first find a largest subset of disjoint
arcs whose both endpoints are p-vertices. We then update the bundles (and the
corresponding bundling graph) and add to the solution all p-voters whose bundles
are singletons. Finally, in the case of a non-full-d bundling function, we brute-force
search through the bundling graph structure corresponding to the remaining part of
the solution in “FPT”-time. In the case where the bundling function is full-d , we can
solve the remaining problem greedily in polynomial time.

To implement our ideas, we first need some notions and observations regarding
the structure of the bundling graphs in our instances. Throughout the remainder
of the discussion of the case of b = 2, let I = ((A,V),W,κ, p,k) be a C-CC-AV instance,
and let G = (V (G),E(G)) be the bundling graph for I . We assume that this is a yes-
instance and we let W ′ be a solution for I (that is, a subset of unregistered voters) of
a size not greater than k. We say that a solution is minimal if it has the smallest size
among all solutions, and we focus on such solutions.

Since b = 2, each bundle corresponds to one of the following four different bundle
types:

(1) bundles consisting of two p-voters; the corresponding bundling graph notion
for this type is a (p, p)-arc;

(2) bundles consisting of exactly one p-voter; the corresponding bundling graph
notion for this type is a p-vertex with no outgoing arcs;

129

6. Combinatorial Voter Control

(3) bundles consisting of one p-voter and one non-p-voter; the corresponding bun-
dling graph notion for this type is either a (p,non-p)-arc or a (non-p, p)-arc;
and

(4) bundles not containing any p-voter.

Clearly, we never need to add bundles of the last type to our solution. Thus, we
only need to take care of the bundles of the first three types and, without loss of
generality, we assume that G does not contain any arc between two non-p-voters.
Further, we can consider the first three bundle types independently, in the same
order as they are listed above. The next two lemmas formalize this observation.

Lemma 6.14. If a solution W ′ contains a c-voter w ′ whose bundle κ(w ′) is not of
type (1) but there is at least one p-voter w ∈W \κ(W ′) whose bundle κ(w) is of type (1),
then W ′′ := (W ′ \ {w ′})∪ {w} is also a solution of the same size.

Proof. Clearly, |W ′| = |W ′′|. Let P ′ := (A,V ∪κ(W ′)) and let P ′′ := (A,V ∪κ(W ′′)). Now
observe that the plurality score of p in profile P ′′ is at least as high as the plurality
score of p in profile P ′, and that every other alternative has at most the same plurality
score in P ′′ as in P ′.

Using the same reasoning as for Lemma 6.14, we can show a similar result regard-
ing bundles of type (3) and type (2).

Lemma 6.15. If a solution W ′ contains a p-voter w ′ whose bundle κ(w ′) is of type (3)
but there is at least one p-voter w ∈W \κ(W ′) whose bundle κ(w) is of type (2), then
W ′′ := (W ′ \ {w ′})∪ {w} is also a solution of the same size.

Proof. The proof of this result works in the same way as the proof of Lemma 6.14.

We need the following result to preprocess trivial yes-instances and to upper-
bound by k the number of p-vertices adjacent to a given vertex.

Lemma 6.16. Suppose that all the bundles are of type (3). If a bundling graph G
contains (as a subgraph) a k-star whose center is a c-vertex for some alternative c ∈
C \ {p} and whose leaves are p-vertices, then the following holds.

1. If c has at least k points more than p, then no solution can contain the leader of
any bundle corresponding to an arc of the star.

2. Otherwise, provided that p can become a winner at all, this star corresponds to
a solution of size k.

130

6.6. Parameterization by the maximum bundle size and by the swap distance

Proof. Suppose that c has at least k points more than p. Since all bundles are of
type (3), adding at most k bundles increases the score of p by at most k points.
Adding even one bundle corresponding to an arc from the star increases the score
of c by one, making c have more points than p again. Thus, if it is only allowed to
add at most k bundles, then adding a bundle corresponding to an arc from the star
makes it impossible for p to be a plurality winner.

In contrast, if c has at most (k−1) points more than p, then the best we can do is to
add all leaders of the k bundles corresponding to the k arcs of the star. This increases
the score of p by k (the highest possible value given that all bundles are of type (3))
and keeps the score of c less than or equal to that of p. If it is possible to make p win,
then adding these k bundles makes p win.

Using these observations, we are ready to show our two main results for the case
with maximum bundle size two (Theorems 6.17 and 6.20).

Theorem 6.17. Let m be the number of alternatives, n′ be the number of registered
voters, n be the number of unregistered voters, and k the solution size. If the maximum
bundle size b is two, then for the plurality rule, C-CC-AV parameterized by the
solution size k can be solved in O(m ·n′+m ·n2 +k4k ·m ·n) time.

Proof. Following the discussion preceding this proof, our algorithm starts by picking
as many disjoint bundles of types (1) and (2) as possible. To do so, we first find a
maximum matching for the corresponding bundling graph restricted to the (p, p)-
arcs, and add the bundles corresponding to this matching (we also update the
bundling function to take this into account; indeed, some bundles may change type).
Then, we add as many bundles with exactly one p-voter as possible (that is, bundles
of type (2)). By Lemmas 6.14 and 6.15, this greedy approach is correct. From now on,
we assume that our bundles are only of type (3) (and we assume that our value k is
modified, taking into account all the bundles we have added so far).

We now make several observations regarding our updated bundling graph G. We
assume that it is possible to ensure p’s victory, and we consider a specific minimum-
size solution, denoted by W ′. We let G ′ be the subgraph of G that corresponds to the
solution W ′. Formally, G ′ = (V (G ′),E(G ′)), where V (G ′) =V (G), and

E(G ′) := {(u, v) ∈ E(G) |u corresponds to a leader x in W ′ such that

v corresponds to a follower in κ(x)}.

Claim 6.18. For each p-vertex in G ′, the sum of its in-degree and its out-degree is at
most one.

131

6. Combinatorial Voter Control

Proof of Claim 6.18. Towards a contradiction, assume that there is a p-vertex u for
which the sum of its in-degree and its out-degree is at least two. Let u1 and u2 be two
neighbors of u (note that at least one of them is an in-neighbor). Since all the bundles
are of type (3), neither u1 nor u2 is a p-vertex because their common neighbor u
is already a p-vertex. Let v1, v2 ∈ W be the voters to which u1 and u2 correspond,
respectively. At least one of them must be a leader (that is, must belong to W ′). It is
easy to verify that removing this voter from W ′ results in a correct solution of smaller
size, which contradicts the assumption that W ′ is minimal. (of Claim 6.18) ⋄

By Claim 6.18, we can conclude that G ′ consists of stars (ignoring the directions of
the arcs).

Claim 6.19. Each connected component of G ′ has the following properties:

1. It is a star.

2. The center of the star corresponds to a non-p-voter and all leaves to p-voters.

3. The center of the star has at most one out-arc and at most k in-arcs.

Proof of Claim 6.19. Let F be a connected component of G ′ (see Section 2.2.2 for
the definition of connected components in directed graphs). We first show that
component F contains at most one non-p-vertex. Towards a contradiction, suppose
that F contains two non-p-vertices, u and u′. These two vertices cannot be adjacent
because we only have bundles of type (3). Thus, there is a path between u and u′

that contains at least one p-vertex (we ignore the direction of the arcs on this path).
However, the sum of the in-degree and the out-degree of a p-vertex on such a path
would be two, which by Claim 6.18 is impossible. Thus, F contains at most one
non-p-vertex. Since for every p-vertex the sum of its in-degree and its out-degree is
at most one (Claim 6.18), F is a star and we can consider the p-vertices as the leaves.
Hence, we consider the non-p-vertex as the center (if the star has only two vertices,
one p-vertex and one non-p-vertex, then we define the non-p-vertex as the center).
The last part of our claim follows from Lemma 6.16 and the fact that every bundle
has size two. (of Claim 6.19) ⋄

Based on these two claims, we derive a search-tree algorithm for the case where
we are left with bundles of type (3) only. That is, the bundling graph corresponding
to a minimum solution consists only of stars where the centers are non-p-voters.
We start with an empty graph and we keep adding “good” stars to it, one by one. To
formalize this idea, we need one more notion: Given two graphs, G1 and G2, such

132

6.6. Parameterization by the maximum bundle size and by the swap distance

Algorithm 6.1: The main part of our algorithm for the case that all bundles consist
of exactly one p-voter and one non-p-voter (Type (3)).

1 Find a best i th star S if it exists; otherwise backtrack to the last step where the

(i −1)th star has not yet been added to M .
2 There are three possibilities of the relation between S and a M-extending bundling

graph F ; we guess which one of them actually applies:

(a) F contains S. Let S be the i th star and add it to M , decrease the budget r by the
number of arcs in S.

(b) There is a star with index j , j > i , that has not needed any alternative so far. Guess
the value of j and mark alternative c as needed by the j th star. If the number of
stars that need any alternative exceeds the budget, then backtrack to the beginning
of Step (2) and follow the the other branches.

(c) There is a star with index j , j > i , that will use some non-reserved p-vertex v from S.
Guess the value of j and guess the vertex v from S. Reserve v for the j th star. If all
p-vertices from S have been reserved, then backtrack to the beginning of Step 2 and
branch into other possibilities.

that G2 is a subgraph of G1, by G1 \G2 we mean the directed graph obtained from G1

by deleting all arcs from G2 followed by deleting all isolated vertices.
Now, we are ready to describe our algorithm. First, we guess the size k ′ (0 ≤ k ′ ≤ k)

of a minimum-size solution (this value equals the additional score that p will gain).
Then, we begin with an empty graph M and a budget r , initialized to k ′. We will
repeatedly add “good” stars to the graph M . Thus, when we speak of the j th star, we
mean the j th star that is, or will be, added to M . During the algorithm, we occasionally
mark some of the p-vertices as reserved for some of the stars that are yet to be added
to M . Similarly, we occasionally mark some alternatives as needed by some of the
to-be-added stars. Intuitively, if a p-vertex is reserved for a star, it means that this
star uses this vertex as a leaf. When an alternative is needed by a star, it means that
this star’s center must correspond to this alternative.

The main part of our algorithm executes two steps in a loop, until the whole budget
has been spent. We describe this approach in Algorithm 6.1: After having found a
“good” star in the first step, the algorithm uses brute-force to search each of three
possible branchings, depending on the relation between the found star and the
partial solution.

Initially our graph M is empty and the budget r is set to k ′. Let i be the number
of stars in M added so far, plus one (so, initially, i = 1). Let us introduce two more

133

6. Combinatorial Voter Control

concepts for the “partial solution” M we computed so far. The first one describes a
property of a star.

Definition 6.5 (Best i th stars). A star S is a best i th star regarding M if it satisfies the
following; let the center of S correspond to the alternative c, c ̸= p.

(1) S contains all p-vertices that have been reserved for the i th star but no p-vertices
that have been reserved for any j th star with j > i . No alternative c ′ ̸= c is marked
as needed for the i th star.

(2) The original score of c plus the number of occurrences of the c-vertices in M
plus the number of times that c is needed for some j th stars, j > i , is less than
the original score of p plus k ′, and

(3) S has the largest—but not larger than (r − t)—number of leaves among all stars
in G \ M fulfilling the first two conditions, where t is the number of p-vertices
that are reserved for some j th stars with j > i .

The next concept describes a property of a bundling graph.

Definition 6.6 (M-extending solution graphs). Given two bundling graphs M and F ,
we say that F is an M-extending solution graph if it satisfies the following.

(1) F contains M .

(2) F is the bundling graph of a size-k ′ solution.

(3) F respects the current reservation requirements, that is, every reserved p-vertex is
contained in G ′, no star in G ′ contains two vertices that are reserved for different
stars, and all p-vertices that have been reserved for the same star j are also
contained in the same star of G ′.

(4) F respects the current center requirements, that is, for each alternative c with
c ̸= p, it holds that the number of times that c is needed is at most the number of
c-vertices in G ′.

We show the correctness of our algorithm by the following inductive argument
about S. Let the center of S be a c-vertex with c ̸= p and let s denote the number of
leaves in S. Suppose that there is an M-extending bundling graph F . We show that
there is also an M-extending bundling graph H such that one of the three branchings
in Step (2) applies to H . Obviously, if F contains the center of S, then we can verify

134

6.6. Parameterization by the maximum bundle size and by the swap distance

that there is a bundling graph H satisfying Conditions (1)–(4) and containing S
(Branching (a) in Algorithm 6.1).

Now assume that bundling graph F does not contain the center of S. We distin-
guish three cases regarding the intersection between F and S (we use the following
notation: If a star has some b-vertex as the center, b ̸= p, then we say that this is a
b-centered star):

1. Suppose that bundling graph F does not contain any vertex from S. Let S1 be
a c-centered star in F \ M if F \ M contains one. Otherwise, let S1 be an empty
graph.

a) If no p-vertex in S1 is reserved or if S1 is empty, then let S2 be a supergraph
of S1 and a subgraph of F \ M such that the number of p-vertices in S2 is s.
that are not reserved for any j th star with j > i (note that such subgraph exists
because S satisfies Condition (3) from Definition 6.5). We can verify that
the graph F ′ := (F \ S2)∪ S contains S and satisfies Conditions (1)–(4) from
Definition 6.6. Thus, Branching (a) applies to graph F ′.

b) Otherwise, S1 contains a reserved p-vertex, denote by u. By assumption,
F does not contain any vertex of S. Since S satisfies Condition (1) of Defini-
tion 6.5, we know that no p-vertex in F is reserved for the i th star. This implies
that u is reserved for a star j with j > i and that we can guess one value j > i
and mark the alternative c as needed for the star j . Thus, Branching (b) applies
to graph F .

2. Suppose that the graph F \ M contains two stars S1 and S2, S1 ̸= S2, such that each
star Sℓ, ℓ ∈ {1,2}, contains a vertex vℓ from S.

a) If v1 (resp. if v2) is reserved, then v1 (resp. if v2) is reserved for the i th star
(Condition (1) of Definition 6.5). This implies that v2 (resp. v1) is not reserved.
Then, we can guess one value j , j > i , and guess one not yet reserved vertex v
from S, and mark v as reserved for the j th star.

b) Otherwise, both v1 as well as v2 are not reserved. Since S1 and S2 cannot both
be the i th star, we can guess one value j , j > i , and guess one not yet reserved
vertex v from S, and mark v as reserved for the j th star.

In both cases, Branching (c) applies to graph F .

3. In this last case, suppose that the graph F \ M contains only one star S1 which
contains some p-vertex u from S. Let the center of S1 be a c1-vertex.

135

6. Combinatorial Voter Control

a) If c = c1 and if no p-vertex in S1 is reserved for a star j with j > i , then let S2 be
a supergraph of S1 and a subgraph of F \ M such that the number of p-vertices
in S1 that are not reserved for the j th star with j > i is s. Such subgraph exists
because S satisfies Condition (3) We can verify that the bundling graph F ′ :=
(F \S2)∪S contains S and satisfies Conditions (1)–(4) from Definition 6.6. Thus,
Branching (a) applies to graph F ′.

b) If S1 contains a p-vertex which is reserved for some star j ′, j ′ > i , then this
vertex cannot be u because S satisfies Condition (1) from Definition 6.5. Thus,
we can guess one value j , j > i , and guess one not yet reserved vertex v from S,
and mark v as reserved for the j th star. This implies that Branching (c) applies
to F .

c) Otherwise, c ̸= c ′ and no p-vertex in S1 is reserved. Then, S1 contains at
most s arcs since S satisfies Condition (3) from Definition 6.5.

i. If c’s original score plus the number of occurrences of the c-vertices in
F is less than p’s original score plus k ′, then let S2 be a supergraph of S1

and a subgraph of F \ M such that S2 consists of exactly s p-vertices that
are not reserved for any star j with j > i (note that such subgraph exists
because S satisfies Condition (3) of Definition 6.5). We compare graph F
with the following graph F ′ := (F \S2)∪S. Both graphs, F and F ′, contain the
same number of p-vertices. The number of c-vertices in F is one less than
the number of c-vertices in F ′. This means by assumption that adding the
bundles corresponding to F ′ will not make c have more points than p. That
is, F ′ is also an M-extending graph and contains S. Thus, Branching (a)
applies to F ′.

ii. Otherwise, F \ M contains at least one c-centered star S2 as S satisfies
Condition (2) of Definition 6.5. Since S1 and S2 cannot both be the i th star,
we can guess one value j with j > i , and do the following. We mark c as
needed for the j th star or we guess one not yet reserved vertex v from S and
mark v as reserved for the j th star. Then, Branching (b) or Branching (c)
applies to F .

We have shown the correctness of our algorithm, including the part shown in
Algorithm 6.1. To see the running time, recall that m denotes the number of alterna-
tives, n the number of registered voters, n′ the number of unregistered voters, and k
the number of unregistered voters we are allowed to add. Constructing the bundling
graph for a given instance runs in O(m · (n′)2) time. The constructed graph has at
most n′ vertices and at most n′ arcs. Computing the original score of each alternative

136

6.6. Parameterization by the maximum bundle size and by the swap distance

runs in O(m ·n) time. Preprocessing bundles of type (1) by finding a maximum
matching runs in O((n′)3/2) time [MV80]. Preprocessing bundles of type (2) runs in
O(n′) time. For the running time of the search-tree algorithm, note that S has at
most k arcs and there are at most k −1 additional stars that need an alternative. This
leads to a total of 1+k · (k −1)+ (k −1) = k2 possible guesses in Step (2). Moreover,
after guessing the minimum solution size k ′, we build a search-tree algorithm which
has depth at most 2k (the number of stars in M plus the number of stars that need an
alternative is at most k while the number of reserved p-vertices is at most k) and has
branching factor k2. This means that our search tree has size at most (k2)2k . In each
branching node, we can find a best i th star S in O(m ·n′) time. Thus, the combined
running time is O(m ·n′+m ·n2 +k4k ·m ·n).

If we require the bundling function to be full-d , then we obtain a polynomial-
time algorithm by extending the greedy algorithm of Bartholdi III, Tovey, and Trick
[BTT92].

Theorem 6.20. Let m be the number of alternatives, n′ be the number of registered
voters, and n be the number of unregistered voters. If the maximum bundle size b
is two and the bundling function κ is full-d , then C-CC-AV for the plurality rule is
solvable in O(m · (n +n′)) time.

Proof. As in the proof of Theorem 6.17, we first select as many p-vertices as possible
without any non-p vertex. Since in our C-CC-AV instance ((A,V),W,κ, p,k) every
bundle has at most two voters and κ is a full-d bundling function, every two bundles
are either equal or disjoint. Thus, by Lemmas 6.14 and 6.15, we can greedily select
all disjoint bundles of type (1) and then all disjoint bundles of type (2) (note that by
selecting a bundle we mean to add the leader of the bundle to the solution; since
both voters corresponding to a bundle are leaders of the same bundle, we can choose
either of them). By Lemma 6.14 and Lemma 6.15 and by the fact that all bundles
are either equal or disjoint, this greedy approach is correct. Thus, from now on, we
assume that our bundles are only of type (3).

Afterwards, the algorithm sorts (in ascending order) the remaining bundles by the
score of the non-p-voter in each bundle (remember that we have only bundles of
type (3)) and then adds the bundles in this order.

The correctness of the second part of the algorithm follows because all bundles
are either equal or disjoint.

For the running time, calculating the scores of all alternatives costs O(m ·n′) time.
Adding bundles with two p-voters or with one p-voter and throwing away all ir-
relevant bundles costs O(m ·n). Sorting the bundles can be done in O(m · (n +n′))

137

6. Combinatorial Voter Control

time as the values are upper-bounded by the instance size. Looping over the sorted
alternatives, for each bundle possibly shifting the current alternative higher in the
sorted sequence, can be done in O(m ·n′) time. Thus, the total running time is
O(m · (n +n′)).

6.6.3 Bundle Size Three or More

For a bundle size of b = 3, we obtain NP-completeness even for full-d bundling
functions with d ≤ 3. The proof is similar to the one of Theorem 6.13.

Theorem 6.21. For the plurality rule, C-CC-AV is NP-complete even for full-d bun-
dling functions with constant value d ≥ 3 and maximum bundle size b = 3.

Proof. We give a polynomial reduction from (2-2)-3SAT. This reduction is almost
the same as the one given in the proof of Theorem 6.13. The main difference is that
we carefully construct the voters’ preference orders so that the bundling function is
full-3 and each bundle consists of at most three voters. This leads to some technical
differences, but the main idea of the construction remains the same.

Let (C ,X) be our input instance of (2-2)-3SAT, where C is the set of clauses over
the variables from the set X . We construct the same set of alternatives as in the proof
of Theorem 6.13. That is, we set A := {p, g }∪ {ci |Ci ∈ C }∪ {d

(1)

j ,d
(2)

j ,d
(3)

j ,d
(4)

j | x j ∈ X }.
As in the proof of Theorem 6.13, we construct the set of registered voters so that the
initial score of alternative g is 8|X |, the initial score of each clause alternative ci is
8|X |− |Ci |+1 (where |Ci | is the number of literals in Ci), and the initial scores of all
the other alternatives are zero.

We construct the set of unregistered voters as follows. For each variable x j ∈ X

that occurs as a positive literal x j in some clauses Ci and Cs , i < s, and as a negative
literal ¬x j in some clauses Cr and Ct , r < t , we introduce eight unregistered p-voters,
vz (j , p), 1 ≤ z ≤ 8, and four unregistered clause voters, v(j ,ci), v(j ,cr), v(j ,cs), v(j ,ct).
Their preference orders are defined as follows, where R(j) denotes the set A \{p,ci ,cr ,
cs , ct ,d

(1)

j ,d
(2)

j ,d
(3)

j ,d
(4)

j }:

voter v1(j , p) : p ≻ ct ≻ ci ≻ cr ≻ cs ≻ d
(1)

j ≻ d
(2)

j ≻ d
(3)

j ≻ d
(4)

j ≻ 〈R(j)〉,

voter v2(j , p) : p ≻ ci ≻ cr ≻ cs ≻ ct ≻ d
(1)

j ≻ d
(2)

j ≻ d
(3)

j ≻ d
(4)

j ≻ 〈R(j)〉,

voter v3(j , p) : p ≻ ci ≻ cr ≻ cs ≻ ct ≻ d
(2)

j ≻ d
(4)

j ≻ d
(3)

j ≻ d
(1)

j ≻ 〈R(j)〉,

voter v4(j , p) : p ≻ cr ≻ cs ≻ ct ≻ ci ≻ d
(2)

j ≻ d
(4)

j ≻ d
(3)

j ≻ d
(1)

j ≻ 〈R(j)〉,

voter v5(j , p) : p ≻ cr ≻ cs ≻ ct ≻ ci ≻ d
(3)

j ≻ d
(4)

j ≻ d
(1)

j ≻ d
(2)

j ≻ 〈R(j)〉,

138

6.6. Parameterization by the maximum bundle size and by the swap distance

voter v6(j , p) : p ≻ cs ≻ ct ≻ ci ≻ cr ≻ d
(3)

j ≻ d
(4)

j ≻ d
(1)

j ≻ d
(2)

j ≻ 〈R(j)〉,

voter v7(j , p) : p ≻ cs ≻ ct ≻ ci ≻ cr ≻ d
(4)

j ≻ d
(2)

j ≻ d
(1)

j ≻ d
(3)

j ≻ 〈R(j)〉,

voter v8(j , p) : p ≻ ct ≻ ci ≻ cr ≻ cs ≻ d
(4)

j ≻ d
(2)

j ≻ d
(1)

j ≻ d
(3)

j ≻ 〈R(j)〉,

voter v(j ,ci) : ci ≻ p ≻ cr ≻ cs ≻ ct ≻ d
(2)

j ≻ d
(1)

j ≻ d
(4)

j ≻ d
(3)

j ≻ 〈R(j)〉,

voter v(j ,cr) : cr ≻ p ≻ cs ≻ ct ≻ ci ≻ d
(4)

j ≻ d
(3)

j ≻ d
(2)

j ≻ d
(1)

j ≻ 〈R(j)〉,

voter v(j ,cs) : cs ≻ p ≻ ct ≻ ci ≻ cr ≻ d
(4)

j ≻ d
(1)

j ≻ d
(3)

j ≻ d
(2)

j ≻ 〈R(j)〉,

voter v(j ,ct) : ct ≻ p ≻ ci ≻ cr ≻ cs ≻ d
(1)

j ≻ d
(4)

j ≻ d
(2)

j ≻ d
(3)

j ≻ 〈R(j)〉.

In this way, we obtain the following properties of the swap distances.

(1) For each number z ∈ {1,2, . . . ,4}, it holds that:

(a) Voters v2z−1(j , p) and v2z (j , p) have a swap distance of three.

(b) For each number z ′ ∈ {1,2, . . . ,8}\{2z−1,2z}, voters v2z−1(j , p) and v2z (j , p) have
a swap distance of at least four to vz′ (j , p), respectively.

(2) For each literal ℓ j and each clause Cy that contains ℓ j , let v be the clause voter
that corresponds to Cy and ℓ j . Then the following holds:

(a) The swap distance between voter v and voter vz (j , p) who ranks alternative cy

at the second place is exactly three (one swap between p and cy and two

swaps among alternatives d
(1)

j , d
(2)

j , d
(3)

j , and d
(4)

j).

(b) The swap distance between voter v and some other clause voter is at least
four (because of the clause alternatives ci ,cr ,cs , and ct , and p).

(c) The swap distance between voter v and every p-voter vz (j , p), z ∈ {1,2, . . . ,8}
who ranks cy below the second place is at least four (because of the clause
alternatives ci ,cr ,cs , and ct , and p).

Note that the swap distance between two voters who correspond to two different
variables is much larger than three. We define our bundling function to be a full-3
bundling function whose bundling graph is depicted in Figure 6.3. We obtain the
following values of the bundling function for variable x j :

κ(v1(j , p)) := {v1(j , p), v2(j , p), v(j ,ct)}, κ(v2(j , p)) := {v2(j , p), v1(j , p), v(j ,ci)},

κ(v3(j , p)) := {v3(j , p), v4(j , p), v(j ,ci)}, κ(v4(j , p)) := {v4(j , p), v3(j , p), v(j ,cr)},

139

6. Combinatorial Voter Control

v(j ,ct)

v1(j , p) v2(j , p) v(j ,ci) v3(j , p) v4(j , p)

v(j ,cr)

v5(j , p)v6(j , p)v(j ,cs)v7(j , p)v8(j , p)

Figure 6.3.: Part of the construction used in the proof of Theorem 6.21. Specifically, we show
the cycle corresponding to variable x j which occurs as a positive literal in clauses Ci and Cs ,
and as a negative literal in clauses Cr and Ct .

κ(v5(j , p)) := {v5(j , p), v6(j , p), v(j ,cr)}, κ(v6(j , p)) := {v6(j , p), v5(j , p), v(j ,cs)},

κ(v7(j , p)) := {v7(j , p), v8(j , p), v(j ,cs)}, κ(v8(j , p)) := {v8(j , p), v7(j , p), v(j ,ct)},

κ(v(j ,ci)) := {v(j ,ci), v2(j , p), v3(j , p)}, κ(v(j ,cr)) := {v(j ,cr), v4(j , p), v5(j , p)},

κ(v(j ,cs)) := {v(j ,cs), v6(j , p), v7(j , p)}, κ(v(j ,ct)) := {v(j ,ct), v8(j , p), v1(j , p)}.

Finally, we set k := 4|X |.
The proof of the correctness is, in essence, the same as the one of Theorem 6.13.

If there is a satisfying truth assignment β : X → {true, false} for our input instance,
then we can derive a solution to our problem as follows. We say that a clause is
failed by literal ℓ j if either this clause contains ℓ j and β(ℓ j) = false, or this clause
contains ¬ℓ j and β(ℓ j) = true. For each literal ℓ j , we include in our solution W ′ these
two clause voters who correspond to the clauses failed by ℓ j . Further, we include
those four p-voters whose bundles each contain at least one of these two clause
voters. Since each literal is contained in exactly two clauses, we can easily verify that
the defined solution W ′ contains exactly 4|X | voters and that it gives 8|X | additional
points to p. Since every clause Ci is failed by at most |Ci | −1 literals, each clause
alternative obtains at most |Ci |−1 additional points. Thus, altogether, p, g , and all
clause alternatives tie for victory.

The proof for the other direction is the same as in the case of Theorem 6.13. In
particular, given a solution P ′, we declare a literal ℓ j to be selected if at least one
of the corresponding clause voter is not included in κ(W ′); the proof that, if W ′ is a
solution for our control problem, then setting the selected literals to true leads to a
satisfying truth assignment, proceeds as the one of Theorem 6.13.

If we relax the bundle size to be at most four, then we find that C-CC-AV is NP-
hard even if the maximum swap distance is one. This stands in contrast to the

140

6.7. Single-peaked and single-crossing cases

case where d = 0, where C-CC-AV reduces to the CC-AV problem for weighted
elections [FHH15], which, for the plurality rule, is polynomial-time solvable by a
simple greedy algorithm.

Theorem 6.22. For the plurality rule, C-CC-AV is NP-complete even for full-d bun-
dling functions with constant value d ≥ 1 and maximum bundle size b = 4.

Proof. We can use the same construction as in the W[1]-hardness proof of Theo-
rem 6.25 (see the next section) to provide a polynomial-time reduction from the
VERTEX COVER problem instead of the PARTIAL VERTEX COVER problem; see more
details right after the proof of Theorem 6.25. The maximum swap distance remains
the same; that is, it is one. Since the maximum bundle size is exactly one higher
than the maximum vertex degree of the VERTEX COVER instance, and since VERTEX

COVER is NP-hard [GJS76] already when the maximum vertex degree is three, the
correctness of Theorem 6.22 follows.

6.7 Single-peaked and single-crossing cases

In this section, we consider the computational complexity of C-CC-AV for the
restricted case where the profiles are single-peaked or single-crossing. We note
that the W[2]-hardness result for non-anonymous bundling functions and for two
alternatives (Theorem 6.6) also extends to these restricted domains because every
profile with two alternatives is single-peaked and single-crossing.

Observation 6.23. For the plurality rule and the Condorcet rule, for single-peaked
and single-crossing profiles, C-CC-AV parameterized by the solution size is W[2]-hard,
even for two alternatives.

Moreover, by carefully crafting the preference orders for three alternatives, the
W[1]-hardness result (Proposition 6.9) for three alternatives and a maximum bundle
size of three also extends to these restricted domains. Thus we obtain the following.

Observation 6.24. For the plurality rule, for single-peaked and single-crossing pro-
files, C-CC-AV parameterized by the solution size is W[1]-hard, even for two alterna-
tives and with bundles size of at most three.

In the remainder of this section, we focus on instances with full-d bundling func-
tions; via Proposition 6.2, our hardness results extend to anonymous and hence,
also to arbitrary bundling functions. Our results for the combinatorial variant of
control with anonymous bundling functions under our domain restrictions are quite

141

6. Combinatorial Voter Control

different from those for the non-combinatorial case. Indeed, both for the plural-
ity rule and the Condorcet rule, the non-combinatorial voter control problems for
single-peaked (resp. single-crossing) profiles are solvable in polynomial time [Bra+15,
Fal+11, MF14] (for the case of plurality, this is true even in the unrestricted case).
For the combinatorial case, we show hardness for both voting rules even when
the input profile is single-peaked, but we give polynomial-time algorithms for the
single-crossing case. We begin with the case of single-peaked profiles.

Theorem 6.25. For both the plurality rule and the Condorcet rule, even when the
input profile is single-peaked and the bundling function κ is full-d with constant
d = 1, C-CC-AV is NP-complete and when parameterized by the solution size k, it is
W[1]-hard.

Proof. We consider the plurality rule first. We show both NP-hardness and W[1]-
hardness results by providing a single reduction from the NP-complete and W[1]-
hard problem PARTIAL VERTEX COVER (PVC). The parameter for PARTIAL VERTEX

COVER is the size h of the vertex cover [GNW07]:

PARTIAL VERTEX COVER (PVC)
Input: An undirected graph G = (V (G),E(G)) and two non-negative inte-
gers h,ℓ ∈N.
Question: Does G admit a size-h vertex subset U ⊆V (G) which intersects at
least ℓ edges in G?

To obtain the desired results, we will prove that the reduction can be done in
polynomial time and in FPT time.

Let (G ,h,ℓ) be our input instance for PVC where V (G) denotes the vertex set and
E(G) denotes the edge set. We set the parameter k := h, and construct an input
preference profile (A,V) as follows. The alternative set A contains our preferred
alternative p and an initial winner, called g . For each vertex ui in V (G), we add to
set A two vertex alternatives, called ai and ai . The introduction of these two vertex
alternatives is to ensure that restricting the bundling function to be full-3 causes
relevant voters to be “bundled” together while each bundle still has at most three
voters. Formally, we have

A := {p, g }∪ {ai , ai | ui ∈V (G)}.

Before constructing the voters and their preference orders, we first define the
following canonical preference order:

〈A〉 := p ≻ g ≻ a1 ≻ a1 ≻ . . . ≻ a|V (G)| ≻ a|V (G)|.

142

6.7. Single-peaked and single-crossing cases

Based on this order we define further preference orders. For each set P of disjoint
pairs of alternatives such that the alternatives in each pair are consecutive with
respect to the canonical preference order, we define the preference order diff-order(P)
to be the preference order that differs from our canonical order by exactly the pairs
in P .

We are now ready to construct the registered and unregistered voters. The regis-
tered voter set V consist of (h +ℓ) voters, each ranking the alternatives according to
the canonical preference order. In this way, the initial score of g is (h +ℓ) and the
scores of all the other alternatives are zero. Thus, g is a unique winner.

We define the unregistered voter set W as follows:

(1) For each edge e = {ui ,u j } ∈ E(G), we construct an edge voter w(e, p) with prefer-
ence order diff-order({{ai , ai }, {a j , a j }}). We say that w(e, p) corresponds to edge e.
Note that all edge voters are p-voters.

(2) For each edge e = {ui ,u j } ∈ E(G), we construct a dummy voter d(e, g) with prefer-
ence order diff-order({{p, g }, {ai , ai }, {a j , a j }}). We also say that d(e) corresponds
to edge e. Note that all dummy voters are g -voters.

(3) For each vertex ui ∈ V (G), we construct a vertex voter w(i , p) with preference
order diff-order({{ai , ai }}). We say that w(i , p) corresponds to ui . Note that all
vertex voters are p-voters.

We have constructed (h +ℓ) registered and 2|V (G)| + |E(G)| unregistered voters.
Their preference orders are single-peaked with respect to the following order:

a|V (G)| ≻ a|V (G)|−1 ≻ . . . ≻ a1 ≻ p ≻ g ≻ a1 ≻ a2 ≻ . . . ≻ a|V (G)|.

Finally, we define the bundling function κ to be full-1. To understand how κ works,
we calculate the swap distances between the preference orders of all possible pairs
of voters in W . We see the following.

(a) The distance between each two edge voters is at least two.

(b) The distance between each edge voter and each dummy voter is exactly one if
they correspond to the same edge, and is at least three otherwise.

(c) The distance between each edge voter w(e, p) and each vertex voter w(i , p) is
one if ui ∈ e, and three otherwise.

(d) The distance between each two dummy voters is at least two.

143

6. Combinatorial Voter Control

(e) The distance between each dummy voter and each vertex voter is at least two.

(f) The distance between each two vertex voters is two.

To make κ full-1, we define κ as follows.

• For each edge e = {ui ,u j } ∈ E(G), we define the bundles of the correspond-
ing edge voter and the dummy voter as κ(w(e, p)) := {w(e, p), w(i , p), w(j , p),
d(e, g)}, κ(d(e, g)) := {d(e, g), w(e, p)}.

• For each vertex ui ∈ V (G), we define the bundle of the corresponding vertex
voter as κ(w(i , p)) := {w(i , p)}∪ {w(e, p) | ui ∈ e ∈ E(G)}.

Note that by the construction of the bundling function, adding a dummy voter is
never better than adding his “corresponding” edge voter.

Obviously, the construction runs in O((h+ℓ+|V (G)|+|E(G)|)·|V (G)|) time. It remains
to show that graph G has a size-h vertex subset U ⊆V (G) which intersects at least ℓ
edges in G if and only if there is a size-k voter subset W ′ ⊆W such that p is a plurality
winner of the profile (A,V ∪κ(W ′)). Recall that all unregistered voters except for the
dummy voters are p-voters and that p needs at least (h +ℓ) points in order to win.

For the “only if” part, suppose that X ⊆ V (G) is a size-h vertex set and Y ⊆ E(G)
is a size-ℓ edge set such that for every edge e ∈ Y it holds that e ∩ X ̸= ;. We set
W ′ := {w(ui) | ui ∈ X }. It is easy to verify that κ(W ′) consists of h vertex voters and
at least ℓ edge voters. Each of them gives p one point if added to the profile. This
results in p being a winner of the resulting profile.

For the “if” part, suppose that there is a size-k subset W ′ ⊆ W such that p is
a plurality winner of the profile (A,V ∪κ(W ′)). Observe that if W ′ contains some
dummy voter d(e, g), then we can replace him with voter we . If we is already in set W ′,
then we can simply remove d(e, g) from W ′. Thus, we can assume that set W ′ does not
contain any dummy voters. Now, assume that W ′ contains some edge voter w(e, p)
with e = {ui ,u j }. Since, by the previous argument, W ′ does not contain d(e, g), we
know that d(e, g) is not in κ(W ′ \{w(e, p)}). This means that if both w(i , p) and w(j , p)
belong to κ(W ′ \ {we }), then we can safely remove w(e, p) from W ′; p will still be a
winner of the profile (A,V ∪κ(W ′ \ {w(e, p)})). On the contrary, assume that exactly
one of w(i , p) and w(j , p) is not in κ(W ′ \ {w(e, p)}); without loss of generality, let
w(i , p) be the voter not in the mentioned set. It is easy to verify that p is a winner
of profile (A,V ∪κ((W ′ \ {w(e, p)})∪ {w(i , p)})) (the net effect of including the bundle
of w(e, p) is that p’s score increases by at most one, whereas the net effect of including
the bundle of w(i , p) is that p’s score increases by at least one). Similarly, if neither
w(i , p) nor w(j , p) with i < j are in κ(W ′ \ {w(e, p)}), then it is easy to verify that p

144

6.7. Single-peaked and single-crossing cases

is still a winner of the profile (A,V ∪κ((W ′ \ {w(e, p)})∪ {w(i , p)})). All in all, we can
assume that W ′ contains vertex voters only. Since all vertex voters are p-voters,
without loss of generality we can assume that W ′ contains exactly k = h of them.

We define vertex set X := {ui | w(i , p) ∈ W ′} and edge set Y := {e ∈ E(G) | e ∩ X ̸= ;}.
By the construction of the edge voters’ preference orders, κ(W ′) consists of k vertex
voters and |Y | edge voters. This must add up to at least (h +ℓ) voters. Therefore,
|Y | ≥ ℓ, implying that at least ℓ edges are covered by X . This completes the proof for
the case of plurality.

For the Condorcet rule, we use the same unregistered voter set W and construct
the original profile with (h +ℓ)− 1 registered voters whose preference orders are
diff-order({g , p}). We set k := h. Since all voters rank either p or g in the first position,
the Condorcet rule equals the plurality rule for the unique-winner model. Thus,
using the same reasoning as used for the plurality rule, we can verify that (G ,h,ℓ) is
a yes-instance of PVC if and only if there is a size-k subset W ′ ⊆W such that p is a
Condorcet winner of the profile (A,V ∪κ(W ′)).

In fact, our reductions also a polynomial-time reduction. Since PARTIAL VERTEX

COVER is NP-complete, we simultaneously obtain NP-hardness results for both
voting rules.

We can easily verify that VERTEX COVER is a special case of PARTIAL VERTEX COVER

where the number ℓ of edges to “cover” is the total number of edges |E(G)| of the input
graph G . Thus, we can use the same construction given in the proof of Theorem 6.25
for the case of ℓ= |E(G)| to provide a polynomial reduction from VERTEX COVER to
our combinatorial voter control problem. In the obtained instance, the maximum
bundle size equals the maximum vertex degree of the reduced graph G plus one.
Since VERTEX COVER is already NP-hard when the maximum vertex degree is three,
we can conclude that C-CC-AV is NP-hard even when the maximum bundle size is
four.

We now consider the single-crossing case (see Section 3.4 for more information on
this property). First, we make some observations about the single-crossing property.

Lemma 6.26. If a preference profile is single-crossing, then for each alternative c, all
c-voters appear consecutively in each single-crossing order of the voters.

Proof. Consider a single-crossing profile with n voters and let σ : x1 ≻ x2 ≻ . . . ≻ xn

be a single-crossing voter order. Suppose for the sake of contradiction that there
are three consecutive voters xi , xi+1, and xi+2, 1 ≤ i ≤ n −2 such that xi and xi+2 are

145

6. Combinatorial Voter Control

c-voters but xi+1 is a c ′-voters with c ′ ̸= c. Then, the order σ is not single-crossing
with respect to the couple {c,c ′}—a contradiction.

If we also require the bundling function to be full-d , then all voters in a bundle
must appear consecutively and any solution for the plurality rule has a nice property
we will use later on.

Lemma 6.27. Let I = ((A,V),W,κ, p,k) be a C-CC-AV instance such that (A,V ∪W) is
single-crossing and κ is full-d . The following holds.

(1) The voters of each bundle appears consecutively in each single-crossing order of
the voters from W .

(2) If I is a yes-instance for the plurality rule, then there is a subset W ′ ⊆W of size at
most k such that (a) p is a plurality winner in profile (A,V ∪κ(W ′)), and (b) all
bundles of voters w ∈W ′ contain only p-voters, except at most two bundles which
may contain some non-p-voters.

Proof. Consider a follower w ′ in the bundle of an unregistered voter w and consider
a third voter w ′′ which is positioned between w and w ′ along a single-crossing order.
Then, by the definition of the single-crossing property, we know that every couple
that separates voters w from w ′′ also separates voters w from w ′. By the definition
of swap distances, this implies that the swap distance between w and w ′′ is at most
as large as the one between w and w ′. Since κ is full-d , we have w ′′ ∈ κ(w), implying
the first statement.

We show the second statement by modifying an existing solution for I . Let σ be
a single-crossing order of the voters in W ′. Let W ′ ⊆ W be a size-k subset of the
unregistered voters such that p is a plurality winner in the profile (A,V ∪κ(W ′)).
Without loss of generality, we assume that the bundle of each voter in W ′ contains at
least one p-voter and no two voters in W ′ have the same bundle.

Suppose that there are two voters w and w ′ with different bundles from the solu-
tion W ′ such that their bundles each contains a non-p-voter and the first p-voter
along the order σ.

Let κ(w,1) and κ(w ′,1) denote the first voter in κ(w) and in κ(w ′) along the order σ,
respectively. Without loss of generality, we assume that κ(w,1) is not behind κ(w ′,1)
in the order σ. We distinguish two cases regarding the number of p-voters in the
bundles κ(w) and κ(w ′). If κ(w) contains more p-voters than κ(w ′), then by the first
statement we know that κ(w) ⊇ κ(w ′). We can safely remove w ′ from W ′ and obtain a
smaller solution. Otherwise, κ(w) does not contain more p-voters than κ(w ′). By the
first statement and by the fact that κ(w,1) is not behind κ(w ′,1), we know that each

146

6.7. Single-peaked and single-crossing cases

non-p-voter contained in κ(w ′) is also contained in κ(w). Thus, removing w from W ′

does not decrease the number of points given to p and does not increase the number
of points given to any other alternative c ̸= p. Using the same reasoning repeatedly,
we can conclude that W ′ contains at most one voter w whose bundle κ(w) contains
a non-p-voter and the first p-voter along the single-crossing order.

Along the same lines, we can show that W ′ contains at most one voter w whose
bundle κ(w) contains a non-p-voter and the last p-voter along the single-crossing
order. To complete the proof, it remains to observe that for each unregistered
voter w ∈ W , if κ(w) contains both some p-voters and some non-p-voters, then it
also must contain either the first p-voter or the last p-voter along the single-crossing
order. Altogether, this implies that W ′ contains at most two voters whose bundles
contain non-p-voters.

For the Condorcet rule, we use the concept of median voters and we apply the
well-known median-voter theorem due to Black [Bla48] (we provide the proof for the
sake of completeness). Given a voter order σ := 〈v1, v2, . . . , vn〉, let the median voter
set of σ, denoted as Med(σ), be the set {vℓ+1, vℓ+2, . . . , vn−ℓ | ℓ= ⌊ n−1

2 ⌋}. Note that the
size of Med(()σ) is one for odd n and two for even n.

Lemma 6.28 ([Bla48]). Let P be a single-crossing profile and let σ denote such a
single-crossing order of the voters in P . An alternative c is a Condorcet winner of P if
and only if all voters in Med(σ) are c-voters.

Proof. By the definition of median voters, observe that along the orderσ, the number
of voters ordered in front of Med(σ) and the number of voters ordered behind Med(σ)
are the same; they are both ⌊ n−1

2 ⌋.
For the “only if” part, suppose that c is a Condorcet winner. Assume towards

a contradiction that there is a voter in Med(σ), called w , which prefers another
alternative c ′ to c. Since c is a Condorcet winner which implies that c beats c ′, it must
hold that some voter in front of w and some other voter behind w prefer c to c ′—a
contradiction to σ being single-crossing regarding couple {c,c ′}.

For the “if” part, suppose that all voters in Med(σ) are c-voters. Now consider an
arbitrary alternative c ′ ̸= c. Then, all voters in Med(σ) prefer c to c ′. Since σ is a single-
crossing order, couple {c,c ′} separates σ at most once. That is, it cannot happen that
some voter in front of Med(σ) and some other voter behind Med(σ) prefer c ′ to c.
Thus, at most ⌊ n−1

2 ⌋ voters from the whole voter set prefer c ′ to c, implying that c
beats c ′ for every alternative c ′ ̸= c. Thus, c is a Condorcet winner.

With these three lemmas available, we are ready to describe the following poly-
nomial-time algorithms for both the plurality rule and the Condorcet rule.

147

6. Combinatorial Voter Control

Theorem 6.29. For the single-crossing case with full-d bundling functions, C-CC-AV
is solvable in O((n +n′) ·m2 +n2) for the plurality rule, and it is solvable in O((n +n′) ·
m2 + (n +n′)2 ·n4)

Proof. First, we find a single-crossing order for profile (A,V ∪W) in O((n +n′) ·m2)
time ([EFS12] and Theorem 3.9). By Lemma 6.27 (2) and Lemma 6.28, we only need
to store the most preferred alternative of each voter in order to find a solution. Thus,
the running time from now on only depends on the number n of unregistered voters.
We start with the plurality rule and let σ : x1 ≻ x2 ≻ . . . ≻ xn be a single-crossing order
of the unregistered voters.

Due to Lemma 6.27 (2), we may assume that our solution contains at most two
voters whose bundles each contain non-p-voters. We first guess these two voters,
and after this initial guess, the bundles of all remaining voters in the solution contain
only p-voters (Lemma 6.27 (1)). Thus, the remaining task is to find the maximum
score that p can gain by selecting k ′ bundles, k ′ ≤ k, containing only p-voters. By
Lemma 6.26, all p-voters are consecutive along the order σ. By Lemma 6.27 (1), the
voters of each bundle are also consecutive along σ. Thus, our problem is equivalent
to MAXIMUM INTERVAL COVER with total interval being n; this problem is solvable
in O(n2) time using dynamic programming, as described by Golab et al. [Gol+09,
Section 3.2].

For the Condorcet rule, we use a slightly different algorithm. From now on, we
represent each voter by his bundle. When we speak of a solution, we mean a set
of bundles of size at most k. The goal is to find a set ∆ of bundles of minimum
size whose addition to the original profile makes p a Condorcet winner. First, let
β : x1 ≻ x2 ≻ . . . ≻ xn+n′ be a single-crossing order of all voters in V ∪W , and let βres be
the order derived from β by considering only the voters in V ∪⋃

δ∈∆δ.
From Lemma 6.28 we know that the voters in Med(βres) must be p-voters. Thus,

we begin by guessing at most two bundles δ1 and δ2 that may contain p-voters from
Med(βres) as median voters (for simplicity, we define the bundle of each registered
voter to be his singleton). Since by Lemma 6.27 (1), the voters of every bundle are
consecutive along the single-crossing order, we can update all bundles by excluding
those voters from δ1 ∪ δ2 afterwards. Let V ′ := V ∪ δ1 ∪ δ2. Now observe that to
make p win, by Lemma 6.28, we only have to find appropriate bundles ordered in
front of and behind δ1∪δ2 such that the median voters (with respect to the restricted
single-crossing order) are p-voters. To formalize this idea, we guess two additional
sizes z1 and z2 which will denote the numbers of unregistered voters from κ(W ′)
ordered in front of and behind δ1 ∪δ2. Note that with these two values z1 and z2, we
can already check whether p has any chance to become a Condorcet winner because

148

6.8. Concluding remarks

we know the order of the voters in β.
It remains to find the minimum number of unregistered bundles such that

• their union consists of exactly z1 unregistered voters ordered in front of δ1 ∪δ2

and exactly z2 unregistered voters ordered behind δ1 ∪δ2, and

• adding these bundles to V ′ makes some p-voters median voters.

As for the case of the plurality rule, finding bundles fulfilling the first requirement
can be done in O(n2) time, using the algorithm of Golab et al. [Gol+09, Section
3.2]. Checking whether p-voters are median voters for some order can be done in
O(n +n′) time. Altogether, we can find in O((n +n′) ·m2 + (n +n′)2 ·n4) time a set of
bundles of minimum size, which make p a Condorcet winner when added.

6.8 Concluding remarks

We introduced a new notion of combinatorial control in voting. Specifically, we
considered the problem of constructive control by adding voters: instead of being
able to add voters one-by-one, we can add some bundles of voters at unit cost each.
In our study, we have focused on the plurality rule and the Condorcet rule. We saw
how the specific structures—be it preference structures or parameters of the input
instance—influence the computational complexity of our new model.

Our work provides several opportunities for future research. First, we draw an
almost complete picture of the multivariate complexity analysis for three parameters:
the maximum bundle size b, the number k of bundles allowed to add, the maximum
swap distance d between the preference order of a voter and the preference order of
any voter in its bundle (Table 6.1). The case with bundle size at most three and swap
distance two remains open.

Second, for the plurality rule, for anonymous bundling functions and for maximum
bundle size two, we provide a fixed-parameter algorithm for our C-CC-AV problem
parameterized by the solution size k (Theorem 6.17). The running time of the
algorithm, however, is not upper-bounded single-exponentially in k. It would be
interesting to know whether the problem can be solved in a running time which has
a single exponential bound. Moreover, it would also be interesting to know whether
it admits a polynomial kernel (see Section 2.6.1 for the definition).

Third, we did not discuss destructive control and the related problem of combi-
natorial deletion of voters. For plurality, we expect that combinatorial addition of
voters for destructive control, and combinatorial deletion of voters for either con-
structive or destructive control behave similarly to combinatorial addition of voters
for constructive control. For instance, we can adapt the parameterized reduction

149

6. Combinatorial Voter Control

of our W[2]-hardness result from Theorem 6.6 to show that these three variants of
combinatorial voter control problems are W[2]-hard (and thus NP-hard). We con-
jecture that Proposition 6.5, Theorem 6.8, and Corollary 6.11 can be transferred to
these cases. Understanding these other variants, and also considering other voting
rules which are not already hard for the non-combinatorial model, is a promising
route for future work.

Another field of future research is to study other combinatorial voting models—
this may include controlling the swap distance, “probabilistic bundling” where the
bundle of each voter is chosen at random, or using other distance measures besides
the swap distance. Naturally, it would also be interesting to consider problems other
than voting control as for instance, SHIFT BRIBERY (also see Chapter 7 where we
study this problem); a combinatorial variant of SHIFT BRIBERY has very recently
been started by Bredereck et al. [Bre+15e].

Finally, instead of studying combinatorial voter control, one might also be inter-
ested in combinatorial control by adding or deleting alternatives. As the problem
is already NP-hard for the plurality rule and for the non-combinatorial variant,
Chen et al. [Che+15a] conducted a parameterized complexity analysis for the param-
eter “number of the voters” for several popular voting rules.

150

CHAPTER 7

Shift Bribery

Don’t buy a single vote more than necessary.

Joseph P. Kennedy, 1958

In the previous chapter, we have studied how to manipulate voting results by
adding voters in a combinatorial setting, where adding a voter also means adding
a bundle of other voters at unit price. In this chapter, we continue with the study
of voting manipulation, but investigate a different strategy. Here, we are allowed to
shift our preferred alternative p higher in some voters’ preference orders. Each such
shift, however, comes at a price and we must not exceed a given budget. We study
the parameterized complexity with respect to several parameters, pertaining to the
nature of the solution sought and the size of the input profile, and for several classes
of price functions. When we parameterize by the number of affected voters, then
for each of our voting rules (Borda, maximin, Copeland) the problem is W[2]-hard.
If, instead, we parameterize by the number of positions by which p is shifted in
total, then the problem is fixed-parameter tractable for Borda and maximin, and it is
W[1]-hard for Copeland. If we parameterize by the budget, then the results depend
on the price function class.

7.1 Introduction

In the previous chapter, we have studied how, by organizing a constructive cam-
paign, convincing some unregistered voters to vote may influence the voting out-
come. However, we did not consider the fact that such a campaign may also affect
the opinion of already registered voters. In this chapter, we take a closer look at
this effect. We are particularly interested in the case where possible changes of

This chapter is based on “Prices Matter for the Parameterized Complexity of Shift Bribery” by R.
Bredereck, J. Chen, P. Faliszewski, A. Nichterlein, and R. Niedermeier, Information and Computa-
tion [Bre+16a] .

151

7. Shift Bribery

a preference order always involve shifting the preferred alternative higher in the
specific order. To illustrate this concept, let us first describe three typical scenarios
in rank aggregation.

• There are product rankings based on comparing prices, features, and different
tests performed by various institutions such as foundations, journals, etc.
These rankings are then aggregated into the final one or a winner may be
defined according to the rankings.

• Universities are judged based on multiple different criteria, including the
number of students per faculty member, availability of particular facilities, the
number of Nobel prize winners employed etc.

• Sport competitions involve multiple rankings. For example, a Formula 1 sea-
son consists of about twenty races, each resulting in a ranking of the drivers.

A company intending to make its product a winner or a university aiming to increase
its prestige or a racing team performing a post-season analysis may want to influence
the component rankings obtained from different sources (different product tests,
different judgment criteria, different races, different voters). Clearly, this comes
at a cost which may differ from source to source and, indeed, can sometimes be
quite high. To understand how to achieve a better ranking or even to become a
winner with a limited budget, we study the SHIFT BRIBERY problem which, given a
preference profile, some preferred alternative p, and some budget, asks whether it is
possible to make p win by bribing voters to shift p higher in their preference orders
while spending no more than the given budget. SHIFT BRIBERY was introduced by
Elkind, Faliszewski, and Slinko [EFS09]; we describe related work in more detail
below. Naturally, the effect or the number of positions by which p is shifted in each
voter’s preference order depends on the voter’s character and situation, and on the
amount of effort we invest into convincing the voter. This “effort” could, for example,
be the amount of time spent, the cost of implementing a particular change, or, in
the bribery view of the problem, the payment to the voter. Thus, the problem and,
therefore, its computational complexity, depends on the voting rule, on various
voting parameters such as the numbers of alternatives and voters, and on the type
of price functions describing the efforts needed to shift p up by a given number of
positions in the voters’ preference orders. Our goal is to unravel the nature of these
dependencies.

Related work and background. The computational complexity of bribery in voting
was first studied by Faliszewski, Hemaspaandra, and Hemaspaandra [FHH09]. They

152

7.1. Introduction

considered the BRIBERY problem, where one asks if it is possible to make a given
alternative win by changing at most a given number of preference orders. Its priced
variant, $BRIBERY, is the same except that each voter has a possibly different price
for the change of his preference order. These problems were studied for various
voting rules, including the Borda rule [Bre+08, FHH09], the maximin rule [FHH11b],
and the Copelandα rule [Fal+09b] (see Section 7.4 for definitions of these rules).
Recently, Gertler et al. [Ger+15] studied the bribery problem for linear ranking sys-
tems. Notably, the destructive variant of BRIBERY, known under the name MARGIN

OF VICTORY [MRS11, Xia12], where the goal is to make an alternative lose, has a
surprisingly positive motivation—it can be used in efficient post-election audits
which aim to detect errors or fraud in election. This is because audits need to be
more vigilant in a close election, where making an initial winner lose requires only
to change a few voters’ preference orders, than in an election with landslide victory.
The margin of victory measures exactly how close a winner is to losing.

The above problems, however, do not take into account that the price of bribing a
voter may depend on what preference order we wish the “bribed” voter to cast. For
example, a voter might be perfectly happy to swap the two least preferred alternatives
but not the two most preferred ones. To model such situations, Elkind, Faliszewski,
and Slinko [EFS09] introduced the SWAP BRIBERY problem. They assumed that each
voter has a swap-bribery price function which gives the cost of swapping each two
alternatives (provided they are consecutive in the voter’s preference order; one can
perform a series of swaps to transform the voter’s preference order in an arbitrary
way). They found that SWAP BRIBERY is both NP-hard and hard to approximate
for most well-known voting rules. The reason for these results is, essentially, that
the POSSIBLE WINNER problem [BD10, BR12, KL05, XC11] (see Section 8.7 for more
information of the definition), which is NP-hard for almost all natural voting rules, is
a special case of SWAP BRIBERY with each swap costing either zero or infinity. Moti-
vated by this, Dorn and Schlotter [DS12] considered the parameterized complexity
of SWAP BRIBERY for the k-Approval voting rule (where each voter gives a point to his
or her top k alternatives). In addition, Elkind, Faliszewski, and Slinko [EFS09] also
considered SHIFT BRIBERY, a variant of SWAP BRIBERY where all the swaps have to
involve the preferred alternative p. They show that SHIFT BRIBERY remains NP-hard
for the Borda, maximin, and Copeland rules but that there is a 2-approximation
algorithm for Borda and a polynomial-time algorithm for the k-Approval voting rule.
Recently, SHIFT BRIBERY has become more popular as a research subject:

• Elkind and Faliszewski [EF10] gave a 2-approximation algorithm for all scoring
rules (generalizing the result for Borda) and other approximation algorithms

153

7. Shift Bribery

for Copeland and maximin.

• Schlotter, Faliszewski, and Elkind [SFE15] showed that SHIFT BRIBERY is
polynomial-time solvable for the Bucklin and the Fallback voting rules.

• Bredereck et al. [Bre+15d] considered the combinatorial variant of SHIFT

BRIBERY. They showed that, in general, the combinatorial variant of the prob-
lem is highly intractable (NP-hard, hard in the parameterized sense, and hard
to approximate), but they provided some (approximation) algorithms for nat-
ural restricted cases.

• Bredereck et al. [Bre+16c, Bre+16d] solved two open problem we proposed
in the conference version [Bre+14b] of this chapter. Using mixed integer
linear programming, Bredereck et al. [Bre+16d] showed that for the Borda,
maximin, and Copelandα rules, SHIFT BRIBERY parameterized by the number
of alternatives is fixed-parameter tractable. Bredereck et al. [Bre+16c] showed
that for the Borda and maximin rules, SHIFT BRIBERY parameterized by the
number of voters is W[1]-hard.

Based on the idea of modeling campaign management as bribery problems, other
researchers introduced additional types of bribery problems. For example, Schlotter,
Faliszewski, and Elkind [SFE15] introduced SUPPORT BRIBERY and Baumeister et al.
[Bau+12] introduced EXTENSION BRIBERY. Both problems model the setting where
voters cast partial preference orders that rank some of their top alternatives only, and
the briber completes these preference orders; they differ in that SUPPORT BRIBERY as-
sumes that the voters know their complete preference orders but do not report them
completely and EXTENSION BRIBERY assumes that the voters have no preferences
regarding the unreported alternatives.

7.2 Results

For the Borda, maximin, and Copelandα rules, SHIFT BRIBERY has high worst-
case complexity as to exact algorithms, but admits polynomial-time approximation
algorithms [EF10, EFS09]. To better understand causes of intractability of SHIFT

BRIBERY in different special cases, we use parameterized complexity analysis. For
instance, almost tied voting situations are tempting targets for SHIFT BRIBERY. An
exact algorithm which is efficient for this special case may be more attractive than a
general approximation algorithm. In close-to-tied voting situations it might suffice,
for example, to contact only a few voters or, perhaps, to shift the preferred alternative
by only a few positions in total. Similarly, it is important to solve the problem exactly

154

7.2. Results

if we only have a small budget at disposal. We cover this by using various problem
parameterizations and performing a parameterized complexity analysis.

It is natural to expect that the complexity of SHIFT BRIBERY depends on the nature
of the voters’ price functions and, indeed, there is some evidence for this: For
example, if we assume that the price functions are convex, then we can verify that
the 2-approximation algorithm of Elkind and Faliszewski [EF10] boils down to a
greedy procedure that picks the cheapest available single-position shifts until it
ensures the designated alternative’s victory. Such an implementation would be
much faster than the expensive dynamic programming algorithm that they use, but
would guarantee a 2-approximate solution for convex prices only. On the contrary,
the hardness proofs of Elkind, Faliszewski, and Slinko [EFS09] all use a very specific
form of price functions which we call all-or-nothing prices, where the cost of bribing
a voter is independent of the number of shifts that p will be put forward in this voter’s
preference order. See Section 7.4.3 for the definitions of the different price functions
that we study.

We combine these two observations and study the parameterized complexity of
SHIFT BRIBERY for Borda, maximin, and Copelandα, for parameters describing the
number of affected voters, the number of unit shifts, the budget, the number of
alternatives, and the number of voters, under price functions that are either all-
or-nothing, sortable, arbitrary, convex, or have a unit price for each single shift.
The three voting rules we select are popular in different kinds of voting apart from
political elections. For instance, Borda is used by the X.Org Foundation to elect its
board of directors. A modified variant is used for the Formula 1 World Championship
(and numerous other competitions including ski-jumping and song contests). A
slightly modified version of Copeland is used to elect the Board of Trustees for the
Wikimedia Foundation.

We summarize our results in Table 7.1; for the sake of completeness we also include
some results from the literature [Bre+15e, DS12]. In short, it turns out that indeed
both the particular parameter(s) used and the nature of the price functions have a
strong impact on the computational complexity of SHIFT BRIBERY. We also present
novel FPT approximation schemes (see Definition 7.3) exploiting the parameters
“number of voters” and “number of alternatives” (such schemes are rare in the litera-
ture and may be of significant practical interest) and a partial kernelization [Bet+11]
(polynomial-time data reduction) result for the parameter “number of unit shifts”.

155

7. Shift Bribery

SHIFT BRIBERY

parameter unit convex arbitrary sortable all-or-nothing
R prices prices prices prices prices

budget (B)
B/M [Cor 7.13 & 7.14] FPT FPT W[2]-h W[2]-h W[2]-h
C [Cor 7.13 & 7.14] W[1]-h W[1]-h W[2]-h W[2]-h W[2]-h

#shifts (t)
B/M [Thm 7.3 & 7.6] FPT FPT FPT FPT FPT

C [Cor 7.10] W[1]-h W[1]-h W[1]-h W[1]-h W[1]-h

#affected voters (na)
B/M/C [Thm 7.11 & 7.12] W[2]-h W[2]-h W[2]-h W[2]-h W[2]-h

#alternatives (m)
B/M/C [Thm 7.17] FPT♠ XP XP FPT♢ FPT♢

#voters (n)
B/M [Pro 7.19] W[1]-h⋆ W[1]-h⋆ W[1]-h⋆ W[1]-h⋆ FPT

C [Thm 7.20 & Pro 7.19] W[1]-h W[1]-h W[1]-h W[1]-h FPT

SHIFT BRIBERY(O)

#alternatives (m)
B/M/C [Thm 7.15] FPT-AS for sortable prices

#voters (n)
B/M/C [Thm 7.18] FPT-AS for all considered price function families

Table 7.1.: Parameterized complexity of SHIFT BRIBERY and SHIFT BRIBERY(O) for Borda (B),
maximin (M), or Copelandα (C) (for each rational number α, 0 ≤ α ≤ 1). Note that SHIFT

BRIBERY(O) is the optimization variant of SHIFT BRIBERY, which seeks to minimize the budget
spent. “W[1]-h” (resp. “W[2]-h”) stands for W[1]-hard (resp. W[2]-hard). Definitions for FPT,
W[1], W[2], XP are provided in Section 2.6. The FPT result marked with “♠” follows from the
work of Dorn and Schlotter [DS12]. The FPT results marked with “♢” follow from the work of
Bredereck et al. [Bre+15e]. The W[1]-hardness results marked with “⋆” follow from the work
of Bredereck et al. [Bre+16c]

7.3 Chapter outline

In Section 7.4 we present specific additional notions and we formally define the
SHIFT BRIBERY problem, together with its parameterizations and definitions of

156

7.4. Definitions, notations and examples

price functions. Our results are in Section 7.5 (parameterization by solution cost)
and Section 7.6 (parameterization by preference profile measures). We discuss future
research perspectives in Section 7.7. For the sake of readability, we refer the reader to
our journal version [Bre+16a] for some of the proofs which we have omitted because
this chapter already includes a proof using a similar idea. We clearly point out where
we do this.

7.4 Definitions, notations and examples

Before we provide additional notions we need in this chapter, we remark that to
describe the running times of our FPT algorithms, we often use the O∗(·) notation. It
is a variant of the standard O(·) notation where polynomial factors are omitted. For
example, if the algorithm’s running time is f (ℓ) · |I |O(1), where f is superpolynomial,
then we would say that it is O∗(f (ℓ)). We use this notation to emphasize the super-
polynomial part of the running time.

7.4.1 Borda, maximin, and Copeland rules

Given a preference profile P , for each two alternatives c and d , we define NP (c,d)
to be the number of voters in V (P) who prefer c to d .

We consider the Borda rule, the maximin rule, and the Copelandα family of rules.
These rules assign points to every alternative and pick as winners those who get
most; we write scoreP (c) to denote the number of points alternative c ∈ A receives in
profile P —the particular voting rule used to compute the score will always be clear
from the context.

Definition 7.1 (Borda and maximin rules). Let P be a profile with complete prefer-
ence orders. Under Borda, each alternative c ∈ A receives from each voter v ∈ V (P) as
many points as there are alternatives that v ranks lower than c. Formally, the Borda
score of alternative c is scoreP (c) :=∑

d∈C \{c} NP (c,d). Similarly, the maximin score of
a alternative c is the number of voters who prefer c to his “strongest competitor”.
Formally, for the maximin rule, we have scoreP (c) := mind∈C \{c} NP (c,d).

Definition 7.2 (Copelandα). Let P be a profile with complete preference orders.
Given a rational number α ∈ [0,1], For each two alternatives a,b ∈ A with a ̸= b, recall
that a beats b if a majority of voters prefers a to b. We say that a ties with b if exactly
half of the voters prefer a to b. The Copeland score of a given alternative c equals the
number of alternatives that c beats plus α times the number of alternatives that c
ties with. Formally,
scoreP (c) := ⏐⏐{d ∈ A \ {c} : NP (c,d) > NP (d ,c)}

⏐⏐ +α · ⏐⏐{d ∈ A \ {c} : NP (c,d) = NP (d ,c)}
⏐⏐.

157

7. Shift Bribery

Typical values of α are 0, 1/2, and 1, but there are cases where other values are
used [Fal+09b]. All our results on SHIFT BRIBERY for Copelandα hold for each rational
value of α. For the sake of brevity, we write “Copeland” instead of “Copelandα for
arbitrary rational number α” throughout this chapter.

7.4.2 FPT approximation scheme

Typically, approximation algorithms are asked to run in polynomial time. It is,
however, not always possible to approximate the optimal solution to an arbitrary
given factor in polynomial time. Relaxing the polynomial running time to FPT time,
we can obtain the following notion (also see Marx [Mar08] for more information).

Definition 7.3 (FPT-approximation scheme (FPT-AS)). An FPT approximation
scheme (FPT-AS) with parameter k for a minimization problem is an algorithm
that, given an instance I and a value ε > 0, returns a (1+ ϵ)-approximate solution.
This algorithm has running time f (k,ε) · |I |O(1), where f is a computable function
depending on k and ε.

When describing the running time of an approximation scheme, we treat ε as a
fixed constant. Thus, a polynomial-time approximation scheme may, for example,
include exponential dependence on 1/ε.

7.4.3 Shift Bribery

Given a voting rule R, in R SHIFT BRIBERY the goal is to ensure our preferred
alternative p’s victory. To this end, we can shift p forward in some of the voters’ pref-
erence orders. Each shift may have a different price, depending on the voter and on
the length of the shift. Here we follow the notation of Elkind and Faliszewski [EF10].

Definition 7.4 (Price functions). A price function π : N→N for a given voter v gives,
for each number ℓ of positions, the price π(ℓ) of shifting p forward in v ’s preference
order by ℓ positions. We require that π(0) = 0 and that π(ℓ) ≤π(ℓ+1) for each ℓ ∈N.
We also assume that if p is ranked at a position r in the preference order, then
π(ℓ) = π(ℓ− 1) whenever ℓ ≥ r . In other words, it costs nothing to keep a voter’s
preference order as it is, it never costs less to shift p farther, and we cannot shift p
beyond the top position in the preference order.

Given a voter set V , we writeπ (bold face) to denote a mapping of SHIFT BRIBERY

price functions that describes a price functionπ(v) for each voter v in V .

Example 7.1. Let v be a voter with preference order c1 ≻ c2 ≻ p ≻ c3 and let π be
v ’s price function. Then, by paying π(1) we can change v ’s preference order to
c1 ≻ p ≻ c2 ≻ c3, and by paying π(2) we can change it to p ≻ c1 ≻ c2 ≻ c3.

158

7.4. Definitions, notations and examples

It is clear that we need at most |C |−1 values to completely describe each SHIFT

BRIBERY price function.

Definition 7.5 (Shift actions). Given a profile P with a voter set V . A shift action SA

is a function of type V →N, that describes how far p is shifted in the preference
order of each voter v ∈ V . We define shift(P , SA) to be the profile P ′ identical to
P except that p has been shifted forward in the preference order of each voter v
by SA(v) positions. If that would mean moving p beyond the top position in some
preference order, we shift p up to the top position only.

Given a mappingπ of price functions for the voter set V , we write

price(π, SA) := ∑
v∈V

π(v)(SA(v))

to denote the price of a given shift action SA. A shift action SA is successful if p is
a winner in the profile shift(P , SA). The term unit shift refers to shifting p by one
position in one preference order.

Using this notation, the R SHIFT BRIBERY decision problem is defined as follows.

R SHIFT BRIBERY

Input: A profile P with voter set V , a mapping π of SHIFT BRIBERY price
functions for V , a preferred alternative p ∈A (P), and a budget bound B ∈N.
Question: Is there a shift action SA with cost price(π, SA) ≤ B and p is an R-
winner in shift(P , SA)?

The optimization variant SHIFT BRIBERY(O) is defined likewise, but does not in-
clude the budget B in the input. Instead, it asks for a shift action SA that ensures p’s
victory at minimum cost price(π, SA).

R SHIFT BRIBERY (O)
Input: A profile P with voter set V , a mapping π of SHIFT BRIBERY price
functions for V , and a preferred alternative p ∈A (P).
Task: Find a shift action SA such that price(π, SA) is minimum and p is an
R-winner in shift(P , SA).

For an input instance I of SHIFT BRIBERY(O), we write OPT(I) to denote the cost of
a cheapest successful shift action for I (and we omit I if it is clear from the context).

7.4.4 Price Functions

The price functions used in SHIFT BRIBERY instances may strongly affect the
computational complexity of the problem. In this section we present the families of
price functions we focus on.

159

7. Shift Bribery

All-or-nothing prices. A price function π is all-or-nothing if there is a value c > 0
such that π(0) = 0 and for each ℓ> 0, π(ℓ) = c (this value c can be different for each
voter). The NP-hardness proofs of Elkind, Faliszewski, and Slinko [EFS09] use exactly
this family of price functions (without referring to them directly, though).

Convex prices. A price function π is convex if for each ℓ> 0, π(ℓ+1)−π(ℓ) ≤π(ℓ+
2)−π(ℓ+1) (provided that it is possible to shift the preferred alternative by up to ℓ+2
positions in the given preference order).

Unit prices. To model the setting where each unit shift has the same cost for each
voter, we define the unit price function by setting π(ℓ) = ℓ for each ℓ> 0 such that
p can be shifted by ℓ positions. Unit prices are an extreme example of convex price
functions.

Sortable prices. Sortable price functions describe a property of voters with the
same preference order. A mappingπ of price functions for the voter set V is called
sortable if for each two voters v, v ′ ∈V with the same preference order, it holds that

∀1 ≤ ℓ≤ m −2: π(v)(ℓ) >π(v ′)(ℓ) =⇒ π(v)(ℓ+1) >π(v ′)(ℓ+1).

Informally, this means that one can sort each set V ′ of voters with the same prefer-
ences such that between two voters, bribing the one who comes first in this ordering
is always cheaper, no matter how many positions p should be shifted. Many nat-
ural price function families are sortable. For example, the exponential functions
of the form π(v)(ℓ) = bℓ

v (where each voter v may have an individual base bv) are
sortable. The polynomials of the formπ(v)(ℓ) = bv ·ℓc (where the exponent c is the
same for all voters having the same preference order, but each voter v may have an
individual coefficient bv) are sortable as well. We note that, for values ℓ greater or
equal to the original position r of p in the voter’s preference order, we simply set
π(v)(ℓ) =π(v)(r −1).

Example 7.2. Table 7.2 shows seven voters with preference orders and correspond-
ing price functions. For each price function πi with 1 ≤ i ≤ 7, the corresponding row
in Table 7.2(a) lists the price of shifting p higher by j positions. For instance, the
intersection of row π6 and column 3 in Table 7.2(b) contains an entry with value 8;
this means that shifting p higher by 3 positions in voter v8’s preference order costs 3
units. We can verify that π1 is an all-or-nothing and convex price function, π3 is a
unit and convex price function, and π5,π6,π7 are convex functions. The mapping of
all voters except v7 to their respective price functions is sortable.

160

7.4. Definitions, notations and examples

voter v1 : e ≻ c ≻ a ≻ b ≻ p ≻ d

voter v2 : c ≻ d ≻ a ≻ p ≻ e ≻ b

voter v3 : b ≻ a ≻ d ≻ p ≻ e ≻ c

voter v4 : e ≻ d ≻ b ≻ a ≻ c ≻ p

voter v5 : b ≻ a ≻ e ≻ p ≻ c ≻ d

voter v6 : b ≻ a ≻ e ≻ p ≻ c ≻ d

voter v7 : b ≻ a ≻ e ≻ p ≻ c ≻ d

(a)

1 2 3 4 5

π1 : 1 1 1 1 1

π2 : 2 3 3 3 3

π3 : 1 2 3 3 3

π4 : 2 2 2 5 5

π5 : 3 3 6 6 6

π6 : 3 4 7 7 7

π7 : 2 4 8 8 8

(b)

Table 7.2.: An illustration of the concept of price functions. (a) The preference orders of seven
voters. (b) Each row is labeled with the corresponding price function π. We omit the the case
of shifting p by zero positions. If a column is labeled x, then its entries show the prices of
shifting p forward by x positions (if possible). We draw a boundary for each row to show the
upper bound of the number of shifts p can move forward in the respective voter’s preference
order.

Given a preference profile P , we writeΠarbitrary to denote the set of all price function
mappings for voter set V (P), Πconvex to denote the set of the convex price function
mappings for V (P), Πunit to denote the set of the unit price function mappings for
V (P),Πall−or−nothing to denote the set of the all-or-nothing price function mappings for
V (P), and Πsort to denote the set of all sortable mappings for V (P). We observe the
following straightforward relations between these sets (also see the Hasse diagram
in Figure 7.1).

Proposition 7.1. For each given profile, the following relations hold between the
families of price functions.

1. Πunit ⊂Πconvex ⊂Πarbitrary,

2. Πall−or−nothing ⊂Πsort ⊂Πarbitrary,

3. Πunit ⊂Πsort.

7.4.5 Parameters for Shift Bribery

So far, SHIFT BRIBERY has not been studied from the parameterized complexity
point of view. Dorn and Schlotter [DS12] and Schlotter, Faliszewski, and Elkind

161

7. Shift Bribery

Πarbitrary

Πconvex Πsort

Πunit Πall−or−nothing

Figure 7.1.: Hasse diagram of the inclusion relationship among the price function families
(for a given preference profile).

[SFE15] have, however, provided parameterized complexity results for SWAP BRIBERY

and for SUPPORT BRIBERY. We consider two families of parameters. One is related to
the properties of a successful shift action that we seek:

#shifts t the total number of unit shifts in a shift action,

#voters-affected na the total number of voters whose preference orders are
changed,

the budget B the sum of prices of bribing the voters.

The other parameters describe the preference profile:

#alternatives m the number of alternatives,

#voters n the number of voters.

We assume that the values of these parameters are passed explicitly as part of the
input. Note that some parameters such as m and n clearly are incomparable whereas
n (resp. t) clearly upper-bounds na , making the last parameter “stronger” [KN12]
than the first two parameters. Similarly, B upper-bounds both t and na , provided
that each shift has a price of at least one.

Observation 7.2. Let m denote the number of alternatives, n the number of vot-
ers, na the number of affected voters, t the total number of unit shifts in a successful
shift action, and B the sum of prices of the bribed voters. The following holds.

1. na ≤ min(n, t).

2. t ≤ na ·m.

3. For unit prices, t ≤ B .

4. For all-or-nothing prices, na ≤ B .

162

7.5. Parameterizations by solution cost measures

7.5 Parameterizations by solution cost measures

In this section we present our results for parameters related to the cost of a suc-
cessful shift action, that is, the number of unit shifts, the number of voters affected
by at least one shift, and the budget. It turns out that parameterization by the num-
ber of unit shifts tends to yield presumably lower complexity (FPT algorithms for
Borda and maximin and W[1]-hardness for Copeland) than parameterization by the
number of affected voters (W[2]-hardness). Parameterization by the budget lies in
between, and the complexity depends on each particular price function family as
already shown in Observation 7.2 .

7.5.1 Unit shifts

For Borda and maximin, SHIFT BRIBERY parameterized by the number t of unit
shifts in the solution is in FPT for arbitrary price functions. This is due the nature
of these voting rules, which allows us to focus on a small number of alternatives.
More precisely, we can shrink the number of alternatives as well as the number of
voters so that they are upper-bounded by functions in t (in effect, achieving a partial
kernelization [Bet+11]).

Theorem 7.3. BORDA SHIFT BRIBERY parameterized by the number t of unit shifts is
in FPT for arbitrary price functions. The running time of the algorithm is O∗((2t · (t +
1) · t)t).

Proof. Let P be a preference profile with the alternative set A and the voter set V ,
and letπ be a mapping of price functions for the voter set V (P). Suppose that there
is a successful shift action SA for our preferred alternative p ∈ A and it uses at most t
unit shifts. Our algorithm iterates over all non-negative integers t ′ with t ′ ≤ t , which
we interpret as the exact number of shifts used in the successful shift action.

Under the Borda rule, applying a shift action that uses t ′ unit shifts increases the
score of p to exactly scoreP (p)+ t ′. This means that irrespective of which shift action
with t ′ unit shifts we use, if some alternative c has initial score at most scoreP (p)+ t ′,
then after applying the shift action, p will certainly have score at least as high as
c. On the contrary, if some alternative c has score greater than scoreP (p)+ t ′, then
a successful shift action must ensure that c loses at least scoreP (c)− (scoreP (p)+ t ′)
points. Since every unit shift decreases the score of exactly one alternative, it follows
that if there is a successful shift action that uses exactly t ′ shifts, then the number of
alternatives with score greater than scoreP (p)+ t ′ must be at most t ′. We define the
set containing such alternatives as

A(t ′) := {c ∈A (P) | scoreP (c) > scoreP (p)+ t ′}. (⋆)

163

7. Shift Bribery

Our algorithm first computes the set A(t ′) according to (⋆). If |A(t ′)| > t ′, then the
algorithm skips the current iteration and continues with t ′ ← t ′+1.

By the above argument, we can focus on a small group of alternatives, namely
on A(t ′). It turns out that we can also focus on a small group of voters. We first define
these voters and then show why it is enough to focus on them. For each subset
A′ ⊆ A(t ′) and for each non-negative integer j , 0 ≤ j ≤ t ′, we compute a subset V ′ ⊆V
of at most t ′ voters such that the following holds.

(i) For each voter v ∈V ′, if we shift p by j positions in v ’s preference order, then p
passes all alternatives from A′ and j −|A′| other alternatives from A \ A(t ′).

(ii)
∑

v∈V ′π(v)(j) is minimal.

We denote this set as V (A′, j). If there are several subsets of voters that satisfy these
conditions, then we pick one arbitrarily. Finally, we set

V (t ′) := ⋃
A′⊆A(t ′)
0≤ j≤t ′

V (A′, j).

Claim 7.4. If there is a successful shift action SA using exactly t ′ unit shifts and of cost
at most B , then there is a successful shift action SA′ using exactly t ′ shifts and of cost at
most B such that SA′ affects only the voters in V (t ′).

Proof. To see this, assume that there is a voter v ̸∈V (t ′) and an integer j such that
SA shifts p by j positions in v ’s preference order, that is, SA(v) = j . Now consider
the set A′ of alternatives from {c ∈A (P) | scoreP (c) > scoreP (p)+ t ′} that p has passed
after the shifting. By the definition of V (A′, j) and by simple counting arguments,
there is a voter v ′ ∈ V (A′, j) for which SA does not shift p. Again, by definition of
V (A′, j), we know that π(v ′)(j) ≤π(v)(j). Thus, if in the shift action SA we replace
the shift by j positions in the preference order of v by a shift of j positions in the
preference order of v ′, then we obtain a successful shift action using exactly t ′ shifts
and of cost no greater than that of SA. We can repeat this process until we obtain a
successful shift action using exactly t ′ shifts and of cost at most B that affects the
voters in V (t ′) only. (of Claim 7.4) ⋄

By Claim 7.4, to find a successful shift action using exactly t ′ unit shifts, it suffices
to focus on the voters from V (t ′). The size of V (t ′) can be upper-bounded by

|V (t ′)| ≤ ∑
A′⊆A(t ′)
0≤ j≤t ′

t ′ ≤ 2t ′ · (t ′+1) · t ′.

164

7.5. Parameterizations by solution cost measures

Since in the preference order of each voter in V (t ′) we can shift p by at most t ′

positions and we can do so for at most t ′ voters, there are at most |V (t ′)|t ′ shift actions
that we need to try. We can consider them all in FPT time: O∗((2t ′ · (t ′+1) · t ′)t ′).

Example 7.3. We use the profile and price functions from Example 7.2 to illustrate
the idea of Claim 7.4. Suppose that we are in the iteration with t ′ = 3 and we have
A(3) = {a,b}. According to the the preference orders and price functions given in
Table 7.2, we obtain the following.

• If A′ =;, then V (A′,1) = {v3, v4, v7} and V (A′,2) =V (A′,3) =;.

• If A′ = {a}, then V (A′,1) = {v2}, V (A′,2) = {v2, v3, v4}, and V (A′,3) = {v2}.

• If A′ = {b}, then V (A′,1) = {v1}, V (A′,2) =V (A′,3) =;.

• If A′ = {a,b}, then V (A′,1) =;, V (A′,2) = {v1}, and V (A′,3) = {v1, v3, v4}.

This implies that V (3) = {v1, v2, v3, v4, v7}.
Note that, for the case of A′ = {a} and j = 2, both {v2, v3, v4} and {v3, v4, v5} fulfill

Conditions (i)–(ii). We arbitrarily choose V (A′, j) = {v2, v3, v4}. Now, suppose that a
successful shift action SA : V →N using 3 shifts has SA(v1) = 2, SA(v5) = 3. This action
costs price(π, SA) = 5. Applying it makes alternatives a, b, and e each lose one point.
Since SA(v5) = 2, we shift p forward by two positions in voter v5’s preference order,
passing exactly one alternative, e, not from A′, and one alternative, a, from A′. By
our constructions, we have that v5 ∉ V ({a},2) = {v2, v3, v4} and v5 ∉ V (3). However,
since |V ({a},2)| = 3 and SA can affect at most t ′ = 3 voters, we can find one voter in
V ({a},2) \ {v1, v5} to affect and make p win. For instance, if we replace shifting v5’s
preference order with shifting v3’s preference order, then we obtain a shift action SA′

with SA(v1) = 2 and SA′(v3) = 2, and SA′(vi) = 0 for other voter vi . Applying SA′ makes
alternatives a, b, d each lose one point (note that d is not in our set A(3)). This action
uses 3 shifts and even has a lower cost, 4.

Using an idea from the proof of Theorem 7.3, we can transform a given profile
into one that consists of only g1(t) alternatives and g2(t) voters, where g1 and g2

are two computable functions. In this way, we obtain a so-called partial problem
kernel [Bet+11, Kom15]. It is a partial problem kernel only and not a regular prob-
lem kernel, since the cost defined by the price function π and the budget are not
necessarily upper-bounded by a function of t (see Section 2.6.1 for the definition
and further discussion of problem kernels).

165

7. Shift Bribery

Theorem 7.5. An instance of BORDA SHIFT BRIBERY parameterized by the number t
of unit shifts can be reduced to an equivalent instance with the same budget, and with
O(t 4 ·2t) alternatives and O(t 3 ·2t) voters.

Proof. Let P be our initial preference profile with alternative set A and voter set V .
By the proof of Theorem 7.3, we know that we only need to focus on a subset Acrit

of alternatives whose size is upper-bounded by a function of the parameter t . This
set Acrit is defined as follows:

Acrit :=
t⋃

t ′=0

A(t ′),

where {c ∈ A (P) | scoreP (c) > scoreP (p)+ t ′} if the number of alternatives whose
scores are greater than scoreP (p)+ t ′ is at most t ′; otherwise it will not be possible to
decrease the score of every of those alternatives by at least one within t ′ unit shifts,
thus, A(t ′) :=;.

From the same proof, we also know that we only need to focus on a small group of
voters from the set

⋃t
t ′=0 V (t ′), where V (t ′) is defined as in the proof of Theorem 7.3.

Briefly put, V (t ′) consists of the voters such that if we shift p in some of their pref-
erence orders by a total of t ′ positions, then we may make p a winner. As already
shown in that proof, V (t ′) has at most 2t ′ ·(t ′+1)·t ′ voters. Thus, we can upper-bound
the size of Vcrit by

∑t
t ′=0 2t ′ · (t ′+1) · t ′ ≤ t 3 ·2t . Now, if the total number n of voters in

initial voter set V is at most this bound t 3 ·2t , then we simply set Vcrit :=V to be the
set of all voters. Otherwise,

Vcrit :=
t⋃

t ′=0

V (t ′).

Since we only need to compute
⋃t

t ′=0 V (t ′) when n ≥ t 3 ·2t , it follows that Vcrit can be
computed in polynomial time using the straightforward algorithm in the previous
proof. Clearly, |Acrit| ≤ t ·(t −1)/2 and |Vcrit| ≤ min{n,

∑t
t ′=0 2t ′ ·(t ′+1) · t ′} ≤ min{n, t 3 ·2t }.

The remaining task is to construct an equivalent preference profile containing all
alternatives from Acrit and the voters from Vcrit along with their price functions such
that the size of the profile is still upper-bounded by a function in t .

We construct three groups of sets of alternatives for the new profile as follows:
First, we introduce a dummy alternative di for each alternative ci ∈ Acrit. We use it to
realize the original score difference between p and alternative ci . We denote the set
of all these dummy alternatives as D.

Second, for each voter vi ∈Vcrit, we need to replace the alternatives in his original
preference order that do not belong to Acrit but that are still relevant to the shift
action. Let Ai be the set of alternatives from Acrit that are ranked in front of p by

166

7.5. Parameterizations by solution cost measures

voter vi , that is,
Ai := {c ′ ∈ Acrit | c ′ ≻i p}.

Last, we introduce a new set F j of filler alternatives whose size equals the number of
irrelevant alternatives that ranked in front of p by no more than t positions. That is,

Fi := {c ∈ A \ Acrit | c is ranked at most t positions ahead of p by vi }.

The new alternative set Anew is defined as

Anew := Acrit ∪D ∪ ⋃
vi ∈Vcrit

Ai ∪Fi .

Clearly, |Anew| ≤ 2|Acrit|+ t · (|Acrit|+ |Vcrit|) ≤ t · (t 2 +1)+min{t 4 ·2t , t ·n}.

We construct two groups of voters for the new voter set Vnew.

1. We construct the first group of voters to retain the score difference between
p and every alternative c j ∈ Acrit in the original profile. To this end, recall that
scoreP (c j) denotes this score difference. We introduce scoreP (c j) pairs of voters
with the following preference orders.

scoreP (c j) voters : c j ≻ d j ≻ 〈Anew \ {p,c j ,d j }〉 ≻ p,
scoreP (c j) voters : p ≻ 〈Anew \ {p,c j ,d j }〉 ≻ c j ≻ d j .

In this way, we make d j have 2 · scoreP (c j) points more than d and scoreP (c j)
points more than all other alternatives, including p. Note that this preference
order construction is a very common technique to achieve a certain Borda
score difference between two alternatives. We set the cost for the first unit to
be B +1; this is higher than our budget.

2. We construct the second group of voters to retain the important part of the
voters from Vcrit. That is, for each voter vi ∈ Vcrit, we set his new preference
order as follows.

voter vi : 〈Ai ∪Fi 〉 ≻ p ≻ 〈Anew \ (Ai ∪Fi ∪ {p})〉,
where 〈Ai ∪Fi 〉 corresponds to the order of the alternatives in vi ’s original
preference order and the price function remains unchanged. We also add a
dummy voter v ′

i with the reverse preference order of vi and we set the cost for
the first unit shift to be B +1; this is higher than our budget.

We obtain the following inequality for the size of the newly constructed voter set Vnew:

2|Vcrit|+
∑

c j ∈Acrit

2 · scoreP (c j) ≤ t · (t −1)+ t 3 ·2t+1.

167

7. Shift Bribery

The equivalence of the two instances can be verified as follows: The newly added
dummy and filler alternatives have at most the same score as p. Each alternative c j ∈
Acrit has exactly scoreP (c j) points more than p. Since it will be too expensive to bribe
the voters from the first group of voters or the dummy voters v ′

i (B +1 budget for one
unit shift), the only possibility of shifting p within the budget B is to bribe the voters
from the original profile who have the same preference orders up to renaming of the
alternatives that do not belong to Acrit.

The fixed-parameter tractability result for MAXIMIN SHIFT BRIBERY follows by
using a similar approach as in the proof of Theorem 7.3. Thus, we omit the corre-
sponding proof and refer to the journal version [Bre+16a].

Theorem 7.6. MAXIMIN SHIFT BRIBERY parameterized by the number t of unit shifts
is in FPT for arbitrary price functions. The running time of the algorithm is O∗((2t ·
(t +1) · t)t).

Using an analogous approach as in the proof of Theorem 7.5 to construct an
equivalent profile, we obtain the following.

Corollary 7.7. An instance of MAXIMIN SHIFT BRIBERY parameterized by the num-
ber t of unit shifts can be reduced to an equivalent instance with the same budget, and
with O(t 4 ·2t) alternatives and O(t 3 ·2t) voters.

For Copeland, we do not get FPT membership, but we show W[1]-hardness even
for all-or-nothing prices and for unit prices, which implies hardness for each of our
price function families.

Theorem 7.8. COPELAND SHIFT BRIBERY parameterized by the number of unit shifts
is W[1]-hard, even for all-or-nothing prices.

Proof. For the sake of completeness, fix some rational number α, 0 ≤α≤ 1, for the
Copeland “tie breaking”; we will see later that we will not use α since the number of
voters in the constructed instance is odd.

We provide a parameterized reduction from the W[1]-hard problem CLIQUE pa-
rameterized by the clique size h (see the beginning of the proof of Theorem 6.8 for
more the definition of CLIQUE). Let G be our input graph with V (G) being the set of
r vertices and E(G) being the set of s edges, and let h be the clique order that we seek
(we assume h > 1). Without loss of generality, assume that the number r of vertices is
odd and that r > 6 (both assumptions can be guaranteed by adding several isolated
vertices to the graph).

168

7.5. Parameterizations by solution cost measures

We set the available budget B to be h · (h −1)/2, which is the number of edges in a
clique with h vertices. We construct the preference profile P = (A,V) as follows. We
first add our preferred alternative p, an initial winner d , and a set D of 2r dummy
alternatives to our alternative set A. The introduction of the dummy alternatives is
to ensure that p loses exactly h points to the initial voters and the budget is defined
such that p can only gain points by passing vertex alternatives that form a clique.
Then, for each vertex ui ∈V (G), we add a vertex alternative ci to A. We denote the set
of vertex alternatives as Avertex. Formally, we have

A := {p,d}∪ {d2i−1,d2i ,ci | ui ∈V (G)}.

We construct two groups of voters together with a mappingπ to their price func-
tions. The first group consists of voters ve and v ′

e for each edge e = {ui ,ui ′ } ∈ E(G),
i < i ′, with the following preference orders:

voter ve : ci ≻ ci ′ ≻ p ≻ 〈A \ {ci ,ci ′ , p}〉,
voter v ′

e :
←−−−−−−−−−−−−−−−−−−−−−−
ci ≻ ci ′ ≻ p ≻ 〈A \ {ci ,ci ′ , p}〉.

They have all-or-nothing prices. That is,π(ve)(0) = 0 andπ(ve)(j) = 1 for each j > 0,
andπ(v ′

e)(j) = B +1 for each j ≥ 0. We set Vedges := {ve | e ∈ E(G)}.
The second group Vstruct consists of polynomially many voters with the following

properties, which is indeed possible due to a classic theorem by McGarvey [McG53]:
Each vertex alternative ci beats p (by 2h −3 voters’ preference orders) and beats d
(by one voter’s preference order). Alternative d beats each dummy alternative (by
one voters’ preference order). Our preferred alternative p beats 2r −h −1 dummy
alternatives and loses to each remaining dummy alternative (by one preference
order); it also beats d (by one preference order). Each alternative in Avertex∪D beats
exactly ⌊3r /2⌋ other alternatives in V (G)∪D (recall that r is odd).

The formal definition of the preference orders of voters in Vstruct reads as follows.
Let D ′ ⊆ D be a subset of h +1 (arbitrary) alternatives.

(a) There is one voter with preference order 〈Avertex∪D〉 ≻ p ≻ d .

(b) There are (h −2) pairs of voters with preference orders

h −2 voters : 〈Avertex〉 ≻ p ≻ d ≻ 〈D〉,
h −2 voters :

←−−〈D〉 ≻ d ≻←−−−−−〈Avertex〉 ≻ p.

(c) There are two voters with preference orders

d ≻ 〈D〉 ≻ p ≻ 〈Avertex〉 and
←−−−−−〈Avertex〉 ≻ p ≻ d ≻←−−〈D〉.

169

7. Shift Bribery

(d) There are two voters with preference orders

p ≻ 〈D \ D ′〉 ≻ 〈D ′〉 ≻ 〈Avertex〉 ≻ d and d ≻←−−−−−〈Avertex〉 ≻
←−−〈D ′〉 ≻ p ≻←−−−−−〈D \ D ′〉.

(e) For technical reasons, we rename the alternatives in Avertex to a1, a2, . . . , ar and the
alternatives D to be ar+1, ar+2 . . . , a2r . For the sake of readability, let θ := 3r and
η := ⌊3r /2⌋. For each alternative ai ∈ Avertex∪D, let Ai denote a set of η alternatives,

Ai := {a(i+1) mod θ , a(i+2) mod θ , . . . , a(i+η) mod θ}, and

let 〈Ai 〉 := a(i+1) mod θ ≻ a(i+2) mod θ ≻ . . . ≻ a(i+η) mod θ. There are two voters with pref-
erence orders

one voter : ai ≻ 〈Ai 〉≻ 〈(Avertex∪D) \ Ai 〉≻ p ≻d ,
one voter : d ≻ p ≻

←−−−−−−−−−−−−−−〈(Avertex∪D) \ Ai 〉≻ ai ≻
←−−〈Ai 〉.

Using this type of preference orders, we make each alternative from Avertex∪D
beat exactly ⌊3r /2⌋ alternatives from the same set.

Note that each pair of preference orders constructed in (b)–(d) follows a common
pattern as originally used by McGarvey [McG53]: The second preference order is
almost the reverse of the first one, except that the relative order of two specific
alternatives remains the same. This way, we give one alternative two more points
than another alternative and one more point than the remaining alternatives.

All voters from Vstruct have all-or-nothing prices: For each v ∈Vstruct, it holds that
π(v)(0) = 0 and π(v)(j) = B +1 for each j > 0. We will see that our parameter “num-
ber t of unit shifts” is 2B = h · (h −1). This completes our construction which runs in
polynomial time.

Note that due to the budget, we can only afford to bribe the voters in Vedges. Prior
to any bribery, p has 2r −h points, d has 2r points, and each other alternative has
at most ⌊3r /2⌋+2 points. This means that d is the unique Copeland winner of P .
We show that there is a shift action SA such that price(π, SA) ≤ B and p is a winner of
shift(P , SA) if and only if G has a clique of order h.

For the “only if” part, assume that there is a successful shift action that ensures p’s
victory. Given our price functions, we can bribe up to h · (h −1)/2 voters in Vedges. Fur-
ther, it is clear that a successful shift action must ensure that p obtains h additional
points by beating h additional vertex alternatives (it is impossible to decrease the
score of d). To beat a vertex alternative, p has to pass it in the preference orders
of at least h − 1 voters. This means that there is some set A′ ⊆ Avertex of at least h
vertex alternatives such that p passes each alternative in A′ at least h −1 times. If

170

7.5. Parameterizations by solution cost measures

c ∈ A′ and p passes c in h −1 preference orders, then the value of NP (c, p)−NP (p,c)
changes from 2h −3 to −1, making p beat c. Given our budget, we can altogether
shift p by t = h ·(h−1) positions (each two positions correspond to an edge in G ; note
that t is the value of our parameter). Thus A′ contains exactly h alternatives, p passes
one of them in each unit shift, and p passes each alternative from A′ exactly h −1
times. This is possible if and only if the alternatives in A′ correspond to a clique in G.

For the “if” part, if Q is a set of h vertices from V (G) that form a clique, then
shifting p forward in the preference orders of the B voters from Vedges that correspond
to the edges of the graph induced by Q ensures p’s victory.

The previous reduction can be adapted to the case of unit prices. The key trick is
to insert sufficiently many “filler” alternatives directly in front of p in the preference
orders of some voters who shall not be affected. This simulates the effect of all-or-
nothing prices. Again, we refer the reader to our journal version [Bre+16a] for the
proof.

Theorem 7.9. COPELAND SHIFT BRIBERY parameterized by the number of unit shifts
is W[1]-hard, even for unit prices.

By Proposition 7.1, the W[1]-hardness result for the all-or-nothing price func-
tion (Theorem 7.8)) also holds for the case when the prices are convex, sortable, or
arbitrary. Together with the W[1]-hardness for unit prices (Theorem 7.9) we derive
the following.

Corollary 7.10. COPELAND SHIFT BRIBERY parameterized by the number of unit
shifts is W[1]-hard for each price function family that we consider.

7.5.2 Number of affected voters and the budget

For the number of affected voters, SHIFT BRIBERY is W[2]-hard for each of the
Borda, maximin, and Copelandα rules. This holds for each family of price functions
we consider: The result for all-or-nothing prices follows almost directly from the
NP-hardness proofs due to Elkind, Faliszewski, and Slinko [EFS09]. Their reductions
have to be adapted to work for SET COVER (see below for the definition) rather than
its restricted variant, EXACT COVER BY 3-SETS [GJ79], but this can be done quite
easily. To obtain the result for unit prices, with some effort, it is still possible to
carefully modify their proofs, maintaining their main ideas. We present the proof for
the Borda rule. The remaining proofs are included in the journal version [Bre+16a].

Theorem 7.11. BORDA SHIFT BRIBERY parameterized by the number of affected voters
is W[2]-hard for each of the price function families we consider.

171

7. Shift Bribery

Proof. We consider BORDA SHIFT BRIBERY for unit prices first. We give a parameter-
ized reduction from SET COVER parameterized by the set cover size h; this problem
is defined in the beginning of the proof of Theorem 6.6. Let (U ,F ,h) be our input
instance, where U = {u1, . . . ,ur } and F = (S1, . . . ,Ss) is a collection of subsets of U ,
and h is a non-negative integer. We construct a set A of alternatives to include our
preferred alternative p, an initial alternative d , and an auxiliary alternative g . For
each element u j from the universe U , we add an element-alternative a j to A. We
use g to achieve a certain score difference between p and any element alternative a j .
Finally, we add a set D of 2h · (r +1)+2 dummy alternatives to A. Thus,

A := {p,d , g }∪ {a j | u j ∈U }∪D.

We use D to build a block between p and d in some preference orders to prevent p
from shifting in those orders.

We construct two groups of voters for our voter set V . To this end, for each set Si ∈
F , we denote by A(i) the set of all element alternatives corresponding to the elements
in Si and by D(i) an arbitrarily chosen set of r −|Si | dummy alternatives from D. Thus,
|A(i)|+ |D(i)| = r .

The first group consists of two voters v2i−1 and v2i for each set Si with preference
orders

v2i−1 : d ≻ 〈A(i)〉 ≻ 〈D(i)〉 ≻ p ≻ 〈A \ (A(i)∪D(i)∪ {p,d})〉,
v2i :

←−−−
d ≻ 〈A(i)〉 ≻ 〈D(i)〉 ≻ p ≻ 〈A \ (A(i)∪D(i)∪ {p,d})〉.

Note that each pair of voters v2i−1, v2i , gives each alternative |A| − 1 points. The
second group consists of the following voters:

(a) For each element u j ∈U , we construct B+1 pairs of voters with preference orders

B +1 voters : p ≻ a j ≻ g ≻ 〈A \ ({p, a j , g ,d})〉 ≻ d ,

B +1 voters : d ≻←−−−−−−−−−−−−−−〈A \ ({p, a j , g ,d})〉 ≻ a j ≻ g ≻ p.

Using these preference orders, we make each element alternative a j have 2B +
2 points more than g and B + 1 points more than the remaining alternatives,
including p. Moreover, since the first B + 1 voters already rank p at the first
position and since there are more than B voters between p and d in the second
B +1 voters’ preference orders, we can conclude that it is never beneficial to
affect these voters.

(b) We construct B +1 pairs of voters with preference orders

172

7.5. Parameterizations by solution cost measures

B +1 voters : p ≻ 〈D〉 ≻ d ≻ g ≻ 〈A \ ({p,d , g }∪D)〉,
B +1 voters :

←−−−−−−−−−−−−−−−〈A \ ({p,d , g }∪D)〉 ≻ d ≻ g ≻←−−〈D〉 ≻ p.

Again, by these preference orders, we make d have 2(B +h) points more than g
and B +h points more than the remaining alternatives, including p.

Since we are dealing with unit price functions, we set the price function of each
voter to be π(ℓ) = ℓ. It is easy to verify that there is a value L such that the alternatives
in the constructed profile have the following Borda scores:

• scoreP (d) = L+B +h.

• scoreP (p) = L.

• For each element ui ∈U , scoreP (ai) = L+B +1.

• For each alternative c ∈ D ∪ {g }, scoreP (c) ≤ L.

We set our parameter “maximal number na of affected voters” to h and set our
budget B to h · (r + 1). This completes our construction which obviously runs in
polynomial time. We show that (U ,F ,h) is a yes-instance of SET COVER if and only
if the constructed instance of BORDA SHIFT BRIBERY is a yes-instance.

For the “only if” part, assume that there is a collection F ′ of h sets from F such that
their union is U . Without loss generality, let F ′ := {S1,S2, . . . ,Sh}. Bribing the voters
v1, . . . , v2h−1 to shift p to the first position costs h ·(r +1) = B . This shift action makes p
gain B points, d lose h points because p passes d in each of these h voters’ preference
orders, and each element alternative ai lose at least one point because S1,S2, . . . ,Sh

cover all elements from U . This makes p,d and every element alternative ai have
L+h · (r +1) points each and tie for victory.

For the “if” part, assume that there is a successful shift action SA that ensures p’s
victory and affects na = h voters only. Since the budget is B = h · (r +1) and we use
unit price functions, we can use at most B unit shifts and the score of p can increase
to at most L+B . Since d has score L+B +h and we can affect h voters only, for each
affected voter, p must pass d in his preference order.

As already discussed while describing the construction, in the preference orders of
the voters from the voter set V \ {v2i | 1 ≤ i ≤ r }, either p is already in front of d , or d is
at least B +1 positions in front of p. Given our budget and unit prices, this implies
that our shift action SA involves only the voters from {v2i | 1 ≤ i ≤ r }.

Further, since the score of p can increase to at most L + B and each element
alternative ai , prior the shifts, has score L+B +1, p must pass each ui at least once.

173

7. Shift Bribery

This means that the voters affected under SA correspond to a cover of U by h sets
from F .

The above argument applies to unit prices but, by Proposition 7.1, it also immedi-
ately covers the case of convex prices, sortable prices, and thus arbitrary prices. To
deal with all-or-nothing price functions, it suffices to use the same construction as
above and set the budget B to h, but with the following prices:

• For each element ui ∈U , we set the price function π of voter v2i+1 to be π(0) = 0
and π(j) = 1 for each j > 0.

• For all the remaining voters, we use price function π′, such that π′(0) = 0 and
π′(j) = B +1 for each j > 0.

It is easy to see that the construction remains correct with these price functions.

As before, we refer the reader to our journal version [Bre+16a] for the proof of the
following theorem.

Theorem 7.12. For the maximin rule and the Copeland rule, SHIFT BRIBERY param-
eterized by the number of affected voters is W[2]-hard for each of the price function
families we consider.

When we parameterize SHIFT BRIBERY by the available budget B , the results fall
between those from Section 7.5.1 and Theorems 7.11 and 7.12. This is because,
depending on the price function family, the budget is upper-bounded by different
parameters. These are either the number of unit shifts or the number of affected
voters (see Observation 7.2), for which we have different parameterized complexity
results. In essence, the hardness proofs for all-or-nothing prices carry over from the
parameterization by the number of affected voters to the parameterization by the
budget (and this implies hardness for arbitrary prices and sortable prices), while the
results for the number of unit shifts carry over to the setting with convex/unit prices.

For all-or-nothing prices, the W[2]-hardness results for the parameter “number of
affected voters” (Theorems 7.11 and 7.12) translate because, as already mentioned in
Observation 7.2, the budget puts an upper bound on the number of affected voters.

Corollary 7.13. For Borda, maximin, and Copeland, SHIFT BRIBERY parameterized
by the budget B is W[2]-hard for arbitrary, sortable, and all-or-nothing prices.

For the Borda rule and the maximin rule, and given convex/unit prices, the FPT

results for parameter “the number t of unit shifts” (Theorem 7.3 and Corollary 7.7)
translate because for convex/unit prices the budget B is an upper bound on the

174

7.6. Parameterizations by the preference profile measures

number of possible unit shifts. For the Copeland rule, the W[1]-hardness result for
the same parameter t (Corollary 7.10) translate because for unit prices, t = B .

Corollary 7.14. For convex and unit prices and when parameterized by the budget B ,
for Borda and maximin, SHIFT BRIBERY is in FPT with running time O∗((2B · (B +1) ·
B)B), while for Copeland it is W[1]-hard.

7.6 Parameterizations by the preference profile measures

In this section we consider SHIFT BRIBERY parameterized by either the number
of alternatives or the number of voters. Voting with few alternatives is a natural
scenario in politics. For example, there is typically only a handful of alternatives in
presidential voting. Voting with few voters arises naturally in multiagent systems.
For example, Dwork et al. [Dwo+01] suggested voting-based methods for aggregating
results from several web search engines. Betzler, Guo, and Niedermeier [BGN10],
Brandt et al. [Bra+13], and Fellows et al. [Fel+10] considered winner determination
problems with few voters, while Chen et al. [Che+15a] considered voting control by
adding alternatives with few voters.

7.6.1 Number of alternatives

As opposed to almost all other (unweighted) voting problems ever studied in
computational social choice, for SHIFT BRIBERY (and for bribery problems in general)
the parameterization by the number of alternatives is one of the most difficult ones.
In other voting problems, the natural, standard attack is to use the integer-linear
programming (ILP) technique as discussed in Section 2.6.1. For instance, this has
been applied successfully to winner determination [BTT89], control [Fal+09b] (also
see Chapter 6 for our control model), possible winner [BHN09] (also see Chapter 8),
and lobbying [Bre+14c] problems. This works because with m candidates there
are at most m! different preference orders, and we can have a variable for each of
them in the ILP. However, in our setting this approach fails. The reason is that in
bribery problems the voters are not only described by their preference orders, but
also by their price functions. This means that we cannot lump together a group
of voters with the same preference orders anymore, and we have to treat each of
them individually. However, for the case of sortable and all-or-noting price function
families, Bredereck et al. [Bre+15d] found a novel way of employing the ILP approach
to obtain FPT algorithms.

Dorn and Schlotter [DS12] considered the complexity of SWAP BRIBERY parameter-
ized by the number of alternatives. However, their proof implicitly assumes that each
voter has the same price function and, thus, it implies that SHIFT BRIBERY parame-

175

7. Shift Bribery

terized by the number m of alternatives is in FPT for unit prices, but not necessarily
for the other families of price functions. Whenever the number of different prices or
different price functions is upper-bounded by some constant or, at least, by some
function only depending on m, Dorn and Schlotter’s approach can be adapted.

For the more general price function families, we were neither able to find alter-
native FPT attacks nor to find hardness proofs (which, due to the limited number
of alternatives one can use and the fact that the voters are unweighted, seem par-
ticularly difficult to design). For sortable prices, however, we can show that there is
an FPT approximation scheme for SHIFT BRIBERY(O) when parameterized by the
number of alternatives.

Theorem 7.15. Let R be a voting rule for which winner determination parameterized
by the number m of alternatives is in FPT. There is a factor-(1+2ε+ε2) approxima-
tion algorithm solving R SHIFT BRIBERY for sortable prices in time O∗(M M ·⌈ln(M/ε)⌉+1)
(where M = m ·m!) times the cost of R’s winner determination.

We refer the reader to the journal version [Bre+16a] for the proof of Theorem 7.15.
Since the publication of our original findings [Bre+14b], Bredereck et al. [Bre+15d]
have improved upon our FPT-AS result stated in Theorem 7.15, using mixed integer
linear programs to show fixed-parameter tractability for SHIFT BRIBERY; their result
also applies to SHIFT BRIBERY(O) because the optimization variant of the feasibil-
ity problem of integer linear programs (ILP FEASIBILITY) is also fixed-parameter
tractable. Their approach relies on the fact that the fixed-parameter tractability result
of ILP FEASIBILITY parameterized by the number of variables [Len83] (adapted to
our setting) does not only hold for integer linear programs with g1(m) integer-valued
variables and g2(m) constraints, but also holds when the program has polynomially
many (in the input size) additional real-valued variables.

Adopting some of the ideas from the proof of Theorem 7.15, we obtain the following
XP result for SHIFT BRIBERY with arbitrary price functions. The corresponding
algorithm relies on the fact that for a set of voters with the same preference orders,
finding a subset of q voters who shift p higher by exactly the same number j of
positions and who have the minimum price is polynomial-time solvable.

Lemma 7.16. Let (q0, q1, . . . , qm) ∈ Nm+1 be an (m + 1)-dimensional vector of non-
negative integers. For a set V ′ of

∑m
j=0 q j voters with the same preference orders, it

is polynomial-time solvable to compute a cheapest shift action for V ′ such that for
each j with 0 ≤ j ≤ m, the number of voters in V ′ that shift p higher in their preference
orders by j positions is exactly q j .

176

7.6. Parameterizations by the preference profile measures

Proof. We show this by reducing our problem to the MINIMUM-COST FLOW prob-
lem which, given a network (s, t ,U ,E ,cap,cost) and a flow requirement d ∈N, asks
whether there is a minimum-cost flow f with at least d units. This problem is
polynomial-time solvable [AMO93].

We construct the following instance of MINIMUM-COST FLOW. Let U := {s, t }∪ {uv |
v ∈V ′}∪{w0, w1, . . . , wm}. The vertices s and t are, respectively, the source and the sink.
The vertices from {uv | v ∈V ′} form the first layer in the flow network and correspond
to the voters in V ′. The vertices w0, w1, . . . , wm form the second layer in the network
and correspond to the number j of positions that p should be shifted higher. The
set E of arcs, together with their capacities cap and cost, is constructed as follows:

1. For each vertex v ∈ V ′, there is an arc with unit capacity and zero cost from
source s to uv .

2. For each vertex v ∈V ′ and each number j , 0 ≤ j ≤ m, there is an arc with unit
capacity and cost π(j) from uv to w j , where π is voter v ’s price function.

3. For each number j , 0 ≤ j ≤ m, there is an arc from w j to sink t with capacity q j

and zero cost.

Now, observe that only the vertices w j are connected to the sink t , with capacity q j

(the third group of arcs). If we require the flow value d to be
∑m

j=0 q j , then by the
third group of arcs, exactly q j units of flow have to travel from w j to t . There are
polynomial-time algorithms which find a minimum-cost flow of d units from s
to t [AMO93]. The constructed flow network has O(|V ′|+m) vertices and O(|V ′| ·m)
arcs where the maximum capacity and maximum cost of an arc are |V ′| and the
maximum cost of shifting p higher by any number of positions, respectively. Thus,
our algorithm indeed runs in polynomial time. Furthermore, the flow from vertex uv

to vertex w j defines the desired shift action in a natural way: the number f (uv , w j)
of flow units travelling from uv to w j corresponds exactly to the number of positions
that voter v is going to shift p higher in his preference order.

For m alternatives, there are at most m! subsets of voters with the same preference
order. Thus, we can basically guess a “shifting pattern” for each of these subsets and
use the result of Lemma 7.16 to compute a cheapest successful shift action for this
pattern.

Theorem 7.17. Let n denote the number of voters and m the number of alternatives.
Let R be a voting rule whose winner determination procedure is in XP when parame-
terized by m. R SHIFT BRIBERY parameterized by m is in XP for each price function

177

7. Shift Bribery

Algorithm 7.1: A brute-force algorithm for SHIFT BRIBERY(O).

Input:
(A,V ,π, p) — SHIFT BRIBERY(O) instance, m — the number of alternatives

1 X := the set of all preference orders over A
2 foreach order ≻∈ X do
3 V (≻) := {v ∈V with preference order ≻}

4 Guess vectors
−−−→
q(≻) := (q0(≻), q1(≻), . . . , qm (≻)) ∈Nm+1

with
∑m

j=0 q j = |V (≻)| for all ≻∈ X

5 if shifting p according to the guessed vectors
−−−→
q(≻) makes p win then

6 Compute a cheapest action SA such that
for each order ≻ and each number j , 0 ≤ j ≤ m,
exactly q j (≻) ∈V (≻) voters shift p higher by j positions in SA

7 Store SA as a successful shift action

8 return the cheapest stored successful shift action

family we consider. The algorithm runs in time O∗((nm)m!) times the cost of R’s winner
determination.

Proof. Let I = ((A,V),π, p,B) be an input instance of SHIFT BRIBERY with |A| = m and
|V | = n. For each preference order ≻ over the alternatives from A, let V (≻) denote
the set of voters that have this preference order ≻. We find a cheapest successful
shift action for p by using brute-force search described in Algorithm 7.1. Since, in
essence, the algorithm tries all interesting shift actions, it is clear that it is correct.
Note that if the considered voting rule is anonymous, then shifting p according to
the guessed vectors

−−−→
q(≻) simply means that for each preference order ≻ and each

number j , p is shifted higher by j positions in the preference orders of q j (≻) voters.
We show that the algorithm has the desired running time.

In Step 4, the algorithm has O((nm)m!) possible guesses so we can try them all. The
condition in Step 5 can be checked in XP time if the given voting rule is anonymous
and determining a winner runs in XP time. However, it is not clear how to implement
the vectors

−−−→
q(≻) for each preference order≻ in Step 5. Fortunately, by Lemma 7.16, we

can reduce our problem to the MINIMUM-COST FLOW problem and find a cheapest
shift action for each preference order ≻. This still runs in XP time because each of
the constructed network instances has a size polynomial in |I | (Lemma 7.16). In
total, we obtain an algorithm with the desired running time for SHIFT BRIBERY(O).

178

7.6. Parameterizations by the preference profile measures

To solve the decision variant, we only need to check whether the cheapest cost found
is at most B .

7.6.2 Number of voters

As for SHIFT BRIBERY parameterized by the number of voters, we do not find FPT

algorithms for our rules in this setting, but we find a general FPT approximation
scheme. The idea of our algorithm is to use a scaling technique combined with a
brute-force search through the solution space. The scaling part of the algorithm
first reduces the range of prices. Then, the brute-force search finds a near-optimal
solution. The ideas underlying the proof are similar to those of Elkind and Fal-
iszewski [EF10, Proposition 2]

Theorem 7.18. Let m denote the number of alternatives and n the number of voters.
Let R be a voting rule for which winner determination parameterized by n is in FPT.
There is a factor-(1+ε) approximation algorithm solving SHIFT BRIBERY(O) for voting
rule R in time O∗(⌈n/ε+1⌉n) times the cost of R’s winner determination.

Proof. Let I = (A,V ,π, p) be an instance of SHIFT BRIBERY(O). Further, let ε> 0 be
the desired approximation parameter.

Intuitively, the idea of the algorithm is as follows. First, guess the maximum
budget πmax to spend on a single voter. Then, rescale and round the priceπ to not
exceed a given bound; the reason for this rescaling is to find a successful shift action
(with provable good approximation) in FPT time. Finally, find a cheapest shift action
according to the new price. Lines 13–16 in Algorithm 7.2 describe these three main
steps. After trying each guess for πmax, we return the cheapest successful shift action
that we obtained (Lines 17–19).

We first show that the found shift action is successful for p, and then that this
action has cost at most (1+ε) ·OPT(I) if I admits a successful shift action with cost
OPT(I).

Suppose that SA∗ is a successful shift action for p with minimum cost OPT(I). Let
πmax be the highest budget spent on a single voter through SA∗. Then, it is easy to see
that by brute-forcing (Lines 13–14), we can find this value. Next, we use NEWPRICE to
construct new price functionsπ′ for all voters; the values of these functions depend
on πmax (Lines 1–4).

Finally, we use SCALEDCHEAPESTACTION to find a cheapest shift action for the newly
constructed prices π′: Observe that if πmax is indeed the highest cost among the
voters, then for each voter v ∈V , it must hold thatπ(v)(SA∗(v)) ≤πmax. This implies
by the construction ofπ′, thatπ′(v)(SA∗(v)) ≤ ⌈ n

ε
⌉. We will see later that this bound is

179

7. Shift Bribery

Algorithm 7.2: FPT approximation scheme for SHIFT BRIBERY(O) parameterized by the
number of voters.

Input:
(P = (A,V),π, p) — SHIFT BRIBERY(O) instance, ε — approximation ratio,
m — the number of alternatives, n — the number of voters.

1 NEWPRICE(πmax):
2 foreach voter v ∈V and number j ∈ {0,1, . . . ,m} do

3 π′(v)(j) :=

⎧⎪⎨⎪⎩
⌈n·π(v)(j)

ε·πmax
⌉, ifπ(v)(j) ≤πmax,

⌈n·(n+1)
ε ⌉, otherwise.

4 returnπ′

5 SCALEDCHEAPESTACTION (π′):
6 Set SA′ : V →Nwith SA′(v) = m for all v ∈V
7 foreach budget function f : V → {0,1, . . . ,⌈n/ε⌉} do
8 Compute a shift action SA such that for each voter v ∈V ,

SA(v) is the maximum number j withπ′(v)(j) ≤ f (v)
9 if p wins in shift(P , SA) and price(π′, SA) ≤ price(π′, SA′) then

10 SA′ := SA

11 return SA′

12 Set SA′ : V →Nwith SA′(v) = m for all v ∈V
13 foreach voter v∗ ∈V and number j∗ ∈ {0,1, . . . ,m} do
14 Set πmax :=π(v∗)(j∗)
15 Setπ′ := NEWPRICE(πmax)
16 Set SA := SCALEDCHEAPESTACTION(π′)
17 if price(π′, SA) ≤ price(π′, SA′) then
18 SA′ := SA

19 return SA′

important for the analysis of the FPT running time. Thus, we can brute-force search
all possible budget functions f that give each voter at most ⌈ n

ε
⌉ units (Line 7) and

find one shift action that shifts p forward as much as possible in the preference order
of each voter v ∈ V , without exceeding the budget f (v) (Line 8). Finally, we pick a
successful action that has the smallest cost (Lines 9–11).

As already mentioned, after trying each value for πmax, we return the cheapest

180

7.6. Parameterizations by the preference profile measures

successful shift action that we obtained.
To determine the cost of our found shift action, consider an iteration where the

value of πmax is indeed the most expensive budget spent on a voter in SA∗, our
“optimal” action. Let π′ :=NEWPRICE(πmax) and SA′ :=SCALEDCHEAPESTACTION(π′) ac-
cordingly. Then, for each voter v ∈V , we have thatπ(v)(SA∗(v)) ≤πmax. This implies
the following upper bound for the cost of our successful shift action SA′ using the
rescaled pricesπ′:

price(SA′,π′) = ∑
v∈V

⌈n ·π(v)(SA∗(v))

ε ·πmax
⌉ ≤ ∑

v∈V

(
n ·π(v)(SA∗(v))

ε ·πmax
+1)

= n

ε ·πmax
OPT(I)+n. (7.1)

The first equality holds by the definition ofπ′. The second inequality holds because
of the rounding. The third equality holds because SA has the minimum cost for
pricesπ. Since SA′ has the minimum cost for pricesπ′, we obtain the following lower
bound for the successful shift action SA∗ at the rescaled pricesπ′:

price(SA,π′) ≥ price(SA′,π′) ≥ ∑
v∈V

n ·π(v)(SA′(v))

ε ·πmax

= n

ε ·πmax
price(SA′,π). (7.2)

Combining (7.1) and (7.2), we obtain

price(SA′,π) ≤OPT(I)+ε ·πmax ≤ (1+ε) ·OPT(I). (7.3)

The second inequality holds because πmax ≤OPT(I). Thus the algorithm returns a
(1+ε)-approximate solution.

As for the running time, we have n ·m possibilities of choosing πmax. For each
selection, we run NEWPRICE in polynomial time; then, SCALEDCHEAPESTACTION tries
O(⌈n/ε+1⌉n) budget functions and finds a corresponding shift action with the mini-
mum cost. Thus, in total, the algorithm runs in ⌈n/ε+1⌉n · |I |O(1) time.

Is it possible to obtain full-fledged FPT algorithms for the parameterization by
the number of voters? For the case of all-or-nothing price functions, we provide a
very simple FPT algorithm, but for the other price-function classes the answer is no
(under the assumption that FPT ̸=W[1]).

Proposition 7.19. Let R be a voting rule for which winner determination parameter-
ized by the number of voters is in FPT. For all-or-nothing prices, R SHIFT BRIBERY

181

7. Shift Bribery

parameterized by the number n of voters can be solved in time O∗(2n) times the cost of
R’s winner determination, implying fixed-parameter tractability.

Proof. Note that with all-or-nothing prices, it suffices to consider shift actions where
for each voter’s preference order we either shift the preferred alternative to the top
or do not shift her at all. Thus, given a preference profile with n voters it suffices to
try each of the 2n possible shift actions of this form.

In contrast to Proposition 7.19, fixed-parameter tractability for other price func-
tions is not obvious. Indeed, for Copeland we can show W[1]-hardness for unit prices,
via a somewhat involved reduction from a variant of the CLIQUE problem. We refer
the reader to the journal version [Bre+16a] for the proof.

Theorem 7.20. COPELAND SHIFT BRIBERY parameterized by the number of voters is
W[1]-hard for unit prices.

Since determining the winner under the Copeland rule can be done in polynomial-
time, the above W[1]-hardness result shows that unless unlikely complexity class
collapses occur, it is impossible to improve Theorem 7.18 to provide an exact FPT
algorithm. Since the publication of our conference paper [Bre+14b], Bredereck
et al. [Bre+16c] complemented our W[1]-hardness result by showing that for the
Borda and maximin rules, SHIFT BRIBERY parameterized by the number of voters is
W[1]-hard.

7.7 Concluding remarks

We have studied the parameterized complexity of SHIFT BRIBERY under the voting
rules Borda, maximin, and Copeland, for several natural parameters that either
describe the nature of the solution or the size of the election, and for several families
of price functions (arbitrary, convex, unit, sortable, and all-or-nothing). Our results
confirm the intuition that the computational complexity depends on all three factors:
the voting rule, the parameter, and the type of price function used.

Our work leads to some natural follow-up questions. First, it would be interesting
to solve the complexity of SHIFT BRIBERY parameterized by the number of alter-
natives for arbitrary price functions (see Table 7.1); at the moment we only know
that it is W[1]-hard and in XP. For both Borda and maximin, and for the parameter
“number t of unit shifts”, we obtain a partial problem kernel: we can shrink in poly-
nomial time a given instance to one whose numbers of alternatives and voters are
upper-bounded by a function in t (Theorem 7.5 and Corollary 7.7). This function,
however, is an exponential function. Thus, it would be interesting to know whether it

182

7.7. Concluding remarks

is possible to design an efficient kernelization algorithm that replaces this exponen-
tial function with a polynomial. A concept similar to the kernelization lower bound
would be to show a lower bound on the size of only a part of the problem kernel; see
Section 2.6.1 for more information on kernelization lower bounds.

Furthermore, we have not put any restrictions on the preference profiles in the
input instance of SHIFT BRIBERY so far. Our work in Chapter 3 and Chapter 5 naturally
leads to the question how the problem behaves when the preference orders are
structured or nearly structured.

Going into the direction of the MARGIN OF VICTORY type of problems, it would
be interesting to study DESTRUCTIVE SHIFT BRIBERY, where we can push back the
despised alternative to prevent it from being a winner. Initial results in this direction
are due to Kaczmarczyk and Faliszewski [KF16].

Finally, in Chapter 6, we introduced a model of affecting voting outcomes by
adding bundles of voters to the profile (this is an extension of a well-studied problem
known as CONTROL BY ADDING VOTERS [BTT92, HHR07]). Bredereck et al. [Bre+15e]
considered SHIFT BRIBERY in a similar setting where one can affect multiple voters
at the same time (for example, airing an advertisement on TV could affect several
voters at the same time). Unfortunately, most of their results are quite negative and
it would be interesting to investigate the combinatorial variant of SHIFT BRIBERY

from the point of view of heuristic algorithms.
Last but not least, complementing our theoretical work with real-world experi-

ments, starting with tuning theFPT algorithms, would be a promising future research
direction.

183

CHAPTER 8

Parliamentary Voting Rules

Logic is concerned with the truth-value of sentences. Grammar is
concerned with the communications-value of sentences. Rhetoric
is concerned with the persuasion-value of sentences. And
heresthetic is concerned with the strategy-value of sentences. In
each case, the art involves the use of language to accomplish some
purpose: to arrive at truth, to communicate, to persuade, and to
manipulate.

William H. Riker

In the previous two chapters, we have seen two natural manipulative voting attack
problems and we have studied the computational complexity of these problems for
several common voting rules, including the plurality rule and the Condorcet rule.
Notably, all these voting rules proceed in a single stage—be it based on scoring or
on pairwise comparisons. In this final chapter of the second part of the thesis, we
examine two prominent parliamentary voting rules, the amendment rule and the
successive rule. They work in multiple stages where the result of each stage may
influence the result of the next stage. Both rules proceed according to a given linear
order of the alternatives, an agenda. We study computational problems associated
with these two rules and obtain the following results: On the one hand, making a
specific alternative win by adding the fewest number of manipulators (with arbitrary
preferences) or by finding a suitable ordering of the agenda, the agenda control
problem, takes polynomial time. On the other hand, our experimental results with
real-world data indicate that most preference profiles cannot be manipulated by
only few voters and a successful agenda control for some given alternative is typi-
cally impossible. If the voters’ preferences are incomplete, then deciding whether
an alternative can possibly win is NP-complete for both rules. Whilst deciding

This chapter is based on “Parliamentary Voting Procedures: Agenda Control, Manipulation, and Uncer-
tainty” by R. Bredereck, J. Chen, R. Niedermeier, and T. Walsh, Proceedings of the 24th International
Joint Conference on Artificial Intelligence (IJCAI ’15) [Bre+15b] and arXiv:1509.02424v1 [cs.GT] [Bre+15c]

185

8. Parliamentary Voting Rules

if an alternative necessarily wins is coNP-complete for the amendment rule, it is
polynomial-time solvable for the successive rule.

8.1 Introduction

Two prominent voting rules, the successive rule and the amendment rule, are used
in many parliamentary chambers to amend and decide upon new legislation [ABM14,
Bla58, Far69, Mil77]. Both are sequential (or multi-stage) voting rules: the alternatives
are ordered (thus forming an agenda) and they are considered one by one, making a
binary decision based on majority voting in each step. In a nutshell, in each step,
the successive rule decides whether to accept the current alternative (in which case
the procedure stops and the winner is determined) or to reject it and continuing
with the remaining alternatives in the given order. The amendment rule in each step
eliminates one of two current alternatives by means of a majority vote, putting the
survivor up against the next alternative on the agenda.

There are many reasons to study the properties of parliamentary voting rules, and
especially to consider computational questions: First, parliamentary voting rules are
used very frequently in practice. For example, the recent 112th Congress of the US
Senate and House of Representatives had 1030 votes to amend and approve bills.1

This does not take into account the hundreds of committees that also amended and
voted on these bills. As a second example, there were 351 divisions within the UK
Houses of Lords and Commons in 2013 to amend or approve bills. Both countries
use the amendment rule to make parliamentary decisions [Ras00].

Second, parliamentary voting rules are used to make some of the most important
decisions in society. We decide to reduce carbon emissions, provide universal health
care, or raise taxes based on the outcome of such voting rules. When rallying sup-
port for new legislation, it is vital to know what amendments can and cannot be
passed. Fortunately, we have excellent historical voting records for parliamentary
chambers. We can therefore make high quality predictions about how sincere or
“sophisticated/strategic” voters will vote.

Third, Enelow and Koehler [EK80] examined several votes in the US House of Rep-
resentatives in 1977 and gave evidence that parliamentary voting may be strategic:

“Thus, it is shown that sophisticated voting does occur in Congress and
in fact is encouraged by the way amendments are used in the legislative
process. It should not come as a surprise to congressional scholars that
congressmen do not always vote sincerely.”

1Retrieved from www.govtrack.us/ for years 2011-2012.

186

www.govtrack.us/

8.1. Introduction

Fourth, there is both theoretical and empirical evidence that the final outcome
critically depends on the order in which amendments are presented. For example,
Ordeshook and Schwartz [OS87] remarked that

“. . .legislative decisions are at the mercy of elites who control agendas.”

It is therefore interesting to ask whether, for example, computational complexity
is a barrier to the control of the agenda (see Section 8.5 for more information on
this question) or to strategic voting (see Section 8.6 for more information on this
question) when such parliamentary voting rules are used. It is also interesting to
ask if we can efficiently compute whether a particular amendment can possibly (or
necessarily) pass despite uncertainty in the votes or the agenda. This refers to the
POSSIBLE WINNER and NECESSARY WINNER problems (see Section 8.7). For each
voter, we assume that we know his preference order over the alternatives, which is a
linear order in the first two types of problems and is a partial order in the last type of
problems. As already mentioned in the previous chapters, this assumption seems
somewhat unrealistic. However, it is a standard assumption within computational
social choice, and we might have a good approximation of this knowledge from
pre-election polls.

We provide one of the first computational studies of the two parliamentary voting
rules, giving both theoretical and empirical results. We emphasize that, while com-
plementing theoretical research with an empirical study of real-world data is useful,
this is the only chapter of the thesis where we perform experiments. Indeed, we only
perform experiments for the first two problems studied in this chapter. We do this
for three simple reasons. First, POSSIBLE WINNER and NECESSARY WINNER consider
partial preference orders, but the real-world data for which we perform experiments
only have a very restricted form of partial preference orders. Second, the algorithms
solving AGENDA CONTROL and COALITIONAL MANIPULATION run in no more than
cubic time (in the size of the input instance), and most remaining problems are
NP-complete. Third, in this thesis, we chiefly want to clarify the boundary between
fixed-parameter tractable and parameterized intractable cases. We do identify some
tractable cases, but the algorithms behind those combine brute-forcing with inte-
ger linear programming. To run experiments however would require significant
improvements on these algorithms to obtain a reasonable running time, which is
outside the scope of this thesis. See Section 9.2 for a more detailed explanation.

Related work. There are many studies in the economic and political science liter-
ature on parliamentary voting rules, starting with Black [Bla58] and Farquharson
[Far69], concerning “insincere” or “sophisticated” or “strategic” voting [Ban85, EK80,

187

8. Parliamentary Voting Rules

Mil77, MN78, Mou86, OS87, SW82]. Apesteguia, Ballester, and Masatlioglu [ABM14]
characterized both the amendment and the successive rules from an axiomatic
perspective.

Miller [Mil77] studied which alternatives can become a winner by altering the
agenda, the AGENDA CONTROL problem. In particular, he showed through Proposi-
tions 1 and 2 in his paper [Mil77] that if each voter votes sincerely, then an alternative
can become an amendment winner under some agenda if and only if it belongs to
the Condorcet set (also known as top cycle [Nur05]); a Condorcet set is the smallest
set of alternatives that beats every other alternative outside this set. We extend this
result by a constructive proof. For the successive rule, however, Miller only showed
that every alternative from the Condorcet set can win. Barberà and Gerber [BG16]
followed Miller’s research of characterizing the set of alternatives that may become
an amendment (or a successive) winner by controlling the agenda, assuming that the
voters are voting sophisticatedly. Rasch [Ras14] empirically examined the behavior of
voters in the Norwegian parliament, where the successive rule is used. He reported
that successful insincere voting, where voters may vote differently from their true
preferences and the outcome is better for them, is very rare.

Using computational complexity as a barrier against manipulation (that is, against
changing the outcome by adding voters) was initiated by Bartholdi III, Tovey, and
Trick [BTT89]. They showed that manipulating a special variant of the Copeland
voting rule is NP-complete. Bartholdi III and Orlin [BO91] showed that manipulating
the Single Transferable Vote (STV) rule is NP-hard even if there is only one manipu-
lator. This voting rule and its many variants have been adopted in the parliamentary
voting of many countries. They are sequential voting rules and work similarly to the
successive rule except that there is no agenda. Instead, in each step, the alternative
that is ranked first by the least number of voters will be deleted from the profile. This
means that if an alternative is an STV winner, then there is an agenda for which the
same alternative becomes a successive winner. The NP-hardness result for manip-
ulating STV is of particular interest since we provide polynomial-time algorithms
for manipulating the closely related successive rule. These two complexity results
indicate that it is the agenda that makes an important difference.

Concerning uncertainty in the profiles (that is, each voter’s preference order is a
partial order), there is some work in the political science literature [Jun89, OP88],
but there seems to be significantly more activity on the computational side. Konczak
and Lang [KL05] introduced the problems of possible winner and necessary winner
determination, and studied them for the Condorcet rule. Since then, these problems
have been frequently studied for several other common voting rules [Azi+15, BD10,
BHN09, BR12, Haz+12, Wal07].

188

8.2. Results

Moulin [Mou86] discussed the voting tree rule which is a generalization of the
amendment rule. This general rule employs a binary voting tree where

• the leaves represent the alternatives such that each alternative is represented
by at least one leaf, and

• each internal node represents the alternative that wins the pairwise compari-
son of its children.

The alternative represented by the root defines the winner. If the binary tree is
degenerate and if each alternative is represented by exactly one leaf, then this rule is
identical to the amendment rule. To tackle the manipulation problem with weighted
voters, Conitzer, Sandholm, and Lang [CSL07] provided a cubic-time algorithm for
the voting tree rule while our quadratic-time algorithm (Theorem 8.11) is tailored
for the amendment rule. Xia and Conitzer [XC11] provided intractability results for
the possible (resp. necessary) winner determination problem when the given tree is
balanced. Pini et al. [Pin+11] and Lang et al. [Lan+12] showed that the possible (resp.
necessary) winner determination problem with weighted voters is NP-complete
(resp. coNP-complete) even for a constant number of voters (see Table 8.1 for an
overview of known and our new results).

8.2 Results

We investigate computational problems for two prominent parliamentary voting
rules: the successive rule and the amendment rule. We study three types of voting
problems. First, we study the AGENDA CONTROL problem that asks whether there is
an agenda under which a given alternative can win when the voters vote sincerely.
Second, we study the COALITIONAL MANIPULATION problem that asks whether a
given alternative can win by adding a given number of voters. Third, we study
whether a given alternative can possibly (resp. necessarily) win when the voters may
have incomplete preferences; we call the corresponding problem POSSIBLE WINNER

(resp. NECESSARY WINNER). We also consider the case where each voter has a weight
and we add the prefix WEIGHTED to the name of the corresponding problem. See
Table 8.1 for an overview of our theoretical results.

Our polynomial-time algorithms for AGENDA CONTROL and COALITIONAL MA-
NIPULATION indicate that the amendment rule is computationally more expensive
than the successive rule. From a computational perspective, this implies that the
amendment rule may be more resistant to manipulation and agenda control than
the successive rule. If the voters’ preference orders are incomplete, then deciding
whether an alternative possibly wins is NP-complete for both rules. Furthermore,

189

8. Parliamentary Voting Rules

Problem Successive Amendment References

AGENDA CONTROL O(n ·m2) O(n ·m2 +m3)♥ Thm 8.4 & 8.7

W. COALITIONAL MANIPULATION O((n +k) ·m) O((n +k) ·m2) Thm 8.9 & 8.11, Cor 8.12

POSSIBLE WINNER NP-c NP-c Thm 8.14 & 8.15

ILP-FPT(m) ILP-FPT(m) Cor 8.17

NECESSARY WINNER O(n ·m3) coNP-c Thm 8.21 & 8.22

ILP-FPT(m) Cor 8.23

W. POSSIBLE WINNER NP-c (m = 3) NP-c (m = 3)♠ Thm 8.24

W. NECESSARY WINNER O(w ·n ·m3) O(n) for m ≤ 3 Thm 8.25

coNP-c (m = 4)♠ —

Table 8.1.: Computational complexity results of this chapter and of the literature for our two
parliamentary voting rules. The prefix “W.” indicates that the relevant problem has weighted
voters. The number of voters is denoted by n, the number of alternatives is denoted by m, the
number of manipulators is denoted by k, and the sum of weights of all voters in an instance of
the COALITIONAL MANIPULATION problem is denoted by w . Recall that “ILP-FPT(m)” stands
for “fixed-parameter tractable with respect to m through the integer linear programming
technique”; see Section 2.6.1 for more information. The result marked with ♥ also follows
from the work of Miller [Mil77]. Results marked with ♠ follow from the work of Pini et al.
[Pin+11] and Lang et al. [Lan+12]. Entries containing statements of the form “NP-c (m = z)”
(resp. “coNP-c (m = z)”) mean that the respective problem is in NP (resp. coNP) and is NP-
hard (resp. coNP-hard) even with only z many alternatives. All hardness results hold even
when the agenda is a linear order. Note that the weakly NP-hardness result of Theorem 8.24
implies NP-completeness.

deciding whether an alternative necessarily wins is polynomial-time solvable for the
successive rule, but it is coNP-complete for the amendment rule.

Our experimental results with real-world profiles indicate that a successful agenda
control is very rare and the size of a coalition for a successful manipulation is at least
half of the number of the voters in the original profile. Thus, we can conclude that
our parliamentary voting rules are still “safe” against these voting attacks in the real
world.

8.3 Chapter outline

In Section 8.4, we provide additional definitions specific to this chapter. In Sec-
tion 8.5, we focus on AGENDA CONTROL when voters have sincere preference orders

190

8.4. Specific notations and definitions

and we study the corresponding computational complexity for both parliamentary
voting rules. In Section 8.6, we deal with strategic behavior of voters and investi-
gate the computational complexity of COALITIONAL MANIPULATION. In Section 8.7,
we are interested in situations with uncertainty where voters’ preferences and the
agenda are still incomplete. We study the problem of whether an alternative can
possibly/will necessarily win in such a situation (the POSSIBLE WINNER problem/the
NECESSARY WINNER problem). In Section 8.8, we complement our theoretical study
with an experimental evaluation of AGENDA CONTROL and COALITIONAL MANIPU-
LATION for real-world profiles. Section 8.9 concludes our work and presents some
challenges for future research.

8.4 Specific notations and definitions

Let P = (A (P),V (P)) be a preference profile with A (P) being the set of alterna-
tives and V (P) being the set of voters. Consider two distinct alternatives b,c ∈A (P)
in P . We previously defined that alternative b beats alternative c (in a head-to-
head contest) when a majority of voters prefers b to c. In this chapter, we call b the
survivor and c the loser of the two alternatives. Let P ′ = (A′,V ′, (≻′

1,≻′
2, . . . ,≻′

n)) be
a second profile for the same set of alternatives and the same set of voters. If for
each voter vi ∈ V (P), the preference order ≻′

i from P ′ is a superset of the preference
order ≻i from P , then we say that P ′ extends P . Note that a preference order is in
effect a set of ordered pairs of alternatives. If each ≻′

i is even a linear order, then we
say that P ′ completes P .

We can use a directed graph to illustrate the head-to-head contests between every
two alternatives. Section 2.2.2 states relevant concepts regarding directed graphs.

Definition 8.1 ((Weighted) majority graph). Given a preference profile P = (A,V), we
construct an arc-weighted directed graph G := (U ,E), where U consists of a vertex u j

for each alternative c j ∈ A and where there is an arc from vertex u j to vertex u j ′ with
weight w if w voters prefer c j to c j ′ . We call the constructed graph G a weighted
majority graph for profile P . If each voter comes with a weight, then we update the
weights of the arcs accordingly.

If we ignore the weights and the arcs with weights of at most |V |/2, then we obtain
a majority graph (without weights) for the profile P .

We provide a small example to illustrate the concept of (weighted) majority graphs.

Example 8.1. Let P be a preference profile with three alternatives a,b,c, and three
voters v1, v2, v3 whose preference orders are specified as follows:

v1 : a ≻ b ≻ c, v2 : b ≻ a ≻ c, v3 : c ≻ a ≻ b.

191

8. Parliamentary Voting Rules

The weighted majority graph for P consists of three alternatives and six weighted
arcs as depicted in the left figure below. Bold arcs indicate the majority relation.

ua ub uc

2 2

2

1 1

1

ua ub uc

1 1

1

The corresponding majority graph without weights is depicted in the right figure.
The graph shown in the right figure is a tournament. Further, vertex ua has exactly
two out-going arcs, meaning that alternative a beats the other two alternatives. Thus,
it is a Condorcet winner.

We consider two of the most common parliamentary voting rules. For both rules,
we assume that a linear order over the m alternatives in A is given. We refer to this
linear order L as an agenda. If this order is a partial order, then we call it a partial
agenda, denoted by B. We use the symbol ▷ for the agenda order to distinguish it
from the preference order ≻: For two distinct alternatives a and b, a▷b means that
b is considered after (or ordered behind) a in the agenda.

Roughly speaking, the successive rule determines a winner that is the first alter-
native in the agenda L such that a majority of voters prefers it to every alternative
ordered behind it in L .

Definition 8.2 (Successive rule for a given agenda L). There are at most m rounds
with m being the number of alternatives. Starting with round i := 1, we repeat the
following until we find a successive winner: Let c be the i th alternative in the given
agenda L . If there is a majority of voters who prefer alternative c to every alternative
that is ordered behind it in L , then c is the decision and we call it a successive winner.
Otherwise, we proceed to round i := i +1.

In Europe, the successive rule is used in many parliamentary chambers including
those of Austria, Belgium, Denmark, France, Germany, Greece, Iceland, Ireland, Italy,
Luxembourg, the Netherlands, Norway, Portugal, and Spain [Ras00].

Example 8.2. Let us look at the profile P from Example 8.1 again. Consider the
following agenda L : a▷b▷c for the successive rule. We have three alternatives.
Thus, the procedure ends after at most three rounds. In the first round, since less
than half of the voters prefer a to both b and c (only v1 does), a is not a successive
winner, although it is a Condorcet winner. In the second round, since more than half
of the voters prefer b to c (voters v1 and v2), b is the successive winner.

192

8.4. Specific notations and definitions

The amendment rule determines a winner that is the first alternative in the
agenda L to beat every other alternative that is ordered behind it in L .

Definition 8.3 (Amendment rule for a given agenda L). It proceeds in m rounds
with m being the number of alternatives. We define an amendment winner for each
round. Let the 1st-round amendment winner be the 1st alternative in L . Then, for
each round 2 ≤ i ≤ m, the i th-round amendment winner is either the (i −1)th-round
amendment winner b or the i th alternative c in L : if a majority of voters prefers b
over c, then it is b. Otherwise it is c. We define the mth-round amendment winner to
be the amendment winner.

In Europe, the amendment rule is used in the parliamentary chambers of Finland,
Sweden, Switzerland, and the United Kingdom. It is also used in the U.S. Congress
and several other countries with Anglo-American ties [Ras00].

We again use Example 8.1 to illustrate how the amendment rule works. It may be
helpful to consider the corresponding majority graph (see Definition 8.1).

Example 8.3. Consider the profile and the agenda L : a▷b▷c given in Example 8.2.
Alternative a is the 1st-round winner since it is the first alternative in L . Since a
majority of voters prefers a to b and a majority of voters prefers a to c, alternative a
is both the 2nd-round and the 3rd-round winner. Hence, it is the amendment winner.
Indeed, as shown in the majority graph (see Example 8.1), alternative a is a Condorcet
winner.

As already observed by Miller [Mil77], there is a close relation between Condorcet
winners and amendment winners:

Observation 8.1 ([Mil77]). A Condorcet winner is an amendment winner, no matter
what the agenda looks like.

We close this section with some remark. For the remainder of this chapter, we
assume that the number of voters is odd to reduce the impact of tie breaking and
we leave the study of different tie breaking rules as future work. We consider both
unweighted voters and voters with integer weights. The weighted case is especially
interesting in the parliamentary setting: First, there are parliamentary chambers
where voters are weighted (for instance, in the Council of Europe, preference orders
are weighted by the size of the country). Second, voters will often vote along party
lines. This effectively gives us parties casting weighted preference orders. Third,
the weighted case can inform the situation where we have uncertainty about the
preference orders. For example, Theorem 15 of Conitzer, Sandholm, and Lang

193

8. Parliamentary Voting Rules

[CSL07] proves that if the manipulation problem for a voting rule is NP-hard for
weighted voters with complete preference orders, then deciding who possibly wins in
the unweighted case is NP-hard even when there is only a limited form of uncertainty
about the preference orders. It would be interesting to prove similar results about
uncertainty and weighted preference orders for parliamentary voting rules.

8.5 Agenda Control

The order of the alternatives, that is, the agenda, may depend on the speaker, the
Government, logical considerations (for instance, the status quo goes last, the most
extreme alternative comes first), the chronological order of submission, or other
factors. The agenda used can have a major impact on the final decision. It is also
worth noting that there are many possible agendas.

For example, if we use the amendment procedure, then the Condorcet winner is
the only amendment winner (Observation 8.1). But the Condorcet winner is only
guaranteed to be a successive winner if it is introduced in one of the last two positions
in the agenda. To illustrate this fact, consider the profile given in Example 8.1 again.
If alternative a is the first to be considered in the agenda, then a will be eliminated
because it is not a majority winner (with respect to the rest). Thus, it cannot become
a successive winner. However, if a is not the first one to consider in the agenda,
then it will become a successive winner because the first one (either b or c) in the
agenda will be eliminated and in the next round where two alternatives remain, a
beats the other one which is not eliminated. We therefore consider the following
computational question for the situation where voters vote sincerely.

AGENDA CONTROL

Input: A preference profile P := (A,V) with linear preference orders and a
preferred alternative p ∈ A.
Question: Is there an agenda for A such that p is the overall winner?

We find that both voting rules are “vulnerable” to agenda control. In particular,
we show how to find in polynomial time an appropriate agenda (if it exists) so that
the preferred alternative can become a successive (resp. amendment) winner. In
the remainder of this section, we assume that a preference profile P := (A,V) with
linear preference orders and a preferred alternative p ∈ A are given. We assume that
the voters vote sincerely according to their linear preference orders. If the agenda is
not revealed in advance, risk averse voters are likely to vote sincerely.. Note that this
computational question also applies to the situation where voters are strategic, the
chair collects there possibly insincere votes, and then decides on an agenda to give a

194

8.5. Agenda Control

particular outcomes. Recall that n denotes the number of voters and m denotes the
number of alternatives in a given profile P .

8.5.1 Successive rule

The basic approach to controlling the successive rule is to build an agenda in
reverse order so that each of the alternatives that are currently among the highest
positions in the partial agenda may be strong enough to beat p alone but is too
weak to be a majority winner against the whole set of alternatives behind it. To
formalize this idea, we need the notion of majority winner with respect to a subset
of alternatives.

Definition 8.4 (A′-majority winners). Let A′ ⊆ A be a subset of alternatives. An
alternative a ∈ A′ from the set A′ is an A′-majority winner if there is a majority of
voters who each prefer a to every alternative from A′ \ {a}.

Next, we derive necessary conditions for an alternative to be a successive winner.

Observation 8.2. Let L be an agenda for the alternatives A, let A′ ⊂ A be a proper
subset of alternatives, and let b ∈ A \ A′ be an arbitrary alternative. If b is considered
before all alternatives in A′ by L and if b is not an (A′∪ {b})-majority winner, then b
cannot be a successive winner.

Proof. By the definition of the successive procedure, if b would be a successive
winner for agenda L , then it would have been an (A′∪ {b})-majority winner since it
is considered before all alternatives in A′ by the agenda—a contradiction.

We can generalize Observation 8.2 to hold for a subset of alternatives.

Lemma 8.3. Let A′ ⊂ A be a proper subset of alternatives. If every alternative b in
A \ A′ is an (A′∪ {b})-majority winner, then no alternative from A′ can be a successive
winner.

Proof. Suppose for the sake of contradiction that there is an agenda L for which
the successive winner a′ would come from A′. By the definition of the successive
rule, this would imply that a majority of voters prefers a′ over every alternative that
is considered behind a′ in L . However, by the assumption that every alternative b in
A \ A′ is an (A′∪{b})-majority winner and that a′ ∈ A′, it must hold that all alternatives
in A \ A′ are considered before a′ in L , that is, L : (A \ A′)▷a′. Let d be the last
alternative in A \ A′ that is still in front of a′, that is,

L satisfies ((A \ A′) \ {d})▷d ▷a′.

195

8. Parliamentary Voting Rules

Algorithm 8.1: Algorithm for solving AGENDA CONTROL under the successive rule by
computing an appropriate agenda.

Input: (P = (A,V), p) —- an instance of AGENDA CONTROL

1 Set A′ := {p}; Set L := p
2 while A′ ̸= A do
3 if ∃ an alternative c ∈ A \ A′ that is not an (A′∪ {c})-majority winner then
4 Set L := c▷L

5 Set A′ := A′∪ {c}

6 else return “no appropriate agenda exists”

7 return L

But, since a′ is a successive winner, there must be a round when d is considered and
d would become a successive winner (note that all alternatives behind d come from
A′)—a contradiction.

By the above lemma, we can construct an agenda in reverse order by first placing
our preferred alternative p in the last position and setting A′ := {p}. We will extend
the agenda by putting all alternatives c that are not (A′∪ {c})-majority winners right
in front of A′. Then, we update the set A′ := A′∪ {c}. Using this approach we can solve
the AGENDA CONTROL problem for the successive rule in polynomial time.

Theorem 8.4. For the successive rule, solving AGENDA CONTROL and finding an
agenda for a yes-instance of AGENDA CONTROL can be done in O(n ·m2) time, where n
denotes the number of voters and m denotes the number of alternatives.

Proof. Given a profile P and an alternative p, we use Algorithm 8.1 to either decide
that p cannot be a successive winner or construct an agenda for which p wins.

For the correctness of the algorithm, if the condition in Line 3 does not apply, then
by Lemma 8.3, no alternative in A′ ∋ p can win, implying that p can never win. Thus,
we can safely reply with “no”.

Now, suppose that the condition in Line 3 always applies. We show that if p is
a successive winner of a profile restricted to the alternative set A′, then it is also a
successive winner of the restricted profile that additionally contains a non-(A′∪ {c})-
majority winner. To this end, let c be an alternative in A \ A′ that is not an (A′∪ {c})-
majority winner. Assume that p is a successive winner under the current agenda L

for the profile P ′ restricted to the alternatives in A′. Then, by Observation 8.2, it
follows that under every agenda that extends c▷A′, c is not a successive winner.

196

8.5. Agenda Control

This means that the rule would delete c and go on with the alternatives in A′. By
assumption, p is a successive winner for profile P ′ and agenda L . Therefore, in the
profile restricted to the alternatives in A′∪ {c}, the agenda c▷L also makes p win.
This completes the correctness proof.

Finally, we come to the running time analysis. First, the procedure inside the while
loop (Lines 2 and 6) is executed at most m times. Second, inside the while loop, for
every alternative c ∈ A \ A′, we check whether it is an A′∪ {c}-majority winner. This
check can be done in O(n) time: We maintain a list T of size n that, for each voter v ,
stores the highest position of alternative from A′ ranked by v . We iterate over each
voter v and compare the position v(c) of c ranked by v and the position T (v) stored
by T for voter v . We count the number of times where v(c) < T (v). If this number
is smaller than n/2, then c is not an A′∪ {c}-majority winner; we add c to A′ and we
update the list T by changing the entry T (v) to v(c) if v(c) < T (v). Altogether, the
running time is O(n ·m2).

8.5.2 Amendment rule

Controlling the amendment rule is closely related to finding a Hamiltonian cycle
in a strongly connected tournament (recall that “strongly connected” means that for
each two vertices u and v , there is a directed path from u to v). To see this, we first
construct a majority graph for the given preference profile (see the corresponding
definition in Section 8.4). Recall that we assume the number of voters to be odd. The
majority graph has m vertices and

(m
2

)
arcs and is indeed a tournament. From the

theory of directed graphs [HM66, Theorem 7], we know that every strongly connected
tournament contains a Hamiltonian cycle. Now, the crucial idea is to check whether
the vertex that corresponds to p belongs to a strongly connected component that
has only out-going arcs. Alternative p can win under an appropriate agenda if and
only if this is the case.

Observation 8.5 (Theorem 7, [HM66]). Every strongly connected tournament con-
tains a Hamiltonian cycle.

By carefully examining the constructive proof for Observation 8.5, we can find a
Hamiltonian cycle in O(m +m2 +m · (m +m2)) =O(m3) time.

It is well-known that every directed graph can be partitioned into strongly con-
nected components in linear time, by using depth-first search (see [Cor+09]). Since
our majority graph is not only directed but also a tournament, we can easily obtain
the following result.

197

8. Parliamentary Voting Rules

Observation 8.6. Every tournament can be partitioned into disjoint strongly con-
nected components such that the following holds.

1. Each component is a subtournament.

2. All arcs from the vertices of a component to another have only one direction.

3. The graph resulting from deleting all but one arbitrary vertex from each compo-
nent is acyclic and a tournament.

From this observation, we can derive the next theorem. Note that Miller [Mil77]
already characterized the set of alternatives that can become an amendment winner
under an appropriate agenda. Our theorem strengthens this result by giving a
polynomial-time algorithm to construct the desired agenda.

Theorem 8.7. For the amendment rule, solving AGENDA CONTROL and finding an
agenda for a yes-instance of AGENDA CONTROL can be done in O(n ·m2 +m3) time,
where n denotes the number of voters and m denotes the number of alternatives.

Proof. By Observation 8.6, every tournament consists of strongly connected sub-
tournaments which can be ordered by topological sorting. Now, observe that only
the alternatives corresponding to the vertices from the top-most strongly connected
subtournament can become an amendment winner. In other words, if the vertex
corresponding to the preferred alternative p does not belong to the top-most sub-
tournament, then p can never win. As already mentioned, by carefully examining
the constructive proof for Observation 8.5, we can find a Hamiltonian cycle for a
strongly connected tournament with m vertices in O(m3) time. Now, we construct
a sequence Lver of vertices by reversing the orientation of the Hamiltonian cycle,
starting with the predecessor of the vertex up corresponding to p and ending at the
vertex up , and let Lalt be the order of the alternatives corresponding to Lver. We can
verify that p is an amendment winner for every agenda that extends order Lalt.

Thus, the problem is reduced to finding strongly connected subtournaments of
the majority graph for the given preference profile: If the vertex corresponding to p
is in the top-most subtournament, then construct an arbitrary but fixed order that
extends Lalt and we answer “yes” by returning Lalt. Otherwise we answer “no”.

Now, we come to the running time. Constructing a majority graph for a profile
takes O(n ·m2) time.; note that the majority graph will have O(m) vertices and O(m2)
arcs. Partitioning the majority graph into strongly connected components takes
O(m +m2) time and checking whether the vertex corresponding to p belongs to the
top-most component takes O(m) time. Finally, finding a Hamiltonian cycle in a

198

8.6. Manipulation

strongly connected tournament takes O(m3) time. Thus, in total, our for solving
AGENDA CONTROL for the amendment rule takes O(n ·m2 +m3) time.

We close this section with two remarks. First, the algorithm for the successive rule
actually works for both odd and even numbers of voters. Second, our algorithm for
the amendment rule can be extended to the case where the number of voters is even.
There, alternative p is a winner if and only if no strongly connected component
“dominates” (in a topologically ordered way) the strongly connected component that
contains vertex up ; if two alternatives are tied in a head-to-head contest, then we
break ties in favor of the alternative that is considered later.

8.6 Manipulation

In this section, we consider the question of how difficult it is for voters to vote
strategically to ensure a given outcome, supposing that the other voters vote sincerely.
Specifically, we focus on the case where the desired outcome is to make a given
alternative win. In social choice theory, however, it is also interesting to know
whether a better outcome for the manipulators exists. We will see in this section
that both variants of manipulation are polynomial-time solvable for both voting
rules (Theorems 8.9 and 8.11 and Observation 8.13).

COALITIONAL MANIPULATION

Input: A profile P := (A,V) with linear preference orders, a preferred alter-
native p ∈ A, a non-negative integer k ∈N, and an agenda L for A.
Question: Is it possible to add a set of k voters (a coalition) such that p wins
under agenda L ?

We find that deciding whether a manipulation is successful is polynomial-time
solvable for both the successive rule and the amendment rule. However, our ap-
proach to deciding whether the amendment rule can be successfully manipulated
has a running time that is asymptotically higher than than our approach to deciding
the same question for the successive rule.

First, we observe that the manipulators can basically vote in the same way.

Observation 8.8. For both voting rules, if there is a successful (weighted) manipula-
tion, then there is also a successful one where all voters from the coalition rank the
alternatives in the same way.

Proof. For the successive rule, if there is a successful manipulation for the preferred
alternative p, then requiring all manipulators to rank p in the first position and to
rank the other alternatives in an arbitrary but fixed order also makes p win.

199

8. Parliamentary Voting Rules

Now, let P ′ be a manipulated profile, that is, the original profile plus the manip-
ulators. Let X := {x1, x2, . . . , xs } consist of all alternatives xi ∈ A such that there is a
round index ri where xi is an r th

i -round amendment winner in profile P ′. Assume
without loss of generality that for every 2 ≤ i ≤ s, alternative xi beats xi−1. If p is an
amendment winner in profile P ′, then p = xs . Furthermore, we can verify that each
xi is an r th

i -round amendment winner in the original profile plus the k manipulators
who all have preference order xs ≻ xs−1 ≻ . . . ≻ x1 ≻ 〈A \ X 〉. This implies that xs = p is
an amendment winner.

As in the proof for Observation 8.8, an optimal way of manipulating the successive
rule is to let the manipulators rank their most preferred alternative p at the first
position. Using this fact, we obtain a simple polynomial algorithm for manipulating
the successive rule.

Theorem 8.9. For the successive rule, solving COALITIONAL MANIPULATION and
constructing the preference order for the manipulators in a yes-instance can be done
in O((n +k) ·m) time, where n denotes the number of voters, m denotes the number of
alternatives, and k denotes the number of manipulators.

Proof. In the proof of Observation 8.8, we can observe that if a coalition of k voters
can manipulate the successive rule, then ranking alternative p in the first position
and the other alternatives in an arbitrary but fixed order can also make p win. This
leads to a linear-time O((k +n) ·m) algorithm: Let the coalition all vote p ≻ 〈A \ {p}〉,
and check whether p wins under the successive rule.

For the successive rule, we have seen that how the manipulators should vote
does not depend on the sequence of the alternatives in the agenda. For the amend-
ment rule, however, a successful manipulation greatly depends on the agenda. To
elaborate this observation, we need the following.

Definition 8.5 (i th-round manipulation winners). Let (P := (A,V), p,k,L) be an
instance of COALITIONAL MANIPULATION under the amendment rule. We call an al-
ternative an i th-round manipulation winner if adding some coalition of k additional
voters to the original profile P makes this alternative the i th-round amendment
winner under agenda L .

We give an example to illustrate the notion of an i th-round manipulation winner.

Example 8.4. Consider the following profile with four alternatives a,b,c,d and three
voters v1, v2, v3. The preference orders of these three voters are given as follows:

200

8.6. Manipulation

v1 : a ≻ b ≻ c ≻ d , v2 : b ≻ c ≻ a ≻ d , and v3 : d ≻ b ≻ c ≻ a.

Let the agenda be L : a▷b▷c▷d . Suppose that there are two manipulators. First
of all, alternative a is the only 1st-round manipulation winner. Both alternatives a
and b are the 2nd-round manipulation winners: The second alternative in L is b. If
the two added manipulators have the same preference order a ≻ b ≻ c ≻ d , then a
beats b. If they have the preference order b ≻ a ≻ c ≻ d , then b beats a.

By the definition of i th-round manipulation winners, we know that an alternative
that is not an i th-round manipulation winner can never become an j th-round ma-
nipulation winner with j > i . Further, one can efficiently check whether an i th-round
manipulation winner alternative can survive as a manipulation winner of a later
round, as the following shows.

Lemma 8.10. Let b be the i th alternative in agenda L , 2 ≤ i ≤ m.

1. Alternative b is an i th-round manipulation winner if and only if there is an
(i −1)th-round manipulation winner c such that requiring all manipulators to
prefer b to c makes b beat c.

2. An (i −1)th-round manipulation winner c is also an i th-round manipulation
winner if and only if requiring all manipulators to prefer c to b makes c beat b.

Proof. We only show the first statement as the second one can be shown analo-
gously. For the “only if” part, assume that b is an i th-round manipulation winner and
let P ′ be the profile with the additional manipulators for which b is an i th-round
amendment winner. We rename and enumerate all j th-round amendment winners
in P ′ with j ≤ i −1 as x1, x2, . . ., xs so that for each 1 ≤ ℓ≤ s −1, alternative xℓ+1 beats
xℓ in P ′. By definition, xs is the (i −1)th-round amendment winner. We can verify
that b is an i th-round amendment winner in the manipulated profile, where every
manipulator has preference order b ≻ xs ≻ xs−1 ≻ . . . ≻ x1 ≻ 〈A \ X 〉.

For the “if” part, let c be an (i −1)th-round manipulation winner and consider the
manipulators’ preference orders ≻′

1,≻′
2, . . . ,≻′

k that only rank the first (i −1) alterna-
tives in the agenda. If requiring every manipulator to prefer b to c makes b beat c,
then at round i , alternative b will survive as the i th-round amendment winner when
every manipulator i has a preference order extending ≻′

i ∪{b ≻ c}. This implies that b
is an i th-round manipulation winner.

By Lemma 8.10, we can indeed compute in time quadratic in the input size all
alternatives that each can become an amendment winner in some manipulated

201

8. Parliamentary Voting Rules

Algorithm 8.2: Algorithm for COALITIONAL MANIPULATION under the amendment rule
by computing all manipulation winners.

Input: (P = (A,V),k, p,L) — an instance of COALITIONAL MANIPULATION

1 Set W1 := {the first alternative in the agenda L }

2 Set ≻b
1 :=;

3 foreach round i ∈ {2,3, . . . ,m} do
4 Set Wi :=;
5 Set b := the i th alternative in L

6 foreach (i −1)th-round manipulation winner c ∈Wi−1 do
7 if b ∉Wi and b beats c when all manipulators prefer b to c then
8 Add b to the set Wi

9 Construct the preference order ≻b
i

:= {b ≻ c}∪≻c
i−1

10 if c beats b when all manipulators prefer c to b then
11 Add c to the set Wi
12 Construct the preference order ≻c

i
:= {c ≻ b}∪≻c

i−1

profile with a coalition of k additional voters, and we can compute the corresponding
coalition for each of these alternatives.

Theorem 8.11. For the amendment rule, solving COALITIONAL MANIPULATION and
constructing the preference orders for the manipulators in a yes-instance can be done
in O(n ·m2) time, where n denotes the number of voters and m denotes the number of
alternatives.

Proof. Based on Lemma 8.10, we build a recursive algorithm which, for each i th-
round amendment winner, constructs a linear order over the first i alternatives in L

starting with i = 1.
We denote by Wi the set of all i th-round manipulation winners. For each i th-

round manipulation winner c, we denote by ≻c
i the preference orders over the first i

alternatives in the agenda L such that c becomes an i th-round amendment winner
by adding k manipulators with a preference order that extends ≻c

i .
The approach to computing all manipulation winners is described in Algorithm 8.2.

Obviously, for the first round, the set W1 and its corresponding preference order are
computed correctly. By Lemma 8.10 (1), we know that Steps (7)-(9) are correct, and
by Lemma 8.10(2), we know that Steps (10)-(12) are correct. Since each alternative

202

8.7. Possible/Necessary Winner

from Wm is a last-round manipulation winner, we answer “yes” and return the
corresponding preference order for the input instance (P = (A,V),k, p,L) if p ∈Wm

and “no” otherwise.
As for the running time, first, we do some preprocessing: for each two distinct

alternatives b,c, we check whether adding k manipulators can make b beat c; let
the Boolean variable T (b,c) have value one if this is the case and zero otherwise.
Computing all these Boolean values runs in O((k +n) ·m2) time.

To compute Wi , 2 ≤ i ≤ m, we inspect T (b,c) for every alternative c in Wi−1 and for
the i th alternative b in the agenda L . Thus computing all Wi can be done in O(m2)
time. The total running time is O((n +k) ·m2).

In WEIGHTED MANIPULATION, the voters of the coalition also come with integer
weights. However, we have that the weighted and non-weighted cases are equivalent
because of Observation 8.8. Observe that if the sum of the weights is greater than
the number of the voters in the original profile, then there is always a successful
manipulation. Thus, we can conclude the following.

Corollary 8.12. Solving WEIGHTED MANIPULATION and constructing the preference
orders for the manipulators in a yes-instance can be solved in O(n ·m) time for the
successive rule and in O(n ·m2) time for the amendment rule, where n denotes the
number of voters and m denotes the number of alternatives.

We close this section by the remark that deciding whether a coalition of manipu-
lators can achieve a better outcome is also polynomial-time solvable since we just
need to solve COALITIONAL MANIPULATION for every possible alternative that is
preferred to the original winner by the manipulators. Thus, the following holds.

Observation 8.13. Deciding whether a coalition of k manipulators can achieve a
better outcome by voting insincerely can be done in O(n ·m2) time for the successive
rule and in O(n ·m3) time for the amendment rule, where n denotes the number of
voters and m denotes the number of alternatives.

8.7 Possible/Necessary Winner

We typically have partial knowledge about how the voters will vote, and about how
the agenda will order the alternatives. Nevertheless, we might be interested in what
may or may not be the final outcome. Does our favorite alternative stand any chance
of winning? Is it inevitable that the government’s alternative will win? Is there an
agenda under which our alternative can win? Hence, we consider the question of
which alternative possibly or necessarily wins.

203

8. Parliamentary Voting Rules

POSSIBLE (resp. NECESSARY) WINNER

Input: A preference profile P := (A,V), a preferred alternative p ∈ A, and a
partial agenda B.
Question: Can p win in a (resp. every) completion of the profile P for an
(resp. every) agenda which completes B?

An upper bound for the computational complexity of both problems is easy to see:
POSSIBLE WINNER (resp. NECESSARY WINNER) is contained in NP (resp. in coNP) for
both the successive rule and the amendment rule, because one can determine a win-
ner for both rules in polynomial time. Thus, in order to show NP-completeness (resp.
coNP-completeness), we only need to show NP-hardness (resp. coNP-hardness).

8.7.1 Possible Winner

Our first two results imply that as soon as the voters may have incomplete prefer-
ence orders, deciding who may be a possible winner is NP-hard even if the agenda is
already a linear order. Nevertheless, for the parameter “number m of alternatives”, we
obtain fixed-parameter tractability. We make use of the integer linear programming
techniques (see Section 2.6.1 for more information on this technique).

Theorem 8.14. For the successive rule, POSSIBLE WINNER with the given agenda
being linear is NP-complete.

Proof. We show the NP-hardness by reducing from the NP-complete INDEPENDENT

SET problem in polynomial time.

INDEPENDENT SET

Input: An undirected graph G = (U ,E) and a non-negative integer h.
Question: Is there an independent set of size at least h, that is, a subset of at
least h vertices such that no two of them are adjacent to each other?

We will give a concrete example for the reduction right after the proof. Let (G =
(U ,E),h) be an instance of INDEPENDENT SET, where U = {u1, . . . ,ur } denotes the set
of r vertices and E = {e1, . . . ,es } denotes the set of s edges. We assume that r ≥ 3 and
2 ≤ h ≤ r −1. We construct a POSSIBLE WINNER instance ((A,V), p,B) as follows. The
set A of alternatives consists of the preferred alternative p, one dummy alternative d ,
and of one edge alternative c j for each edge e j ∈ E :

A := {p,d}∪ {c j | e j ∈ E }.

We construct three groups of voters, where only the first group of voters has partial
orders while the remaining two groups have linear orders. Let

⟨
A \ {p,d}

⟩
denote the

linear order c1 ≻ c2 ≻ . . . ≻ cs .

204

8.7. Possible/Necessary Winner

1. For each vertex ui ∈U , we construct a vertex voter vi with a partial preference
order specified by

vi :
⟨

I (ui)
⟩≻ p ≻ ⟨

A \
(
{p,d}∪ I (ui)

)⟩
and d ≻ ⟨

A \
(
{p,d}∪ I (ui)

)⟩
,

where I (ui) denotes the set of edge alternatives corresponding to edges inci-
dent to vertex ui .

Briefly put, voter vi prefers every “incident” edge alternative, p, and d to all
“non-incident” edge alternatives. He also prefers the incident edge alternatives
to p but thinks that d is incomparable to p and to every “incident” edge
alternative.

2. We construct h −2 auxiliary voters with the same preference order.

h −2 voters :
⟨

A \ {p,d}
⟩≻ d ≻ p.

3. We construct another r −h −1 auxiliary voters with the same preference order.

r −h −1 voters :
⟨

A \ {p,d}
⟩≻ p ≻ d .

We have constructed a total of 2r − 3 voters. Thus, to be a majority winner, an
alternative needs to be ranked at the first place by at least r −1 voters.

Let the agenda B be the linear order c1▷c2▷ . . . ▷cs ▷p▷d . This completes the
construction, which can clearly be computed in polynomial time.

Before we give a formal correctness proof, let us briefly sketch the idea. Our
construction ensures that, in order for p to beat d , in the final round of the procedure,
we have to put p (and by the construction of the vertex voters, also I (ui)) in front
of d in the preference orders of at least h vertex voters. However, to prevent any edge
alternative c j from being a successive winner in some earlier round of the procedure,
we cannot put any edge alternative in front of d more than once. We will see that
this is only possible if the vertices corresponding to the voters for which we put p in
front of d form an independent set of size h.

We show that G has an independent set of size at least h if and only if p can possibly
win under the successive rule in the constructed profile.

For the “only if” part, assume that G admits an independent set U ′ ⊆U of size at
least h. We complete the partial preference orders of the vertex voters as follows.

1. For each vertex ui ∈U ′, let voter vi have the preference order⟨
I (ui)

⟩≻ p ≻ d ≻ ⟨
A \

(
{p,d}∪ I (ui)

)⟩
.

2. For each vertex ui ∈U \U ′, let voter vi have the preference order

205

8. Parliamentary Voting Rules

d ≻ ⟨
I (ui)

⟩≻ p ≻ ⟨
A \

(
{p,d}∪ I (ui)

)⟩
.

Since U ′ is an independent set, every edge alternative is preferred to d by at most one
vertex voter. Together with the remaining r −3 auxiliary voters, every edge alternative
is preferred to d by at most r −2 voters, causing each edge alternative to be deleted
if it is considered prior to d in an agenda (note that we have 2r −3 voters). Hence,
by our agenda, where all edge alternatives are in front of d , all edge alternatives are
deleted. In the final round, since the independent set U ′ has size at least h, at least h
vertex voters prefer p to d . Then, p will beat d , because all r −h −1 auxiliary voters
of the second group prefer p to d , making p a successive winner.

For the “if” part, assume that p can possibly become a successive winner, which
means that we can complete the vertex voters’ preference orders, ensuring p’s victory.
Let V ′ be the set of vertex voters that prefer p to d in such a completion. Since a
total of r −h −1 auxiliary voters prefer p to d , in order to make p beat d in the last
round, V ′ must have at least h voters (note that the majority quota is r −1). We show
that the vertex subset U ′ corresponding to V ′ is an independent set, that is, no two
vertices in U ′ are adjacent. Suppose for the sake of contradiction that U ′ contains
two adjacent vertices u and u′; denote the edge {u,u′} by e j . In the completed profile,
since p is a successive winner, there must be a round where the corresponding
edge alternative c j is considered. Since all edge alternatives with a lower index
have been deleted already, by construction of the preference orders, a total of r −1
voters (the two vertex voters corresponding to u,u′ and all r −3 auxiliary voters) rank
c j in the first position in the profile restricted to the alternatives c j ,c j+1, . . . ,cs , p,d ;
note that all voters prefer cℓ ≻ cℓ+1, 1 ≤ ℓ≤ s −1. This, however, will make c j win—a
contradiction.

We illustrate the NP-hardness reduction for the proof of Theorem 8.14 through an
example. Figure 8.1(a) depicts an undirected graph G with 6 vertices and 8 edges.
We set h := 4. The gray vertices form an independent set of size 4. Figure 8.1(b)
depicts the instance for POSSIBLE WINNER with the successive rule constructed by
the reduction. The constructed profile has 6+(4−2)+(6−4−1) = 9 voters and 2+8 = 10
alternatives. By completing this profile according to our proof, we can verify that p
is a successive winner.

Now, we show that POSSIBLE WINNER remains NP-complete for the amendment
rule. As already discussed, containment in NP is obvious.

Theorem 8.15. For the amendment rule, POSSIBLE WINNER with the given agenda
being linear is NP-complete.

206

8.7. Possible/Necessary Winner

u1

u3

u4

u5

u6

u2

e1

e3

e5

e7

e2

e4

e6

e8

(a)

voter v1 : {c1≻c3≻c5≻c7≻p, d }≻c2≻c4≻c6≻c8

voter v2 : {c2≻c4≻c6≻c8≻p, d }≻c1≻c3≻c5≻c7

voter v3 : {c1≻c2≻p, d }≻c3≻c4≻c5≻c6≻c7≻c8

voter v4 : {c3≻c4≻p, d }≻c1≻c2≻c5≻c6≻c7≻c8

voter v5 : {c5≻c6≻p, d }≻c1≻c2≻c3≻c4≻c7≻c8

voter v6 : {c7≻c8≻p, d }≻c1≻c2≻c3≻c4≻c5≻c6

two voters : c1≻c2≻c3≻c4≻c5≻c6≻c7≻c8≻d≻p
one voter : c1≻c2≻c3≻c4≻c5≻c6≻c7≻c8≻p≻d

agenda B : c1▷c2▷c3▷c4▷c5▷c6▷c7▷c8▷p▷d

(b)

Figure 8.1.: Illustration for the proof of Theorem 8.14. (a) An undirected graph with 6 vertices
and 8 edges. The graph has an independent set of size 4 (the gray vertices) and has a vertex
cover of size 2 (the white vertices). (b) The instance ((A,V), p,B) of the POSSIBLE WINNER

problem for the successive rule obtained from the VERTEX COVER-instance depicted on the left
with h = 4, where A = {c1,c2,c3,c4,c5,c6,c7,c8, p,d}, the voter set V and the corresponding
preference orders and the agenda are depicted in the figure. From the constructed agenda, we
notice that in order to let p beat d in the last two rounds, at least h = 4 vertex voters must rank
p ≻ d . But, in order not to let an edge alternative obtain too much “support”, at most one of
its “incident” vertex voters should rank p higher than d .

Proof. We show the NP-hardness by reducing from the NP-complete VERTEX COVER

problem in polynomial time; see the beginning of Section 5.6 for the definition. We
will present an example for the reduction right after the proof.

Let (G = (U ,E),h) be a VERTEX COVER instance, where U = {u1, . . . ,ur } denotes the
set of vertices and E = {e1, . . . ,es } denotes the set of edges. We assume that r ≥ 1 and
1 ≤ h ≤ r −1.

We construct a POSSIBLE WINNER instance ((A,V), p,B) as follows. The set A of
alternatives consists of the preferred alternative p, one helper alternative b, one
dummy alternative d , and one edge alternative c j for each edge e j ∈ E :

A := {p,b,d}∪ {c j | e j ∈ E }.

We construct three groups of voters for the voter set V , where only the first group
of voters has partial preference orders while the remaining two groups of voters have
linear preference orders. Let

⟨
A \ {p,b,d}

⟩
denote the order c1 ≻ c2 ≻ . . . ≻ cs .

1. For each vertex ui , we construct a vertex voter vi with partial order specified by

vi :
⟨

A \
(
{p,b,d}∪ I (ui)

)⟩≻ b ≻ p and
⟨

A \
(
{p,b,d}∪ I (ui)

)⟩≻ ⟨
I (ui)

⟩≻ d ,

207

8. Parliamentary Voting Rules

b

p

d

r

r−1

r−1

r−h−1 h c1 c2 . . . cs

≥r ≥r ≥r

<r <r <r

r−1

r−2

r−1

r−2

r−1

r−2

Figure 8.2.: The weighted majority graph (not including all arcs) for the obtained profile
with 2r −1 voters and s +3 alternatives in the reduction for POSSIBLE WINNER under the
amendment rule (Theorem 8.15). The agenda is b▷d ▷p▷cs ▷cs−1▷ . . . ▷c1. We use the
same symbol for both the alternative and its corresponding vertex. For instance, there is an
arc from b to p with weight r because exactly r voters prefer b to p. They all come from the
first group of voters. We draw an arc (a, a′) as a thick line if there is already a majority of voters
preferring a to a′. For the sake of brevity, some (irrelevant) arcs are omitted. By “. . .” we refer
to the remaining edge vertices in increasing sequence.

where
⟨

A \
(
{p,b,d}∪ I (ui)

)⟩
denotes the order derived from

⟨
A \ {p,b,d}

⟩
by

removing ui ’s “incident” edge alternatives.

Briefly put, voter vi prefers every “non-incident” edge alternative to the re-
maining ones. He prefers b to p and prefers every “incident” edge alternative
to d . But, he thinks b and p are incomparable to all “incident” edge alternatives
and to d .

2. We construct r −h −1 auxiliary voters with the same order

r −h −1 voters : p ≻ ⟨
A \ {p,b,d}

⟩≻ b ≻ d .

3. Finally, we construct another h auxiliary voters with the same order

h voters : p ≻ d ≻ ⟨
A \ {p,b,d}

⟩≻ b.

Note that we have constructed a total of 2r −1 voters. Thus, an alternative a beats
another alternative a′ if and only if at least r voters prefer a to a′.

Let the agenda B be the linear order b▷d ▷p▷cs ▷cs−1▷ . . . ▷c1. This completes
the construction, which can clearly be computed in polynomial time.

We illustrate the corresponding majority graph for the constructed profile in
Figure 8.2. Now, let us briefly sketch the idea with the help of this majority graph: By

208

8.7. Possible/Necessary Winner

the constructed agenda, in order to become an amendment winner, our preferred
alternative p has to beat every edge alternative c j , 1 ≤ j ≤ s. By the preference orders
of the auxiliary voters, for each alternative c j , exactly r −1 voters prefer p to c j (also
see the weights of arcs from p to c j in the graph). Thus, we have to put both p and,
by the construction of the vertex voters, b in front of c j ≻ d in the preference order of
at least one vertex voter that corresponds to a vertex incident to the edge e j . This
implies that the vertices corresponding to the voters for which we put both p and b
in front of d form a vertex cover. Furthermore, since b beats p (see the arc weight
in the majority graph), d has to beat b in the first round of the procedure. Since
all r −h −1 voters from the second group prefer b to d , we are only allowed to put
b ≻ p in front of d in at most h vertex voters’ preference orders. Thus, the vertex
cover is of size at most h.

We show that G has a vertex cover of size at most h if and only if p can possibly win
under the amendment rule.

For the “only if” part, assume that set U ′ is a vertex cover of size at most h. We
complete the partial orders of the vertex voters as follows.

1. For each vertex ui ∈U ′, let vi have the preference order⟨
A \

(
{p,b,d}∪ I (ui)

)⟩≻ b ≻ p ≻ ⟨
I (ui)

⟩≻ d .

2. For each vertex ui ∈U \U ′, let vi have the preference order⟨
A \

(
{p,b,d}∪ I (ui)

)⟩≻ ⟨
I (ui)

⟩≻ d ≻ b ≻ p.

Since |U \U ′| ≥ r −h, at least r −h vertex voters prefer d to b. Furthermore, all h
voters from the third group prefer d to b, implying that a strict majority of voters
prefer d to b. Thus, alternative d beats b and survives as the second round winner.
Since we assume that h ≥ 1, at least one additional vertex voter prefers p to d , and
since all r −1 voters from the second and the third group prefer p to d , we obtain that
alternative p beats d and survives as the third round winner. Since U ′ is a vertex cover,
for each edge alternative c j , 1 ≤ j ≤ s, there is at least one vertex voter preferring p
to c j . This implies that p beats c j (note that all r −1 auxiliary voters prefer p to c j),
making p an amendment winner.

For the “if” part, assume that there is a completion of the constructed profile,
completing the preference orders of the vertex voters, so that p is an amendment
winner. Let P be such a completion and let V ′ be the set of all vertex voters who
prefer p to some edge alternative c j . As we already noticed, since p is in front of

209

8. Parliamentary Voting Rules

voter v1 : c2≻c4≻c6≻c8≻{c1≻c3≻c5≻c7≻d , b≻p }
voter v2 : c1≻c3≻c5≻c7≻{c2≻c4≻c6≻c8≻d , b≻p }
voter v3 : c3≻c4≻c5≻c6≻c7≻c8≻{c1≻c2≻d , b≻p }
voter v4 : c1≻c2≻c5≻c6≻c7≻c8≻{c3≻c4≻d , b≻p }
voter v5 : c1≻c2≻c3≻c4≻c7≻c8≻{c5≻c6≻d , b≻p }
voter v6 : c1≻c2≻c3≻c4≻c5≻c6≻{c7≻c8≻d , b≻p }
three voters : p≻c1≻c2≻c3≻c4≻c5≻c6≻c7≻c8≻b≻d
two voters : p≻d≻c1≻c2≻c3≻c4≻c5≻c6≻c7≻c8≻b

agenda B : b▷d ▷p▷c8▷c7▷c6▷c5▷c4▷c3▷c2▷c1

Table 8.2.: The instance ((A,V), p,B) of POSSIBLE WINNER for the amendment rule where V =
{v1, v2, . . . , v6} and A = {c1,c2, . . . ,c8, p,d}, obtained from the graph in Figure 8.1(a) and h = 2,
the voter set V and the corresponding preference orders and the agenda are depicted above.
By the construction of the agenda, we notice that in order to let p become an amendment
winner, at most h = 2 vertex voters can rank b ≻ p ≻ c j ≻ d for some c j . In order to beat every
edge alternative c j , at least one “incident” voter must rank b ≻ p ≻ c j .

every edge alternative in the agenda, p must beat every edge alternative. Thus, for
each edge alternative c j , there is at least one vertex voter vi ∈V ′ who prefers p to c j .
By the construction of the preference orders, this means that V ′ corresponds to a
vertex cover.

Every vertex voter in V ′ also prefers b to d (because he originally ranks b ≻ p
and c j ≻ d). Since all r −h −1 auxiliary voters from the second group prefer b to d
and since p can only possibly win if b does not survive the second round (because b
beats p), there are at most h voters in V ′. This further implies that the vertex set
corresponding to V ′ is a vertex cover of size at most h.

We illustrate the NP-hardness reduction through an example. Let us consider the
undirected graph depicted in Figure 8.1(a) again. We set h := 2, and the vertex cover
consists of the white vertices. Then, the constructed instance of POSSIBLE WINNER

for the amendment rule has 6+ (6−2−1)+2 = 11 voters and 3+8 = 11 alternatives.
This instance can be found in Table 8.2.

We have just shown that it is NP-hard to decide whether a given alternative can
possibly be a successive (or amendment) winner, even when the given agenda is
already a linear order (see Theorems 8.14 and 8.15). In both NP-hardness reductions,
the number m of alternatives and the number n of voters are unbounded. In most
parliamentary elections, however, there is only a limited number of alternatives. For

210

8.7. Possible/Necessary Winner

this case we obtain tractability results. Specifically, we show that with respect to the
parameter m, POSSIBLE WINNER is fixed-parameter tractable (FPT, see Section 2.6
for more information on this complexity class).

Our approach is based on the integer linear programming technique. We reduce
POSSIBLE WINNER to INTEGER LINEAR PROGRAMMING FEASIBILITY (Definition 2.8)
where the input matrix has 2O(m2) columns (that is, variables) and 2O(m2) rows (that
is, constraints), and the absolute value of each coefficient and of each entry in the
goal vector is at most 2n (recall that m denotes the number of alternatives and n
the number of voters). By Theorem 2.2, this immediately implies fixed-parameter
tractability for the parameter m.

Theorem 8.16. Let m denote the number of alternatives and n the number of voters
of a given POSSIBLE WINNER instance. Let ilp(ρ1,ρ2,ρ3) denote the running time of IN-
TEGER LINEAR PROGRAMMING FEASIBILITY which has ρ1 variables and ρ2 constraints,
and the maximum of the absolute values of the coefficients and the constant terms is
ρ3 with ρ1,ρ2,ρ3 ∈N. Then, POSSIBLE WINNER can be solved in O(m! · ilp(m! ·2m2

, 2n+
m,n)) time for the successive rule and in O(m! ·2m · ilp(m! ·2m2

, 2n +3m,2n)) time for
the amendment rule.

Proof. The general idea for both rules is to “guess” the possible completion of the
agenda and the sequential outcome of the voting regarding this agenda for which
our preferred p may win and use integer linear programs (ILPs) to check whether
such a guess is valid.

We introduce some notation for the description of our ILPs for both rules. Let
Π denote the set of partial preference orders of the voters in the given profile. For
each partial order ≻∈Π, we write N (≻) to denote the number of voters with partial
order ≻ in the original profile, and we write C (≻) to denote the set of all possible
linear orders completing ≻. For instance, if we have three alternatives a,b,c, then
C ({a,b} ≻ c) = {a ≻ b ≻ c,b ≻ a ≻ c} and C (a ≻ b ≻ c) = {a ≻ b ≻ c}. Accordingly, for each
linear order ≻∗, we write C−1(≻∗) to denote the set of all partial orders that ≻∗ can
complete.

For each partial order ≻ and each possible completion ≻∗∈C (≻) of ≻, we introduce
an integer variable x(≻,≻∗) denoting the number of voters with partial order ≻ in the
input profile that will have linear order ≻∗ in a possible completing profile. Since,
for a set of m elements, there are at most 2m2

possible partial orders and at most m!
possible linear orders, we have introduced at most m! ·2m2

variables. We use these
variables for both the successive and the amendment rules.

211

8. Parliamentary Voting Rules

Successive rule. Suppose we guess that our preferred alternative p will possibly
win under agenda L : a1▷a2▷ . . . ▷ay ▷ . . . ▷am with ay = p. We need one more
notation: For each alternative ai , 1 ≤ i ≤ m − 1, let F (ai) denote the set of linear
orders ≻ with ai ≻ {ai+1, ai+2, . . . , am}. Now, the crucial point is that our preferred
alternative p is a successive winner under agenda L if and only if the following two
conditions hold.

1. The profile can be completed so that no alternative ai , 1 ≤ i ≤ y − 1, is an
{ai , ai+1, . . . , am}-majority winner.

2. Alternative p is an {ay , ay+1, . . . , am}-majority winner.

We can describe these two conditions via a formulation of the ILP feasibility problem.∑
≻∗ ∈ F (p)
≻∈C−1(≻∗)

x(≻,≻∗) > n

2
, (8.1)

∑
≻∗ ∈C (≻)

x(≻,≻∗) = N (≻), ∀ partial orders ≻∈Π, (8.2)

∑
≻∗ ∈ F (ai)
≻∈C−1(≻∗)

x(≻,≻∗) ≤ n

2
, ∀1 ≤ i ≤ y −1, (8.3)

x(≻,≻∗) ≥ 0, ∀ partial orders ≻∈Π. (8.4)

We explain the meaning of these three groups of constraints. First, constraint
set (8.1) ensures that our preferred alternative p is an {ay , ay+1, . . . , am}-majority win-
ner (condition 2) and constraint set (8.3) ensures that no alternative a j , 1 ≤ j ≤ y −1,
is an {a j , a j+1, . . . , am}-majority winner (condition 1). Second, constraint set (8.4)
ensures that our variables are non-negative. Finally, constraint set (8.2) ensures that
each voter’s partial order is completed to exactly one linear order. The correctness of
our formulation thus follows.

Before we come to the running time, let us mention again that we need to change
the equations (8.2) and the strict inequality (8.1) to obtain an instance of INTEGER

LINEAR PROGRAMMING FEASIBILITY. This is quite straightforward and the numbers
of additional variables and additional constraints are upper-bounded by the number
of original constraints, respectively.

We derive our desired running time from the time of running an ILP. First of all,
we brute-force search into all m! possible completions of the input agenda. Then,

212

8.7. Possible/Necessary Winner

for each of these completions, we run an ILP with O(m! ·2m2
) variables x(≻,≻∗) and

O(2n +m) constraints where the absolute value of each coefficient and the constant
term is at most n. For a remark on a transformation from our ILP formulation to an
ILP instance, we refer the reader to the end of the case of the successive rule in this
proof or to Section 2.6.1.

Amendment rule. Just as for the successive rule, we guess a completion of the
agenda. Let L := a1▷a2▷ . . . ▷ay ▷ . . . ▷am be the guessed agenda with ay being our
preferred alternative p. Apart from this, we also guess the amendment winner bi of
each round i . We do this by guessing whether ai will be the i th-round amendment
winner: Let b1 := a1 because by definition, the first round amendment winner is
a1. For each 2 ≤ i ≤ y −1, we guess a Boolean value ci ∈ {0,1} and let bi := ai if ci = 1
and let bi := bi−1 otherwise. Note that guessing the amendment winner of a round
numbered higher than or equal to y is not necessary since the goal includes making
p beat every alternative az with z > y .

Now, we can use an ILP formulation to check whether a valid guess can be realized
by completing our partial profile. To this end, for each two distinct alternatives a
and b, let G(a,b) denote the set of all linear orders with a ≻ b. Our ILP formulation
consists of four groups of constraints:∑

≻∗ ∈C (≻)

x(≻,≻∗) = N (≻), ∀ partial orders ≻∈Π, (8.5)

∑
≻∗ ∈G(bi−1 ,ai)
≻∈C−1(≻∗)

x(≻,≻∗) −
∑

≻∗ ∈G(ai ,bi−1)
≻∈C−1(≻∗)

x(≻,≻∗) < (1− ci) · (n +1), ∀2 ≤ i ≤ y −1, (8.6)

∑
≻∗ ∈G(bi−1 ,ai)
≻∈C−1(≻∗)

x(≻,≻∗) −
∑

≻∗ ∈G(ai ,bi−1)
≻∈C−1(≻∗)

x(≻,≻∗) > −ci · (n +1), ∀2 ≤ i ≤ y −1, (8.7)

∑
≻∗ ∈G(p,ai)
≻∈C−1(≻∗)

x(≻,≻∗) −
∑

≻∗ ∈G(ai ,p)
≻∈C−1(≻∗)

x(≻,≻∗) > 0, ∀y +1 ≤ i ≤ m, (8.8)

x(≻,≻∗) ≥ 0, ∀ partial orders ≻∈Π. (8.9)

The meaning of these four groups of constraints is as follows: The first group (con-
straint (8.5)) ensures that each voter’s partial order is completed to exactly one linear
order. The second and the third groups of constraints make the guessed alternative bi

an i th-round amendment winner: If ci = 1, then the right-hand side of constraint (8.6)
is zero. Hence, satisfying this constraint makes ai beat bi−1 (because the number

213

8. Parliamentary Voting Rules

of voters preferring ai to bi−1 is greater than the number of voters preferring bi−1

to ai). Thus, bi = ai . Otherwise, ci equals 0, which implies that the right-hand side of
constraint (8.7) is zero. Hence, satisfying this constraint makes bi−1 beat ai (because
the number of voters preferring bi−1 to ai is greater than the number of voters pre-
ferring ai to bi−1). Consequently, the i th-round amendment winner bi is bi−1. The
fourth group (constraint (8.8)) ensures that for each i ∈ {y+1, y+2, . . . ,m}, the number
of voters preferring p to ai is greater than the number of voters preferring ai to p,
ensuring that p beats ai . The last group (constraint (8.9)) ensures that our variables
are non-negative. The correctness of our ILP formulation thus follows.

To analyze the running time, first of all, for each valid completion of the agenda
and valid sequence of the amendment winners (there are m! ·2m many), we run our
ILP which has O(m!·2m2

) variables x(≻,≻∗) and O(2n+3m) constraints, and where the
absolute value of each coefficient and each constant term is at most 2n. For a remark
on a transformation from our ILP formulation to an ILP instance, we refer the reader
to the end of the case of the successive rule in this proof or to Section 2.6.1.

By Theorem 2.2, we can derive the following tractability result because an integer
linear program with ρ1 variables and ρ2 constraints, and whose coefficients and
constant terms are between −ρ3 and ρ3, can be encoded in O(ρ1 ·ρ2 · log(ρ3 +2)) bits
(see Footnote 2 and Theorem 2.2).

Corollary 8.17. Let m denote the number of alternatives and n denote the number of
voters of a given POSSIBLE WINNER instance. Then, for both voting rules, POSSIBLE

WINNER can be solved in O(ρ2.5ρ+o(ρ)+2 · log(n +2)) time, where ρ = m! ·2m2
.

We close this section by remarking that the complexity result in Corollary 8.17
is of classification nature only. It would be interesting to know whether our fixed-
parameter tractability results achieved through integer linear programming can also
be achieved by a direct combinatorial (fixed-parameter) algorithm (also see the more
general discussion of Bredereck et al. [Bre+14a, Key question 1]).

8.7.2 Necessary Winner

In notable contrast to POSSIBLE WINNER, the NECESSARY WINNER problem for
the successive rule tends to be computationally easier than for the amendment rule.
Observe that a given alternative p is not a necessary winner if and only if the given
profile and partial agenda can be completed so that there is another alternative c ̸= p
such that one the following holds:

1. c beats p and it is considered after p in the completed agenda or

214

8.7. Possible/Necessary Winner

2. c is already a majority winner when considered and it is considered before p.

The reason for the difference in complexity between the two voting rules seems to be
that for the successive rule, checking whether there is a completion of the profile and
the agenda satisfying one of the above two conditions can be done in polynomial
time, but it is not clear how to check this in polynomial time for the amendment
rule. Throughout the rest of this section, we assume that a NECESSARY WINNER

instance (P = (A,V), p,B) is given.

Successive rule. We start with the successive rule and show that deciding whether
our preferred alternative is not necessarily a successive winner can be solved in
polynomial time. We introduce some notion regarding the alternatives in a (possibly
not linear) agenda.

Definition 8.6 (B⇐
c , B∼

c , and B⇒
c). Given a partial agenda B (which is possibly not

linear), for each alternative c ∈ A, let B⇐
c be the set of all alternatives c ′ that are

ordered in front of c by B (that is, B : c ′▷c). Let B∼
c be the set of all alternatives c ′

whose relative positions to c are not specified by B (that is, B : c ∼▷ c ′), and let B⇒
c

be the set of all alternatives c ′ that are ordered behind c by B (that is, B : c▷c ′).

Note that for each alternative c ∈ A, the three sets B⇐
c , B∼

c , and B⇒
c are pairwise

disjoint and that B⇐
c ∪̇B∼

c ∪̇B⇒
c = A \ {c}.

We derive the main idea behind our polynomial-time algorithm from the following
simple observation.

Observation 8.18. Alternative p is not a necessary successive winner if and only
if there is a completion (P ∗,L) of profile P and agenda B such that some other
alternative may win, that is, such that

1. p is not an (L ⇒
p ∪ {p})-majority winner, or

2. L ⇐
p contains an alternative c that is an (L ⇒

c ∪ {c})-majority winner.

We will show that checking whether there is a completion satisfying one of the
above conditions can be done in polynomial time. First, we need two concepts
regarding the completions of a profile and we need to rephrase the above conditions.

Definition 8.7 (c-discriminating and c-privileging). Let c be an arbitrary alternative.
Consider a specific linear preference order ≻∗ that completes a partial preference
order ≻ such that for each incomparable pair X of alternatives in ≻ with c ∉ X , the
relative order of this pair X in ≻∗ is determined by an arbitrary but fixed linear

215

8. Parliamentary Voting Rules

order. We say that this specific preference order ≻∗ is c-discriminating if for each
alternative c ′ that is incomparable to c in ≻, it holds that c ′ ≻∗ c. Similarly, ≻∗ is
c-privileging if for each alternative c ′ that is incomparable to c in ≻, it holds that
c ≻∗ c ′.

Now, consider a profile P ∗ that completes P . We say that P ∗ is c-discriminating
if the preference order of each voter in P ∗ is c-discriminating and that P ∗ is c-
privileging if the preference order of each voter in P ∗ is c-privileging.

Note that a c-discriminating (resp. c-privileging) profile is unique. We give an
example to illustrate these two concepts.

Example 8.5. Let P be a preference profile with four alternatives a,b,c,d , and two
voters v1, v2 whose partial preference orders are specified as

v1 : b ≻ c ≻ d and v2 : d ≻ b.

Consider the fixed order a ≻ b ≻ c ≻ d over the alternatives.
The profile with the following preference orders

v1 : a ≻ b ≻ c ≻ d and v2 : a ≻ d ≻ b ≻ c ,

is c-discriminating; note that it is unique with respect to the fixed order.
The profile with the following preference orders

v1 : b ≻ c ≻ a ≻ d and v2 : c ≻ a ≻ d ≻ b,

is c-privileging; note that it is unique with respect to the fixed order.

Now, we can rephrase conditions 1 and 2 from Observation 8.18 so that we can
verify them in polynomial time.

Lemma 8.19. There is a completion (P ∗,L) of (P ,B) satisfying condition 1 from Ob-
servation 8.18 if and only if p is not an (A \B⇐

p)-majority winner in the p-discriminat-
ing completion of P .

Proof. For the “only if” case, suppose that (P ∗,L) completes (P ,B) and satisfies
condition 1. This means that at least half of the voters in P ∗ prefer some alterna-
tive c ∈ L ⇒

p to p. Since L completes B, it follows that L ⇒
p ⊆ A \ (B⇐

p ∪ {p}). Let
P ∗∗ be the p-discriminating profile. Since each voter in P ∗∗ who prefers some
alternative c ∈L ⇒

p to p will certainly still prefer c to p in P ∗∗ (because this profile
“discriminates” p), it must hold that at least half of the voters in P ∗∗ prefer some

216

8.7. Possible/Necessary Winner

alternative c ∈L ⇒
p ⊆ A \ (B⇐

p ∪ {p}) to p. Thus, p is not an (A \B⇒
p)-majority winner

in P ∗∗.
For the “if” case, suppose that p is not an (A \ B⇐

p)-majority winner in the p-
discriminating profile P ∗∗. Consider an arbitrary agenda L that satisfies

B⇐
p ▷p▷ (B∼

p ∪B⇒
p).

One can verify that (P ∗∗,L) satisfies condition 1 because p is not a (B∼
p ∪B⇒

p ∪ {p})-
majority winner.

Lemma 8.20. Assume that no completion of (P ,B) satisfies condition 1. Then, there
is a completion (P ∗,L) of (P ,B) satisfying condition 2 from Observation 8.18 if and
only if there is some alternative b ∈ B⇐

p being a (B⇒
b ∪ {b})-majority winner in the

b-privileging completion of P .

Proof. For the “only if” case, suppose that (P ∗,L) is a completion of (P ,B) which
satisfies condition 2 and let c ∈ L ⇐

p be such an (L ⇒
c ∪ {c})-majority winner. This

implies that c beats p in P ∗ because p ∈ L ⇒
c . Observe that c ∈ B⇐

p ∪B∼
p holds

because L completes B. If c ∈B∼
p holds, that is, if B does not specify the relative

order of c and p, then the same completing profile P ∗ and a completing agenda of
B with p▷c satisfy condition 1 which is not possible by our assumption. Thus, we
have that c ∈B⇐

p .
Now, we show that c is a (B⇒

c ∪ {c})-majority winner in the c-privileging comple-
tion P ∗∗ of P . Observe that each voter v in P ∗ who prefers c to L ⇒

c must also
prefer c to B⇒

c because L completes B. Together with the assumption that c is an
(L ⇒

c ∪{c})-majority winner in P ∗, this implies that more than half of the voters in P ∗

prefer c to B⇒
c . Since each voter in P ∗ who prefers c to B⇒

c will still prefer c to B⇒
c

in the c-privileging profile P ∗∗, more than half of the voters in P ∗∗ prefer c to B⇒
c .

For the “if” case, suppose that B⇐
p contains an alternative b that is a B⇒

b ∪ {b}-
majority winner in the b-privileging completion P ∗∗ of P . Now, consider a complet-
ing agenda L that satisfies

B⇐
b ▷B∼

b ▷c▷B⇒
b .

We can easily verify that (P ∗∗,L) satisfies condition 2 (with respect to b).

Now, we have all ingredients to show that deciding on a necessary successive
winner is polynomial-time solvable.

Theorem 8.21. For the successive rule, NECESSARY WINNER can be solved in O(n ·m3)
time.

217

8. Parliamentary Voting Rules

Algorithm 8.3: Algorithm for solving NECESSARY WINNER by checking whether p is a
necessary winner.

Input: (P = (A,V), p,B) — an instance of NECESSARY WINNER

1 Compute the p-discriminating completion P ∗ of P

2 if p is not an (A \B⇐
p)-majority winner in P ∗ then

3 return “no”

4 foreach alternative c ∈B⇐
p do

5 Compute the c-privileging completion P ∗∗ of P

6 if c is a (B⇒
c ∪ {c})-majority winner in P ∗∗ then

7 return “no”

8 return “yes”

Proof. By Observation 8.18 and by Lemmas 8.19 and 8.20, we can conclude that p is
not a necessary winner if and only if

1. p is not an (A \B⇐
p)-majority winner in the p-discriminating completion of P

or

2. B⇐
p contains an alternative c which is a (B⇒

c ∪ {c})-majority winner in the
c-privileging completion of P .

With regard to the second requirement, we remark that a (B⇒
c ∪ {c})-majority

winner is not guaranteed to win under the successive procedure because some other
alternative c ′ from B⇐

c is already a (B⇒
c ′ ∪ {c ′})-majority winner. Nevertheless, p will

not be a successive winner in this case.
Algorithm 8.3 checks whether one of the two requirements is fulfilled. Fortunately,

this can be done in polynomial time: Computing the p-discriminating or the c-
privileging completion for some alternative c ∈ A\{p} takes O(n ·m2) time and finding
the majority winner also takes O(n ·m2) time. The algorithm iterates at most m times
through the loop in Steps (4)–(7). Altogether it takes O(n ·m3) time.

Amendment rule. Adapting the VERTEX COVER reduction from the proof of The-
orem 8.15, we can show that NECESSARY WINNER for the amendment rule is coNP-
hard.

Theorem 8.22. For the amendment rule, NECESSARY WINNER with the given agenda
being linear is coNP-complete.

218

8.7. Possible/Necessary Winner

Proof. Recall that in the proof of Theorem 8.15 we constructed a profile P = (A,V)
with 2r −1 voters and a linear agenda B for a given instance (G = (U ,E),h) of VERTEX

COVER, and we showed that G admits no vertex cover of size at most h if and only if
our preferred alternative p is not a possible amendment winner. Note that p is not a
possible winner if and only if in some completion of the profile P ,

1. the helper alternative b beats the dummy alternative d or

2. at least one edge alternative cℓ beats p.

Since all (r −1) auxiliary voters and at least one vertex voter prefer each edge alterna-
tive to alternative b, each edge alternative beats b. This implies that if b beats d in
the second round, then cs beats b, and b will be deleted in the fourth round (note
that b beats p in all cases). Thus, p is not a possible winner if and only if there
is a completion of the profile, where some edge alternative cℓ, 1 ≤ ℓ ≤ s, becomes
an (s −ℓ+4)th-round amendment winner. Since every voter has the same prefer-
ence order c1 ≻ c2 ≻ . . . ≻ cs over all edge alternatives, edge alternative c1 beats every
remaining edge alternative c j , j > 1, and becomes the amendment winner. This
implies that c1 necessarily wins if and only if p does not possibly win. Hence, the
construction in the proof of Theorem 8.15 provides a polynomial-time reduction
from the coNP-complete CO-VERTEX COVER problem to our NECESSARY WINNER

problem for the amendment rule.

Using the ILP formulation for POSSIBLE WINNER under the amendment rule (The-
orem 8.16), we can check whether there is a possible winner different from p. Since
p is a necessary winner if and only if there is no other possible winner, using the
results of Lenstra [Len83], Kannan [Kan87], and Frank and Tardos [FT87] we can
conclude the following.

Corollary 8.23. Let m denote the number of alternatives and n denote the number
of voters of a given NECESSARY WINNER instance. Then, for the amendment rule,
NECESSARY WINNER can be solved in O(ρ2.5ρ+o(ρ)+2 · log(n +2)) time, where ρ = m! ·2m2

.

8.7.3 The case of weighted voters

If each voter comes with a weight, then for the amendment rule, POSSIBLE WINNER

and NECESSARY WINNER are weakly NP-hard when the number of alternatives is
three and four, respectively [Lan+12, Pin+11]. For the successive rule, we also obtain
NP-hardness for WEIGHTED POSSIBLE WINNER.

Theorem 8.24. For the successive rule, WEIGHTED POSSIBLE WINNER is weakly NP-
hard even for three alternatives and when the agenda B is linear.

219

8. Parliamentary Voting Rules

Proof. We show NP-hardness by providing a polynomial-time reduction from the
weakly NP-complete PARTITION problem [GJ79].

PARTITION

Input: A multi-set X = (x1, x2, . . . , xr) of positive integers.
Question: Is there a perfect partition X1 ∪̇X2 = X of the integers such that
both parts sum up to the same value, that is,

∑
x∈X1

x =∑
x∈X2

x?

Let X = (x1, x2, . . . , xr) be a PARTITION instance with
∑

x∈X x = 2K . We construct
a WEIGHTED POSSIBLE WINNER instance ((A,V), p,B,ω : V →N) with ω being the
weight function. The set A of alternatives consists of the preferred alternative p and
two further alternatives a and b:

A := {p, a,b}.

The set V of voters consists of r number voters and one dummy voter:

1. For each integer xi ∈ X (which is positive), we construct one number voter vi

with a partial order specified by a ≻ p and with weight ω(vi) = xi .

2. We construct one additional dummy voter d with linear order p ≻ b ≻ a and
with weight ω(d) = 1.

Finally, the partial agenda B is linear and set to a▷b▷p. This completes the
construction, which clearly can be computed in polynomial time.

Before going into the details of the proof, observe that the total weight of all voters
is 2K +1 and, hence, the majority quota is K +1.

For the “only if” part, assume that there is a perfect partition X1 ∪̇X2 = X of the
integers such that

∑
x∈X1

x =∑
x∈X2

x = K . Then, we complete the profile as follows. For
each number voter vi , if xi ∈ X1, then the preference order of voter vi is completed
to a ≻ p ≻ b; otherwise, the preference order of voter vi is completed to b ≻ a ≻ p.
By our agenda B, alternative a will be deleted in the second round because it is
not a majority winner (only the voters corresponding to the integers in X1 prefer a
to {p,b}). In the profile restricted to b and p, the dummy voter plus the voters that
correspond to the integers in X1 prefer p to b; the sum of their weights is K +1. Thus,
p beats b and becomes a winner.

For the “if” part, assume that there is a completion P ∗ of the profile where p
is a successive winner. This implies that a is not a majority winner. Thus, by the
preference order of the dummy voter which has weight one, the sum of the weights
of the number voters that have preference order b ≻ a ≻ p is at least K . In the third

220

8.7. Possible/Necessary Winner

round, p must beat b, which implies that the sum of the weights of the number
voters that have preference order b ≻ a ≻ p is at most K . Summarizing, the number
voters that have preference order b ≻ a ≻ p have a total weight equal to K . The
corresponding integers sum up to K .

As already mentioned in the beginning of Section 8.7.3, Pini et al. [Pin+11] and
Lang et al. [Lan+12] showed that WEIGHTED NECESSARY WINNER is weakly NP-hard
for the amendment rule, even for four alternatives. We complement this result by
showing that it is polynomial-time solvable for the successive rule, and it is linear-
time solvable for the amendment rule when the number of alternatives is at most
three.

Theorem 8.25. Let m denote the number of alternatives, n denote the number of
voters, and w denote the sum of the weights of all voters of a given NECESSARY WINNER

instance. The following holds. 1. For the successive rule, WEIGHTED NECESSARY

WINNER can be solved in O(w ·n ·m3) time. 2. For the amendment rule, WEIGHTED

NECESSARY WINNER can be solved in linear time for up to three alternatives.

Proof. First, we observe that the algorithm (Theorem 8.21: Algorithm 8.3) that we
provide to check whether an alternative is a necessary successive winner of a given
profile without weights can be easily adapted to also solve the case of weighted
voters. Thus, for the successive rule, WEIGHTED NECESSARY WINNER is also solvable
in O(w ·n ·m3) time.

We show that for up to three alternatives, WEIGHTED NECESSARY WINNER is linear-
time solvable. This is closely related to computing the possible and necessary Con-
dorcet winners. To show our result, for each two alternatives a and b, let ω(a,b) be
the sum of the weights of all voters who prefer a to b.

We check all (up to) six completions L of a given partial agenda B and answer
that our preferred alternative p is a necessary amendment winner only if all checks
return “yes”. First, if p is in one of the first two positions in agenda L , then the
problem is equivalent to asking whether p is a necessary Condorcet winner, that is,
whether all completions of the preference orders make p beat the other(s), one by
one. The answer to the latter is yes if and only if for each remaining alternative c, the
sum of the weights of all voters who prefer p to c is more than half of the total sum of
weights. This can be checked in linear time.

We are left with the very last case where the profile has three alternatives, denoted
by a, b, and p, and where the preferred alternative p is in the last position in the
agenda L . Let K be the total sum of weights. In this case, p is a necessary winner if

221

8. Parliamentary Voting Rules

and only if either p is a Condorcet winner or the sum of the weights of all voters who
prefer p to the necessary Condorcet winner among a and b is greater than K /2:

(1) If ω(p, a) > K /2 and if ω(p,b) > K /2, then answer “yes”;

(2) Otherwise, if ω(p, a) > K /2 and if ω(a,b) > K /2, then answer “yes”;

(3) Otherwise, if ω(p,b) > K /2 and if ω(b, a) > K /2, then answer “yes”;

(4) Otherwise, answer “no”.

The condition stated in step (1) implies that p is a Condorcet winner. As we know,
if a Condorcet winner exists, then it is the only unique amendment winner (Observa-
tion 8.1). Thus, step (1) gives a correct answer. If the conditions in step (1) does not
hold, then the first inequality in step (2) implies ω(p,b) ≤ K /2. The second inequality
in step (2) implies that in every completion of the profile, a will beat b. In this case, p
will beat a and becomes an amendment winner. Thus, step (2) gives a correct answer.
Analogously, we can show that step (3) also gives a correct answer.

If neither of the first three steps applies, then we obtain that one of the conditions
between ω(p, a) ≤ K /2 and ω(p,b) ≤ K /2 and one of the conditions between ω(a,b) ≤
K /2 and ω(b, a) ≤ K /2 must hold. This results in four possible combinations of the
conditions, each of which ensures that p is not a necessary winner. Thus, the last
step also gives a correct answer. All checks can be done in linear time.

8.8 Empirical study of AGENDA CONTROL and COALITIONAL MANI-
PULATION

Our polynomial-time algorithms from Sections 8.5 and 8.6 do not compute how
many alternatives can win through control (or manipulation). We therefore investi-
gate this empirically. To this end, we use real-world data from the PrefLib collection
of preference profiles [MW13] to examine empirically the ratio of profiles that admit
successful agenda control or manipulation operations. Since only one case of the
possible and the necessary winner problems is polynomial-time solvable and since
PrefLib offers only a very restricted variant of incomplete preferences, we do not
run experiments for POSSIBLE WINNER or NECESSARY WINNER. Our algorithms
for AGENDA CONTROL and COALITIONAL MANIPULATION are written in C++ and are
available through http://www.akt.tu-berlin.de/menue/software/. Our results are
shown in Tables 8.3 and 8.4.

222

http://www.akt.tu-berlin.de/menue/software/

8.8. Empirical study of AGENDA CONTROL and COALITIONAL MANIPULATION

8.8.1 Data background

PrefLib is a library for real-world preferences. The data is provided by various
research groups. As of August, 2015, PrefLib contained 314 profiles with complete
preference orders: 100 of them have three alternatives, 108 of them have four alter-
natives, one of them has 7 alternatives, and the remaining 105 profiles have between
9 and 242 alternatives. Among all profiles with complete preference orders, 135 ones
have an odd number of voters, where 56 of these have three alternatives, 52 of these
have four alternatives, one of these has 7 alternatives, and the remaining 26 profiles
have between 14 and 242 alternatives. The number of voters ranges from 5 to 14081.

8.8.2 Agenda Control

For each of the 135 profiles with an odd number of voters (note that for reasons of
simplicity, we only implemented our algorithms for odd numbers of voters), using
the algorithms from Theorems 8.4 and 8.7, we compute the number ms (resp. ma) of
alternatives for which a successive (resp. amendment) agenda control is possible.
Then, we calculate the control vulnerability ratio as

ms −1

m −1
and

ma −1

m −1
,

where m denotes the number of alternatives. Note that we use m −1 because we
factor out the alternative that wins originally. For instance, a control vulnerability
ratio of 0.5 means that there are m−1

2 alternatives such that each of them can become
the winner under an appropriately designed agenda. We use both the arithmetic
mean and the geometric mean to compute the average values among all profiles
(see Table 8.3). While the arithmetic mean is the sum of the control vulnerability
ratios of all profiles divided by t , the geometric mean is the t th root of the product of
the control vulnerability ratios of all profiles, where t is the total number of profiles
studied.

Summary. Our results show that the successive rule tends to be more vulnerable
to agenda control than the amendment rule: For profiles with up to four alterna-
tives, 0.157 of the alternatives have a chance to win under the successive rule, while
it is 0 under the amendment rule. For the remaining profiles, the statistics are 0.81
versus 0.035. We observe that no alternative other than the original winner can win
under the amendment rule by altering the agenda when the number of alternatives
is at most four; there are one third of such profiles. This is remarkable since this
means that the original winner of each of the one-third profiles is already a Con-

223

8. Parliamentary Voting Rules

control vulnerability ratio
m ≤ 4 m ≥ 5

Successive Amendment Successive Amendment

Arithmetic mean 0.157 0.000 0.081 0.035
Geometric mean 0.000 0.000 0.000 0.000

Table 8.3.: Experiments on agenda control with real-world data. We evaluate all 135 profiles
from PrefLib that have linear preference orders and an odd number of voters. We distinguish
between profiles with m ≤ 4 alternatives, and those with m ≥ 5 alternatives. The reason for this
separation is twofold. First, while a large number of profiles has either three or four alternatives
(one third each), for m ≥ 5, in most cases, less than five profiles have m alternatives. Second,
the results for profiles with up to four alternatives are pretty different from the other profiles.

dorcet winner. The values of the geometric are zero since there is at least one profile
for which there is a Condorcet winner.

8.8.3 Manipulation

Since PrefLib does not offer any agenda, we have to generate a set Z of agendas
for manipulation to obtain a good representation. The size of Z depends on the
number m of alternatives:

1. If m ≤ 8, then let Z be the set of all possible agendas, that is, |Z | := m!.

2. Otherwise, we generate a set Z of agendas by randomly choosing |Z | :=
min(n2,8!) agendas from the set of all possible agendas, where n denotes the
number of voters in the input. All possible agendas are equally likely of being
chosen for Z .

For each alternative c and for each agenda L ∈ Z , using the algorithms behind
Theorems 8.9 and 8.11, we compute the minimum coalition size, that is, the mini-
mum number of voters needed to make c a successive (resp. an amendment) winner.
Let this number for the successive (resp. amendment) rule be κs (P ,c,L) (resp.
κa (P ,c,L)). This number each time is upper-bounded by n +1, where n denotes
the number of voters in the given profile.

We calculate the manipulation resistance ratio as∑
L∈Z

∑
c∈C

κs (P ,c,L)

|Z | · (m −1) · (n +1)
and

∑
L∈Z

∑
c∈C

κa (P ,c,L)

|Z | · (m −1) · (n +1)
.

224

8.8. Empirical study of AGENDA CONTROL and COALITIONAL MANIPULATION

Measurements: m ≤ 8 m ≥ 9

the ratio of. . . Successive Amendment Successive Amendment

. . .manipulation resistance 0.455 0.402 0.945 0.924

. . .2nd winner coalition 0.288 0.222 0.523 0.468

. . .smallest coalition 0.263 0.221 0.386 0.385

Table 8.4.: Experiments on manipulation with real-world data. We evaluate all 314 profiles
from PrefLib that have linear preference orders. We separately consider profiles with m ≤ 8
and m ≥ 9 alternatives. The reason for this separation is that we only consider all m! possible
agendas when m ≤ 8. As all three measures are ratios between [0,1], we use the geometric
mean to compute the average and omit showing the values using the arithmetic mean since
they are similar to the ones obtained with the geometric mean.

For instance, a manipulation resistance ratio of 0.4 means that each alternative in a
profile needs a coalition of 0.4·(n+1) additional manipulators, on average, to become
a winner.

From our experimental results, we observe that on average, a successful manipula-
tion needs at least n/2 manipulators (see the first row in Table 8.4), where n denotes
the number of voters in the given profile. This is because in order to become a
winner, most alternatives need a coalition of at least n +1 additional voters. To get a
more thorough understanding of the manipulation issue, however, we consider two
related concepts:

• The ratio of the 2nd winner coalition size, that is, the coalition size for the alter-
native that becomes a winner after the original winner is removed. Formally,
the 2nd winner coalition is defined as∑

L∈Z
κs (P ,c∗,L)

|Z | · (n +1)
and

∑
L∈Z

κa (P ,c∗,L)

|Z | · (n +1)
,

where c∗ is a successive (resp. an amendment) winner after the original winner
is removed.

• The ratio of the smallest coalition size, that is, the sizeσs (P ,L) (resp.σa (P ,L))
of the smallest coalition that makes some alternative other than the original
winner win. Formally, the smallest coalition is defined as∑

L∈Z
σs (P ,L)

|Z | · (n +1)
and

∑
L∈Z

σa (P ,L)

|Z | · (n +1)
.

225

8. Parliamentary Voting Rules

Summary. Our results show that successful manipulations with few voters are rare;
let n denote the number of voters in the respective profile: For profiles with up
to eight alternatives the average coalition size is at least 0.4 · (n + 1) (even the 2nd

winner coalition size is 0.2 · (n +1); the smallest coalition size is only slightly lower),
while for profiles with at least nine alternatives the average coalition size is almost
n +1 (even the 2nd winner coalition size is roughly 0.5 · (n +1)). Comparing the two
rules, it seems that making an alternative win under the successive rule requires
more manipulators than making it win under the amendment rule. The difference,
however, is not significant.

8.9 Concluding remarks

Our work indicates that, from a computational perspective, the amendment rule
seems to have superior resistance against agenda control and strategic voting, com-
pared to the successive rule. This supports the suggestion made by Apesteguia,
Ballester, and Masatlioglu [ABM14] that most European and Latin American par-
liaments should rather go the Anglo-American way, that is, they should use the
amendment rule instead of the successive rule.

In practice there are many other procedural complications regarding how and
when alternatives can be placed, the order of such alternatives, as well as modifica-
tions to these simple voting rules. For example, in some parliaments, the parliament
can vote on reordering the alternatives. Studying such complications is one interest-
ing direction for future work.

We see this chapter as an initial step towards computational complexity studies of
the two parliamentary voting rules. After identifying the computational complexity
of several voting problems for both studied rules, it would be natural and interesting
to further explore and exploit the structures to identify tractable special cases, as
we have done for the combinatorial voter control problem and the shift bribery
problem in the previous two chapters. In particular, following the spirit of Betzler,
Hemmann, and Niedermeier [BHN09], it would be of interest to complement our
computational hardness results for possible and necessary winner problems with a
refined complexity analysis concerning tractable special cases. For instance, our NP-
hardness reductions for POSSIBLE WINNER assume that voters may have arbitrary
partial preferences. It would be interesting to know whether this still holds if voter
preferences have a certain structure, such as, for instance, being single-peaked or
semi-single-peaked [Ras87] (also see Section 5.5.2 for the corresponding definition
of single-peakedness).

For both rules, we obtain that their NP-complete POSSIBLE WINNER are fixed-

226

8.9. Concluding remarks

parameter tractable when parameterized “number m of alternatives”. This auto-
matically yields a problem kernel for m (see Section 2.6.1 for more information on
problem kernels). However, we remark that similarly to the case of combinatorial
voter control studied in Chapter 6, where we note the absence of polynomial ker-
nels, we can adapt our polynomial reductions for POSSIBLE WINNER to provide a
polynomial-parameter transformation from SET COVER (see the definition at the be-
ginning of the proof of Theorem 6.6) parameterized by the universe size to POSSIBLE

WINNER parameterized by m. By Proposition 2.1 and by the fact that the unparam-
eterized versions of both problems are NP-complete, we obtain that a polynomial
kernel does not exist unless a complexity-theoretic assumption (NP ̸⊆ coNP/poly)
fails. For the parameter “number n of voters”, however, we could not settle the
parameterized complexity of either problem yet.

It would be natural to also adopt a more game-theoretic view on the strategic
voting scenarios where all voters act strategically, as opposed to COALITIONAL MA-
NIPULATION, where only the voters of a coalition vote strategically (with the same
goal) and all other voters vote sincerely. Note that we can see both the successive
and amendment rules as repeated games, so a natural concept to consider is the
subgame-perfect Nash equilibrium [Osb04].

Finally, it would be also interesting to study further manipulation scenarios for
parliamentary voting rules including, for example, the sophisticated voting setting,
which has been widely studied in the political science literature (see [Ban85, EK80,
Mil77, MN78, Mou86, OS87, SW82]), or control by changing the set of alternatives as
discussed by Rasch [Ras14].

227

CHAPTER 9

Conclusion

The Great Way is not difficult for those who have no preferences.

Zen proverb

In the first half of this thesis, Chapters 3 to 5, we have studied various nicely
structured preference profiles, such as single-crossing or one-dimensional Euclidean
profiles. We also studied nearly nicely structured preference profiles and investigated
questions concerning the computational cost of achieving nicely structured profiles
by deleting the fewest number of voters or alternatives, respectively. Our results
draw a clear line between polynomial-time solvable and NP-hard problems as they
classify all considered problem variants with respect to their classical computational
complexity.

In the second half, Chapters 6 to 8, we have investigated computationally hard
problems arising in the context of voting. Almost all of these problems are about
manipulating the voting outcome, but in different ways. For instance, the combina-
torial variant of the CONSTRUCTIVE CONTROL BY ADDING VOTERS (CC-AV) problem
(Chapter 6) is about making a specific alternative win by persuading the fewest num-
ber of unregistered voters to vote, where each persuaded voter also adds a bundle
of other voters for free. The SHIFT BRIBERY problem (Chapter 7) is about making a
specific alternative win through campaign management, that is, shifting her higher
in the preference orders of some voters; each such shift has a cost and the goal is not
to exceed a given budget. For each of these problems, we have identified structures
such that the problem restricted to one of these structures remains intractable, as
well as some structures such that the problem restricted to one of these structures is
of a presumably lower complexity. For instance, the combinatorial variant of CC-
AV for the case where the bundling function is anonymous remains intractable for
single-peaked preferences, while it is polynomial-time solvable for single-crossing
preferences.

In this chapter, we summarize our main contributions (Section 9.1) and high-

229

9. Conclusion

lights, and discuss some future research directions and challenges that we find most
interesting (Section 9.2).

9.1 Main contributions

Motivated by Ballester and Haeringer’s work [BH11] on exploring sufficient and
necessary conditions for the existence of single-peaked preferences by forbidden
substructures, we studied the single-crossing preferences and we showed that a
profile is single-crossing if and only if it contains neither γ-configurations nor δ-
configurations (see Examples 3.4 and 3.5 and Section 3.5). Since both γ-configura-
tions and δ-configurations consist of at most six alternatives and at most four voters,
the characterization allows us to detect the single-crossing property in O(n ·m2) time,
without having to probe every possible order of the voters.

In Chapter 4, we moved on to a more restricted, but arguably more natural prefer-
ence structure, the one-dimensional Euclidean preferences [Hot29]. This structure
is a restriction of both single-peakedness and single-crossingness but, in contrast, it
cannot be characterized by finitely many forbidden substructures. We constructed
an infinite sequence of preference profiles such that (a) none of these profiles is
one-dimensional Euclidean, and (b) the deletion of an arbitrary voter in each of the
constructed profiles immediately makes the profile one-dimensional Euclidean (see
Theorem 4.3).

The notions of single-peakedness and single-crossingness are popular assump-
tions among economists and politicians. Yet, real-world preference profiles may
contain some noise which destroys these nice structures. Keeping this in mind, in
Chapter 5 we studied the distance of a given profile from having a nice structure,
such as single-peakedness, single-crossingness, and group-separability. We showed
that in almost all cases computing this distance is computationally hard.

Summarizing the results of Chapters 3 to 5, we find that nothing interesting is ever
one-sided. We have both a positive case where finitely many forbidden substructures
are sufficient to characterize existing nice properties, and a negative case where
finitely many forbidden substructures are insufficient. From the computational
perspective, we presented an efficient, polynomial-time algorithm to make a given
preference profile single-crossing by deleting the fewest number of voters, while
we showed that for most other cases, including achieving single-peakedness by
deleting the fewest number of voters, an efficient algorithm is unlikely unless the
well-accepted assumption of P ̸=NP fails.

In Chapters 6 and 7, we turned to new aspects of two conceptually different voting
problems, the CONSTRUCTIVE CONTROL BY ADDING VOTERS problem [BTT92] and

230

9.1. Main contributions

the SHIFT BRIBERY problem [EFS09]. In Chapter 6, we introduced a combinatorial
variant of CONSTRUCTIVE CONTROL BY ADDING VOTERS, where adding a voter also
means adding a bundle of other voters for free. We found that the combinatorial
aspect makes the problem computationally hard even for two alternatives. For the
plurality rule, we exploited structures in this extremely hard problem in two ways:

First, we identified specific natural parameters and applied parameterized com-
plexity techniques. We focused on the parameters “number k of the bundles allowed
to add”, maximum bundle size, and the similarity measure for each bundle. We
obtained an almost complete picture of the complexity with respect to these three pa-
rameters. Second, we considered the case with nicely structured preference profiles
and obtained two surprisingly different results: the problem with the voter bundles
displaying an anonymous structure remains computationally hard for single-peaked
profiles, while it is polynomial-time solvable for single-crossing profiles.

In Chapter 7, we studied how different natural prices of voters and different pa-
rameters affect the complexity of the SHIFT BRIBERY problem for three popular
voting rules. We also presented an approximation algorithm which approximates
the budget within a factor of (1+ε) and has a running time whose super-polynomial
part depends only on the approximation parameter ε and the parameter “number n
of voters”.

The previous two manipulative attacks can be applied to every voting rule. Thus,
we study them for some common voting rules such as the plurality rule and the
Borda rule. These rules basically proceed in a single stage. Yet, there are other
voting rules which work in stages. For these rules, there may be manipulative attacks
specific to them. Thus, in Chapter 8, we focused on two sequential voting rules, the
successive rule and the amendment rule, that are used in the parliaments of many
countries [Ras00]; both rules use a linear order of the alternatives, which we call an
agenda. We discussed computational questions for both rules pertaining to agenda
control, manipulation, and uncertainty in voting. Our theoretical results indicate
that manipulation and agenda control are computationally easier than asking for
possible or necessary winners with uncertainty in the voting. This is quite interesting
since both manipulation and agenda control can be considered as special cases of
the possible winner problem, where the former assumes either complete or empty
preferences of each voter but a fixed agenda, while the latter assumes complete
preferences of each voter, but an empty agenda. With this in mind, we concluded
that it is the fact that the preferences and the agenda are partial orders which makes
the problem computationally hard.

231

9. Conclusion

9.2 Outlook and open questions

In this section, we discuss some assumptions we make when we study prefer-
ences and voting problems (except for the case when asking for possible/necessary
winners), and we list some specific open questions which we find most exciting.

Linear orders as preferences. Throughout this thesis, we almost always assumed
that each voter ranks the alternatives, from best to worst, according to a linear
order over the alternatives; the only exception is Chapter 8, where we allowed the
preferences to be partial orders. This is of course a very strict requirement. In political
elections, however, we usually approve and disapprove of alternatives instead of
ranking them. Human perception is so limited that it is almost impossible to give a
linear order over more than a dozen alternatives (also see the work of Balinski and
Laraki [BL11] for more discussion on the problems of rank-ordering alternatives).
Linear orders ignore the case where alternatives are incomparable, while partial
orders are too general to model real-world societal voting behavior. Furthermore,
voter preferences may vary from time to time as Nathan Myhrvold indicates:

“Researchers who examined the voting records of wine judges found that
90 percent of the time they give inconsistent ratings to a particular wine
when they judge it on multiple occasions.”1

Keeping this in mind, we can, for example, assume that each voter has a certain
probability for each possible preference order. It would be interesting to reexamine
the notion of classical preference structure and voting problems for this probabilistic
model.

Manipulative attacks. To model the effect of large-scale campaign management,
we introduced a combinatorial variant of the already known problem of CONSTRUC-
TIVE CONTROL BY ADDING VOTERS, where adding a voter means also adding a subset
of other voters. This addition only has a one-time effect in the sense that the subset
of voters who are added this way do not, in turn, have any influence on other voters.
A cascading effect may be worth studying as well, where the voters entering the
voting due to some other voter may in turn cause further voters to be added.

Following the convention in the literature [EFS09], we assumed that we know
the cost of each shift for a voter when we study the SHIFT BRIBERY problem. This
may be a bit unrealistic as, first, the cost of each shift can also depend on the

1http://www.bloomberg.com/bw/magazine/how-to-decant-wine-with-a-blender-09222011.html

232

http://www.bloomberg.com/bw/magazine/how-to-decant-wine-with-a-blender-09222011.html

9.2. Outlook and open questions

alternatives involved instead of only on the number of positions shifted, and, second,
determining the exact cost of each shift of each voter seems tedious if not impossible.
Thus, a more fine-grained model of this voting problem is desirable.

Empirical studies. Most of the problems studied in this thesis are computationally
hard, and our goal in studying such hard voting problems is to clarify the bound-
ary between fixed-parameter tractable and parameterized intractable cases. Any
problem that can be solved in kO(k) · |I |4 time for input I , is already fixed-parameter
tractable for the parameter k, although it may take a long time even for moderately-
sized input. Obviously, when running experiments for such a problem, a fixed-
parameter algorithm with a running time upper bound lower than kO(k) · |I |4 would
be desirable.

While this would be an interesting research direction, it is not the main concern of
this thesis, which is to chart the border between tractable and intractable cases. Thus,
we did not perform any experiments except for two manipulative attack problems
studied in Chapter 8: AGENDA CONTROL and COALITIONAL MANIPULATION. Both
problems are polynomial-time solvable for both voting rules studied in Chapter 8.
While polynomial-time solvability for manipulative attacks seems bad, it does not
immediately imply that we can always successfully manipulate the outcome. To gain
deeper insight into the likelihood of successful manipulative attacks, we carried out
an empirical study on real-world preference profiles and our results greatly eased
our worries because we found that, in a nutshell, a successful manipulative attack is
very rare. With this in mind, we should bridge the gap between theory and real life,
and explore the remaining problems once more from an experimental point of view.

Challenges. There are a number of research challenges and open questions arising
from this thesis. We have already discussed some of them in the concluding sections
in Chapters 3 to 8. We close with a few more which are not restricted to the focus of
a specific chapter and which we deem particularly worthwhile of investigation.

1. It would be of great interest to find polynomial kernels for the parameterized
variants of our problems that are fixed-parameter tractable, or to show that
they are unlikely to exist under some complexity-theoretic assumption (see
Section 2.6.1 for more information on the concept of polynomial kernels).

2. As already discussed, complementing our theoretical findings with empirical
studies is, in itself, an interesting future research direction. It is also quite
challenging because running experiments on large-scale real-world data needs

233

9. Conclusion

algorithms that have a reasonable running time; our parameterized algorithms
are so far of theoretical interest only. This would be even more interesting if
the relevant problem admits a polynomial kernel because this allows us to
have efficient preprocessing algorithms to shrink the input instances to obtain
a problem kernel that is polynomial in the parameter, and solve the kernel
exactly.

3. In Chapters 3 and 4, we have studied nicely structured profiles such as the
single-peaked, single-crossing, and one-dimensional Euclidean profiles. In
Chapter 5, we expanded this by investigating profiles that are close to being
single-peaked or single-crossing. Investigating profiles that are close to being
one-dimensional Euclidean however, remains unexplored. Thus, it would be
interesting to know the computational complexity of deleting the fewest num-
ber of alternatives (resp. voters) to make a profile one-dimensional Euclidean.

4. In this thesis, we have studied several types of voting problems. Most of them
are already known to be, or have been shown in this thesis to be intractable,
and we paid major attention to finding special structures which help to make
the respective problem tractable. These structures could be about properties
of the voters’ preferences, such as single-peakedness, or about quantifiable
measures (or parameters) of the input. Yet, we mostly focused on the pa-
rameter structure rather than on the preference structure. We obtained only
two results on single-peakedness and on single-crossingness in Chapter 6,
where we studied the COMBINATORIAL CONSTRUCTIVE CONTROL BY ADDING

VOTERS problem. We deem it worthwhile to further study other voting prob-
lems for structured preferences. For instance, it would be interesting to know
whether the NP-hardness results of POSSIBLE WINNER for the two studied
parliamentary voting rules still hold if the voters preferences are single-peaked
or single-crossing.

Many reductions, showing intractability results, produce instances that are far
from being close to any known real-world instances. Thus, in order to identify special
tractable cases, with the intuition that “no structure no efficacy”, we explored and
exploited structures for several computationally hard voting problems. We hope that
a more in-depth structure exploitation can be made in the computational complexity
study of problems even outside of the voting context.

234

Bibliography
[AB09] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge

University Press, 2009 (cited on p. 16).

[Abe91] J. Abello. “The weak Bruhat order of SΣ, consistent sets, and Catalan numbers”. In:
SIAM Journal on Discrete Mathematics 4(1) (1991), pp. 1–16 (cited on p. 29).

[ABM14] J. Apesteguia, M. A. Ballester, and Y. Masatlioglu. “A foundation for strategic agenda
voting”. In: Games and Economic Behavior 87 (2014), pp. 91–99 (cited on pp. 186,
188, 226).

[AJ84] J. M. Abello and C. R. Johnson. “How large are transitive simple majority domains?”
In: SIAM Journal on Algebraic and Discrete Methods 5(4) (1984), pp. 603–618 (cited
on p. 79).

[Alo+13] N. Alon, R. Bredereck, J. Chen, S. Kratsch, R. Niedermeier, and G. J. Woeginger.
“How to put through your agenda in collective binary decisions”. In: Proceedings of
the 3rd International Conference on Algorithmic Decision Theory. Vol. 8176. Lecture
Notes in Computer Science. 2013, pp. 30–44 (cited on p. xiii).

[Alo+15] N. Alon, R. Bredereck, J. Chen, S. Kratsch, R. Niedermeier, and G. J. Woeginger.
“How to put through your agenda in collective binary decisions”. In: ACM Transac-
tions on Economics and Computation 4(1) (2015), pp. 1–28 (cited on p. xiii).

[AMO93] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and
Applications. Prentice-Hall, 1993 (cited on p. 177).

[Arr50] K. J. Arrow. “A difficulty in the concept of social welfare”. In: Journal of Political
Economy 58(4) (1950), pp. 328–346 (cited on pp. 3, 16, 71).

[ASS02] K. J. Arrow, A. K. Sen, and K. Suzumura, eds. Handbook of Social Choice and Welfare,
Volume 1. North-Holland, 2002 (cited on pp. i, v, ix, 15, 72).

[ASS10] K. J. Arrow, A. K. Sen, and K. Suzumura, eds. Handbook of Social Choice and Welfare,
Volume 2. North-Holland, 2010 (cited on pp. i, v, ix).

[Azi+15] H. Aziz, M. Brill, F. A. Fischer, P. Harrenstein, J. Lang, and H. G. Seedig. “Possible
and necessary winners of partial tournaments”. In: Journal of Artificial Intelligence
Research 54 (2015), pp. 493–534 (cited on p. 188).

[Bai87] N. Baigent. “Metric rationalisation of social choice functions according to prin-
ciples of social choice”. In: Mathematical Social Sciences 13(1) (1987), pp. 59–65
(cited on p. 76).

[Ban85] J. S. Banks. “Sophisticated voting outcomes and agenda control”. In: Social Choice
and Welfare 1(4) (1985), pp. 295–306 (cited on pp. 187, 227).

235

Bibliography

[Bau+12] D. Baumeister, P. Faliszewski, J. Lang, and J. Rothe. “Campaigns for lazy voters: trun-
cated ballots”. In: Proceedings of the 11th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS ’12). IFAAMAS, 2012, pp. 577–584 (cited
on p. 154).

[BC] L. Bulteau and J. Chen. Embedding preferences into euclidean space of small dimen-
sions. Working paper (cited on pp. 44, 70).

[BCW13a] R. Bredereck, J. Chen, and G. J. Woeginger. “A characterization of the single-
crossing domain”. In: Social Choice and Welfare 41(4) (2013), pp. 989–998 (cited
on pp. x, 7, 25, 41).

[BCW13b] R. Bredereck, J. Chen, and G. J. Woeginger. “Are there any nicely structured prefer-
ence profiles nearby?” In: Proceedings of the 23rd International Joint Conference on
Artificial Intelligence (IJCAI ’13). AAAI Press, 2013, pp. 62–68 (cited on pp. x, 7).

[BCW16] R. Bredereck, J. Chen, and G. J. Woeginger. “Are there any nicely structured prefer-
ence profiles nearby?” In: Mathematical Social Sciences 79 (2016), pp. 61–73 (cited
on pp. x, 7, 71).

[BD10] N. Betzler and B. Dorn. “Towards a dichotomy of finding possible winners in
elections based on scoring rules”. In: Journal of Computer and System Sciences
76(8) (2010), pp. 812–836 (cited on pp. 153, 188).

[Bet+11] N. Betzler, J. Guo, C. Komusiewicz, and R. Niedermeier. “Average parameterization
and partial kernelization for computing medians”. In: Journal of Computer and
System Sciences 77(4) (2011), pp. 774–789 (cited on pp. 155, 163, 165).

[Bet+12] N. Betzler, R. Bredereck, J. Chen, and R. Niedermeier. “Studies in computational
aspects of voting—A parameterized complexity perspective”. In: The Multivariate
Algorithmic Revolution and Beyond. Vol. 7370. Lecture Notes in Computer Science.
Springer, 2012, pp. 318–363 (cited on pp. 21, 116).

[Bev+14a] R. van Bevern, R. Bredereck, L. Bulteau, J. Chen, V. Froese, R. Niedermeier, and
G. J. Woeginger. “Star partitions of perfect graphs”. In: Proceedings of the 41st
International Colloquium on Automata, Languages, and Programming (ICALP ’14).
Vol. 8572. Lecture Notes in Computer Science. Springer, 2014, pp. 174–185 (cited
on p. xiii).

[Bev+14b] R. van Bevern, R. Bredereck, J. Chen, V. Froese, R. Niedermeier, and G. J. J. Woegin-
ger. “Network-based dissolution”. In: Proceedings of the 39th International Sym-
posium on Mathematical Foundations of Computer Science (MFCS ’14). Vol. 8635.
LNCS. Springer, 2014, pp. 69–80 (cited on p. xiii).

[Bev+15a] R. van Bevern, R. Bredereck, J. Chen, V. Froese, R. Niedermeier, and G. J. Woeginger.
“Network-based vertex dissolution”. In: SIAM Journal on Discrete Mathematics
29(2) (2015), pp. 888–914 (cited on p. xiii).

236

Bibliography

[Bev+15b] R. van Bevern, J. Chen, F. Hüffner, S. Kratsch, N. Talmon, and G. J. Woeginger.
“Approximability and parameterized complexity of multicover by c-intervals”. In:
Information Processing Letters 115(10) (2015), pp. 744–749 (cited on p. xiii).

[Bev+16] R. van Bevern, R. Bredereck, L. Bulteau, J. Chen, V. Froese, R. Niedermeier, and
G. J. Woeginger. “Star partitions of perfect graphs”. In: Journal of Graph Theory
(2016). Accepted (cited on p. xiii).

[BG16] S. Barberà and A. Gerber. Sequential Voting and Agenda Manipulation. Tech. rep.
Universitat Autònoma de Barcelona and Barcelona GSE, 2016 (cited on p. 188).

[BG93] J. F. Buss and J. Goldsmith. “Nondeterminism within P”. In: SIAM Journal on
Computing 22(3) (1993), pp. 560–572 (cited on p. 18).

[BGE93] S. Barberà, F. Gul, and S. Ennio. “Generalized median voter schemes and commit-
tees”. In: Journal of Economic Theory 61(2) (1993), pp. 262–289 (cited on p. 75).

[BGN10] N. Betzler, J. Guo, and R. Niedermeier. “Parameterized computational complexity
of Dodgson and Young elections”. In: Information and Computation 208(2) (2010),
pp. 165–177 (cited on p. 175).

[BH11] M. Ballester and G. Haeringer. “A characterization of the single-peaked domain”.
In: Social Choice and Welfare 36(2) (2011), pp. 305–322 (cited on pp. ix, 26, 37, 39,
41, 77, 78, 80, 81, 230).

[BHN09] N. Betzler, S. Hemmann, and R. Niedermeier. “A multivariate complexity analysis
of determining possible winners given incomplete votes”. In: Proceedings of the
21st International Joint Conference on Artificial Intelligence (IJCAI ’09). AAAI Press,
2009, pp. 53–58 (cited on pp. 175, 188, 226).

[BJ04] S. Barberà and M. O. Jackson. “Choosing how to choose: self-stable majority rules
and constitutions”. In: Quarterly Journal of Economics 119(3) (2004), pp. 1011–1048
(cited on p. 26).

[BJK02] S. J. Brams, M. A. Jones, and D. M. Kilgour. “Single-peakedness and disconnected
coalitions”. In: Journal of Theoretical Politics 14(3) (2002), pp. 359–383 (cited on
p. 40).

[BJK14] H. L. Bodlaender, B. M. P. Jansen, and S. Kratsch. “Kernelization lower bounds
by cross-composition”. In: SIAM Journal on Discrete Mathematics 28(1) (2014),
pp. 277–305 (cited on p. 18).

[BL07] A. Bogomolnaia and J.-F. Laslier. “Euclidean preferences”. In: Journal of Mathemat-
ical Economics 43(2) (2007), pp. 87–98 (cited on pp. 3, 70).

[BL11] M. Balinski and R. Laraki. Majority Judgment. Measuring, Ranking, and Electing.
MIT Press, 2011 (cited on p. 232).

237

Bibliography

[BL76] K. S. Booth and G. S. Lueker. “Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms”. In: Journal of Computer
and System Sciences 13(3) (1976), pp. 335–379 (cited on pp. i, v, 35, 36).

[Bla48] D. Black. “On the rationale of group decision making”. In: Journal of Political
Economy 56(1) (1948), pp. 23–34 (cited on pp. ix, 2, 25, 39, 72, 108, 147).

[Bla58] D. Black. The Theory of Committees and Elections. Cambridge University Press,
1958 (cited on pp. 186, 187).

[BM11] S. Barberà and B. Moreno. “Top monotonicity: a common root for single peaked-
ness, single crossing and the median voter result”. In: Games and Economic Behav-
ior 73(2) (2011), pp. 345–359 (cited on p. 26).

[BO91] J. J. Bartholdi III and J. B. Orlin. “Single transferable vote resists strategic voting”.
In: Social Choice and Welfare 8(4) (1991), pp. 341–354 (cited on pp. 3, 188).

[Bod+09] H. L. Bodlaender, F. V. Fomin, D. Lokshtanov, E. Penninkx, S. Saurabh, and D. M.
Thilikos. “(meta) kernelization”. In: Proc. 50th FOCS. IEEE Computer Society, 2009,
pp. 629–638 (cited on p. 18).

[Bon04] M. Bona. Combinatorics of Permutations. Chapman and Hall/CRC, 2004 (cited
on p. 29).

[Bou+04] C. Boutilier, R. I. Brafman, C. Domshlak, H. H. Hoos, and D. Poole. “CP-nets: a
tool for representing and reasoning with conditional ceteris paribus preference
statements”. In: Journal of Artificial Intelligence Research 21 (2004), pp. 135–191
(cited on p. 109).

[BR12] D. Baumeister and J. Rothe. “Taking the final step to a full dichotomy of the possible
winner problem in pure scoring rules”. In: Information Processing Letters 112(5)
(2012), pp. 186–190 (cited on pp. 153, 188).

[Bra+13] F. Brandt, P. Harrenstein, K. Kardel, and H. G. Seedig. “It only takes a few: On
the hardness of voting with a constant number of agents”. In: Proceedings of the
12th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS ’13). IFAAMAS, 2013, pp. 375–382 (cited on pp. 108, 175).

[Bra+15] F. Brandt, M. Brill, E. Hemaspaandra, and L. A. Hemaspaandra. “Bypassing combi-
natorial protections: Polynomial-time algorithms for single-peaked electorates”.
In: Journal of Artificial Intelligence Research 53 (2015), pp. 439–496 (cited on pp. 72,
76, 106–108, 142).

[Bra+16] F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A. Procaccia, eds. Handbook of
Computational Social Choice. Cambridge University Press, 2016 (cited on p. 21).

[Bre+08] E. Brelsford, P. Faliszewski, E. Hemaspaandra, H. Schnoor, and I. Schnoor. “Approx-
imability of manipulating elections”. In: Proceedings of the 23rd AAAI Conference
on Artificial Intelligence (AAAI ’08). AAAI Press, 2008, pp. 44–49 (cited on p. 153).

238

Bibliography

[Bre+12] R. Bredereck, J. Chen, S. Hartung, S. Kratsch, R. Niedermeier, and O. Suchý. “A
multivariate complexity analysis of lobbying in multiple referenda”. In: Proceedings
of the 26th Conference on Artificial Intelligence. AAAI Press, 2012, pp. 1292–1298
(cited on p. xiii).

[Bre+13] R. Bredereck, J. Chen, S. Hartung, C. Komusiewicz, R. Niedermeier, and O. Suchý.
“On explaining integer vectors by few homogenous segments”. In: Proceedings of
the 13th International Workshop on Algorithms and Data Structures (WADS ’13).
Vol. 8037. Lecture Notes in Computer Science. Springer, 2013, pp. 207–218 (cited
on p. xiii).

[Bre+14a] R. Bredereck, J. Chen, P. Faliszewski, J. Guo, R. Niedermeier, and G. J. Woeginger.
“Parameterized algorithmics for computational social choice: Nine research chal-
lenges”. In: Tsinghua Science and Technology 19(4) (2014), pp. 358–373 (cited on
pp. 21, 102, 116, 214).

[Bre+14b] R. Bredereck, J. Chen, P. Faliszewski, A. Nichterlein, and R. Niedermeier. “Prices
matter for the parameterized complexity of shift bribery”. In: Proceedings of the
28th AAAI Conference on Artificial Intelligence (AAAI ’14). AAAI Press, 2014, pp. 1398–
1404 (cited on pp. xii, 7, 154, 176, 182).

[Bre+14c] R. Bredereck, J. Chen, S. Hartung, S. Kratsch, R. Niedermeier, O. Suchý, and G. J.
Woeginger. “A multivariate complexity analysis of lobbying in multiple referenda”.
In: Journal of Artificial Intelligence Research 50 (2014), pp. 409–446 (cited on pp. xiii,
175).

[Bre+15a] R. Bredereck, J. Chen, S. Hartung, C. Komusiewicz, R. Niedermeier, and O. Suchý.
“On explaining integer vectors by few homogeneous segments”. In: Journal of
Computer and System Sciences 81(4) (2015), pp. 766–782 (cited on p. xiii).

[Bre+15b] R. Bredereck, J. Chen, R. Niedermeier, and T. Walsh. “Parliamentary voting proce-
dures: Agenda control, manipulation, and uncertainty”. In: Proceedings of the 24th
International Joint Conference on Artificial Intelligence (IJCAI ’15). AAAI Press, 2015,
pp. 164–170 (cited on pp. xiii, 8, 185).

[Bre+15c] R. Bredereck, J. Chen, R. Niedermeier, and T. Walsh. Parliamentary Vot-
ing Procedures: Agenda Control, Manipulation, and Uncertainty. Tech. rep.
arXiv:1509.02424v1 [cs.GT], 2015 (cited on p. 185).

[Bre+15d] R. Bredereck, P. Faliszewski, R. Niedermeier, P. Skowron, and N. Talmon. “Elections
with few candidates: Prices, weights, and covering problems”. In: Proceedings of the
4th International Conference on Algorithmic Decision Theory (ADT ’15). Vol. 9346.
Lecture Notes in Computer Science. Springer, 2015, pp. 414–431 (cited on pp. 154,
175, 176).

[Bre+15e] R. Bredereck, P. Faliszewski, R. Niedermeier, and N. Talmon. “Large-scale election
campaigns: Combinatorial shift bribery”. In: Proceedings of the 14th International

239

Bibliography

Conference on Autonomous Agents and Multiagent Systems (AAMAS ’15). IFAAMAS,
2015, pp. 67–75 (cited on pp. 150, 155, 156, 183).

[Bre+16a] R. Bredereck, J. Chen, P. Faliszewski, A. Nichterlein, and R. Niedermeier. “Prices
matter for the parameterized complexity of shift bribery”. In: Information and
Computation (2016). To appear (cited on pp. xii, 7, 151, 157, 168, 171, 174, 176, 182).

[Bre+16b] R. Bredereck, J. Chen, F. Hüffner, and S. Kratsch. “Parameterized complexity of team
formation in social networks”. In: Proceedings of the 11th International Conference
on Algorithmic Aspects in Information and Management (AAIM ’16). Vol. 9778.
Lecture Notes in Computer Science. Springer, 2016, pp. 137–149 (cited on p. xiii).

[Bre+16c] R. Bredereck, P. Faliszewski, R. Niedermeier, and N. Talmon. “Complexity of shift
bribery in committee elections”. In: Proceedings of the 30th AAAI Conference on
Artificial Intelligence (AAAI ’16). AAAI Press, 2016, pp. 2452–2458 (cited on pp. 154,
156, 182).

[Bre+16d] R. Bredereck, P. Faliszewski, R. Niedermeier, and N. Talmon. “Large-scale elec-
tion campaigns: Combinatorial shift bribery”. In: Journal of Artificial Intelligence
Research 55 (2016), pp. 603–652 (cited on p. 154).

[BSU13] N. Betzler, A. Slinko, and J. Uhlmann. “On the computation of fully proportional
representation”. In: Journal of Artificial Intelligence Research 47(1) (2013), pp. 475–
519 (cited on p. 76).

[BT86] J. J. Bartholdi III and M. Trick. “Stable matching with preferences derived from
a psychological model”. In: Operations Research Letters 5(4) (1986), pp. 165–169
(cited on pp. 4, 37, 41).

[BTT89] J. J. Bartholdi III, C. A. Tovey, and M. A. Trick. “Voting schemes for which it can be
difficult to tell who won the election”. In: Social Choice and Welfare 6(2) (1989),
pp. 157–165 (cited on pp. 3, 16, 71, 175, 188).

[BTT92] J. J. Bartholdi III, C. A. Tovey, and M. A. Trick. “How hard is it to control an election”.
In: Mathematical and Computer Modelling 16(8–9) (1992), pp. 27–40 (cited on pp. ii,
vi, 5, 105–107, 113, 114, 124, 137, 183, 230).

[BTY11] H. L. Bodlaender, S. Thomassé, and A. Yeo. “Kernel bounds for disjoint cycles and
disjoint paths”. In: Theoretical Computer Science 412(35) (2011), pp. 4570–4578
(cited on pp. 18, 19).

[BU09] N. Betzler and J. Uhlmann. “Parameterized complexity of candidate control in
elections and related digraph problems”. In: Theoretical Computer Science 410(52)
(2009), pp. 5425–5442 (cited on p. 108).

[Bul+15] L. Bulteau, J. Chen, P. Faliszewski, R. Niedermeier, and N. Talmon. “Combinatorial
voter control in elections”. In: Theoretical Computer Science 589 (2015), pp. 99–120
(cited on pp. xii, 7, 105).

240

Bibliography

[CGS12] D. Cornaz, L. Galand, and O. Spanjaard. “Bounded single-peaked width and propor-
tional representation”. In: Proceedings of the 20th European Conference on Artificial
Intelligence (ECAI ’12). IOS Press, 2012, pp. 270–275 (cited on p. 74).

[CGS13] D. Cornaz, L. Galand, and O. Spanjaard. “Kemeny elections with bounded single-
peaked or single-crossing width”. In: Proceedings of the 23rd International Joint
Conference on Artificial Intelligence (IJCAI ’13). AAAI Press, 2013, pp. 76–82 (cited
on p. 74).

[Che+13] J. Chen, C. Komusiewicz, R. Niedermeier, M. Sorge, O. Suchý, and M. Weller. “Effec-
tive and efficient data reduction for the subset interconnection design problem”.
In: Proceedings of the 24th International Symposium on Algorithms and Computa-
tion (ISAAC ’07). Vol. 8283. Lecture Notes in Computer Science. 2013, pp. 361–371
(cited on p. xiii).

[Che+14] J. Chen, P. Faliszewski, R. Niedermeier, and N. Talmon. “Combinatorial voter con-
trol in elections”. In: Proceedings of the 39th International Symposium on Mathe-
matical Foundations of Computer Science (MFCS ’14). Vol. 8635. Lecture Notes in
Computer Science. Springer, 2014, pp. 153–164 (cited on pp. xii, 7).

[Che+15a] J. Chen, P. Faliszewski, R. Niedermeier, and N. Talmon. “Elections with few voters:
Candidate control can be easy”. In: Proceedings of the 29th AAAI Conference on
Artificial Intelligence (AAAI ’15). AAAI Press, 2015, pp. 2045–2051 (cited on pp. xiii,
108, 150, 175).

[Che+15b] J. Chen, C. Komusiewicz, R. Niedermeier, M. Sorge, O. Suchý, and M. Weller.
“Polynomial-time data reduction for the subset interconnection design problem”.
In: SIAM Journal on Discrete Mathematics 29(1) (2015), pp. 1–25 (cited on p. xiii).

[CLX09] V. Conitzer, J. Lang, and L. Xia. “How hard is it to control sequential elections via
the agenda?” In: Proceedings of the 21st International Joint Conference on Artificial
Intelligence (IJCAI ’09). AAAI Press, 2009, pp. 103–108 (cited on p. 109).

[Con09] V. Conitzer. “Eliciting single-peaked preferences using comparison queries”. In:
Journal of Artificial Intelligence Research 35 (2009), pp. 161–191 (cited on pp. 107,
108).

[Con85] M. J. A. N. C. de Condorcet. Essai sur l’application de l’analyse à la probabilité des
décisions rendues à la pluralité des voix. Paris: L’Imprimerie Royale, 1785 (cited
on pp. 1, 2, 15).

[Coo64] C. H. Coombs. A Theory of Data. John Wiley and Sons, 1964 (cited on pp. 25, 40, 42,
44).

[Cor+09] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
MIT Press, 2009 (cited on pp. 99, 197).

241

Bibliography

[CPW15] J. Chen, K. Pruhs, and G. J. Woeginger. The one-dimensional Euclidean domain:
Finitely many obstructions are not enough. Tech. rep. arXiv:1506.03838v1 [cs.GT],
2015 (cited on p. 7).

[CPW16] J. Chen, K. Pruhs, and G. J. Woeginger. “The one-dimensional Euclidean domain:
Finitely many obstructions are not enough”. In: Social Choice and Welfare (2016).
To appear (cited on pp. xi, 7, 39).

[CSL07] V. Conitzer, T. Sandholm, and J. Lang. “When are elections with few candidates
hard to manipulate?” In: Journal of the ACM 54(3) (2007), pp. 1–33 (cited on pp. 189,
193).

[Cyg+15] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M.
Pilipczuk, and S. Saurabh. Parameterized Algorithms. Springer, 2015 (cited on
pp. i, v, 19, 21).

[Dem94] G. Demange. “Intermediate preferences and stable coalition structures”. In: Journal
of Mathematical Economics 23(1) (1994), pp. 45–58 (cited on p. 26).

[DF13] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity.
Springer, 2013 (cited on pp. i, v, 21, 117, 118).

[DF94] J. Doignon and J. Falmagne. “A polynomial time algorithm for unidimensional
unfolding representations”. In: Journal of Algorithms 16(2) (1994), pp. 218–233
(cited on pp. 37, 40, 41, 47, 73, 100, 102).

[DLS14] M. Dom, D. Lokshtanov, and S. Saurabh. “Kernelization lower bounds through
colors and IDs”. In: ACM Transactions on Algorithms 11(13) (2 2014), pp. 1–13 (cited
on p. 124).

[DS12] B. Dorn and I. Schlotter. “Multivariate complexity analysis of swap bribery”. In:
Algorithmica 64(1) (2012), pp. 126–151 (cited on pp. 153, 155, 156, 161, 175).

[Dwo+01] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. “Rank aggregation methods for
the web”. In: Proceedings of the 10th International Conference on World Wide Web.
ACM Press, 2001, pp. 613–622 (cited on p. 175).

[EF10] E. Elkind and P. Faliszewski. “Approximation algorithms for campaign manage-
ment”. In: Proceedings of the 6th International Workshop On Internet And Network
Economics (WINE ’10). Springer, 2010, pp. 473–482 (cited on pp. 153–155, 158, 179).

[EF14] E. Elkind and P. Faliszewski. “Recognizing 1-Euclidean preferences: an alternative
approach”. In: Proceedings of the 7th International Symposium on Algorithmic
Game Theory (SAGT ’14). Vol. 8768. Lecture Notes in Computer Science. Springer,
2014, pp. 146–157 (cited on pp. 47, 102).

[EFS09] E. Elkind, P. Faliszewski, and A. Slinko. “Swap bribery”. In: Proceedings of the
2nd International Symposium on Algorithmic Game Theory (SAGT ’09). Vol. 5814.
Lecture Notes in Computer Science. Springer, 2009, pp. 299–310 (cited on pp. ii, vi,
xi, 6, 152–155, 160, 171, 231, 232).

242

Bibliography

[EFS12] E. Elkind, P. Faliszewski, and A. Slinko. “Clone structures in voters’ preferences”.
In: Proceedings of the 13th ACM Conference on Electronic Commerce (EC ’12).
ACM Press, 2012, pp. 496–513 (cited on pp. ix, 37, 41, 73, 76, 96, 148).

[EH08] J. M. Enelow and M. J. Hinich. Advances in the Spatial Theory of Voting. Cambridge
University Press, 2008 (cited on p. 3).

[EHH15] G. Erdélyi, E. Hemaspaandra, and L. A. Hemaspaandra. “More natural models of
electoral control by partition”. In: Proceedings of the 4th International Conference
on Algorithmic Decision Theory (ADT ’15). Vol. 9346. Lecture Notes in Computer
Science. Springer, 2015, pp. 396–413 (cited on pp. 107, 108, 111).

[EK80] J. M. Enelow and D. H. Koehler. “The amendment in legislative strategy: Sophisti-
cated voting in the U.S. Congress”. In: The Journal of Politics 42(2) (1980), pp. 396–
413 (cited on pp. 186, 187, 227).

[EL14] E. Elkind and M. Lackner. “On detecting nearly structured preference profiles”. In:
Proceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI ’14). AAAI
Press, 2014, pp. 661–667 (cited on pp. 41, 75, 102).

[EL15] E. Elkind and M. Lackner. “Structure in dichotomous preferences”. In: Proceedings
of the 24th International Joint Conference on Artificial Intelligence (IJCAI ’15). AAAI
Press, 2015, pp. 2019–2025 (cited on p. 102).

[Elk+15] E. Elkind, P. Faliszewski, M. Lackner, and S. Obraztsova. “The complexity of recog-
nizing incomplete single-crossing preferences”. In: Proceedings of the 29th AAAI
Conference on Artificial Intelligence (AAAI ’15). AAAI Press, 2015, pp. 865–871 (cited
on p. 102).

[ELÖ08] B. Escoffier, J. Lang, and M. Öztürk. “Single-peaked consistency and its complexity”.
In: Proceedings of the 18th European Conference on Artificial Intelligence (ECAI ’08).
IOS Press, 2008, pp. 366–370 (cited on p. 41).

[ELP13] G. Erdélyi, M. Lackner, and A. Pfandler. “Computational aspects of nearly single-
peaked electorates”. In: Proceedings of the 27th AAAI Conference on Artificial Intel-
ligence (AAAI ’13). AAAI Press, 2013, pp. 283–289 (cited on pp. 74, 75, 88, 100).

[ELP15] G. Erdély, M. Lackner, and A. Pfandler. “Manipulation of k-approval in nearly
single-peaked electorates”. In: Proceedings of the 4th International Conference
on Algorithmic Decision Theory (ADT ’15). Vol. 9246. Lecture Notes in Computer
Science. Springer, 2015, pp. 71–85 (cited on p. 76).

[EP98] D. Epple and G. J. Platt. “Equilibrium and local redistribution in an urban economy
when households differ in both preferences and incomes”. In: Journal of Urban
Economics 43(1) (1998), pp. 23–51 (cited on p. 26).

[Erd+15] G. Erdélyi, M. R. Fellows, J. Rothe, and L. Schend. “Control complexity in Bucklin
and fallback voting: A theoretical analysis”. In: Journal of Computer and System
Sciences 81(4) (2015), pp. 632–660 (cited on pp. 107, 108).

243

Bibliography

[Fal+09a] P. Faliszewski, E. Hemaspaandra, L. A. Hemaspaandra, and J. Rothe. “Llull and
Copeland Voting Computationally Resist Bribery and Constructive Control”. In:
Journal of Artificial Intelligence Research 35(1) (2009), pp. 275–341 (cited on p. 107).

[Fal+09b] P. Faliszewski, E. Hemaspaandra, L. A. Hemaspaandra, and J. Rothe. “Llull and
Copeland voting computationally resist bribery and constructive control”. In:
Journal of Artificial Intelligence Research 35 (2009), pp. 275–341 (cited on pp. 153,
158, 175).

[Fal+11] P. Faliszewski, E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. “The shield that
never was: Societies with single-peaked preferences are more open to manipulation
and control”. In: Information and Computation 209(2) (2011), pp. 89–107 (cited
on pp. 72, 76, 107, 108, 142).

[Fal+15] P. Faliszewski, Y. Reisch, J. Rothe, and L. Schend. “Complexity of manipulation,
bribery, and campaign management in Bucklin and fallback voting”. In: Au-
tonomous Agents and Multi-Agent Systems 29(6) (2015), pp. 1091–1124 (cited on
p. 107).

[Far69] R. Farquharson. Theory of Voting. Yale University Press, 1969 (cited on pp. 186,
187).

[Fel+10] M. R. Fellows, B. M. P. Jansen, D. Lokshtanov, F. A. Rosamond, and S. Saurabh.
“Determining the winner of a Dodgson election is hard”. In: Proceedings of the 30th
International Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS ’10). Internationales Begegnungs- und Forschungszen-
trum für Informatik (IBFI), Schloss Dagstuhl, Germany, 2010, pp. 459–468 (cited
on p. 175).

[FG06] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006 (cited
on pp. i, v, 18, 21).

[FH77] S. Földes and P. L. Hammer. “Split graphs”. In: 1977, pp. 311–315 (cited on p. 26).

[FHH09] P. Faliszewski, E. Hemaspaandra, and L. A. Hemaspaandra. “How hard is bribery
in elections?” In: Journal of Artificial Intelligence Research 35 (2009), pp. 485–532
(cited on pp. 152, 153).

[FHH11a] P. Faliszewski, E. Hemaspaandra, and L. A. Hemaspaandra. “Multimode control at-
tacks on elections”. In: Journal of Artificial Intelligence Research 40 (2011), pp. 305–
351 (cited on p. 107).

[FHH11b] P. Faliszewski, E. Hemaspaandra, and L. A. Hemaspaandra. “Multimode control at-
tacks on elections”. In: Journal of Artificial Intelligence Research 40 (2011), pp. 305–
351 (cited on p. 153).

[FHH14] P. Faliszewski, E. Hemaspaandra, and L. Hemaspaandra. “The complexity of ma-
nipulative attacks in nearly single-peaked electorates”. In: Artificial Intelligence
207 (2014), pp. 69–99 (cited on pp. 73, 76, 102, 108).

244

Bibliography

[FHH15] P. Faliszewski, E. Hemaspaandra, and L. A. Hemaspaandra. “Weighted electoral
control”. In: Journal of Artificial Intelligence Research 52 (2015), pp. 507–542 (cited
on pp. 107, 108, 114, 141).

[FS11] L. Fortnow and R. Santhanam. “Infeasibility of instance compression and succinct
pcps for NP”. In: Journal of Computer and System Sciences 77(1) (2011), pp. 91–106
(cited on p. 18).

[FT87] A. Frank and É. Tardos. “An application of simultaneous Diophantine approxi-
mation in combinatorial optimization”. In: Combinatorica 7(1) (1987), pp. 49–65
(cited on pp. 20, 121, 123, 219).

[Gae09] W. Gaertner. A Primer in Social Choice Theory: Revised Edition. Oxford University
Press, 2009 (cited on pp. ix, 15).

[Ger+15] E. Gertler, E. Mackin, M. Magdon-Ismail, L. Xia, and Y. Yi. “Computing manipula-
tions of ranking systems”. In: Proceedings of the 14th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS ’15). IFAAMAS, 2015, pp. 685–
693 (cited on p. 153).

[Gib73] A. Gibbard. “Manipulation of voting schemes: a general result”. In: Econometrica
41(4) (1973), pp. 587–601 (cited on pp. 3, 15).

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability—A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, 1979 (cited on pp. 16, 19, 82,
92, 171, 220).

[GJS76] M. R. Garey, D. S. Johnson, and L. J. Stockmeyer. “Some simplified NP-complete
graph problems”. In: Theoretical Computer Science 1(3) (1976), pp. 237–267 (cited
on p. 141).

[GNW07] J. Guo, R. Niedermeier, and S. Wernicke. “Parameterized complexity of Vertex
Cover variants”. In: Theory of Computing Systems 41(3) (2007), pp. 501–520 (cited
on p. 142).

[Gol+09] L. Golab, H. Karloff, F. Korn, A. Saha, and D. Srivastava. “Sequential dependencies”.
In: 35th International Conference on Very Large Data Bases (PVLDB ’09). Vol. 2(1).
VLDB Endowment, 2009, pp. 574–585 (cited on pp. 148, 149).

[GR08a] Á. Galambos and V. Reiner. “Acyclic sets of linear orders via the Bruhat orders”. In:
Social Choice and Welfare 30(2) (2008), pp. 245–264 (cited on p. 29).

[GR08b] Á. Galambos and V. Reiner. “Acyclic sets of linear orders via the Bruhat orders”. In:
Social Choice and Welfare 30(2) (2008), pp. 245–264 (cited on p. 79).

[Gra78] J.-M. Grandmont. “Intermediate preferences and the majority rule”. In: Economet-
rica 46(2) (1978), pp. 317–330 (cited on p. 26).

[GS96] J. S. Gans and M. Smart. “Majority voting with single-crossing preferences”. In:
Journal of Public Economics 59(2) (1996), pp. 219–237 (cited on p. 26).

245

Bibliography

[Haz+12] N. Hazon, Y. Aumann, S. Kraus, and M. Wooldridge. “On the evaluation of election
outcomes under uncertainty”. In: Artificial Intelligence 189 (2012), pp. 1–18 (cited
on p. 188).

[HHR07] E. Hemaspaandra, L. A. Hemaspaandra, and J. Rothe. “Anyone but him: the com-
plexity of precluding an alternative”. In: Artificial Intelligence 171(5–6) (2007),
pp. 255–285 (cited on pp. 105, 107, 183).

[HKS85] A. J. Hoffman, A. W. J. Kolen, and M. Sakarovitch. “Totally-balanced and greedy
matrices”. In: SIAM Journal on Algebraic and Discrete Methods 6(4) (1985), pp. 721–
730 (cited on p. 26).

[HLM13] L. A. Hemaspaandra, R. Lavaee, and C. Menton. “Schulze and ranked-pairs voting
are fixed-parameter tractable to bribe, manipulate, and control”. In: Proceedings of
the 12th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS ’13). IFAAMAS, 2013, pp. 1345–1346 (cited on p. 107).

[HM66] F. Harary and L. Moser. “The theory of round robin tournaments”. In: The American
Mathematical Monthly 73(3) (1966), pp. 231–246 (cited on p. 197).

[Hot29] H. Hotelling. “Stability in competition”. In: Economic Journal 39(153) (1929), pp. 41–
57 (cited on pp. 39, 40, 230).

[Ina64] K.-i. Inada. “A note on the simple majority decision rule”. In: Econometrica 32(32)
(1964), pp. 525–531 (cited on pp. 72, 77).

[Ina69] K.-i. Inada. “The simple majority decision rule”. In: Econometrica 37(3) (1969),
pp. 490–506 (cited on pp. 25, 72, 77).

[IPZ01] R. Impagliazzo, R. Paturi, and F. Zane. “Which problems have strongly exponential
complexity?” In: Journal of Computer and System Sciences 63(4) (2001), pp. 512–530
(cited on p. 74).

[Jun89] J. P. Jung. “Condorcet consistent binary agendas under incomplete information”.
In: Models of Strategic Choice in Politics. University of Michigan Press, 1989 (cited
on p. 188).

[Kan87] R. Kannan. “Minkowski’s convex body theorem and integer programming”. In:
Mathematics of Operations Research 12(3) (1987), pp. 415–440 (cited on pp. 20, 121,
123, 219).

[Kar68] S. Karlin. Total Positivity. Stanford University Press, 1968 (cited on pp. 26, 72).

[KF16] A. Kaczmarczyk and P. Faliszewski. “Destructive shift bribery”. In: Proceedings of
the 15th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS ’16). IFAAMAS, May 2016, pp. 305–313 (cited on p. 183).

[KL05] K. Konczak and J. Lang. “Voting procedures with incomplete preferences”. In:
Proceedings of the 19th International Joint Conference on Artificial Intelligence
(IJCAI ’07). AAAI Press, 2005, pp. 124–129 (cited on pp. 153, 188).

246

Bibliography

[KN12] C. Komusiewicz and R. Niedermeier. “New races in parameterized algorithmics”.
In: Proceedings of the 37th International Symposium on Mathematical Foundations
of Computer Science (MFCS ’12). Vol. 7464. Lecture Notes in Computer Science.
Springer, 2012, pp. 19–30 (cited on p. 162).

[Kno10] V. Knoblauch. “Recognizing one-dimensional Euclidean preference profiles”. In:
Journal of Mathematical Economics 46(1) (2010), pp. 1–5 (cited on pp. 47, 102).

[Kom15] C. Komusiewicz. “Kernelization, partially polynomial kernels”. In: Encyclopedia of
Algorithms. Ed. by M. Kao. Springer, 2015 (cited on p. 165).

[KPS97] B. Klaus, H. Peters, and T. Storcken. “Strategy-proof division of a private good when
preferences are single-dipped”. In: Economics Letters 55(3) (1997), pp. 339–346
(cited on p. 72).

[Kun06] F.-C. Kung. “An algorithm for stable and equitable coalition structures with public
goods”. In: Journal of Public Economic Theory 8(3) (2006), pp. 345–355 (cited on
p. 26).

[Kur30] K. Kuratowski. “Sur le problème des courbes gauches en topologie”. In: Funda-
menta Mathematicae 15 (1930), pp. 271–283 (cited on p. 26).

[Lac14] M. Lackner. “Incomplete preferences in single-peaked electorates”. In: Proceedings
of the 28th AAAI Conference on Artificial Intelligence (AAAI ’14). AAAI Press, 2014,
pp. 742–748 (cited on p. 102).

[Lan+12] J. Lang, M. S. Pini, F. Rossi, D. Salvagnin, K. B. Venable, and T. Walsh. “Winner
determination in voting trees with incomplete preferences and weighted votes”.
In: Autonomous Agents and Multi-Agent Systems 25(1) (2012), pp. 130–157 (cited
on pp. 189, 190, 219, 221).

[LB62] C. G. Lekkerkerker and J. C. Boland. “Representation of finite graphs by a set of
intervals on the real line”. In: Fundamenta Mathematicae 51 (1962), pp. 45–64
(cited on pp. 4, 26, 69).

[Len83] H. W. Lenstra. “Integer programming with a fixed number of variables”. In: Mathe-
matics of Operations Research 8(4) (1983), pp. 538–548 (cited on pp. 20, 115, 116,
121, 123, 176, 219).

[Liu+09] H. Liu, H. Feng, D. Zhu, and J. Luan. “Parameterized computational complexity of
control problems in voting systems”. In: Theoretical Computer Science 410(27-29)
(2009), pp. 2746–2753 (cited on pp. 108, 113).

[LZ10] H. Liu and D. Zhu. “Parameterized complexity of control problems in Maximin
election”. In: Information Processing Letters 110(10) (2010), pp. 383–388 (cited on
p. 108).

[Mar08] D. Marx. “Parameterized complexity and approximation algorithms”. In: The Com-
puter Journal 51(1) (2008), pp. 60–78 (cited on p. 158).

247

Bibliography

[Mat+12] N. Mattei, M. S. Pini, F. Rossi, and K. B. Venable. “Bribery in voting over combina-
torial domains is easy”. In: Proceedings of the 12th International Symposium on
Artificial Intelligence and Mathematics (ISAIM ’12). 2012 (cited on p. 109).

[McG53] D. C. McGarvey. “A theorem on the construction of voting paradoxes”. In: Econo-
metrica 21(4) (1953), pp. 608–610 (cited on pp. 169, 170).

[Mei+08] R. Meir, A. Procaccia, J. Rosenschein, and A. Zohar. “The complexity of strategic
behavior in multi-winner elections”. In: Journal of Artificial Intelligence Research
33 (2008), pp. 149–178 (cited on p. 107).

[MF14] K. Magiera and P. Faliszewski. “How hard is control in single-crossing elections?”
In: Proceedings of the 21st European Conference on Artificial Intelligence (ECAI ’14).
IOS Press, 2014, pp. 579–584 (cited on pp. 106, 108, 142).

[Mil77] N. R. Miller. “Graph-theoretical approaches to the theory of voting”. In: American
Journal of Political Science 21(4) (1977), pp. 769–803 (cited on pp. 186, 188, 190,
193, 198, 227).

[Mil80] N. R. Miller. “A new solution set for tournaments and majority voting: Further
graph-theoretical approaches to the theory of voting”. In: American Journal of
Political Science 24(1) (1980), pp. 68–96 (cited on p. xii).

[Mir71] J. A. Mirrlees. “An exploration in the theory of optimal income taxation”. In: Review
of Economic Studies 38 (1971), pp. 175–208 (cited on pp. 2, 25, 26, 72, 108).

[ML16] V. Menon and K. Larson. “Reinstating combinatorial protections for manipulation
and bribery in single-peaked and nearly single-peaked electorates”. In: Proceedings
of the 30th AAAI Conference on Artificial Intelligence (AAAI ’16). AAAI Press, 2016,
pp. 565–571 (cited on p. 102).

[MN08] T. Meskanen and H. Nurmi. “Closeness counts in social choice”. In: Power, Freedom,
and Voting. Springer, 2008, pp. 289–306 (cited on p. 76).

[MN78] R. D. McKelvey and R. G. Niemi. “A multistage game representation of sophisticated
voting for binary procedures”. In: Journal of Economic Theory 18(1) (1978), pp. 1–22
(cited on pp. 188, 227).

[Mon09] B. Monjardet. “Acyclic domains of linear orders: A survey”. In: The Mathematics of
Preference, Choice and Order. Springer, 2009, pp. 139–160 (cited on p. 79).

[Mou80] H. Moulin. “On strategy-proofness and single peakedness”. In: Public Choice 35(4)
(1980), pp. 437–455 (cited on pp. 25, 72).

[Mou86] H. Moulin. “Choosing from a tournament”. English. In: Social Choice and Welfare
3(4) (1986), pp. 271–291 (cited on pp. 188, 189, 227).

[MR81] A. H. Meltzer and S. F. Richard. “A rational theory of the size of government”. In:
Journal of Political Economy 89(5) (1981), pp. 914–927 (cited on p. 26).

248

Bibliography

[MRS11] T. R. Magrino, R. L. Rivest, and E. Shen. “Computing the margin of victory in
IRV elections”. In: 2011 Electronic Voting Technology Workshop / Workshop on
Trustworthy Elections, (EVT/WOTE ’11). USENIX Association, 2011 (cited on p. 153).

[MV80] S. Micali and V. V. Vazirani. “An O(
p|V |·|E |) algorithm for finding maximum match-

ing in general graphs”. In: Proceedings of the 21st Annual IEEE Symposium on
Foundations of Computer Science (FOCS ’80). Vol. 21. IEEE Computer Society Press,
1980, pp. 17–27 (cited on p. 137).

[MW13] N. Mattei and T. Walsh. “Preflib: A library for preferences”. In: Proceedings of the
3rd International Conference on Algorithmic Decision Theory (ADT ’13). Vol. 8176.
Lecture Notes in Computer Science. http://preflib.org. Springer, 2013, pp. 259–270
(cited on pp. 101, 222).

[Nie06] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press,
2006 (cited on pp. i, v, 18, 21).

[Nur05] H. Nurmi. Voting Procedures under Uncertainty. Springer, 2005 (cited on p. 188).

[OP88] P. C. Ordeshook and T. R. Palfrey. “Agendas, strategic voting, and signaling with
incomplete information”. In: American Journal of Political Science 32(2) (1988),
pp. 441–466 (cited on p. 188).

[OS87] P. C. Ordeshook and T. Schwartz. “Agendas and the control of political outcomes”.
In: The American Political Science Review 81(1) (1987), pp. 179–200 (cited on pp. 187,
188, 227).

[Osb04] M. J. Osborne. An Introduction to Game Theory. Oxford University Press, 2004
(cited on p. 227).

[Pap94] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994 (cited on
p. 16).

[Pat71] P. K. Pattanaik. Voting and Collective Choice. Cambridge University Press, 1971
(cited on p. 2).

[Pet16] D. Peters. “Recognising multidimensional Euclidean preferences”. In: Proceedings
of the 6th International Workshop on Computational Social Choice (COMSOC ’16).
2016 (cited on p. 70).

[Pin+11] M. S. Pini, F. Rossi, K. B. Venable, and T. Walsh. “Incompleteness and incomparabil-
ity in preference aggregation: complexity results”. In: Artificial Intelligence 175(7-8)
(2011), pp. 1272–1289 (cited on pp. 189, 190, 219, 221).

[Poo89] K. T. Poole. Spatial Models of Parliamentary Voting. Cambridge University Press,
1989 (cited on p. 3).

[Prz16] T. Przedmojski. “Algorithms and Experiments for (Nearly) Restricted Domains in
Elections”. Master thesis. MasterThesis. TU Berlin, Feb. 2016 (cited on pp. 75, 101).

249

Bibliography

[PS15] C. Puppe and A. M. Slinko. Condorcet domains, median graphs and the single
crossing property. arXiv:1505.06982v1 [cs.GT]. 2015 (cited on p. 79).

[PX12] D. Parkes and L. Xia. “A complexity-of-strategic-behavior comparison between
Schulze’s rule and ranked pairs”. In: Proceedings of the 26th AAAI Conference on
Artificial Intelligence (AAAI ’12). AAAI Press, 2012, pp. 1429–1435 (cited on p. 107).

[Ras00] B. E. Rasch. “Parliamentary floor voting procedures and agenda setting in Europe”.
In: Legislative Studies Quarterly 25(1) (2000), pp. 3–23 (cited on pp. 186, 192, 193,
231).

[Ras14] B. E. Rasch. “Insincere voting under the successive procedure”. In: Public Choice
158(3–4) (2014), pp. 499–511 (cited on pp. 188, 227).

[Ras87] B. E. Rasch. “Manipulation and strategic voting in the Norwegian parliament”. In:
Public Choice 52(1) (1987), pp. 57–73 (cited on p. 226).

[Rob77] K. Roberts. “Voting over income tax schedules”. In: Journal of Public Economics
8(3) (1977), pp. 329–340 (cited on pp. 2, 25, 26, 39, 72, 108).

[Rot15] J. Rothe, ed. Economics and Computation. An Introduction to Algorithmic Game
Theory, Computational Social Choice, and Fair Division. Springer, 2015 (cited on
p. 21).

[Rot90] P. Rothstein. “Order restricted preferences and majority rule”. In: Social Choice and
Welfare 7(4) (1990), pp. 331–342 (cited on p. 26).

[RPH98] M. H. Rothkopf, A. Pekeč, and R. M. Harstad. “Computationally manageable com-
binational auctions”. In: Management Science 44(8) (1998), pp. 1131–1147 (cited
on pp. xii, 109).

[San06] T. Sandholm. “Optimal winner determination algorithms”. In: Combinatorial Auc-
tions. Ed. by P. Cramton, Y. Shoham, and R. Steinberg. MIT Press, 2006. Chap. 14
(cited on p. 109).

[Sap09] A. Saporiti. “Strategy-proofness and single-crossing”. In: Theoretical Economics
4(2) (2009), pp. 127–163 (cited on p. 26).

[Sat75] M. A. Satterthwaite. “Strategy-proofness and Arrow’s conditions: existence and
correspondence theorems for voting procedures and social welfare functions”. In:
Journal of Economic Theory 10(2) (1975), pp. 187–217 (cited on pp. 3, 15).

[Sen66] A. K. Sen. “A possibility theorem on majority decisions”. In: Econometrica 34(2)
(1966), pp. 491–499 (cited on pp. 72, 77, 78).

[Sen70] A. K. Sen. Collective Choice and Social Welfare. North-Holland, 1970 (cited on p. 2).

[SFB13] X. Sui, A. Francois-Nienaber, and C. Boutilier. “Multi-dimensional single-peaked
consistency and its approximations”. In: Proceedings of the 23rd International Joint
Conference on Artificial Intelligence (IJCAI ’13). AAAI Press, 2013, pp. 375–382 (cited
on p. 75).

250

Bibliography

[SFE15] I. Schlotter, P. Faliszewski, and E. Elkind. “Campaign management under approval-
driven voting rules”. In: Algorithmica (2015), pp. 1–32 (cited on pp. 154, 161).

[Sko+15] P. Skowron, L. Yu, P. Faliszewski, and E. Elkind. “The complexity of fully proportional
representation for single-crossing electorates”. In: Theoretical Computer Science
569 (2015), pp. 43–57 (cited on p. 76).

[SP69] A. Sen and P. K. Pattanaik. “Necessary and sufficient conditions for rational choice
under majority decision”. In: Journal of Economic Theory 1(2) (1969), pp. 178–202
(cited on pp. 72, 77).

[ST06] A. Saporiti and F. Tohmé. “Single-crossing, strategic voting and the median choice
rule”. In: Social Choice and Welfare 26(2) (2006), pp. 363–383 (cited on pp. 26, 29).

[Sto63] D. E. Stokes. “Spatial models of party competition”. In: The American Political
Science Review 57(2) (1963), pp. 368–377 (cited on p. 3).

[SW14] A. Slinko and S. White. “Is it ever safe to vote strategically?” In: Social Choice and
Welfare 43(2) (2014), pp. 403–427 (cited on p. 109).

[SW82] K. A. Shepsle and B. R. Weingast. “Uncovered sets and sophisticated voting out-
comes with implications for agenda institutions”. In: American Journal of Political
Science 28(1) (1982), pp. 49–74 (cited on pp. 188, 227).

[Tid87] T. N. Tideman. “Independence of clones as a criterion for voting rules”. In: Social
Choice and Welfare 4(3) (1987), pp. 185–206 (cited on p. 74).

[Tov84] C. A. Tovey. “A simplified NP-complete satisfiability problem”. In: Discrete Applied
Mathematics 8(1) (1984), pp. 85–89 (cited on p. 125).

[Wal07] T. Walsh. “Uncertainty in preference elicitation and aggregation”. In: Proceedings
of the 22nd Conference on Artificial Intelligence (AAAI ’07). AAAI Press, 2007, pp. 3–8
(cited on pp. 72, 76, 108, 188).

[Wes77] F. Westhoff. “Existence of equilibria in economies with a local public good”. In:
Journal of Economic Theory 14(1) (1977), pp. 84–112 (cited on p. 26).

[XC11] L. Xia and V. Conitzer. “Determining possible and necessary winners under com-
mon voting rules given partial orders”. In: Journal of Artificial Intelligence Research
41 (2011), pp. 25–67 (cited on pp. 153, 189).

[Xia12] L. Xia. “Computing the margin of victory for various voting rules”. In: Proceedings
of the 13th ACM Conference on Electronic Commerce (EC ’12). ACM Press, 2012,
pp. 982–999 (cited on p. 153).

[Yap83] C.-K. Yap. “Some consequences of non-uniform conditions on uniform classes”.
In: Theoretical Computer Science 26(3) (1983), pp. 287–300 (cited on p. 18).

[YG14] Y. Yang and J. Guo. “The control complexity of r -approval: from the single-peaked
case to the general case”. In: Proceedings of the 13th International Conference on

251

Bibliography

Autonomous Agents and Multiagent Systems (AAMAS ’14). IFAAMAS, 2014, pp. 621–
628 (cited on p. 74).

[You77] H. P. Young. “Extending Condorcet’s rule”. In: Journal of Economic Theory 16(2)
(1977), pp. 335–353 (cited on p. 76).

252

APPENDIX A

Problem Compendium

For easy reference, we list below the problem definitions of the classical, that is,
unparameterized problems that are under consideration in this thesis.

1. AGENDA CONTROL

Input: A preference profile P := (A,V) with linear preference orders and a
preferred alternative p ∈ A.
Question: Is there an agenda for A such that p is the overall winner?

2. CLIQUE

Input: An undirected graph G = (V (G),E(G)) and a non-negative integer h ∈
N.
Question: Does G admit a size-h clique, that is, a size-h vertex subset U ⊆
V (G) such that G[U] is complete?

3. For the two parliamentary voting rules studied in Chapter 8, we have the
following manipulation problem.

COALITIONAL MANIPULATION

Input: A profile P := (A,V) with linear preference orders, a preferred alterna-
tive p ∈ A, a non-negative integer k ∈N, and an agenda L for A.
Question: Is it possible to add a set of k voters (a coalition) such that p wins
under agenda L ?

4. COMBINATORIAL CONSTRUCTIVE CONTROL BY ADDING VOTERS (C-CC-AV)
Input: A preference profile (A,V) with linear preference orders, a set W of
unregistered voters with V ∩W =; such that each unregistered voter has a
linear preference order over A, a bundling function κ : W → 2W , a preferred
alternative p ∈ A, and a non-negative integer k ∈N.
Question: Is there a subset of voters W ′ ⊆W of size at most k such that p is a
winner in the profile with voter set V ∪κ(W ′)?

253

Appendix A. Problem Compendium

5. DOMINATING SET

Input: An undirected graph G = (V (G),E(G)) and a non-negative integer h ∈
N.
Question: Does G admit a dominating set of size at most h, that is, a vertex
subset U ⊆V (G) with |U | ≤ h such that each vertex from V (G) \U is adjacent
to at least one vertex from U ?

6. INDEPENDENT SET

Input: An undirected graph G = (U ,E) and a non-negative integer h.
Question: Is there an independent set of size at least h, that is, a subset of at
least h vertices such that no two of them are adjacent to each other?

7. MAXIMUM 2-SATISFIABILITY (MAX2SAT)
Input: A set U of Boolean variables, a collection C of size-two clauses over U
and a positive integer h.
Question: Is there a truth assignment for U which satisfy at least h clauses
in C ?

8. PARTIAL VERTEX COVER (PVC)
Input: An undirected graph G = (V (G),E(G)) and two non-negative inte-
gers h,ℓ ∈N.
Question: Does G admit a size-h vertex subset U ⊆V (G) which intersects at
least ℓ edges in G?

9. PARTITION

Input: A multi-set X = (x1, x2, . . . , xr) of positive integers.
Question: Is there a perfect partition X1 ∪̇X2 = X of the integers such that
both parts sum up to the same value, that is,

∑
x∈X1

x =∑
x∈X2

x?

10. For Π∈{worst-restricted, medium-restricted, best-restricted, value-restricted,
single-peaked, single-caved, single-crossing, group-separable, β-restricted}:

a) Π ALTERNATIVE DELETION

Input: A profile with m alternatives and a non-negative integer k ≤ m.
Question: Can we delete at most k alternatives so that the resulting
profile satisfies the Π-property?

b) Π MAVERICK DELETION

Input: A profile with n voters and a non-negative integer k ≤ n.
Question: Can we delete at most k voters so that the resulting profile
satisfies the Π-property?

254

11. POSSIBLE (resp. NECESSARY) WINNER

Input: A preference profile P := (A,V), a preferred alternative p ∈ A, and a
partial agenda B.
Question: Can p win in a (resp. every) completion of the profile P for an
(resp. every) agenda which completes B?

12. R SHIFT BRIBERY

Input: A profile P with voter set V , a mapping π of SHIFT BRIBERY price
functions for V , a preferred alternative p ∈A (P), and a budget bound B ∈N.
Question: Is there a shift action SA with cost price(π, SA) ≤ B and p is an
R-winner in shift(P , SA)?

13. SET COVER

Input: A family F = (S1, . . . ,Sr) of sets over a universe U = {u1, . . . ,us } of ele-
ments and a non-negative integer h ≥ 0.
Question: Is there a size-at-most-h set cover, that is, a collection F ′ of h sets
in F whose union is U ?

14. (2-2)-3SAT
Input: A collection C of clauses over the variable set X = {x1, . . . , xn}, where
each clause has either two or three literals, and each variable appears exactly
four times, twice as a positive literal and twice as a negative literal.
Question: Is there a truth assignment that satisfies all clauses in C ?

15. VERTEX COVER

Input: An undirected graph G = (U ,E) and an integer k ≤ |U |.
Question: Is there a vertex cover U ′ ⊆U of at most k vertices, that is, |U ′| ≤ k
and ∀e ∈ E : e ∩U ′ ̸= ;?

255

Acknowledgment

千言万语
Thousands and thousands of words.

Chinese proverb

First of all, I would like to thank my supervisor Rolf Niedermeier (TU Berlin) for
giving me the opportunity to pursue my Ph.D. in his group, for guiding me to shape
my scientific life, and for broadening my world view.

I would like to express my sincere gratitude to Edith Elkind (Oxford University)
and Jérôme Lang (LAMSADE, Université Paris-Dauphine) for reviewing my thesis
and for giving me many helpful tips on writing.

I would also like to thank my former and current colleagues for many fruitful
discussions: René van Bevern, Robert Bredereck, Laurent Bulteau, Stefan Fafianie,
Vincent Froese, Sven Grottke, Sepp Hartung, Falk Hüffner, Andreas Köpke, Christian
Komusiewicz, Stefan Kratsch, André Nichterlein, Rolf Niedermeier, Jan Sablatnig,
Ruedi Seiler, Manuel Sorge, Ondřej Suchý, Nimrod Talmon, Anh Quyen Vuong,
Mathias Weller, Gerhard J. Woeginger, and Adam Wolisz. I also want to thank my
co-authors Noga Alon, Nadja Betzler, Piotr Faliszewski, Jiong Guo, Kirk Pruhs, and
Toby Walsh.

Finally, I am deeply in debt to my friends and my family. Without their endless
love and tolerance, I would not have been able to finish this thesis.

257

Schriftenreihe Foundations of Computing
Hrsg.: Prof. Dr. Stephan Kreutzer, Prof. Dr. Uwe Nestmann, Prof. Dr. Rolf Niedermeier

ISSN 2199-5249 (print)
ISSN 2199-5257 (online)

01: Bevern, René van: Fixed-Parameter Linear-
Time Algorithms for NP-hard Graph and
Hypergraph Problems Arising in Industrial
Applications. - 2014. - 225 S.
ISBN 978-3-7983-2705-4 (print) EUR 12,00
ISBN 978-3-7983-2706-1 (online)

02: Nichterlein, André: Degree-Constrained
Editing of Small-Degree Graphs. - 2015. -
xiv, 225 S.
ISBN 978-3-7983-2705-4 (print) EUR 12,00
ISBN 978-3-7983-2706-1 (online)

03: Bredereck, Robert: Multivariate Com-
plexity Analysis of Team Management
Problems. - 2015. - xix, 228 S.
ISBN 978-3-7983-2764-1 (print) EUR 12,00
ISBN 978-3-7983-2765-8 (online)

04: Talmon, Nimrod: Algorithmic Aspects of
Manipulation and Anonymization in Social
Choice and Social Networks. - 2016. - xiv,
275 S.
ISBN 978-3-7983-2804-4 (print) EUR 13,00
ISBN 978-3-7983-2805-1 (online)

05: Siebertz, Sebastian: Nowhere Dense Classes
of Graphs. Characterisations and Algorith-
mic Meta-Theorems. - 2016. - xxii, 149 S.
ISBN 978-3-7983-2818-1 (print) EUR 11,00
ISBN 978-3-7983-2819-8 (online)

Ex
pl

oi
tin

g
St

ru
ct

ur
e

in
 C

om
pu

ta
tio

na
lly

 H
ar

d
Vo

tin
g

Pr
ob

le
m

s

Universitätsverlag der TU Berlin

Universitätsverlag der TU Berlin

Foundations of computing Volume 6

Jiehua Chen

Exploiting Structure in
Computationally Hard Voting Problems

This thesis explores and exploits structures inherent in voting problems. Some of these struc-
tures are found in the preferences of the voters, such as the domain restrictions, which have
been widely studied in social choice theory. Others can be expressed as quantifiable measures (or
parameters) of the input, which makes them accessible to a parameterized complexity analysis.
The thesis deals with two major topics. The first topic revolves around preference structures, e.g.
single-crossing or one-dimensional Euclidean structures. In particular, it shows that single-cros-
singness can be characterized by finitely many forbidden substructures, and that the same is not
possible for one-dimensional Euclideanness. It also studies the computational complexity of ma-
king a given preference profile nicely structured by deleting the fewest number of either voters or
alternatives. The second topic comprises the parameterized complexity analysis of two computa-
tionally hard voting problems: Combinatorial Voter Control and Shift Bribery, making use of some
of the structural properties studied in the first part of the thesis. It also investigates questions on
the computational complexity, both classical and parameterized, of several voting problems for
two widely used parliamentary voting rules.

Jie

hu
a

Ch
en

6

Exploiting Structure in Computationally Hard Voting Problems

http://verlag.tu-berlin.de

ISBN 978-3-7983-2825-9 (print)
ISBN 978-3-7983-2826-6 (online)

9 783798 328259I S B N 9 7 8 - 3 - 7 9 8 3 - 2 8 2 5 - 9

Umschlag_JIEHUA_FoC_6_17.8.2016.indd 1 01.09.2016 07:48:06

	Cover
	Title page
	Imprint
	Zusammenfassung
	Abstract
	Preface
	Contents
	List of Figures
	List of Tables
	1 Introduction and Overview
	1.1 Thesis overview
	1.2 Published papers

	2 Preliminaries and Notation
	2.1 Relations and orders
	2.2 Graphs
	2.3 Preference profiles
	2.4 Voting rules and their properties
	2.5 Computational complexity
	2.6 Parameterized complexity

	I Structured and Nearly Structured Preferences
	3 Single-Crossing Preferences
	3.1 Introduction
	3.2 Results
	3.3 Chapter outline
	3.4 Definitions, notations, and examples
	3.5 A characterization through forbidden configurations
	3.6 The size of forbidden configurations
	3.7 Recognizing the single-crossing property
	3.8 Concluding remarks

	4 One-Dimensional Euclidean Preferences
	4.1 Introduction
	4.2 Results
	4.3 Chapter outline
	4.4 Definitions, notations, and examples
	4.5 Statement of the main results
	4.6 Definition of the profiles
	4.7 The profiles are not 1-D Euclidean
	4.8 Definition of the 1-D Euclidean embeddings
	4.9 A collection of technical results
	4.10 Correctness of the 1-D Euclidean embeddings
	4.11 Other profiles that are not 1-D Euclidean
	4.12 Concluding remarks

	5 Nearly Structured Preferences
	5.1 Introduction
	5.2 Results
	5.3 Related work
	5.4 Chapter outline
	5.5 Preliminaries and basic notations
	5.6 Value-restricted properties
	5.7 Single-peaked, single-caved, and group-separable properties
	5.8 Single-crossing properties
	5.9 Concluding remarks

	II Computationally Hard Voting Problems
	6 Combinatorial Voter Control
	6.1 Introduction
	6.2 Chapter outline
	6.3 Definitions, notations, and examples
	6.4 Central problem and results
	6.5 Canonical parameterizations
	6.6 Parameterization by the maximum bundle size and by the swap distance
	6.7 Single-peaked and single-crossing cases
	6.8 Concluding remarks

	7 Shift Bribery
	7.1 Introduction
	7.2 Results
	7.3 Chapter outline
	7.4 Definitions, notations and examples
	7.5 Parameterizations by solution cost measures
	7.6 Parameterizations by the preference profile measures
	7.7 Concluding remarks

	8 Parliamentary Voting Rules
	8.1 Introduction
	8.2 Results
	8.3 Chapter outline
	8.4 Specific notations and definitions
	8.5 Agenda Control
	8.6 Manipulation
	8.7 Possible/Necessary Winner
	8.8 Empirical study of Agenda Control and Coalitional Manipulation
	8.9 Concluding remarks

	9 Conclusion
	9.1 Main contributions
	9.2 Outlook and open questions

	Bibliography
	APPENDIX A
	Problem Compendium

	Acknowledgment
	Backcover

