
Fakultät für Elektrotechnik und Informatik
Institut für Softwaretechnik und Theoretische Informatik

Lehrstuhl für Security in Telecommunications

On the Learnability of
Physically Unclonable Functions

vorgelegt von
Fatemeh Ganji (M.Sc)

geb. in Teheran, Iran

von der Fakultät IV– Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades
Doktor der Ingenieurwissenschaften (Dr.-Ing.)

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr.-Ing. Sebastian Möller, Technische Universität Berlin
Gutachter: Prof. Dr. Jean-Pierre Seifert, Technische Universität Berlin
Gutachter: Prof. Mark M. Tehranipoor, Ph.D., University of Florida
Gutachter: Prof. Patrick Schaumont, Ph.D., Virginia Tech

Tag der wissenschaftlichen Aussprache: 17. August 2017

Berlin 2017

iii

Declaration of Authorship

Ich versichere an Eides statt, dass ich diese Dissertation selbständig verfasst
und nur die angegebenen Quellen und Hilfsmittel verwendet habe.

Datum:

v

This thesis is dedicated to my mother, my sister, and
the memory of my father.

vii

Zusammenfassung

Die Verbreitung von Integrated Circuits (ICs) steigt immer weiter. Damit
erhöht sich allerdings auch das Risiko, dass Sicherheitslücken in diesen aus-
genutzt werden. Angreifer haben bereits demonstriert, dass ein großes Spek-
trum an Angriffen mittels der genannten Sicherheitslücken möglich ist, um
vertrauliche Informationen (z.B. geistiges Eigentum) oder Kundendaten aus
den Geräten zu extrahieren. Es hat sich gezeigt, dass traditionelle Schutz-
maßnahmen in ICs keinen adäquaten Schutz bieten. Daher sind vor allem
PUFs, die per Chip Funktionalität bieten, interessante und vielversprechende
Kandidaten, um diese Lücke zu schließen. Folglich nutzen immer mehr kryp-
tographische Mechanismen die Eigenschaften eines PUFs, zur gleichen Zeit
haben Forscher aber auch gezeigt, dass PUFs anfällig gegen verschiedene
Angriffe sind. Vor allem Angriffe auf Basis von maschinellem Lernen
(ML) haben Anwendung gefunden. Diese versuchen das Eingabe/Antwort-
Verhalten der PUFs zu modellieren. Allerdings basieren aktuelle ML Angriffe
meist auf reinem Durchprobieren dieses Verhaltens. Das Resultat war folglich
eine Vielzahl an Ad-Hoc Angriffen und zugehörigen Gegenmaßnahmen.

In dieser Thesis wird anhand einer Auswahl von PUF Familien (Arbiter,
XOR Arbiter, Ring-Oszillator und Bistabile Ring PUF) der mathematis-
che Beweis geliefert, dass PUFs anfällig für ML Angriffe sind. Zu diesem
Zweck wurde im Zuge dieser Thesis ein allgemeines Framework entwickelt,
das zwei Ziele verfolgt. Erstens wurde auf Basis der inhärent physikalischen
Eigenschaften eines spezifischen PUFs eine mathematische Repräsentation
modelliert, die dessen Eigenschaften widerspiegelt. Notationen und Formal-
isierungen, die bereits in der ML Theorie verbreitet sind, wurden auf PUFs
übertragen, um ein besseres Verständnis zu gewinnen, warum und in welchem
Umfang PUFs in der Praxis anfällig gegen ML Angriffe sind. Zweitens wur-
den ML Algorithmen mit einer polynomiellen Laufzeit untersucht, die es er-
lauben, PUFs zu lernen. Wichtiger noch, im Vergleich zu existierenden ML
Ansätzen stellt das entwickelte Framework nicht nur sicher, dass ein Modell
zu Verfügung steht, es stellt auch sicher, dass das Modell eines spezifischen
PUFs dessen Verhalten akkurat abbildet.

Neben Off-the-Shelf ML Algorithmen nutzen wir auch Algorithmen aus
dem Forschungsfeld des “Property Testings”, um die Sicherheit von PUFs zu
evaluieren. Diese dienen als “Toolbox”, aus denen PUF Entwickler und Her-
steller die Eigenschaften und Indikatoren wählen können, die für sie wichtig
sind. Zu guter Letzt zeigen wir in dieser Thesis, auf Basis von Konzepten
aus der Lerntheorie, dass die studierten PUF Familien nicht als finale Lösung
angesehen werden können, um die Sicherheit von ICs zu verbessern. Darüber
hinaus gibt diese Thesis wichtige Einblicke nicht nur in das akademische

viii

Forschungsfeld der PUFs, sondern verbessert auch das Verständnis in Bezug
auf das Design und die Entwicklung von PUFs.

ix

Abstract

Along with the expansion of the application of integrated circuits (ICs),
the risk of security vulnerabilities of them has been rising dramatically. Di-
verse type of successful attacks against ICs have been launched by adversaries
taking advantage of those vulnerabilities to expose confidential information,
e.g., intellectual property (IP), and customer data. As a remedy for the
shortcomings of traditional security measures taken to protect ICs, PUFs ap-
pear to be promising candidates that are intended to offer instance-specific
functionality. While cryptographic mechanisms enjoying this privilege have
been emerging, the vulnerability of PUFs to different types of attacks have
been demonstrated. Among these attacks, a great deal of attention has been
paid to machine learning (ML) attacks, aiming at modeling the challenge-
response behavior of PUFs. So far the success of ML attacks has relied on
trial and error, and consequently, ad hoc attacks and their corresponding
countermeasures have been developed.

This thesis aims to address this issue by providing the mathematical
proofs of the vulnerability of various PUF families, including Arbiter, XOR
Arbiter, ring-oscillator, and bistable ring PUFs, to ML attacks. To achieve
this goal, for the assessment of these PUFs a generic framework is developed
that include two main approaches. First, with regard to the inherent physical
characteristics of the PUFs mentioned above, fit-for-purpose mathematical
representations of them are established, which adequately reflect the physical
behavior of those primitives. To this end, notions and formalizations, being
already familiar to the ML theory world, are reintroduced in order to give a
better understanding of why, how, and to what extent ML attacks against
PUFs can be feasible in practice. Second, polynomial time ML algorithms
are explored, which can learn the PUFs under the appropriate representa-
tion. More importantly, in contrast to previous ML approaches, not only
the accuracy of the model mimicking the behavior of the PUF but also the
delivery of such a model is ensured by our framework.

Besides off-the-shelf ML algorithms, we apply a set of algorithms origi-
nated in property testing field of study that can support the evaluation of
the security of PUFs. They serve as a “toolbox”, from which PUF designers
and manufacturers can choose the indicators being relevant to their require-
ments. Last but not least, on the basis of learning theory concepts, this thesis
explicitly states that the PUF families studied here cannot be considered as
an ultimate solution to the problem of insecure ICs. Furthermore, we believe
that this thesis can provide an insight into not only the academic research
but also the design and manufacturing of PUFs.

xi

List of Publications Related to this Thesis

The primary results presented in this thesis have been first published in the
following papers:

• Ganji, F., Tajik, S., Fäßler, F., Seifert, J.P.: Having No Mathematical
Model May Not Secure PUFs. Journal of Cryptographic Engineering,
Springer-Verlag, 2017

• Ganji, F., Tajik, S., Fäßler, F., Seifert, J.P.: Strong Machine Learning
Attack Against PUFs with No Mathematical Model. In Proceedings of
18th International Conference on Cryptographic Hardware and Embed-
ded Systems – CHES 2016, Santa Barbara, USA

• Ganji, F., Tajik, S., Seifert, J.P.: Let Me Prove It to You: RO PUFs
Are Provably Learnable. In Proceedings of 18th Annual International
Conference on Information Security and Cryptology (ICISC), 2015, Bu-
san, South Korea

• Ganji, F., Tajik, S., Seifert, J.-P.: Why Attackers Win: On the Learn-
ability of XOR Arbiter PUFs. In Proceedings of 8th International Con-
ference on Trust and Trustworthy Computing – TRUST 2015, Herak-
lion, Greece

• Ganji, F., Tajik, S., Seifert, J.P.: PAC Learning of Arbiter PUFs.
Journal of Cryptographic Engineering, Springer-Verlag, 2016

In addition to the aforementioned papers, Fatemeh Ganji has co-/authored
the following publications:

• Ganji, F., Krämer, J., Seifert, J.P., Tajik, S.: Lattice Basis Reduction
Attack against Physically Unclonable Functions. In Proceedings of
22nd ACM Conference on Computer and Communications Security –
CCS 2015, Denver, USA

• Tajik, S., Lohrke, H., Ganji, F., Seifert, J.P., Boit, C.: Laser Fault At-
tack on Physically Unclonable Functions. In Proceedings of Workshop
on Fault Diagnosis and Tolerance in Cryptography (FDTC), IEEE,
2015, St. Malo, France

xiii

Contents

Zusammenfassung vii

Abstract ix

List of Publications Related to this Thesis xi

1 Introduction 1
1.1 Motivation . 1

1.1.1 Hardware Root of Trust 2
1.1.2 Fragile Security of ICs 2

1.2 Physically Unclonable Functions 4
1.3 Thesis Statement . 5

1.3.1 Problem Statement . 5
1.3.2 Our Attack Model . 6
1.3.3 Thesis Contributions 7

1.4 Outline of the Thesis . 8

2 Definitions and Preliminaries 11
2.1 Notations . 11
2.2 PUFs . 11
2.3 Boolean Functions . 13

2.3.1 Linearity of Boolean Functions 14
2.3.2 Average Sensitivity of Boolean Functions 15
2.3.3 Non-linearity of PUFs over F2 and the Existence of

Influential Bits . 16
2.4 Linear Threshold Functions 17
2.5 Regular Language and Principles of DFAs 19
2.6 Probably Approximately Correct Model 20

3 PAC Learning of Arbiter PUFs 23
3.1 Introduction . 23
3.2 Representing Arbiter PUFs by DFAs 25

3.2.1 Discretization Process of Delay Values 27
3.2.2 Building a DFA Representing an Arbiter PUF 28

xiv

3.3 PAC Learning of Arbiter PUFs 31
3.4 Comparison with Related Work 34
3.5 Practical Considerations . 35

3.5.1 The Important Role of M 35
3.5.2 Dealing with the Metastable Condition 36

4 PAC Learning of XOR Arbiter PUFs 37
4.1 Introduction . 38
4.2 LTF Representation of XOR Arbiter PUFs 39
4.3 PAC Learning of XOR Arbiter PUFs 41
4.4 PAC Learning of Noisy XOR Arbiter PUFs 45
4.5 Discussion . 47

4.5.1 Theoretical Considerations 47
4.5.2 Practical Considerations 48

5 PAC Learning of Ring Oscillator PUFs 51
5.1 Introduction . 52
5.2 DL Representation of RO-PUFs 53
5.3 PAC Learnability of the 2−DL Representing the RO-PUF . 55
5.4 Results and Discussion . 57

6 PAC Learning of Bistable Ring PUFs 61
6.1 Introduction . 62
6.2 Architecture of the BR-PUF Family 63
6.3 A Constant Upper Bound on the Number of Influential Bits . 64

6.3.1 Heuristic Approaches 64
6.3.2 A Boolean-analytical Approach 65

6.4 PAC Learning of PUFs without Prior Knowledge of Their
Mathematical Model . 68

6.5 Results and Discussion . 70

7 Follow-up Work 75
7.1 Lattice Basis Reduction Attack 75
7.2 Laser Fault Injection Attack 76

8 Conclusion and Future Work 79

Acronyms 83

List of Symbols 85

List of Figures 91

List of Tables 93

List of Algorithms 95

xv

Bibliography 97

1

Chapter 1

Introduction

“ Unfortunately, none of the candidate [PUF] con-
structions have a proof of computational security, and
further, most, if not all, of them have been shown
to be susceptible to ML attacks. [In this context]
Gassend et al. [38] write: An important direction of
research is to find a circuit that are provably hard to
break [...]. ”

[49]

1.1 Motivation

Among the characteristics of today’s integrated circuits (ICs) are the wide
range of applications and the increasingly interconnected nature, which high-
light the importance of the security of ICs. Electronic components used in
household appliances and the aerospace industry can be within two ends of
the wide spectrum of IC applications. Within this broad range of applica-
tions, the internet of things (IoT) with a diverse set of connected devices and
objects has become increasingly more popular in recent years. While such
technological advances continue to gather pace, their security still lags far
behind.

Due to attacks against ICs, as building blocks of the connected devices,
the risk of exposing confidential information, e.g., intellectual property (IP)
and customer data, as well as endangering the brand image of a manufac-
turer arises [1]. This imposes serious challenges to IC manufacturers and
strictly enforce them to redefine their design goals by adding the security to
the former goals, namely cost, power consumption, performance, and reli-
ability [92]. In this regard, the natural and important questions would be
1) to what extent sacrificing the security of ICs can influence the security of
the system embodying them, and 2) how the security of ICs has been con-
sidered by IC designers and manufacturers in the past and the present. In

2 Chapter 1. Introduction

the following sections, these questions are answered by underlining the high
relevance of IC security as well as briefly introducing attacks against ICs and
the corresponding countermeasures.

1.1.1 Hardware Root of Trust

In order to answer the questions mentioned above, this section aims at stress-
ing the importance of securing ICs, upon which a root-of-trust (RoT) can
be built, and how this issue has been addressed so far. We begin with the
following definition of RoT.

Definition 1.1.1 RoT [116]: it is an element of a system that offers ser-
vices to verify the achievement of security-related goals, e.g., system and data
integrity (i.e., data being unaltered) and confidentiality (i.e., data access re-
stricted to authorized entities).

Following Definition 1.1.1 as well as the specifications provided by standard-
ization bodies (e.g., National Institute of Standard and Technology, NIST),
an RoT is a primitive that consists of hardware and/or software offering
trusted, security-critical functions [19]. Furthermore, as its name implies, an
RoT establishes a chain of trust ensuring the owner of the device about the
security of that. Due to the immutability, a smaller attack surface, and a
more reliable behavior, hardware RoTs are preferred options for providing
services defined in Definition 1.1.1 [19, 21, 116]. We stress that since levels
of design abstraction (i.e., protocols, software, etc.) and the methodology to
establish an RoT model are beyond the scope of this thesis, we solely focus
on the hardware RoT (for more details cf. [119]).

Although several requirements that must be fulfilled by a hardware RoT
have been formulated in the literature, here we stick to the following one,
which is the most relevant to our work. A hardware RoT must provide a
mechanism for generating and storing a key, which can be altered or revealed
(e.g., by reverse-engineering) either in prohibitively expensive or practically
impossible fashion [60]. The hardware RoT orthodoxy is a secret key embed-
ded in the hardware [87], for instance, a key stored in the non-volatile mem-
ories of the IC. Unfortunately, the vulnerability of such legacy key storage
methods to semi- and fully-invasive attacks, has been reported in the liter-
ature [47, 58, 112, 115]. It has been demonstrated that even in the presence
of sophisticated countermeasures, it is hard to stop an adversary attempting
to circumvent these security measures and gain access to the memories. Ac-
cordingly, in the absence of an RoT, the chain of trust cannot be established,
and the security of the whole system can be compromised.

1.1.2 Fragile Security of ICs

As is evident from the above discussion, IC designers and manufacturers
have to come up with security policies and measures to protect the hardware

1.1. Motivation 3

Design Verification Fabrication Packaging
System

Integration

Figure 1.1: A simplified IC Supply Chain (inspired by [21,67]).

RoT [119]. In addition, several successful attacks, ranging from a simple to
an orchestrated one, have been mounted against ICs, which particularly take
advantage of the lack of secure hardware RoT. Here we briefly consider such
attacks against ICs, which are the most relevant to the scope of this thesis,
and their roots.

The problem of IC insecurity has been escalating due to the horizontal
semiconductor business model, in which the IC fabrication is mainly out-
sourced to a contract foundry (usually) located in a foreign country [59].
Figure 1.1 illustrates a model of a simplified IC supply chain, which can
provide a better understanding of the goal and the harmfulness of attacks
against ICs. The chain begins with designing and procuring IP designs. After
the verification phase, an IC is manufactured and tested, and fault-free ICs
are packaged. It is important to emphasize that in the system integration
phase, fake and low-quality components may enter the chain as well [92]. The
message conveyed here is that during all phases, when the IC is designed and
produced, various hardware-based attacks can be mounted against an IC.
In this thesis, our primary focus lies on IP piracy and overbuilding attacks
(see [92] for further details on other types of attacks).

IP piracy and overbuilding attacks refer to cases, where a user and/or a
foundry, who is given access to the IP, misuse, and pirate the IP to build
ICs more than the desired number, ordered by the IP owner or the rights
holder [92]. The goals of this attack can be stealing the IP design and iden-
tifying the trade secret. In another case, the original design and/or compo-
nent, e.g., the IC, can be forged or replicated by an adversary, with an aim
to eavesdrop the sensitive information, modify the IC functionality, mount
the denial of service attacks, and reduce the reliability of the IC [113]. These
attacks can be launched in virtually all phases of the IC supply chain [92].

In addition to the huge cost and losses (e.g., loss of image) for IC man-
ufacturer, such attacks can affect an end-user, ranging from government,
industry, and business to ordinary consumers. To alleviate or prevent these
adverse effects, mechanisms should be employed to distinguish between an
overbuilt IC and a real one. These mechanisms should include not only em-
bedding a hardware RoT in ICs but also protecting such RoT from attacks,
e.g., those introduced previously. To address this, and as a countermeasure
against these attacks, Gassend et al. were the first to suggest applying a
silicon-unique RoT [38], called a physically unclonable function (PUF). In
this respect, it is claimed that a PUF can provide IC-unique authentication

4 Chapter 1. Introduction

Hardware platfrom

PUF

Secure key
storage

Trusted hardware resources

IC-unique key
generation …

Cryptographic primitives

EncryptionAuthentication …

Figure 1.2: PUFs, as an RoT, must provide trusted hardware resources (i.e.,
chip-unique key generation and key storage). These resources serve a ground for
developing cryptographic primitives (inspired by [21,67]).

as well as key generation.

1.2 Physically Unclonable Functions

The invention of PUFs was a milestone in the development of device authen-
tication and key generation methods, as explained before. The basic idea
behind the concept of PUFs is to take advantage of physical characteristics
of the IC corresponding to manufacturing process variations, which make
each IC slightly different from others. Regarding theses instance-specific,
and inherent physical properties of the PUFs, they have been nominated as
a hardware RoT. More specifically, the IC-unique key generation and stor-
age, so-called trusted hardware resources, are provided by a PUF embedded
in a hardware platform, i.e., the IC [21]. These resources can be employed
to support the cryptographic primitives, see Figure 1.2.

For PUFs, due to the manufacturing process variations, it is possible to
generate virtually unique responses as outputs, when the instance is given
some inputs called challenges. Therefore, PUFs can be utilized as either
device fingerprints for secure authentication or as a source of entropy in
secure key generation scenarios. In this case, there is no need for permanent
key storage, since the desired key is generated instantly upon powering up
the device. Due to the physical properties of the PUFs, they are assumed
to be unclonable and unpredictable, and therefore trustworthy and robust
against attacks [67].

Regarding how the physical characteristics of the IC embodying a PUF
are exploited, several PUF instances have been introduced in recent years [67],
e.g., Arbiter, XOR Arbiter, ring oscillator (RO-), and bistable ring (BR-)
PUFs. While the PUF manufacturers have been contributing to improve the
design, and consequently, the security of the PUFs, adversaries are simul-
taneously developing non-invasive and semi-invasive attacks against these
primitives [46, 47, 95, 109]. For instance, it has been shown that an Arbiter

1.3. Thesis Statement 5

PUF can be fully characterized by conducting semi-invasive temporal pho-
tonic emission analysis [109]. As another example of semi-invasive attacks, it
has been stated that RO-PUFs are subject to semi-invasive electromagnetic
(EM) side channel analysis [78].

On the other hand, machine learning (ML) attacks are one of the most
common types of non-invasive attacks against PUFs, whose popularity stems
from their characteristics, namely being cost-effective and non-destructive.
From the very beginning of the era of PUFs, designers were doubtful, whether
the input-output (i.e., so-called challenge-response) behavior of a PUF can
be learned cf. [38]. This question is relevant since, in these attack scenarios,
the adversary solely observes the challenge-response behavior of the targeted
PUF by applying a relatively small set of challenges to a PUF and collects
the responses to those challenges. Afterwards, by employing ML techniques,
the adversary can build a model of the challenge-response behavior of the
PUF, which can predict the responses of the PUF to new, arbitrarily chosen
challenges.

1.3 Thesis Statement

As explained above, in ML attack scenarios, a relatively small subset of chal-
lenges along with their respective responses is collected by the adversary, at-
tempting to come up with a model describing the challenge-response behavior
of the PUF. So far the success of existing modeling attacks, so-called empiri-
cal ML attacks, relies on simple trial-and-error approaches cf. [83,95,97,98].
The most serious shortcoming of these ML approaches is that after the learn-
ing phase, the delivery of a model describing the challenge-response behavior
of the PUF is not ensured. Furthermore, the existing models of the challenge-
response behavior of the PUFs fail to reflect the physical properties of these
primitives in some attack scenarios. This failure results in applying less
powerful adversarial models. These have led the designers to conjecture that
PUFs can be proved to be computationally secure after all [49].

1.3.1 Problem Statement

As stated above, in the absence of a detailed analysis and mathematical
proofs of the security of PUFs, ad hoc attacks and their respective counter-
measures have been developed. We aim to address this issue by providing
mathematical proofs of the vulnerability of different PUF families (including
Arbiter, XOR Arbiter, RO- , and BR-PUFs) to ML attacks. In order to
develop such mathematical framework for the assessment of the security of
PUFs, we take the following necessary steps:

6 Chapter 1. Introduction

Exploring the physical
properties of PUFs

Establishing a proper
representation of PUFs

Provable learning of
PUFs

Known models of
internal

functionality of
PUFs

Figure 1.3: Our general roadmap for proving the learnability of known, and
widely used families of PUFs (i.e., Arbiter, XOR Arbiter, RO-, and BR-PUFs).

• Establishing fit-for-purpose mathematical representations of different
PUFs. To this end, we should accurately capture the physical charac-
teristics of a PUF, and translate it to mathematical representations of
them.

• Developing approaches to assess the security of PUFs under the pro-
posed representation. When applying these methods, the delivery of a
model describing the challenge-response behavior of the PUF must be
ensured. Furthermore, it is desired to compute the maximum number
of examples that should be collected from the PUF before launching
the ML attack.

In a nutshell, by providing mathematical proofs, this thesis attempts to
answer the following question. Are PUF families, studied by us in this thesis,
provably suitable solutions to the problems concerning the security of ICs?

1.3.2 Our Attack Model

Here, we informally introduce our attack model, for further details on that
see Chapter 2. Aiming at mathematically cloning known families of PUFs,
namely, Arbiter, XOR Arbiter, RO-, and BR-PUFs, we collect a set of
challenge-response pairs (CRPs) to provide a model that can approximately
predict the response of the PUF to an arbitrarily chosen challenge. In our
framework, the accuracy of the model delivered by the machine, and the prob-
ability of delivering such accurate model (so-called confidence level) can be
defined beforehand. Moreover, the maximum number of examples required
to run our ML algorithms is known before the learning phase. These are in
contrast to empirical ML attacks that have been proposed in the literature
so far.

As depicted in Figure 1.3, we take the first step by exploring the physical,
inherent properties of a PUF. Additionally, in some scenarios, the mathemat-
ical model of the internal functionality of the PUF is known (e.g., Arbiter

1.3. Thesis Statement 7

PUFs, see Chapter 3), which can be helpful to build a proper representa-
tion of the PUF. Afterwards, we apply an algorithm to learn the PUF for
prescribed levels of accuracy and confidence under the representation, estab-
lished in previous steps. More formally, for a family of PUF, we

• take advantage of the physical, inherent characteristics and special fea-
tures of the PUF family, which are helpful to establish polynomial-sized
representations of the PUFs, and

• provide polynomial time algorithms that can generate such polynomial-
sized representation of the PUF, when being fed with a set of CRPs.

Finally, we evaluate the feasibility and effectiveness of our framework
applied to real-world PUFs and/or compare our theoretical findings with the
practical results reported in the literature.

1.3.3 Thesis Contributions

In this thesis, we present provable ML attacks against several families of
PUFs, namely, Arbiter, XOR Arbiter, RO-, and BR-PUFs. Over the years,
when we have been writing this thesis, various empirical ML attacks have
been proposed in the literature. In contrast to these approaches, we have
proved that PUFs, studied in this thesis, cannot be considered as “circuits
that are provably hard to break”.

First, we have considered the family of Arbiter PUFs that is widely ac-
cepted and studied in the hardware security community. The principle be-
hind the design of these PUFs is that the delay differences between sym-
metrically designed electrical paths on an IC can be utilized to generate a
response, when the IC is fed by a challenge. We have demonstrated that
under a well-established representation, these PUFs can be learned for given
levels of accuracy and confidence [36]. In our study, the impact of the limited
range of the electrical path delays on the learnability of the Arbiter PUFs
has been extensively investigated and has its novelty value.

Secondly, we have studied XOR Arbiter PUFs as a modified structure of
Arbiter PUFs, in which non-linear effects are added to the PUF in order to
impair the effectiveness of ML attacks. At the beginning of the XOR Arbiter
PUFs era, it was assumed that when XORing a number of Arbiter chains to
generate the response of the PUF, the PUF would be more robust against
ML attacks. We have established a theoretical upper bound on the number
of arbiter chains of an XOR Arbiter PUF, beyond which the PUF cannot
be characterized in polynomial time by applying pure ML methods [35].
We have further elaborated on how the technological constraints of existing
ICs can pose difficulties for manufacturers that implement an XOR Arbiter
PUF, whose number of arbiter chains exceeds the theoretical upper bound.
Our results have been acknowledged, and provide a firm basis for not only

8 Chapter 1. Introduction

performing further research but also designing new PUF architectures [89,
123,124].

Thirdly, in our study on RO-PUFs, we have demonstrated that inher-
ent characteristics of RO-PUFs, although being hidden from an adversary,
contribute to the success of heuristic-based attacks and our framework as
well. The most substantial contribution of our study is establishing a fit-for-
purpose representation of RO-PUFs that can be easily and rapidly built by
collecting CRPs from PUFs [34].

Last but not least, we have provided a provable framework for ML at-
tacks against a PUF family, whose underlying mathematical model is un-
known, namely BR-PUFs [32]. So far virtually all ML attacks have been
relying on the assumption that a mathematical model of the PUF function-
ality is known. While this may not be true in some cases, attention should be
paid to this important aspect of ML attacks. When we were developing the
framework mentioned above, we observed an interesting phenomenon that
has also been noticed by several papers on experimental research. However,
none of them has correctly and precisely pinpointed the mathematical origin
of that. We have proved that when applying a challenge to a PUF, the re-
sponse the PUF is not determined equally by all challenge bits, but a subset
of the bit positions. In addition, to the best of knowledge, we – for the first
time – endeavor to apply the Boolean and Fourier analyses in order to assess
the security of PUFs. In this regard, we have introduced new metrics and
notions, e.g., average sensitivity of Boolean functions, which are well-known
and widely used in modern cryptography and may provide special insights
into the physical design of secure PUFs in the future. The paper covering
the results of the study on BR-PUFs has been well received by the hardware
security community and invited to the Journal of Cryptographic Engineer-
ing as one of “the best rated papers” [40]. The extension of the paper [32]
published by this journal introduces further notions from property testing
field of study and has been noticed as “providing an important addition to
the toolbox of PUF designers” [40].

Finally, we believe that this thesis can help to fill the gap between ML
theory and hardware security, in particular, by contributing to the design,
and the assessment of the security of PUFs in the real world. More specifi-
cally, this thesis demonstrates that provable algorithms and approaches that
are common knowledge in the ML theory should be taken into account, when
designing PUFs and assessing the security of them.

1.4 Outline of the Thesis

Chapter 2 presents the background information and notations required to
understand the general concept of PUFs and our attacks. Chapter 3 describes
how an Arbiter PUF can be subject to our provable learning attack. In
Chapter 4, our ML attack against XOR Arbiter PUFs is discussed. Chapter 5

1.4. Outline of the Thesis 9

demonstrates that the security of RO-PUFs can be broken by launching our
attack. The aim of Chapter 6 is to state that BR-PUFs – even without
knowing a model representing their internal functionality – are vulnerable to
our ML attack. Chapter 7 gives a brief introduction to work derived from and
built upon the results of our learning framework. Finally, Chapter 8 draws
the main conclusions from this thesis and discusses directions for future work.

11

Chapter 2

Definitions and Preliminaries

This chapter focuses on the background information and notations required
to understand the general concept of PUFs, PAC model and several math-
ematical representations established to launch ML attacks against PUFs.
The material collected and reworked in this chapter has been first presented
in [32–36].

Overview of this chapter: In addition to introducing the notations
used in this thesis (Section 2.1), this chapter is devoted to the background
information related to the notion of PUFs (Section 2.2), basics of Boolean
analysis (Section 2.3), and our ML model (Section 2.6). Moreover, one of
our main results has been formulated in Section 2.3.3 that is Theorem 2.3.2.

2.1 Notations

In this thesis, vectors are denoted by a bold character, e.g., c, whose elements
are indexed by an index i ≥ 1 between brackets, for instance, c[1]. A boolean
string is denoted by a normal character, e.g., c, where its elements are c =
c1c2 . . . cn. The concatenation of two strings, e.g., c and c′, is shown as cc′.
A learning algorithm is displayed in teletype font, e.g., an algorithm A.
Random variables are shown in the calligraphic font, e.g., A. A list of the
operators used in this thesis is provided in the list of symbols on page 85.

2.2 PUFs

Note that elaborate and formal definitions as well as formalizations of PUFs
are beyond the scope of this work, and for more details, the reader is referred
to [8,9]. In general, PUFs are physical input to output mappings, which map
given challenges to responses . Intrinsic properties of the physical primitive
embodying the PUF determine the characteristics of this mapping. An ideal
PUF exhibits the following security-related properties.

12 Chapter 2. Definitions and Preliminaries

Definition 2.2.1 For a given random instance of a PUF, i.e., fPUF(·), let it
be defined by the mapping fPUF : C → Y, where fPUF(c) = y. An ideal fPUF

exhibits the following properties.

1. Evaluable: in polynomial time we can evaluate fPUF.

2. Unique: the mapping fPUF is instance-specific.

3. Reproducible: applying same challenges to fPUF results in close re-
sponses with respect to a chosen distance metric.

4. Unclonable: it is (almost) impossible to construct another mapping
(i.e., physical entity) gPUF so that gPUF ≈ fPUF.

5. Unpredictable: for a given set U = {(ci, yi) | yi = fPUF(ci)}, it is
(almost) impossible to predict a response yr = fPUF(cr), where cr is a
random challenge and (cr, yr) /∈ U .

6. One-way: by applying a challenge c, drawn from a uniform distribution
on {0,1}n, we obtain y = fPUF(c) so that

Pr[A(fPUF(c)) = c] < 1/p(n),

where p(·) is any positive polynomial. This means that the probability
that any probabilistic polynomial time algorithm or physical procedure
A can output c is negligible, cf. [94]. In other words, it is hard to find
the challenge c, if the respective response of a random instance of the
PUF family is known, and the adversary can evaluate the PUF only a
polynomial number of times [67].

Regarding the number of possible challenges, two main classes of PUFs,
namely strong PUFs and weak PUFs have been discussed in the litera-
ture [42]. A PUF with an exponential challenge space is called a strong
PUF, whereas a weak PUF does not fulfill this requirement (for a formal
definition see [42,94]). In this section we do not limit our focus to a specific
class of PUF, however, we elaborate on this issue in next chapters.

Last but not least, without limiting the generality of our approach, we
assume that CRPs collected from a PUF is noiseless (unless it is explicitly
stated, e.g., in Section 4.4). The term noise in the PUF-related literature
refers to the observation that applying the same challenge may result in
obtaining different responses due to the environmental changes, see, e.g. [67].
This issue must have been resolved by the manufacturer, and is beyond the
scope of this thesis. For more details, the reader is referred to numerous
mechanisms proposed in the literature, e.g., [70, 71].

2.3. Boolean Functions 13

2.3 Boolean Functions

Defining PUFs as mappings (see Section 2.2), the most natural mathemati-
cal model for them are Boolean functions over the finite field F2. Note that
Boolean functions considered in this thesis can be seen solely as an approxi-
mation of a mapping associated with a physical primitive, namely a PUF as
defined by Definition 2.2.1.

Let Vn = {c1, c2, . . . , cn} denote the set of Boolean attributes or variables,
where each attribute can be true or false, commonly denoted by “1” and
“0”, respectively. In addition, Cn = {0, 1}n contains all binary strings with n
bits. We associate each Boolean attribute ci with two literals, i.e., ci, and ¬ci
that is complement of ci. An assignment is a mapping from Vn to {0, 1}, i.e.,
the mapping from each Boolean attribute to either “0” or “1”. In other words,
an assignment is an n-bits string, where the ith bit of this string indicates
the value of ci (i.e., “0” or “1”).

An assignment is mapped by a Boolean formula into the set {0, 1}. Thus,
each Boolean attribute can also be thought of as a formula, i.e., ci and ¬ci are
two possible formulas. If by evaluating a Boolean formula under an assign-
ment we obtain “1”, it is called a positive example of the concept represented
by the formula or otherwise a negative example. Each Boolean formula defines
a respective Boolean function f : Cn → {0, 1}. The conjunction of Boolean
attributes (i.e., a Boolean formula) is called a term, and it can be true or
false (“1” or “0”) depending on the value of its Boolean attributes. Similarly,
a clause that is the disjunction of Boolean attributes can be defined. The
number of literals forming a term or a clause is called its size. The size 0 is
associated with only the term true, and the clause false.

In the related literature several representations of Boolean functions have
been introduced, e.g., juntas, Monomials (Mn), Decision Trees (DTs), and
Decision Lists (DLs), cf. [84, 90].

Definition 2.3.1 A Boolean function depending on solely an unknown set
of at most k variables is called a k-junta. Formally, there exist k indices
1 ≤ i1 < i2 < · · · < ik ≤ n and a function h : {0,1}k → {0,1} such that the
following holds [103]:

∀c ∈ {0,1}n : f(c) = h(ci1 , · · · , cik).

Definition 2.3.2 A monomial Mn,k defined over Vn is the conjunction of at
most k clauses each having only one literal.

Definition 2.3.3 A DT is a binary tree, whose internal nodes are labeled
with a Boolean variable, and each leaf with either “1” or “0”. A DT can be
built from a Boolean function in this way: for each assignment a unique path
form the root to a leaf should be defined. At each internal node, e.g, at the ith

level of the tree, depending on the value of the ith literal, the labeled edge is

14 Chapter 2. Definitions and Preliminaries

Figure 2.1: (a) A sample of “if - then- else if - ...- else” rules. (b) Diagram of
the DL corresponding to this rule [34].

chosen. The leaf is labeled with the value of the function, given the respective
assignment as the input. The depth of a DT is the maximum length of the
paths from the root to the leafs. The set of Boolean functions represented by
DTs of depth at most k is denoted by k-DT.

Definition 2.3.4 A DL is a list L that contains r pairs (f1, v1), . . . , (fr, vr),
where the Boolean formula fi is a term and vi ∈ {0, 1} with 1 ≤ i ≤ r − 1.
For i = r, the formula fr is the constant function vr = 1. A Boolean function
can be transformed into a DL, where for a string c ∈ Cn we have L(c) = vj,
and j is the smallest index in L so that fj(c) = 1. This relationship implies
that common patterns are listed at the top of the DL, whereas the exceptions
can be found at the end of that. k-DL denotes the set of all DLs, where each
fi is a term of maximum size k.

A useful interpretation of DLs is that they define a concept, which follows a
general pattern but with some exceptions, or alternatively, it can be thought
of being an extended “if- then- else if- ...- else” rule (see Figure 2.1).

2.3.1 Linearity of Boolean Functions

Here, our focus is on Boolean linearity, which must not be confused with the
linearity over other domains, different from F2. A linear Boolean function
f : {0, 1}n → {0,1} features the following equivalent properties, cf. [84]:

• ∀c, c′ ∈ {0, 1}n : f(c+ c′) = f(c) + f(c′)

• ∃a ∈ {0, 1}n : f(c) = a · c.

2.3. Boolean Functions 15

Equivalently, we can define a linear Boolean function f as follows. There is
some set S ⊆ {1, . . . , n} such that f(c) = f(c1, c2, . . . , cn) =

∑
i∈S ci.

Boolean linearity or linearity over F2 is closely related to the notion of cor-
relation immunity. A Boolean function f is called k-correlation immune,
if for any assignment c chosen randomly from {0, 1}n it holds that f(c) is in-
dependent of any k-tuple (ci1 , ci1 , . . . , cik), where 1 ≤ i1 < i2 < · · · < ik ≤ n.
Now let degF2

(f) denote the degree of the F2-polynomial representation of
the Boolean function f . It is straightforward to show that such represen-
tation exists. Siegenthaler proved the following theorem, which states how
correlation immunity can be related to the degree of f .

Theorem 2.3.1 (Siegenthaler Theorem [84,106]) Let f : {0, 1}n → {0,1} be
a Boolean function, which is k-correlation immune, then degF2

(f) ≤ n− k.

2.3.2 Average Sensitivity of Boolean Functions

The Fourier expansion of Boolean functions serves as an excellent tool for
analyzing them, cf. [84]. In order to define the Fourier expansion of a Boolean
function f : Fn

2 → F2 we should first define an encoding scheme as follows.
χ(0F2) := +1, and χ(1F2) := −1. Now the Fourier expansion of a Boolean
function can be written as

f(c) =
∑
S⊆[n]

f̂(S)χS(c),

where [n] := {1, . . . , n}, χS(c) :=
∏

i∈S ci, and f̂(S) := Ec∈U [f(c)χS(c)].
Here, Ec∈U [·] denotes the expectation over uniformly chosen random exam-
ples. In addition, the degree of the Fourier expansion of a function f , deg(f),
is

deg(f) := max{|S| : f̂(S) ̸= 0}.

Moreover, the influence of variable i on f : Fn
2 → F2 is defined as

Infi(f) := Prc∈U [f(c) ̸= f(c⊕i)],

where c⊕i is obtained by flipping the i-th bit of c. Note that Infi(f) =∑
S∋i(f̂(S))

2, cf. [84]. Next we define the average sensitivity of a Boolean
function f as

I(f) :=

n∑
i=1

Infi(f).

The notion of average sensitivity was first introduced by Kahn et al. [52],
and has been widely applied to study the properties of Boolean functions
(for a survey on relevant results and their ubiquitous applications see [84]).
As a prime example, it is a known result and common knowledge that ran-
domly chosen n-bit Boolean functions have an expected average sensitivity

16 Chapter 2. Definitions and Preliminaries

of exactly n/2, cf. [84]. This means that if the output of a random function
f is ±1 with probability 1/2, irrespective of the inputs, the expected average
sensitivity of the function f is n/2.

2.3.3 Non-linearity of PUFs over F2 and the Existence of In-
fluential Bits

Section 2.3.1 introduced the notion of Boolean linearity. Focusing on this no-
tion and taking into account the definition of PUFs mentioned in Section 2.2,
now we prove the following theorem that is our first important result. For
all PUFs, when represented as a Boolean function, it holds that their degree
as F2-polynomial is strictly greater than one.

Theorem 2.3.2 For every strong PUF fPUF : Fn
2 → F2, we have

degF2
(fPUF) ≥ 2.

Proof: Towards contradiction assume that the Boolean function fPUF, which
fulfills the requirements mentioned by Definition 1, is linear over F2. From
the unpredictability of fPUF it follows that the adversary has access to a set
of CRPs U = {(c, y) | y = fPUF(c) and c ∈ C}, which are chosen uniformly at
random, however, the adversary has only a negligible probability of success
to predict a new random challenge (c′, ·) /∈ U (as he cannot apply fPUF to
this unseen challenge). Note that the size of U is actually polynomial in n.
Now, by the definition of linearity over F2, cf. Section 2.2.2, we deduce that
the only linear functions over F2 are the Parity functions, see also [84, 106].
However, there are well-known algorithms to PAC learn Parity functions in
general [26, 48]. Thus, now we simply feed the right number of samples
from our CRP set U into such a PAC learner. For the right parameter
setting, the respective PAC algorithm delivers then with high probability
an ε-approximator h for our PUF fPUF such that Pr[f(c′) = h(c′)] ≥ 1 −
ε. This means that with high probability, the response to every randomly
chosen challenge can be calculated in polynomial time. This is of course a
contradiction to the definition of fPUF, being unpredictable. Hence, fPUF
cannot be linear over F2, i.e., we have degF2

(fPUF) ≥ 2. ■
There is a close connection between this property of PUFs and the notion

of correlation immunity introduced by Siegenthaler’s Theorem. It is known
that any parity function on n inputs is n− 1-resilient, and n− 1-correlation
immune (cf. [84]). As a result of the above discussion, at best, a PUF can
be approximated by a parity function on n − 1 inputs, and consequently,
we deduce that a PUF can be represented by (at best) an n− 2-correlation
immune function.

Although the condition on degF2
(fPUF), proved by Theorem 2.3.2, is

important from our point of view, it cannot specify how bits can influence

2.4. Linear Threshold Functions 17

the responses of a PUF1. In fact, in this regard we refer to what has been
proved by Kahn et al.; for a Boolean function on n variables that equals
“1” with probability p (p ≤ 1/2), there exists at least one variable with
the influence Ω(p log2(n)/n), cf. [52]. This result assures that there exists
at least one variable with the influence Ω(p log2(n)/n), although it neither
quantifies a certain number of influential bits nor approximates the average
sensitivity of a Boolean function. The key message conveyed by Kahn’s
theorem is that such an influential bit position exists. However, in order
to approximate the average sensitivity of a Boolean function representing
a PUF, and consequently, the number of influential bits of that, Boolean
analyses must be conducted (see Section 6.3.2). Note that these Boolean
analyses aim to determine an upper bound on the number of influential bits
to evaluate the feasibility of PAC learning of a PUF family.

Note on Boolean functions representing a PUF: when interpreting
the results of Theorem 2.3.2 and Kahn’s theorem in the case of PUFs, Boolean
functions within the scope of these theorems have to reflect the characteristics
of a PUF, see Definition 2.2.1. For instance, symmetric (i.e., the number of
“1”s in the input determines the output), and totally random as well as totally
deterministic Boolean functions cannot be good candidates to represent a
PUF. More specifically, these are Boolean functions that cannot fulfill the
requirements of a PUF, namely, unpredictability, and robustness.

2.4 Linear Threshold Functions

In addition to the Boolean functions, linear threshold functions (LTFs) have
been used to represent PUFs. In order to define an LTF, we begin with the
definition of a Perceptron (i.e., single-layer Perceptron), see Figure 2.2.

Definition 2.4.1 (cf. [79]) A Perceptron Pn with n inputs and single output
is associated with a function f : {0, 1}n+1 → {−1, 1}, where the output is
computed by the Perceptron is:

f =

{
1, if

∑n
i=1 ω[i]Φ[i] ≥ 0

−1, otherwise.

In the above equation, the vector ω = (γ,ω[1], ω[2], · · · , ω[n]) contains real-
valued weights ω[i] determining the contribution of each input element Φ[i]
to the output of the Perceptron. Alternatively, we can formulate the above
formula as an LTF

f = sign(Φ · ω).

1Unlike the degree of the Fourier expansion of a function f (deg(f)), from degF2(f) it
is not straightforward to infer the number of bit positions influencing the response of a
Boolean function, cf. [84]

18 Chapter 2. Definitions and Preliminaries

Figure 2.2: A Perceptron first calculates a linear combination of its inputs, which
is finally compared to some threshold to generate the output.

The sets of positive and negative examples of the LTF f are half-spaces
S1 and S0, where

S1 = {Φ ∈ Rn|
n∑

i=1

ω[i]Φ[i] ≥ γ},

and

S0 = {Φ ∈ Rn|
n∑

i=1

ω[i]Φ[i] < γ}.

S1 and S0 are decision regions of the LTF f that are bounded by the hyper-
plane P : Φ · ω = γ (for further details see [7]).

Perceptron Algorithm

The Perceptron algorithm is an online algorithm invented to learn LTFs
efficiently. By online we mean that providing the learner (i.e., learning al-
gorithm) with each example, e.g., Φi, it attempts to predict the response to
that example. Afterwards, the actual response (i.e., the label, for instance
f(Φi)) is presented to the learner, and then it can improve its hypothesis
by means of this information. The learning process continues until all the
examples are provided to the learner [65].

Let the input of the Perceptron algorithm be a sequence of r labeled
examples ((Φ1, f(Φ1), · · · , (Φr, f(Φr)). The output of the algorithm is the
vector ω classifying the examples. Executing the Perceptron algorithm, it
initially begins with ω0 = (ω0[1], ω0[2], · · · , ω0[n], γ) = (0, · · · , 0). When
receiving each example (e.g., Φj), the algorithm examines whether ωj [i] ·
Φj [i] ≥ γj and compares its prediction with the received label. If the label
and the prediction of the algorithm differ, ωj is updated as follows:

ωj+1[k] =

{
ωj [k]− f(Φj) ·Φj [k] 1 ≤ k ≤ n

γj − f(Φj) k = n+ 1.

2.5. Regular Language and Principles of DFAs 19

Note that if the prediction and the label of an example agree, no update is
performed [104].

Quantifying the performance of an on-line algorithm, the prediction error
(i.e., number of mistakes) of the algorithm is taken into account. In this way,
the upper bound of the mistakes is defined as a measure of the performance.
The Perceptron convergence theorem gives an upper bound of the error that
can occur while executing the Perceptron algorithm [29]:

Theorem 2.4.1 (Convergence Theorem of the Perceptron algorithm): Con-
sider r labeled examples which are fed into the Perceptron algorithm, and
∥Φi∥ ≤ R (∥ · ∥ denotes the Euclidean length). Let u be the solution vector
with ∥u∥ = 1 whose error is denoted by ε (ε > 0). The deviation of each

example is defined as di = max{0, ε − f(Φi)(u ·Φi)}, and D =
√∑r

i=1 d
2
i .

The upper bound of the mistakes of the Perceptron algorithm is

Nmis =

(
R+D

ε

)2

.

For the proof, the reader is referred to [29]. Note that when the data is
linearly separable, we have D = 0 [29]. In order to examine whether the
data is linearly separable, we should define a parameter as follows. Let the
parameter σ be the minimum distance of any example from P, i.e.,

σ = min
Φ∈Φ

|Φ · ω|
∥ω∥∥Φ∥

,

where Φ is the set of all Φ’s [12]. This equation can be seen as the minimum
of the cosine of the angle between the input and the weight vectors. The
order of 1/σ determines whether the data is linearly separable. It has been
demonstrated that when 1/σ is exponential in n, the data is not linearly
separable, and consequently, the Perceptron algorithm cannot classify the
data [18,104]. On the other hand, if 1/σ is polynomial in n, the Perceptron
algorithm can be applied.

2.5 Regular Language and Principles of DFAs

We assume that the reader is familiar with regular languages and determinis-
tic finite automata (DFA). Therefore, we only briefly introduce the notations,
which will be used throughout this work. We follow the standard notation,
as can be found in [4] and [51]. Consider the alphabet Σ = {0,1} and the set
of all strings Σ∗ over Σ. By |c| we denote the length of strings c ∈ Σ∗, and
by λ the empty string of length |λ| = 0.

A DFA A is given by A = (Q, δ,Σ, q0, F) over the alphabet Σ, with Q
being the set of states, the initial state q0, and the accepting states F ⊆ Q.

20 Chapter 2. Definitions and Preliminaries

The transition function δ : Q × Σ → Q is defined as follows. For all q ∈ Q,
a ∈ Σ and c ∈ Σ∗ we have δ(q, λ) = q and its canonical continuation to Σ∗,
i.e., δ(q, ac) = δ(δ(q, a), c). The set of strings accepted by A is called its
accepted language L(A) := {c ∈ Σ∗ | δ(q0, c) ∈ F}, i.e., a regular language.
A state qi is live, if there exist c1, c2 ∈ Σ∗ such that c1c2 ∈ L(A) with
δ(q0, c1) = qi and δ(qi, c2) ∈ F . Otherwise, qi is called dead.

2.6 Probably Approximately Correct Model

The Probably Approximately Correct (PAC) model provides a firm basis
for analyzing the efficiency and effectiveness of ML algorithms. We briefly
introduce the model and refer the reader to [56] for more details. In the PAC
model the learner, i.e., the learning algorithm, is given a set of examples to
generate with high probability an approximately correct hypothesis. This
can be formally defined as follows. Let F = ∪n≥1Fn denote a target concept
class that is a collection of Boolean functions defined over the instance space
Cn = {0, 1}n. Moreover, according to an arbitrary probability distribution D
on the instance space Cn each example is drawn. Assume that a hypothesis
h ∈ Hn is a Boolean function over Cn, it is called an ε-approximator for
f ∈ Fn, if

Pr
c∈DCn

[f(c) = h(c)] ≥ 1− ε.

Let the mapping size : {0,1}n → N associate a natural number size(f)
with a target concept f ∈ F that is a measure of complexity of f under
a target representation. If a concept class F has infinite cardinality, i.e.,
an infinite concept class, the Vapnik-Chervonenkis dimension V Cdim(F) is
a general measure of its complexity introduced by Vapnik and Chervonenkis
in their seminal studies [117,118]. This measure is defined as follows.

Definition 2.6.1 [64] The Vapnik-Chervonenkis dimension of a concept
class F denoted by V Cdim(F) is the largest cardinality of a set of exam-
ples S meeting the following requirement. For every subset U ⊆ S, a concept
f ∈ F exists so that U = S ∩ f .

The importance of this definition lies primarily in finding a lower bound/ an
upper bound on the number of examples required by a learning algorithm.
Before elaborating on this lower bound, we should shift our focus to the
definition of a learner.

A learner is a polynomial-time algorithm denoted by A, which is given
labeled examples (c, f(c)), where c ∈ Cn and f ∈ Fn. The examples are
drawn independently according to the distribution D. Now we can define
strong and weak PAC learning algorithms.

Definition 2.6.2 An algorithm A is called a strong PAC learning algorithm
for the target concept class F , if for any n ≥ 1, any distribution D, any

2.6. Probably Approximately Correct Model 21

Algorithm 1 The skeleton of a Boosting algorithms.

Require: Weak PAC learner WL, 0 < ε, δ < 1, 0 < γ ≤ 1/2, polynomial number of examples, i
that is the number of iterations

Ensure: Hypothesis h that is an ε-approximator for f

1: D0 = D, use WL to generate an approximator h0 for f under D0

2: k = 1
3: while k ≤ i− 1 do
4: Build a distribution Dk consisting of examples, where the previous approximators

h0, · · · , hk−1 can predict the value of f poorly
5: use WL to generate an approximator hk for f under Dk

6: k = k + 1
7: od
8: Combine the hypotheses h0, · · · , hi−1 to obtain h, where each hi is an (1/2−γ)-approximator

for f under Di, and finally h is an ε-approximator for f under D
9: return h

0 < ε, δ < 1, and any f ∈ Fn the following holds. When A is given a
polynomial number of labeled examples, it runs in time polynomial in n, 1/ε,
size(f), 1/δ, and returns an ε-approximator for f under D, with probability
at least 1− δ.

The weak learning framework was developed to answer the question
whether a PAC learning algorithm with constant but insufficiently low levels
of ε and δ can be useful at all. This notion is defined as follows.

Definition 2.6.3 For some constant δ > 0 let algorithm A return with prob-
ability at least 1 − δ an (1/2 − γ)-approximator for f , where γ > 0. A is
called a weak PAC learning algorithm, if γ = Ω(1/p(n,size(f)) for some
polynomial p(·).

A PAC learner A, in general, requires at least the following number of
examples [15]:

Ω

(
1

ε
log

1

δ
+ V Cdim(F)

)
.

Note that this lower bound on the number of examples has been proved for
the condition 0 < ε < 1/2 met by PAC learning algorithms in general. We
stress that the above mentioned lower bound has been improved for strong
PAC learning algorithms in [25]. Nonetheless, it is not applicable in the case
of weak PAC learners.

Last but not least, it should be noted that the equivalence of weak PAC
learning and strong PAC learning has been proved by Freund and Schapire in
the early nineties in their seminal papers [27, 99]. For that purpose boosting
algorithms have been introduced.

Definition 2.6.4 An algorithm B is called a boosting algorithm if the follow-
ing holds. Given any f ∈ Fn, any distribution D, 0 < ε, δ < 1, 0 < γ ≤ 1/2,
a polynomial number of labeled examples, and a weak learning algorithm WL

22 Chapter 2. Definitions and Preliminaries

returning an (1/2 − γ)-approximator for f , then B runs in time, which is
polynomial in n, size(f), 1/γ, 1/ε, 1/δ and generates with probability at
least 1− δ an ε-approximator for f under D.

The construction of virtually all existing boosting algorithms is based
primarily on the fact that if WL is given examples drawn from any distribution
D′, WL returns a (1/2− γ)-approximator for f under D′. At a high-level, the
skeleton of all such boosting algorithms is shown in Algorithm 1.

PAC Learning of LTFs with Perceptron Algorithm

Several studies have focused on the PAC learning of an unknown LTF
from labeled examples by applying the Perceptron algorithm (for an exhaus-
tive survey see [104]). This issue plays an important role in our framework.
Here we briefly describe how the Perceptron algorithm, as an online algo-
rithm, can be converted to a PAC learning algorithm, following the conver-
sion procedure defined in [104].

The learner has access to an Oracle EX, providing labelled examples. By
calling EX successively, a sequence of labeled examples is obtained and fed
into the online algorithm. Hypotheses generated by the algorithm are further
stored. At the second stage, the algorithm again calls EX to receive a new
sequence of labeled examples. This new sequence is used to calculate the
error rate of the hypotheses stored beforehand. The output of the procedure
is a hypothesis with the lowest error rate. Let ε and δ be the accuracy and the
confidence levels of the obtained PAC learning algorithm. Suppose that Nmis

is the upper bound of the mistakes made by the original online algorithm for
the concept class F . The following theorem is proved by Littlestone [66].
Theorem 1: Suppose that the online algorithm Aon improves its hypothesis,
only when its prediction and the received label of the example do not agree.
The total number of calls that the obtained PAC algorithm A makes to EX
is O (1/ε(log 1/δ +Nmis)).

From the convergence theorem of the Perceptron algorithm and Theo-
rem 1, it is straightforward to prove the following corollary [104]:

Corollary 2.6.1 Let the concept class Fn over the instance space Cn =
{0, 1}n be the class of LTFs such that the weights ωi ∈ Z, and

∑n
i=1 |ωi| = p(n).

Then the Perceptron algorithm can be converted to a PAC learning algorithm
running in time p(n, 1/ε, 1/δ).

23

Chapter 3

PAC Learning of Arbiter PUFs

“ [In our ML attack against PUFs, e.g., Arbiter
PUFs] The iteration is continued until we reach a
point of convergence [...]. If the reached performance
after convergence on the training set is not sufficient,
the process is started anew.”

[95]

This chapter is based on [36], slightly modified to fit within the structure
of this thesis. The current chapter aims at establishing a new representation
of Arbiter PUFs that reflects the physical properties of these PUFs. This
representation enables us to come up with new results on the learnability of
Arbiter PUFs for given levels of accuracy and final model delivery confidence.
This is in contrast to previous studies (e.g., [95]), where it is not clear whether
after the learning phase, a model of the Arbiter PUF with the desired level
of accuracy would be delivered by the machine learner. Finally, we discuss
the importance of our framework from the practical point of view.

Overview of this chapter: After an introduction presented in Sec-
tion 3.1, in Section 3.2 a mathematical representation of Arbiter PUFs is
introduced. Section 3.3 explains how the challenge-response behavior of an
Arbiter PUF can be learned for given levels of accuracy and confidence. Sec-
tion 3.4 presents a brief overview of the relevant literature. In Section 3.5,
additional important aspects of our methodology are discussed.

3.1 Introduction

The core idea behind the design of Arbiter PUFs is to exploit the delay dif-
ferences between symmetrically designed electrical paths on a silicon chip
to generate a somehow random but unique response [61, 62]. Similar to all
families of PUFs, unclonability and unpredictability are the main require-
ments of the Arbiter PUF family [8, 88]. However, contrary to these basic
requirements, previous work in the literature introduced different successful

24 Chapter 3. PAC Learning of Arbiter PUFs

attacks on Arbiter PUFs. Interestingly enough, the fragility of their security
has been discussed in the first papers introducing the Arbiter PUFs [39,62].
Nevertheless, it was assumed that launching attacks against Arbiter PUFs
could not be feasible. These attacks against Arbiter PUFs can be classified
into two categories: side channel attacks and modeling (i.e., ML) attacks.
The former type of attacks exploits the side channel information, such as
photonic emissions and electromagnetic radiations, to physically character-
ize an Arbiter PUF [23,24,109]. On the other hand, modeling attacks require
only a subset of CRPs to build a mathematical model of the Arbiter PUF,
which later can predict the response of that Arbiter PUF, with some proba-
bility [61,95]. As being non-invasive, modeling attacks can be more cost and
time effective in comparison to side channel attacks.

Although an increase in the number of PUF stages can reduce the effec-
tiveness of modeling attacks [63, 107], by utilizing more advanced machine-
learning tools an attacker can still break the security of Arbiter PUFs [96].
On the one hand, it has been verified experimentally that the number of
CRPs required for a successful attack increases exponentially with the num-
ber of stages [68]. On the other hand, it has been empirically shown that
the relation between this number of CRPs and the number of stages can be
described by a linear function [95]. This raises the natural question to what
degree of precision an attacker can model an Arbiter PUF, with an arbitrary
number of stages. In other words, how many CRPs are required to model
the PUF for given levels of accuracy and final model delivery confidence.
Unfortunately, this issue has not been completely addressed in the literature
so far, and thus modeling attacks rely only on trial and error or heuristic
approaches.

This chapter presents a well-defined mathematical representation of Ar-
biter PUFs. In the literature, with regard to the linear additive model un-
derlying the construction of Arbiter PUFs, a common, widely applied rep-
resentation of these PUFs has been established cf. [39, 62, 95]. Nevertheless,
we believe that the new representation introduced in our work helps to not
only deepen our understanding of security weaknesses of Arbiter PUFs, but
also draw an analogy between Arbiter PUFs and one of the prominent is-
sues in ML theory, namely, learning a regular language. Seen from this new
perspective, interesting and important aspects of the design of the Arbiter
PUF family are recognized in our work. Moreover, based on this representa-
tion, we introduce a polynomial-time learning algorithm that provably learns
the challenge-response behavior of an arbitrary Arbiter PUF, for given, pre-
scribed levels of accuracy and confidence. We show how the levels of accuracy
and confidence of a model are related to the number of collected CRPs and
the number of stages of an Arbiter PUF as well as the maximum variation
of delay values. We prove that the maximum number of CRPs required for
our attack is polynomial in the number of stages. Finally, we evaluate the
time complexity of our learning algorithm and prove that it is polynomial in

3.2. Representing Arbiter PUFs by DFAs 25

the number of stages, the maximum variation of delays inside the stages, and
levels of accuracy and confidence. The main contributions of this chapter are
as follows:

A learning algorithm for prescribed levels of accuracy and con-
fidence. Based on a new mathematical representation for Arbiter PUFs, we
introduce a learning algorithm, which is able to model the PUF for given
levels of accuracy and confidence.

Discretization of real-valued delay values. The key idea behind the
new representation of Arbiter PUFs is to define a set of proper integer delay
values, which contains the statistically relevant delay values of an Arbiter
PUF. We first explain that these delay values are distributed within a limited
interval. Secondly, demonstrate how we can discretize the different delay
values with regard to the limited precision of the Arbiter placed at the end
of its respective chain. Finally, due to these facts, we present a mapping
between these discrete delay values to a fitting set of integer values.

Calculation of the maximum number of CRPs required for our
new attack. In order to learn the challenge-response behavior of an Arbiter
PUF for given levels of accuracy and confidence, we prove that the maxi-
mum number of CRPs required for launching our attack is polynomial in the
number of stages composing an Arbiter PUF. Besides that, the impact of
the limited variation of the delays on the learnability of an Arbiter PUF is
discussed.

Evaluation of the time complexity of the new attack. Finally, we
evaluate the time complexity of our learning algorithm. Our proofs reveal
that the running time of the proposed learning algorithm is polynomial in the
length of the given Arbiter PUF (i.e., the number of stages), the maximum
variation of delays and the given levels of accuracy and confidence.

3.2 Representing Arbiter PUFs by DFAs

It is known that in order to PAC-learn a target concept it is necessary to come
up with a polynomial-sized representation of that [56]. Therefore, to PAC
learn the intrinsic challenge-response behavior of a given PUF, a polynomial-
size representation of its behavior is required. Here, we aim to derive such a
concise representation that can afterwards be used to provide a PAC learning
algorithm, which runs in polynomial time and learns the unknown challenge-
response behavior of an Arbiter PUF for predefined levels of accuracy and
confidence.

For Arbiter PUFs, similar to other types of PUFs, we stick to the defi-
nition of PUFs as input-output mappings introduced in Chapter 2 (see Sec-
tion 2.2). An Arbiter PUF consists of multiple switch blocks, so-called stages,
connected in a chain terminated by an arbiter, see Figure 3.1. A challenge
is a string c = c[1] · · · c[n] of n bits, where each bit (e.g., c[i]) is fed into a
single stage (e.g., ith stage). The signal propagates through the direct paths

26 Chapter 3. PAC Learning of Arbiter PUFs

en

c[1] = 0 c[2] = 1 c[i] = 0 c[n] = 1

Arbiter

. . .

. . .

0/1. . .

. . .

,1iβ

,4iβ,3iβ

,2iβ

1,1α

1,2α 2,2α

2,1α

,2iα

,1iα ,1nα

,2nα

Figure 3.1: Schematic of an Arbiter-PUF

inside the ith stage if c[i] = 0, otherwise the crossed paths are utilized. Let
Bi denote a random variable related to the delay within the ith stage. The
realizations of the variables Bi in an Arbiter PUF are certain βi,1, βi,2, βi,3,
and βi,4. Here βi,1 and βi,2 are the delays of the upper and lower direct
paths in the ith stage, respectively, see Figure 3.1. On the other hand, the
delays of the upper and lower crossed paths in the ith stage are βi,3 and βi,4,
respectively. Bi follows a Gaussian distribution with the mean µi and the
deviation σi, cf. [62].

We define Ai as a random variable corresponding to the total delay be-
tween the enable point and the outputs of the ith stage of the PUF. Following
the linear additive model of the Arbiter PUF, cf. [61], we have

Ai =
∑i

k=1 Bk.

The realizations of the partial sums Ai at the outputs of the ith stage are
denoted by αi,j , where j represents the upper and lower output (i.e., j = 1
for upper and j = 2 for lower output), see Figure 3.1. The arbiter at the
end of the PUF chain has a precision γ > 0, and compares the arrival times
of signals on the upper and lower paths (i.e., αn,1 and αn,2). More formally,
we assume that the output of the Arbiter is “1”, if the delay difference at the
outputs of the last stage is

∆ = αn,1 − αn,2 > γ,

whereas it is “0” if ∆ < −γ. The metastable condition, where |αn,1−αn,2| <
γ, will be discussed later in Section 3.5. Finally, in order to take into account
the impact of different path configurations for αn,1 and αn,2, we define the
single bit

ui =
i⨁

k=1

c[k],

related to the history of the paths that the signal follows. This single bit ui
has often been called parity of challenge bits (cf. [62, 75]).

To derive a polynomial-sized representation of Arbiter PUFs, we first
show how the real delay values of an Arbiter PUF can be mapped to a finite
set of integer values.

3.2. Representing Arbiter PUFs by DFAs 27

σi σi

µi

√
nσ

√
nσ

nµβi,3βi,2 βi,4βi,1

βi,αn

fBi
(βi)

fAn
(αn)

Figure 3.2: The distribution of Bi (blue) with the mean µi and deviation σi. Four
examples of possible realization of Bi are βi,1, βi,2, βi,3, and βi,4, which correspond
to four delays at the ith stage. The distribution of total propagation delay from the
enable point to the outputs of last stage in an Arbiter PUF with length n (red),
mean nµ, and deviation

√
nσ.

3.2.1 Discretization Process of Delay Values

As mentioned before, the delay differences in the stages of an Arbiter PUF are
caused by variations in the manufacturing processes. It is known that Bi (the
aforementioned random variable describing the delay of the ith stage) follows
a Gaussian distribution, cf. [62]. Thus, Bi ∼ N(µi,σi), and its Probability
Density Function (PDF) fBi(βi) is given by

fBi(βi) =
1

σi

√
2π
e
−(βi−µi)

2
/
2σ2

i .

The mean µi is often reported by manufactures as the nominal propaga-
tion delay of the utilized multiplexer, and the standard deviation σi is caused
by the variations in the manufacturing process, cf. [75]. As 99.7% of Gaus-
sian distributed values lie within the range of three standard deviation away
from the mean value, the realizations βi,1, βi,2, βi,3, and βi,4 are drawn from
an interval, whose length is 6σ, see Figure 3.2.

With regard to the additive linear model of the Arbiter PUF we have
Ai =

∑i
k=1 Bi, where Ai is the random variable, which shows the total

propagation delays at the outputs of the ith stage. Therefore, the PDF of
the total propagation delays at the outputs of each stage are the convolution
of all PDFs of the previous stages [85], i.e.,

fAi(αi) = fBi(βi) ∗ fBi−1(βi−1) ∗ · · · ∗ fB1(β2) ∗ fB1(β1).

As all delays in each stage follow the normal distribution, Ai also follows the
normal distribution. Hence, in an Arbiter PUF of length n, if we assume
that µ1 = µ2 = · · · = µn = µ and σ1 = σ2 = · · · = σn = σ, we can write

fAi(αi) =
1

σ
√
2iπ

e−(αi−iµ)2/2iσ2
.

As a result, the random variable An, corresponding to the total propagation
delays at the last stage, will have the mean nµ and the standard deviation

28 Chapter 3. PAC Learning of Arbiter PUFs

√
nσ, see Figure 3.2. Therefore, we can assume that all statistically relevant

delay values lie within a limited interval, whose length is 6
√
nσ (i.e., within

three standard deviation away from the mean value nµ).
It is obvious that the delay differences are real numbers. However, the

arbiter at the end of the chain provides only a limited precision in terms
of comparing the total propagation delays of two paths [73]. Hence, it can
compare two signals with delay differences only above a certain threshold,
say γ > 0. As a result, the actual number of different delay values, which
can be observed and compared by the arbiter are limited. Due to this fact,
all propagation delays at the output of each stage (i.e., αi,j , where 0 ≤ i ≤ n
and 1 ≤ j ≤ 2) can be mapped to integer values. A mapping f : R ↦→ Z is
defined as follows. For all α ∈ [nµ− 3σ

√
n, nµ+ 3σ

√
n], we have

f(α) =

⌈
α− nµ+ 3σ

√
n

γ

⌉
.

It is straightforward to show that all real delay values lying in the interval
[nµ − 3σ

√
n, nµ + 3σ

√
n] are mapped to integer values between 0 and M ,

where
M =

⌈
6
√
nσ
γ

⌉
.

Note that 0 and M correspond to the minimum and the maximum of the
statistically relevant real values, respectively. The mapped values are denoted
by αi,j , i.e., we have αi,j ∈ Z. In this case, the response of the arbiter is
“1” if αn,1 − αn,2 ≥ 1, whereas it is “0” if αn,2 − αn,1 ≥ 1. The arbiter is in
the metastable condition, if |αn,1 − αn,2| = 0. Moreover, clearly, βi,j , where
0 ≤ i ≤ n and 1 ≤ j ≤ 2, can be mapped to an integer value βi,j lying in the
interval [0,M] (see Section 4.2).

On the basis of this mapping, we introduce a DFA-based representation
of an Arbiter PUF.

3.2.2 Building a DFA Representing an Arbiter PUF

Consider a PUF, whose challenge-response functionality is given by the map-
ping fPUF defined in Section 2.2. Let us define LfPUF := {c ∈ C | fPUF(c) = 1}.
We have LfPUF ⊆ {0,1}n ⊆ Σ∗, where Σ = {0,1}. Hence, LfPUF can be
thought as being the accepted language of a certain automaton. It accepts
those strings c ∈ C, whose length is n and fPUF (c) = 1.

In order to build an automaton A, we will use the notation of the integer
PUF propagation delays αi,j , see Section 3.2.1. Figure 3.3 illustrates the
central idea of our automaton construction. After reading the first challenge
bit applied to the first stage, A transits from q0 (the initial state) to either
q1,1 or q1,2, depending on whether c[1] = 0 or c[1] = 1. Here q1,1 and q1,2
correspond to tuples ((α1,1, α1,2), u1, i = 1), where the first elements of them
are ordered pairs of possible delays at the output of the first stage. Note

3.2. Representing Arbiter PUFs by DFAs 29

Figure 3.3: A DFA representing an Arbiter PUF.

that due to the physical characteristics of the Arbiter PUF, i.e., the signal
propagated through either the direct or crossed path, two different pairs of
delays are obtained, and included in q1,1 and q1,2. The second element of
these tuples is u1 which memorizes the first ith bits of the challenge: for the
first stage we have i = 1 and thus, u1 = c[1]. Finally, the third element
of these tuples represents the depth in which the respective nodes are, e.g.,
i = 1 for q1,1 and q1,2. This component counts the number of bits of the
input c, which have been consumed so far.

In order to further elaborate on the definition of qi,j , we provide an ex-
ample on how the DFA transits from qi,j to qi+1,j′ when reading c[i+1] = 0,
see Figure 3.3. As can be seen from the figure, when ui+1 = 0, the first
entry of the pair (αi+1,1, αi+1,2) contains the delays on the upper paths (i.e.,
αi+1,1 = αi,1 + βi+1,1), whereas for ui+1 = 1 it is composed of the delays on
the lower paths, i.e., αi+1,1 = αi,2 + βi+1,2. Hence, using ui+1, the correct
sum is defined. What has been explained here is applicable for the other
stages of the Arbiter PUF as well, and consequently, the other states of A
can be defined similarly.

The further and crucial characteristics of this DFA representing an Ar-
biter PUF are as follows. In Figure 3.3, the states qn,1, . . . , qn,2n define the
possible accepting states in the following way. As mentioned in Section 3.2.1,
assume that fPUF(c) = 1, if αn,1 − αn,2 > 1, and when αn,2 − αn,1 > 1,
fPUF(c) = 0. For a challenge string c = c1c2 · · · cn, A accepts c if there is
a sequence of states such that r0 = q0, ri = δ(ri−1, ci) with 1 ≤ i ≤ n and

30 Chapter 3. PAC Learning of Arbiter PUFs

Figure 3.4: The shrunk DFA representing an Arbiter PUF. Note that the size of
this DFA is clearly polynomial in n.

rn ∈ F , where

F = {qn,k | qn,k = ((αn,1, αn,2), un, n) s.t. αn,1 − αn,2 ≥ 1, 1 ≤ k ≤ 2n}.

All other states, not being defined as accepting states, are of course rejecting.
Although it is possible that αn,1 = αn,2, in reality it may not occur (see
Section 3.5 for more details), thus we can safely exclude this case. The
special rejection state qr is reached after reading further bits following the
nth bit of a given input. After reaching the rejecting state, reading any
further bit results in staying in qr. We should stress that since challenges are
n-bit strings, all longer strings are rejected, as well as shorter strings.

As it is evident from the above discussion, the size of A constructed based
upon the real-valued total delays at the output of each stage of the Arbiter
PUF is exponential in n. Consequently, if we represent an Arbiter PUF by
this A, the output of a learning algorithm is a hypothesis h with h ∈ Hn that
could not be evaluated in polynomial time. However, having a closer look,
we prove that this DFA has indeed only a size which is polynomial in n, and
can be used to PAC-learn an Arbiter PUF. To shrink A, we use the results
of the discretization process of the real delay values.

As mentioned in Section 3.2.1, the total delay values can be mapped to
the integer values lying in the finite set [0,M], where M can be regarded as
a constant, independent of n. Therefore, the number of possible values of
αi,j for 1 ≤ i ≤ n and 1 ≤ j ≤ 2 is M + 1. For a given depth i, the number
of possible pairs of delays on the upper and lower paths (i.e., (αi,1, αi,2)) is
thus at most (M + 1)2. Consequently, the number of distinguishable pairs,
i.e., corresponding to the different ordered pairs of sums in each level of A

3.3. PAC Learning of Arbiter PUFs 31

Learning algorithm

εδ

Oracle EX
h

n M

Figure 3.5: Block diagram of the PAC learning algorithm.

cannot exceed (M +1)2, and thus the total number of distinguishable states
is limited by

O(n(M + 1)2).

Collapsing the indistinguishable states, a much smaller DFA as shown in
Figure 3.4 is obtained.

3.3 PAC Learning of Arbiter PUFs

With the help of the polynomial-size DFA built in Section 3.2, we can now de-
scribe a PAC learning algorithm that efficiently learns the challenge-response
behavior of a given Arbiter PUF. Such a PAC learning algorithm can be
derived by adopting and modifying the algorithms presented in the litera-
ture [4, 56]. The algorithm presented later by us can be seen as an adapted
version of what has been proposed by Angluin [4]. Here we only describe the
algorithm briefly, and refer the reader to [4] for further details.

A given PUF provides the learner with access to the Oracle EX := fPUF
(see Figure 3.5). Angluin’s algorithm can be applied even in the case that
the oracle EX outputs examples with different lengths. However, in our
case, our Oracle EX provides labeled examples, whose length are exactly n.
This means that the PAC learning problem applied by us can be thought
of as being a simplified version of the more general problem solved in [4].
Furthermore, note that our algorithm is designed to learn those challenges
yielding a “1” at the output of the final arbiter of the given PUF, positives
examples given by EX.

As illustrated in Figure 3.5, the length of the examples n, the maximum
delay value M , and the levels for the accuracy and confidence are provided
as further inputs to the algorithm. The main steps of the PAC learning
algorithm are depicted in Algorithm 2. At the first stage, h0 contains λ and
no string c is accepted. Since all examples with fPUF(c) = 0 are rejected, and
h0 will be modified only after receiving a positive example, without loss of
generality, we assume that the first example is positive. For the ith example,
the algorithm examines whether hi−1 is consistent. Then hi−1 is updated,
if it is not consistent with the example. The procedures of checking the
consistency and updating a hypothesis are described extensively in [4, 56],
and are not further discussed by us. Moreover, the proof of the correctness

32 Chapter 3. PAC Learning of Arbiter PUFs

of the above algorithm, A, is also presented in [4], and the reader is referred
to that for more details. It is ensured that A makes at most rmax calls to the
oracle EX, and the final output h is an ε/2-approximation of S1 (i.e., set of
positive examples), as shown by the following theorem.

Theorem 3.3.1 Let N := O(nM2) that represents the number of live states,
then A returns a hypothesis h after at most O(N + (1/ε)(N log(1/δ) +N2))
calls to EX, and with probability at least (1−δ/2), h is an ε/2-approximation
of S1.

As all the details of the proof are already given in [4], we elaborate only
on a few interesting points from that. The proof is based on the maximum
number of calls that A makes to EX, rmax, and can be calculated as follows
cf. [4]. According to the PAC model (see Section 2.6), with probability at
least 1 − δ/2, A should return a 1 − ε/2 accurate hypothesis. Hence, it is
straightforward to show that if A has tested i conjectures so far, the number
of calls to the oracle EX is

⌈ri⌉ =
1

ε
(ln(1/δ) + log2(i+ 1)) .

As at most (N − 1) different hk have to be tested, we have

rmax =

(N−2)∑
i=0

(ri + 1)

= (N − 1) + 2/ε

⎛⎝(N − 1) ln(1/δ) + ln(2)

(N−2)∑
i=0

(i+ 1)

⎞⎠ ,

which results in

O
((

1 + 2
ε ln(1/δ)

)
n(M + 1)2 + 2

εn
2(M + 1)4

)
.

Now we calculate the probability that the output h is not a ε/2-approximation
of S1. As in [4] we have

Pr[error(h) > ε/2] =

(N−2)∑
i=0

(1− ε/2)ri ,

which yields that
Pr[error(h) ≤ ε/2] ≥ 1− δ

2 .

The time consumed by A is bounded by the time spent on searching for
strings, which distinguish two states in hk. Since the maximum size of a set
containing all possible strings is |Σ| · |APUF|+1, which is 2(n · (M +1)2)+1,

3.3. PAC Learning of Arbiter PUFs 33

Algorithm 2 PAC learning algorithm A for fPUF.

Require: A list of (ci, fPUF(ci)), (ε, δ), n, and M
Ensure: h

1: h0 := λ
2: Wlog. let the first positive example be (c1, 1)
3: k = 0, i = 1
4: Examine the consistency of hk

5: if hk is not consistent with ci then
6: Update hk

7: k = k + 1
8: fi
9: i = i+ 1

10: Let ri := ⌈2/ε(ln(1/δ) + (i+ 1) ln 2)⌉
11: while ri ≤ rmax do
12: Proceed with the next example
13: Do steps 4-8
14: od
15: h := hk

16: return h

and the related steps (step 4 to 8 in Algorithm 1) should be repeated at most
rmax times, the time complexity of A is bounded by

O
(
(1 + (2/ε) ln(1/δ))n2(M + 1)4 + (2/ε)n3(M + 1)6

)
.

Thus, we conclude that S1 can be efficiently learned (for given accuracy
and confidence levels), and the respective algorithm runs indeed in time
polynomial in n, M , 1/ε and 1/δ.

Note on the Definition of the Accuracy Level ε

Last but not least, we should further elaborate on the definition of the
accuracy level ε, and more specifically, on the impact of building an erroneous
DFA. In Section 2.6, ε is defined as the error of hypothesis delivered by the
PAC learning algorithm. This error can occur, when either deriving the
representation of an Arbiter PUF or learning from membership queries. The
latter case is well studied in the relevant literature cf. [4]. Here we focus on
the error that may occur while building the DFA-based representation of an
Arbiter PUF. As mentioned, PAC learning of an Arbiter PUF under DFA
representation is the direct consequence of delay discretization. Therefore,
the error of discretization process should be taken into account.

When calculating M (the maximum delay variation), we assume that
all the statistically relevant delay values are lying within a limited interval
[nµ− 3σ

√
n, nµ+3σ

√
n], corresponding to 99.7% of the total values. It can

be thought that the values lying outside of this interval are not considered,
which may result in an error. Hence the definition of ε should be refined
to reflect the impact of this error. To this end, we claim that the error of
discretization process can be limited to ε/4, that is equal to the error of

34 Chapter 3. PAC Learning of Arbiter PUFs

learning. Therefore, even in the case of an erroneous DFA representation,
the error of the delivered hypothesis does not exceed ε/2.

We begin with the calculation of the probability that the delay values are
lying outside the interval [nµ− 3σ

√
n, nµ+ 3σ

√
n]. That is

Pr (|αn − nµ| ≤ 3σ
√
n) = erf(

3√
2
) = 0.9973.

Now we define 1 − Pr (|αn − nµ| ≤ 3σ
√
n) ≤ ε/4 that yields 0.01 ≤ ε.

Comparing this result with the condition defined in PAC model (0 < ε < 1),
it can be understood that in the case of erroneous DFA, the error of the
delivered hypothesis is lower bounded by ε/2 = 0.5%.

3.4 Comparison with Related Work

We have proved that the Arbiter PUF family is subject to PAC learning
attacks and presented an algorithm, which predicts the output of an Arbiter
PUF for given ε and δ. The notion of PAC learning has already been used in
the context of PUFs by Hammouri et al. [45] to assess the security of their
proposed scheme. In order to do so, they represent a noiseless Arbiter PUF as
an LTF [7], as first proposed in [39,62]. This implicitly leads to the conclusion
that a noiseless Arbiter PUF is PAC-learnable, as the Vapnik–Chervonenkis
dimension of the proposed representation (LTF) for a noiseless Arbiter PUF
is equal to n+1 (for more details and a proof of this, cf. [7]). Consequently, a
noiseless Arbiter PUF is in principle PAC-learnable under LTF-based repre-
sentations. However, this has not been revealed in [45], since the discretiza-
tion of real-valued delays was neither explored nor known at that time. And
indeed only this process enables the Perceptron algorithm to PAC-learn LTFs
representing Arbiter PUFs, cf. [7]. To the best of our knowledge, our frame-
work is the first algorithm that provably learns an arbitrarily chosen Arbiter
PUF under a well-established representation, for prescribed levels of accuracy
and confidence, in polynomial time.

Since the mathematical proof is proposed here, it seems redundant to con-
duct further experiments or simulations that provide a proof of concept. Nev-
ertheless, for the sake of completeness, we compare our theoretical findings
with experimental results reported in [95]. Note that the hypothesis class
of Logistic Regression algorithm (LR) applied in [95] can be discretized to
obtain a finite hypothesis class [105]. Moreover, thanks to our discretization
process, the loss function of LR is also bounded, hence, it can be converted
to a PAC learning algorithm. In this case, the maximum number of CRPs
required to launch an attack is polynomial in n, 1/ε and 1/δ. According to
above discussion, we can attempt to compare the number of CRPs required
by our algorithm and LR. We have proved that the number of CRPs required
by our PAC learning framework is polynomial in n, M , 1/ε and 1/δ. This has

3.5. Practical Considerations 35

been only partially and empirically verified in previous work, e.g., [95], where
the impact of M and δ has not been known. They have shown that when n
is increased from 64 to 128, the number of CRPs required to model the PUF
for ε = 0.01 increases almost linearly. However, as mentioned before, it is not
ensured that the final model may be delivered after the learning phase. In
other words, it is not guaranteed that for given levels of accuracy and confi-
dence, an Arbiter PUF can be modeled by collecting such linearly increasing
number of CRPs. This is contrary to our algorithm, where the number of
CRPs is polynomial in n and the final model is delivered with probability
at least 1− δ. Furthermore, and more crucially, by relying primarily on the
experimental results the authors of [95] have estimated the number of CRPs
and the time required for launching the attack in general. In contrast to
this, we have calculated the number of CRPS and the time complexity of our
algorithm based on our mathematical proof.

3.5 Practical Considerations

This section devoted to the lessons learned from the practice that enable us
to prove the vulnerability of Arbiter PUFs to PAC learning attacks.

3.5.1 The Important Role of M

The essential aspect of our framework is related to our DFA-based represen-
tation established with regard to the observation that the delay values can
be mapped to a finite set of integer values. Here we further elaborate on this
observation. It has been demonstrated that for a Xilinx Virtex-5 FPGA [73]
the maximum delay deviation of each inverter used in the PUF chain is 9 ps
for both cases, i.e., direct and crossed paths on average. This delay difference
is virtually in line with what has been observed by authors of [72], where for
12 XC5VLX110 chips (Xilinx Virtex-5 family) the delay deviation is smaller
than 10 ps on all chips. Assuming 6σ = 10 ps, the maximum variation of
delay at the end of the PUF chain consisting of n stages is 10

√
n ps. How-

ever, this value has to be divided by the precision of the arbiter to calculate
the maximum value M , cf. Section 3.2.1. For an absolute precise arbiter, the
precision γ can be thought as being infinitesimal, i.e., γ → 1/∞, see [73].
Nevertheless, the precision of the arbiter is reported to be only in the range
of 2.5 ps for a Xilinx Virtex-5 FPGA, cf. [73]. As an example, under the
assumption that n = 128,

M = ⌈6σ
√
n/γ⌉ = ⌈10 ·

√
128/2.5⌉ = 46.

Therefore, the size of the collapsed DFA would be only 282,752 states. This
is far less than the size of O(2128) states, which would be obtained without
considering the limited variation of the delays.

36 Chapter 3. PAC Learning of Arbiter PUFs

Naturally, to make PAC learning of a concrete PUF less effective, it is
tempting to construct a PUF with a very large M . Theoretically, the maxi-
mum delay value M can be increased by enlarging the manufacturing devia-
tions, and also using more precise arbiters. However, the deviation σ cannot
be arbitrarily large on real production chips. For instance, when increasing
σ, a Field Programmable Gate Array (FPGA) cannot be utilized anymore.
Moreover, with regard to the higher cost, the PUF manufacturers cannot
arbitrarily increase the precision of the arbiter. Due to these limitations,
arbitrarily large M ’s can be excluded in practice for FPGAs and standard
CMOS process devices.

3.5.2 Dealing with the Metastable Condition

In Section 3.2.2, we have stated that in practice it may rarely happen that
αn,1 = αn,2. This can be explained by the fact that this equation represents
the possible metastable condition of the Arbiter PUF, when the output of the
arbiter is not persistent for a certain challenge c. Note that this metastablity
of the Arbiter PUF must have been already solved by the PUF manufacturer.
Moreover, aiming at PAC learning of an Arbiter PUF under a DFA-based
representation, we can also easily overcome this issue by applying two well-
known strategies.

• The label of every chosen example, e.g., fPUF(c), (potentially hav-
ing the metastablity situation) will be stabilized by majority voting
through several oracle calls on the same example (challenge).

• A problematic example resulting in different outputs at the arbiter
can be simply discarded and substituted by another randomly chosen
example.

37

Chapter 4

PAC Learning of XOR Arbiter
PUFs

“ While it is possible to attack XOR [Arbiter] PUFs
using ML for small numbers of XORs, XOR [Arbiter]
PUFs are widely assumed to be secure against ML
attacks if enough XORs are used. ”

[11]

The content of this chapter is mainly based on [35]. In this chapter,
besides the development of a PAC learning framework for XOR Arbiter PUFs,
a theoretical limit for ML attacks as a function of the number of the chains
and the number of Arbiter PUF stages has been established. Furthermore,
we show that our approach deals with the noisy responses in an efficient
fashion so that in this case, the maximum number of CRPs collected by the
attacker is polynomial in the noise rate. Our rigorous mathematical approach
matches the results of experiments, which can be found in the literature. Last
but not least, on the basis of learning theory concepts, this chapter explicitly
states that the current form of XOR Arbiter PUFs may not be considered as
an ultimate solution to the problem of insecure Arbiter PUFs.

Overview of this chapter: Section 4.1 introduces the attacks against
XOR Arbiter PUFs proposed in the literature and summarizes the contribu-
tions of our work. Section 4.2 devoted to the background information about
the representation of XOR Arbiter PUFs. Section 4.3 provides details on
our learning framework, which results in modeling XOR Arbiter PUFs with
given levels of accuracy and final model delivery confidence. In Section 4.4,
it is proved that the proposed algorithm can be adapted to model noisy XOR
Arbiter PUFs. An exhaustive discussion about the theoretical and practical
considerations is presented in Section 4.5.

38 Chapter 4. PAC Learning of XOR Arbiter PUFs

4.1 Introduction

As discussed in previous chapters, aiming at mathematically cloning an Ar-
biter PUF, the attacker collects a set of challenge-response pairs (CRPs),
and attempts to come up with a model that can approximately predict the
response of the PUF to an arbitrarily chosen challenge. Most of the ML
attacks against Arbiter PUFs benefit from the linear additive model of an
Arbiter PUF. This forces a migration to modified structures of Arbiter PUFs,
in which non-linear effects are added to the PUF in order to impair the ef-
fectiveness of ML attacks. To this end, XORing the responses of multiple
Arbiter PUFs has been demonstrated as a promising solution [107].

However, it has been shown that more advanced ML techniques can still
break the security of an XOR Arbiter PUF with a limited number of arbiter
chains (hereafter called chains) [95]. Going beyond this limited number is
suggested as a countermeasure by PUF manufacturers, although they have
encountered serious problems, namely the increasing number of noisy re-
sponses as well as optimization of the silicon area required on the respective
chip [93]. Even in this case, physical side-channel attacks, such as photonic
emission analysis, can physically characterize XOR Arbiter PUFs regard-
less of the number of XORs [109]. In another attempt a combination of
ML attacks with non-invasive side channel attacks (e.g., power, timing, and
photonic emission), so-called hybrid attacks, is suggested to model XOR Ar-
biter PUFs, with the number of chains exceeding the previously established
limit [11,31,97].

The latter attacks are cost-effective due to their non-invasive nature, and
therefore, they might be preferred to the semi-invasive one in practice. How-
ever, in contrast to pure ML techniques (i.e., without any side channel infor-
mation), using side channel information in combination with ML techniques
requires physical access to the device and reconfiguration of the circuits on
the chip, which are not always feasible in a real scenario [97]. Therefore, it
is still tempting to develop new pure ML techniques to break the security
of XOR Arbiter PUFs, with an arbitrary number of chains. Nevertheless,
it is still unclear how many chains should be XORed to ensure the security
of Arbiter PUFs against ML attacks. Moreover, when applying current ML
attacks, the maximum number of CRPs required for modeling an XOR Ar-
biter PUF, with given levels of accuracy and final model delivery confidence,
is not known.

Although in Chapter 3 we have shown how a single chain Arbiter PUF
can be represented by a DFA, we claim that for the XOR Arbiter PUFs, a
more compact representation can be adopted to improve the time complexity
of the attack. Furthermore, to deal with noisy responses of an XOR Arbiter
PUF more efficiently, an approach not relying on majority voting can be
applied.

4.2. LTF Representation of XOR Arbiter PUFs 39

Here we present a new framework to prove to what extend XOR Arbiter
PUFs can be learned in polynomial time, for given levels of accuracy and
confidence. The main contributions of our framework are summarized as
follows:

Finding a theoretical limit for ML techniques to learn XOR
Arbiter PUFs in polynomial time. Under a well-known representation
of an XOR Arbiter PUF, we provide a theoretical limit as a function of the
number of Arbiter PUF stages and the number of chains, where an XOR
Arbiter PUF can be provably learned in polynomial time.

Learning of an XOR Arbiter PUF for given levels of accuracy
and confidence. With regard to the proposed limit, we present an algo-
rithm, which learns the challenge-response behavior of an XOR Arbiter PUF,
for given levels of accuracy and confidence. The run time of this algorithm is
polynomial in the number of the Arbiter PUF stages, the number of chains,
as well as the levels of accuracy and confidence. Moreover, our approach
requires no side channel information.

Modeling the XOR Arbiter PUF even if the responses are noisy.
A model of noise fitting the purpose of our ML framework is applied to prove
that even in the presence of noise, the run time of our algorithm is still
polynomial in the number of the Arbiter PUF stages, the number of chains,
levels of accuracy and confidence, and the noise rate.

4.2 LTF Representation of XOR Arbiter PUFs

An XOR Arbiter PUF consists of k different chains, all with the same num-
ber of stages n. Note that XOR Arbiter PUFs that come within the scope
of this work are composed of Arbiter PUFs fed with the same challenge.
Therefore, schemes with different challenges fed into the Arbiter PUFs, e.g.,
the one proposed in [124], are beyond the scope of our work. The responses
of all Arbiter PUFs are XORed together to generate the final response, see
Figure 4.1. Hence, the response of the XOR Arbiter PUF can be defined as

fXOR(c) =
k⨁

j=1

fjth Arbiter PUF(c).

The first step that should be taken in our framework is discritization of de-
lays, as described for Arbiter PUFs as well (see Section 3.2.1). Following the
procedure introduced in the previous chapter, in each stage (see Figure 4.2),
e.g., ith stage, βi,j can be mapped into an integer value βi,j (1 ≤ j ≤ 4) .
It is known that βi,j ∈ [µi − 3σi,µi + 3σi] with probability 99.7%. Now we
define the mapping fint : R → Z so that for all βi,j ∈ [µi − 3σi,µi + 3σi],
when applying this mapping, we have

βi,j = fint(βi,j) =
⌈
(βi,j − µi + 3σi)/γ

⌉
.

40 Chapter 4. PAC Learning of XOR Arbiter PUFs

.

.

.

Arbiter

Arbiter

. . .

. . .

. . .

. . .

Arbiter

. . .

. . .

. . .

. . .

0/10/1

c[1] = 0 c[2] = 1 c[i] = 0 c[n] = 1

0/1

c[1] = 0 c[2] = 1 c[i] = 0 c[n] = 1

c[1] = 0 c[2] = 1 c[i] = 0 c[n] = 1

0/1

en

. . .

. . .

. . .

. . .
Arbiter

Figure 4.1: Schematic of an XOR Arbiter PUF. It consists of k chains of n-bit
Arbiter PUFs. The responses of all Arbiters are XORed together to generate the
final binary response.

Without loss of generality, we assume that µ1 = · · · = µn and σ1 = · · · = σn.
Consequently, the minimum and the maximum of the real valued delays βi,j

(1 ≤ i ≤ n and 1 ≤ j ≤ 4) are mapped into 0 and m =
⌈
6σ
γ

⌉
, respectively

(for more details see [36]). Furthermore, similarly, ∆ can be mapped with
a high probability to an integer value ∆ ∈ Z lying within a finite interval.
In this case, the response of the Arbiter is “1” if ∆ > 0, whereas it is “0” if
∆ < 0. The Arbiter is in the metastable condition, if ∆ = 0.

Here we briefly describe the LTF-based representation of an Arbiter PUF,
which is widely adopted [39, 74, 95], and how such representation can be
extended to establish an LTF representation of XOR Arbiter PUFs. Consider
the delay vector ωT defined as follows:

ωT = (ω1, ω2, . . . , ωn+1) with

⎧⎪⎨⎪⎩
ω1 =

φi,0−φi,1

2

ωi =
φi−1,0+φi−1,1+φi,0−φi,1

2 , 2 ≤ i ≤ n

ωn+1 =
φn,0+φn,1

2 ,

(4.1)
where the integer valued φi,j (1 ≤ i ≤ n and 0 ≤ j ≤ 1, as shown in
Figure 4.2) are the delay differences at the output of the ith stage. With
regard to the discretization process described here and in Section 3.2.1, it is
straightforward to show that φi,j lies within the interval [−m,m], hence, ωi

(1 ≤ i ≤ n+ 1) lies within the interval [−2m, 2m].

4.3. PAC Learning of XOR Arbiter PUFs 41

en

c[1] = 0 c[2] = 1 c[i] = 0 c[n] = 1

Arbiter

. . .

. . .

0/1. . .

. . .

,1iβ

,4iβ,3iβ

,2iβ

1,0ϕ 2,1ϕ ,0iϕ ,1nϕ

Figure 4.2: Schematic of an Arbiter PUF composed of n so-called stages that
form a chain.

Consider a challenge string represented by a vector c = (c[1], · · · , c[n]).
The vector Φ = (Φ[1], · · · ,Φ[n], 1) is the encoded challenge vector, where

Φ[i] =

n∏
j=i

(1− 2c[j]).

According to the linear additive model of the Arbiter PUF, ∆ = ωT ·Φ,
cf. [61,95]. Now let fmap : Y → {1,− 1}, so that fmap(0) = 1 and fmap(1) =
−1. The output of the Arbiter can be defined as

fPUF = sign(∆) = sign(ωT ·Φ).

From this equation, it is obvious that an Arbiter PUF can be represented
by an (n + 1)-dimensional LTF. In a similar fashion, an XOR Arbiter PUF
can also be represented by an LTF, where the set of final responses (YXOR)
is mapped to {1,− 1}, cf. [95]:

fXOR =
k∏

j=1

sign(ωT ·Φ) = sign

(k⨂
j=1

ωT ·
k⨂

j=1

Φj

)
= sign(ωT

XOR ·ΦXOR),

where ωXOR = ⊗k
j=1ω

T
j is the tensor product of the vectors ωT

j , and similarly
ΦXOR = ⊗k

j=1Φj .

4.3 PAC Learning of XOR Arbiter PUFs

In this section we first present how and why an XOR Arbiter PUF can be
PAC learned by the Perceptron algorithm. Furthermore, we provide the
theoretical limit for the learnability of XOR Arbiter PUFs in polynomial
time. Finally, our theoretical results are verified against experimental results
from existing literature.

Here we show how adopting a simple transformation enables us to apply
the Perceptron algorithm to PAC learn XOR Arbiter PUFs. It can be seen
that for fXOR, the (n + 1)k-dimensional vectors ωXOR and ΦXOR are sub-
stituted for (n+ 1)-dimensional vectors ωT and Φ in fPUF . In other words,
XORing k (n + 1)-dimensional LTFs results in an O((n + 1)k)-dimensional

42 Chapter 4. PAC Learning of XOR Arbiter PUFs

Perceptron
algorithmOracle EX

h

Transformation

Figure 4.3: Block diagram of the PAC learning framework applied to learn an
XOR Arbiter PUF. By calling the Oracle EX at most rmax times, a sequence of
examples is collected. Φi is fed into the third block corresponding to our problem
transformation. The output of the third block is fed into the Perceptron algorithm.

LTF. Therefore, if we transform the problem of learning the XOR of k (n+1)-
dimensional LTFs into an O((n+1)k) dimensional space, this problem can be
solved by applying the Perceptron algorithm. In order to support our claim,
we begin with the following theorem stating that examples are linearly sep-
arable in Rn+1.

Theorem 4.3.1 For an XOR Arbiter PUF, with fixed, constant k, repre-
sented by an LTF in an O

(
(n+ 1)k

)
dimensional space, 1/σ is polynomial

in n.

Proof : For the sake of readability, the elements of ωXOR are denoted by ωi

in this proof. Furthermore, elements of ΦXOR are in {−1,1}. Now we have

σ = min
ΦXOR∈ΦXOR

|ΦXOR · ωXOR|
∥ωXOR∥∥ΦXOR∥

= min
ΦXOR∈ΦXOR

|ΦXOR · ωXOR|√
(n+ 1)k

∑(n+1)k

i=1 ω2
i

,

where ΦXOR is the set of all ΦXOR’s. Due to a non-trivial challenge-response
behavior of the given PUF, at least one of the elements of ω must be unequal
zero. Therefore, min (|ΦXOR · ωXOR|) = 1, and 1/σ = O

(
(n+ 1)k

)
. ■

Figure 4.3 illustrates how the perceptron algorithm is applied in our PAC
learning framework. The learner has access to an Oracle EX, which is related
to the XOR Arbiter PUF as follows:

EX := fXOR.

At the first stage, the Oracle EX is called successively to collect CRPs. The
maximum number of calls is denoted by rmax. For each CRP (e.g., (ci,f(ci)))
a vector Φi is generated. Afterwards, Φi is transformed to Φi

XOR, which is
in an O

(
(n+ 1)k

)
dimensional space. The Perceptron algorithm predicts the

response to Φi
XOR, and if its prediction and f(ci) disagrees, its hypothesis

will be updated.
Now we elaborate on the upper mistake bound in our framework. Follow-

ing the convergence theorem of the Perceptron algorithm and Theorem 4.3.1,

4.3. PAC Learning of XOR Arbiter PUFs 43

when ∥ΦXOR∥ ≤ (n+ 1)k/2, we have Nmis = (n+ 1)k/ε2. As an immediate
corollary, we have:

Corollary 4.3.1 Let k be constant and consider the class of XOR Arbiter
PUFs over the instance space Xn = {0, 1}(n+1)k : the class of linear thresh-
old functions such that ωi ∈ Z, and

∑(n+1)k

i=1 |ωi| = p(2m,(n+ 1)k). Then
the Perceptron-based algorithm running in time p((n + 1)k, 4m2, 1/ε, 1/δ)
can PAC learn an XOR Arbiter PUF by calling EX at most
O
(
log(1/δ)/ε+ (4m2(n+ 1))k/ε3

)
times.

There are some key implications from this corollary. First, with regard to
the PAC model, the hypothesis delivered by the algorithm must be evaluable
in polynomial time. The point here is that the term (n + 1)k, related to
the Vapnik-Chervonenkis dimension of the representation [15], may grow
significantly if k is not a constant. In this case, our algorithm cannot find
a hypothesis in polynomial time, since the number of examples is super-
polynomial in n.

Second, it is tempting that an increase in m can help to ensure the security
of an XOR Arbiter PUF. The upper bound for the number of CRPs calculated
according to the Corollary 2, for δ = 0.0001, k = 5 for n = 64 and n = 128, is
depicted in Figure 4.4. This figure can provide a better understanding of the
impact of m on the learnability of an XOR Arbiter PUF. A marginal increase
in m cannot dramatically increase the number of CRPs required for modeling
an XOR Arbiter PUF. Although an arbitrarily large m can be suggested to
ensure the security of an XOR Arbiter PUF, as stated in Chapter 3 and
in [36], m is restricted by technological limits, and thus cannot be arbitrarily
large. In Section 4.5 the impact of an increase in m on the learnability will
be further discussed.

Validation of the Theoretical Results

We compare our theoretical findings with the most relevant experimental
results reported in [67, 95]. As reported in [67], until now no effective pure
ML attack has been launched on XOR Arbiter PUFs with k ≥ 5 (n = 64).
Pure ML attacks proposed in the literature are conducted on XOR Arbiter
PUFs with the maximum n being equal to 128 [95, 97]. Taking into account
the long run time of pure ML algorithms, even on the powerful machines
employed by [95], XOR Arbiter PUFs with n = 256 and n = 512 have been
targeted only by combined modeling attacks [97]. Therefore, unfortunately,
in the literature no practical limit for pure ML techniques has been reported
for XOR Arbiter PUFs with n ≥ 128.

As an attempt to compare our theoretical results to what has been ob-
served in practice, we focus on the results reported in [95]. Note that although
the algorithm applied in [95] (LR) differs from our algorithm, we can compare

44 Chapter 4. PAC Learning of XOR Arbiter PUFs

U
pp

er
 b

ou
nd

 o
f

th
e

nu
m

be
r

of
 C

R
P

s

m0

105

1

1010

100

1015

0.75 80

1020

600.5
400.25 20

0 0

(a) n = 64, k = 5

m0

1010

1

1015

100

U
pp

er
 b

ou
nd

 o
f

th
e

nu
m

be
r

of
 C

R
P

s

1020

0.75 80

1025

600.5
400.25 20

0 0

(b) n = 128, k = 5
Figure 4.4: Upper bound of the number of CRPs. The x-axis indicates m, whereas
the y-axis shows ϵ. The z-axis corresponds to the upper bound of the number of
CRPs.

the number of CRPs required by them to learn an XOR Arbiter PUF with a
given accuracy. The argument supporting this claim is that the hypothesis
class of the LR can be “discretized” so that it becomes finite [105]. Further-
more, due to the fact that the delay values can be mapped to a finite interval
of integer values (cf. Section 4.2), the loss function of LR is also bounded.
Therefore, the LR can be converted to a PAC learning algorithm, and the
maximum number of EX calls made by the algorithm is polynomial in n, k,
1/ϵ and 1/δ. Moreover, note that the theoretical limit of learning an XOR
Arbiter PUF in polynomial time is established by the Vapnik-Chervonenkis
dimension of the LTF representation of an XOR Arbiter PUF, as used in [95]
as well. These reasons enable us to compare their experimental results with
our findings.

4.4. PAC Learning of Noisy XOR Arbiter PUFs 45

The authors of [95] have attempted to model 64-bit and 128-bit XOR Ar-
biter PUFs with up to 6 and 5 chains, respectively. Their results demonstrate
that the proposed model can predict responses to a set of arbitrarily chosen
challenges with 99% accuracy. However, the number of CRPs required for
modeling a 64-bit XOR Arbiter PUF with k = 5 and k = 6 is increased
drastically, comparing to those with k ≤ 4. In this regard, the number of
CRPs collected to predict the response is increased from 12000 to 80000 and
200000 for k = 5 and k = 6, respectively (ϵ = 0.01). As a result, the time
spent to build a model is increased from a few minutes to several hours, which
shows an exponential growth. For a 128-bit XOR Arbiter PUF with k = 5,
500000 CRPs are required to model the XOR Arbiter PUF, with 99% accu-
racy, while for a PUF with k = 4, this number is only 24000. Consequently,
the learning time is again increased exponentially.

In the above-mentioned cases, an exponential growth in the number of
CRPs and the learning time can be clearly observed, when k exceeds 4. This
matches the theoretical limit proposed in Section 4.3.

4.4 PAC Learning of Noisy XOR Arbiter PUFs

In the previous section, we have explained how the Perceptron algorithm can
be applied to PAC learn an XOR Arbiter PUF. The natural and important
question would be whether the proposed framework is applicable in the case
of noisy responses. The term noisy response here refers to the response of
the XOR Arbiter PUF to a challenge under either the metastable condition
or the impact of environment noise. Although it has been accepted that
metastablity of an XOR Arbiter PUF must be solved by the PUF manufac-
turer, we consider this particular case for completeness. From the point of
view of machine learning, this condition results in incorrect labels generated
by the Oracle EX. We aim to state that an XOR Arbiter PUF can be PAC
learned by applying the Perceptron algorithm, even if noisy responses are
included in the collected set of CRPs.

Several versions of the Perceptron algorithm that can tolerate noise, i.e.,
incorrect labels of examples, have been developed (for a comprehensive survey
see [57]). Here we follow the work presented in [6] to demonstrate that the
original Perceptron algorithm can be further applied in the case of noisy
responses. In this case, the number of CRPs required to be collected is
polynomial in the number of noisy responses.

At the first stage, we define a simple but effective model of noisy Oracle
EXη [6]. In our model, the examples are drawn with respect to the relevant
distribution D, and the label of each example is chosen in an independent
random fashion. More specifically, after drawing an example, an unfair coin
(head with probability 1− η) is flipped. If the outcome is head, the correct
label is provided, otherwise the label is incorrect. It is clear that η < 1/2,
since η = 1/2 means that no relevant information is provided by EXη, and

46 Chapter 4. PAC Learning of XOR Arbiter PUFs

the case of η > 1/2 is irrelevant. We assume that an upper bound on η,
denoted by ηb, is known. Even if this assumption may not hold in practice,
following the procedure defined in [6], ηb can be estimated. It has been shown
that the sample size is increased very slightly in the case of unknown ηb (for
further information and the proof see [6]).

According to the Convergence Theorem of the Perceptron algorithm (see
Theorem 2.4.1) in the case of noisy responses the condition f(Φi)(u.Φi) ≥ 0
cannot always be met. This condition relates the accuracy of the prediction
performed by the Perceptron algorithm to the labels provided to that. In
the case of noisy examples, the abovementioned condition should be modified
so that it reflects the accuracy of the Perceptron algorithm in the presence
of noise. Suppose that an example, i.e., (Φi,f(Φi)), is provided by EXη.
The probability that this example disagrees with any hypothesis u can be
calculated as following:

Pr[f(Φi)(u ·Φi) < 0] ≤ (1− η)ε+ η(1− ε) < ηb + ε(1− 2ηb).

From this inequality, it can be inferred that the expected rate of dis-
agreement is at least η for the ideal hypothesis u. Therefore, the separation
factor of at least ε(1 − 2η) should be between an ideal hypothesis and an
approximation of that cf. [6]. As stated in the following theorem, the max-
imum number of mistakes that can be made by the Perceptron algorithm is
polynomial in this separation.

Theorem 4.4.1 Consider r labeled examples which are fed into the Percep-
tron algorithm, and let ∥Φi∥ ≤ R. In the case of noisy labels, let un be the
solution vector with ∥un∥ = 1, and f(Φi)(un.Φi) ≥ ε(1− 2ηb) > 0. Then

Nmis =

(
R

ε(1− 2ηb)

)2

.

It is straightforward to prove this theorem, and for more details the reader
is referred to [6].

Theorem 4.4.2 When PAC learning the noisy XOR Arbiter PUF, the
maximum number of mistakes that the Perceptron algorithm can make
is Nmis = (n+ 1)k/(ε2(1− 2ηb)

2). Furthermore, the maximum num-
ber of CRPs required for PAC learning a noisy XOR Arbiter PUF is
O
(
log(1/δ)/(ε(1− 2ηb)) + (4m2(n+ 1))k/(ε3(1− 2ηb)

3)
)
.

Proof : Following Corollary 2 and Theorem 3, this can be easily shown. ■
The most important message is that this maximum number of CRPs

is polynomial in n, ε, δ as well as the upper bound of η. According to
experimental results when the noise rate is 2%, the number of CRPs required
to learn a 128-bit XOR Arbiter PUF (k = 4) is approximately increased by

4.5. Discussion 47

the factor 2, in comparison to the noiseless scenario with approximately the
same ϵ [95]. For the same XOR Arbiter PUF, increasing the noise rate to 5%
and 10%, the number of CRPs is increased 2 times and 8 times, comparing
with the case of ηb = 0.02. It has been concluded that the number of noisy
CRPs collected to model the XOR Arbiter PUF is polynomial in the noise
rate [95], which agrees with our theoretical result.

4.5 Discussion

4.5.1 Theoretical Considerations

By providing the proof of vulnerability of XOR Arbiter PUFs to PAC learn-
ing we have demonstrated how fragile the security of this kind PUF can
be. The concept of PAC learning of XOR Arbiter PUFs has been already
demonstrated by Hammouri et al. [45]. Although the authors benefit from an
adequate representation of the XOR Arbiter PUFs, which is LTF-based [39],
they could not prove the PAC learnability of the XOR Arbiter PUFs. As
the Vapnik-Chervonenkis dimension of an LTF representing an Arbiter PUF
is equal to n + 1, this family of PUF primitives is subject to PAC learn-
ing attacks [36]. It is straightforward to further prove that the Vapnik-
Chervonenkis dimension of the LTF representing an XOR Arbiter PUF is
(n+1)k. Therefore, for constant k an XOR Arbiter PUF with k chains (each
with n stages) is also PAC learnable since the Vapnik-Chervonenkis dimen-
sion of the LTF-based representation of such PUF is finite. In this chapter,
instead of sticking to this obvious fact, to PAC learn an XOR Arbiter PUF–
even in the case of noisy response– we apply the Perceptron algorithm, whose
run time is polynomial in n, 1/ε, 1/δ, and k.

Another important aspect of our framework is the representation of an
XOR Arbiter PUF. As mentioned earlier, it is clear that according to what
has been observed in Chapter 3 and [36], an XOR Arbiter PUF can also
be represented by a DFA with O(nkM2k) states. Therefore, the algorithm
learning this DFA (see Algorithm 2) makes

O
((

1 + 2/ε ln(1/δ)
)
nkM2k + 2/εn2kM4k

)
calls to EX. Comparing this number of calls with the number of calls that
Perceptron algorithm makes to EX (see Corollary 2), it is clear that the
numbers of calls made by both algorithms are polynomial in n, m, 1/ε, and
1/δ. However, the algorithm presented in this chapter outperforms in terms
of the number of calls, and consequently its time complexity.

Of crucial importance for our framework is how the algorithm deals with
noisy responses. In this chapter, we have proposed a model of noise, which
is well-studied in the PAC learning related literature and agrees with what
can be seen in practice. Towards launching an ML attack, the adversary

48 Chapter 4. PAC Learning of XOR Arbiter PUFs

applies a set of challenges and collects the responses, where the latter might
be noisy. In the literature, majority voting is suggested as a solution to
deal with noisy responses [73, 95]. This can impair the performance of the
proposed learning algorithm, when the attacker can observe each CRP only
once and cannot do majority voting. It is even suggested that in order to
reduce the effectiveness of ML attacks, the noise rate that can be observed by
an attacker can be artificially increased, while the verifier still observes only
a small noise rate [127]. In this latter scenario, the majority voting cannot
be helpful. On contrary, we have proved that even noisy XOR Arbiter PUFs
can be PAC learned without the need for majority voting.

We have stated that the maximum number of mistakes that the Per-
ceptron algorithm can make, and consequently, the maximum number of
CRPs required for PAC learning is polynomial in n, k, 1/ε, 1/δ as well as
1/(1 − 2η) in the case of noisy responses. Since we have mainly aimed to
prove this, the maximum number of CRPs calculated in Section 4.3 ensures
that the algorithm delivers an approximation of the desired hyperplane, with
the probability at least 1 − δ. The proposed upper bound of the number of
CRPs can be improved to even reduce the number of required CRPs (see for
instance [15]).

4.5.2 Practical Considerations

When proving that the Perceptron algorithm can be applied to PAC learn an
XOR Arbiter PUF, we take the advantage of the lessons learnt from practice,
namely

• the delay values can be mapped to a finite interval of integer values,
and

• the number of chains contained in an XOR Arbiter PUF (k) may not
exceed a certain value.

The importance of the first fact can be recognized in the proof of the PAC
learnability of an XOR Arbiter PUF (see Corollary 2). The second fact
confirms that the Vapnik-Chervonenkis dimension of the LTF representing an
XOR Arbiter PUF is finite. Whereas the first fact has been already reflected
in Chapter 3 and [36], the second one has been only partially discussed in
the literature.

The results of experiments demonstrate that XORing more than a certain
number of chains can be challenging in the practice [93]. In the experiments
conducted by Rostami et al. [93], different XOR Arbiter PUFs designed on
10 Xilinx Virtex 5 (LX110) FPGAs at the nominal condition (temperature =
35°C and VDD = 1V) are employed. For k = 4, it is reported that the noise
rate is η = 23.2%, and a change in the condition (e.g., reducing VDD) may
result in an increase in the noise rate up to 43.2%. They have suggested that
the noise rate of an XOR Arbiter PUF can be approximated by summing the

4.5. Discussion 49

noise rate of each individual Arbiter PUF. In an attempt to precisely calculate
the noise rate of an XOR Arbiter PUF, the binomial distribution of the error
has been taken into account [124, 127]. With regard to this noise analysis,
assuming that the noise rate is about 4% for an Arbiter PUF designed on
65 nm technology1, the noise rate of the XOR Arbiter PUF with k = 12
is about 33%. Note that under the condition that the noise ratio would be
approximately 50%, even majority voting cannot be helpful so that the PUF
cannot be verified. Although the analyses conducted in [124,127] have shown
that the noise rate may not exceed 50%, when n is large and k ≫ (lnn),
concerns about PUF implementations cannot be ignored. For instance, an
important factor limiting k is the silicon area used for constructing an XOR
Arbiter PUF. Based on a rough estimation reported in [67], the silicon area
required for constructing an XOR Arbiter PUF with k chains is k times larger
than a single Arbiter PUF.

Despite the implementation and technological limits on k, we have proved
theoretical limits on when an XOR Arbiter PUF can be learned in polynomial
time. In the literature, it has not so far been stated how the learnability
is theoretically limited. Nevertheless, the empirical upper bound reported
in [67] and the experimental results in [95] are in line with our theoretical
limit. Moreover, the experimental results presented in [114] provide evidence
that supports our findings. It has been shown that when n = 64 and k ≥ 4,
the number of CRPs required for the ML attack, and consequently the time
complexity, is increased drastically. The same observation is repeated for
n = 128 and k ≥ 5. These emphasize the importance of our approach, in
which not only the limit of the learnability in polynomial time is identified
but also no side channel information is required to PAC learn the XOR
Arbiter PUFs under this limit. With respect to this theoretical limit, to
evaluate the security of an XOR Arbiter PUF the following scenarios can be
distinguished:

• n is small (e.g., n ≤ 32): in this case, the security can be easily broken
by adopting a brute-force strategy.

• n is large (i.e., no brute-force strategy is applicable) and k ≫ (lnn):
under this condition, the XOR Arbiter PUF cannot be learned in poly-
nomial time. However, a practical implementation of such an XOR
Arbiter PUF can be challenging due to the technological limits, more
specifically the noisy responses and the silicon area.

• n is large and k ≪ (lnn): the XOR Arbiter PUF can be PAC learned.

Note that in the second scenario, the infeasibility of applying a PAC
learning framework does not rule out the possibility that empirical ML or

1For an Arbiter PUF designed on 65 nm technology, a typical value of the noise rate is
about 4% [93].

50 Chapter 4. PAC Learning of XOR Arbiter PUFs

hybrid attacks can be successfully launched cf. [11, 31, 97]. In the latter
scenario, it can be thought that an increase in m may lead to a more secure
XOR Arbiter PUF. From a theoretical point of view, more CRPs are required
for PAC learning an XOR Arbiter PUF with large m, the number of CRPs
is still polynomial in m, n, constant k and levels of accuracy and confidence.
On the other hand, from a practical perspective, a chip designed with the
large σ might not work properly. Moreover, it can be suggested to produce
Arbiters with high precision in order to enlarge m. In this case, the cost of
the chip is increased dramatically.

In previous studies, e.g., [95,97], powerful and costly machines have been
employed to prove the concept of learnability of XOR Arbiter PUFs. It might
not be convenient to run a ML algorithm on such machines, particularly for
XOR Arbiter PUFs with large k and n. Since our concrete proofs state how
the security of XOR Arbiter PUFs can be broken in polynomial time, it seems
redundant to conduct a simulation or an experiment concerning this issue.
Last but not least, we emphasize that protocols relying on the security of
XOR Arbiter PUFs cannot be considered as an ultimate solution to the issue
of insecure Arbiter PUFs. As it has been also stated in [22], none of the XOR
Arbiter PUF-based protocols in its current form can be thought of as being
perfectly secure.

51

Chapter 5

PAC Learning of Ring
Oscillator PUFs

“ One of the features of modeling PUF circuits through
ML techniques is that except for Arbiter PUFs, other
PUFs cannot be modeled very satisfactorily in a way
to suggest which ML to apply to model them. [...]
This observation suggests heuristic techniques which
are effective in estimating input-output relationships
[...]. ”

[98]

This chapter covers the principles of a PAC learning framework applied
to ring oscillator (RO) PUFs, which have been first introduced in [34]. Parts
of this paper have been slightly adapted to be involved in this thesis.

This chapter demonstrates that inherent characteristics of RO-PUFs,
although being hidden from an adversary, account for the success of the
previously proposed (heuristic) attacks and is the key factor in the suc-
cess of our framework as well. These characteristics are helpful to establish
a polynomial-sized representation of RO-PUFs, and consequently, provably
learn an RO-PUF for given levels of accuracy and confidence. In addition,
when comparing the number of CRPs required for our attack with already
existing bounds calculated by applying heuristic techniques, our proposed
bound is provably better. Finally, by conducting experiments, we comple-
ment the proof provided in our PAC learning framework.

Overview of this chapter: Similar to previous chapters, we begin with
a brief literature review in Section 5.1. Afterwards, a new representation of
RO-PUFs is established in Section 5.2, which enables us to PAC learn these
primitives (Section 5.3). Our practical results and a discussion of them are
presented in Section 5.4.

52 Chapter 5. PAC Learning of Ring Oscillator PUFs

5.1 Introduction

In conjunction with Arbiter PUFs, RO PUFs are classified as delay-based
PUFs that attract attention thanks to their easy and inexpensive implemen-
tations on different platforms [67, 107]. Arbiter PUFs and RO-PUFs share
the common feature of using the various propagation delays of identical elec-
trical paths on the chip to generate a virtually unique output. Nevertheless,
coming under several attacks, it has been shown that the security of these
PUFs can be comprised, and therefore, the unclonability and unpredictability
features promised by the manufacturer are not absolutely supported.

Similar to Arbiter PUFs, it has been stated that RO-PUFs are suscep-
tible to semi-invasive side channel analysis [78]. Moreover, as an instance
of modeling attacks against RO-PUFs, Rührmair et al. have applied Quick-
sort algorithm to model an RO-PUF in the case that the adversary cannot
control the challenges, although the challenges can be eavesdropped [95]. As
another example, a new attack on RO-PUFs has been introduced, whose key
success factor is the availability of the helper data used to compensate the
impact of the noise on the responses [83]. Obviously, in the absence of the
helper data, which is a likely scenario in practice, their attack cannot suc-
ceed. In another attempt to develop an ML method that can be applied to
compromise the security of an RO-PUF, a genetic programming approach
has been employed [98]. Although their results are promising regarding the
prediction accuracy of the obtained models, neither the scalability of the ap-
proach nor the probability of delivering the final model has been discussed.
These concerns have been already addressed for Arbiter and XOR Arbiter
PUFs [35,36] (see Chapter 3-4). Unfortunately, such a thorough analysis has
not been developed for RO-PUFs so far, and solely empirical modeling at-
tacks have been suggested. The lack of such precise analyses further supports
the development of ad hoc solutions to their security problems. Therefore,
several different implementation methods have been proposed in order to im-
prove the security of RO-PUFs [71,81], despite the fact that this primitive is
inherently vulnerable to ML attacks. Therefore, goals of this chapter are:

Establishing a fit-for-purpose representation of RO-PUFs. In
addition to the feature of being polynomial-sized, our proposed representa-
tion can be easily built by collecting CRPs. Therefore, when comparing to
other complicated and sophisticated representations, it can be rapidly estab-
lished. Due to this representation, we propose an algorithm that can learn
an RO-PUF for given levels of accuracy and confidence

Mathematical proof of the vulnerability of RO-PUFs to our ML
attack. The number of CRPs required to launch our attack is carefully
calculated. We prove that this small number is indeed polynomial in the
number of ring oscillators.

Providing a proof of concept of how our attack performs in
practice. By conducting experiments, we evaluate the effectiveness of our

5.2. DL Representation of RO-PUFs 53

attack.

5.2 DL Representation of RO-PUFs

The manufacturing variations in the delays of circuit gates have been used
to design an RO-PUF [107]. The first architecture proposed by Suh et al.
is composed of N identically designed oscillator rings, whose frequencies are
compared pairwise to generate the binary output of the RO-PUF, see Fig-
ure 5.1. Although N(N − 1)/2 pairs of oscillators are possible for this archi-
tecture, due to the particular ascending order of the frequencies, the number
of responses cannot exceed log2(N !) [50]. Consider the scheme of an RO-PUF
depicted in Figure 5.1 that features N ring oscillators. By applying a binary
challenges, the frequencies of two ring oscillators are compared to generate
the response. Clearly, the challenges applied to two multiplexers should not
be identical; otherwise, only N different pairs of ring oscillators can be se-
lected, and consequently, solely N responses can be obtained. Hence, more
formally, the k- bit challenge c1c2 · · · ck is applied to one of the multiplexers
(e.g., the upper one) to select the first ring oscillator, whereas the k- bit
challenge c′1c

′
2 · · · c′k is fed into the second multiplexer to select the second

ring oscillator. Note that c′i is not the complement of ci, but being chosen
randomly and independently from ci. As required by our approach, without
loss of generality, we denote the appropriate challenge applied to the RO-
PUF by the binary string c1c2 · · · ckc′1c′2 · · · c′k, where k = log2N and ci ̸= c′i
(1 ≤ i ≤ k). It may be thought that the number of bits in a challenge can rep-
resent a measure of the security of this type of PUFs. However, in practice,
the number of ring oscillators implemented on a chip is a more limiting, and
a determinant factor. The influence of this factor on the uniqueness of the
RO-PUF and the silicon area footprint has been discussed in the literature,
e.g., [71].

The vulnerability of RO-PUFs to modeling attacks has so far been re-
vealed in the literature cf. [95]. When launching a modeling attack on these
PUFs, two scenarios can be considered.

• In the first scenario, the attacker can selectively apply the desired chal-
lenges to figure out the ascending order of frequencies of the rings. In
this scenario, the number of CRPs can be O(N log2N), or in an ex-
treme case, N2/2, where the attacker collects all the possible CRPs.
Of course it is possible in theory, but in practice the attacker may not
have direct access to the challenges and, consequently, this types of
attacks may fail.

• In an advance and a more realistic scenario that is considered in our
work, the attacker can solely collect the challenges randomly applied
to the PUF and the respective responses.

54 Chapter 5. PAC Learning of Ring Oscillator PUFs

en

.

.

.

.

.

.

.

.

.

en

en

M
U

X
1

M
U

X
2

Counter 1

Counter 2

? rc1c2…ck

c'1c'2…c'k

Figure 5.1: An RO-PUF with N ring-oscillators. By applying challenges to two
multiplexers, two ring-oscillators are selected and their outputs are connected to
the clock inputs of 2 counters. The counters count the number of the rising edges
during a predefined time period. Finally, the state of the counters are compared by
the comparator placed at the end of the PUF to generate a binary response.

In order to establish a proper representation of an RO-PUF, we focus
on a widely accepted implementation of RO-PUFs as proposed in [107], see
Figure 5.1. Nevertheless, modified architectures have been proposed in [122,
125,126]. Potential attacks against them are discussed briefly in Section 5.3.

Consider an RO-PUF that features N ring oscillators. The challenge is
a 2k-bit binary string c1c2 · · · ckc′1c′2 · · · c′k as discussed in Section 5.2. When
applying this binary challenge to an RO-PUF, the string c1c2 · · · ck deter-
mines the first ring oscillator to be selected, whereas the string c′1c

′
2 · · · c′k

determines the second one. By comparing the frequencies of these ring os-
cillators, the final response of the RO-PUF is generated. We define the
binary to one-hot encoded mapping fmap : {0,1}k → {0,1}N that maps a
binary string, e.g., c1c2 · · · ck, to a one-hot string x1x2 · · ·xN . Therefore, all
Boolean attributes of the mapped string are “0”, except solely one of them,
e.g., the jth attribute, that is “1” corresponding to the selected ring oscillator.

By performing the mapping fmap on each challenge, we obtain two one-
hot encoded strings merged to a single mapped challenge x1x2 · · ·xN . In
other words, if fmap(c1c2 · · · ck) = x1x2 · · ·xN , where xi = 1 and for the
second string we obtain fmap(c

′
1c
′
2 · · · c′k) = x′1x

′
2 · · ·x′N , where xj = 1, we

can merge the mapped strings to a single string x1x2 · · ·xN , where xi and
xj are “1”. This step can be performed easily by, e.g., adding the respective
attributes of two strings together. Let the set XN = {0,1}N denote the set
of all mapped challenges. Note that according to the definition of fmap, only
two non-zero Boolean attributes of each mapped challenge are drawn from
VN .

Similar to the other types of PUFs, an RO-PUF can be represented by

5.3. PAC Learnability of the 2−DL Representing the RO-PUF 55

the function fRO : XN → Y , where Y = {0,1}, and fRO(x1x2 · · ·xN) = y.
Obviously, this mapping represents a Boolean function. More precisely, we
define each mapped challenge as being a term (e.g., fi) so that fi ∈ CN

2 .
Now the list L containing r CRPs represents a 2−DL.

5.3 PAC Learnability of the 2 − DL Representing
the RO-PUF

In order to prove that RO-PUFs are indeed PAC learnable under the DL
representation, we follow the procedure introduced in [90]. We first prove
that a 2−DL representing an RO-PUF has a polynomial size.

Theorem 5.3.1 A 2−DL representing an RO-PUF is polynomial-sized.

Proof : The maximum number of elements in a k-DL, in the general case,
has been determined in [90], and it has been shown that

size(k −DL) = O
(
log2

(
3|Mn,k|

(
|Mn,k|

)
!
))

,

where |Mn,k| is the cardinality of the set of the monomials Mn,k. This can
be proved since, in the DL, each term from Mn,k can be labeled by “0”,“1”,
or “missing”. Furthermore, no order for the elements of the list is defined.

Now we put emphasis on the size of the DL representing an RO-PUF.
Obviously, according to our particular definition of the strings x1x2 · · ·xN , in
our DL the maximum number of possibles elements is N(N−1)/2. However,
according to the ascending order of the frequencies of the ring oscillators, a
list containing O(N − 1) terms is completely expressive. This can be easily
understood due to the relationship between the Boolean attribute xi and the
frequency of the ith ring oscillator. Therefore, the size of our 2−DL in bits
(i.e., the size of the representation) is O

(
(N − 1) log2(N − 1)

)
. ■

To complete our proof of the RO-PUF learnability, in addition to Theo-
rem 5.3.1, we have to provide a polynomial-time algorithm that can generate
a DL, when being fed by a set of labeled examples (so-called sample). To
this end, we apply a classical polynomial-time algorithm that learns a k-DL
(k = 2 in our case) for given levels of accuracy and confidence, when it is
given a polynomial number of examples [90]. For the sake of completeness,
the main steps of such algorithm proposed by Rivest have been presented in
Algorithm 3 (see [90] for more details on the algorithm).

Furthermore, to PAC learn an RO-PUF, the upper bound of the num-
ber of CRPs required by Algorithm 3 can be calculated according to the
polynomial learnability theorem proved by Blumer et al. [14]1.

1We refer the reader to [14] for the proof of Blumer’s theorem.

56 Chapter 5. PAC Learning of Ring Oscillator PUFs

Algorithm 3 The algorithm for PAC learning of a k-DL as proposed by [90]

Require: The set S containing r pairs (f1, v1), · · · , (fr, vr), where (1 ≤ r ≤ m)
Ensure: L that is a k-DL

1: T := ∅
2: j = 1
3: while S is not empty do
4: Find a term t in Mn,k so that all fi (1 ≤ i ≤ r) make t true, and their corresponding vi are

either “0” or “1”
5: T ← t
6: if t corresponds to positive examples then:
7: v = 1
8: else
9: v = 0

10: fi
11: return (t,v) as the jth item of L
12: S := S − T
13: j = j + 1
14: od

Theorem 5.3.2 Assume that the learner is given access to Oracle EX :=
fRO, and can call it successively to collect t independently drawn examples
(i.e., CRPs). To PAC learn the RO-PUF for given ε and δ, under the 2−DL
representation, the number of CRPs required to be collected is bounded by

t = O

(
1

ε

(
(N − 1) log2(N − 1) + log2

(1
δ

)))
.

As pointed out in Section 5.2, the number of ring oscillators heavily affects
the uniqueness and the silicon area footprint of RO-PUFs. In other words,
although N = 2k and k can be increased in theory, N and consequently
k cannot be arbitrarily increased due to the restrictions imposed by the
technological properties of ICs. Hence, not only in our approach but also
in previously proposed attacks (e.g., [95]) the number of CRPs required to
characterize the challenge-response behavior of RO-PUFs is presented as a
function of N , i.e., the number of ring oscillators. An important message
conveyed by Theorem 5.3.2 is that the maximum number of CRPs needed to
be collected by the attacker is polynomial in N , and more importantly, it is
asymptotically better than the bound estimated in [95].

To give a better understanding of the impact of a change in ε and δ on
the number of CRPs, the upper bound of the number of CRPs calculated
according to Theorem 5.3.2 is depicted in Figure 5.2. The curve is drawn for
N = 1024 and different ε and δ values.

PAC Learnability of the Self-decision RO-PUF

The core idea behind the design of this type of PUFs [125], is that com-
bination of frequencies of the ring oscillators forming the PUF can be a
countermeasure against ML attack. Although this assumption was correct

5.4. Results and Discussion 57

U
pp

er
 b

ou
nd

 o
f

th
e

nu
m

be
r

of
 C

R
P

s

104

0.54.5

105

0.43.5

106

Log
2
(1//)

0.3

0

2.5 0.21.5 0.1
0.5 0

Figure 5.2: Upper bound of the number of CRPs required for PAC learning of an
RO-PUF with 1024 ring oscillators.

at the time, when this design has been proposed, the invalidity of that can be
proved with regard to the results presented in Chapter 3-4 and [35,36]. The
architecture proposed in [125, 126] is similar to the architecture of Arbiter
PUFs. However, the main difference is that the frequencies of the ring os-
cillators (instead of delays of stages in an Arbiter PUF) are added together.
Following the procedure proposed in Chapter 3 and [36], these real-valued fre-
quencies of ring oscillators can be mapped to a limited integer interval. This
enables us to construct a deterministic finite automaton (DFA) representing
the sum RO-PUF, and then PAC learn it.

A more interesting design suggested by Yu et al. [122] relies on the fact
that more complex recombination functions, e.g., for RO-PUFs, XOR func-
tion can provide additional robustness against ML attacks. The proposed
architecture shares several similarities with XOR Arbiter PUFs, and in a
similar fashion can be represented by LTFs [7]. Although in general the
Vapnik-Chervonenkis dimension of these PUFs can be exponential in the
number of ring oscillators (in the case of RO-PUFs), when this number does
not exceed the upper bound lnN , the RO-PUF is indeed PAC learnable (for
the proof see Chapter 4 and [35]). On the other hand, when the number
of ring oscillators exceeds this upper bound, hybrid attacks similar to what
has been proposed in [31, 110] can be applied to break the security of the
RO-PUF.

5.4 Results and Discussion

In this section we provide simulation results to validate our theoretical find-
ings. To this end, one can adopt the results of large-scale experiments re-
ported in [69]. In addition to these results, further measurement results are

58 Chapter 5. PAC Learning of Ring Oscillator PUFs

publicly accessible in a dataset [102]. In this dataset the measurement results
containing 100 samples of the frequency of each and every ring oscillators of
RO-PUFs are collected. Each RO-PUF is composed of 512 ring oscillators
implemented on 193 90-nm Xilinx Spartan (XC3S500E) FPGAs. Since we
aim to evaluate the effectiveness of our attack against RO-PUFs with a differ-
ent number of the ring oscillators, we develop an RO-PUF simulator, whose
inputs are frequencies of the ring oscillators. First, our simulator randomly
selects N (N = 128, 256, 512, 1024) frequencies associated with N different
ring oscillators. Afterwards in order to create a set of CRPs, random chal-
lenges are applied to the PUF to select a pair of ring oscillators. The indexes
of selected ring oscillators and their corresponding responses were stored in
a dataset to be learned by the ML algorithm proposed in Section 5.3.

To learn the CRPs under the DL representation, we have used the open
source ML software Weka [44], providing a firm platform for conducting
experiments. In our experiments 10 GB RAM of our machine is used. More-
over, the physical core of the machine is an Intel Core 2 Duo (Penryn) run-
ning at 2.4 GHz. Experiments conducted in Weka consist of two phases,
namely the training and the validation phases. The examples fed into an
algorithm can be divided into equally sized subsets (so-called folds) to per-
form cross-validation. For instance, when 10 equally sized subsets are fed
into an algorithm, the model is established based on 9 subsets, and then
the obtained model is validated on the remaining subset. This process is
repeated 10 times so that each subset is used once as the validation dataset
and 9 times as the training dataset. Finally, the results obtained for all 10
experiments are averaged to generate a single model. With respect to our
setting, this 10 fold cross-validation method is applied in order to evaluate
the error of the obtained model (ε). Since the model is always delivered in
our experiments, it can be interpreted that δ is very close to zero in our case,
as pre-defined and have coded in Weka.

The results of the experiments for several different RO-PUFs have been
depicted in Figure 5.3. As expected, for the same number of CRPs, the
error of the model is higher for RO-PUFs with the higher number of ring
oscillators. Furthermore, in our experiments, we increase the number of
CRPs fed into the algorithm to the extent that a model with a sufficiently
small error is obtained. Nevertheless, the maximum number of CRPs given to
the algorithm is less than the upper bound calculated in Section 5.3. It can be
seen in Figure 5.3(a) that for each RO-PUF the error is significantly reduced,
when increasing the number of CRPs collected to launch the attack. The
maximum time taken to deliver the model of the RO-PUFs, corresponding
to the maximum number of CRPs given to the algorithm, is presented in
Figure 5.3(b). The time complexity is increased for RO-PUFs with a higher
number of ring oscillators. However, it is still polynomial in the number of
the ring oscillators.

In an attempt to compare our theoretical and practical findings with

5.4. Results and Discussion 59

Figure 5.3: (a) The number of CRPs required to PAC learn RO-PUFs with
different numbers of ring oscillators. Clearly, when increasing the number of CRPs
collected for the attack, the error of the obtained model is reduced. (b) Time taken
to deliver the model, if the algorithm is fed by the maximum number of CRPs for
each RO-PUFs.

results previously reported in the literature, we take into consideration the
results reported in [95] and [98]. We consider the worst-case scenario from the
adversary perspective, where she can only eavesdrop the CRPs and cannot
apply any desired challenges. The crucial difference between the algorithm
proposed in [95] and our work is that the delivery of the model is not guar-
anteed in their framework. Furthermore, although for different RO-PUFs
virtually the same numbers of CRPs are suggested in our work and [95],
the number of CRPs required for launching their attack is estimated em-
pirically, and is heavily depending on their limited number of experiments.
On the contrary, the upper-bound of the number of CRPs required to launch
our PAC learning attack is calculated precisely. More importantly, the upper
bound calculated with regard to our framework is asymptotically better than
their estimated bound.

In a similar fashion, in spite of the fact that the algorithm proposed
in [98] might deliver a kind of Boolean function for a given RO-PUF, nei-
ther the delivery of the model is ensured nor the scalability of the algorithm
is discussed. The experiments conducted to evaluate the feasibility of their
attack are performed only on RO-PUFs with 128 ring oscillators. Moreover,
when increasing the number of CRPs to achieve a more accurate model, the
time taken to generate their proposed model is increased drastically. Unfor-
tunately, the time complexity of their model has not been further discussed.

Finally, from our results as well as what has been reported in the liter-
ature, we can draw the conclude that similar to other PUF families studied
in this work, RO-PUFs cannot be considered secure regarding their current
schemes. We put emphasis on the fact that we provide a proof for the learn-
ability of RO-PUFs, which has not been addressed before in the literature.

61

Chapter 6

PAC Learning of Bistable Ring
PUFs

“ The BR-PUF was proposed as a promising circuit-
based strong PUF candidate, given that a simple model
for its behavior is unknown by now and hence modeling-
based attacks would be hard. ”

[101]

This chapter presents the foundation of our PAC learning approach ap-
plied to bistable ring PUFs (BR-PUFs). The idea of applying this approach
has been first published in [32, 33]. Some sections of this paper have been
slightly reworked to be included in this thesis.

In this chapter, we present a key result stating that in general the re-
sponses of PUF families are not equally determined by each and every bit
of their respective challenges, but only a subset of the bit positions called
influential bits. Furthermore, to the best of our knowledge, we for the first
time suggest applying Boolean and Fourier analyses in order to assess the
security of PUFs. In this regard, we introduce new metrics and notions
such as the average Sensitivity of Boolean Functions that are well-known
and widely used in ML theory and may provide special insights into the
physical design of secure PUFs in the future. Relying on this basis, we deal
with the issue of strong PAC learning of the challenge-response behavior of
PUFs, whose functionality lacks a precise mathematical model, e.g., BR-PUF
family. Moreover, in addition to the results of the Boolean analysis, the fea-
sibility and effectiveness of our machine learning attack have been evaluated
by conducting experiments on the real-world BR-PUFs.

Overview of this chapter: The structure of this chapter differs from
the other chapters since due to the unknown mathematical model describing
the internal functionality of the BR-PUF family, a much more sophisticated
ML attack should be mounted on them. Hence, we first discuss the architec-
ture of these PUFs (see Section 6.2), after a brief introduction (Section 6.1).

62 Chapter 6. PAC Learning of Bistable Ring PUFs

Afterwards, in Section 6.3, we shift our focus to the Boolean analysis that
helps us to come up with measures to PAC learn the BR-PUF family (Sec-
tion 6.4). The experimental results and a discussion of them are presented
in Section 6.5.

6.1 Introduction

In the previous chapters, we have proposed the PAC learning framework
applied against Arbiter, XOR Arbiter, and RO-PUFs. One of the key ideas
behind our approaches is that knowing about the mathematical model of
the PUF functionality enables the adversary to establish a proper hypothesis
representation (i.e., mathematical model of the PUF), and then it is possible
to PAC learn this representation. This gives rise to the question of whether a
PUF can be PAC learned without prior knowledge of a precise mathematical
model of the PUF.

BR-PUFs [20] and twisted BR-PUFs (TBR-PUF) [101] are examples of
PUFs, whose functionality cannot be easily translated to a precise mathe-
matical model. In an attempt, the authors of [101, 120] suggested simplified
mathematical models for BR-PUFs and TBR-PUFs. However, their models
neither precisely reflect the physical behavior of these architectures nor the
accuracy of their model can be enhanced up to a certain, desired level. From
the point of view of machine learning theory, the latter can be explained by
the fact that the model applied to represent these PUFs has not been chosen
entirely correct [56].

This chapter presents a sound mathematical machine learning framework,
which enables us to PAC learn the BR-PUF family (i.e., including BR- and
TBR-PUFs) without knowing their precise mathematical model. In this re-
gard, the most remarkable results are as follows:

Strong ML attacks against PUFs without available mathemati-
cal model. We prove that even in a worst case scenario, where the internal
functionality of the BR-PUF family cannot be mathematically modeled, the
challenge-response behavior of these PUFs can be PAC learned for given
levels of accuracy and confidence.

Evaluation of the applicability of our framework in practice. In
order to evaluate the effectiveness of our theoretical framework, we conduct
extensive experiments on BR-PUFs and TBR-PUFs, implemented on a com-
monly used FPGA.

In addition, our framework contributes to the following aspect related to
the security assessment of PUFs in general:

Exploring the inherent mathematical properties of PUFs. One
of the most natural and commonly accepted mathematical representations of
a PUF is a Boolean function. This representation plays a major role in inves-
tigating properties of PUFs, which are observed in practice, although they
have not been precisely and mathematically described. One of the widely

6.2. Architecture of the BR-PUF Family 63

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

reset r

c[1] c[2] c[i] c[i+1]

c[n] c[n-1] c[i+3] c[i+2]

…

…

Figure 6.1: The schematic of a BR-PUF with n stages. The response of the PUF
can be read between two arbitrary stages. For a given challenge, the reset signal
can be set low to activate the PUF. After a transient period , the BR-PUF might
be settled to an allowed logical state.

accepted properties of PUFs, exhaustively studied in our work, is related to
the silent assumption that each and every bit of a challenge has equal in-
fluence on the respective response of a PUF. We prove that this assumption
is not valid for all PUFs. This phenomenon has been already observed in
practice and is most often attributed to implementation imperfections. Our
rigorous mathematical proof states the existence of influential bit positions,
which holds for PUFs.

6.2 Architecture of the BR-PUF Family

In this section, we explain the architectures of BR- and TBR-PUFs, whose
internal mathematical models are more complicated than other PUF con-
structions studied in this thesis. At the time of writing this dissertation, no
such model has yet been known.

A BR-PUF consists of n stages (n is an even number), where each stage
consists of two NOR gates, one demultiplexer and one multiplexer, see Fig-
ure 6.1. Based on the value of the ith bit of a challenge applied to the ith

stage, one of the NOR gates is selected. By setting the reset signal to low, the
signal propagates in the ring. The final state of the inverter ring is a function
of the gains and the propagation delays of the gates [32]. The response of
the PUF is a binary value, which can be read from a predefined location on
the ring between two stages, see Figure 6.1. When applying a challenge, the
ring may settle at a stable state after an oscillation period. However, for a
specific set of challenges, the ring might stay in the metastable state for an
infinite time, and the oscillation can be observed in the output of the PUF.

As suggested in [32], one might be able to extend the electrical model
of the SRAM circuit in the metastable state and analyze the behavior of
the inverter ring. However, it is a very challenging task due to the heavy
dependence of such model on the physical characteristics of the primitive
that embodies a BR-PUF (for more details see [32]).

64 Chapter 6. PAC Learning of Bistable Ring PUFs

reset

r

c[n]c[n-1]c[2]

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

…

…

c[1]

Figure 6.2: The schematic of a TBR-PUF with n stages. The response of the
PUF is read after the last stage. For a given challenge, the reset signal can be set
low to activate the PUF. After a transient period, the BR-PUF might be settled to
an allowed logical state.

Although the mathematical model of the functionality of a BR-PUF is
unknown, it has been observed that this construction is vulnerable to simple
linear approximations [101]. Hence, the notion of TBR-PUF, as an enhance-
ment to BR-PUFs, has been introduced [101]. Similar to BR-PUFs, a TBR-
PUF consists of n stages (n is an even number), where each stage consists
of two NOR gates. In contrast to BR-PUF, where for a given challenge only
one of the NOR gates in each stage is selected, all 2n gates are chosen to
contribute to the final response of a TBR-PUF. This can be achieved by plac-
ing two multiplexers before and two multiplexers after each stage and having
feedback lines between different stages, see Figure. 6.2. As all the NOR gates
are always in the circuit, the challenge-specific bias can be reduced.

6.3 A Constant Upper Bound on the Number of
Influential Bits

This section provides experimental results supporting the following claim.
The number of influential bits of the Boolean function representing a BR-
PUF is upper bounded by a constant value.

6.3.1 Heuristic Approaches

First, we reflect the fact that our Theorem 2.3.2 is in line with the empirical
results obtained by applying heuristic approaches, reported in [101,121].

In an attempt to assess the security of BR-PUFs, Yamamoto et al. have
implemented BR-PUFs on several FPGAs to analyze the influence of chal-
lenge bits on the respective responses [121]. They have explicitly underlined
the existence of influential bits and found so-called prediction rules. Ta-
ble 6.1 summarizes their results, where for each type of the rules (monomials
of different sizes) we report only the one with the highest estimated response
prediction probability. In addition to providing evidence for the existence

6.3. A Constant Upper Bound on the Number of Influential Bits 65

Table 6.1: Statistical analysis of the 2048 CRPs, given to a 64-bit BR-PUF [121].
The first column shows the rule found in the samples, whereas the second column
indicates the estimated probability of predicting the response.

Rule Est. Pr.
(c1 = 0)→ y = 1 0.684

(c9 = 0) ∧ (c6 = 1)→ y = 1 0.762
(c25 = 0) ∧ (c18 = 1) ∧ (c1 = 0)→ y = 1 0.852

(c27 = 0) ∧ (c25 = 0) ∧ (c18 = 1) ∧ (c6 = 1)→ y = 1 0.932
(c53 = 0) ∧ (c51 = 0) ∧ (c45 = 0) ∧ (c18 = 1) ∧ (c7 = 0)→ y = 1 1

of influential bits, the size of the associated monomials is of particular im-
portance for us. As shown in Table 6.1, their maximum size is surprisingly
small, i.e., only five.

Similarly, the authors of [101] translate the influence of the challenge
bits to the weights needed in artificial neural networks that represent the
challenge-response behavior of BR-PUFs and the TBR-PUFs. They observed
that there is a pattern in these weights, which models the influence of the
challenge bits. It clearly reflects the fact that there exist influential bits
determining the response of the PUF to a given challenge. From the re-
sults presented in [101], we conclude that there exists at least one influential
bit. Nevertheless, the precise number of influential bits has not been further
investigated in [101].

Inspired by the above results from [101, 121], we conduct further experi-
ments. We collect 30000 CRPs from BR-PUFs and TBR-PUFs implemented
on Altera Cyclone IV FPGAs (60 nm technology). In all of our PUF in-
stances at least one influential bit is found, and the maximum number of
influential bits (corresponding to the size of the monomials) is just a con-
stant value in all cases. For the sake of readability, we present here only
the results obtained for one arbitrary PUF instance. Our results shown in
Table 6.2 are not only aligned with the results reported in [101,121], but also
reflect our previous theoretical findings. We could conclude this section as
follows. At least one influential bit determines the response of a BR-PUF
(respectively, TBR-PUF) to a given challenge. However, for the purpose of
our framework their existence is not enough, and we need an upper bound
on the number of influential bits.

Looking more carefully into the three different datasets, namely our own
and the data reported in [101, 121], we observe that the total number of
influential bits is always only a small value.

6.3.2 A Boolean-analytical Approach

The commonly observed phenomenon reported in Section 6.3.1 should be
further discussed from the point of view of Boolean analysis. This analysis
enables us to study the properties of Boolean functions representing BR-
PUFs more carefully, and consequently, to reflect what has been observed

66 Chapter 6. PAC Learning of Bistable Ring PUFs

Table 6.2: Our statistical analysis of the 30000 CRPs, given to a 64-bit BR-PUF.
The first column shows the rule found in the sample, whereas the second column
indicates the estimated probability of predicting the response.

Rule Est. Pr.
(c61 = 1)→ y = 1 0.71
(c11 = 0)→ y = 1 0.72
(c29 = 1)→ y = 1 0.725
(c39 = 0)→ y = 1 0.736
(c23 = 1)→ y = 1 0.74
(c50 = 1)→ y = 1 0.745
(c46 = 1)→ y = 1 0.75

(c61 = 1) ∧ (c23 = 1)→ y = 1 0.82
(c61 = 1) ∧ (c11 = 0)→ y = 1 0.80
(c23 = 1) ∧ (c46 = 1)→ y = 1 0.86
(c39 = 1) ∧ (c50 = 1)→ y = 1 0.85

(c61 = 1) ∧ (c11 = 0) ∧ (c29 = 1)→ y = 1 0.88
(c50 = 1) ∧ (c23 = 1) ∧ (c46 = 1)→ y = 1 0.93

(c50 = 1) ∧ (c23 = 1) ∧ (c46 = 1) ∧ (c39 = 0)→ y = 1 0.97
(c50 = 1) ∧ (c23 = 1) ∧ (c11 = 0) ∧ (c39 = 0) ∧ (c29 = 1)→ y = 1 0.98
(c50 = 1) ∧ (c23 = 1) ∧ (c46 = 1) ∧ (c39 = 0) ∧ (c29 = 1)→ y = 1 0.99

(c50 = 1) ∧ (c23 = 1) ∧ (c46 = 1) ∧ (c39 = 0) ∧ (c29 = 1) ∧ (c11 = 0)→ y = 1 0.994
(c50 = 1) ∧ (c23 = 1) ∧ (c46 = 1) ∧ (c39 = 0) ∧ (c29 = 1) ∧ (c61 = 0)→ y = 1 0.995

(c50 = 1) ∧ (c23 = 1) ∧ (c46 = 1) ∧ (c39 = 0) ∧ (c29 = 1) ∧ (c61 = 1) ∧ (c11 = 0)→ y = 1 1

in practice. As discussed in Section 2.3.3, Kahn’s theorem gives a hint that
there exist at least one bit position with the influence Ω(p log2(n)/n). Al-
though this theorem implies the existence of influential bits, it does quantify
neither the number of influential bit positions nor the average sensitivity (see
Section 2.3.2). Hence, for a family of PUFs, e.g., BR-PUFs, it is necessary
to compute the average sensitivity of a Boolean function representing the re-
spective PUFs. In line with this approach, at first stage, we compute for our
PUFs (implemented on FPGAs) the average sensitivity of their respective
Boolean functions.

As explained in Section 2.3.1, for a Boolean function f , the influence
of a variable and the total average sensitivity can be calculated by employ-
ing Fourier analysis. However, in practice this analysis is computationally
expensive. Instead, it suffices to simply approximate the respective average
sensitivity. This idea has been extensively studied in the learning theory- and
property testing-related literature (see [54], for a survey). Here we describe
how the average sensitivity of a Boolean function, representing a PUF, can
be approximated. We follow the simple and effective algorithm as explained
in [91]. The central idea behind their algorithm is to collect a sufficient num-
ber of random pairs of labeled examples from the Boolean function, which
are chosen uniformly at random. These pairs have the following property:
(c, f(c)) and (c⊕i, f(c⊕i)), i.e., the inputs differ on a single Boolean variable.
In other words, we first draw a pair (c, f(c)) uniformly at random, then by
flipping the ith bit of the challenge and querying the function on this new
challenge c⊕i we collect two pairs (c, f(c)) and (c⊕i, f(c⊕i)). According to the
definition of the influence of the ith variable on our Boolean function, Infi(f),
if we collect a large enough number of such pairs we can approximate the

6.3. A Constant Upper Bound on the Number of Influential Bits 67

Table 6.3: The average sensitivity of n-bit BR-PUFs and the number of CRPs
collected to compute the average sensitivity.

n # CRPs The average sensitivity
4 16 1.25
8 256 1.86
16 65536 2.64
32 80000 3.6
64 160000 5.17

influence Infi(f). Repeating this process for all the challenge bits, we can
approximate the average sensitivity I(f). Clearly, with probability I(f)/n
a pair chosen uniformly at random can be influential, i.e., f(c) ̸= f(c⊕i).
Therefore, it can easily be shown that in order to obtain an ε-approximator
of I(f) the number of queries to the function f is O (p(1/ε)n/I(f)) [91]. Note
that the sample complexity of computing the average sensitivity is irrelevant
to the complexity of our PAC learning framework (see Section 6.4).

To compute the average sensitivity of Boolean functions representing BR-
PUFs, we collect CRPs from these PUFs implemented on Altera Cyclone IV
FPGAs. The pairs of CRPs, namely (c, f(c)) and (c⊕i, f(c⊕i)), are collected
as explained before and given to a simple algorithm computing the average
sensitivity that is implemented in Matlab [77]. The number of CRPs collected
from BR-PUFs has been reported in Table 6.3. For n-bit BR-PUFs, where
4 ≤ n ≤ 16, the complete set of CRPs has been collected, whereas for 32-bit
and 64-bit BR-PUFs only subsets of CRPs have been required. Moreover,
averaging over many instances of our BR-PUFs, we obtain the results shown
in Table 6.3 (TBR-PUFs scored similarly). This striking result leads us to
the following plausible heuristic.
“Constant Average Sensitivity of BR-PUF family” : for all practical
values of n it holds that the average sensitivity of a Boolean function associ-
ated with a physical n-bit PUF from the BR-PUF family is only a constant
value.

Although this heuristic has been partially proved, we provide evidence
supporting our claim, namely, the experimental results and the results of
Boolean analyses. Note that the main cause of small, constant average sen-
sitivity exhibited by the BR-PUF family has not yet been found; otherwise
it could be possible to come up with a mathematical model representing
BR-PUFs.

Finally, some relations between the average sensitivity and the strict
avalanche criterion (SAC) can be recognized, although we believe that the
average sensitivity is a more direct metric to evaluate the security of PUFs
under ML attacks.

68 Chapter 6. PAC Learning of Bistable Ring PUFs

Existence of Influential Bits Weak Learning under a Simple
Hypothesis

Boosting:
Strong PAC Learning of PUFs

Figure 6.3: Our roadmap for proving the PAC learnability of BR-PUF family,
whose mathematical model is unknown

6.4 PAC Learning of PUFs without Prior Knowl-
edge of Their Mathematical Model

When discussing the PAC learnability of PUFs as target concepts, two sce-
narios should be distinguished. First, the precise mathematical model of
the PUF functionality is known, and hence, a hypothesis representation is
known to learn the PUF. This scenario has been considered in several studies,
e.g., [34–36], where different hypothesis representations have been presented
for each PUF family. Second, due to the lack of a precise mathematical
model of the respective PUF functionality, to learn the PUF a more sophis-
ticated approach is required. Therefore, the following question arises: is it
possible to PAC learn a PUF family, even if we have no mathematical model
of the physical functionality of the respective PUF family? We answer this
question at least for the BR-PUF family. Figure 6.3 illustrates our roadmap
for answering this question, more specifically, the steps that are taken to
prove the PAC learnability of the BR-PUF family in the second scenario.
While theoretical insights into the existence of influential bits, i.e., the first
block, have been presented in Section 2.3.3, Section 6.3 provides more spe-
cific results for the BR-PUF family. According to these new insights, here
we eventually prove that BR-PUF family, which lack a precise mathematical
model, can nevertheless be PAC learned (see last two blocks in Figure 6.3).

Weak Learning and Boosting of BR-PUFs

The key idea behind our learning framework is the provable existence of
influential bits for PUFs and the constant average sensitivity of BR-PUFs in
our scenario. These facts are taken into account to prove the existence of
weak learners for the BR-PUF family. We start with Theorem 6.4.1 proved
by Friedgut [30].

Theorem 6.4.1 Every Boolean function f : {0, 1}n → {0,1} with I(f) =
k can be ε-approximated by another Boolean function h depending on
only a constant number of Boolean variables K, where K = exp

(
(2 +√

2ε log2(4k/ε)/k)
k
ε

)
, and ε > 0 is an arbitrary constant.

The implication of this result is that Boolean functions with low average
sensitivity meet a sufficient condition for being close to a junta (see Defi-
nition 2.3.1). In addition to the impact of Theorem 6.4.1 on the machine

6.4. PAC Learning of PUFs without Prior Knowledge of Their
Mathematical Model 69

Table 6.4: The results of our experiments examining whether a BR-PUF belongs
to the class of K-junta functions.

n # CRPs K
4 16 1
8 77 4
16 169 5
32 372 5
64 811 7

learning theory, it has been well acknowledged in the domain of property
testing algorithms. This field of study mainly concerns the problem of de-
termining whether a function f is involved in a specific class of Boolean
functions, for instance the class of K-junta functions (see Section 2.3 for
the definition of K-juntas) [86]. More specifically, by querying the function
f : {0,1}n → {0,1}, an algorithm can make a decision whether f is ε-close
to a function h : {0,1}n → {0,1} that is K-junta, i.e.,

Pr[f(c) ̸= h(c)] ≤ ε.

Among all such algorithms (see [41] for a survey), an interesting algorithm
proposed by Guijarro et al. bridges between two domains, namely PAC
learning and property testing [43]. Their algorithm draws in an adaptive
manner m examples of the function f as follows. First, an example is
drawn randomly, afterwards this example is modified by flipping the vari-
ables one by one, and then querying the function f on the obtained exam-
ples. It has been proved that the number of queries to the function f is
O (K(1/ε log(K/δ) + log n)) [43].

In order to examine whether the Boolean function f representing a BR-
PUF belongs to the class of K-junta functions, we implement the algorithm
proposed in [43] in Matlab [77]. As described above, the algorithm must have
access to the examples, which are not collected in advance, but during the
execution of the algorithm the function is queried frequently. Therefore, a
Python script is developed that serves as an interface between the algorithm
programmed in Matlab and the BR-PUF implemented on Altera Cyclone
IV FPGAs. The FPGA communicates with the Python script through a
Universal Asynchronous Receiver/Transmitter (UART). Matlab codes are
then sent to the FPGA as commands, when executing our Python script. In
our experiments we set δ = 0.001 and ε = 0.49. While the former indicates
that with probability 1 − δ = 0.999 the algorithm delivers a K-junta, the
latter denotes the accuracy of the K-junta approximation the function f .
Note that this setting is tailored to the specific needs of our PAC learner
framework (see Section 6.4). Table 6.4 lists the results of our experiments
for different BR-PUFs.

We explain now how Theorem 6.4.1 in conjunction with the results pre-
sented in Section 6.3 help us to prove the existence of a weak learner (Defi-
nition 2.6.3) for the BR-PUF family.

70 Chapter 6. PAC Learning of Bistable Ring PUFs

Theorem 6.4.2 Every PUF from the BR-PUF family is weakly learnable.

Proof: For an arbitrary PUF from the BR-PUF family, consider its associ-
ated but unknown Boolean function that is denoted by fPUF (i.e., our target
concept). Our weak learning framework has two main steps. In the first step,
we identify a weak approximator for fPUF, which can only guarantee that
the total error of the learner does not exceed 1/2− γ (γ > 0). In the second
phase this approximator is PAC learned (in a strong sense).

The first step relies on the fact that we can upper bound I(fPUF) by some
small constant value k due to the Constant Average Sensitivity heuristic.
Now Theorem 6.4.1 ensures that there is a Boolean function h that is an ε-
approximator of fPUF, which depends only on a constant number of Boolean
variables K since k and ε are constant values, independent of n. However,
note that h depends on an unknown set of K variables. Thus, our Boolean
function h is a so-called K-junta function, cf. [84]. More importantly, for
constant K it is known that the K-junta function can be PAC learned by
a trivial algorithm within O

(
nK

)
steps, cf. [5, 10, 13]. This PAC algorithm

is indeed our algorithm WL that weakly learns fPUF. Carefully choosing
the parameters related to our approximators as well as the PAC learning
algorithm, we ensure that WL returns a 1/2 − γ-approximator for fPUF and
some γ > 0. ■

Applying now the canonical booster introduced in Section 2.6 to our WL
proposed in the proof of Theorem 6.4.2, according to Definition 2.6.4, our
weak learning algorithm can be transformed into an efficient and strong PAC
learning algorithm.

Corollary 6.4.1 BR-PUFs are strong PAC learnable, regardless of any
mathematical model representing their challenge-response behavior.

6.5 Results and Discussion

We have implemented BR and TBR-PUFs with 64 stages on an Altera Cy-
clone IV FPGA, manufactured on a 60 nm technology [3]1.

As discussed and proved in Section 6.4, having influential bits enables us
to define a prediction rule, which can serve as a hypothesis representation ful-
filling the requirements of a weak learner. The algorithm WL proposed in the
proof of the Theorem 6.4.2 relies on the PAC learnability of K-juntas, where
K is a small constant. However, it is known that every efficient algorithm
for learning K-DTs (i.e., the number of leaves is 2K) is an efficient algorithm
for learning K-juntas, see, e.g., [80]. Furthermore, it is known that DLs gen-
eralize K-DTs [90]. Moreover, a monomial Mn,K is a very simple type of a
K-junta, where only the conjunction of the relevant variables is taken into

1Further information on the implementation of these PUFs, the approach applied to
deal with noisy responses and to identify PUFs with a minimum bias can be found in [32]

6.5. Results and Discussion 71

Figure 6.4: The relation between the theoretical upper bound on the error of the
final model returned by Adaboost, the number of iterations, and K. The graph is
plotted for k = 2, ε′ = 0.01, and n = 64. Here, ε′ = 0.01 denotes the error of the
K-junta learner.

account. Therefore, for our experiments we decide to let our weak learning
algorithms deliver DLs, Monomials, and DTs.

To learn the challenge-response behavior of BR- and TBR-PUFs using
these representations, we use the open source machine learning software
Weka [44]. One may argue that more advanced tools might be available,
but here we only aim to demonstrate that publicly accessible, and off-the-
shelf software can be used to launch our proposed attacks. All experiments
are conducted on a MacBook Pro with 2.6 GHz Intel Core i5 processor and
8GB of RAM. To boost the prediction accuracy of the model established
by our weak learners, we apply the Adaptive Boosting (AdaBoost) algo-
rithm [28]; nevertheless, any other boosting framework can be employed as
well. For Adaboost, it is known that the error of the final model delivered
by the boosted algorithm after T iteration is theoretically upper bounded
by

∏T
t=1

√
1− 4γ2, cf. [100]. To provide a better understanding of the rela-

tion between K, the number of iterations, and the theoretical bound on the
error of the final model, a corresponding graph is shown in Figure 6.4. We
stress that this theoretical bound is solely asymptotically (in T) meaningful.
More specifically, as can be seen from the graph, for very few iterations of
the boosting algorithm the error of the final model delivered by the boosted
algorithm is close to 1 (cf. [100, pp. 57-60], and Figure 3.1 in that). However,
it is known that we start from a weak learner, whose error rate is strictly
below 0.5. This can be explained by an Adaboosts’s theoretical worst-case
analysis resulting in a rather loose, asymptotically correct bound [100].

Our experiments in Weka consist of a training phase and a testing phase.
In the training phase, a model is established from the training data based
on the chosen representation. Afterwards, the established model is evaluated

72 Chapter 6. PAC Learning of Bistable Ring PUFs

Table 6.5: Experimental results for learning 64-bit BR-PUF and TBR-PUF, when
m = 15. The accuracy (1 − ε) is reported for three weak learners. The first row
shows the accuracy of the weak learner, whereas the other rows show the accuracy
of the boosted learner.

boosting iterations BR-PUF TBR-PUF
Mn DT DL Mn DT DL

0 (No Boosting) 53.9 % 53.9 % 53.9 % 59.46 % 59.46 % 59.46 %
10 57.95 % 56.29 % 56.29 % 65.67 % 61.32 % 61.32 %
20 57.35 % 62.86 % 62.86 % 65.42 % 60.39 % 60.39 %
30 58.04 % 63.34 % 63.34 % 67.03 % 62.74 % 62.74 %
40 60.66 % 64.77 % 64.77 % 67.03 % 63.36 % 63.36 %
50 60.94 % 64.03 % 64.03 % 67.03 % 65.27 % 65.27 %

Table 6.6: Experimental results for m = 100 (the same setting as for the Ta-
ble 6.5).

boosting iterations BR-PUF TBR-PUF
Mn DT DL Mn DT DL

0 (No Boosting) 54.48 % 66.79 % 67.24 % 65.18 % 72.29 % 74.84 %
10 67.12 % 74.25 % 76.99 % 76.96 % 79.22 % 81.36 %
20 77.53 % 80.53 % 80.89 % 82.05 % 85.73 % 86.71 %
30 81.32 % 83.13 % 83.14 % 84.93 % 88.34 % 89.4 %
40 82.65 % 83.91 % 84.6 % 88.11 % 89.67 % 90.22 %
50 82.65 % 85.62 % 85.5 % 90.05 % 89.69 % 91.58 %

on the test set, which contains an unseen subset of CRPs. Accordingly, the
relevant question is about the minimum number of CRPs required by the
weak learner to deliver the model. As discussed in Section 2.6, this minimum
number is determined by not only the accuracy and the confidence levels, but
also the Vapnik-Chervonenkis dimension of our target concept class F that
is the class of K-juntas. In [2] it has been proved that the lower bound on
the number of examples needed by an algorithm to PAC learn a K-junta is

Ω
(
1/ε ln 1/δ +K ln 2 lnn+ 2K

)
.

Regarding the results of our experiments, presented in Section 6.3.1, if a
single bit of the challenges determines the response of our 64-bit BR-PUF,
the accuracy of the approximator is better than 50%. More precisely, the
accuracy of a 1-junta (K = 1) as an ε-approximator of the Boolean function
representing our BR-PUF is better than 50%. In other words, a 1-junta
can be an appropriate representation, when weakly PAC learn our BR-PUF.
Therefore, in order to compute the minimum number of examples needed by
our weak learner, as an example we can set: K = 1, ε = 0.49, and δ = 0.01.
In this setting, the minimum number of examples is 15.

We evaluate this in practice by conducting experiments, where the size
of the training set is m = 15, whereas the test set contains 30000 CRPs.
The corresponding results presented in Table 6.5. As can be seen in this
table, for all the representations (DLs, Monomials, and DTs), the accuracy
of the models exceeds 50% as required for weak learners. Moreover, without
boosting the accuracy of the models delivered by the weak learner is the
same. This can be explained by the fact that giving solely 15 examples to

6.5. Results and Discussion 73

Table 6.7: Experimental results for m = 1000 (the same setting as for the Ta-
ble 6.5 and Table 6.6).

boosting iterations BR-PUF TBR-PUF
Mn DT DL Mn DT DL

0 (No Boosting) 63.73 % 75.69 % 84.59 % 64.9 % 75.6 % 84.34 %
10 81.09 % 85.49 % 94.2 % 79.9 % 87.12 % 95.05 %
20 89.12 % 91.08 % 96.64 % 88.28 % 91.57 % 97.89 %
30 93.24 % 93.24 % 97.50 % 93.15 % 93.9 % 98.75 %
40 95.69 % 94.28 % 97.99 % 96.73 % 95.05 % 99.13 %
50 96.80 % 95.04 % 98.32 % 98.4 % 95.96 % 99.37 %

the algorithm, the simple model delivered by it is a primitive rule that can
be represented by each of the three representations.

For both BR-PUFs and TBR-PUFs, in each row of Table 6.5, the accuracy
of DTs and DLs delivered by the algorithm is the same. This means that the
rules found by the algorithm can be represented by DTs and DLs, where they
share the same properties. By applying Adaboost the accuracy of the model
is improved, however even after 50 iterations, the accuracy is not sufficiently
high. This is due to the model delivered by the weak learner that is not
expressive enough as the number of examples given to the algorithm is quite
limited. Another interesting phenomenon that can be seen in a set of results
listed in Table 6.5 is related to a fluctuation in the accuracy of the boosted
model on its different iterations. This is a known phenomenon related to
the accuracy of the model obtained after each iteration as well as how the
models obtained in previous rounds are combined to obtain the final model,
see Algorithm 1 (for more details see [100]).

We repeat our experiments for the case that the size of the training
sets are m = 100 and m = 1000 (the size of the test set is 30000 CRPs).
These experiments demonstrate that the weak learning of our test set always
results in the delivery of a model with more than 50% accuracy as shown in
the first rows of Table 6.6 and Table 6.7. By boosting the respective models
with AdaBoost, the accuracy is dramatically increased, see Table 6.6 and
Table 6.7. It can be observed that after 50 iterations of Adaboost applied
to the weak model generated from 100 CRPs, the prediction accuracy of the
boosted model is increased to more than 80% for all three representations.
By increasing the number of samples to 1000 CRPs, the prediction accuracy
is further increased up to 98.32 % for learning the BR-PUFs, and 99.37 % for
learning the TBR-PUFs under DL representations. It is interesting to observe
that the simplest representation class, i.e., Monomials clearly presents the
greatest advantage given by the boosting technique. As explained in [100]
this is due to avoiding any overfitting tendency.

75

Chapter 7

Follow-up Work

“ [...] our [hybrid] attacks have only cubic complex-
ity. This is a drastic improvement over the expo-
nential complexity of state-of-the-art, pure modeling
attacks. ”

[97]

This section gives a brief introduction to our work derived from and built
upon the results of the PAC learning framework established in this thesis.
The complete description of these work and their results have been first
published in [31,110]. Here we merely focus on the key goals of these studies
and methodologies applied to achieve them.

Our studies presented in [31, 110] share the following common features.
First, they investigate the feasibility of launching a so-called hybrid attack
against XOR Arbiter PUFs, where we combine the photonic emission analysis
with either machine learning techniques or a lattice basis reduction attack.
Although being costly, photonic emission analysis is a promising solution
leading to a complete and linear characterization of XOR Arbiter PUFs, as
shown by [109]. Second, in both attack scenarios, no limit on the number
of arbiter chains has been assumed, and hence, the proposed attacks can be
launched against XOR Arbiter PUFs with a large number of arbiter chains
(e.g., more than 16). Following sections explain the principle behind these
attacks in brief.

7.1 Lattice Basis Reduction Attack

As discussed in Chapter 4, XOR Arbiter PUFs are subject to ML attacks [35,
95]. The number of arbiter chains can be a limiting factor for this type of
attacks, hence, the attack is effective only against XOR Arbiter PUFs with
a small number of arbiter chains. Moreover, it has also been shown that
when the number of arbiter chains exceeds this limited number, additional
side channel analyses can be combined with an ML attack to compromise the

76 Chapter 7. Follow-up Work

security of an XOR Arbiter PUF [97]. Otherwise, as proved in Chap 4 and
previously observed in practice (e.g., see [114]), the number of CRPs, and
consequently the time, required to launch an ML attack increases drastically.

On the other hand, it has been demonstrated that Arbiter as well as XOR
Arbiter PUFs can be physically characterized by performing a high resolution
temporal photonic emission analysis [46, 109]. This attack does not require
the response of the PUF, and the number of required measurements is only
linear in the number of stages. Nevertheless, the attacker needs to apply the
desired challenge. Similar to ML attacks, it is clear that when the attacker
cannot rely on the direct control of the challenges (e.g., controlled PUF [37],
Slender PUF [76], and Recyclable PUFs [55]), this attack would obviously
fail.

On the basis of the above facts and considerations, the work presented
in [31] aims to prove that an increase in the number of arbiter chains is
not a silver bullet, but rather a very limited step towards improving the
robustness of XOR Arbiter PUFs against attacks. In this regard, we present
a novel mathematical proof of the vulnerability of legacy and controlled XOR
Arbiter PUFs to lattice basis reduction attacks. Specifically, we demonstrate
how the lattice basis reduction attack proposed by Nguyen et al. [82] can be
extended and combined with a photonic side channel analysis to compromise
the security of XOR Arbiter PUFs.

Thanks to the method developed in a series of work by Tajik et al. (see,
e.g., [108,109]), our methodology of collecting physically measured data from
an XOR Arbiter PUF is nowadays very well accepted. This data is fed into
the algorithm that runs lattice basis reduction attack against the correspond-
ing XOR Arbiter PUF, represented by a hidden sub set sum problem [16].
As a result, our attack can disclose the hidden challenges applied to a con-
trolled XOR Arbiter PUF, composed of an arbitrary, large number of arbiter
chains, and thus break the security of this PUF family without knowing the
challenges or their corresponding responses.

In a nutshell, we demonstrate that neither an increase in the number of
arbiter chains nor the limitation of the access to challenges and responses
qualifies as a secure countermeasure against our hybrid attack.

7.2 Laser Fault Injection Attack

One of the main goals of the study presented in [110] is to simplify a modeling
attack against XOR Arbiter PUFs featuring a large number of arbiter chains.
To achieve this goal, our study discusses how an attack can take advantage
of results achieved by mounting semi-invasive attacks, e.g., [109, 111]. In
this study, we rely on the fact that different hardware primitives, specially
PUF circuits, can be identified and localized on programmable logic devices
(PLDs). After localizing a PUF circuit, it is shown how the building blocks

7.2. Laser Fault Injection Attack 77

of the PUF can be manipulated by inducing faults into the logic cells to
change the configuration of the PUF.

As shown in Chapter 4, the learning complexity of an XOR Arbiter PUF
is exponential in the number of arbiter chains. We demonstrate how deacti-
vating multiple arbiter chains in an XOR Arbiter PUF enables the attacker
to come up with a model of the PUF in a polynomial time, regardless of the
number of chains. To this end, we propose to induce a fault into all the arbiter
chains, except an arbiter chain which has to be learned. More precisely, when
having access to the response of an arbiter chain of the XOR Arbiter PUF,
that chain can be PAC learned separately in polynomial time, e.g., following
the procedure in Chapter 3. By obtaining a model of the challenge-response
behavior of each and every chain individually, the response of the XOR Ar-
biter PUF to an unseen challenge can be predicted, i.e., the security of the
XOR Arbiter PUF can be compromised. Accordingly, the maximum number
of CRPs required by our hybrid attack is polynomial in the number of ar-
biter chains, which is significantly improved in comparison to the pure PAC
learning attack.

The main conclusion that can be made from the results of the studies
introduced in this chapter is that countermeasures against ML attacks cannot
ensure the security of PUFs against hybrid attacks. To launch such a hybrid
attack, we make a set of assumptions regarding the access of an attacker
to equipment employed to launch semi-invasive attacks. One can argue that
such devices and equipment are not easily accessible, and therefore, launching
such attacks seems infeasible in practice. We should stress that the equipment
used in our studies can be rented, or even assembled by the attacker, as
demonstrated in [108].

Another important aspect of the studies presented in [31,110] is the prac-
tical application of PAC learning. Although being originally pure theoretical,
PAC learning can be combined with an experimental analysis, i.e., a photonic
emission analysis in our case, to improve the efficiency and effectiveness of
the PAC learning framework.

79

Chapter 8

Conclusion and Future Work

“ Know your enemy and know yourself, find naught
in fear for hundred battles. Know yourself, but not
your enemy, find level of loss and victory. Know thy
enemy, but not yourself, wallow in defeat every time.
”

The Art of War, Sun Tzu

Nowadays, PUFs are among the main building blocks of the security mea-
sures, which are considered necessary to not only mitigate attacks against
ICs but also remedy the shortcomings of the corresponding traditional coun-
termeasures. However, after more than a decade of the invention of PUFs,
the design of a PUF fulfilling the necessary, and natural requirements is still
a challenging task. Being unpredictable and unclonable are involved in these
requirements, albeit being unsatisfied as demonstrated by the results of var-
ious attacks. ML attacks provide evidence supporting that an adversary can
launch a cost-efficient attack to predict the response of the PUF to an unseen,
arbitrarily chosen challenge. Although several studies focus on the security
assessment of PUFs by mounting ML attacks, to the best of our knowledge,
our study is the first work that addresses the issue with the final model de-
livery after the learning phase. In this regard, this thesis proposes a generic
PAC learning framework, which has been successfully applied to known, and
widely accepted families of PUFs, namely, Arbiter, XOR Arbiter, RO-, and
BR-PUFs. More specifically, our framework clearly states how these PUF
families can be learned, for given levels of accuracy and confidence. Interest-
ingly enough, the maximum number of CRPs required to mount our attack
can be calculated beforehand.

Two main steps have been taken within our framework. First, by ex-
ploring the inherent physical characteristics of the PUFs mentioned above,
fit-for-purpose mathematical representations of them are established. We
demonstrate that in order to adequately reflect the physical behavior of these
primitives, it is crucial to explore the inherent physical properties of the PUFs

80 Chapter 8. Conclusion and Future Work

and translate them into mathematical representations. To this end, we em-
ploy methods and techniques that have been known and widely accepted
within ML community. Second, to learn the PUFs under the appropriate
representations, polynomial time ML algorithms have been introduced. In
addition to the ML algorithms used to learn the challenge-response behavior
of the PUFs, we apply a set of algorithms that have been originally adopted
as property testing algorithms. Such algorithms can be employed to evalu-
ate the security of PUFs and serve as a toolbox helping PUF designers and
manufacturers with the identification of best practices.

Clearly, our ultimate goal is to provide a theoretical proof of the facts,
which have been verified only empirically so far in the literature. Therefore,
occasionally, no experimental proof-of-concept for our attack against some
PUF families is presented. However, in such cases, for the sake of complete-
ness, we have attempted to compare our theoretical finding with the results
of experiments performed previously in the literature. We have shown that
these results match the results of our rigorous mathematical approaches. Fur-
thermore, in some attack scenarios, the feasibility and effectiveness of our
machine learning attacks have also been evaluated by conducting extensive
experiments on the PUFs implemented on real-world hardware platforms,
similar to ones used in the most relevant literature.

Finally, we would like to stress that, when interpreting and applying the
results of this study, the following issues should be taken into account.

The difference between PAC learning and empirical ML ap-
proaches. The key premise underlying a PAC learning framework is the
guarantee of the final model delivery for prescribed levels of accuracy and
confidence. In other words, when applying an empirical ML approach, none
of the accuracy and the confidence levels can be defined beforehand. More-
over, the number of examples required to run an empirical algorithm is not
known before the learning phase. These are in contrast to a PAC learning
algorithm, where not only the accuracy and the confidence levels can be de-
fined before running the ML algorithms, but also the number of examples
required to achieve these levels can be computed.

Infeasibility of PAC learning and its consequences. Infeasibility
of applying a PAC learning framework may refer to the lack of a polynomial-
sized hypothesis representing a function, and/or existence of no polynomial
time algorithm to learn a target concept or its associated representation.
In both cases, empirical algorithms can be run to learn the target concept.
Nevertheless, the accuracy and the confidence levels cannot be defined prior
to launching the attack, and the number of CRPs required to be collected
should be estimated in a trial and error process.

Generalization of the results of this study to other PUFs. Al-
though it is tempting to generalize the results achieved in this thesis, these
results should be interpreted carefully. In particular, the results of PAC

Chapter 8. Conclusion and Future Work 81

learning approach applied to learn BR-PUF family cannot be generalized to
other PUF families, even though it needs no mathematical model. As dis-
cussed in Chapter 6, the essence of PAC learnability of the BR-PUF family
is the constant average sensitivity of these PUFs. To be precise, the feasibil-
ity and effectiveness of our attack depend heavily on the number of Boolean
variables (K), which have an influence on the response of the PUF. More
specifically, the limit on the feasibility of our attack has been determined by
the algorithms that have been already developed in the literature to (weakly)
PAC learn a K-junta. From a learning theory perspective, the problem of
learning a K-junta in polynomial time is an open problem. Nonetheless, for
constant K it is known that the K-junta function can be PAC learned by a
trivial algorithm within O

(
nK

)
steps, cf. [5, 10, 13]. Hence, when K is not

constant, the time complexity of the learning algorithm imposes a limit on
the efficiency of our attack.

Last but not least, although our PAC learning framework has its own
novelty value, we feel that the precise, mathematical description of the char-
acteristics of PUFs studied in this thesis is the most important aspects of
our work. We believe that this description can help to fill the gap between
the mathematical design of cryptographic primitives and the design of PUFs
in the real world. As evidence thereof, the Siegenthaler Theorem and the
Fourier analysis that are well-known and widely used in modern cryptogra-
phy may provide special insights into the physical design of secure PUFs in
the future. Likewise, this thesis paves the way towards developing a more
systematic approach to assessing the security of PUFs through providing
proofs of learnability, originated in ML theory.

Future Research: The following outlines the possible, further research
directions in the area of security assessment of PUFs.

• Another important aspect of our PAC learning framework that should
be considered is how it deals with noisy CRPs. This problem has
been partially addressed in Chapter 4, namely only for XOR Arbiter
PUFs. In spite of that, this problem has been well studied in the ML
community. More specifically, PAC learning and boosting algorithms
can tolerate noise (see, e.g., [17, 53]). In the future, we will indeed
investigate this important issue.

• As a result of attacks against PUFs, a paradigm shift from standalone
PUFs (i.e., PUFs being not composed of a combination of some PUFs)
to more sophisticated, composite PUF schemes has been aimed. As a
prime example, Arbiter PUF manufacturers have been forced to put
effort into the design and development of countermeasures including
XOR Arbiter PUFs as an effective technical action. As discussed in
Chapter 4, the security of XOR Arbiter PUFs with a limited number
of arbiter chains can be broken by launching ML attacks. On the other

82 Chapter 8. Conclusion and Future Work

hand, XOR Arbiter PUFs composed of a large number of arbiter chains
are susceptible to hybrid attacks (i.e., the combination of ML and semi-
invasive attacks). Therefore, it seems crucial and interesting to come
up with new PUF schemes, composed of PUFs that are combined by
mean of other combinatorial functions instead of XOR function, and
their resilience against ML attacks can be proved.

• To evaluate the security of PUFs against ML attacks, we have intro-
duced new notions and metrics, first introduced in Boolean analysis and
property testing domains of study. Moreover, Fourier analysis has been
conducted to reveal some hidden properties of the Boolean functions
representing PUFs. These can contribute to the development of a new
benchmarking system, which can include not only the previous metrics
(e.g., robustness, uniqueness, etc.) but also new metrics originated in
the Boolean analysis, for instance, the average sensitivity.

83

Acronyms

AdaBoost Adaptive Boosting
BR Bistable Ring
CRP Challenge-Response Pair
DFA Deterministic Finite Automata
DL Decision List
DT Decision Tree
EM ElectroMagnetic
FPGA Field-Programmable Gate Array
GHz Gigahertz
IC Integrated Circuit
IoT Internet of Things
IP intellectual property
LR Logistic Regression
LTF Linear Threshold Function
ps Picosecond
ML Machine Learning
NIST National Institute of Standard and Technology
nm Nanometer
PAC Probably Approximately Correct
PDF Probability Density Function
PLD Programmable Logic Devices
PUF Physically Unclonable Function
RO Ring Oscillator
RoT Root of Trust
SAC Strict Avalanche Criterion
TBR Twisted Bistable Ring
UART Universal Asynchronous Receiver/Transmitter (UART)
XOR Exclusive-or

85

List of Symbols and Operators

αi,j the realizations of the partial sums Ai at the outputs of the
ith stage of an arbiter PUF, where j = 1 for upper and j = 2
for lower output. α ∈ R

αi,j an integer-valued delay associated with αi,j

βi,j with 1 ≤ i ≤ 4 and 1 ≤ j ≤ 2, the realizations of the
variables Bi in an arbiter PUF

βi,j an integer-valued delay associated with βi,j

γ the precision of the arbiter terminating the chain in an ar-
biter PUF; furthermore, it denotes the error of a weak PAC
learning algorithm

δ the confidence level of a PAC learning algorithm

δ(·, ·) the transition function associated with a DFA

∆ the delay difference at the outputs of the last stage in an
arbiter PUF

ε the accuracy level of a PAC learning algorithm

η noise rate

ηb upper bound on the noise rate η

λ the empty string of length |λ| = 0

µi the mean of the random variables Bi

φ with 1 ≤ i ≤ n and 0 ≤ j ≤ 1, the delay difference at the
output of the ith stage

Φ the set of all Φ’s

Φ the input vector of a Perceptron; when learning XOR Arbiter
PUF, it is the encoded challenge vector

χS(c) a Fourier character that equals (−1)
∑

i∈S ci , when c ∈ F2

86

σ the minimum distance of any example from P

σi the deviation of the random variables Bi

Σ the alphabet Σ = {0,1}

Σ∗ the set of all strings over Σ

ω the weight vector used to generate the output of the Percep-
tron

Ω(·) big Omega notation

Ai the random variable corresponding to the total delay be-
tween the enable point and the outputs of the ith stage of an
arbiter PUF

Bi the random variable related to the delay within the ith stage
of an arbiter PUF

c a challenge applied to a PUF; a Boolean string

ci the ith bit of the challenge, or the ith variable of a Boolean
string

ci ith challenge vector corresponding to the ith CRP collected
from a PUF

c⊕i obtained by flipping the ith bit of the challenge

C the set of the challenges that can be applied to a PUF

Cn the set of all binary strings with n bits

di deviation of an example given to the Perceptron algorithm

deg(f) the degree of the Fourier expansion of a function f

degF2
(f) the degree of the F2-polynomial representation of a Boolean

function f

D D =
√∑r

i=1 d
2
i ; furthermore, in PAC model, it refers to an

arbitrary distribution

EX the Oracle

EXη noisy Oracle

F2 the finite field of size 2. Here we mainly refer to F2 = {0,1}

fi a term of maximum size k in a k-DL

f̂(S) the Fourier coefficient of the Boolean function f , calculated
on character χS

87

F the accepting states of a DFA so that F ⊆ Q; additionally, in
PAC model, it denotes a target concept class: F = ∪n≥1Fn

Fn a target concept over the instance space Cn

h a hypothesis

H a hypothesis class

I(f) the average sensitivity of a Boolean function f

Infi(f) the influence of a variable i on the Boolean function f

K a constant number

L a decision list

L(A) the set of strings accepted by a DFA A

m an integer value corresponding to the maximum of the sta-
tistically relevant delay values inside the stages of an Arbiter
PUF; moreover, it denotes the number of examples

M an integer value corresponding to the maximum of the sta-
tistically relevant delay values in an Arbiter PUF

n number of bits, or Boolean variables corresponding to a chal-
lenge

N the set of all natural numbers

N the number of ring oscillator in an RO-PUF

Nmis the upper bound of the mistakes of the Perceptron algorithm

O(·) big O notation

p some probability

p(·) some polynomial

Pn a Perceptron with n inputs and single output

P the hyperplane bounding the half-spaces S0 and S1

q a state in a DFA

q0 the initial state of a DFA

Q the set of states of a DFA

R the maximum Euclidean length of a vector, e.g., Φ

S some set such that S ⊆ {1, . . . , n}; moreover, in PAC model,
it denotes a set of examples

88

S0 and S1 two half-spaces; the sets containing positive and negative
examples, respectively.

u the solution vector with ∥u∥ = 1

ui parity of challenge bits

U a set of challenge response pairs

vi a value in the set {0,1}

Vn denotes the set of Boolean attributes or variables

y a response of a PUF

Y the set of the responses of a PUF

Operators

Φ · ω the inner product of vectors, e.g., ω and Φ

¬ the complement operator

∥ · ∥ denotes the Euclidean length of a vector

! factorial

∈ element of a set

∈D chosen from a set according to a distribution

∋ S ∋ i is equivalent to i ∈ S

⊆ a subset of, equals to

∩ set intersection

⊕ logical exclusive-or (XOR)

⊗ tensor product

∨ logical OR

∧ logical AND

∗ convolution operator

| · | the cardinality operator; moreover, the length of a string

⌈·⌉ rounds a number to the nearest integers greater than or equal
to that

Ec∈U [·] the expectation over uniformly chosen random examples c

ln natural logarithm

89

log2 logarithm base 2

V Cdim(·) Vapnik-Chervonenkis dimension

size(·) the mapping that associates a natural number size(f) with
a target concept f ∈ F

sign(z) for a real-valued number z ∈ R, sign(z) = 1, if z ≥ 0;
otherwise sign(z) = −1

91

List of Figures

1.1 A simplified IC Supply Chain 3
1.2 PUFs as an RoT . 4
1.3 Our general roadmap for proving the learnability of known,

and widely used families of PUFs. 6

2.1 An example of a DL. 14
2.2 The schematic of a Perceptron. 18

3.1 Schematic of an Arbiter-PUF. 26
3.2 The probability distribution of the delays in an Arbiter PUF 27
3.3 A DFA representing an Arbiter PUF 29
3.4 The shrunk DFA representing an Arbiter PUF. 30
3.5 Block diagram of the PAC learning algorithm. 31

4.1 Schematic of an XOR Arbiter PUF. 40
4.2 Schematic of an Arbiter PUF. 41
4.3 Block diagram of the PAC learning framework applied to learn

an XOR Arbiter PUF. 42
4.4 Upper bound of the number of CRPs required to PAC learn

an XOR Arbiter PUF. 44

5.1 An RO-PUF with N ring-oscillators 54
5.2 An example of the upper bound of the number of CRPs re-

quired to PAC learn an RO-PUF 57
5.3 Results of launching our PAC learning attack against RO-PUFs. 59

6.1 The schematic of a BR-PUF with n stages. 63
6.2 The schematic of a TBR-PUF with n stages. 64
6.3 The roadmap of our framework for PAC learning of BR-PUF

family. 68
6.4 The relation between the theoretical upper bound on the error

of the final model returned by Adaboost. 71

93

List of Tables

6.1 Statistical analysis of the 2048 CRPs, given to a 64-bit BR-
PUF [121]. 65

6.2 Statistical analysis of the 30000 CRPs, given to a 64-bit BR-
PUF. 66

6.3 The average sensitivity of n-bit BR-PUFs and the number of
CRPs collected to compute that. 67

6.4 The results of K-junta test on a BR-PUF. 69
6.5 Experimental results for learning 64-bit BR-PUF and TBR-

PUF, when m = 15. 72
6.6 Experimental results for m = 100 (the same setting as for the

Table 6.5). 72
6.7 Experimental results for m = 1000 (the same setting as for

the Table 6.5 and Table 6.6). 73

95

List of Algorithms

1 The skeleton of a Boosting algorithms. 21
2 The PAC learning algorithm applied to learn an Arbiter PUF 33
3 The algorithm for PAC learning of a k-DL as proposed by [90] 56

97

Bibliography

[1] AG, I.T.: Spotlight on Embedded Security Keeping Up with
the Internet of Things. http://www.infineon.com/dgdl/
Infineon-Spolight_on_embedded_security-ABR-v10_15-EN.pdf?
fileId=5546d462503812bb0150a397d7663251 [accessed 22 February
2017] (2015)

[2] Almuallim, H., Dietterich, T.G.: Learning with Many Irrelevant Fea-
tures. In: Proc. of the Ninth National Conf. on Artificial Intelligence
(1991)

[3] Altera: Cyclone IV Device Handbook. Altera Corporation, San Jose
(2014)

[4] Angluin, D.: Learning Regular Sets from Queries and Counterexam-
ples. Information and computation 75(2), 87–106 (1987)

[5] Angluin, D.: Queries and Concept Learning. Machine Learning 2(4),
319–342 (1988)

[6] Angluin, D., Laird, P.: Learning from Noisy Examples. Machine Learn-
ing 2(4), 343–370 (1988)

[7] Anthony, M.: Computational Learning Theory. Cambridge University
Press (1997)

[8] Armknecht, F., Maes, R., Sadeghi, A., Standaert, O.X., Wachsmann,
C.: A Formalization of the Security Features of Physical Functions. In:
Security and Privacy (SP), 2011 IEEE Symp. on. pp. 397–412 (2011)

[9] Armknecht, F., Moriyama, D., Sadeghi, A.R., Yung, M.: Towards a
Unified Security Model for Physically Unclonable Functions. In: Topics
in Cryptology-CT-RSA 2016: The Cryptographers’ Track at the RSA
Conf. vol. 9610, p. 271. Springer (2016)

[10] Arvind, V., Köbler, J., Lindner, W.: Parameterized Learnability of
K-juntas and Related Problems. In: Algorithmic Learning Theory. pp.
120–134. Springer (2007)

http://www.infineon.com/dgdl/Infineon-Spolight_on_embedded_security-ABR-v10_15-EN.pdf?fileId=5546d462503812bb0150a397d7663251
http://www.infineon.com/dgdl/Infineon-Spolight_on_embedded_security-ABR-v10_15-EN.pdf?fileId=5546d462503812bb0150a397d7663251
http://www.infineon.com/dgdl/Infineon-Spolight_on_embedded_security-ABR-v10_15-EN.pdf?fileId=5546d462503812bb0150a397d7663251

98 BIBLIOGRAPHY

[11] Becker, G.T.: The Gap Between Promise and Reality: On the In-
security of XOR arbiter PUFs. In: International Workshop on Cryp-
tographic Hardware and Embedded Systems. pp. 535–555. Springer
(2015)

[12] Blum, A., Frieze, A., Kannan, R., Vempala, S.: A Polynomial-time
Algorithm for Learning Noisy Linear Threshold Functions. In: Foun-
dations of Computer Science, 1996. Proc.., 37th Annual Symposium
on. pp. 330–338. IEEE (1996)

[13] Blum, A.L., Langley, P.: Selection of Relevant Features and Examples
in Machine Learning. Artificial Intelligence 97(1), 245–271 (1997)

[14] Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.: Classifying
Learnable Geometric Concepts with the Vapnik-Chervonenkis Dimen-
sion. In: Proc. of the eighteenth annual ACM Symp. on Theory of
computing. pp. 273–282. ACM (1986)

[15] Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Learn-
ability and the Vapnik-Chervonenkis Dimension. Journal of the ACM
36(4), 929–965 (1989)

[16] Boyko, V., Peinado, M., Venkatesan, R.: Speeding up Discrete Log and
Factoring Based Schemes via Precomputations. pp. 221–235. Springer
(1998)

[17] Bshouty, N.H., Jackson, J.C., Tamon, C.: Uniform-Distribution At-
tribute Noise Learnability. Information and Computation 187(2), 277–
290 (2003)

[18] Bylander, T.: Learning Linear Threshold Functions in the Presence of
Classification Noise. In: Proc. of the seventh annual Conf. on Compu-
tational learning theory. pp. 340–347 (1994)

[19] Chen, L., Franklin, J., Regenscheid, A.: Guidelines on Hardware-
Rooted Security in Mobile Devices (Draft). NIST Special Publication
800(164), 10–11 (2012)

[20] Chen, Q., Csaba, G., Lugli, P., Schlichtmann, U., Rührmair, U.: The
Bistable Ring PUF: A New Architecture for Strong Physical Unclon-
able Functions. In: Hardware-Oriented Security and Trust (HOST),
2011 IEEE Intl. Symp. on. pp. 134–141. IEEE (2011)

[21] Coombs, R.: Securing the Future of Authentication with ARM
TrustZone-based Trusted Execution Environment and Fast Identity
Online (FIDO). ARM White Paper (2015)

BIBLIOGRAPHY 99

[22] Delvaux, J., Gu, D., Schellekens, D., Verbauwhede, I.: Secure
Lightweight Entity Authentication with Strong PUFs: Mission Impos-
sible? In: Cryptographic Hardware and Embedded Systems–CHES
2014, pp. 451–475. Springer (2014)

[23] Delvaux, J., Verbauwhede, I.: Fault Injection Modeling Attacks
on 65nm Arbiter and RO Sum PUFs via Environmental Changes.
Tech. rep., Cryptology ePrint Archive: Report 2013/619, 2013,
https://eprint. iacr. org/2013/619 (2013)

[24] Delvaux, J., Verbauwhede, I.: Side Channel Modeling Attacks on 65nm
Arbiter PUFs Exploiting CMOS Device Noise. In: Hardware-Oriented
Security and Trust (HOST), 2013 IEEE Intl. Symp. on. pp. 137–142
(2013)

[25] Ehrenfeucht, A., Haussler, D., Kearns, M., Valiant, L.: A General
Lower Bound on the Number of Examples Needed for Learning. Infor-
mation and Computation 82(3), 247–261 (1989)

[26] Fischer, P., Simon, H.U.: On Learning Ring-Sum-Expansions. SIAM
Journal on Computing 21(1), 181–192 (1992)

[27] Freund, Y.: Boosting a Weak Learning Algorithm by Majority. Infor-
mation and Computation 121(2), 256–285 (1995)

[28] Freund, Y., Schapire, R.E.: A Decision-Theoretic Generalization of
On-line Learning and an Application to Boosting. Journal of Comp.
and System Sciences 55(1), 119–139 (1997)

[29] Freund, Y., Schapire, R.E.: Large Margin Classification Using the Per-
ceptron Algorithm. Machine learning 37(3), 277–296 (1999)

[30] Friedgut, E.: Boolean Functions with Low Average Sensitivity Depend
on Few Coordinates. Combinatorica 18(1), 27–35 (1998)

[31] Ganji, F., Krämer, J., Seifert, J.P., Tajik, S.: Lattice Basis Reduction
Attack against Physically Unclonable Functions. In: Proc. of the 22nd
ACM Conf. on Computer and communications security. ACM (2015)

[32] Ganji, F., Tajik, S., Fäßler, F., Seifert, J.P.: Strong Machine Learn-
ing Attack against PUFs with No Mathematical Model. In: Intl Conf.
on Cryptographic Hardware and Embedded Systems–CHES 2016. pp.
391–411. Springer (2016)

[33] Ganji, F., Tajik, S., Fäßler, F., Seifert, J.P.: Having No Mathematical
Model May Not Secure PUFs. Journal of Cryptographic Engineering
(2017)

100 BIBLIOGRAPHY

[34] Ganji, F., Tajik, S., Seifert, J.P.: Let Me Prove it to You: RO PUFs
are Provably Learnable, The 18th Annual Intl Conf. on Information
Security and Cryptology (2015)

[35] Ganji, F., Tajik, S., Seifert, J.P.: Why Attackers Win: On the Learn-
ability of XOR Arbiter PUFs. In: Trust and Trustworthy Computing,
pp. 22–39. Springer (2015)

[36] Ganji, F., Tajik, S., Seifert, J.P.: PAC Learning of Arbiter PUFs.
Journal of Cryptographic Engineering Special Section On Proofs 2014,
1–10 (2016)

[37] Gassend, B., Clarke, D., Van Dijk, M., Devadas, S.: Controlled Phys-
ical Random Functions. In: Comp. Security Applications Conf., 2002.
Proc.. 18th Annual. pp. 149–160 (2002)

[38] Gassend, B., Clarke, D., Van Dijk, M., Devadas, S.: Silicon Physical
Random Functions. In: Proc. of the 9th ACM Conf. on Comp. and
Communications Security. pp. 148–160 (2002)

[39] Gassend, B., Lim, D., Clarke, D., Van Dijk, M., Devadas, S.: Iden-
tification and Authentication of Integrated Circuits. Concurrency and
Computation: Practice and Experience 16(11), 1077–1098 (2004)

[40] Gierlichs, B., Poschmann, A.Y.: Introduction to the CHES 2016 Spe-
cial Issue. Journal of Cryptographic Engineering pp. 1–2 (2017)

[41] Goldreich, O.: Property Testing: Current Research and Surveys, vol.
6390. Springer (2010)

[42] Guajardo, J., Kumar, S.S., Schrijen, G.J., Tuyls, P.: FPGA Intrinsic
PUFs and their Use for IP Protection. In: Cryptographic Hardware
and Embedded Systems–CHES 2007, pp. 63–80. Springer (2007)

[43] Guijarro, D., Tarui, J., Tsukiji, T.: Finding Relevant Variables in PAC
Model with Membership Queries. In: Intl Conf. on Algorithmic Learn-
ing Theory. pp. 313–322. Springer (1999)

[44] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Wit-
ten, I.H.: The WEKA Data Mining Software: An Update. ACM
SIGKDD Explorations Newsletter 11(1), 10–18 (2009)

[45] Hammouri, G., Öztürk, E., Sunar, B.: A Tamper-proof and
Lightweight Authentication Scheme. Pervasive and mobile computing
4(6), 807–818 (2008)

[46] Helfmeier, C., Boit, C., Nedospasov, D., Seifert, J.P.: Cloning Physi-
cally Unclonable Functions. In: Hardware-Oriented Security and Trust
(HOST), 2013 IEEE Intl. Symp. on. pp. 1–6 (2013)

BIBLIOGRAPHY 101

[47] Helfmeier, C., Nedospasov, D., Tarnovsky, C., Krissler, J.S., Boit, C.,
Seifert, J.P.: Breaking and Entering through the Silicon. In: Proc. of
the 2013 ACM SIGSAC Conf. on Comp. & Communications Security.
pp. 733–744. ACM (2013)

[48] Helmbold, D., Sloan, R., Warmuth, M.K.: Learning Integer Lattices.
SIAM Journal on Computing 21(2), 240–266 (1992)

[49] Herder, C., Ren, L., van Dijk, M., Yu, M.D., Devadas, S.: Trapdoor
Computational Fuzzy Extractors and Stateless Cryptographically-
Secure Physical Unclonable Functions. IEEE Transactions on Depend-
able and Secure Computing (2016)

[50] Herder, C., Yu, M.D., Koushanfar, F., Devadas, S.: Physical Unclon-
able Functions and Applications: A Tutorial. Proceedings of the IEEE
102(8), 1126–1141 (2014)

[51] Hopcroft, J.E., Motwani, R., Ullman, J.D.: Automata Theory, Lan-
guages, and Computation. Intl. Edition 24 (2006)

[52] Kahn, J., Kalai, G., Linial, N.: The Influence of Variables on Boolean
Functions. In: Foundations of Computer Science, 1988., 29th Annual
Symposium on. pp. 68–80. IEEE (1988)

[53] Kalai, A., Servedio, R.A.: Boosting in the Presence of Noise. In: Pro-
ceedings of the thirty-fifth annual ACM symposium on Theory of com-
puting. pp. 195–205. ACM (2003)

[54] Kalai, G., Safra, S.: Threshold Phenomena and Influence: Perspec-
tives from Mathematics, Comp. Science, and Economics. Computa-
tional Complexity and Statistical Physics, St. Fe Inst. Studies in the
Science of Complexity pp. 25–60 (2006)

[55] Katzenbeisser, S., Kocabaş, Ü., Van Der Leest, V., Sadeghi, A.R.,
Schrijen, G.J., Wachsmann, C.: Recyclable PUFs: Logically Recon-
figurable PUFs. Journal of Cryptographic Engineering 1(3), 177–186
(2011)

[56] Kearns, M.J., Vazirani, U.V.: An Introduction to Computational
Learning Theory. MIT press (1994)

[57] Khardon, R., Wachman, G.: Noise Tolerant Variants of the Perceptron
Algorithm. The journal of machine learning research 8, 227–248 (2007)

[58] Kömmerling, O., Kuhn, M.: Design Principles for Tamper-resistant
Security Processors. In: USENIX Workshop on Smartcard Technology
(1999)

102 BIBLIOGRAPHY

[59] Koushanfar, F.: Hardware Metering: A Survey. In: Introduction to
Hardware Security and Trust, pp. 103–122. Springer (2012)

[60] Koushanfar, F., Karri, R.: Can the SHIELD Protect Our Integrated
Circuits? In: Circuits and Systems (MWSCAS), 2014 IEEE 57th In-
ternational Midwest Symp. on. pp. 350–353 (2014)

[61] Lee, J.W., Lim, D., Gassend, B., Suh, G.E., Van Dijk, M., Devadas,
S.: A Technique to Build a Secret Key in Integrated Circuits for Iden-
tification and Authentication Applications. In: VLSI Circuits, 2004.
Digest of Technical Papers. 2004 Symp. on. pp. 176–179 (2004)

[62] Lim, D.: Extracting Secret Keys from Integrated Circuits, Master the-
sis, Massachusetts Institute of Technology (2004)

[63] Lim, D., Lee, J.W., Gassend, B., Suh, G.E., Van Dijk, M., Devadas,
S.: Extracting Secret Keys from Integrated Circuits. Very Large Scale
Integration (VLSI) Systems, IEEE Trans. on 13(10), 1200–1205 (2005)

[64] Linial, N., Mansour, Y., Rivest, R.L.: Results on Learnability and the
Vapnik-Chervonenkis Dimension. Information and Computation 90(1),
33–49 (1991)

[65] Littlestone, N.: Learning Quickly When Irrelevant Attributes Abound:
A New Linear-Threshold Algorithm. Machine learning 2(4), 285–318
(1988)

[66] Littlestone, N.: From On-line to Batch Learning. In: Proc. of the
second annual workshop on Computational learning theory. pp. 269–
284 (1989)

[67] Maes, R.: Physically Unclonable Functions: Constructions, Properties
and Applications. Springer Berlin Heidelberg (2013)

[68] Mahmoud, A., Rührmair, U., Majzoobi, M., Koushanfar, F.: Com-
bined Modeling and Side Channel Attacks on Strong PUFs. Tech. rep.,
Cryptology ePrint Archive: Report 2013/632, 2013, https://eprint.
iacr. org/2013/632 (2013)

[69] Maiti, A., Casarona, J., McHale, L., Schaumont, P.: A Large Scale
Characterization of RO-PUF. In: Hardware-Oriented Security and
Trust (HOST), 2010 IEEE Intrl. Symp. on. pp. 94–99 (2010)

[70] Maiti, A., Kim, I., Schaumont, P.: A Robust Physical Unclonable
Function with Enhanced Challenge-Response Set. Information Foren-
sics and Security, IEEE Transactions on 7(1), 333–345 (2012)

BIBLIOGRAPHY 103

[71] Maiti, A., Schaumont, P.: Improving the Quality of a Physical Un-
clonable Function Using Configurable Ring Oscillators. In: Field Pro-
grammable Logic and Applications, 2009. FPL 2009. Intrl. Conf. on.
pp. 703–707. IEEE (2009)

[72] Majzoobi, M., Dyer, E., Elnably, A., Koushanfar, F.: Rapid FPGA
Delay Characterization Using Clock Synthesis and Sparse Sampling.
In: Test Conf. (ITC), 2010 IEEE Intl. pp. 1–10 (2010)

[73] Majzoobi, M., Koushanfar, F., Devadas, S.: FPGA PUF Using
Programmable Delay lines. In: Information Forensics and Security
(WIFS), 2010 IEEE Intl. Workshop on. pp. 1–6 (2010)

[74] Majzoobi, M., Koushanfar, F., Potkonjak, M.: Lightweight Secure
PUFs. In: Proc. of the 2008 IEEE/ACM Intl. Conf. on Comp.-Aided
Design. pp. 670–673 (2008)

[75] Majzoobi, M., Koushanfar, F., Potkonjak, M.: Techniques for Design
and Implementation of Secure Reconfigurable PUFs. ACM Trans. on
Reconfigurable Technology and Systems (TRETS) 2 (2009)

[76] Majzoobi, M., Rostami, M., Koushanfar, F., Wallach, D.S., Devadas,
S.: Slender PUF Protocol: A Lightweight, Robust, and Secure Authen-
tication by Substring Matching. In: Security and Privacy Workshops
(SPW), IEEE Symp. on. pp. 33–44 (2012)

[77] MATLAB: Version 9.0.0.341360 (R2016a). The MathWorks Inc., Nat-
ick, Massachusetts (2016)

[78] Merli, D., Schuster, D., Stumpf, F., Sigl, G.: Side-channel Analysis of
PUFs and Fuzzy Extractors. In: Trust and Trustworthy Computing,
pp. 33–47. Springer (2011)

[79] Mitchell, T.M.: Machine Learning (McGraw-Hill Intl Editions Com-
puter Science Series). McGraw-Hill (1997)

[80] Mossel, E., O’Donnell, R., Servedio, R.A.: Learning Functions of k
Relevant Variables. Journal of Comp. and System Sciences 69(3), 421–
434 (2004)

[81] Mugali, K.C., Patil, M.M.: A Novel Technique of Configurable Ring
Oscillator for Physical Unclonable Functions. Intrl. Journal of Com-
puter Engineering and Applications 9(1) (2015)

[82] Nguyen, P., Stern, J.: The Hardness of the Hidden Subset Sum Prob-
lem and Its Cryptographic Implications. In: Advances in Cryptol-
ogy—CRYPTO’99. pp. 31–46. Springer (1999)

104 BIBLIOGRAPHY

[83] Nguyen, P.H., Sahoo, D.P., Chakraborty, R.S., Mukhopadhyay, D.:
Efficient Attacks on Robust Ring Oscillator PUF with Enhanced
Challenge-Response Set. In: Proc. of the 2015 Design, Automation
& Test in Europe Conf. & Exhibition. pp. 641–646. EDA Consortium
(2015)

[84] O’Donnell, R.: Analysis of Boolean Functions. Cambridge University
Press (2014)

[85] Papoulis, A., Pillai, S.U.: Probability, Random Variables, and Stochas-
tic Processes. Tata McGraw-Hill Education (2002)

[86] Parnas, M., Ron, D., Samorodnitsky, A.: Proclaiming Dictators and
Juntas or Testing Boolean Formulae. In: Approximation, Randomiza-
tion, and Combinatorial Optimization: Algorithms and Techniques,
pp. 273–285. Springer (2001)

[87] Parno, B., McCune, J.M., Perrig, A.: Bootstrapping Trust in Modern
Computers. Springer Science & Business Media (2011)

[88] Parusiński, M., Shariati, S., Kamel, D., Xavier-Standaert, F.: Strong
PUFs and their (Physical) Unpredictability: A Case Study with Power
PUFs. In: Proc. of the Workshop on Embedded Systems Security. p. 5
(2013)

[89] Rioul, O., Solé, P., Guilley, S., Danger, J.L.: On the Entropy of Physi-
cally Unclonable Functions. In: Information Theory (ISIT), 2016 IEEE
International Symposium on. pp. 2928–2932 (2016)

[90] Rivest, R.L.: Learning Decision Lists. Machine learning 2(3), 229–246
(1987)

[91] Ron, D., Rubinfeld, R., Safra, M., Samorodnitsky, A., Weinstein, O.:
Approximating the Influence of Monotone Boolean Functions in O(

√
n)

Query Complexity. ACM Trans. on Computation Theory (TOCT) 4(4),
11 (2012)

[92] Rostami, M., Koushanfar, F., Karri, R.: A Primer on Hardware Secu-
rity: Models, Methods, and Metrics. Proceedings of the IEEE 102(8),
1283–1295 (2014)

[93] Rostami, M., Majzoobi, M., Koushanfar, F., Wallach, D., Devadas,
S.: Robust and Reverse-Engineering Resilient PUF Authentication and
Key-Exchange by Substring Matching. Emerging Topics in Computing,
IEEE Trans. on 2(1), 37–49 (2014)

[94] Rührmair, U., Busch, H., Katzenbeisser, S.: Strong PUFs: Models,
Constructions, and Security Proofs. In: Towards hardware-intrinsic
security, pp. 79–96. Springer (2010)

BIBLIOGRAPHY 105

[95] Rührmair, U., Sehnke, F., Sölter, J., Dror, G., Devadas, S., Schmidhu-
ber, J.: Modeling Attacks on Physical Unclonable Functions. In: Proc.
of the 17th ACM Conf. on Comp. and Communications Security. pp.
237–249 (2010)

[96] Rührmair, U., Sölter, J., Sehnke, F.: On the Foundations of Physi-
cal Unclonable Functions. IACR Cryptology ePrint Archive 2009, 277
(2009)

[97] Rührmair, U., Xu, X., Sölter, J., Mahmoud, A., Majzoobi, M.,
Koushanfar, F., Burleson, W.: Efficient Power and Timing Side Chan-
nels for Physical Unclonable Functions. In: Cryptographic Hardware
and Embedded Systems–CHES 2014, pp. 476–492. Springer (2014)

[98] Saha, I., Jeldi, R.R., Chakraborty, R.S.: Model Building Attacks
on Physically Unclonable Functions Using Genetic Programming. In:
Hardware-Oriented Security and Trust (HOST), 2013 IEEE Intrl.
Symp. on. pp. 41–44. IEEE (2013)

[99] Schapire, R.E.: The Strength of Weak Learnability. Machine learning
5(2), 197–227 (1990)

[100] Schapire, R.E., Freund, Y.: Boosting: Foundations and Algorithms.
MIT press (2012)

[101] Schuster, D., Hesselbarth, R.: Evaluation of Bistable Ring PUFs Using
Single Layer Neural Networks. In: Trust and Trustworthy Computing,
pp. 101–109. Springer (2014)

[102] Secure Embedded Systems (SES) Lab at Virginia Tech: On-
chip Variability Data for PUFs, http://rijndael.ece.vt.edu/puf/
artifacts.html

[103] Servedio, R.A., Tan, L.Y., Wright, J.: Adaptivity Helps for Testing
Juntas. In: Proc. of the 30th Conf. on Computational Complexity. pp.
264–279 (2015)

[104] Servedio, R.A.: Efficient Algorithms in Computational Learning The-
ory. Harvard University (2001)

[105] Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning:
From Theory to Algorithms. Cambridge University Press (2014)

[106] Siegenthaler, T.: Correlation-Immunity of Nonlinear Combining Func-
tions for Cryptographic Applications (Corresp.). Information Theory,
IEEE Transactions on 30(5), 776–780 (1984)

http://rijndael.ece.vt.edu/puf/artifacts.html
http://rijndael.ece.vt.edu/puf/artifacts.html

106 BIBLIOGRAPHY

[107] Suh, G.E., Devadas, S.: Physical Unclonable Functions for Device Au-
thentication and Secret Key Generation. In: Proc. of the 44th annual
Design Automation Conf. pp. 9–14 (2007)

[108] Tajik, S., Dietz, E., Frohmann, S., Dittrich, H., Nedospasov, D.,
Helfmeier, C., Seifert, J.P., Boit, C., Hübers, H.W.: Photonic Side-
channel Analysis of Arbiter PUFs. Journal of Cryptology 30(2), 550–
571 (2017)

[109] Tajik, S., Dietz, E., Frohmann, S., Seifert, J.P., Nedospasov, D.,
Helfmeier, C., Boit, C., Dittrich, H.: Physical Characterization of
Arbiter PUFs. In: Cryptographic Hardware and Embedded Systems–
CHES 2014, pp. 493–509. Springer (2014)

[110] Tajik, S., Lohrke, H., Ganji, F., Seifert, J.P., Boit, C.: Laser Fault
Attack on Physically Unclonable Functions. In: 2015 Workshop on
Fault Diagnosis and Tolerance in Cryptography (FDTC). pp. 85–96
(2015)

[111] Tajik, S., Nedospasov, D., Helfmeier, C., Seifert, J.P., Boit, C.: Emis-
sion Analysis of Hardware Implementations. In: Digital System Design
(DSD), 17th Euromicro Conf. on. pp. 528–534. IEEE (2014)

[112] Tarnovsky, C.: Deconstructing a ‘Secure’ Processor. Talk at Black Hat
Federal 2010 . http://blackhat.com/presentations/bh-dc-10/
Tarnovsky_Chris/BlackHat-DC-2010-Tarnovsky-DASP-slides.pdf
[accessed 25 February 2017] (2015)

[113] Tehranipoor, M.M., Guin, U., Bhunia, S.: Invasion of the Hardware
Snatchers: Cloned Electronics Pollute the Market. IEEE Spectrum
(2017)

[114] Tobisch, J., Becker, G.T.: On the Scaling of Machine Learning Attacks
on PUFs with Application to Noise Bifurcation. https://www.emsec.
rub.de/research/publications/ScalingPUFCameraReady/ [accessed
18 May 2015] (2015)

[115] Torrance, R., James, D.: The State-of-the-Art in IC Reverse Engineer-
ing. In: Cryptographic Hardware and Embedded Systems-CHES 2009,
pp. 363–381. Springer (2009)

[116] Van Tilborg, H.C., Jajodia, S.: Encyclopedia of Cryptography and
Security. Springer Science & Business Media (2014)

[117] Vapnik, V.: Estimation of Dependences Based on Empirical Data:
Springer Series in Statistics (Springer Series in Statistics). Springer-
Verlag New York, Inc. (1982)

http://blackhat.com/presentations/bh-dc-10/Tarnovsky_Chris/BlackHat-DC-2010-Tarnovsky-DASP-slides.pdf
http://blackhat.com/presentations/bh-dc-10/Tarnovsky_Chris/BlackHat-DC-2010-Tarnovsky-DASP-slides.pdf
https://www.emsec.rub.de/research/publications/ScalingPUFCameraReady/
https://www.emsec.rub.de/research/publications/ScalingPUFCameraReady/

BIBLIOGRAPHY 107

[118] Vapnik, V., Chervonenkis, A.Y.: On the Uniform Convergence of Rela-
tive Frequencies of Events to their Probabilities. Theory of Probability
and its Applications 16(2), 264 (1971)

[119] Verbauwhede, I., Schaumont, P.: Design Methods for Security and
Trust. In: Design, Automation & Test in Europe Conference & Exhi-
bition, 2007. DATE’07. pp. 1–6 (2007)

[120] Xu, X., Rührmair, U., Holcomb, D.E., Burleson, W.P.: Security Eval-
uation and Enhancement of Bistable Ring PUFs. In: Radio Frequency
Identification, pp. 3–16. Springer (2015)

[121] Yamamoto, D., Takenaka, M., Sakiyama, K., Torii, N.: Security Eval-
uation of Bistable Ring PUFs on FPGAs Using Differential and Linear
Analysis. In: Comp. Science and Information Systems (FedCSIS), 2014
Federated Conf. on. pp. 911–918 (2014)

[122] Yu, M.D.M., Devadas, S.: Recombination of Physical Unclonable Func-
tions (2010)

[123] Yu, M.D.M., Devadas, S.: Pervasive, Dynamic Authentication of Phys-
ical Items. Queue 14(6), 70 (2016)

[124] Yu, M.D.M., Hiller, M., Delvaux, J., Sowell, R., Devadas, S., Ver-
bauwhede, I.: A Lockdown Technique to Prevent Machine Learning
on PUFs for Lightweight Authentication. IEEE Transactions on Multi-
Scale Computing Systems 2(3), 146–159 (2016)

[125] Yu, M.D.M., M’Raihi, D., Sowell, R., Devadas, S.: Lightweight and
Secure PUF Key Storage Using Limits of Machine Learning. In: Cryp-
tographic Hardware and Embedded Systems–CHES 2011, pp. 358–373.
Springer (2011)

[126] Yu, M.D.M., Sowell, R., Singh, A., M’Raihi, D., Devadas, S.: Perfor-
mance Metrics and Empirical Results of a PUF Cryptographic Key
Generation ASIC. In: Hardware-Oriented Security and Trust (HOST),
2012 IEEE International Symposium on. pp. 108–115. IEEE (2012)

[127] Yu, M.D.M., Verbauwhede, I., Devadas, S., M’Raihi, D.: A Noise Bifur-
cation Architecture for Linear Additive Physical Functions. Hardware-
Oriented Security and Trust (HOST), 2014 IEEE Intl. Symp. on pp.
124–129 (2014)

	Title Page
	Zusammenfassung
	Abstract
	List of Publications Related to this Thesis
	Contents
	1 Introduction
	1.1 Motivation
	1.1.1 Hardware Root of Trust
	1.1.2 Fragile Security of ICs

	1.2 Physically Unclonable Functions
	1.3 Thesis Statement
	1.3.1 Problem Statement
	1.3.2 Our Attack Model
	1.3.3 Thesis Contributions

	1.4 Outline of the Thesis

	2 Definitions and Preliminaries
	2.1 Notations
	2.2 PUFs
	2.3 Boolean Functions
	2.3.1 Linearity of Boolean Functions
	2.3.2 Average Sensitivity of Boolean Functions
	2.3.3 Non-linearity of PUFs over F2 and the Existence of Influential Bits

	2.4 Linear Threshold Functions
	2.5 Regular Language and Principles of DFAs
	2.6 Probably Approximately Correct Model

	3 PAC Learning of Arbiter PUFs
	3.1 Introduction
	3.2 Representing Arbiter PUFs by DFAs
	3.2.1 Discretization Process of Delay Values
	3.2.2 Building a DFA Representing an Arbiter PUF

	3.3 PAC Learning of Arbiter PUFs
	3.4 Comparison with Related Work
	3.5 Practical Considerations
	3.5.1 The Important Role of M
	3.5.2 Dealing with the Metastable Condition

	4 PAC Learning of XOR Arbiter PUFs
	4.1 Introduction
	4.2 LTF Representation of XOR Arbiter PUFs
	4.3 PAC Learning of XOR Arbiter PUFs
	4.4 PAC Learning of Noisy XOR Arbiter PUFs
	4.5 Discussion
	4.5.1 Theoretical Considerations
	4.5.2 Practical Considerations

	5 PAC Learning of Ring Oscillator PUFs
	5.1 Introduction
	5.2 DL Representation of RO-PUFs
	5.3 PAC Learnability of the 2-DL Representing the RO-PUF
	5.4 Results and Discussion

	6 PAC Learning of Bistable Ring PUFs
	6.1 Introduction
	6.2 Architecture of the BR-PUF Family
	6.3 A Constant Upper Bound on the Number of Influential Bits
	6.3.1 Heuristic Approaches
	6.3.2 A Boolean-analytical Approach

	6.4 PAC Learning of PUFs without Prior Knowledge of Their Mathematical Model
	6.5 Results and Discussion

	7 Follow-up Work
	7.1 Lattice Basis Reduction Attack
	7.2 Laser Fault Injection Attack

	8 Conclusion and Future Work
	Acronyms
	List of Symbols
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

