
Fachgebiet Programmierung eingebetteter Systeme
Fakultät IV Elektrotechnik und Informatik

Technische Universität Berlin

A Framework for the Automatic Verification of

Discrete-Time MATLAB Simulink Models using Boogie

vorgelegt von

Robert Reicherdt,

Master of Science in Computer Science

geb. in Erlabrunn

von der Fakultät IV – Elektrotechnik und Informatik

der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften

– Dr.-Ing. –

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Oliver Brock
Technische Universität Berlin

Gutachterin: Prof. Dr. Sabine Glesner
Technische Universität Berlin

Gutachter: Prof. Dr. Holger Giese
Hasso-Plattner-Institut, Universität Potsdam

Gutachter: Prof. Dr. Odej Kao
Technische Universität Berlin

Tag der wissenschaftlichen Aussprache: 10. Juli 2015

Berlin, 2015

2

Abstract

Matlab/Simulink is a widely used industrial tool for the development
of embedded systems, especially for the development of embedded controller
software in automotive industries. Since such embedded systems are often
deployed in safety critical areas where an error may lead to severe injuries
and even to death of persons, comprehensive and complete quality assurance
measures are required for ensuring their correctness in all possible cases. Still,
incomplete techniques like testing are favored over safe formal techniques in
practice. Although there exist some formal verification approaches for Mat-
lab/Simulink models that can guarantee correctness, they are either poorly
automated or suffer from scalability issues.

To overcome this problem, we present an approach for a highly automated
verification framework for Matlab/Simulink models that enables the formal
verification of discrete-time controller models. Our main idea is to use induc-
tive verification techniques in combination with an automatic extraction of
verification goals for a number of important run-time error classes to provide
an automatic verification flow. Furthermore, as automatic model reduction
technique, we present a slicing approach for Matlab/Simulink. With that,
we increase the scalability by dividing a possibly complex verification task into
a number of less complex subtasks.

To enable the automatic verification of Matlab/Simulink models, we
present a formal semantics for discrete-time models based on a mapping of
the informally defined sequential simulation semantic into the formally well
defined intermediate verification language Boogie2. Together with automati-
cally generated invariants and verification goals that are automatically weaved
into the formal model, this mapping enables the verification of the models
using the Boogie verification framework and inductive verification techniques.
To achieve a high degree of automation, we also support inductive verifica-
tion over more than one simulation step (k-induction), which allows for weaker
invariants that can be generated automatically at the price of decreased scal-
ability. To overcome scalability issues for k-induction, we use our novel slicing
technique for Matlab/Simulink models to automatically reduce a model to
those blocks that are relevant for a (possible) error at a particular block. Fur-
thermore, we propose a process for the efficient use of our verification and
slicing techniques.

To show the practical applicability of our framework, we have implemented
our approach as the MeMo tool suite and applied our verification process
to two industrial case studies. With that, we demonstrate the performance
and the capability to automatically verify a given model for the absence of
important run-time errors with our verification framework for discrete-time
Matlab/Simulink models.

4

Zusammenfassung

Matlab/Simulink ist ein weit verbreitetes Werkzeug für die Entwicklung
von eingebetteten Systemen, welches vor allem in der Automobilindustrie zur
Entwicklung von Steuerungssystemen benutzt wird. Da solche Systeme häufig
in sicherheitskritischen Umgebungen eingesetzt werden, wo eine Fehlfunktion
zu schweren Verletzungen und Todesfällen führen kann, werden umfangreiche
und vollständige Qualitätssicherungsmaßnahmen benötigt um die Korrektheit
der Systeme für alle möglichen Ausführungen sicher zu stellen. Trotzdem wer-
den unvollständige Techniken wie Testen in der Praxis gegenüber den sicheren
formalen Methoden bevorzugt. Obwohl es einige formale Verifikationstechni-
ken für Matlab/Simulink gibt, sind diese entweder kaum automatisiert oder
skalieren schlecht.

Um dieses Problem zu lösen stellen wir in dieser Arbeit einen Ansatz für
eine hochautomatisierte Verifikationsumgebung für Matlab/Simulink Model-
le vor, mit der zeitdiskrete Modelle für Steuerungen formal verifiziert werden
können. Die Kernidee in unserem Ansatz ist hierbei eine Kombination aus in-
duktiven Verifikationstechniken und dem automatischen Extrahieren von Veri-
fikationszielen für bestimmte Laufzeitfehler verwenden, um einen automatisier-
ten Verifikationsfluss zu erreichen. Außerdem stellen wir einen Ansatz für das
Slicing von Matlab/Simulink Modellen vor, der als automatisches Verfahren
zur Reduzierung der Modellkomplexität verwendet wird. Mit diesem erreichen
wir eine bessere Skalierbarkeit, da wir eine komplexe Verifikationsaufgabe in
eine Anzahl von weniger komplexen Teilaufgaben aufspalten können.

Um die automatische Verifikation von Matlab/Simulink Modellen zu er-
möglichen, stellen wir eine formale Semantik für zeitdiskrete Modelle vor, die
auf einer Abbildung der informellen, sequenziellen Simulationssemantik in die
formale Verifikationszwischensprache Boogie2 basiert. Zusammen mit automa-
tisch erzeugten und in das formale Modell eingewobenen Invarianten und Ve-
rifikationszielen, erlaubt dies die Verifikation der Modelle mit dem Boogie-
Framework und induktiven Verifikationstechniken. Um einen hohen Grad der
Automatisierung zu erreichen, unterstützen wir auch induktive Verifikations-
techniken über mehr als einen Simulationsschritt (k-Induktion), was zwar die
Verwendung von schwächeren, automatisch generierten Invarianten erlaubt,
aber gleichzeitig die Skalierbarkeit reduziert. Um dem entgegenzuwirken, nut-
zen wir unser neuartiges Slicing-Verfahren für Matlab/Simulink Modelle um
diese automatisch auf genau die Blöcke zu reduzieren, die für einen (möglichen)
Fehler an einem bestimmten Block relevant sind. Darüber hinaus schlagen wir
einen Prozess für die effiziente Benutzung unserer Verifikations- und Slicing-
Techniken vor.

Um die praktische Anwendbarkeit unserer Verifikationsumgebung zu zei-
gen, haben wir diese in unserem MeMo-Werkzeug implementiert und unseren
Prozess auf zwei industrielle Fallbeispiele angewendet. Damit haben wir die
Performanz und die Fähigkeit, die Abwesenheit von wichtigen Laufzeitfehlern
in einem gegebenen Modell automatisch zu verifizieren, nachgewiesen.

6

Danksagung

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaft-
licher Mitarbeiter am Fachgebiet ”Programmierung eingebetteter Systeme”.
Daher möchte ich mich an dieser Stelle herzlich für die Betreuung meiner Ar-
beit durch Prof. Dr. Sabine Glesner bedanken. Sie hat mir die Möglichkeit
gegeben in einem praxisnahen Bereich zu promovieren und mir den Freiraum
gelassen, eigene Schwerpunkte zu setzen und hat durch ihre Bereitschaft zur
Diskussion und ihre wertvollen Anmerkungen zum Gelingen dieser Arbeit bei-
getragen. Weiterhin möchte ich Herrn Prof. Dr. Giese und Herrn Prof. Dr. Kao
für die Durchsicht und Begutachtung meiner Arbeit danken. Nicht zuletzt gilt
mein Dank unseren Industriepartnern, der Berner und Mattner Systemtechnik
GmbH und der Model Engineering Solutions GmbH, die mir durch Bereit-
stellung der Anwendungsfälle und Fallstudien geholfen haben, Kriterien und
Anknüpfungspunkte für meine Arbeit abzuleiten.

Natürlich möchte ich mich auch bei den Kolleginnen und Kollegen in un-
serem Fachgebiet für die angenehme Atmosphäre und ihre Anmerkungen zu
meiner Arbeit bedanken. Besonders bedanken möchte ich mich hierbei bei Dr.
Paula Herber und Dr. Thomas Göthel. Beide haben mich nicht nur während
meiner Promotionszeit durch ihre Bereitschaft zu wissenschaftlichen Diskussio-
nen unterstützt, sondern auch während der Fertigstellung durch wiederholtes
Korrekturlesen und hilfreiches Feedback maßgeblich zum Gelingen dieser Ar-
beit beigetragen haben.

Weiterhin möchte ich meiner Familie und meinen Freunden danken für ihre
Unterstützung während der ganzen Zeit. Mein größter Dank gilt hierbei meiner
Freundin Kerstin Knebel, die mir in der heißen Phase den Rücken freigehalten
und mich immer unterstützt hat. Natürlich möchte ich auch meinen Eltern,
Sabine und Lutz Reicherdt danken, die mich auch vor und während meines
Studiums sowie meiner Promotionszeit unterstützt haben. Schließlich möchte
ich auch meinem Sohn Nils danken, der mich zum einen durch seine anstehende
Geburt zu Höchstleistungen angespornt hat, mir aber gleichzeitig genug Zeit
gegeben hat, die Arbeit meinen Ansprüchen genügend fertigzustellen.

Robert Reicherdt, Dezember 2015

8

Contents

1 Introduction 13

1.1 Problem . 13

1.2 Objectives . 14

1.3 Proposed Solution . 15

1.4 Motivation . 16

1.5 Main Contributions . 17

1.6 Context of this Work . 18

1.7 Overview of this Thesis . 18

2 Background 21

2.1 Model Driven Development and Engineering 21

2.1.1 Model Driven Engineering 21

2.1.2 Model Driven Development 23

2.1.3 Summary . 24

2.2 MATLAB/Simulink . 25

2.2.1 Simulink . 26

2.2.2 Model Elements and Simulation Mechanics 27

2.2.3 Simulation . 30

2.2.4 Summary . 32

2.3 Program Verification . 33

2.3.1 Verification of the Correctness of Programs 33

2.3.2 Automatic and Inductive Verification with Weakest Pre-

conditions . 38

2.3.3 Verification with Automatic Theorem Proving 45

2.3.4 Summary . 47

2.4 The Boogie Verification Framework 47

2.4.1 Boogie2 . 48

2.4.2 The Boogie Verifier . 52

2.4.3 Summary . 53

9

10 Contents

2.5 Slicing . 53

2.5.1 The Program Dependence Graph 54

2.5.2 Static Slicing with Program Dependence Graphs 56

2.6 Summary . 57

3 Related Work 59

3.1 Verification of Simulink Models 59

3.1.1 Verification of Hybrid Simulink Models 59

3.1.2 Verification of Discrete Simulink Models 60

3.2 Slicing of Simulink Models . 62

3.2.1 Slicing of State-based Models 63

3.2.2 Slicing of Synchronous Models 65

3.3 Summary . 65

4 Automatic Verification Approach 67

4.1 Verification Idea . 68

4.2 Verification Framework Architecture 69

4.3 Verification Process . 71

4.4 Summary . 72

5 Slicing of Simulink Models 73

5.1 Assumptions . 74

5.2 Dependence Analysis . 75

5.2.1 Data Flow and Data Dependence 75

5.2.2 Control Flow in Simulink 76

5.2.3 Conditional Execution Contexts and Control Dependence 79

5.2.4 Calculation of Control Dependence 81

5.2.5 Summary . 86

5.3 Slicing of Simulink Models . 86

5.3.1 Building the Dependence Graph 86

5.3.2 Computing the Simulink Slice 87

5.3.3 Example . 88

5.4 Increasing the Precision of Slices 90

5.4.1 Routing-aware Dependence Analysis 91

5.4.2 Routing-aware Dependence Graph 95

5.5 Summary . 97

6 Transformation of Discrete-Time Simulink Models to Boogie 99

6.1 Overview . 99

6.2 Assumptions . 101

Contents 11

6.3 A Formal Model for Simulink 103

6.3.1 Modeling Blocks . 105

6.3.2 Modeling Signals . 107

6.3.3 Block States and Intermediate Results 107

6.3.4 Initialization . 107

6.3.5 Modeling Control Flow 108

6.3.6 Data Types . 108

6.4 Calculation of the Control Flow Graph 109

6.4.1 How Simulink calculates the Sorted Order 110

6.4.2 Calculating the Sorted Order 110

6.5 Mapping of Simulink Blocks to Boogie2 112

6.5.1 Sources Block Set . 112

6.5.2 Math Operations Block Set 114

6.5.3 Logic and Bit Operations 117

6.5.4 Ports & Subsystems Block Set 118

6.5.5 Signal Routing Block Set 122

6.5.6 Discrete Block Set . 125

6.5.7 User-defined Functions Block Set 127

6.5.8 Sinks Block Set . 129

6.5.9 Implicit Casts and Mechanisms for Multiple Block Types 130

6.6 Summary . 132

7 Automatic Inductive Verification of Simulink Models 133

7.1 Automatic Generation of Formal Specifications 133

7.1.1 Inductive Invariant Checking 134

7.1.2 k-Induction . 136

7.2 Slicing for k-Induction . 138

7.3 Automatic Generation of Verification Goals 139

7.3.1 Encoding Over- and Underflow Checks 141

7.3.2 Encoding Division-by-zero Checks 141

7.3.3 Encoding Range Violation Checks 142

7.3.4 Other Verification Goals 143

7.4 Loop Invariants . 143

7.4.1 Automatically Generated Invariants 144

7.4.2 Manually Specified Invariants 145

7.5 Summary . 146

8 Implementation 147

8.1 The MeMo Framework . 147

8.2 Parsing Engine . 148

8.2.1 Parsing of Model and Inlining of References 149

12 Contents

8.2.2 Enhancement with Run-time Information 149

8.2.3 Preprocessing . 150

8.2.4 Persisting the Parsed Model 151

8.3 Slicing Engine . 151

8.4 Translation Engine . 151

8.4.1 BlockTranslatorFactory 152

8.4.2 ArithmeticsMapping . 152

8.4.3 BoogieModel . 152

8.5 Verification Engine . 153

8.6 Graphical User Interface of the MeMo Tool 153

8.7 Summary . 154

9 Evaluation 155

9.1 Case Studies . 156

9.1.1 TestModel Design . 156

9.1.2 Odometer . 157

9.1.3 Distance Warning (DistWarn) 158

9.1.4 Additional Models for Slicing Evaluation 159

9.2 Slicing Evaluation . 161

9.2.1 Evaluation of Our Basic Slicing Technique 162

9.2.2 Evaluation of the Routing-aware Slicing Technique . . . 163

9.3 Verification Evaluation . 164

9.3.1 TestModel . 165

9.3.2 Odometer . 168

9.3.3 DistWarn . 169

9.4 Summary . 171

10 Conclusion and Future Work 173

10.1 Results . 173

10.2 Discussion . 175

10.3 Outlook . 177

List of Figures 181

List of Algorithms 183

List of Tables 185

List of Acronyms 187

Bibliography 189

1 Introduction

Nowadays, Model Driven Development (MDD) is a widely used software de-
velopment technique, in particular for embedded systems. By enabling the
specification of (software) systems using domain specific languages, both do-
main specialists and software engineers can work on the same model of a sys-
tem. This reduces the development effort and avoids misunderstanding be-
tween these two groups. Furthermore, MDD enables the iterative refinement
of models down to the implementation level while the models are executable
(e. g., by simulation) in each design stage. This enables testing of the models
in the early development stages where removing errors is much cheaper than
in late stages of the development process. However, it is practically impossi-
ble to perform exhaustive testing for real world systems and, hence, testing is
always incomplete. Moreover, embedded systems are often deployed in safety
critical areas like in automotive or avionics industries, where an error may lead
to severe injuries and even to death of persons. As a consequence, compre-
hensive and complete quality assurance measures are required for ensuring the
correctness of such systems. Formal verification techniques are complete since
they show the correctness of a model for all possible inputs and all possible
scenarios. Hence, formal verification techniques that are applicable on models,
in particular in early stages of the process, offer a great opportunity to increase
the benefit of MDD, namely the early detection of errors, even more.

1.1 Problem

In this thesis, we address the problem of automatically verifying discrete-time
Matlab/Simulink models that are used for the specification and development
of embedded controllers. Matlab/Simulink [Mat14a] is a de-facto standard
for the development of embedded systems, especially in the automotive indus-
try. Over the last decades, more and more functionality, e. g., assistant systems,
were added to cars. Also, functionality previously implemented in hardware
has been moved to the software level. Both led to an increase in the com-
plexity of embedded systems and the controller software. Since this software
is developed using models, the size of such models have increased accordingly.
Existing automatic formal verification approaches like model checking suffer of

13

14 Introduction

the state space explosion problem. In contrast, existing verification approaches
that scale well with large state spaces are often less automated or rely heavily
on user-given annotations.

1.2 Objectives

In this thesis, we aim at providing an automated formal verification framework
for discrete time Matlab/Simulink models. Since the simulation semantics
of Matlab/Simulink is only informally defined in [Mat14b], a formal repre-
sentation for Matlab/Simulink models is required. This formal representa-
tion enables the use of formal verification methods to verify properties of the
model, e. g., the absence of certain error classes like run-time errors. Both,
the transformation as well as the verification of certain properties should be
done automatically. Overall, we require our framework to fulfill the following
criteria:

� Automation To reach a high degree of automation, the transformation
of Matlab/Simulink models into the formal specification has to be done
fully automatically. This means that the translation should not require
any user supplied annotations.

� Coverage Most of the frequently used blocks from the Matlab/Simu-
link standard block library have to be supported by the transformation
and verification. This mainly comprises blocks from the following block
sets: Discrete, Logic and Bit Operations, Math Operations, Ports & Sub-
systems, Signal Routing, Sources and Sinks. The set of blocks should
be extensible such that translation rules for further blocks can be easily
added in the future.

� Verification Goals Verification goals have to be extracted automati-
cally from the model for certain important error classes. Examples are
division-by-zero, range violations and over- and underflows.

� Scalability Translation and verification should be possible on a stan-
dard computer system within time bounds acceptable for practical use.
Hence, the verification technique that is used shall scale with possibly
unbounded state spaces and large models.

� Comprehensibility The framework has to preserve the structural in-
formation of the original Matlab/Simulink model. This is crucial to
present verification results (like counterexamples) in a human-readable
way.

� Practicability The framework should be applicable to real world in-
dustrial models.

1.3 Proposed Solution 15

1.3 Proposed Solution

To achieve the objectives defined in the previous section, we propose a novel
automatic verification framework for Matlab/Simulink models. The key
idea of our framework is a combination of inductive invariant verification us-
ing automatic theorem proving, more precisely the Boogie verification frame-
work [BCD+06], and slicing to automatically verify properties of a given model.

In contrast to other automatic verification approaches like model checking
or abstract interpretation, inductive verification techniques are less prone to
the state space explosion problem since they do not explore state space from an
initial state. Instead, the verification is done for a finite number of state tran-
sitions from an arbitrary start state. Moreover, the Boogie approach is based
on proof by contradiction exploiting the power of modern, automatic theorem
provers in finding a satisfying assignment. Hence, this technique is less prone
to scalability issues and well suited to deal with large and even unbounded
state spaces. Furthermore, we use automatic model reduction techniques to
reduce the complexity and, hence, the state space of a model to achieve a
higher scalability. To this end, we propose a static slicing method to reduce
the model for a given point of interest, namely a block, and run the verification
on the resulting slice.

A prerequisite for the application of formal verification and, hence, for au-
tomatic theorem proving, is the existence of a formal specification. Since the
semantics of Matlab/Simulink models as given in [Mat14b] is informal, we
propose a transformation from Matlab/Simulink into the Boogie verification
language (Boogie2). Boogie2 is semantically well defined and also serves as the
input language to the Boogie verification framework. We use the sequential
simulation semantics of Matlab/Simulink according to a fixed-step discrete
solver for our transformation, which matches the sequential semantics of the
Boogie verification language. Due to the limitations of Boogie and the underly-
ing theorem prover, some arithmetic operations as well as floating point num-
bers have to be over-approximated. However, the Boogie verification language
is expressive enough to represent most of the block behavior and arithmetics
in Matlab/Simulink.

For both, the transformation as well as the slicing, it is necessary to cal-
culate the data and control dependences in a Matlab/Simulink model. For
the transformation, these dependences are required to calculate the execution
order of the blocks within a model according to the simulation semantics. For
slicing, these dependences are used to determine the blocks that are part of a
slice of a model. Hence, we propose a dependence analysis for Matlab/Simu-
link models

To achieve a high degree of automation, both the transformation and the
verification of the Matlab/Simulink models have to be fully automated. To
meet this requirement, we introduce an automatic transformation engine that
automatically calculates the block order of a Matlab/Simulink model and
translates the model block-wise into the Boogie verification language. For

16 Introduction

the most common block types and their common parameter combinations,
translation templates and rules are specified. In addition to the translation of
blocks, we automatically create verification goals for the error classes division-
by-zero, range violations and over- and underflows depending on the type of the
blocks. This enables the automatic verification for the absence of errors from
these error classes using the Boogie verification framework. The translation is
extensible to further properties.

In summary, we propose a verification method for Matlab/Simulink which
is both: highly scalable due to the use of inductive verification techniques
and automatic model reduction techniques, and highly automated due to the
automatic transformation of Matlab/Simulink models into a formal model in
the Boogie verification language and the automatic generation of verification
goals. To show the practical applicability, we have developed our MeMo tool
suite[HWS+11]. Besides parsing and slicing of the models, it also provides
a fully automatic push-button verification of Matlab/Simulink models. We
evaluate our framework and our tool on a number of case studies supplied by
our industrial partners.

1.4 Motivation

The world is smart nowadays. There are smart phones, smart homes, smart
watches, smart refrigerators, smart TVs and many more. All these devices
are smart due to small integrated computing units and optionally, sensors,
actuators and communication interfaces. They contain embedded systems.

Embedded systems are everywhere. Besides TVs, mobile phones or refrig-
erators, where they are used to increase our quality of living, they are also
part of cars, trains, aircrafts, traffic management systems and other critical
infrastructure. But, in contrast to a TV, a malfunction in a car, a plane or
a traffic light control system may lead to costly damages, severe injuries and
even to the loss of human lives. The latter class of embedded systems are
safety critical systems. To ensure the correct functionality of these systems,
comprehensive quality assurance methods have to be applied. In practice, this
is mostly done by following a well-defined development process and guidelines
and by testing.

A widely spread technique for the development of embedded systems, es-
pecially in automotive and avionic industries, is model driven development.
In this technique, models are used as artifacts during all refinement phases
of the development process and often, code is generated from the models by
automatic code generators. These models are specified in a Domain-specific
Modeling Language (DSML) that is tailored to the application domain and
to a specific design phase. Often, these models are executable and enable the
simulation of the models, which in turn, renders the testing of the models in
all stages of the design process possible. With that, errors can be detected in
the early design phases, which is usually less costly than in the late phases of
the development.

1.5 Main Contributions 17

Matlab/Simulink is an integrated development environment widely used
in industry for the development of embedded systems. Almost every big au-
tomaker and their external suppliers are using Matlab/Simulink1. It provides
the graphical DSML Simulink, which is tailored to the development of dynam-
ical systems. The DSML is sufficient to model multiple steps of the design
process. Simulation and testing of Simulink models is possible for every stage
in the development process.

However, to show the absence of errors using testing, exhaustive testing
(for all possible inputs) would be necessary. Thus, testing is incomplete. In
contrast, formal verification techniques are well suited to guarantee the absence
of errors. But this guarantee comes for a price: Formal verification techniques
require a formal representation of the system and they either require a high
degree of manual effort and scale well, or they are automated but are subject
to scalability issues. This trade-off makes formal verification less attractive for
practical use.

In this thesis, we present a formal verification framework that provides an
automatic and scalable verification technique for Matlab/Simulink models
and enables the detection of errors in Simulink models, even in the early phases
of the design process.

1.5 Main Contributions

The main contributions of this thesis are:

� A dependence analysis and a slicing approach for Matlab/Simu-
link models. This approach enables the static forward and backward
slicing of Matlab/Simulink models for a point of interest in the model,
the slicing criterion. The approach uses a block as slicing criterion and
the calculation of the slices is conservative and sound. Hence, it can be
used as an automatic model reduction technique to split the verification
problem into smaller sub-problems. We have published this approach in
[RG12]

� A formal semantics for a subset of Simulink defined by a transforma-
tion into the Boogie verification language. This enables the use of the
Boogie verification framework for the verification of Matlab/Simulink
models. The transformation is fully automatic and additionally to the
semantically equivalent Boogie program, verification goals for common
run-time errors are generated during the translation for all block types
prone to these specific classes of errors. We have published this approach
in [RG14a].

� An automatic verification framework for Matlab/Simulink with
tool support that shows the practical applicability of our approach and
is integrated in our MeMo tool suite[HWS+11, RG14b].

1http://www.mathworks.de/automotive/userstories.html

18 Introduction

� A demonstration that our framework can be applied to automatically
verify a number of industrial case studies. These case studies are an
odometer and a distance warning system.

1.6 Context of this Work

This work has taken place in context of the MeMo2 project [HWS+11], which
was funded by the Investitionsbank Berlin within the subsidy program for re-
search, innovation and technology (Pro FIT). The project was carried out by
the chair of Software Engineering for Embedded Systems and two industrial
partners: Berner & Mattner Systemtechnik GmbH and Model Engineering
Solutions GmbH. Within this project we have developed novel methods and
analyses to ensure and asses the quality of Matlab/Simulink models. Both
companies are operating in the automotive area and offer consulting and qual-
ity assurance services to automakers and external suppliers. The key idea of
the MeMo project was to provide both, analytical as well as constructive meth-
ods to ensure the quality of Matlab/Simulink models. As a prerequisite, we
have developed a parsing framework and a generic intermediate representation
that serves as a basis for all further analyses. To improve the scalability of
the analyses, we have developed a novel slicing approach [RG12] for Mat-
lab/Simulink models. As analytical method, we have developed a method for
the automatic detection of certain error classes: a verification framework for
Matlab/Simulink using the Boogie verification framework [RG14a]. As con-
structive method, a quality model and metrics have been developed [HLW12]
for Matlab/Simulink.

1.7 Overview of this Thesis

This thesis is structured as follows: In Chapter 2, we provide an overview of
the background of this thesis. We start with an introduction of the general
concepts of Model Driven Development and give a brief introduction into the
Matlab/Simulink tool suite and modeling notation. Then, we introduce the
weakest precondition predicate transformer that, together with inductive tech-
niques and automatic theorem proving, is used for the automatic verification
of programs. Furthermore, we describe the Boogie verification framework that
provides a formal language and a tool that we use in our approach. Finally,
we briefly introduce program slicing. In Chapter 3, we discuss the related
work of this thesis. In Chapter 4, we present our approach for the automatic
formal verification of discrete-time Matlab/Simulink models that is based
on an automatic transformation of Matlab/Simulink models into the Boo-
gie2 verification language and uses slicing as an automatic model reduction
technique to improve the scalability. In Chapter 5, we present our slicing ap-
proach for Matlab/Simulink models based on dependence graphs constructed

2Methods of Model Quality

1.7 Overview of this Thesis 19

using our dependence analysis. In Chapter 6, we present our transformation
of discrete-time Matlab/Simulink models into our formal model in the Boo-
gie2 verification language where we also use the the dependence analysis to
calculate the control flow graph for a model. In Chapter 7, we present our
automatic verification approach based on inductive techniques and verification
goals and invariants that we automatically generated during the translation of
models. In Chapter 8 we give a brief overview of our implementation of the
framework before we present our experimental results in Chapter 9 where we
have applied our framework to some case studies. In Chapter 10, we conclude
this thesis and discuss further directions for future work.

20

2 Background

In this chapter, we give background information regarding the languages and
techniques used in this thesis and briefly introduce the tools used in our au-
tomatic verification framework for discrete-time Matlab/Simulink models.
First, we briefly introduce the paradigm of Model Driven Development in Sec-
tion 2.1. Then we briefly describe the Matlab/Simulink tool chain and the
Simulink graphical modeling notation as an industrially used Model Driven
Development approach in Section 2.2. Furthermore in Section 2.3, we give
an overview to program verification with predicate transformers and introduce
efficient techniques for the verification of programs using the weakest precon-
dition predicate transformer and automatic theorem proving. Subsequently,
we introduce the verification tool and language used in our approach. We give
an introduction to the Boogie verification language and Boogie tool in Sec-
tion 2.4. Finally, we give a brief introduction into static slicing techniques in
Section 2.5.

2.1 Model Driven Development and Engineering

In software development, models are used for various purposes. Models pro-
vide an abstraction of the reality with respect to some specific properties of
interest. They are well suited to support communication between domain and
software specialists or to enable the (partial) specification of a system or its
behavior. In software engineering, models are traditionally used to describe
certain features of a system like the architecture, the behavior, the components
or the interfaces. However, models are not a driving element in the traditional
software development process.

2.1.1 Model Driven Engineering

In Model Driven Engineering (MDE) [Ken02, Sch06], models are used as a
central element in the development process. MDE is a generalization of Model
Driven Architecture (MDA)[MM+01]. MDA was introduced by the Object

21

22 Background

Management Group (OMG)1. With MDA, the OMG defined an approach
for the platform-independent specification of IT-systems based on the OMG-
ecosystem of modeling languages (e. g., Unified Modeling Language (UML),)
and middle-ware solutions. MDA separates models into three levels of abstrac-
tion:

� Computation Independent Model (CIM) The CIM is the layer for
the domain practitioner and does not contain any information about the
underlying IT-system.

� Platform Independent Model (PIM) The PIM is the layer that in-
cludes information about the underlying IT-system. However, the model
is general enough to be applicable to any possible IT-architecture.

� Platform Specific Model (PSM) The PSM is the layer where spe-
cific information about a particular IT-architecture is included and used.

Furthermore, transformations are defined for refinement and abstraction be-
tween the layers (e. g., PIM→ PSM, PIM→ PIM, etc.).

More generally as proposed by Kent [Ken02], MDE-approaches have to
specify

(1) modeling languages and models,

(2) transformations between models (and languages) and

(3) a process that supports and coordinates the construction as well as the
evolution of the models.

(4) Furthermore, an adequate tooling needs to be present for a specific MDE
approach

The tools have to support the correct syntactical use of the modeling languages,
the transformation between models, the process in general and model-based
testing, e. g., using the model to specify the inputs to the system. Finally,
the tools have to support the working with instances of models, e. g., by
simulation.

Domain Specific Modeling Languages

Since different application domains require models and processes that are es-
pecially tailored to the specific constraints and characteristics of the domain,
Domain-specific Modeling Languages (DSMLs) are used to model the systems.
DSMLs are either textual or graphical languages that, in contrast to General
Purpose Languages, offer specialized features for their particular domain, but
are of limited use for modeling systems outside the domain.

1http://www.omg.org

2.1 Model Driven Development and Engineering 23

Figure 2.1: The MDD Process

2.1.2 Model Driven Development

Model Driven Development (MDD) is a software development technique where
models are the central artifacts in the software development process. The key
idea of MDD is a process where, starting from an abstract model, model trans-
formations are iteratively applied to the model. Finally, the implementation
is generated from the models. In [BCW12], MDA is classified as a particular
instance of MDD (for the OMG-ecosystem). MDD is a subset of MDE since
MDE enables more general engineering than only for software.

The MDD Process

The generic process of MDD is depicted in Figure 2.1. Here, we differenti-
ate between the problem space where a specific problem exists in its natural
domain, and the solution space where the problem is mapped to a computa-
tional solution, e. g., a software system. In the problem space, the problem
is modeled in its particular domain. The resulting model (CIM) is a physical
or mathematical model of the system, e. g., a differential equation, usually
designed by a domain specialist. Then, the model is transformed into a func-
tional model (PIM) where a particular (computational) approach is chosen to
solve the problem, e. g., an approximation technique for the differential equa-
tion. With this transformation, the solution space is entered. The PIM then
may undergo a number of refinement (e. g., refinement of the approximation
technique) and abstraction (e. g., different views of the system) steps. How-
ever, at this point the model does not contain any implementation details and
the model (and the modeling language used) is focused on functional aspects
of the system. Subsequently, the model is transformed into an implemen-

24 Background

tation model (PSM) where platform and implementation specific details are
set. Again, on the PSM-layer, refinement and abstraction steps are possible
to model different aspects of the system. Finally, the implementation model
is transformed into source code and other artifacts. Transformation steps are
either performed manually or automatically depending on the tool support. In
practice, automatic code generators are widely used for the last transformation
step.

Besides the process that describes the iterative refinement of models from
CIM to PSM, MDD also enables quality assurance techniques (especially test-
ing) in the early development stages.

Simulation, Testing and Verification

Besides syntactical checks, editing support and the automation of transforma-
tions between or within the modeling languages, MDD tools need to be able
to execute the models. Selic [Sel03] names the executability of models as an
important factor for the success of MDD since it enables understanding the
system by experimentation. Furthermore, the tools need to provide a run-time
environment where the simulation of the models can be started, stopped or
resumed and steered with input sequences to the models.

The ability to simulate models with specific inputs or input sequences re-
sults in an important benefit of MDD: The models are testable. The correct
functionality of a system can be tested at early stages in the development pro-
cess. Moreover, the test cases (e. g., input sequences for the models) may be
reused in later refinement stages. If the simulation environment supports the
integration of (legacy) code, it can be reused even for testing the final software
artifacts. Many testing techniques transferred from programing languages can
be applied to the model level. Tests and test sequences showing the correct
functionality of the model can be derived from the requirements specification.
The input vectors can be tested systematically using techniques like equiva-
lence partitioning and boundary value analysis. Furthermore, the models can
be tested for run-time errors and domain specific errors. Even agile develop-
ment techniques like test-driven modeling [Zha04] are possible where tests are
created prior to the actual modeling of the system.

However, testing mostly covers the possible inputs for a model only partially
and, hence, it is inherently incomplete. To show the absence of run-time errors
or safety properties, complete techniques like formal verification are needed.
However, due to the fact that different MDD approaches consider different
modeling languages with different execution semantics, formal verification ap-
proaches have to be especially tailored to particular modeling languages.

2.1.3 Summary

In this section, we have briefly introduced Model Driven Development as a
subset of Model Driven Engineering. Furthermore, we have presented the

2.2 MATLAB/Simulink 25

Figure 2.2: The MATLAB Architecture

generic process of MDD and the different levels (and views) of abstraction.
Finally, we have presented the benefits of MDD especially for quality assurance
in the early stages of the development process and motivated the need for
verification techniques tailored to the specific modeling languages. In the next
section, we introduce the MDD tool Matlab/Simulink. It provides both, the
graphical modeling notation Simulink and the Matlab/Simulink tool that
enables the editing and simulation of Simulink models.

2.2 MATLAB/Simulink

MATLAB by Mathworks2 is a tool that enables numerical computing and vi-
sualization of mathematical problems. The core features of the MATLAB tool
are matrix manipulations, numerical simulations, plotting of functions and
data, programming and development of algorithms and even the development
of user interfaces. The name MATLAB originates from the first: MATrix LAB-
oratory. For the development of algorithms and user interfaces, a programming
language MATLAB Code (M-code) is provided and interpreted by the MAT-
LAB environment. However, MATLAB also offers interfaces or native support
for other programming languages like C/C++ or Java.

The functionality of MATLAB can be extended by add-ons, which are
called toolboxes. Toolboxes exist for various purposes (e. g., image processing,
statistics, finance, biology, control systems) and offer functions, user-interface
elements and data types for the particular domain. Figure 2.2 shows the ar-
chitecture of the MATLAB environment. These toolboxes either extend the
functionality of the MATLAB tool or further extend a certain toolbox. For
example, the Simulink toolbox extends MATLAB by editing and simulation
facilities while the Stateflow toolbox extends Simulink. Finally, there exists
a number of toolboxes for automatic code generation. In the following sec-

2http://www.mathworks.de/products/matlab/

26 Background

Figure 2.3: The MDD Process in Simulink

tion we introduce the Simulink toolbox and notation which provides an MDD
environment for the domain of embedded controllers.

2.2.1 Simulink

Matlab/Simulink [Mata, Matb] is a particular toolbox that enables the graph-
ical modeling and simulation of synchronous reactive embedded systems. The
Simulink toolbox provides the graphical DSML Simulink, an editing framework
for the Simulink models and a simulation engine that is able to simulate the
model with sampling or different numeric techniques.

The DSML Simulink is a data flow oriented block diagram notation which
consists of blocks and lines. Blocks represent either some kind of functionality,
like mathematical or logical functions, or are used for structuring the model.
Lines are used to represent signal flow between blocks.

Matlab/Simulink provides a block library of about 300 predefined blocks.
Further toolboxes for Matlab/Simulink extend these libraries by adding blocks
for particular domains, e. g., the Aerospace Blockset or the SimHydraulics tool-
boxes. Moreover, the Stateflow toolbox adds a whole event- and state-based
modeling language to Matlab/Simulink, which enables the modeling of com-
plex decision logic in Simulink models using finite state machines.

Matlab/Simulink can be used to model both, discrete embedded con-
trollers as well as continuous physical environments the controller is deployed
on. It enables the model driven development for the software of embedded
controllers. Figure 2.3 depicts the MDD process for Matlab/Simulink. Anal-

2.2 MATLAB/Simulink 27

ogously to the generic MDD process, the control problem is specified in its par-
ticular domain. To this end, Matlab/Simulink offers a number of blocks rep-
resenting common (continuous) functions from control engineering and blocks
for modeling (or approximate) the continuous time environment and sensors.
Then, the model is refined using discretized blocks representing the discrete
version of the functions from control engineering. Note that Matlab/Simulink
is always able to simulate continuous and discrete parts of the model together.
With subsequent refinement steps, discrete sampling rates are defined for the
controller and more implementation details are added to the controller. Finally,
code is generated for the refined model.

In the next two sections we give a brief introduction to the model elements
and the simulation of models in Simulink. Note that a more detailed discussion
about block semantics and simulation semantics is given in Chapter 6.

2.2.2 Model Elements and Simulation Mechanics

In this section, we briefly introduce the elements of a Matlab/Simulink model.
Furthermore we describe concepts and mechanics used for the simulation of the
models by the Matlab/Simulink tool.

Figure 2.4 depicts a Simulink model that calculates the product and sum
of the natural numbers up to a bound n, which in this example is given by a
Ramp function that increases n in every simulation step. The sum and product
are calculated whitin the WhileIterator subsystem in every simulation step
and displayed using a Scope block. We use this model to explain the elements
and concepts in the following sections.

We use a WhileIterator subsystem to calculate the sum and the product
of the first n positive integers up to a given n. A WhileIterator subsystem
executes its contents as long as the signal supplied to the cond port is greater
than zero. A WhileIterator requires an initial condition (IC) which is used to
determine if the subsystem is executed at least once. This IC has to be supplied
from outside of the WhileIterator subsystem. Therefore we have embedded
the WhileIterator subsystem in an environment (Figure 2.4a) where n is
provided by a Ramp function which increases n by 1 in each simulation step
and IC is a Constant. Figure 2.4b depicts the contents of the WhileIterator

subsystem. We have named the blocks corresponding to the statements of the
example program. The initialization of the variables is done using the initial
values of the UnitDelay (1

z) blocks. A UnitDelay block holds the value of a
signal for a simulation (or loop execution) step. We have named the blocks
within the model corresponding to variables and statements that would have
been used in an imperative program.

Blocks

In Simulink, the behavior and appearance of block is defined by its type and
its block parameters. The parameters consist of a set of mutual parameters,

28 Background

(a) Top Level of the Model (b) Contents of the Subsystem

Figure 2.4: A Example Simulink Model

e. g., color, size, position, data type, which can be found in every block, and
a number of parameters that are specific to the block type. While the basic
behavior is given by the type, the block parameters influence the behavior of
a certain block instance. Furthermore, blocks may have an internal state that
changes during the simulation. Blocks can be classified with respect to the
following properties:

� Functional vs. Virtual A block either models some functionality or is
used for structuring the model. Blocks that do not model functionality
are called virtual blocks. Virtual blocks normally do not influence the
behavior of the model. However, some special parameter configurations
may cause a virtual block to become non-virtual. We refer to non-virtual
blocks also as functional blocks. In Figure 2.4a, the black bar is a Mux

(multiplexer) block that combines the two input signals into one signal.
This block and the port blocks with the rounded corners are only used
for signal routing. They are virtual blocks. All other blocks influence
the behavior of the model and, hence, are functional blocks.

� Direct-feedthrough vs. Non-direct-feedthrough In Simulink, the
blocks are classified the way their outputs are calculated. If the out-
put of a block is directly dependent on one of its input, it is a direct-
feedthrough block. If the output is only dependent on the state, this
means the inputs are only used to calculate the next state, it is called
a non-direct-feedthrough block. Note that this property is also affected
by certain parameter configurations. In Figure 2.4b, the blocks labeled
“i+1”, “sum+i” and “mul*i” are direct-feedthrough blocks since they di-

2.2 MATLAB/Simulink 29

rectly output the sum or product of the values supplied to their inputs.
The UnitDelay blocks (1/z) store the value supplied to their input for
one simulation step and output the value of the step before. Hence, they
are non-direct-feedthrough blocks.

� Composite vs. Basic The block libraries do not only provide blocks
for domain specific tasks but also a number of composite blocks. These
blocks provide a (parameterized) combination of other blocks to realize
commonly used tasks. Basic blocks are not composed from other blocks.
In Figure 2.4a, the Ramp block is a composite block since it is composed
from other basic blocks. The Sum block labeled with “i+1” is a basic
block.

Hierarchy

Matlab/Simulink enables hierarchical structuring of the model with Subsys-

tem blocks. Subsystems can contain other blocks and even further subsystems.
However, on the lowest level of this nested structure of subsystems there are
only basic blocks. This means that composite blocks are realized by hierarchi-
cal subsystems with parameters used by underlying basic blocks. Subsystem
are either atomic or virtual. Virtual subsystems are practically invisible to the
Simulink scheduler and do not influence the behavior of the model. However,
they are still useful to visually structure the model. Atomic subsystems do im-
pact the behavior since they require all contained blocks to be executed in an
atomic operation. The WhileIterator subsystem in Figure 2.4a is an atomic
subsystem, which is indicated by the thick borders.

Masks

Subsystems can be annotated with masks. A mask is specified in the block
parameters and can be used to change the visual appearance of subsystems
and to specify additional parameters. Masks are used for composite blocks
where some functionality is encapsulated in a subsystem, e. g., a block from a
library, to configure the behavior. For example, the Ramp block in Figure 2.4a
uses a mask to specify the slope, the start time and the initial value of the
function implemented by this composite block.

Lines and Signal Flow

Signal flow is modeled using lines in Simulink. Lines connect the outputs of
a block with the inputs of other blocks. However, a line does not necessarily
model one signal. Instead, lines may model a scalar signal, a vector of signals, a
matrix signal and even signals with multiple hierarchy levels (nested signals).
The signals carried by a line are inferred by the Matlab/Simulink tool at
run-time. In Figure 2.4a, the line connecting the Mux block with the Scope

block is actually carrying two signals.

30 Background

To model the signal flow into subsystems, the inputs and outputs of the
subsystem blocks are mapped to (Inport and Outport) port blocks within the
subsystem. Inport and Outport blocks usually have rounded corners and a
number that indicates the corresponding input of the subsystem in top-down
direction. For example, the input read(n) of the subsystem in Figure 2.4a is
mapped to the Inport block labeled“read(n)”in Figure 2.4b. Since“read(n)”
is the second input of the subsystem, the Inport is labeled with the number
“2”.

Control Flow

Control flow in Simulink models is realized by conditionally executed subsys-
tems. Besides port blocks, these subsystems contain special blocks that trigger
the conditional execution. These blocks model either some iterator function-
ality (like the While Iterator block in Figure 2.4b) or provide special port
blocks that trigger the execution if a certain condition is satisfied by the con-
nected signal.

Moreover, control flow may be introduced by certain blocks and parameters.
We give a detailed description to that mechanisms in Chapter 5 when we
introduce control dependence. In the next section, we briefly introduce the
general simulation semantics of Simulink models and the concept of execution
contexts, which is vital for the understanding of control flow.

2.2.3 Simulation

Even though the data flow oriented notation of Matlab/Simulink is gen-
erally concurrent, Matlab/Simulink executes the blocks sequentially in a
simulation. Hence, the simulation engine schedules the blocks to determine
an execution order. To this end, Matlab/Simulink uses so-called Execution
Contexts (ECs).

Definition 2.1 (Execution Context). An execution context is comparable to
a sorted list of blocks and child execution contexts that have to be executed as
an atomic operation. This means that once an execution context is entered, all
blocks and nested execution contexts have to be executed before the execution
is allowed to return to the parent execution context. In Matlab/Simulink,
every atomic subsystem has its own execution context.

Simulation Phases

Generally, the simulation of a Matlab/Simulink model is performed in two
phases: An initialization phase and a simulation phase. Figure 2.5 briefly
depicts these two phases. The simulation engine that performs the either
discrete or continuous simulation is called solver. Note that the initialization
phase is basically the same for all solvers and the simulation phase differs only
in one step between some solvers.

2.2 MATLAB/Simulink 31

Figure 2.5: The Simulation Phases in Simulink

The initialization phase mainly consists of three subphases:

� Compile Phase In the compile phase, a number of analyses are applied
to the model to determine the sorted order of the blocks and information
not stored explicitly in the model. Such information are, e. g., data
types, signal dimensions or sample times. Furthermore composite blocks
from libraries and model references are integrated and the hierarchy is
flattened.

� Link Phase In the linking phase, binaries for external code are linked
into stubs in the model. External code may be introduced with so called
S-Function blocks. These may integrate legacy components but also
may be a compiled finite state machine modeled with the Stateflow tool-
box.

� Initialization of Blocks In the blocks initialization phase, data struc-
tures are generated for the blocks and their fields are set to initial values
according to the block parameters.

Once the initialization phase is finished, the simulation phase is started. In
this phase, an overall simulation loop executes the blocks in the sorted order
for number of time instants up to a specified upper bound. The simulation
loop performs the following steps:

� Calculate Outputs First, for every block the new output for the cur-
rent simulation step is calculated. Stateful blocks may use their state for
the calculation.

� Calculate States Second, new states for the stateful blocks are calcu-
lated using the newly calculated outputs of all blocks.

� Zero Crossing Detection This step is optional and only relevant for
solvers that use a variable step size. It is a technique to determine when
a relevant event (a zero crossing), e. g., a sign change, occurs within the
current time instant and the next time instant using the current step
size.

32 Background

� Calculate Next Time Steps Finally, the next time instant is calcu-
lated. If a zero crossing has been detected, the step size to calculate the
next instant is reduced.

Note that the simulation steps in Simulink are delta cycles and the execu-
tion of blocks does not consume simulation time. This also holds for iterator
systems like the WhileIterator subsystem form our example.

Solver

Matlab/Simulink provides various simulation engines to simulate a model.
These simulation engines, so-called solver, provide a number of techniques for
the simulation of discrete and continuous time models. Most of the solvers im-
plement techniques for the numerical solving of ordinary differential equations
to simulate continuous time models. To speed up simulation, many solvers use
a variable step size to determine the points where the model is sampled. How-
ever, it is also possible to simulate the model by sampling the model at a fixed
rate, which corresponds to the discrete execution of the controller software on
an embedded hardware (fixed-step discrete solver).

Workspace

The Matlab/Simulink tool suite has a global area where variables can be
defined and used during the simulation. This area is called workspace. The
variables can be loaded into the workspace by call-back functions in the model
file, by executing scripts written in M-code or by loading the variable from
files where they are stored in some binary format. Variables defined in the
workspace are often used as parameters to configure a model or to provide
input to the model during the simulation. The values of these variables can be
extracted from the tool at run-time.

2.2.4 Summary

In this section, we have given an introduction to the Matlab/Simulink en-
vironment. First, we have presented the general process for the development
of embedded systems with Matlab/Simulink and its relation to the MDD
process. Then, we have briefly introduced the model elements and concepts in
Simulink. Finally, we have given a short overview of how models are executed
by the Matlab/Simulink environment. We give a more thorough description
of model elements and simulation semantics in Chapter 5 where we introduce
our slicing approach and Chapter 6 where we explain the semantics of model
elements by taking the example of our translation into the formal model for
the verification of Matlab/Simulink models.

2.3 Program Verification 33

2.3 Program Verification

In this section, we briefly introduce and motivate techniques that we use in
our approach, which enable the verification of properties for structured pro-
gramming languages. The techniques are based on an axiomatic approach for
specifying and verifying programs with assertions over program states. More
precisely, backward reasoning with predicate transformers is used to transform
a program into a set of propositional and first order logic formulas, so called
verification conditions that can be used to verify the program. Finally, au-
tomatic theorem proving (Satisfiability Modulo Theories) is used to solve the
verification conditions to verify that the properties are satisfied (or report
them being unsatisfiable). For a detailed introduction we refer to [BM07] and
[KS08].

2.3.1 Verification of the Correctness of Programs

In program verification, the correctness of a program is shown by verifying that
the program satisfies its (formal) specification. The specification of a program
formally describes the desired behavior, output or program state depending
on the verification technique. Programs can be either be partially correct or
totally correct. Partial correctness is the property of programs that ensures
that certain (error) states do not occur in any possible execution of a program.
However, this does not necessarily mean that a program terminates. Total
correctness not only ensures partial correctness, furthermore it also ensures
that the program terminates.

Various techniques exist to formally verify the correctness of programs.
Some techniques, like abstract interpretation, explore the state space of pro-
grams using (symbolic) simulation and abstraction techniques. Other tech-
niques use an axiomatic approach where assertions are used to specify precon-
ditions and postconditions for the states before and after the execution of a
program (or statement).

In the subsequent sections, we use a While language as an example for a
higher level imperative programming language. The syntax of this language is
defined as

S ::= skip | x:=e | S;S

if (b) then {S} else {S} | while (b) {S}
e ::= e opn e | n | x

b ::= true | false | b opb b | e opp e

where skip is the empty instruction, n is a numerical literal and x is a variable
name. Moreover, there are numerical operators opn, logical operators opb and
comparison operators opp that can be applied to literals and variables and
finally, there is the assignment operator “:=” that sets a variable to a value or

34 Background

expression. The semantics for the if-then-else and the while3 statement are
analogously defined like in other high level languages.

In our verification approach for Matlab/Simulink models, we use an ax-
iomatic approach based on preconditions and postconditions over the states of
the models. Hence, we introduce the foundations for our technique in the next
sections.

The Hoare Calculus

An axiomatic technique for the verification of programs is the (Floyd-)Hoare
caluclus, which was originally defined for flow charts by Floyd [Flo67] and gen-
eralized for programs by Hoare [Hoa69]. The basic idea is to specify programs
using assertions over the program states before and after the execution of the
program. This is done using a Hoare-triple

{P} C {Q}

where C is a program, P is the precondition and Q is the postcondition. The
precondition and postcondition are functions that map the state of a program
to a truth value. The state of a program is a specific assignment of variables
used by the program at a point in the execution. A program is correct if the
following holds: If P is satisfied in some state s and C is executed on s and
terminates in a final state s′, then Q is satisfied in s′. To obtain a proof system
from this specification, first a formal syntax for the programming language has
to be defined. Second, axioms for the basic instructions of the programming
language and inference rules are defined. This results in a deductive proof
system where further theorems can be derived using the axioms and inference
rules.

As an example for an axiom, we present the Axiom of Assignment

{Q[x← e]} x := e {Q}

where x := e is the assignment of an expression e to the variable x and Q[x← e]
is derived from Q by substituting all occurrences of x with e. Axioms for
the specific instructions of a programming language can be derived from this
rule. The skip instruction of our while language leads to the derived rule
{Q}skip{Q} since the program state is not affected by this statement.

An inference rule takes the form

X1 ∧ X2 . . . ∧ Xn

Z
Cond

where X1 to Xn are assertions that form a premise from which, if all, X1 to Xn,
have been proven valid, Z can be concluded to be valid too. Furthermore, a

3While is sufficient since do . . . while and for loops can be transformed into a semantically
equivalent while loop.

2.3 Program Verification 35

side condition Cond can be specified that has to be satisfied. As an example
of an inference rule, we present the Rule of Consequence:

P′ −→ P , {P} C {Q} , Q −→ Q′

{P′} C {Q′}

This rule describes that a precondition can be strengthened and a postcondi-
tion can be weakened. More precisely, if C is executed in a state that satisfies
the precondition P and produces a state where the postcondition Q is satisfied,
then, for a precondition P′ that implies P but is more restrictive, the postcon-
dition Q is also satisfied. Analogously, if a postcondition Q is satisfied for after
the execution of C on a state satisfying P and Q implies a postcondition Q′

that is less restrictive, Q′ is also satisfied after the execution of C. This rule is
basically the key in any Hoare-style proof system since it can be used to glue
the single components of the proofs together by enabling the consolidation of
preconditions and postconditions.

Furthermore, the Hoare calculus specifies a rule for the verification loops
(like while statements): The Rule of Iteration. The basic idea is the following:
If there exists a loop invariant that is satisfied before entering the loop and after
(but not necessarily during) each execution of the loop, and is also satisfied
once the loop is finished. Then, it is suitable to show that the invariant is
satisfied by a state before the execution of the loop body and afterwards. The
Rule of Iteration for a while loop in the Hoare calculus is defined as

{P∧ I}C{I}
{I}while P do C {¬C∧ I}

,

where P is the condition that has to be satisfied for the execution of the loop
body C and I is the loop invariant. Note that the rule is only suitable to show
partial correctness, since the loop may fail to terminate.

While the Hoare calculus is well suited to show the correctness of programs,
it suffers in terms of automation since one is required to specify complete pre-
conditions and postconditions and the sophisticated application of the inference
rules to construct a proof. Hence, we use the weakest precondition calculus in
our approach that enables a higher degree of automation.

Weakest Preconditions

Weakest Precondition (WP) is a predicate transformer introduced by Dijk-
stra [Dij75] that reduces the verification problem for structured, imperative
programs to a problem of reasoning over a set of formulas in First Order
Logic (FOL). WP enables a higher degree of automation compared to the
Hoare logic since there exist powerful decision procedures for subsets of FOL
that are used in automatic theorem provers to solve FOL formulas without the
need for human interaction.

A predicate transformer p is a function that maps a formula given in FOL
and some statements S to an expression in FOL:

36 Background

p : FOL×S−→ FOL

The weakest precondition wp(Q,S) is a predicate transformer that maps a
postcondition Q expressed in FOL to a precondition. This precondition is the
weakest precondition such that, if S is executed on some states satisfying this
precondition, the postcondition Q is satisfied by the final program state.

Definition 2.2 (Weakest Precondition). The weakest precondition wp(Q,S)
for a postcondition Q and the statements S is defined such that

� for a postcondition Q that is satisfied by the final states after the execution
of S,

� wp(S,Q) returns the least restrictive precondition P that has to be satisfied
by the states before the execution of S,

such that Q is satisfied by the final states.

With the weakest precondition a given Hoare-triple {P} S {Q} is provable
w. r. t. total correctness if the FOL formula

P−→ wp(S,Q)

is valid. Such a FOL formula is called Verification Condition (VC).

Similarly to the Hoare calculus, WP is defined on a formal syntax for the
programming language and there are rules for the basic instructions of the
language. The WP transformer has the following properties by definition:

(1) (Law of the Excluded Miracle) For any statement S holds wp(S, f alse) =
f alse .

(2) For any statement S and any postconditions Q and R holds

Q −→ R
wp(S,Q) −→ wp(S,R)

.

This property is related to the Rule of Consequence of Hoare logic and
enables the weakening of postconditions.

(3) (Conjunction) For any statement S and any postconditions Q and R holds

(wp(S,Q)∧wp(S,R)) = wp(S,Q∧R)

(4) (Disjunction) For any deterministic statement S and any postconditions
Q and R holds

(wp(S,Q)∨wp(S,R)) = wp(S,Q∨R)

For WP, the set of semantic rules for the instructions of our While language
is defined as follows:

2.3 Program Verification 37

(1) (Empty statement) The rule for the empty statement, e. g., the skip

statement, is defined as

wp(skip,Q) = Q ,

since the state of the program is not modified.

(2) (Assignment) The semantics of an assignment statement x:=e is defined
as

wp(x := e,Q) = Q[x← e]

where Q[x← e] is derived by substituting every occurrence of x in Q with
the expression e.

(3) (Concatenation) The semantics of the concatenation, e. g., the “;” in most
programming languages, is defined as

wp(S1;S2,Q) = wp(S1,wp(S2,Q)).

(4) (Conditional) The semantics or an instruction for the conditional execution
of different branches like an “if C then S1 else S2” is defined as

wp(if C then S1 else S2,Q) = (C −→ wp(S1,Q))∧ (¬C −→ wp(S2,Q)).
(2.1)

Together with the properties presented in the subsection before, the applica-
tion of these rules enables the construction of FOL formulas for any loop-free,
structured and imperative program and its verification.

Weakest Precondition for Loops

To verify loops, WP uses a similar approach like the Hoare calculus. Since WP
are defined to show total correctness of programs, an additional loop variant
is required for the verification of loops to show termination. However, there
exist application areas where termination is not desired, e. g., reactive systems
modeled in Matlab/Simulink. Hence, we use the Weakest Liberal Precon-
dition (WLP) predicate transformer for partial correctness in our approach.
In WLP, the rules are basically the same as in WP except for the loop rule,
where the loop variant is removed. This enables the verification of programs
for partial correctness.

The rule for the weakest liberal precondition of a while loop is defined as

wl p(while C {I} do S,Q) = I ∧ ∀y,((C∧ I)−→ wp(S, I))[x← y]

∧ ∀y,(¬C∧ I)−→ Q))[x← y]

(2.2)

where {I} is the loop invariant, C is the loop predicate and Q is the postcon-
dition. Moreover, x is a set of variables of the program state modified by the

38 Background

statement S and y is a fresh set of variables (with arbitrary assignments). In
other words, the loop invariant I must hold initially. Moreover, if the loop
invariant I and the loop predicate C hold for an arbitrary program state y, the
loop invariant and the loop variant are satisfied before and after the execution
of S. Finally, if the loop invariant I is satisfied for an arbitrary state y but the
loop predicate evaluates to f alse, the postcondition Q is satisfied by y.

In this section we have presented the WP and WLP predicate transformers.
In the next subsection we present how these can be used to verify programs
automatically.

2.3.2 Automatic and Inductive Verification with Weakest Pre-
conditions

With the predicate transformers as presented in the last subsection, it is pos-
sible to verify programs for partial or total correctness. For this purpose,

(1) verification conditions have to be calculated using WP (or WLP) and

(2) the verification conditions have to be verified by showing that the FOL
formulas are valid.

Before we present these automatic techniques, we need to extend the While
language by a number of statements required to annotate the program for
verification:

S ::= skip | x:=e | S;S | l: | goto l

if (b) then {S} else {S} | while (b) invariant I {S}
assume b | assert b | havoc x

e ::= e opa e | n | x | l

b ::= true | false | b opb b | e opp e

The statements of the language are defined as follows:

Definition 2.3 (Assert Statement). An assertion is a statement in the pro-
gram that enables the programmer to provide a formal comment about the pro-
gram states. Besides the keyword assert, it contains a predicate over variables
of the program state. Assertions are used to specify preconditions and postcon-
ditions (e. g., for Hoare logic or predicate transformers). The WP and WLP
for the assert statement are defined as

wp(assert c,Q) = c∧Q and (2.3)

wl p(assert c,Q) = c−→ Q. (2.4)

Definition 2.4 ((Loop) Invariant Statement). A loop invariant is an annota-
tion to a loop that describes a predicate over the program states that holds on
loop entry, after every execution of the body and after the loop finished. The

2.3 Program Verification 39

invariant is specified between the loop head and the loop body using the keyword
invariant.

Definition 2.5 (Assume Statement). An assumption is a statement in a pro-
gram that restricts the feasible executions of a subsequent program part to states
that do no conflict with the predicate specified in the statement. The WP and
WLP for the assume statement are defined as

wp(assume c,Q) = c−→ Q and (2.5)

wl p(assume c,Q) = c−→ Q. (2.6)

where c is a predicate over the state of the program and Q is the postcondition.
The basic idea of this definition is that if c holds after the assume statement
is executed, c also has to hold for the precondition.

Furthermore, the havoc statement assigns an arbitrary value to a variable:
wp(havoc x,Q) = ∀z.Q[x← z]. This statement is often used in combination
with the assume statement to first set a variable free with havoc and than to
constrain the variable with an assumption. Finally, the language is extended
by a goto l instruction that jumps to a label “l:”. The goto statement is
used to desugar4 if-then-else and while statements in order to generate more
compact VCs.

This extended While language is suitable to write programs and annotate
preconditions, postconditions and loop invariants directly into the program.
With WP and WLP such programs can be automatically translated into FOL
formulas (VCs). By solving the VCs with automatic tools like theorem provers,
the program can be verified automatically. Since the time needed for the tools
grows with the size (and structure) of the FOL formulas, compact VCs are
desired.

Compact and Efficient Weakest Preconditions

A key problem in generating and verifying verification conditions using WP
or WLP is that due to the rule for the conditional instruction (Formula (2.1))
even small programs with control flow result in large formulas. Since for every
branch the postcondition is copied, the verification condition increases expo-
nentially in size compared to the actual size of the program.

Figure 2.6a depicts a small example program with two if-statements. The
first calculates the absolute value for x, the second decrements a counter c. The
assertion is the postcondition for this example program where it is required
that the absolute value is not negative. Figure 2.6b also depicts the WP for
the program. The postcondition is duplicated four times, even for the second
if-statement even though it is not relevant to (since only c is assigned a new
value, but there are not any occurrences of c in the postcondition).

4Remove syntactic sugar.

40 Background

1 if(x ≤ 0) {

2 x := -x

3 }

4 if(c > 0) {

5 c := c-1

6 }

7 assert x≥ 0;

(a) Example Program

wp(i f (x≤ 0){x :=−x}; i f (c > 0){c := c−1},x≥ 0)
⇐⇒ wp(i f (x≤ 0)x :=−x,(c > 0)−→ (x≥ 0))∧

wp(i f (x≤ 0)x :=−x,(c≤ 0)−→ (x≥ 0))

⇐⇒ ((x≤ 0)−→ (((c > 0)−→ (−x≥ 0))∧
((c≤ 0)−→ (−x≥ 0))))∧
((x > 0)−→ (((c > 0)−→ (x≥ 0))∧
((c≤ 0)−→ (x≥ 0))))

(b) Weakest Precondition for the Program

Figure 2.6: Example Program and its Weakest Precondition

Moreover, for every assignment like x := e the expressions e is substituted
in every occurrence of x, which may also lead to a large expression since the
size of the expression may increase exponentially to the number of assignments
(e. g., for a program x1 := x2 + x2; ...xn = xn−1 + xn−1;assert(xn > 0);).

Flanagan and Saxe presented an approach [FS01] to calculate more compact
weakest preconditions for programs. Their approach is twofold: First the
program is translated into a passive form, second, the WP is applied to the
program in passive form to calculate the VC.

Definition 2.6 (Passive Form of a Program). A program is in a passive form,
if every assignment x := e; is replaced by assume x′ = e; where x′ is a fresh
variable.

With a program in passive form, assignments no longer need to be sub-
stituted in the postconditions, which leads to a decrease in the size of the
formulas. To translate the program in passive form into VCs, Flanagan and
Saxe define two predicate transformers, N and W where N describes the states
of the program terminating normally and W describes the states where the
execution may go wrong. Then the following formula holds for programs in
passive form

wp(S,Q) = ¬(W (S))∧ (N(S)−→ Q)

and the resulting verification condition is quadratic in size to the program
since the postcondition Q is not longer duplicated but the VC now contains
two formulas per statement. In [Lei05], Leino presented the proof that for
programs in passive form holds that

¬W (S) = wp(S, true) and

¬N(S) = wl p(S, f alse).

This enables the use of the original predicate transformers.

2.3 Program Verification 41

Barnett and Leino presented a technique [BLS05] based on programs in
passive form that is able to generate even more compact VCs.

Unstructured Control Flow and Loop Cutting

In their approach [BLS05], Barnett and Leino assume that a (possibly unstruc-
tured) program consists of a number of blocks starting with a label followed
by a number of statements and ending with a goto-statement:

L: S; goto M (2.7)

Moreover, the statement if (C) {A} else {B} is desugared into:

if: skip; goto then, else;

then: assume C; A; goto end;

else: assume ¬C; B; goto end;

end: ...

(2.8)

To transform a program into the passive form, they calculate the dynamic
assignment form [Fea91] first. Furthermore, fresh variables are introduced at
the end of every branch before a join point (e. g., the if- and the else-block
assign the calculated value for a variable x both to a variable xend which is then
used for further calculations).

The key idea of their approach is the introduction of an auxiliary variable
LOK for each block, which is defined as

LOK ≡ wp(S,
⋀

M∈Succ(L)

MOK)

where Succ(L) is the set of all successor blocks. If no successors exist, then
LOK is defined as LOK = wp(S, true). This is called the block equation for a
block. For example, the block equation for the else block from the desugared
if-instruction (Formula (2.8)) is

elseOK ≡ (¬C −→ wp(B,endOK)).

The verification condition for a program P then is⎛⎝ ⋀
B∈BlockEq(P)

B

⎞⎠ −→ StartOK (2.9)

where BlockEq(P) is the set of all block equations of a program and StartOK is
the auxiliary variable for the first block.

However, this technique is limited to loop-free passive programs. Hence,
the Control Flow Graph (CFG) is transformed into a loop-free from using loop
cutting. A loop while (C) invariant I {A} is desugared into

42 Background

start: ... goto head;

head: assert I; goto body, end;

body: assume C; A; goto end, head;

end: assume ¬C; ...

(2.10)

where I is the loop invariant. This representation is still cyclic. In a subsequent
transformation step, the back edges are removed. Furthermore, the invariant

(1) is asserted before the loop head is entered and

(2) for an arbitrary assignment to the loop variables assumed to hold for the
loop head and

(3) checked at the end of the body.

The loop is transformed in the acyclic representation

start: ...; assert I; goto head;

head: havoc Vloop; assume I; goto body, end;

body: assume C; A; assert I; goto ;

end: assume ¬C; ...

(2.11)

where Vloop are the loop-bound variables modified in the body. This represen-
tation corresponds to the rule of iteration (see Formula (2.2)). The acyclic
form of the loop can now be verified using the aforementioned technique for
the generation of verification conditions.

Since programs with structured control are a special case of programs with
unstructured control flow, this technique can also be used for the verification
of structured programs. Barnett and Leino also point out that the resulting
verification conditions are linear in size to programs in passive form.

Example Figure 2.7a depicts a small program in our while language that
switches three variables in a loop. For simplicity we assume the instruction
“a,b,c := b,c,a;” to do the assignment of the variables simultaneously. Fig-
ure 2.7b shows the CFG of the program after desugaring has been applied.
Every vertex represents a block and every edge represents a goto-statement at
the end of the block. Finally, Figure 2.7c shows the CFG after all back edges
have been cut.

In this subsection we have introduced an algorithm that is able to produce
compact verification conditions. This is actually the algorithm used by Boogie,
the verification tool we use in our framework. In the next section, we present
a verification strategy that increases the degree of automation even further.

2.3 Program Verification 43

1 x := 0;

2 a := 1;

3 b := 2;

4 c := 3;

5 while (n > 0)

6 invariant a /= b

7 {

8 a,b,c := b,c,a;

9 n := n -1;

10 }

11 assert x = 0;

(a) Example Program (b) Desugared Loop (c) Loop Cutting

Figure 2.7: Example Program and CFG with Loop-Cutting

k-Inductive Invariant Verification

k-Inductive invariant verification, which is often referred to as k-induction, is a
technique originally proposed by Sheeran et al. [SSS00] as a verification tech-
nique for finite state transition systems. This technique proposes an inductive
proof, where the base case as well as the induction step each are performed
over k transition steps in the system.

Let I(s) and T (s,s′) be formulas where I(s) describes the initial states of a
system and T (s,s′) describes the transition relation from a state s to a state
s′. Furthermore, let P(s) be a formula that describes that a property P holds
for state s. To prove that the property p holds for the base case, the following
formula has to be unsatisfiable:

I(s0)∧T (s0,s1)∧·· ·∧T (sk−1,sk)∧¬P(s1)∧·· ·∧¬P(sk) (2.12)

In other words, the property p is not violated in k transition steps of a finite
state system. For the induction step, it is necessary to show that a second
formula is unsatisfiable where sn . . .sn+k+1 are consecutive states:

P(sn)∧T (sn,sn+1)∧·· ·∧P(sn+k)∧T (sn+k,sn+k+1)∧¬P(sn+k+1)

In other words, the property p holds for k transition steps and is not violated
after k+1 steps. From these two formulas one can conclude that the property
holds in all states.

This technique can also be applied in program verification. Donaldsen et al.
introduced k-induction for WP in [DHKR11]. The key idea of this technique
is to treat a loop as a transition relation L(s,s′) on the states of the program.
Here, s is the program state before the execution of the loop body and s′ is the
program state afterward. L is constructed using a predicate transformer like
WP and the loop invariant I is the property that needs to be satisfied by the
program states.

44 Background

For the program

Sinit; while (C) invariant I { Sbody};assert P;,

we can show by unrolling the loop k times that the base case holds:

start: Sinit; goto b1;

b1: assume C; assert I; Sbody; goto b2, end;

b2: assume C; assert I; Sbody; goto b2, end;

...

bk: assume C; assert I; Sbody; goto end;

end: assume ¬C; assert P;

The invariant is not violated for k consecutive steps starting from an initial
state. Furthermore, the post condition P holds if the loop is left after every
step. To show the induction step, the loop is unrolled k+1 times

start: havoc Vloop; goto b1;

b1: assume C; assume I; Sbody; goto b2;

...

bk: assume C; assume I; Sbody; goto bk+1;

bk+1: assume C; assert I; Sbody; goto end;

end: assume ¬C; assert P;

where the loop-bound variables are set to an arbitrary state and the invariant
is assumed to hold for the first k steps and asserted for the final (k+1) step.

If the resulting VC for the base case is unsatisfiable, then there exists an
error in the program (or specification). If the VC for the induction step is not
satisfiable, then there either may be an error in the program or the k is not
sufficiently chosen to prove the properties.

In their approach, Donaldsen et al. also present a way to encode the base
case and the induction step into one VC, which preserves the information over
the rest of the program states and hence enables the use of weaker invariants.

Example The loop invariant a /= b for Figure 2.7a is too weak to verify the
loop with one-induction since it does not contain any information about c. If
we perform k-induction with k = 2 and assume that the invariant is satisfied
for two loop iterations, we can derive that b /= c. If we perform k-induction
with k = 3, we can derive that b /= c∧ c /= a. Since from b /= c∧ c /= a follows
that a /= b, k-induction with k = 3 is sufficient to verify the loop.

Once the VCs are calculated with WP, WLP and k-induction, they have to
be solved to verify the programs. In our approach we use automatic theorem
provers to solve the formulas.

2.3 Program Verification 45

2.3.3 Verification with Automatic Theorem Proving

In the previous section, we have introduced efficient techniques to automati-
cally generate FOL formulas from programs and their specification. To verify
a program {P}S{Q}, we have to show that the VC

P−→ wp(S,Q)

is valid. For automatic verification, this yields two questions. First, how
to show that a verification condition is valid and, second, how to minimize
the manual effort needed to derive a specification? The first problem can be
solved by using automatic theorem proving. However, the second problem
requires a trade-off between the degree of automation and the completeness of
the verification: extended static checking. To describe the automatic theorem
proving techniques we use, we first need to introduce theories and decision
procedures for FOL.

Theories and Decision Procedures

To perform the verification process automatically, techniques are required that
enable the solving of FOL formulas without human interaction. The decision
problem, i. e., deciding whether a formula is valid, can be answered automati-
cally using decision procedures [KS08]. However, decision procedures are only
available for first-order-theories. These theories are defined for a subset of
FOL: nonlogical symbols like functions, predicates and function symbols.

Definition 2.7 (Theory). A first-order theory is defined by

� a set of nonlogical symbols, the signature Σ

� a set of axioms, which are formulas where every variable is bound to a
quantifier and only symbols of Σ and logical connectives appear.

A Σ-formula φ that only consists of variables, quantifiers, logical connectives
and symbols of Σ is valid for a theory T if every possible assignment to variables
of φ satisfies all axioms of T and φ .

Definition 2.8 (Decision Procedure). A decision procedure for a theory T is
a procedure that solves the decision problem for every formula φ of T and,

� if it returns ”valid” then φ is valid (soundness) and,

� for every valid φ , it returns ”valid” and terminates (completeness).

A theory T is decidable, iff there exists a decision procedure for it.

Since FOL is undecidable in general, in practice also incomplete procedures
or fragments of theories are of interest. A fragment is a syntactically restricted
subset of formulas to a theory, e. g., all quantifier-free formulas. Incomplete
(decision) procedures may not always terminate but are able to cope with

46 Background

undecidable theories or fragments. In practice, incomplete procedures are also
used to solve decidable theories faster. For a detailed introduction to decision
procedures, we refer to [KS08].

Important theories are, e. g., propositional logic, equality linear arithmetic,
bit vectors, arrays, non-linear arithmetic and their fragments, e. g., quantifier
free bit vectors or linear integer arithmetic. In practice, often a combination
of multiple theories is necessary to solve a VC. For example, to solve the
equation from Figure 2.6b a combination of the theories of linear arithmetic
and propositional logic is required. A technique to solve such a VC is to use a
solver for Satisfiability Modulo Theories.

Satisfiability Modulo Theories

Satisfiability Modulo Theories (SMT) is the (research) field concerned with the
satisfiability of FOL formulas with respect to some background theories. The
key idea in SMT is to map a FOL problem with respect to the background
theories into a problem of satisfiability for propositional logic, also known as
SAT. For SAT, there exist very efficient decision procedures (e. g., the widely
used Davis-Putnam-Logemann-Loveland (DPLL) framework [DLL62]).

There are two major approaches used for SMT-solvers: The eager and the
lazy approach. While eager approaches directly encode the FOL formula into a
propositional formula to invoke a decision procedure for SAT (and to benefit of
the efficiency of modern SAT-solvers), lazy approaches incrementally construct
the propositional formula by adding clauses derived using specialized theory
solvers and repeatedly checking for satisfiability. For a detailed introduction
to SMT, we refer to [BSST09].

Nowadays, many SMT-solvers support various theories and fragments (up
to 22) [BDdM+13] and are used in multiple application areas, e. g., verifica-
tion or extended static checking. Even though many of the theories are not
decidable, solvers are often capable of finding a solution.

Checking Verification Conditions with SMT

Since SMT-solvers are more suited to find a satisfying assignment than showing
that a formula is satisfiable for all possible assignments, the VC has to be
adjusted. Instead of proving that the VC is valid, the strategy is to show
that the formula is unsatisfiable if the property is violated. To this end, the
properties of interest (usually the assertions) are negated in the formula like in
(2.12). Moreover, if the SMT-solver is able to find a satisfiable assignment for
the VC with negated assertions, this assignment is actually a counterexample
describing an error state of the program. This counterexample can be used to
determine the source of the error. A technique, where SMT is used in that
way to find certain errors ins programs, is Extended Static Checking.

2.4 The Boogie Verification Framework 47

Extended Static Checking

Extended Static Checking (ESC) is a technique introduced by Detlefs et al.
for Modular-3 (ESC/Modular-3) [Det96, DLNS98] and has later been adopted
and improved for Java (ESC/Java) by Flanagan et al. [FLL+02]. The aim
of ESC is twofold: Provide a static checker that gives mathematically sound
guarantees for certain properties, more precisely the absence of specific errors,
but needs only little manual effort in specification (and in the actual proving
of the properties) compared to formal verification. The key idea of ESC is
to obtain the mathematical guarantees by translating the program into VC
using predicate transformers and to use automatic theorem provers to get a
counterexample or to verify the absence of errors. ESC focuses on the error
classes division-by-zero, dereferencing of null pointers, invalid casts or race
conditions. Thus, ESC is only sound with respect to the error classes, but
not to the correctness of the program since if ESC does not report an error,
the program is not necessarily correct. However, in practice ESC has been
successfully used to verify real world applications [LS09].

The techniques for the generation of efficient WP presented in the pre-
vious sections originally were introduced in the ESC-context. Furthermore,
the Boogie verification framework used in our approach has been developed
as an intermediate framework for a number of ESC-tools. We give a detailed
introduction to Boogie in Section 2.4.

2.3.4 Summary

In this section, we have introduced the weakest precondition predicate trans-
former, which is used for the automatic verification of programs. We have
presented techniques for the generation of efficient and compact verification
conditions in FOL. Furthermore, we have presented inductive techniques for
the verification of loops with loop invariants. We have presented k-inductive
invariant verification (k-induction), which provides a higher degree of automa-
tion since it allows for the use of weaker loop invariants. Finally, we have
given a brief introduction to automatic theorem proving, more precisely SMT-
solving, and how it can be used to verify programs. In the next section, we
give an introduction in the Boogie verification framework.

2.4 The Boogie Verification Framework

Boogie[BCD+06] is a verification framework developed at Microsoft Research.
It was originally used for ESC as presented by Detlefs et al. in [Det96,
DLNS98]. Boogie is used as intermediate framework for the verification of
various programming languages, such as VCC [CDH+09] and Havoc[BHL+10]
for C, Spec#[BLS05] for C#.

48 Background

The Boogie verification framework consists of the intermediate verification
language Boogie2 [Lei08] (formerly BoogiePL) and the Boogie tool5, which is
used to verify programs written in Boogie2. The Boogie tool uses an automatic
theorem prover (usually a SMT-solver) to verify programs. In this section, we
briefly introduce the Boogie2 language and the Boogie verification tool.

2.4.1 Boogie2

In this section, we briefly introduce the Boogie2 language following Leino in
[Lei08]. We will introduce the most important constructs relevant to our trans-
lation. For a detailed description of all language features (e. g., the full gram-
mar) we refer to [Lei08].

Boogie2 is an imperative, typed and procedural language. It provides a
number of primitive types and some basic arithmetical, relational and proposi-
tional operations for these types. Furthermore, it enables the use of symbolic
types, maps, constants and uninterpreted functions. Constants and uninter-
preted functions can be constrained using axioms.

The Boogie2 language provides a general intermediate verification language
which is independent from the tooling. Hence, nearly every language element
may be annotated by attributes that are specific to the desired verification
tool to use additional tool-specific features. For reasons of simplicity, we omit
these attributes in the subsequent grammar descriptions. Furthermore, an
apostrophe in a grammar expression like term

′∗ means that if the term occurs
more than one time, it is separated by a colon.

A Boogie2 program has the following syntax:

Program ::= Decl∗

Decl ::= TypeDecl|ConstantDecl|FunctionDecl|AxiomDecl

|VarDecl|ProcedureDecl|ImplementationDecl

Types

Types in Boogie2 are defined using the following grammar:

TypeDecl ::= type finite? Id Id∗

The keyword finite indicates that the type has a finite number of individuals.
Furthermore, possibly polymorphic map types are defined with

MapType ::= [Type
′+
x]Typey

where Type{x,y} is primitive or an already declared type. However, even though
user defined types and maps are useful, e. g., to model a heap, we do not

5http://boogie.codeplex.com

2.4 The Boogie Verification Framework 49

need these currently in our formal specification for Matlab/Simulink models.
Hence, we focus on the primitive types in Boogie2.

Table 2.1 depicts the available primitive types in Boogie2 together with
the available operations. The “<:” operator is a relational operator for the

Table 2.1: Primitive Types in Boogie2

bool Boolean values ∧,∨,¬,=⇒,⇐⇒,=, /=

int Mathematical Integers +,−,∗,/,<,≤,>,≥,=, /=,<:

real Rational Numbers +,−,∗,/,<,≤,>,≥,=, /=,<:

mbvn Bit-vectors (of size n with value m) ++, [n : m]

partial ordering. The [n : m] operator is the extract operator on bit-vectors
where a range of bits are extracted from n to m resulting in a bit-vector of the
size m− n. However, Boogie2 does not support conversion between int and
real types and no further bit vector operations. Nevertheless, it is possible to
enhance the built-in arithmetic using (uninterpreted) functions.

Variables

The syntax for variable declarations in Boogie2 is defined as

VarDecl ::= var IdsTypeWhere
′+;

IdsTypeWhere ::= Id : Type+? WhereClause?;

where the WhereClause specifies a predicate that has to be fulfilled when the
variable is assigned to an arbitrary value, e. g., using the havoc (see Sec-
tion 2.3.2) command. Note that the WhereClause may be violated due to
assignments. An assignment to a variable is done using the assignment oper-
ator “:=”. Variables declared globally outside of procedures are visible for all
scopes. Variables declared in procedures are only visible within the procedure
body.

Functions, Constants and Axioms

Beside mutable variables, Boogie2 also provides constants. Constants are de-
clared using the following grammar:

ConstantDecl ::= const unique? Id
′+ : Type OrderSpec?

The keyword unique indicates that the value of the constant is unique with
respect to other constants of the same type in the program. The OrderSpec is
used to define a partial order for the type of the constant. We refer to [Lei08]
for a detailed description.

50 Background

(Uninterpeted) functions are declared using the syntax:

FunctionDecl ::= function Attribute? Id FSig;

| function Attribute? Id FSig{Expr};
FSig ::= (IdType

′∗) returns (IdType)

IdType ::= Id :? Type

A function always has a return type and it may have a list of arguments. While
it is sufficient to only define the types of the argument, it is also possible to use
additional variable identifiers. These identifiers are necessary if the function
is defined with an additional expression that describes how the return value is
calculated. However it is also possible to describe the behavior of a function
using axioms.

In our translation, we make use of two attributes for functions. The first is
the {:bvbuiltin fun name} attribute that maps the Boogie2 function to the
fun name-function of the underlying theorem prover. This is useful to enhance
the arithmetics of Boogie2. The second attribute is the {:inline} attribute that
causes a translation of the function into a macro instead of a function. Macros
may lead to a performance gain for the verification.

Besides of functions, axioms are also used to set a constant to a specific
value. The syntax for axioms is defined as

AxiomDecl ::= axiom Expr;

where Expr has to evaluate to a Boolean value. Note that inconsistent axioms
can lead to incorrect verification results.

Assumptions, Assertions and Quantifiers

Boogie2 is an intermediate verification language. Hence, it provides commands
to constrain the possible execution paths (assumptions) and to prove properties
(assertions). The syntax for these statements is defined as follows:

Stmt ::= assert Expr;

| assume Expr;

...

Note that Expr has to evaluate to a Boolean value. The semantics of these
two statements corresponds to the definitions in Section 2.3.1.

Assertions, assumptions and axioms may also contain quantifiers. The
syntax of quantified expressions is defined as

QExpr ::= forall IdsType+ :: TrigAttr Expr

| exists IdsType+ :: TrigAttr Expr

2.4 The Boogie Verification Framework 51

where the quantifier is applied to a number of variables or constants of certain
types. Note that it is possible to define a number of triggers for a quantifier.
A trigger is an expression specifying a pattern, when the quantifier shall be
instantiated by the underlying theorem prover. Hence, triggers may be crucial
for the performance of the verification.

Procedures

The syntax for a procedure is defined as

ProcedureDecl ::= procedure Id PSig ; Spec∗;

| procedure Id PSig Spec∗ Body

PSig ::= (IdsTypeWhere∗) OutParameters?

OutParameters ::= returns(IdsTypeWhere)

where the first line only declares the interface of procedure while with the sec-
ond line, we can also specify the implementation body. Besides an identifier,
an optional set of inputs parameters and an optional output value, a procedure
declaration may also contain a specification (Spec). A specification consists of
zero or more preconditions (requires), postconditions (ensures) or frame condi-
tions (modifies). Since these are basically syntactic sugar for assumptions and
assertions, they also require a (possibly quantified) expression that evaluates
to a Boolean value.

A procedure may also have none or more than one implementation. The
signature of the implementation must repeat the declaration except for the
specification, which is only attached to the declaration. An implementation
for a procedure is defined using the keyword implementation in a similar syntax
like the declaration. However, the implementation body can also be directly
added to the declaration.

The body of a procedure consists of a list of local variable declarations
and a list of statements. These statements are either assignments, assertions,
assumptions, goto statements or labels. Furthermore, there are statements for
procedure calls and control structures, which are only syntactic sugar.

Blocks and Loops

Besides if-else statements and while loops, Boogie2 also enables the modeling
of programs with unstructured control flow using goto-and break -commands.
Loops and control flow structures are desugared into goto-blocks (see Sec-
tion 2.3.2).

Example Listing 2.1 depicts a small example program in Boogie2. It consists
of one procedure foo that takes one parameter x, compares x against a constant
c and returns either 42 if x equals the constant c or returns 24 otherwise.

52 Background

1 function { :bvbuiltin "to_int" }

2 real_to_int(x1: real) returns (int);
3 const c: real;
4 axiom c == 42.0;

5 procedure foo (x: int) returns (int)
6 ensures bar >= 0;

7 {

8 var bar: int;
9 block1:

10 goto if, then;

11 if:

12 assume to_int(c) == x;

13 bar := 42;

14 goto end:

15 then:

16 assume !(to_int(c) == x);

17 bar := 24;

18 goto end:

19 end:

20 return bar;

21 }

Listing 2.1: A Boogie2 Example

In this example, we use the {:bvbuiltin} parameter to connect the Boogie2
function real to int with the to int-function of the theorem prover. The con-
stant c of type real is set to 42.0 using an axiom. The procedure foo has a
specification attached to the declaration consisting of a postcondition that the
return value is always positive. The body of the procedure is directly attached
to the declaration. It consists of a declaration of the local variable bar and
four goto-blocks. Moreover, these blocks represent a desugared if statement
(see Section 2.3.2, Formula (2.7)).

2.4.2 The Boogie Verifier

While there exist interfaces to other SMT-solvers, the Boogie verification
framework usually uses the automatic theorem prover Z3 [dMB08] developed
at Microsoft Research6. To verify a Boogie2 program, it is translated into FOL
formulas and passed to the SMT-solver. Instead of proving that a formula φ

is valid for all possible variable assignments, the Boogie tool shows that ¬φ

is not satisfiable. If there exists a satisfying assignment for ¬φ , this variable
assignment corresponds to a counterexample.

To verify a Boogie2 program, the Boogie tool performs a number of analysis,
rewriting and transformation steps prior to the actual generation of the FOL
formulas. The most important steps are:

� Desugaring & Loop Detection One of the first processing steps is a
rewriting of the Boogie2 specification into a loop free, desugared form.
Since the goto-Statement may introduce cycles and unstructured control

6http://z3.codeplex.com

2.5 Slicing 53

flow, a loop detection is performed on the CFG and, if necessary the
CFG is transformed into a reducible CFG. Furthermore, if-then-else
statements, while loops and procedure calls are desugared into goto-
blocks, assertions and assumptions (see Section 2.3.2, Formula (2.7) and
Formula (2.8)).

� Abstract Interpretation If the flag is not disabled, abstract interpre-
tation [CC77] is performed to derive invariants for loops for ranges of
variables. However, the domains supported by abstract interpretation in
the current version of the Boogie tool is limited to intervals. Moreover,
constraints given by assertions are not considered by the analysis.

� Passive Form Once the acyclic and reducible CFG is calculated, the
program is translated into its passive form (see Section 2.3.2).

� Verification Condition Generation Finally, the program is translated
into a FOL verification condition using the weakest precondition pred-
icate transformer and the technique by Barnett and Leino described in
Section 2.3.2. The resulting VC corresponds to Formula (2.9). Boogie
encodes the formulas using the SMTLIB 2.0 format [BST10]. However,
it also uses some of Z3 -specific commands such as labels that are used to
map the parts of the formula to their corresponding assertion and goto-
blocks. With these labels, a counterexample (satisfying assignment) can
be easily associated to a specific part of the Boogie2 program.

� Counterexample Generation The Boogie verification tool is designed
to find all possible counterexamples up to an user specified maximal
number of errors to be reported. Hence, every time a violated assertion
is found, (1) the counterexample is reported, (2) it is assumed to be not
violated, and (3) the verification is continued until all counterexamples
are found (¬φ is unsatisfiable) or the user defined bound is reached. Then
the counterexamples found are reported to the user.

2.4.3 Summary

In this section, we have presented the Boogie verification framework. First,
we have introduced the core elements of the intermediate verification language
Boogie2. Subsequently, we have given a brief overview to the core mechan-
ics of the Boogie verification tool and how this mechanics are related to the
techniques presented in Section 2.3.2. However, we give a more thorough de-
scription of some of the language elements and the Boogie tool in Chapter 6
and Chapter 8.

2.5 Slicing

Program slicing is a technique for extracting those parts from a program that
either affect or are affected by a point of interest in the program. A point of

54 Background

interest in a program is usually a line number (or a statement) and a set of
variables.

The extracted statements, which are a subset of all statements in the pro-
gram, are called a slice. The point in the program and the variables of interest
are usually referred to as a slicing criterion. A detailed overview about pro-
gram slicing is given by Tip in [Tip95] and Silva in [Sil12]. In general, slices
can be classified with respect to the following properties:

� Forward vs. Backward Backward slices contain the statements that
influence the program point given by the slicing criterion. Forward slices
contain the statements that are influenced by the slicing criterion in the
further execution of the program.

� Static vs. Dynamic A slice can either contain all possible execution
paths from or to the slicing criterion, which is called a static slice, or
only contain those execution paths that are possible for a given set of
inputs to the program, which is called a dynamic slice.

� Executable vs. Non-Executable A slice can either be an executable
subset of the program or a non-executable subset. Depending on the
purpose of the slicing approach, non-executable slices can also be useful,
e. g., program comprehension.

� Syntax Preservation A slice can preserve the syntax of the program,
e. g., preserve control flow structures, or do not preserve the syntax,
which not necessarily renders the slice un-executable.

� Intraprocedural vs. Interprocedural Slices can be either calculated
within a procedure (intraprocedural) or also with respect to calls to other
procedures (interprocedural).

Slicing is used for various purposes ([Tip95, Sil12]). While originally de-
veloped for debugging, it was also used for program comprehension, software
maintenance, for testing or reverse engineering. Forward slicing is also used to
analyze the impact of changes in programs. Finally, static, executable and syn-
tax preserving slices can also be used as automatic reduction techniques prior
to static analysis since it captures all possible execution paths, and are hence
a sound over-approximation for the subset of statements under consideration.
In the next section, we introduce a widely used technique for the calculation
of program slices, which is based on Program Dependence Graphs.

2.5.1 The Program Dependence Graph

The original slicing approach[Wei81] was based on solving data flow equa-
tions. However, most slicing algorithms are using Program Dependence Graphs
(PDGs) that represent the program and calculate the slices with graph traver-
sal techniques. PDGs were first introduced by Ferrante et al. [FOW84] as
follows:

2.5 Slicing 55

Definition 2.9 (Program Dependence Graph (PDG)). A PDG is a directed,
rooted graph G(V,A) where

(i) the set V that contains nodes representing the statements (from the CFG)
of a program and region nodes, and

(ii) the set A of ordered pairs of V ×V that represent the dependence edges.

A special region node is the entry node that cannot be the target of any depen-
dence edge.

Dependence Analysis

To build the dependence graph for a program, a dependence analysis has to
be performed first. In the original approach, the set of dependence relations
consisted of two types of dependences: data and control dependence. Both are
defined in terms of the control flow graph of a program. Later, further depen-
dence relations have been added, e. g., to be able to calculate interprocedural
slices.

Data dependence (also known as flow dependence or def-use-chains) is
defined as:

Definition 2.10 (Data Dependence). A node j is data dependent on a node i
if there exists a variable x with

(i) x is defined at i

(ii) x is referenced at j

(iii) there exists a path from i to j where x is not redefined at any node in that
path.

Control dependence between nodes in the CFG is usually defined in terms
of post-dominance. A node i is post-dominated by a node j if all paths from i
to the exit node pass through j.

Definition 2.11 (Control Dependence). A node j is control dependent on a
node i if

(i) there exists a path from i to j such that j post-dominates every node in
the path excluding i and j, and

(ii) i is not post-dominated by j.

In other words, a node j is control dependent on a node i if i has at least
two outgoing edges and j is not in all of the paths to the exit node starting
from these edges. Control dependence can be determined by calculating the
post-dominator tree for a CFG.

Example In Figure 2.8, we depict a small example program to demonstrate
slicing and the corresponding CFG. The program (Figure 2.8a) calculates

56 Background

1 read(n);

2 i = 1;

3 sum = 0;

4 mul = 1;

5 while(i ≤ n)

6 sum = sum + i;

7 mul = mul * i;

8 i = i + 1;

9 write(sum);

10 write(mul);

(a) A Example Program (b) CFG

Figure 2.8: A Example Program and its CFG

the sum as well as the product of the first n positive integers. In the CFG
(Figure 2.8b), the node 5 post-dominates node 3. Since in the path from 3 to
5 every node including 3 is post-dominated by 5, 5 is not control dependent
on 3. In contrast, node 7 post-dominates all nodes on the path to node 5
except for node 5. Hence, node 7 is control dependent on node 5 (5→cd 7). In
Figure 2.8b node 5 is data dependent on node 2 (2→dd 5) since node 5 reads
the value of the variable i, which is defined in node 2.

With the dependences calculated for every statement in th program, we
are now able to construct the dependence graph. In the next section we show,
how slicing is performed using dependence graphs.

2.5.2 Static Slicing with Program Dependence Graphs

Once the dependence analysis is finished, the dependence graph can be con-
structed using the calculated dependences. This is done using the nodes from
the CFG and adding the data and control dependence edges. Additionally,
every node that is not control dependent on a node from the CFG is set to be
control dependent on the entry node.

Ottenstein and Ottenstein [OO84] presented an approach to perform slicing
based on PDGs. With PDGs, slicing can be mapped to a reachability problem
on the graph. In this approach, the slicing criterion is not any more a line in
the program and a set of variables of interest. Instead, the slicing criterion is a
node in the graph. This means, all variables defined or used by the statement
the node is representing, are the variables of interest. To calculate the slice, a
reachability analysis has to be performed either following the edges in backward
direction to calculate the backward slice or in forward direction to calculate
the forward slice. The slice consists of all nodes that are reachable starting
from the slicing criterion.

2.6 Summary 57

(a) PDG for Fig. 2.8a

1 read(n);

2 i = 1;

3

4 mul = 1;

5 while(i ≤ n)

6

7 mul = mul * i;

8 i = i + 1;

9

10 write(mul);

(b) Slice for Line 10

Figure 2.9: PDG and Slice for Line 10 for Fig. 2.8

The slices obtained by [OO84] are static syntax preserving intraprocedural
forward and backward slices. Later Horwitz et al. extended this approach
[HRB90] to also be able to calculate interprocedural slices by enhancing the
PDG by additional region nodes and dependence edges for procedure calls,
and by adjusting and optimizing the dependence analysis and graph traversal
algorithms. In the last decades, further slicing algorithms have been presented
for various programming languages and concepts, e. g., functional languages,
object oriented languages, concurrent programs and even modeling notations.
For more information on these approaches, we refer to [Tip95, Sil12].

Example In Figure 2.9, we depict the PDG and the backward slice for the
statement in Line 10 of the example program. In the PDG (Figure 2.9a),
control dependence edges are drawn with a black dotted line. Data dependence
edges are drawn with a solid red line. The slicing criterion (node 10) is marked
in light-red color. The backward slice is calculated by following the edges
backward starting at node 10 until every node that is reachable is added to
the slice. Starting from node 10 the nodes 3, 6 and 9 are not reachable using
a backward traversal of the graph. Hence, they do not belong to the slice and
the corresponding statements of the program are removed. The resulting static
backward slice is depicted in Figure 2.9b.

In this section, we have briefly introduced program slicing. Furthermore,
we have presented the program dependence graph and its use in static program
slicing.

2.6 Summary

In this chapter, we have introduced the relevant background for our verifica-
tion approach. To this end, we have given an introduction into the general

58 Background

paradigm of Model Driven Development (MDD) and its realization with the
Matlab/Simulink tool suite and the Simulink modeling notation. For the lat-
ter, we have presented the core modeling and simulation concepts. Then, we
have introduced program verification, in particular automatic techniques like
the weakest precondition predicate transformer, inductive invariant verifica-
tion and k-induction, and automatic theorem proving. Subsequently, we have
given an introduction into the Boogie program verification framework and its
formal intermediate verification language Boogie2. Finally, we have introduced
static program slicing based on dependence graphs.

3 Related Work

In this thesis, we present a framework for the formal verification of discrete-
time Simulink models. It is based on a transformation of the models into an in-
termediate verification language to define a formal semantics for the informally
defined Simulink models. Furthermore, we propose the use of slicing to reduce
the complexity of the verification problem and present a slicing approach for
Simulink models. The following discussion of related work is structured along
these core aspects of our approach. First, we start with a discussion of verifi-
cation approaches that have been published for Matlab/Simulink. Then, we
discuss related work for the slicing technique presented in this thesis.

3.1 Verification of Simulink Models

In the last decade, a number of verification approaches has been published for
Matlab/Simulink. A major challenge for all verification approaches is that
the semantics of Matlab/Simulink models is only specified informally in the
documentation of the Simulink tool. To obtain a formal semantics for Simulink
models, most approaches utilize a transformation of the Matlab/Simulink
models into a formally well defined representation. To this end, the models are
either directly translated into the input language of a verification tool or into
programming languages or other modeling notations with mature verification
backends. In the following, we differentiate these approaches whether they aim
for the verification of hybrid models that contain both, discrete and continuous
time model elements or for purely discrete models.

3.1.1 Verification of Hybrid Simulink Models

Silva and Krogh presented an approach [SK00] for the verification of Simu-
link/Stateflow diagrams that is based on a transformation into hybrid au-
tomata. Originally, the approach was limited to the class of threshold-event-
driven hybrid systems and required a specific way of modeling. Later on,
Agrawal et al. [ASK04] presented a graph transformation to translate a subset
of Simulink/Stateflow models into hybrid automata. This translation enables

59

60 Related Work

the use of verification tools for hybrid automata such as CheckMate [SK00],
HyTech [HHWT97] or SpaceEx [FLGD+11]. However, while this technique is
well suited to show that a modeled system is correct w. r. t. its desired func-
tionality (trajectory), it is not suited to detect possible run-time errors in the
model like our error classes of interest. Tiwari presented in [Tiw02] a method
to translate Simulink/Stateflow into the input language of the SAL [Sha00]
model checker. To this end, the Stateflow state machines are first translated
into pushdown automata which then are translated to SAL. While this ap-
proach generally supports variable-step simulation and inductive invariants,
both, the translation and the specification of verification goals and invariants
have to be done manually. Zou et al. [ZZW+13] presented an approach for
the verification of hybrid Simulink models using Hybrid Hoare Logic (HHL).
This approach is based on an automatic transformation of the models into the
Hybrid CSP (HCSP) calculus. The resulting HCSP model is verified against a
HHL specification with interactive and automatic theorem proving. However,
the generation of the HHL specification and necessary refinements have to be
specified manually. Bouissou and Chapoutot [BC12] presented an operational
semantics for Simulink models based on the simulation semantics. Therefore,
they defined a translation of Simulink blocks into equations and defined seman-
tic rules. Furthermore, they formalized the zero crossing detection for some
variable step solvers. However, it requires backtracking steps to determine the
point where the zero crossing occurred to calculate the new variable time step.
Hence, this semantics is rather suited for symbolic simulation and abstract
interpretation. It has not been used for verification purposes so far.

3.1.2 Verification of Discrete Simulink Models

Caspi, Tripakis, Scaife et al. [CCM+03, TSCC05, SSC+04] presented an ap-
proach for the translation of discrete-time Matlab/Simulink models into the
synchronous data flow language Lustre. To this end, they translate the Simu-
link blocks to statements or modules in Lustre. To obtain data types and
sample times, they have presented algorithms to calculate inferred sample
times and data types. To verify the models, they have originally used the
Lesar model checker [RHR91]. Note that the translation enables the use of
other verification backends for Lustre like NBac [Jea03] and Gloups [CDC00].
However, due to the type inference algorithm, the translation is restricted to
a limited set of models and the verification goals need to be specified for each
verification backend manually.

Meenakshi et al. [MBR06] presented an approach for the verification of
discrete-time Matlab/Simulink models using the model checker NUSMV
[CCGR00]. It is based on a direct transformation of the models into the
input language of NUSMV where every block is represented by a module.
Although they provide a set of templates, the verification goals have to be
specified manually. Furthermore, it is not described how they deal with in-
ferred data types. Arthan et al. [ACOS00] proposed an approach (ClawZ) to
translate Simulink models into Z [WD96] to obtain a specification that can

3.1 Verification of Simulink Models 61

be used for the verification of generated Ada code. Based on this technique
Cavalcanti et al. [CCO05] presented a technique to translate discrete-time
Simulink models into the Circus language, which is a combination of Z and
CSP. Furthermore, Cavalcanti, Zeyda and Marriot [ZC09, MZC12] enhanced
the technique by further Simulink constructs and presented a tool chain for the
automatic transformation of Simulink models to Circus. Finally, Cavalcanti
et al. [CMW13] presented a timing model for Simulink models using a timed
extension of Circus, CircusTime. These models can be verified by a translation
to CSP using the FDR2 model checker. However, in [CMW13] they state that
they do not support the verification of run-time errors in Simulink models.

Ryabtsev and Strichman [RS09] presented a method to show that a Mat-
lab/Simulink model is correctly translated by an automatic code generator
using the theorem prover YICES. They translate both the model and the gen-
erated code into the input language of Yices and perform induction to show
output equivalence of the Matlab/Simulink model and the generated C-code.
However, since the arithmetic functions are abstracted with uninterpreted func-
tions, this representation is not suitable to verify the models for the absence
of run-time errors. Roy and Shankar [RS10] presented an approach to auto-
matically check the types in a Simulink model. To this end, they transform
the model into the input language of Yices and use k-induction for the verifi-
cation. However, they require the manual annotation of types and invariants
for a model and use abstractions for mathematical operations.

In [HRB13], we have presented a verification approach based on a trans-
lation into the input language of the UCLID verifier. However, UCLID sup-
ports less theories and theory fragments than the Z3 theorem prover. Hence,
we were required to use more over-approximations of block behavior in that
transformation such that it is less precise than our approach. Furthermore,
the schedule for the blocks is calculated using synchronous data flow instead
of the actual scheduling rules of Simulink and control flow and conditional ex-
ecution contexts are not mentioned in this translation. Boström, Wiik et al.
[Bos11, BHH+14, WB14] presented an approach for the contract-based verifi-
cation of Matlab/Simulink models. It is based on a manual specification of
contracts for atomic subsystems and a subsequent translation of the models
into verification conditions for the Z3. As in [HRB13], synchronous data flow
is used, too. Furthermore, the user needs to specify the type information man-
ually in the contracts. Hence, considerably small atomic subsystems require
large effort in contract specification.

The Simulink Design Verifier (SLDV) is an additional toolbox for the Mat-
lab/Simulink tool suite. According to a report by MathWorks [Mat07], it
uses abstract interpretation and model checking techniques to automatically
verify models for for the absence of division-by-zero, dead code and overflows.
However, these techniques are subject to scalability issues especially for models
with large or unbounded state spaces.

62 Related Work

Furthermore, the SCADE Design Verifier1 has been used for the verifica-
tion of Matlab/Simulink models, e. g., by Joshi and Heimdahl [JH05]. These
approaches are based on a translation2 of Simulink models into the modeling
notation of the SCADE Suite. The SCADE Design Verifier provides further
back-ends [MWC10, HJWW09] like model checkers (e. g., NuSMV, SAL and
Prover) and theorem provers (e. g., PVS and ACL), which can be used for
the verification of translated Simulink models. However, it is not specified in
the papers, how the translation is done and thus it is not clear whether the
simulation semantics of Simulink is modeled or not.

Except for the SLDV, all these approaches are based on the assumption
that the semantics of Simulink is synchronous. Instead, the actual simulation
semantics of Simulink is sequential. There exist mechanisms that introduce
the conditional execution of blocks based on this sequential semantics. This
means, the synchronous semantics may introduce errors that cannot occur
in the sequential semantics. With our approach, we provide a more precise
formalization of the Matlab/Simulink semantics w. r. t. control flow. Fur-
thermore, many of these approaches do not target run-time errors and provide
only a low degree of automation since they require user specified annotations
and further user interaction. Highly automated approaches, like the SLDV,
use verification techniques that are subject to scalability issues.

3.2 Slicing of Simulink Models

Model slicing has been a research topic in the last decades. To this end, slicing
is not only used to support maintenance and the comprehension of models but
also to reduce the complexity for verification. To the best of our knowledge, no
slicing approach for Simulink models has been published before our approach
[RG12]. There was some unpublished work by Krogh [Kro11] in 2000 where
they have developed a slicing tool sliceMDL for Simulink for an industrial
sponsor. The sliceMDL tool uses the signal flow between blocks to slice a
model but does not consider execution contexts or control dependence.

However, there exists a number of slicing approaches for other graphi-
cal notations. An overview of slicing techniques for various kinds of mod-
els (mainly UML dialects) has been presented by Singh and Arora [SA13].
In general, modeling notations can be distinguished whether they model ar-
chitectural or behavioral aspects of systems. Depending on the desired as-
pect the techniques utilize different dependence relations, e. g., information
flow [Zha98] and inheritance dependence [WY04] for architectural models, or
data and control dependence for behavioral models (e. g., [KSTV03, ACH+09,
AGH+09, WDQ02]). The slices are either calculated using dependence graphs
[KSTV03, ACH+09, AGH+09], model traversal algorithms [GR02, ABC+11],
work-lists [WDQ02, VLH07], or predicate transformers [Lan09].

1http://www.esterel-technologies.com/products/scade-suite/verify/design-verifier/
2http://www.esterel-technologies.com/products/scade-suite/gateways/scade-suite-
gateway-simulink/

3.2 Slicing of Simulink Models 63

In the following, we focus our discussion on related approaches for behav-
ioral models of (reactive) systems. They can basically be differentiated into
slicing of state-based and synchronous modeling notations for reactive systems.

3.2.1 Slicing of State-based Models

Many approaches have been presented for the slicing of state-based models.
State-based models are state machine and automaton dialects. A compre-
hensive overview about slicing techniques for state-based models is given in
[ACH+13]. In the following, we distinguish these approaches whether they use
dependence graphs or not.

Techniques not Using Dependence Graphs

Ganapathy and Ramesh [GR02] presented a slicing approach for the state ma-
chine dialect Argos. Argos is a graphical notation that enables the modeling
of hierarchical state machines. To slice Argos models, they construct a graph
for the Argos model and enhance the graph by edges representing dependences
introduced by hierarchy (hierarchy edges) and by the use of variables in tran-
sition guards (trigger edges). The slice is calculated with a traversal of the
graph to the state specified is the slicing criterion, namely a signal of interest.
Then, trigger edges are traversed to identify concurrent states that may affect
the slicing criterion.

Wang et al. [WDQ02] presented an approach for slicing UML Statecharts
based on a transformation to extended hierarchical automata. In this approach
they have defined five different dependence relations that comprise data and
control dependences within (hierarchical and sequential) and between (paral-
lel) states. To calculate the state, they have presented a work-list algorithm
that traverses the dependence relations starting from a transition or state used
as slicing criterion. This technique was later improved by van Langenhove and
Hoogewijs [VLH07], who have increased the precision of the parallel depen-
dences by considering the execution order of the states. Both approaches
remove states and (unconnected) transitions from the model. Lano [Lan09]
presented an approach that introduces various techniques for the slicing of
UML Statecharts. The general slicing algorithm that aims to remove states
and transitions w. r. t. a slicing criterion is based on path-predicates. To this
end, for each possible path to a state of interest in the model, a predicate is cal-
culated using a weakest precondition predicate transformer. States that are not
contained in any path are removed from the slice. Furthermore, Lano describes
a number of cases where transitions and states can be removed or merged de-
pending on the path predicates and a technique to remove those parts of the
transition labels that are unrelated to the variables of interest. The resulting
slices are amorphous since they may contain states and transitions that are
not present in the original model. Due to merging, additional paths may be
introduced to the slice that were not possible in the original model. Hence, the

64 Related Work

resulting slices are not suitable for the verification of certain properties (e. g.,
reaching of invalid states).

Androutsopoulos et al. [ABC+11] presented an approach for amorphous
slicing of Extended Finite State Machines (EFSMs). To this end, models are
reduced according to input variables provided from the environment. In a first
step, all states and transitions that are not triggered by environment signals
are removed. In a sequence of subsequent steps, transitions that cannot be
triggered anymore are removed and states are merged together.

Techniques Using Dependence Graphs

Korel et al. [KSTV03] first presented an approach for the slicing of state ma-
chines using a dependence graph. In this approach, they adopt the notion
of control dependence for imperative programming languages based on post-
dominance for EFSMs. To this end, they calculate the control dependence
for EFSMs based on the post-dominance relation between states. Hence, they
require the models to have at least one exit state to be able to calculate control
dependence. Later on, Androutsopoulos et al. [ACH+09, AGH+09] improved
this technique by introducing the notion of non-termination insensitive control
dependence. With this relation, they are not only able to slice models without
exist states, but also to slice through cycles in the paths of EFSMs. In both
approaches, data dependence is calculated from the variable manipulations in
transition labels. Fox and Luangsodsai [FL06, LF10] presented an approach
for slicing of statecharts. To this end, they introduce the notion of And-Or-
Dependence Graphs to calculate the slices. The graph is constructed using
special And -nodes to conjoin the control dependences between states and the
elements of the transition labels. Data dependence exists between elements
of the transition labels. In the above presented techniques, the slices are cal-
culated using a reachability analysis starting from the nodes representing the
slicing criterion.

Although the above presented slicing techniques are used to obtain slices
for graphical modeling notations, they are not applicable to obtain slices for
Matlab/Simulink models. Many of the presented dependence relations are
tailored to the special features of the models. Furthermore, in state-based
models control flow is modeled explicitly and data flow is implicitly given by
transition and state labels. This is the exact opposite for Simulink, where data
flow is modeled explicitly and control flow may be given implicitly by the sim-
ulation semantics. Furthermore, due to the sequential simulation semantics,
concurrency is not relevant for Simulink models. However, Korel, Androut-
sopoulos et al. [ACH+09, AGH+09, KSTV03] show that it is possible to lift
slicing techniques for imperative programs to the model level by defining data
and control dependence accordingly to the particular modeling notation and
execution semantics.

3.3 Summary 65

3.2.2 Slicing of Synchronous Models

Clarke et al. [CFR+99] presented an approach for slicing of VHDL3 models.
This approach is based on a mapping of the VHDL models into a programming
language. More precisely, they calculate a CFG for the model and use it
as input to a slicing tool for imperative programming languages. However,
it is not clear how they deal with concurrency in VHDL when calculating
the CFG. Kulkarni and Ramesh [KR03] presented a technique for slicing the
synchronous programming language Esterel. To this end, they calculate a
Synchronous Threaded Program Dependence Graph (STPDG), which extends
the threaded dependence graph introduced by Krinke [Kri98] for the slicing
of concurrent programs. They define two new types of (control) dependence:
time dependence to model control flow introduced by pause statements and
interference control dependence for exception handling. Furthermore, they
present an algorithm that calculates slices using the STPDG. However, due
to the fact that interference data and control dependences are not transitive,
a reachability analysis is not suitable to calculate the slice. Instead, they use
a work-list algorithm that iterates over the dependence edges and only add
nodes for interference edges to the slice if a corresponding path is possible in
the CFG (i. e., if there exists a trace witness). Together with Kamat [RKK04],
they have later extended this technique to VHDL by constructing STPDGs for
VHDL specifications.

The main challenge for the above presented slicing approaches is the concur-
rency between threads or processes in the models. To deal with concurrency,
non-transitive interference dependences are required to cope with possible in-
terleavings. While in synchronous modeling languages like Esterel or VHDL
there exists concurrency, Simulink schedules all blocks to be executed sequen-
tially. Hence, we can ignore interference dependences for Simulink. However,
Kulkarni and Ramesh [KR03] define their new control dependence relations
w. r. t. the execution semantics of Esterel, which is similar to our slicing ap-
proach for Simulink, where we also derive control dependences from the simu-
lation semantics.

3.3 Summary

In this chapter, we have reviewed the related work for our verification and slic-
ing approach. There has been a considerable amount of work on the verification
of hybrid and discrete Matlab/Simulink models. However, most approaches
presented for the verification do not use the simulation semantics of Simulink.
Instead they give the models a synchronous semantics that is incomplete w. r. t.
some control flow mechanisms based on the sequential simulation semantics,
which may result in false negatives4. Some approaches require manual anno-
tations and only few approaches target run-time errors. Furthermore, some

3Very High Speed Integrated Circuit Hardware Description Language
4An example is given in Section 6.1.

66 Related Work

approaches use model checking techniques that are subject to the state space
explosion problem for models with large state spaces. Only few approaches per-
form a type inference ([CCM+03, TSCC05, SSC+04, RS10]) or extract inferred
information from MATLAB ([ZC09, MZC12, RS09] and [HRB13]). Some of
these approaches abstract arithmetic operations ([RS09, RS10] and [HRB13])
which reduces the precision in detecting run-time errors and only [HRB13] and
[RS10] generate (some) verification goals for such errors automatically. How-
ever, due to the use of a synchronous semantics and the abstractions they are
less precise than our approach. Except for [HRB13] that is also based on our
MeMo tool, none of the presented approaches supports5 model referencing,
library blocks and configuration files, which are very common for industrial
Matlab/Simulink designs. To the best of our knowledge, no approach that
uses the sequential simulation semantics, is highly automated, uses scalable
verification techniques, and targets run-time errors has been published, yet.

The slicing of graphical modeling notations, in particular for reactive sys-
tems, has been a research topic in the last decades. There exist many ap-
proaches for the slicing of architectural and behavioral modeling languages.
The approaches for the slicing of models presented in this chapter show that
it is necessary to tailor the dependence analysis for each different modeling
notation to the particular syntax and execution semantics. Note that some
of the presented approaches [WDQ02, Lan09, VLH07] use slicing as a model
reduction technique prior to verification. To the best of our knowledge, our ap-
proach is the first ever published for the slicing of Matlab/Simulink models.
Furthermore, since our dependence analysis also includes control dependence
w. r. t. the simulation semantics, it is more precise than the unpublished work
of Krogh [Kro11]. However, this also implies that our approach is the first ap-
proach published that combines slicing and verification for Matlab/Simulink
models.

5Some approaches directly translate composite blocks.

4 Automatic Verification
Approach

With Matlab/Simulink as a de-facto standard1 in the development of embed-
ded and safety critical controller software, there is a need for comprehensive
quality assurance techniques like formal verification. However, the increasing
complexity of Matlab/Simulink models demands techniques that scale well.
Furthermore, to be applicable in practice, these techniques need to be not only
highly automated but also need to cover an adequate subset of the Simulink
language, and to produce comprehensible results.

In this chapter, we present our general approach for the verification of
discrete-time Matlab/Simulink models to tackle these requirements. Our
approach is based on a fully automatic translation of the Matlab/Simulink
models into the Boogie programming language. A preliminary version of this
translation approach has been published in [RG14a]. To provide additional
automation, we also automatically generate proof obligations during the trans-
lation to verify the absence of important run-time errors. So far, we consider
the following error classes: overflows, underflows, division-by-zero and range
violations. However, the verification approach is not limited to these error
classes.

To tackle the issue of scalability, we use inductive verification techniques to
prove the absence of these errors. Furthermore, we present a slicing approach
for Simulink to reduce the size of the models for a specific point of interest
(e. g., a potential error) and hence the verification effort.

In the following sections, we introduce our approach in detail. We first
present the general idea of our framework, which is a translation of a given
informal Simulink model into a formal Boogie2 specification. Afterwards, we
present the core components of our framework and describe the process for the
verification of Simulink models using our framework.

1http://de.mathworks.com/company/user stories/product.html

67

68 Automatic Verification Approach

Figure 4.1: The General Verification Idea

4.1 Verification Idea

The aim of our framework is to provide an automated verification environment
for Matlab/Simulink models that is scalable and applicable in practice. To
achieve scalability, we propose the use of inductive techniques. To achieve prac-
tical applicability, we aim for a verification flow that is mostly automatic and
requires low user interaction. Furthermore, we use an underlying verification
layer that has proven to be useful in practice.

However, formal verification techniques require a formal model for the sys-
tem to be verified. Hence, the main challenge for our approach is the fact that
neither for the graphical notation nor for the actual simulation of Matlab/Si-
mulink models, a formal semantics has been published by The MathWorks.

To overcome this problem, we propose a translation of a subset of Simulink
models into the Boogie2 intermediate verification language, which serves us
for both: as a formal model and as input for the Boogie verification tool.
The general idea of the translation is depicted in Figure 4.1. In addition to
(1) the formal specification for Matlab/Simulink models, the translation also
extracts (2) verification goals for the previously mentioned error classes and
(3) additional information like loop invariants from the original model. Hereby,
the additional information from (2) and (3) is used to achieve a higher degree
of automation since the user does not need to specify verification goals and
those invariants manually.

Formal Model While the notation of Matlab/Simulink models is generally
concurrent, the simulation of Matlab/Simulink models is done sequentially,
just as the code that is generated for controllers. During a simulation, the
Matlab/Simulink environment calculates an execution order for the blocks,
initializes the blocks and executes the model for a given number of time steps.
Hence, in our automatic translation, we first have to calculate the block order
to construct a control flow graph (CFG), which then can be translated into
a Boogie program. Once the CFG is calculated, we translate the model ac-

4.2 Verification Framework Architecture 69

cording to the CFG block by block. For each supported block type, we define
translation rules specifying the translation according to the block semantics,
the relevant parameters and the signals connected to the inputs.

Verification Goals Depending on the block type, verification goals are cre-
ated for each block. For each block where overflows, underflows, division-
by-zero and range violations can occur, the necessary checks are produced
according to the parameters of the concrete blocks.

Verification Model Besides the parameters necessary for the translation of
the blocks, we additionally extract information from the model that helps
with the verification, e. g., saturation limits, data types, and lower and upper
bounds for signals. This information is used to automatically create loop
invariants in the specification. With our approach, we support two verification
methods: inductive invariant checking and k-induction. The first is naturally
supported by Boogie, for the second we create a special Boogie2 specification
for a desired k.

Finally, the formal specification for the Matlab/Simulink model is passed
to the Boogie tool which either returns a counterexample if the model contains
an error or returns that the model is verified. However, the counterexamples
reported may be false negatives. These may occur due to abstraction, due to
missing invariants or due to invariants that are too weak to verify the absence
of errors. To deal with the latter, our framework makes use of k-induction
as presented in Section 2.3.2. However, the size of the verification conditions
increases with the size of k. To overcome this problem, we apply slicing tech-
niques to the model to generate smaller verification conditions.

With this approach we are able to achieve a high degree of automation since
the transformation, the generation of the verification goals and the verification
techniques are mostly automatic. Moreover, we can achieve scalability due to
the verification techniques used and the additional model reduction techniques.

4.2 Verification Framework Architecture

In this section, we present the general architecture of our verification frame-
work. Figure 4.2 depicts the components and the interaction between them
within our framework. There are three main components: the transformation
engine, the verification engine and the slicing engine.

Transformation Engine This is the core component of the framework. It
takes a Matlab/Simulink model and transforms it into the formal model.
Hereby it not only translates the model, it also generates verification goals
and invariants as mentioned in the previous section. Besides transforming a
full model, it is also able to transform partial models generated by the slicing

70 Automatic Verification Approach

Figure 4.2: The Architecture of the Verification Framework

engine. Furthermore, the translation is parameterizable with a k to generate
specifications for k-inductive invariant verification. This is necessary since
Boogie currently does not support k-induction by itself. A detailed description
of the transformation engine is given in Chapter 6.

Verification Engine The verification engine basically is the interface to the
underlying Boogie verification framework. It takes the formal specification
in Boogie2 and invokes the Boogie tool. When invoking the Boogie tool our
engines also specifies some parameters and flags depending on some properties
of the model (e. g., use of fixed point data types) and the desired verification
method. To visualize results and ease debugging, our engine processes the
output of the Boogie tool. Our engine uses the structural information about
the model that is encoded into the formal specification to assign the errors to
the blocks from the original Simulink model.

Slicing Engine The slicing engine is the component that applies our slicing
technique to the models. A preliminary version of this technique has been
published in [RG12]. In our framework, the slicing component is used to slice
a model with respect to a certain error. More precisely, the blocks, for which
errors were reported in a previous verification attempt, are used as slicing
criterion for a backward slice. Since static slicing is a safe over-approximation
and calculates all execution paths that may reach the block of interest, the
resulting slice is suitable for subsequent translation and verification attempts.

To be practically applicable, all of these components are integrated in our
MeMo tool suite. The transformation engine and the slicing engine require
information about the model, which are usually not available from the Mat-
lab/Simulink model files. Hence, our tool provides a two-phased parser that

4.3 Verification Process 71

Figure 4.3: The Verification Process

enhances the information taken from the model file by adding the information
inferred by the Simulink tool at run-time. This avoids the reimplementation of
the inference mechanisms of Matlab/Simulink, whose description is informal
and incomplete in the Matlab/Simulink documentation. Furthermore, the
MeMo tool suite performs a number of analysis steps needed by the compo-
nents, e. g., the identification of entry and exit point of signals in bus systems.

4.3 Verification Process

We propose a process how to use the components of our verification framework.
This process is depicted in Figure 4.3.

The general idea of our process is to transform a given Matlab/Simu-
link model into Boogie2, and then start with the most scalable verification
technique first: inductive invariant verification. This results in three different
outcomes: (1) the Boogie tool successfully proves the absence of errors, (2) the
Boogie tool is not able to show the absence of errors within a given time bound,
or (3) the boogie tool reports at least one counterexample. In case of (1), the
process is finished since the model is verified. In case of (2), the model is too
complex to show the absence of errors even with the most scalable technique.
Hence, manual intervention is needed to make the model less complex, e. g.,
slicing or compositional techniques. In case of (3), where errors are reported,
these counterexamples still may be false negatives (spurious counterexamples).

Spurious counterexamples may occur for two reasons, either they are caused
by abstractions or by invariants that are not strong enough. However, abstrac-
tions are necessary due to restrictions to the arithmetics supported by verifi-
cation tools and stronger invariants may require manual intervention. With
k-induction it is possible to verify certain properties using weaker invariants
as long as it is possible to find a suitable k.

Hence, the next step in our process is to try to eliminate the spurious coun-
terexamples by performing verification attempts with an increasing k. Again,

72 Automatic Verification Approach

if we succeed in showing the absence of errors, we are finished. As long as
errors are reported by the verification attempts, k is increased. However, since
this technique requires the unrolling of the system for k times, it is less scalable
than inductive invariant verification. Hence, it is possible that no verification
results are obtainable within a given time bound for a k for all errors taken into
account. At this point, slicing is used to reduce the model for a certain error
and k-induction is applied to the reduced model. Finally, if the verifier is still
not able to show the absence of errors, the counterexample has to be inspected
manually. At least, since the counterexamples returned by k-induction usually
describe a trace of k steps, it is more comprehensible than counterexamples
returned by inductive invariant verification.

With the process presented in this section, we can combine our verifica-
tion approach with our model reduction approach in order to achieve both:
automation and scalability. The process consists of three stages:

1) Use the most scalable technique (inductive invariant checking) first to verify
the absence of all errors under consideration.

2) Use k-induction that is more automated since it allows for the use of weaker
invariants to show the absence of all errors.

3) Use automatic model reduction techniques to show the absence of a specific
error from 2) on a model slice with a higher k than in 2).

With each stage, the number of properties that can be verified automatically
increases for the cost of more computational effort. By combining the strength
of inductive invariant verification, k-induction and slicing, we achieve a ver-
ification process that provides an effective trade-off between automation and
scalability. This enables us to verify complex systems with reasonable compu-
tational effort and minimal user-interaction.

4.4 Summary

In this chapter, we have presented our general verification idea which is based
on a translation of discrete-time Matlab/Simulink models to Boogie2. Fur-
thermore, we have presented the components of our verification framework and
our proposed process for the efficient use of our framework. In the following
chapters, we first present our slicing approach in Chapter 5. Then, we present
our automatic translation of Simulink into the formal model in Chapter 6 be-
fore we introduce the automatic generation of the formal specification that
consists of the formal model, verification goals and loop invariants tailored to
the respective verification strategy in Chapter 7.

5 Slicing of Simulink Models

In this chapter, we present our slicing approach for Matlab/Simulink. With
this approach, we address the problem of reducing the complexity of a model.
Therefore, we remove those parts of the model that do not affect a partic-
ular block. We require our slicing method to preserve the semantics of the
residual model to be suitable for subsequent automatic verification techniques.
Furthermore, the slice has to be as precise as possible since Simulink models
may consist of a huge number of blocks where each irrelevant block results in
unwanted complexity.

We propose a static slicing technique for Matlab/Simulink models using
a dependence graph based approach. The basic approach has been published
in [RG12]. The core idea of our approach is to transfer the techniques known
from classic program slicing to the model level. Therefore, we use the fact that
the simulation semantics of the models in Matlab/Simulink is sequential.

In classic program slicing, a static slice is a subset of the program that
contains all statements that affect or are affected by a specific point in the
program. In other words, a slice contains all possible execution paths from or
to a specific point in the program. In terms of Simulink models, we consider
(basic) blocks, similar to statements, as the smallest unit of execution. Hence,
we define the slicing criterion for Simulink models as:

Definition 5.1 (Slicing Criterion for Simulink). The slicing criterion C for a
Simulink model m is defined as a set of blocks: C(B) where B⊆ m.

Since the execution of the models is done by the simulation engines, we
define a static Simulink slice as:

Definition 5.2 (Static Slice for Simulink). A static slice of a Simulink model
for a slicing criterion C is the subset of all blocks that

(i) are either affected by the execution of the blocks in C (forward slice)
or

(ii) affect the blocks in the set of blocks in C (backward slice).

A block b1 affects a block b2 if the block b2 is directly or transitively control or
data dependent on b1.

73

74 Slicing of Simulink Models

In other words, a Simulink slice contains all blocks that potentially may in-
fluence the calculations of the blocks in the slicing criterion or all blocks whose
calculations are potentially influenced by the block in the slicing criterion in
all possible executions of a model.

Our approach consist of two parts:

1. A dependence analysis for Matlab/Simulink models for control and
data dependence.

2. A slicing approach for Matlab/Simulink that preserves hierarchy and
semantics within the slice.

The main challenge in our slicing technique is the dependence analysis. This
analysis gathers and calculates the information about the data and control
dependences between the blocks that are necessary for the static slicing tech-
nique. Furthermore, it provides these dependences to our translation into the
formal model in Boogie where they are used to calculate the Control Flow
Graph (CFG) for the model.

In the subsequent sections, we first discuss the assumptions and limita-
tions to the models to make our approach applicable in Section 5.1. Then,
in Section 5.2, we present the dependence analysis in detail and discuss data
and control flow in Simulink models. After that, in Section 5.3, we present
our general slicing approach before we introduce further enhancements that
increase the precision of the slices in Section 5.4.

5.1 Assumptions

Our slicing approach aims at two goals: On the one hand, we use it as an
automatic model reduction technique within our verification framework to re-
duce the state space and, as a result, the size of the formulas. On the other
hand, the slicing approach can be also used for tasks like model comprehen-
sion, reviews or deriving quality metrics [HLW12]. For the latter purposes,
it is possible that only partial models are available in practice since model
parts are developed by different partners. Hence, we propose a basic slicing
approach suitable for even incomplete models but for the cost of precision that
works on the Matlab/Simulink model file. Furthermore, we present and an
enhanced routing-aware approach that requires complete models but provides
more precise slices.

There are minimal requirements to the models to enable the basic slicing
approach. For the basic approach, there are the following assumptions and
limitations to the models:

� No algebraic loops The models are not allowed to contain cyclic signal
flow without a delay element.

� No multirate blocks The documentation lacks a clear definition of
multirate blocks. These blocks should be avoided since their presence

5.2 Dependence Analysis 75

may lead to less precise slices due to over-approximations during the
dependence analysis.

� Over-approximations Stateflow machines, SFunction blocks, bus sys-
tems, multiplexer, demultiplexer and unavailable references are over-
approximated by assuming that all outputs depend on all inputs. This
is necessary since they either implement complex behavior in other mod-
eling and programming languages, or the model file does not contain
enough information because it is inferred at compile time.

For the routing-aware approach, we require the model to be executable
(complete). With the routing-aware approach we also support precise slicing
of bus systems. However, Stateflow machines and SFunction blocks, mul-
tiplexer and demultiplexer are still over-approximated. The latter are over-
approximated since there are a number of blocks that can directly operate on
vectors and may change the ordering of the signals.

5.2 Dependence Analysis

In this section, we present our dependence analysis for Simulink to identify
the dependences between the model elements. Since Simulink is a data flow
oriented graphical notation, data flow is basically given by the structure and
(more or less) directly modeled. Control flow, to a certain degree, is also
modeled directly, but there are some mechanisms that introduce implicit con-
trol flow, too. In this section, we explain how we determine data and control
dependence in Simulink models. To this end, we first discuss data flow and
define data dependence. After that we discuss control flow, and the relation
between Execution Context (EC) and control dependence. Finally, we present
our algorithm for the calculation of control and data dependences.

5.2.1 Data Flow and Data Dependence

While in most imperative programming languages control flow can be easily
derived from the structure of the program and data flow needs to be calculated
using complex analyses, in Simulink the opposite is the case. Data flow in
Simulink is modeled by signal lines. Hence, data dependence can mainly be
derived by following signal lines.

Typically, data flow in Simulink is specified by defining a line L connecting
two blocks b1 and b2. This means that an output signal l of b1 is used as
an input signal for b2. In analogy to imperative languages, l is defined in
b1, referenced in b2 and transmitted via L. In this case b2 is directly data
dependent on b1.

Definition 5.3 (Data Dependence in Simulink). A block b2 is data dependent
on a block b1 if

(i) b1 and b2 are connected by a line L and

76 Slicing of Simulink Models

(ii) L starts from an output of b1 and ends in an input of b2.

This definition is rather coarse. Especially in the presence of bus systems, it
leads to imprecise slices since there may be multiple signals encoded in a single
line that are not necessarily all relevant for a certain slicing criterion. However,
since the actual structure of bus system signals is calculated at compile time
(see Figure 2.5 in Section 2.2.2), the definition is suitable to slice models using
only information from the Matlab/Simulink model file. Hence, with that
approach we are also able to slice incomplete models that are not executable.

To deal with executable models containing bus systems, we have developed
an enhanced (routing-aware) analysis to automatically annotate the bus signals
carried by a line. These annotations are then used for dependence graph
construction. We discuss this extension in Section 5.4.

5.2.2 Control Flow in Simulink

Although Simulink is a data flow oriented notation, there are possibilities to
model the conditional execution of model parts. To understand control depen-
dence in Simulink, we first discuss how control flow is introduced into a given
model.

Control flow in Simulink models can occur at

(1) conditional subsystems or

(2) loop subsystems or

(3) switch blocks (MultiPortSwitch and Switch blocks).

Furthermore, implicit control flow may be introduced by certain parameters to
the simulation engine or model elements. In the following three subsections,
we discuss these model elements in detail.

Conditional Subsystems

Conditional subsystems are subsystems that are only executed during the sim-
ulation if a certain predicate holds. The predicate depends on the type of
the conditional subsystem. There are Enabled, Triggered, Enabled & Trig-

gered, Action and Function-Call subsystems. They are all characterized
by (at least) one special input that controls the execution of the subsystem.
Depending on the type of the subsystem, the signal connected to the special
input is checked for a specific property.

Figure 5.1 depicts an Enabled subsystem and its contents. The special
input, the enable port, is on the top of the subsystem (Figure 5.1a). The
subsystem is executed if the signal connected to the input is greater than 0.
Within the subsystem (Figure 5.1b), there is an EnablePort block labeled

5.2 Dependence Analysis 77

(a) An Enabled Subsystem (b) Contents of the Enabled Subsystem

Figure 5.1: An Enabled Subsystem and its contents

with "cond". This block corresponds to the input on top of the subsystem in
Figure 5.1a.

Blocks contained in a conditional subsystem are only executed if the con-
dition given by the special port is fulfilled. Conditional subsystems are atomic
and hence have their own execution context. Moreover, these subsystem need
an additional configuration for their outputs since they may not be executed
in every simulation step but their outputs are required by subsequent blocks.
This may be either a specified default value or the outputs stored from the last
execution.

Basically, conditional subsystems are comparable to if-then-else statements,
in which the contents of the subsystems are executed in the then-branch and
the default behavior is the else-branch. In addition, there exist Switch-Case

and If-Then blocks. These are specialized blocks that drive Action1 subsys-
tems. Although, the actual conditional execution is done by Action subsys-
tems, these block may increase the comprehensibility of the model.

Loop Subsystems

Besides conditional subsystems, Simulink also provides loop subsystems. The
common loop constructs like while and for are realized by atomic subsystems.
Similar to conditional subsystems, they contain a special block that controls
the execution of the subsystem and are atomic subsystems. In contrast to
conditional subsystems, the contents of loop subsystems can be executed mul-
tiple times in a single simulation step. Furthermore, the states of blocks are
updated in every execution of the subsystem.

The block that triggers the execution of a loop subsystem is either a
WhileIterator, a ForIterator or a ForEach block. A WhileIterator block
triggers the execution of the subsystem as long as a condition is true. Depend-
ing on its configuration, the block may need an additional input for the initial
condition if it models a while loop. For a do-while loop no initial condition
is needed. A ForIterator block triggers the execution of the subsystem for
a given number of times. A ForEach block iterates over dimensional input

1An Action subsystem behaves basically the same as an Enabled subsystem. The only
difference is that the type of the signal is ”action” that can only be produced by a few
number of blocks, e. g., Switch-Case and If-Then blocks.

78 Slicing of Simulink Models

Figure 5.2: A MultiPortSwitch

signals and execute the contents of the subsystem for each specified element
in the input signal.

Switches

Switch or MultiPortSwitch blocks are used in Simulink to forward a specific
signal depending on a control signal. Depending on the value provided to the
control input, the signal attached to the corresponding data input is forwarded
to the output of the Switch or MultiPortSwitch block. While the Switch

block only has two data inputs, a MultiPortSwitch block may have more.
In both cases, during the simulation of these blocks only one data input is
selected at a time. Hence, only the blocks that are relevant and connected to
the selected input need to be executed while the execution of the others does
not influence the result.

To optimize the simulation of a model, the Simulink environment provides
the Conditional Execution Behavior mechanism to avoid unnecessary execu-
tion of model elements. If Conditional Execution Behavior is active, the Simu-
link environment only executes those blocks that supply data to the selected
input port of the Switch or MultiPortSwitch block. For that purpose, the
simulation engine internally creates Enabled subsystems for each data input.

Figure 5.2 depicts a MultiPortSwitch block. The topmost input is the
control input. The three inputs below are data inputs. Depending on the
value of the signal at the control port one of the data ports is chosen.

In conclusion, the conditional execution of blocks in Simulink is always
realized by conditionally executed atomic subsystems. Hence, the key idea to
determine control dependences is to investigate how Simulink internally treats
conditional subsystems.

5.2 Dependence Analysis 79

5.2.3 Conditional Execution Contexts and Control Depen-
dence

As mentioned in Section 2.2.2, for each atomic subsystem a new Execution
Context (EC) is created. The blocks contained in the subsystem are assigned
to the corresponding EC and scheduled according to their data dependences.
Further ECs that are introduced by these blocks are scheduled within their
parent EC. Note that there always exists one execution context for the entire
model, where all blocks not assigned to other ECs are scheduled according to
their data dependences. We refer to this top-level context also as root EC.

Once the initialization phase of a given model is finished, two types of ECs
can exist:

(1) Execution contexts that are executed in any step of the simulation loop
created for plain atomic subsystems, and

(2) execution contexts that are only executed if a certain condition for the
value of a specific signal is satisfied.

We refer to (2) as Conditional Execution Contexts (CECs). Moreover, the
condition for the execution is realized by special port or iterator blocks. In the
following, we refer to this special port or iterator block as predicate block.

Execution of Models

Once all execution contexts are calculated and all other initialization steps
are done, the model is simulated. To this end, the selected simulation engine
samples the model at various instants in time. Although Simulink is used to
model reactive systems that are potentially non-terminating, the simulation
always finishes after a given number of steps.

Figure 5.3 depicts an abstract control flow graph for the simulation of a
model. Once the initialization is done, the simulation loop is entered. Then,
the blocks in the root EC are executed in their sorted order. If the simulation
engine encounters a conditional subsystem, the condition given by the predicate
block (Pred 1) is evaluated. If the condition is not satisfied, the next block of
the root EC is executed. Otherwise, the schedule of the corresponding child
EC (CEC1) is executed. The execution does not return to the root EC until
all blocks and further nested ECs are executed. Finally, when the last block
in the root EC has been executed, the simulation loop invokes the execution
for another step or the simulation is finished.

This means, Simulink models have the following execution behavior:

(1) A model is simulated for a given number of steps. In each of these simu-
lation steps, the model is executed fully if no run-time error occurs. The
simulation of a Simulink model stops if the simulation loop is left after
executing the model.

80 Slicing of Simulink Models

Figure 5.3: CFG for an Arbitrary Model with Nested Control Flow

(2) By definition of ECs (Definition 2.1) the following holds: Once an EC is
entered, all blocks within the EC have to be executed. This also holds for
the root context.

These properties enable us to transfer the notion of control dependence from
imperative programming language to Matlab/Simulink models. As presented
in Section 2.5, control dependence is defined with respect to post-dominance,
which in turn requires termination. Termination is given by property (1).
Furthermore, (2) also implies that there is only structured control flow.

Control Dependence

With the properties presented in the previous section, it is generally possi-
ble to calculate control dependence for Simulink models by transferring the
techniques known from imperative programming languages to the model level.
However, these techniques require the calculation of the CFG for a given model.

It is possible to extract control dependence directly from the conditional
execution contexts in the models: Assume there is a block b in a CEC e and
e is not the root EC. The predicate block p that triggers the execution of e is
part of the parent EC eparent , which may be the root context. For this block
b, it holds that

(i) there exists a path from p to b such that b post-dominates every block
in this path excluding p and b, and

(ii) p is not post-dominated by b.

First, there exists a path from p to b because if p triggers the execution of e,
all blocks in e are executed including b (atomic execution). Second, b post-
dominates every block in the path because if e is executed,

5.2 Dependence Analysis 81

(a) all blocks in e are always executed in the same sorted order, and

(b) the simulation terminates (there is a path to the exit node of the CFG).

Finally, p is not post-dominated by b since there is a path to the exit node
where the execution of e is not triggered. Hence, b is control dependent on p.

Accordingly, we define control dependence for Matlab/Simulink models
as follows:

Definition 5.4 (Control Dependence in Simulink). In a model m with the root
execution context em containing the blocks b1 and b2, b2 is control dependent
on block b1 if

1. b2 is within a conditional EC e /= em and

2. b1 is the predicate block controlling the execution of e.

The blocks contained in em are control dependent on the simulation loop.

The key problem for the calculation of control dependence is that neither
the CFG nor the ECs are available from the model file or from the Matlab/Si-
mulink tool itself.

5.2.4 Calculation of Control Dependence

In the previous section, we have shown that control dependence for Simulink
models can be derived from Conditional Execution Contexts. CECs are an
internal representation in the Matlab/Simulink tool that cannot be accessed,
neither from the model file nor by MATLAB commands. This requires us to
calculate the CECs in Simulink models first, in order to perform a dependence
analysis. The main problem in the calculation of CECs is that under certain
conditions, a CEC can be propagated to blocks outside of the corresponding
conditionally executed subsystem.

Conditional Execution Context Propagation

Conditional Execution Context Propagation is a mechanism in Simulink that
propagates the CECs of control flow elements through other blocks and dif-
ferent levels of hierarchy. It is activated in two ways: either it is triggered
explicitly by conditional subsystems if the parameter PropExecContextOut-

sideSubsystem is set to ON, or it is activated for switch blocks if Conditional
Execution Behavior is set active for a model.

In the first case, blocks that meet certain conditions and are connected to
the inputs and outputs of a conditionally executed subsystem are added to its
CEC. In the second case, for each data input of switch blocks, an Enabled

subsystem is created internally with the propagation set active.

82 Slicing of Simulink Models

(a) The Subsystem containing
the MultiPortSwitch

(b) A MultiPortSwitch with
ECS and Sorted Order

Figure 5.4: Propagated ECs for a MultiPortSwitch

Figure 5.4 depicts an excerpt of a Simulink model with Conditional Exe-
cution Behavior set active. For the model, the displaying of the sorted order
has been activated. Every non-virtual block has its execution context and
its (zero-indexed) position displayed in the upper right corner separated by
a colon. In addition, the MultiPortSwitch in Figure 5.4b has the CECs it
introduces annotated in curly brackets. Its annotation 4 : 3{3,2,1} reads as
follows: The block is assigned to CEC 4 and in position 3 in the sorted order.
Furthermore, it introduces the CECs 1, 2, and 3 for the internally created En-

abled subsystems. The CEC 3 is only propagated to the Gain block “Gain1”.
The block itself is on position 0 and the sole block within CEC 2. It is only
executed if the first data input is selected. The CEC 2 is created for the second
data input, the Bias block within the subsystem, and the Gain block outside
the subsystem (see Figure 5.4a). Here, the CEC is propagated one level up in
the hierarchy of the model. Both blocks are only executed if the second data
input is selected.

In the Matlab/Simulink documentation, MathWorks specifies the follow-
ing rules for the propagation of execution contexts:

Definition 5.5 (Conditional Execution Context Propagation [Mat14b]). A
block is added to an execution context if

(1) its output is required only by a conditionally executed subsystem or its
input changes only as a result of the execution of a conditionally executed
subsystem, and

(2) its sample time is inherited, and

(3) the output of the block is not a testpoint, and

(4) the block is allowed to inherit its conditional execution context, and

(5) the block is not a multirate block.

According to these conditions, the Simulink environment calculates the ex-
ecution context for each block. Since we cannot extract the information about
the CECs from the model, we propose our own algorithm for the calculation
of CECs published in [RG12].

5.2 Dependence Analysis 83

Calculation of Conditional Execution Contexts

The basic idea of our algorithm is to traverse the model top down in a depth-
first search to identify all blocks that introduce a new CEC and then to perform
the propagation if necessary. To this end, we analyze all paths leading to or
coming from a block that propagates its execution context. By analyzing the
paths we can detect if the blocks satisfy the condition (1) of Definition 5.5.
Additionally, while analyzing the paths, we check the parameters of every block
in the path. (2) or (3) can be directly derived from the parameters of the blocks
(or of the inputs and outputs).

We do not evaluate condition (5) since it is not exactly specified what a
multirate block is. Furthermore, the Simulink documentation lacks for suf-
ficient information (except for two examples), which blocks are not allowed
to inherit an execution context (4). The documentation gives two examples
for such blocks, which are also respected by our analysis. We stop the path
analysis if one of the first four conditions is not satisfied.

Note that not including (5) and only partially supporting (4) weakens the
conditions for the propagation of CECs. That means, additional blocks may be
added to a CEC in some very rare cases. This is actually an over-approximation
of the existing control dependences. Hence, we preserve the correctness of the
slices computed by our approach but the over-approximation may lead to a
decrease in precision. Since (4) and (5) are block-specific properties like (2)
and (3), the algorithm can be easily extended.

To compute the conditional execution contexts, we recursively traverse the
model top-down through the hierarchy as shown by Algorithm 5.1. It starts on
the highest hierarchy level of the model with the empty root CEC as curCEC
and operates in three phases as described in the following.

First, the algorithm iterates over all blocks within the current hierarchy
level to search for blocks that introduce a new conditional execution context.
These are either conditionally executed subsystems or loop subsystems. If such
a block is found, a new execution context is created and added to the CEC
that is currently processed (curCEC). Then, the algorithm is invoked recur-
sively on the newly created CEC with all blocks contained in the subsystem.
The recursive traversal stops if the lowest hierarchy level is reached. If the
parameter PropExecContextOutsideSubsystem is set for the subsystem, the
execution context is propagated in forward and backward direction and the
execution contexts are filled bottom up.

In the second phase, once all conditional and loop subsystems of a certain
hierarchy level have been identified, all remaining blocks are processed. Hereby,
the algorithm again iterates over all blocks of a hierarchy level searching for
blocks that are not part of any of the previously constructed CECs. If a block
is a virtual subsystem, the algorithm is invoked recursively on the blocks within
the subsystem using the current CEC. Otherwise, the blocks are directly added
to the current CEC.

84 Slicing of Simulink Models

Algorithm 5.1: Search for all Execution Contexts in a Model

1 Function findExecutionContext(blocks, curCEC) as
/* find new CECs first */

2 for b in blocks :
3 if b is cond. or loop subsystem :
4 create new EC e;
5 add e to curCEC;
6 CALL findExecutionContext(b.childs, e);
7 if PropExecContextOutsideSubsystem = ON :
8 for dataIn of b :
9 propagateBackward(b, dataIn, e, curCEC);

10 for dataOut of b :
11 propagateBackward(b, dataOut, e, curCEC);

/* add remaining blocks to current CEC */

12 for b in blocks :
13 if b is not in curCEC :
14 if b is virtual subsystem :

/* taverse the virtual hierarchy */

15 CALL findExecutionContext(b.childs, curCEC);

16 else:
17 add b to curCEC;

/* process switches if neccessary */

18 if Conditional Execution Behavior is active for the model :
19 for b in blocks :
20 if b is Switch or MultiportSwitch :
21 for dataIn of b :
22 create new EC e;
23 add e to curCEC;
24 propagateBackward(b, dataIn, e, curCEC);

25 end

The third phase of the algorithm is only triggered if Conditional Execution
Behavior is enabled for the model. Then, the algorithm searches for switch
blocks. If a switch block is found, an execution context is created for each
data input and added to curCEC. Afterwards, the propagation of execution
contexts in backwards direction is invoked.

The propagation of the execution contexts (propagateForward() and prop-
agateBackward()) is basically implemented with a work-list algorithm that it-
erates over the inputs or outputs connections of blocks. The algorithm for the
propagation in backward direction is depicted in Algorithm 5.2. The forward
propagation is done analogously. Note that in our algorithm, line branches are
resolved into signal lines between blocks.

The algorithm takes four parameters: a signal line connected to the input
from which the execution context is propagated, the block from where the
propagation starts, the new CEC that is propagated and the CEC of the

5.2 Dependence Analysis 85

Algorithm 5.2: Propagation of Conditional Execution Contexts (Back-
ward)

1 Function propagateBackward(sigLine, target, newCEC, oldCEC) as
2 worklist = {sigLine}; addlist = /0; inspectlist= /0;
3 while worklist /= /0 :
4 for line in worklist :
5 b = source(line);
6 if check2(b) ∧ check3(line) ∧ check4(b) :
7 if oneOutput(b) :
8 if getCEC(b) is oldCEC or none :
9 newCEC.add(b);

10 addlist.add(b.insignals);

11 else:
12 inspectlist.add(b);

13 worklist = addlist; addlist = /0;

14 for block in inspectlist :
15 if targets(outputs(block)) ⊆ newCEC ∧ block /∈ newCEC :
16 newCEC.add(block);
17 for s in block.insignals :
18 propagateBackward(s, block, newCEC, oldCEC);

19 end

block. In a first phase, the algorithm performs a breadth-first search over the
input signals within the worklist. For every source block of an input signal, it
is checked whether the conditions ((2),(3) and (4)) for the propagation of the
execution context hold. If they hold, we differentiate whether the block has
only one or more outgoing signals. Blocks that have only one outgoing signal
are added to the execution context and their input signals are added to the
temporary list (addlist) for the next iteration over the work list. Blocks that
have more than one output signal are added to a list for further inspection
(inspectlist) since they may violate the condition (1) of Definition 5.5. A block
with two or more outputs violates (1) if at least one of its outputs is not
required by the conditional executed subsystem. Once the work list has been
processed, the newly identified signal lines are added to the work list. The first
phase stops if no new signal lines are identified.

In the second phase, all blocks that have more than one output are pro-
cessed. To identify the blocks that satisfy condition (1), the algorithm checks
the target blocks of all outgoing signals. If all those blocks are already in the
propagated CEC (newCEC), i. e., they have been added by the breadth-first
search, condition (1) is satisfied. Then the block is added to the new CEC
and the propagation algorithm is invoked recursively starting from this block
for all its inputs, since it may be possibly propagate the context to its input
signals. If not, the block is discarded.

86 Slicing of Simulink Models

The algorithm terminates since blocks already included in the propagated
CEC are not processed twice (Line 8 and Line 15), and there exists only a
finite number of blocks in the model.

Once all CECs for a model are calculated using the algorithms presented
in this section, control dependence can be directly derived from the calculated
CECs as shown in Definition 5.4.

5.2.5 Summary

In this section, we have presented our dependence analysis for Matlab/Simu-
link models. Therefore, we have defined data and control dependence in Si-
mulink models. Data dependence is directly derived from signal lines. Control
dependence is derived from conditional execution contexts within the model.
Since CECs are not accessible to the user, we needed to calculate these for
a model first. To overcome this problem, we have presented an algorithm
to calculate the CECs, which is also able to deal with Conditional Execution
Behavior and Conditional Execution Context Propagation. We use the depen-
dences calculated by our analysis presented to build up the dependence graph
and slice the model.

5.3 Slicing of Simulink Models

In this section, we present our slicing approach for Matlab/Simulink models.
It is based on the use of dependence graphs for the model to calculate the slice.
Hence, it consists of two parts: The construction of the dependence graph and
the slicing of the models by performing a reachability analysis.

5.3.1 Building the Dependence Graph

Once we have identified data and control dependences within a given model
using our dependence analysis, we can construct a Matlab/Simulink Depen-
dence Graph (MSDG). We define a MSDG as follows:

Definition 5.6 (Matlab/Simulink Dependence Graph). A Matlab/Simu-
link Dependence Graph is a directed, rooted graph G(V,A) where

(i) the set of nodes V represent the blocks of the model and region nodes

(ii) the set A of ordered pairs V ×V that represent the dependence edges.

Region nodes are nodes that do not actually map to a block (like the entry
node). The entry node that cannot be the target of any dependence edge.

Note that the Enabled subsystems internally created for each data input
of switch blocks are represented as region nodes in the MSDG, too.

5.3 Slicing of Simulink Models 87

The construction of the MSDG is done in the following steps:

1. In a preprocessing step, all subsystems are flattened. The flattening
is done by reassigning the signals connected to inputs and outputs of
subsystems to the corresponding Inport and Outport blocks inside the
subsystem.

2. Then, for each block in the model, a corresponding node in the set of
nodes V of the MSDG is created.

3. The data dependences are added to the nodes by iterating over all blocks
in the model. For each line connecting two blocks, a data dependence
edge is added.

4. Finally, the entry node is created and starting with the root EC, control
dependence edges are added. Therfore, all ECs are traversed. If a child
execution context is found during the traversal, the node corresponding
to the predicate block is added to the parent execution context and the
child execution context is traversed recursively. At switch blocks a region
node is created for every CEC that is not empty and a control dependence
edge is added to all child nodes.

The resulting MSDG can now be used for static forward and backward
slicing.

5.3.2 Computing the Simulink Slice

The slice for a model is computed using a reachability analysis in forward or
backward direction and marking the visited nodes. The starting point for the
analysis is defined by the set of blocks B given in the slicing criterion C(B) (see
Definition 5.1). The reachability analysis is done using a work-list algorithm
that starts with the slicing criterion and iterates over all outgoing or incoming
dependence edges.

Algorithm 5.3 depicts the basic slicing algorithm. The algorithm takes two
input parameters: the slicing criterion and a Boolean flag that indicates the di-
rection of the reachability analysis. In a preprocessing step, subsystems within
the slicing criterion are replaced by the corresponding port blocks depending
on the desired direction. This is necessary since the dependence graph was
constructed from the flattened model. However, if a subsystem is part of the
slicing criterion it is sufficient to use the underlying Outport blocks for forward
slicing and the Inport blocks for backward slicing. Then, for each block the
corresponding node in the MSDG is added to the work-list. Now, the algorithm
iterates over the work-list until no new nodes are added to the list. Each node
in the list is marked to keep track of already visited nodes. Furthermore, for
each node the dependence edges are traversed. Depending on the direction, if
the target (dataOut or controlOut) or source (dataIn or controlIn) nodes have
not been marked yet, they are added to the addlist for the next iteration. Note
that, by definition, a node is directly control dependent to exactly one node.

88 Slicing of Simulink Models

Algorithm 5.3: Slicing Algorithm

1 Function slice(blockCriterion, forward:bool) as
2 replaceSubsystemsByPortBlocks(criterion, forward);
3 worklist = getNodesForBlocks(blockCriterion);
4 addlist = /0;
5 while worklist /= /0 :
6 for node in worklist :
7 node.mark();
8 if forward :
9 for n in node.dataOut :

10 if isNotMarked(n) :
11 addlist.add(n);

12 for n in node.controlOut :
13 if isNotMarked(n) :
14 addlist.add(n);

15 else:
16 for n in node.dataIn :
17 if isNotMarked(n) :
18 addlist.add(n);

19 if isNotMarked(node.controlIn) :
20 addlist.add(node.controlIn);

21 worklist = addlist; addlist = /0;

22 end

The traversal stops if no new unmarked nodes are found. All marked nodes
belong to the slice for the given criterion.

The resulting slice can now be visualized in the model (e. g., with our MeMo
tool), or can be used for further processing, e. g., for formal verification. Note
that since the MSDG is calculated on the flattened model, there may exist
(virtual) subsystems that need to be included into the slice for visualization
purposes. This can be easily achieved by a post-processing step, in which every
subsystem is checked whether it contains at least one marked block.

5.3.3 Example

Remember the model introduced in Section 2.5 that corresponds to the pro-
gram in Figure 2.8a. The model is depicted in Figure 5.5a and Figure 5.5b.
For a detailed description of the model we refer to Section 2.2.2.

Assume, we want to slice the model for the slicing criterion C(write(mul))
backwards. The dependence analysis for the model identifies two execution
contexts: the root EC and a CEC for the WhileIterator subsystem. The root
EC contains the blocks

ECroot = {Constant, Ramp, While Iterator Subsystem, Mux, Scope}

5.3 Slicing of Simulink Models 89

(a) Top Level of the Model (b) Contents of the Subsystem

�������	
�

�	

��

��������������

������
	�� �	
���� �	
�������
����������
��������

��������

��������� ���

�����

�
	����
	�

��
�

����

(c) Dependence Graph for the Model

�������	
�

�	

��

��������������

������
	�� �	
���� �	
�������
����������
��������

��������

��������� ���

�����

�
	����
	�

��
�

����

(d) Marked Dependence Graph for write(mul)

(e) Top Level Slice (f) Slice of Subsystem Contents

Figure 5.5: An Example Simulink Model and its MSDG, the Marked MSDG and
the resulting Slice for the Block write(mul)

90 Slicing of Simulink Models

Figure 5.6: Example Matlab/Simulink model with Bus Systems

and CECWhileIterator contains the others.

The resulting dependence graph is shown in Figure 5.5c. In this figure,
the dotted edges represent control dependence. Solid edges represent data
dependence. To slice the model for C(write(mul)) the node write(mul) is used
as starting point for the reachability analysis.

Figure 5.5d shows the graph after the analysis is finished. The blue node,
again, is the starting point. Every red node is reachable directly or transitively
in backward direction from write(mul) and belongs to the slice. Black nodes
and edges do not belong to the slice.

In Figure 5.5e and 5.5f, we depict the sliced model. In the model, the blocks
within the slice are drawn blue while the blocks not contained in the slice are
drawn gray. As one can see, neither the block necessary for the calculation of
the sum nor the Mux and the Scope block are contained in the slice since they
do not influence the value at block write(mul).

5.4 Increasing the Precision of Slices

In the previous sections we have presented our basic approach for the slicing of
Matlab/Simulink models. This approach is suitable for models taken from a
file and to slice it for the blocks of interest.

However, the definition of data dependence is coarse and based on lines.
Lines in Simulink represent signal flow between blocks and may contain one or
more signals. Multiple signals on a line can either be a vector or a composite
signal. Composite signals are usually created by Mux or BusCreator blocks. A
specific signal in a composite signal or vector can be accessed using a selector.
Multiple signals are extracted by using Demux and BusSelector blocks.

Figure 5.6 depicts an example model that contains a number of Constant
blocks. The values of these Constant blocks are passed through a complex

5.4 Increasing the Precision of Slices 91

Figure 5.7: Slice for “Display ?” (Original Algorithm)

bus system and some of the constants are shown in the Display blocks. This
model has already been compiled, which causes some lines of the bus system
to be visually distinguishable (single and multiple lines) from the rest of the
lines. In a model that has not been compiled yet, all lines would look the
same (single line) since the inference algorithm for the signals is invoked at
initialization time.

The depicted bus system is nested. This means that the bus signal created
by the block “BusCreator A” is part of the bus signal created by the block
“BusCreator D”. In this example, “BusSelector D” extracts some signals from
the bus signal and passes them to the block“BusSelector ?”. This block again
extracts some signals and passes them to the Display blocks.

By simply looking at the model, it is not possible to find out which of
the constants (“a” or “f”) is displayed by ”Display ?”. The slicing algorithm
presented in the earlier sections would return all Constant blocks since using
the original definition for data dependence leads to an over-approximation for
bus signals. The slice returned by our algorithm is depicted in Figure 5.7.

Now, we extend our approach in two aspects: Firstly, we add a preprocess-
ing step to our dependence analysis wherein we calculate the data dependences
w. r. t. bus systems. Secondly, we extend our slicing algorithm such that it is
able to use this information to calculate more precise slices. Note that the pre-
processing step requires the model to be executable since it uses information
that can only be obtained after the model is compiled.

5.4.1 Routing-aware Dependence Analysis

In our basic slicing approach, we transform the model into an intermediate
representation. In that representation, hierarchies are flattened by reassigning
the signal lines connected to the inputs and outputs of subsystems directly
to the corresponding port blocks. Even though the resulting graph structure

92 Slicing of Simulink Models

is well suited for signal flow analyses, it does not hold the information which
signals are transported by a line.

To overcome this problem, we enhance our intermediate representation by
annotating each line within a bus-structure with the source signal and the
destination signal. However, this information is not explicitly given in a model
file. Thus, we need to calculate this information by analyzing the bus system
and block parameters.

Bus Systems in Simulink

The main problem in resolving bus systems is that the model file contains no
information about the structure of the bus signals. This information is inferred
by the Matlab/Simulink tool while compiling the model in the initialization
phase. But, in opposite to the execution contexts of the model, this information
can be extracted from the tool. However, a model needs to be in some state
after the initialization to extract this information.

To calculate the source and destination of signals within bus systems, we
analyze the paths in backward direction starting at BusSelector blocks to the
point where a signal enters the system because BusCreator blocks usually do
not contain any information about the signals carried by the freshly created
composite signal line. In contrast, BusSelector blocks have two parameters
of interest for this analysis:

� inputSignals The inputSignals parameter describes a nested array
containing the signals supplied to the block. For the “BusSelector D”
from our example (Figure 5.6), the array would look like:
[signal1 [signal1, signal2], signal2 [signal1, signal2],

signal3 [signal1, signal2]]

� outputSignals The outputSignals parameter describes an arbitrary
selection of these signals. Hereby it is possible to use a dot to select sig-
nals through the hierarchy levels of the composite bus signal. A possible
selection would be [signal1, signal3.signal2]. This would select all
signals of signal1 (in our case, the signal created by “BusCreator A”
containing two signals) and the second signal of the bus signal created
by “BusCreator C” (the constant value 1.1).

In addition to BusCreator and BusSelector blocks, Simulink provides BusAs-
signment blocks that can be used to update specific signals in a bus system.
The parameter AssignedSignals of this block describes the output signals of
the bus to be replaced with new values in the same syntax as in outputSignals

parameter in BusSelector blocks.

Calculating Signal Flow in Bus Systems

The basic idea of our calculation algorithm is to use the information provided
by the BusSelector blocks and use it as goals to reach during traversal. More

5.4 Increasing the Precision of Slices 93

Figure 5.8: Model with nested Bus Systems and a BusAssigment block

precisely, we use the entries of the outputSignals parameter as our goals, and
whenever we encounter a bus creator during traversal, we remove the highest
hierarchy level of this bus. With that, we achieve a flattening of bus systems
where all bus signals are resolved.

Figure 5.8 shows a small model with a nested bus system and a BusAs-

sigment block. From the BusSelector we derive three goals: signal1 (blue),
signal2.signal1 (green) and signal2.signal2 (red). Note that the In-

putSignals parameter is not available since the model is not in the compiled
state and the names of signals are displayed without hierarchy.

The algorithm for the calculation of signal flow in bus systems consists of
the following steps:

1. Collect all BusSelector blocks in a model. Then, for each BusSelector

block that has not been processed do steps 2-4:

2. Create a traversal goal from each entry in outputSignals. Then for each
goal (corresponding to an outgoing signal line of a BusSelector) do:

3. Traverse the incoming signal line of the BusSelector in backward di-
rection to determine a path to the signal line entering the bus system.
During the traversal, signals are added to the path, paths are duplicated,
or the traversal stops depending on the next block in backward direction:

� BusSelector If the backwards traversal finds a BusSelector, the
path information for the corresponding output of the block is added
to the current path. If there exist more than one path for the
output, the current path is duplicated. If the BusSelector has
not been processed yet, the algorithm is invoked recursively on the
BusSelector block.

� BusAssignment If the traversal finds a BusAssigment block on
the path, the algorithm checks if the signals specified in the param-
eter AssignedSignals affect the traversal goals. A goal is affected
if an entry of the parameter exactly matches the goal, or share the
same signal hierarchy. Hereby, we distinguish between full match,
partial match and no match. A full match is given if the parameter

94 Slicing of Simulink Models

exactly matches the goal or higher hierarchy levels of the goal (e. g.,
the parameter is signal2 and the goal is signal2.signal2). In
this case, the traversal is finished since this is the entry point to the
bus system w. r. t. data dependence. If the parameter entry and the
goal do not match (e. g., the parameter is signal2 and the goal
is signal1.signal2), the traversal is continued since none of the
signals of interest are affected. In case of a partial match, where
the parameter entry is more precise than the goal (e. g., the pa-
rameter is signal2.signal2 and the goal is signal2)), the paths
have to be duplicated since the BusAssigment as well as the blocks
found with further traversal are affecting the signal. In our example
model from Figure 5.8 we have a full match for the red goal. Hence,
the traversal is finished and a path from Constant4 to the third
output of the BusSelector is returned. For the blue goal and the
green goal, we have no match, and for these goals the traversal is
continued.

� Merge, Switch, MultiPortSwitch If the traversal encounters
one of these blocks, all possible input signals have to be treated
as relevant paths except for the control inputs of the Switch and
MultiPortSwitch blocks. Hence, the current path is duplicated
and used as prefix for the further traversal of the relevant signal
lines connected to the inputs.

� BusCreator A BusCreator block is an entry point to the bus sys-
tem. When encountering this block, the algorithm uses the signal
structure given by the inputSignals parameter of the currently
processed BusSelector block and the Inputs parameter of the
BusCreator to identify the corresponding inputs. In case of a hier-
archical signal, the highest hierarchy level is removed from the goal
(e. g., the green goal signal2.signal1 is changed to signal1) and
the traversal is continued on the corresponding signal line. If the
goal does not describe a hierarchical signal, the traversal is stopped
and the path is returned. In Figure 5.8, the traversal for the blue
goal is stopped in (2) and for the updated green goal in (1).

� Sources Besides BusCreator blocks some source blocks are also
able to produce bus signals. Furthermore, (top-level) inputs to a
model may contain bus signals. In both cases, the bus signals cannot
be resolved further, and hence, the traversal is stopped.

� Other Blocks If the traversal finds a block of a type not mentioned
in the list before, it duplicates the path for every input of the block.
However, most of the other bus-capable blocks2 have only one input.

4. Finally, for each path found with the algorithm, the entry and the exit
signal are annotated to every line on the path.

2http://www.mathworks.com/help/simulink/ug/bus-capable-blocks.html

5.4 Increasing the Precision of Slices 95

The enhanced intermediate representation can now be used for the con-
struction of an enhanced dependence graph that enables precise slicing trough
bus systems.

5.4.2 Routing-aware Dependence Graph

With the intermediate representation presented in the previous section, we are
now able to enhance our slicing algorithm for precise and routing-aware slicing
of bus systems. The basic idea is to add additional nodes to the dependence
graph to model the paths of the signals through the bus systems explicitly.
Instead of creating one node per block, we now create nodes for each signal that
is passed through a block within a bus system. That requires some changes to
the dependence graph construction and minor changes to the slicing algorithm.
The changes to the slicing algorithm only apply if a block within the bus system
is taken as slicing criterion.

For the calculation of the routing-aware dependence graph

1. we calculate the data and control dependences and build up the depen-
dence graph, and

2. search for nodes in the dependence graph that are entry points into bus
systems.

For each entry point into a bus system, the output signals of the subsequent
blocks are traversed. For every block that has at least one output signal that
is annotated with the same destination, a special BusNode is created. The
BusNode replaces the previous node for the block and represents one possible
path through the bus system. It maintains a reference to the block and inherits
all control dependences from the original block. The data dependences are set
only for the nodes corresponding to the current path. The traversal stops if
one of the output signals of a block equals the desired destination. The data
dependence edges of the last BusNode in a path are set to the destination node.

With the dependence graph enhanced in this way, we are now able to slice
through bus systems using the same reachability analysis as for the original
algorithm. Only two modifications are necessary. Firstly, if the slicing criterion
is a block within a bus system, all BusNodes representing this block in some
path have to be added to the slicing criterion. Secondly, the references to the
original blocks have to be used in case of a BusNode when extracting blocks
from the dependence graph.

Figure 5.9 depicts the routing-aware MSDG for the model presented in Fig-
ure 5.6. In this MSDG, the BusNodes are drawn as boxes. The slicing criterion
(“Display ?”) is the node with the blue border. A backwards reachability anal-
ysis starting from this node results in five reachable nodes. Four BusNodes and
the Constant block a. The BusNodes represent the paths through the bus sys-
tem and replace the original nodes except for bus selectors where a signal path
is not selected. Those paths end in the original node for the BusSelector

block.

96 Slicing of Simulink Models

�
�
�

�
����

	

��

�
���

���
�

�
���

���
�����

��
��
�

�
���

���
��

�
���

���
��

�

�
�
�

�
���	

���
��
�
��

!

�
�
�

�
���	

���
�
"
��

!

�

�
�
�

�
���	

���
��
�
��
#
!

�
�
�

�
���	

���
�
�
��
#
!

$

�
�
�

�
���	

���
��
%
�
&
!

��
�
�

�
���	

���
��
%
�

!

�

�
�
�

�
���	

���
��
�
�
'
!

�
�
�

�
���	

���
�
#
�
'
!

�

�
�
�

�
���	

���
��
�
��
&
!

�
�
�

�
���	

���
�
"
��
&
!

��
�
�

�
���	

���(
��
#
��
"
!

�
�
�

�
���	

���
��
�
��

!

�
�
�

�
����

	

���

��
�
��

!

�
�
�

�
���	

���(
��
�
��

!

�
�
�

�
����

	

��(

��
�
��

!

�
�
�

�
���	

���
�
"
��

!

�
�
�

�
����

	

���

�
"
��

!

�
�
�

�
���	

���
��
�
��
#
!

�
�
�

�
����

	

���

��
�
��
#
!

�
�
�

�
���	

���(
��
�
��
#
!

�
�
�

�
����

	

��(

��
�
��
#
!

�
�
�

�
���	

���
�
�
��
#
!

�
�
�

�
����

	

���

�
�
��
#
!

�
�
�

�
����

	

���

�
��
#
!

�
�
�

�
���	

���
��
%
�
&
!

�
�
�

�
����

	

���

�
�
�

�
���	

���
��
%
�

!

�
�
�

�
���	

���
��
�
�
'
!

�
�
�

�
����

	

���

��
�
�
'
!

�
�
�

�
���	

���(
��
�
�
'
!

�
�
�

�
����

	

��(

��
�
�
'
!

�
�
�

�
���	

���
�
#
�
'
!

�
�
�

�
����

	

���

�
#
�
'
!

�
�
�

�
����

	

���

#
�
'
!

�
�
�

�
���	

���
��
�
��
&
!

�
�
�

�
����

	

���

��
�
��
&
!

�
�
�

�
���	

���(
��
�
��
&
!

�
�
�

�
����

	

��(

��
�
��
&
!

�
�
�

�
���	

���
�
"
��
&
!

�
�
�

�
����

	

���

�
"
��
&
!

�
�
�

�
����

	

��(

��
#
��
"
!

�

	

F
ig
u
re

5
.9
:
R
ou

tin
g-aw

are
M
S
D
G

w
ith

S
lice

for
“
D
i
s
p
l
a
y
?
”

5.5 Summary 97

Figure 5.10: Routing-aware Slice for “Display ?”

Finally, Figure 5.10 shows the slice (for “Display ?”) calculated using our
improved approach. Now, it is clear that “Display ?” shows the value of the
Constant block “a”.

With this enhanced slicing approach we are able to calculate considerably
more precise slices. In Section 9.2 we provide evaluation results for a compar-
ison of the basic and the routing-aware approach.

5.5 Summary

In this chapter, we have presented our static slicing approach for Matlab/Si-
mulink models. Our approach consists of a dependence analysis for Mat-
lab/Simulink models w. r. t. the simulation semantics and control flow given
by the conditional execution of blocks. With the calculated data and control
dependences, we construct a Matlab/Simulink Dependence Graph (MSDG),
which we use to calculate the slices with a reachability analysis. Besides our
basic technique, which is suitable for any Simulink model, we have also pre-
sented an enhanced technique that is routing-aware w. r. t. signal flow trough
bus systems within a given model. The latter technique is more precise than the
basic approach but requires the models to be executable since it uses run-time
information of the signals. With these slicing techniques, we are able to reduce
a given Simulink model to a partial model, which consist of all blocks that pos-
sibly affect or are possibly affected by a given block of interest. Furthermore,
the dependence analysis provides information about control and data flow to
the transformation approach presented in the next chapter.

98

6 Transformation of Discrete-
Time Simulink Models to Boogie

In this chapter, we present the core component of our approach: an automatic
transformation (engine) to translate discrete-time Matlab/Simulink models
into formal Boogie2 specifications that contain the formal model, automati-
cally generated verification goals and invariants. The resulting specification
enables the mostly automatic verification of Simulink models using the Boogie
verification framework.

This chapter is structured as follows: First, we give an overview of the
transformation approach in Section 6.1. Afterwards, we discuss the assump-
tions and limitations to the models suitable for our approach in Section 6.2.
In Section 6.3, we introduce the basic concepts of our translation such as the
modeling of blocks, signals, control flow and the mapping of the data types
in our formal model. Then, we describe our translation in detail. To this
end, we first describe in Section 6.4 how we calculate the control flow graph
for a given Simulink model before we present the translation rules for each
supported block type in Section 6.5. Finally, we describe how we handle im-
plicit casting of data types in Simulink and the saturation of output signals,
which may occur for multiple block types before we conclude this chapter in
Section 6.6.

6.1 Overview

Matlab/Simulink is widely used in industry for the modeling and develop-
ment of embedded controller software. Even though it is used for the develop-
ment of safety critical software components, there exists no formal description
of the semantics for the models. However, to verify Simulink models we need
to obtain a formal semantics for them. There is a detailed documentation
[Mat14b] but it is only an informal description of some but not all behav-
iors. Thus, it is incomplete and inaccurate (w. r. t. certain model and block
behavior).

99

100 Transformation of Discrete-Time Simulink Models to Boogie

Figure 6.1: The Translation Process

This means that the key challenge for our translation and for later verifi-
cation is to obtain a formal semantics for Simulink models. In our approach,
we obtain a formal semantics by mapping Matlab/Simulink models to the
(formally) well defined Boogie2 language. For the formal model, we use two
observations:

(1) The simulation engines of Matlab/Simulink, also called solvers (see Sec-
tion 2.2.2), give an informal semantics to the model. Depending on the
selected solver, blocks may have different behaviors. In addition, the sim-
ulation is performed sequentially in a simulation loop.

(2) Every block type is a language element with a certain behavior depending
on the solver, the block parameters and the inputs. Furthermore, Mat-
lab/Simulink changes over the years. This means that new block types
are added and sometimes the behavior of a block changes.

The first observation leads to our first key idea, namely to explicitly model
the simulation loop in our formal Boogie2 model. Within this simulation loop,
we then place the blocks, which are translated w. r. t. their informal semantics,
signal flow dependencies and control flow. To achieve this, we calculate a
control flow graph for the model first. We reuse our dependence analysis
presented in the previous chapter to calculate data and control dependences
(more precisely the execution contexts) and use this information to determine
the Control Flow Graph (CFG).

The second observation leads to our second key idea to provide a modular
translation approach where for each supported block type, translation rules are
defined (and performed by a translator). This set of block translator is easily
extensible and maintainable in case of new blocks and modified behavior.

Figure 6.1 depicts the general translation process. First, a CFG is created
from the model. Then, we iterate over every node of the CFG that represents
a block and translate this block according to the translation rule defined for its
type, its inputs and its parameters. Besides the Boogie2 statements that model
the block behavior, the translator generates verification goals for certain error
classes and loop invariants that are required for the verification of the model.

6.2 Assumptions 101

Figure 6.2: Example Model with Control Flow

We present a detailed description of the automatically generated verification
goals and the loop invariants in the next chapter (Chapter 7). The resulting
artifacts are composed into the formal specification.

Motivation for Using the Sequential Semantics

Before we present our translation in detail, we discuss the use of the sequential
simulation semantics. Figure 6.2 depicts a small Simulink model with the
execution order and the Conditional Execution Contexts (CECs) displayed in
the upper right corner of each block. The model consist of a limited counter
that repeatedly counts from zero to seven, which provides the value to a Switch

and a Product block. Depending on the value of the counter, the Switch block
either outputs the value of the counter (if the counter outputs 0) or the result
of the division. With Conditional Execution Behavior enabled, the model
consists of two execution contexts. A CEC consisting of the Constant and
the Product block that is only executed if the control signal is not zero, and
the root context that consists of all other blocks. A division-by-zero cannot
occur since the Product block is only executed if the counter outputs a value
that is not zero. However, when using a synchronous semantics that does not
consider the execution contexts, the Product block is executed if the counter
outputs zero, too. A division-by-zero is reported although it cannot occur
in the actual model. Hence, our translation using the sequential Simulation
semantics provides a more precise formalization of the model w. r. t. control
flow.

6.2 Assumptions

Matlab/Simulink is used to model embedded controllers and their possibly
continuous environment. Hereby, the controller, more precisely the controller
software, is modeled in the discrete time domain. Since the aim of our frame-
work is to verify controller software that is executed on discrete embedded

102 Transformation of Discrete-Time Simulink Models to Boogie

controllers, we focus on the subset of blocks that operate in the discrete time
domain and on the semantics of these blocks as given by a discrete, fixed-step
solver.

Furthermore, we have to make further limitation to the models since Mat-
lab/Simulink enables the integration of legacy code and provides mathemat-
ical functions and operations that cannot be expressed with Boogie2. Hence,
we constrain the models by the following limitations:

� Discrete Subset The models should only contain blocks from the dis-
crete subset of the block library and stateless blocks, such as the block
sets: Discrete blocks, Lookup Tables, Math Operations, Ports & Subsys-
tems, Signal Routing, Sources and Sinks

� Fixed Sample Time We assume that the sample time is fixed for ev-
ery block. Note that with our parsing framework, we can also support
inherited (inferred) sample times.

� Limited Support for S-Functions We do not support external code
like C code or MATLAB functions (M-code) introduced by S-Function

blocks. However, since these blocks are not completely avoidable in prac-
tice, these blocks are over-approximated if necessary.

� Stateflow We only provide limited support for Stateflow blocks. Since
Stateflow models are internally realized by S-Function blocks, they are
also over-approximated by default. However, the ranges of output signals
given by the parameters of Stateflow blocks can be used as assumptions
for the verification.

� Limited Bus Support While we generally support bus systems, we do
not model them explicitly. Instead, we use the algorithm presented in
the previous chapter to resolve bus systems directly. We assume that
the model does not contain bus-capable blocks and composite data types
like bus objects.

� No Matrix or Complex Signals We only translate vector and scalar
signals and element-wise operations on matrices. We do not support
signals that represent complex numbers. Furthermore, we do not support
enumerated data types.

� Limited Support for Arithmetic Operations There are blocks that
represent calculations that are too complex, or for which it is even im-
possible to define a sufficient mapping with the types and operations
provided by Boogie. For example, we cannot model some functions like
the exponential function. To cope with these blocks, we use over-approx-
imations of the behavior or of the calculated results.

� Limited Support for Floats While Boogie naturally supports integer
and Boolean variables, it does not support floating-point types. Hence,
we over-approximate them using rational numbers.

6.3 A Formal Model for Simulink 103

� Limited Support for Simulation Time Some Simulink blocks use
the simulation time to calculate the outputs. For these blocks we use
over-approximations since we do not want to explore the full state space
of a model starting from the initial state.

� No Iterator Subsystems Although, we are generally able to translate
loop subsystems with our approach, we do not support models containing
loops since the verification may require additional (manually specified)
invariants to succeed and they may greatly increase the verification effort.
However, we discuss the general translation idea in Section 6.5 to give
an intuition how the translation could be done.

� No Algebraic Loops We require the models to not contain algebraic
loops. An algebraic loop is a cycle in the data flow without a block
modeling a delay where every block depends directly on the outputs of
all other blocks.

Even though our approach has a number of limitations, it is still suitable
to be used on industrial case studies. Moreover, many of these limitations
are rather minor issues and can be added in future, e. g., adding support for
iterator subsystems or bus-capable blocks. Since we use parameters in our
approach that are inferred at compile time, we also require the models to be
executable. However, our approach still supports a large number of blocks that
are commonly used for the development of embedded controllers and hence, it
is suitable for the verification of Simulink models for these controllers.

6.3 A Formal Model for Simulink

The key idea for our formal model for Matlab/Simulink models in Boogie2
is the explicit modeling of the simulation loop. We aim for a formal model
that can be automatically generated and automatically verified w. r. t. certain
classes of errors using inductive techniques and the Boogie verification frame-
work. Furthermore, we define abstractions to over-approximate the behavior in
our formal model to cope with the complexity of the original Simulink model.
Some of these abstractions are necessary since Simulink models may use a
number of arithmetic operations that are not supported by the Boogie verifi-
cation framework and the Z3 theorem prover, others are used to reduce the
complexity of the formal model and hence, to be able to perform verification
fully automatically. Furthermore, we abstract from the actual simulation time
to over-approximate the possibly unbounded state space of a given model.

For the abstractions in our formal model, we use safe over-approximations
of the actual behavior of the Simulink model. Since these abstractions model
more possible executions than the original model, it may result in false nega-
tives during the verification. However, we aim for abstractions where the over-
approximation of the behavior is small to reduce the number of false negatives.

104 Transformation of Discrete-Time Simulink Models to Boogie

Figure 6.3: The Structure of the Formal Model

Figure 6.3 depicts the (schematic) structure of our formal model. Since
Boogie2 is a procedural language, we generate an overall procedure for the
model (1). Within the procedure, there is an initialization section (2) and a
simulation loop (3-6) corresponding to the initialization and simulation phases
presented in Section 2.2.3. In the initialization section (2), the variables rep-
resenting the blocks are declared, and set to their initial values.

For the simulation loop, we use the desugared representation realized by
goto statements (see Formula (2.10), Section 2.3.2). The desugared representa-
tion consists of a loop head (3) where the loop invariants are specified, the loop
body (4) which contains the behavior of the model, and the loop end (7) which
corresponds to the end of the simulation. The upper execution limit stepmax
is a symbolic constant that is constrained to be greater than the number of
steps for the simulation specified in the model parameters to model a possibly
unbounded execution. Within the loop body, there are two sections. The first
section corresponds to the first step of the simulation (see Section 2.2.3) where
the new outputs for the blocks are calculated (5). The output functions of
the blocks are mapped to Boogie2 statements and positioned according to the
CFG. The second section corresponds to the second step of the simulation
where the states of the blocks are updated (6). Note that since we require the
models to have a fixed-step discrete sample time, we can omit the steps for
zero-crossing detection and for the calculation of the next step length.

In addition to the procedure corresponding to the Simulink model, our for-
mal model also contains a preamble (0). This preamble mainly serves for two
purposes. On the one hand, all constant values for the model are declared and
initialized in the preamble. Constant values are either outputs from Constant

6.3 A Formal Model for Simulink 105

blocks, constant values provided by the Matlab/Simulink tool1 or constants
for data type bounds. On the other hand, the preamble also contains a number
of abstractions or over-approximations using (uninterpreted) functions. Fur-
thermore, operations and functions provided by the underlying Z3 theorem
prover that are not part of the Boogie2 language are declared here using the
{:bvbuiltin} directive.

When abstracting the behavior of blocks in our formal model, we assume
that a block (or an intermediate result) has a range of valid values. The block
is over-approximated by assuming that it can output any value in the range
of valid values. The range of valid values is either given by a minimum and
maximum value or linear functions. The actual abstractions are described for
each block type in Section 6.5.

In the following sections, we discuss general concepts for our formal model
and transformation, before we then present the translations for the specific
block types in Section 6.5.

6.3.1 Modeling Blocks

Our basic idea for the translation of blocks is to map the output and (state)
update functions of blocks to statements in Boogie2.

A Simulink block B = {I,S,O} generally consists of three (possibly empty)
sets that depend on the block type and its parameter configuration. The set of
inputs I = {in1, . . . , inn} consist of the block inputs where a signal is connected
to. Note that ini = {ini1, . . . , inik} is a set of signals if the input is a vector.
The set of outputs O = {out1, . . . ,outm} consists of the block outputs where an
output signal can be connected to the block and can output a vector of signals
analogously. The set of block states S = {s1, . . . ,s j} are the internal states.
Depending on the block type, the sets may be empty (e. g., a Constant block
has no inputs and no states).

In Simulink, the output and state update functions for a block b are defined
as

Ob = fOut(Ib,Sb, time)

Sb = sUpd(Ib,Sb, time)

where time is the simulation time used in the calculations of some blocks.
We abstract from the actual simulation time in our formal model and over-
approximate the behavior of blocks w. r. t. the time. However, many blocks
do not use the simulation time and for some other blocks it is not relevant
if a fixed-step, discrete solver is used for simulation. Hence, we translate the
output function into a set of Boogie2 assignments corresponding to the set of
outputs:

1Simulink models can access values from the workspace of the Matlab/Simulink tool.
These values are loaded into the workspace with configuration files written in M-code or
by callback function like onLoad() specified in the model.

106 Transformation of Discrete-Time Simulink Models to Boogie

(a) Excerpt from Figure 5.5

1 // Constant1
2 Constant1.out1 := 1;

3

4 // Sum (i + 1)
5 Sum.out1 := Sum.in1 + Sum.in2;

6

7 // UnitDelay (1/z)
8 // output assignment:
9 UnitDelay.out1 := UnitDelay.state1;

10 // state assignment:
11 UnitDelay.state1 := UnitDelay.in1;

(b) Contents of the Subsystem

Figure 6.4: An Excerpt from the Example Simulink Model (Figure 5.5) and the
Output and Update Functions

1 out11 := f11(I, S);

2 out12 := f12(I, S);

3 ...

4 outmk := fmk(I, S);

Here, fi j is the function that calculates the output expression for a specific
element in the set of outputs for a block. The statements for the state update
function are translated analogously:

1 state11 := g11(I, S);

2 state12 := g12(I, S);

3 ...

4 statemk := gmk(I, S);

The function g11 returns the state update expression. Note that ini j, outi j and
statei j are replaced by the corresponding variable names in the actual transla-
tion. The mapping for every supported block type is presented in Section 6.5.

Figure 6.4 depicts an excerpt of the example model from Figure 5.5 and
the corresponding update and output statements. The three blocks realize a
simple counter that increments a value by 1 in every simulation step and is
initialized with 0. The Constant block has no internal states, no inputs and
its output is constantly 1. The Sum block only uses its inputs to calculate it
outputs, and the UnitDelay simply outputs its state. Since the latter is the
sole block with a state, it also has an update function that sets the new state
to the input value. Note that the two inputs in1 and in2 can be replaced by
output variables of the Constant and the UnitDelay. In the next subsection,
we define a naming convention for variables in the model.

6.3 A Formal Model for Simulink 107

6.3.2 Modeling Signals

We use variables in Boogie2 to model the signal lines between blocks. More
precisely, we map the output signals of all blocks to variables. Therefore, we
flatten the hierarchical structure of the model. For every unique signal, one
variable is created in the formal model.

To achieve comprehensibility and to enable us to trace the verification re-
sults back to the Simulink model, we use the following naming convention for
variables representing signals:

[blocktype]_[uniqueID]#[portNumber]#[signal-hierarchy-suffix]

Since in Simulink blocks may have the same identifiers within different hier-
archy levels, blocks are identified by the full path through the hierarchy and
the name, or by an unique ID in newer versions of the Matlab/Simulink tool.
Hence, we use a combination of an unique ID and the block type. Furthermore,
we encode the output of the block (so-called port) into the variable name by
using the portNumber, which is an one-based index that indicates the output
the signal is connected to. Finally, the hierarchy is encoded into the variable
name by using a zero-based index indicating the position in every dimension of
the signal. One-based and zero-based indicates whether the index 1 specifies
the first or the second element of the input vector.

Assume that the Sum block from Figure 6.4a has the unique ID 5. Since
it has one output and it outputs a scalar value, the resulting variable name
is Sum_5#1#0. Note that in our formal model, we do not model bus signals
explicitly. Instead, we use the information from the analysis presented in
Section 5.4.1. With this information, we can directly relate signals that enter
the bus systems to the corresponding signals leaving the system.

6.3.3 Block States and Intermediate Results

In our formal model we also map the states of blocks and intermediate results
(e. g., variables for predicates of execution contexts) to Boogie2 variables. For
these variables we use the same naming conventions as for signals and prefixes.
For example, assume the UnitDelay block from Figure 6.4a has the id 4. Then
the state is modeled with the Boogie2 variable state_UnitDelay_4#1#0.

6.3.4 Initialization

To model the initialization phase of a Simulink model, all variables representing
an output signal or an internal state are either initialized to a value specified
in some block parameter or set to 0 or false if no initial value is specified in
the Simulink model. In our formal model, we initialize the variables for output
values first. Then we then initialize state variables, and finally the variables
for intermediate results.

108 Transformation of Discrete-Time Simulink Models to Boogie

6.3.5 Modeling Control Flow

The basic idea for the realization of control flow in our formal model is to map
conditionally executed subsystems to if-then-else statements. Since control
flow at switches is also realized with conditional (Enabled) subsystems, we use
if-then-else statements to model these, too. For both, the basic idea is to map
the contents of the corresponding Conditional Execution Context (CEC) to the
then-branch. The default behavior of the outputs of conditional subsystems
is mapped to the else-branch. Note that in case of the internally created
conditional subsystems for switches, there is no default behavior defined since
they are always expected to select one data input or to throw an error.

In our formal model, we again use goto statements corresponding to the
desugared version for an if-then-else statement as introduced in Formula (2.8)
of Section 2.3.2. An arbitrary conditional subsystem S with a correspond-
ing CEC ECs, a default behavior DS and a predicate block that introduces a
predicate p (e. g., inp > 0), is mapped to:

goto thenS, elseS;

thenS: assume p; Transform(ECS); goto endS;

elseS: assume ¬p; Transform(DS); goto endS;

endS: ...

Here, T (ECS) is the translation for the contents of the CEC for S and T (DS)
are statements mapping the default behavior as defined in the block parameters
of the subsystem.

6.3.6 Data Types

Matlab/Simulink supports a wide range of data types for signals. Signals
can have different types such as integers of different bit widths, single and
double floating point values or Boolean values. However, the Boogie verification
framework and the underlying Z3 theorem prover are limited to mathematical
integers, rational numbers and booleans. Hence, we map the Simulink types
to the corresponding Boogie types as follows:

Table 6.1: Mapping of data types

MATLAB/Simulink Boogie

boolean bool

int8, uint8, int16, uint16, .. int (mathematical integer)

single, double real (rational numbers)

6.4 Calculation of the Control Flow Graph 109

Table 6.1 shows the mapping of basic data types from Matlab/Simulink to
Boogie. Note that the mapping of double and single data types is an unsound
approximation: Although every floating point value can be represented as a
rational number, the arithmetic operations in the theory of reals is not sound
for floating point arithmetic due to rounding. However, despite a small number
of rounding errors, this approximation is still suitable to detect general design
flaws.

Since the integer and real data type representations in Boogie are un-
bounded, we keep the bounds of the data types with the automatically created
assertions for the over- and underflow checks. This means that over- and un-
derflows are always considered as an error and reported to the user. Note that
in Matlab/Simulink data types for signals can be inherited. This means,
that Simulink infers the actual data types for the signals at run-time. To
avoid a reimplementation of the inference algorithm of Simulink, we use the
CompiledPortDataTypes parameter, which is only available in some state after
the initialization of the model.

Our translation of Matlab/Simulink models consists of two phases. In
the first phase, we calculate a CFG of the model. For that purpose, we use the
execution context calculation algorithm presented in Chapter 5 and calculate
the sorted order of the blocks within the Execution Contexts (ECs). Then, we
iterate over the CFG and translate every block according to the translation
rules for the specific block type. In the following section, we present how we
calculate the CFG for a Simulink model.

6.4 Calculation of the Control Flow Graph

In theory, the CFG for a Simulink model can be easily derived from the struc-
ture of CECs in a model and the sorted order, in which the Matlab/Simulink
environment executes the blocks. Every CEC corresponds to a branch in the
control flow graph where the predicate can be derived from the predicate block,
and the then-branch can be derived from the sorted blocks within the CEC.
The else-branch is empty, that means it contains no blocks. However, it may
contain some default behavior defined at the conditionally executed subsystem
blocks.

The main challenge for the calculation of the CFG for a model is that the
sorted order is part of the execution context information, which is not accessible
to the user. Hence, we need to calculate the execution order of blocks in order
to derive a CFG for the model using our own calculation for the sorted order.
Therefore, we first discuss how the Matlab/Simulink tool suite calculates the
sorted order.

110 Transformation of Discrete-Time Simulink Models to Boogie

6.4.1 How Simulink calculates the Sorted Order

MathWorks specifies the following rules for the calculation of the sorted order
in the Simulink documentation:

Definition 6.1 (Rules for Sorting Blocks [Mat14b]2). To sort blocks, Simulink
uses the following rules:

(1) If a block drives the direct-feedthrough port of another block, the block must
appear in the sorted order ahead of the block that it drives.

This rule ensures that the direct-feedthrough inputs to blocks are valid when
Simulink invokes block methods that require current inputs.

(2) Blocks that do not have direct-feedthrough inputs can appear anywhere in
the sorted order as long as they precede any direct-feedthrough blocks that
they drive.

Placing all blocks that do not have direct-feedthrough ports at the beginning
of the sorted order satisfies this rule. This arrangement allows Simulink
to ignore these blocks during the sorting process.

Applying these rules results in the sorted order. Blocks without direct-feed-
through ports appear at the beginning of the list in no particular order.
These blocks are followed by blocks with direct-feedthrough ports arranged such
that they can supply valid inputs to the blocks which they drive.

Rule (1) means that direct-feedthrough blocks have to be sorted according
to their data dependences. Rule (2) means that the data dependences of non-
direct-feedthrough blocks can be ignored for those inputs that do not influence
the output of the block directly. For example, an Integrator block can have
up to three inputs. Besides the value to be integrated, it can also have a reset
input and an input to specify the initial value. While the input for the value
may be a non-direct-feedthrough input depending on the selected integration
method, the inputs for reset and the initial value always are direct-feedthrough.

A minor problem with this description is that it is ambiguous. For par-
allel data dependences multiple block schedules may satisfy the rules. The
actual calculation algorithm implemented by the Matlab/Simulink tool suite
is undocumented. Hence, our algorithm for the calculation of the sorted order
produces a correct schedule in accordance to the above rules, but does not
necessarily produce the same schedules as Simulink does.

6.4.2 Calculating the Sorted Order

To derive the CFG for a model, we calculate the sorted order of the blocks
within each EC and CEC. To this end, we have developed an algorithm that

2http://de.mathworks.com/help/simulink/ug/controlling-and-displaying-the-sorted-
order.html

6.4 Calculation of the Control Flow Graph 111

calculates the sorted order within a (conditional) execution context using the
data dependences derived from the dependence analysis. The challenge for
our algorithm is to calculate a correct schedule since blocks may also have
data dependences to other execution contexts. The calculation of the CFG
is required since there is currently no way to obtain the sorted order from
the Matlab/Simulink tool or the model file. To cope with that problem,
we annotate all data dependences outside of a certain execution context to
the corresponding predicate or region node. As presented in Section 5.3.1,
predicate nodes are created during the dependence analysis for blocks that
trigger the execution of a CEC. Region nodes are created for ECs that are
always executed, i. e., for the root context or atomic subsystems.

For calculating the sorted order, we annotate the dependences to predicate
and region nodes using a recursive depth-first traversal of all execution contexts
starting with the root EC. For every node representing a block found during
the traversal of an execution context, the data dependences are annotated to
the corresponding predicate or region node if they are not pointing to a block
in the same execution context. Whenever the traversal encounters a predicate
or region node, the corresponding execution context is analyzed first. Then,
the annotated data dependences of the predicate or region node are checked
whether they point to a block of the execution context under consideration. If
they do not belong to the current execution context under consideration, they
are added to the corresponding predicate or region node. With that, we can
ensure that data dependences spanning over multiple levels of nested execution
contexts can be respected for the scheduling in every level of nesting.

The actual scheduling algorithm then schedules the blocks within each exe-
cution context locally. Therefore, we create an empty list and add a predicate
or region node if one is available in the current EC. If the execution context
does not contain a predicate, an arbitrary block is added. Then, we iterate
over the remaining blocks and determine the lowest position (low) in the list
where all output dependences and the highest position (high) in the list where
all input dependences are satisfied. Non-direct-feedthrough dependences are
ignored. If no dependences are found, the block is added at the end of the
list. If we find direct-feedthrough dependences and we have a valid position
(high > low), the block is added to the list at low position. If we cannot find
a valid position (low > high), we remove the sublist from low to high from the
schedule and add the block at its low position. The removed sublist is again
added to the blocks that have not been sorted yet. These steps are repeated
until all blocks are added to the list of sorted blocks.

In the resulting sorted order, (1) is satisfied since blocks are only added to
the sorted list if they precede all other direct-feedthrough blocks they drive
(high > low). Because we ignore non-direct-feedthrough dependences, (2) is
also satisfied. The algorithm terminates, if it has found a valid sorted order
and the set of blocks that have not been sorted yet is empty. Note that it only
terminates if there exist a valid schedule for the model, i. e., every cycle in data
dependence contains at least one non-direct-feedthrough connection. Since we
require the models to not contain algebraic loops, this is always the case. Once

112 Transformation of Discrete-Time Simulink Models to Boogie

all execution contexts are sorted, the CFG can be derived straightforwardly
and is traversed to translate the blocks.

6.5 Mapping of Simulink Blocks to Boogie2

In this subsection we present our mapping from the supported Simulink blocks
into the formal Boogie2 model. The subsection is structured according to the
block sets from the Simulink block library. In the following, we focus on basic
blocks that are used to realize a number of further blocks from the Simulink
block library.

6.5.1 Sources Block Set

Constant From Workspace Clock Sine Wave

Our translation currently supports four blocks from the Sources block set,
namely Constant, Clock, FromWorkspace and SineWave blocks. Note that
these are basic blocks, which are used to model many other blocks from the
Sources block set.

Constant

The Constant block outputs a constant value at every simulation step. It
is part of nearly every composite block. The value is given by the value

parameter and is either a value or a variable name for a variable stored in
the workspace of the Matlab/Simulink tool or in the block parameters of a
surrounding composite block.

The constant block is directly translated to Boogie2 by creating constants
for each output signal according to the data types of the signal:

1 const Constant_ID#1#[signal-hierarchy-suffix] : mapped_type;

2 axiom Constant_ID#1#[signal-hierarchy-suffix] ==

value[signal-hierarchy];

Here, mapped_type is the Boogie type according to the mappings from Sec-
tion 6.3.6 and value[signal-hierarchy] is the extracted value from the
value parameter corresponding to the structure of the signal specified by
signal-hierarchy.

6.5 Mapping of Simulink Blocks to Boogie2 113

Clock

The Clock block outputs the current simulation time. In our formal model,
we abstract from the simulation time since we do not want to explore the
entire state space of a model. Hence, the Clock block is over-approximated by
assuming that its output signal has a positive real value:

1 havoc Clock_ID#1#[signal-hierarchy-suffix]; // set the block to an arbitrary
value

2 assume 0 <= Clock_ID#1#[signal-hierarchy-suffix];

FromWorkspace

The FromWorkspace block takes a variable from the workspace and outputs
its values during simulation. These blocks are among others used to realize
SignalBuilder blocks that provide models with simulation inputs. The values
to output during simulation are specified with the VariableName parameter.
In our translation, we only support variables that are structures containing
arrays where one array specifies some simulation time instants (breakpoints),
and all other (value) arrays specify the values of the signals at these break-
points. Depending on the InterpolateData parameter, values of signals are
linearly interpolated between two corresponding entries in the value array for
time instants between the breakpoints or set to the most recent value. Fur-
thermore, the parameter OutputAfterFinalValue specifies the behavior when
the simulation time advances past the last specified breakpoint. Depending on
this parameter, the signal is either set to the value given by the last breakpoint
(1), is repeated cyclically (2), is set to 0 (3), or is linearly extrapolated (4).

In our translation, we currently over-approximate the outputs of From-

Workspace blocks since we do not model the simulation time explicitly. We
iterate over each value array to determine the minimal and maximal value for
each signal. If OutputAfterFinalValue is set to (1) or (2) we can assume
that the output value is always between the minimal and maximal value. If it
is set to (3), for the output always holds min(min,0) <= out <= max(0,max).
For (4), we need to calculate the slope between the values for the last two
breakpoints. If the slope is negative, we can assume that out ≤ max. Since
signals are bound by their type, we assume that min == type.min−1 instead.
This is done analogously for a positive slope.

For the final translation, we over-approximate the FromWorkspace block as
follows:

1 havoc FromWorkspace_ID#1#[signal-hierarchy-suffix]; // set the block to an
arbitrary value

2 assume min <= FromWorkspace_ID#1#[signal-hierarchy-suffix] &&

FromWorkspace_ID#1#[signal-hierarchy-suffix] <= max;

Here, we set the output value for a signal to an arbitrary value and constrain
the output value to the previously calculated minimum and maximum.

114 Transformation of Discrete-Time Simulink Models to Boogie

Sine Wave

The Sin block outputs a sine curve

out = Amplitude∗ sin(Frequency∗ time∗Phase)+Bias

where the amplitude, the frequency, the phase and the bias are specified with
parameters. Since Boogie does not support trigonometric functions and we do
not model the simulation time explicitly, we over-approximate this block as
follows:

1 havoc SineWave_ID#1#0; // set the block to an arbitrary value
2 assume -1 * Amplitude + Bias <=

SineWave_ID#1#[signal-hierarchy-suffix] &&

SineWave_ID#1#[signal-hierarchy-suffix] <= Amplitude + Bias;

Since the sine function outputs a value in the interval [−1,1] we can as-
sume that for the output signal always holds: Amplitude∗ (−1)+Bias≤ out ≤
Amplitude∗1+Bias.

6.5.2 Math Operations Block Set

Sum Product Gain Bias MinMax Signum

In this subsection, we present the rules for the basic blocks representing math-
ematical operations in Simulink, which are currently supported by our transla-
tion. We support Sum, Product, Gain and Bias blocks, which can be directly
mapped to arithmetic operations in Boogie2. Furthermore, we present trans-
lation rules for the MinMax block and the Signum block, which we map to
functions in our formal model. All these block are direct-feedthrough blocks.

Sum

The Sum block can be used to add or subtract input signals. Its most impor-
tant parameter is the Inputs parameter, which specifies the operations to be
performed by the block. For each input of the block either a “+” for addition or
a “-” for subtraction has to be specified3. Each “+” or “-” operation is applied
to the corresponding input, e. g., the first “+” or “-” corresponds to the input
with the port number 1, the second corresponds to the port number 2, etc. If
the inputs of the block non-scalar signals, they need to have the same dimen-
sions. Scalar signals are expanded if necessary (e. g., 1 is expanded to (1,1,1)
3It is also possible to specify the inputs by a number. Then, all inputs are treated as “+”.

6.5 Mapping of Simulink Blocks to Boogie2 115

if another signal has the width of 3). Furthermore, if only one (non-scalar)
input is specified, all vector signals are added (sum-over mode) up into one
scalar output.

Let in1 . . . inn be the inputs of width k. For each signal at position j in the
output vector with 0≤ j < k, the translation into Boogie2 is the following:

1 Sum_ID#1#j := 0 op[0] in1 j op[1] ... op[n] inn j;

Note that op is an array containing the operations specified in the Inputs

parameter and 0 is the neutral element for the addition. In sum-over mode,
for a non-scalar input4 of size k the translation is defined as:

1 Sum_ID#1#0 := 0 + in10 + ... + in1(k−1); // portNumber 1, position 0 since
2 // the output is a scalar signal

Note that both code samples are templates. In the translation for some specific
model, the inputs ini j are replaced by the outputs of those blocks that are
connected to the corresponding input.

Product

The Product block calculates a scalar or non-scalar product from its input
signals. The type of the calculation is given by the Multiplication parameter
and is either set to “Matrix(*)” or “Element-wise(.*)”. Since we currently
do not support matrices in our translation, we only translate blocks with the
parameter set to the latter. Analogously to the Sum block, the Product block
has an Inputs parameter that specifies the operation (“*” for multiplication
or “/” for division), expands scalar inputs if necessary and has a multiply-
over mode. The translation for some inputs in1 . . . inn of width k is defined
analogously to the Sum block:

1 Product_ID#1#j := 1 op[0] in1 j op[1] ... op[n] inn j;

Note that the op array contains the operators for multiplication and division
and the neutral element is 1. For the multiply-over mode, the translation is
defined as:

1 Product_ID#1#0 := 1 * in10 * ... * in1(k−1);

Gain

The Gain block multiplies the signal connected to its input with a value or
expression given by the Gain parameter. Like the Product it is also capable to
process matrices, but in our translation we only support the Multiplication

method“Element-wise(K.*u)”. If the Gain parameter specifies an expression,

4Since we do not support matrices in our translation, we do not need to evaluate the
Sum Over and Dimension parameters that are used to calculate the sum over specific
dimensions of matrices.

116 Transformation of Discrete-Time Simulink Models to Boogie

it is translated to Boogie2 as long as it only uses operations supported by
Boogie2, the Z3 or our formal model. For its sole input in1 of width k, the
block is translated as follows:

1 Gain_ID#1#j := (expr) * in1 j;

Here, expr is either a literal value or a previously transformed expression and
0 <= j < k.

Bias

The Bias block add a value given by the Bias parameter to the signal con-
nected to its input. Like for the Gain block, expressions in the Bias parameter
are translated to Boogie2 as long as it only uses supported operations. For is
sole input in1 of width k, the Bias block is translated as follows:

1 Bias_ID#1#j := (expr) + in1 j;

Again, expr is either a literal value or a previously transformed expression and
0 <= j < k.

MinMax

The MinMax block calculates the minimum or maximum of the signals supplied
to its inputs. If the input is a vector, the output is the minimum or maximum
over the vector elements. Scalar values are expanded if necessary. The function
to be performed is defined by the Function parameter and is either “min” or
“max”. Since these functions are also part of the Matlab/Simulink expression
language, we have defined these functions in the preamble of our formal model:

1 function {:bvbuiltin "if"} builtin_if_real(x1:bool, x2: real, x3:real)
returns (real);

2 function min_real(x:real, y:real) returns (real);
3 axiom(forall x,y:real :: {min_real(x,y)} min_real(x,y) ==

builtin_if_real(y >= x, x, y));

4 function max_real(x:real, y:real) returns (real);
5 axiom(forall x,y:real :: {max_real(x,y)} max_real(x,y)==

builtin_if_real(y <= x,x,y));

Note that we use the if function of the Z3 theorem prover. Since Boogie2
requires functions to be typed, the depicted sample is the formalization for
the real type. The formalization for integer types is done analogously. Note
that this formalization can be also used to translate expressions to Boogie.
For every vector element j in the input signals, the corresponding output is
calculated as follows:

1 MinMax_ID#1#j := fun(in1 j, fun(... , fun(in(n−1) j, inn j)));

Here, fun is the function name (e. g., “min_real”) derived from the value of
the Function parameter and the types of the input signals.

6.5 Mapping of Simulink Blocks to Boogie2 117

Signum

The Signum block indicates the sign of a signal (element-wise). It returns 1
for a positive signal, −1 for a negative signal, and 0 for a signal that is exactly
0. Again, this block represents a function (sign) from the Matlab/Simulink
expression language. Hence, we have formalized the function in the preamble:

1 function signum_real(x:real) returns (real);
2 axiom(forall x:real :: {signum_real(x)} signum_real(x) ==

builtin_if_real(x > 0.0, 1.0, builtin_if_real (x < 0.0, -1.0,x)));

Using this formalization, we translate the block for each vector element j into

1 Signum_ID#1#j := fun(in1 j);

Note that fun is derived from the type of the input signal (e. g., signum_real

for a real type).

6.5.3 Logic and Bit Operations

Logical Operator RelationalOperator

In this subsection we present the translation of Logic and RelationalOpera-

tor blocks, which are basic blocks used in many of the other composite blocks
within this library.

Logical Operator

The Logic block applies a propositional logics operation to its inputs. The
operation is specified with the Operator parameter that is either “AND”, “OR”,
“NAND”, “NOR”, “XOR”, “NXOR” or “NOT”. The block accepts scalar and vector
inputs of the same size and performs the specified operation on each vector
element. If necessary, scalar inputs are expanded and, if the “NOT” operation
is selected, the block supports only one input. Since Boogie2 supports the
Boolean operations ¬, ∧ and ∨, the translation for “AND”, “OR”, “NAND”, “NOR”
and “NOT” is straightforward. For example, if the operation is “AND”, then for
each element j in the vector for the inputs in1 . . . inn the translation is as follows:

1 Logic_ID#1#j := in1 j && ... && inn j;

For the translation of “XOR” we use a function provided by the Z3 solver:

118 Transformation of Discrete-Time Simulink Models to Boogie

1 function{:bvbuiltin "xor"} bxor(bool,bool) returns (bool);
2 Logic_ID#1#j := bxor(in1 j, bxor(... , bxor(in(n−1) j, inn j)));

For “NAND”, “NOR” and “NXOR” the whole expression is negated.

Relational Operator

The RelationalOperator block compares two input signals using a relational
operation specified in the Operator parameter. Possible values for the pa-
rameter are “==”, “∼=” (/=), “<”, “>”, “<=” and “>=”. These operations are
supported by Boogie whereby “∼=” translates to “!=”. The block accepts two
inputs of the same size where scalar inputs are expanded to the size of the
vector input. For each element j in the output vector, the translation for the
RelationalOperator block is the following:

1 RelationalOperator_ID#1#j := in1 j op in2 j;

Here, op is taken from the Operator and“∼=”is mapped to“!=”. Note that the
RelationalOperator block also has a one-input mode where the block checks
some properties of floating-point values. These properties are not modeled
since we over-approximate floating point types by the real type in Boogie.
Hence, we currently do not support this mode in our translation.

6.5.4 Ports & Subsystems Block Set

Inport Outport Enable Trigger Action

In this subsection, we present the translations for the following blocks from the
Ports & Subsystems block set. This block set contains Inport and Outport

blocks, all the predicate blocks (e. g., the EnablePort block), and virtual,
atomic and conditionally executed subsystems.

Inport and Outport Blocks

Inport and Outport blocks are used to model signal flow through (sub)system
boundaries. Although those are virtual blocks, we model them explicitly for
two reasons: Firstly, since we flatten all subsystems in the models (see Sec-
tion 5.3.1), we use the Outport blocks of conditionally executed subsystems to
model the default behavior. Secondly, we also need to model inputs from and
outputs to the environment. In our flattened model, we treat the inputs and

6.5 Mapping of Simulink Blocks to Boogie2 119

outputs of subsystems as inputs and outputs of the corresponding port blocks.
This means, a port block has only one input and output where one of them is
inherited from the surrounding subsystem. The signal can either be a scalar
or a vector of signals.

Basically, Inport and Outport blocks are translated into Boogie2 state-
ments that forward the signal value: For every element j in the input vector
in1, the translation is as follows:

1 Inport_ID#1#j := in1 j;

2 Outport_ID#1#j := in1 j;

Inport blocks on the highest hierarchy level, which model an input from the
environment, are over-approximated as follows:

1 havoc Inport_ID#1#j;

2 assume type_min <= Inport_ID#1#j && Inport_ID#1#j <= type_max;

In other words, the variable is set to an arbitrary value and we assume that
the value is within the bounds (type_min and type_max) of the data type of
the signal. Outport blocks on the highest hierarchy level are treated as sinks.

Predicate Blocks and Conditionally Executed Subsystems

As discussed in Section 6.3.5, we model the control flow introduced by condi-
tionally executed subsystems by translating the corresponding CEC directly to
Boogie2. Hence, when encountering a predicate block during translation, we
perform three steps: (1) we translate the predicate block, and (2) we create a
Boogie2 block (then-branch) in which the contents of the CEC are translated,
and (3) we create a Boogie2 block (else-branch) for the default behavior of the
system. Since (2) is explained in Section 6.3.5, we focus on (1) and (3) in this
subsection.

Our basic idea for the translation of predicate blocks is to model them
as Boolean variables. The Boolean variables are used as predicate for the
then- and else-branch. Like Inport blocks, predicate blocks have no inputs.
Hence, we use the inputs corresponding to the surrounding subsystem, which
can either be a scalar or an array of signals. Furthermore, predicate ports can
output information about their incoming signals (connected to the predicate
input of the surrounding subsystem). However, we currently do not support
this option in our translation.

The translation for predicate blocks works as follows: An Enabled subsys-
tem is executed if at least one signal connected to the enable port is greater
than zero. Hence, an Enable block with the input in of width k is translated
into:

1 Enable_ID#1#0 := in0 > 0 || ... || ink−1 > 0;

Here, in0 to ink−1 are the elements of the input vector. Enable_ID#1#0 is then
used as predicate for the then- and else-branch.

120 Transformation of Discrete-Time Simulink Models to Boogie

Action ports as used in Action subsystems are internally realized by signals
of type action, we map this type to Boolean values. Since Action subsystems
accept only scalar inputs, the translation for an action port is straightforward:

1 Action_ID#1#0 := in0;

Triggered subsystems are realized using Trigger port blocks that can be
configured to execute on a rising, on a falling, or on both flanks of a signal.
Additionally they can be configured to accept signals of the type function-call.
However, to detect changes in the flanks of signal in a discrete simulation, up
to three simulation steps may be required. Since we cannot directly model
that for inductive invariant checking, we over-approximate Trigger blocks by

1 havoc Trigger_ID#1#0; // arbitrary boolean value

Note that we always assume that both, the then- and the else-branch are
executable.

To create the else-branch (3), we first collect all Outport blocks of the sur-
rounding subsystem. For each Outport block, we extract the InitialOutput

and OutputWhenDisabled parameters that are only available if the Outport

block corresponds to an output of a conditionally executed subsystem. If the
OutputWhenDisabled parameter is set to reset, we translate the block in the
else branch into:

1 Outport_ID#1#j := InitialOutput[j];

InitialOutput[j] contains the initial value for the jth element of the output
signal. If InitialOutput is a scalar value, all vector elements are set to this
value.

If the OutputWhenDisabled parameter is set to “held”, the subsystem out-
puts the value calculated in the last execution until it is executed again. Hence,
we need to create an additional variable for this block:

1 state_Outport_ID#1#j : type;

Here, type is the same data type as Outport_ID#1#j. The state variable is
set to the following in the initialization phase:

1 state_Outport_ID#1#j := InitialOutput[j];

Furthermore, a statement is added to the then branch to update the state
when executing the subsystem:

1 state_Outport_ID#1#j := Outport_ID#1#j;

In the else branch, the block is translated to the statement:

1 Outport_ID#1#j := state_Outport_ID#1#j;

In other words, the output is set to the value saved in an internal state variable.

6.5 Mapping of Simulink Blocks to Boogie2 121

For example, a Enable port block with a scalar input to the predicate port
(inp) of the surrounding subsystem that configured to hold the state for a scalar
output signal (Outport_ID#1#0) we generate the following statements:

1 Enable_ID#1#0 := inp > 0;
2 goto EnablePort_ID_then_branch, EnablePort_ID_else_branch;

3 ..

4 EnablePort_ID_then_branch:

5 assume Enable_ID#1#0;

6 // block translations for corresponding conditional execution context
7 ...

8 Outport_ID#1#0 := ... ;

9 state_Outport_ID#1#0 := Outport_ID#1#0;

10 goto EnablePort_ID_end;

11

12 EnablePort_ID_else_branch: // default case
13 assume !Enable_ID#1#0;

14 Outport_ID#1#0 := state_Outport_ID#1#0;

15 goto EnablePort_ID_end;

Note that then-branch also contains the statements for the execution context
corresponding to the Enable block.

Loop Subsystems*

Although we currently do not yet support loop subsystems in our implemen-
tation, we give a sketch for the translation idea in this paragraph. Besides
the ForEach subsystem whose number of executions is limited by the width of
the incoming signal, loop subsystems are executed as long as a given predicate
is satisfied or up to an upper bound (that may be infinite). Both are given
by the corresponding iterator block. All executions of a loop subsystem are
performed in one simulation step of the outer simulation loop. Furthermore,
within the loop subsystem, block states may change in every loop execution
and are initialized at the first execution. This behavior is basically the same
as for the simulation loop of a model. Hence, it is possible to translate loop
subsystems into a separate, nested simulation loop within the actual simula-
tion loop. However, this imposes several problems for the later verification: If
there is no finite upper bound for the loop subsystems, we cannot guarantee
termination of the loop subsystem. Furthermore, to verify the nested loop,
we may require additional manually specified loop invariants, which in most
cases decreases the degree of automation in our approach. Finally, when using
k-inductive invariant verification, we need to unroll each inner loop k times in
each unrolling of the surrounding (simulation) loop. This increases the size of
the verification condition exponentially in the size of k and the nesting depth.
Since none of our case studies contains loop subsystems, we have chosen to
currently not support loop subsystems in our translation of Simulink models
for the above reasons.

122 Transformation of Discrete-Time Simulink Models to Boogie

6.5.5 Signal Routing Block Set

Mux Demux Selector Switch MultiPortSwitch ManualSwitch

In this subsection, we present the translations for the blocks from the Signal
Routing block set that are depicted in the above table.

Mux and Demux

Mux and Demux blocks are virtual blocks, which are used to manipulate vec-
tor signals. The Mux block creates a vector signal from its input signals and
the Demux block decomposes a vector signal into a number of output signals.
Although it is possible for these blocks to operate on bus signals, we do not
support this option (BusSelectionMode). Mathworks also discourages the use
of this operation mode. For Mux blocks, the parameter Inputs and for Demux

blocks the parameter Outputs specifies how the vector signals are constructed
or split. However, for our translation we do not use these parameters. Instead,
we exploit the fact that the order given by the input signals is preserved while
composing and splitting the vector signals and use the information about the
signal widths given by the CompiledPortWidths parameter. A Mux with the
input signals in = {in1 . . . inn} is translated to the following:

1 Mux_ID#1#i := in jk;

Here, j indicates the jth input and k is the kth signal in in j. Then i is calculated

with i =
(

∑
m< j
m=1 w(inm)

)
+ k where w() is a function returning the width of a

signal. Analogously, a Demux block with n outputs is translated as follows:

1 Demux_ID#i#j := in1k;

In this statement, i with 0 < i≤ n is the number of the output, j is the position

in the output vector, and k =
(

∑
m≤i
m=1 w(outm)

)
+ j.

Selector

The Selector block is used to extract some subset of a composite signal. The
input signal can either be a vector or a multidimensional signal. The Num-

berOfDimensions parameter specifies the number of dimensions of the input
signal, and the IndexOptions parameter specifies which signals are selected
for each dimension. While the Selector block supports that signals to se-
lect can be supplied by an additional port, we do not support these operation

6.5 Mapping of Simulink Blocks to Boogie2 123

modes since they may result in output signals of variable size. Hence, we only
translate blocks with the IndexOption set to “Select all”, “Index vector

(dialog)” or “Starting index (dialog)”. For the latter two, the signal in-
dices to select are stored in the parameter IndexParamArray. Furthermore,
the IndexMode parameter specifies whether the indices are given one-based or
zero-based (whether the indexing starts wit 0 or 1) and OutputSizes specifies
the widths of the output signal. To translate the block, we iterate over each
input dimension. If the IndexOption is set to “Select all” for a dimension j,
and i is the ith element in the input vector, we create the following statement:

1 Selector_ID#1#j#i := in1 ji;

If the IndexOption is set to“Index vector (dialog)”, the parameter Index-
ParamArray specifies an array of indices idx[]. The translation for a dimension
j and an output vector element i is the following:

1 Selector_ID#1#j#i := vec[idx[i-o]];

Note that vec[idx[i-o]] selects the vector element specified by the ith value
in the idx array with respect to an offset o = 1 for the zero-based index mode
and o = 0 otherwise. If the IndexOption is set to “Starting index (dia-

log)”, the parameter IndexParamArray only specifies a start index idx. The
translation for a dimension j and an output vector element i is the following:

1 Selector_ID#1#j#i := vec[idx + i - o]];

The offset o is again corresponding to the IndexMode parameter.

Switches

The Switch block forwards one of its two data inputs (the first and third
inputs) depending on a predicate at its control input (the second input). The
predicate is specified by the Criteria parameter and is either “u2∼=0” or
“u2 < Threshold” or “u2 <= Threshold” where “u2” represents the control
input and the Threshold parameter specifies a value to compare with. We
translate the Switch block analogously to conditional subsystems by creating
an extra Boolean variable for the predicate, which is one of the following three
statements:

1 predicate_Switch_ID#1#0 := in2 != 0 ;

1 predicate_Switch_ID#1#0 := in2 < Threshold;

1 predicate_Switch_ID#1#0 := in2 <= Threshold;

This predicate variable is then used for the CECs as presented in Section 6.3.5.
Note that we initialize the predicate variable with its predicate expression to
obtain initial state that is consistent with the model.

The MultiPortSwitch block forwards one of its data inputs depending
on the signal connected to its control input (first input). The DataPortOrder

124 Transformation of Discrete-Time Simulink Models to Boogie

specifies the selection mode of the data inputs and is either “Zero-based con-

tiguous”, “one-based contiguous”, or “Specify indices”. In the first two
cases, the indices are integer numbers starting from zero (or one if one-based)
up to the number of data ports. In the last case, the user can specify the in-
dex values manually in the parameter DataPortIndices. If the control signal
matches one of the index values, the corresponding data port is forwarded.
Furthermore, the default case (marked with a *) is specified with the Data-

PortForDefault parameter and either the last data input in the index array
or a dedicated input. However, it is always the last data input.

The translation of the MultiPortSwitch block is similar to the translation
of the Switch block except that we do not use a dedicated variable for the
predicate. Instead, we use the predicate directly in the assume statement for
each branch.

1 goto MultiPortSwitch_ID_data_1, ..., MultiPortSwitch_ID_data_n;

2 ..

3 MultiPortSwitch_ID_data_i:

4 assume ini == idx[i];

5 ...

6 MultiPortSwitch_ID#1#0 := ini ;

7 goto MultiPortSwitch_ID_end;

8 ...

9 MultiPortSwitch_ID_data_n: // default case
10 assume !(in2 == idx[2]) && .. && !(inn−1 == idx[n-1]);

11 ...

12 goto MultiPortSwitch_ID_end;

Here, idx maps the number of a data input to its corresponding index entry
according to the DataPortOrder parameter and n is the number of the data
inputs including the possibly extra default port. For the default case, we
assume that none of the previous index values has been selected. Note that we
currently do not support the index vector mode, where the MultiPortSwitch

block selects an element from a vector signal connected to the first (and only)
data port. Support for this mode can be easily added in the future but was
not necessary for our case studies.

Besides Switch and MultiportSwitch blocks, Simulink also provides the
ManualSwitch block type. This block forwards one of its two input signals
depending on its internal state. The internal state is changed by a mouse click
on the block, which can be used to model sensor failures. We translate such
blocks similar to Switch blocks but without a predicate. With that, we over-
approximate the behavior by assuming that both inputs can be forwarded in
any simulation step.

Goto, From and Bus Systems

Goto and From blocks are mainly used to avoid the crossing of signals lines. A
signal that ends in a Goto block with a certain label can start in a From block
with the same label. While parsing the model, we analyze it for such blocks
and resolve them by connecting those with virtual signal lines that are only

6.5 Mapping of Simulink Blocks to Boogie2 125

present in our representation. Hence, we can translate these blocks like port
blocks. Furthermore, we use the information gained by our analysis for bus
systems (Section 5.4.1) and do not model the bus systems explicitly. Instead,
we connect blocks at the beginning and at the end of a bus system directly in
our translation.

6.5.6 Discrete Block Set

Unit Delay Memory Discrete Integrator

In this subsection, we present the translation of UnitDelay, Memory and Dis-

creteIntegrator blocks. These are basic blocks from the Discrete block set
and used in many other composite blocks.

Memory and Unit Delay

The Memory block stores the value of the signal connected to its input for one
major5 simulation step. The UnitDelay stores a value for one sampling step
specified in its sample time. In our translation, we currently only support
UnitDelay blocks with the same sampling time as the model. In a fixed-step
discrete simulation, every simulation step is a major step (where the model
is sampled). Hence, both blocks have the same behavior and we explain the
translation using the UnitDelay block.

For the translation of both block types, we create output and state vari-
ables corresponding to the input signal, which is either a scalar or a vector
signal. The state variables are initialized with the values stored in the Ini-

tialCondition parameter. For an element i of the signal vector, we create
the following statement for the initialization:

1 state_UnitDelay_ID#1#i := init[i] ;

Here, init[i] is an array containing the initial values taken from the Ini-

tialCondition parameter. Since the output of the block depends on the state,
the output function is translated to the following:

1 UnitDelay_ID#1#i := state_UnitDelay_ID#1#i;

Finally, the state update function is translated as follows:

1 state_UnitDelay_ID#1#i := in1i ;

5Amajor simulation step is a step where the model is sampled. In a variable-step simulation
it can differ from the actual sampling rate of the model.

126 Transformation of Discrete-Time Simulink Models to Boogie

This statement is placed at the end of the execution context in which the block
is contained. This placement corresponds to the Simulink simulation loop,
where the outputs are calculated first and the states are updated afterwards.
The translation for the Memory block is done analogously.

Discrete Integrator

The Discrete Integrator block integrates or accumulates a value during the
simulation. It supports three different integration methods: forward euler,
backward euler and trapezoidal integration. In our translation, we currently
only support the default method (forward euler integration or accumulation),
which is specified with the IntegratorMethod parameter set to“Integration:
Forward Euler” or “Accumulation: Forward Euler”. With this method,
the state s and the output o of the block are calculated for a time step n by

s(n) = s(n−1)+g∗T ∗ in(n)

o(n) = s(n)

where g is a gain factor, T is a time factor and in(n) is the input of the block
in simulation step n. The time factor T = t(n)− t(n− 1) describes the time
difference between two major simulation steps. Since we assume the models to
have a discrete fixed step sample time, T is exactly the sample time of the block.
Furthermore, if the IntegratorMethod is set to accumulation, T = 1 holds.
The gain factor is specified with the gainval parameter, the sample time of
the block is stored in the CompiledSampleTime parameter. Furthermore, the
initial condition can be specified either in the InitialCondition parameter or
by an additional input port, if InitialConditionSource is set to “external”.
Hence, the state variable for the Discrete Integrator block is initialized with
one of the following statements:

1 state_DiscreteIntegrator_ID#1#i := init[i]; // via initial condition

1 state_DiscreteIntegrator_ID#1#i := inni; // via port; always the last input

Note that i is an element in the input vector, and either init[i] is used,
which is a vector of values specified in the InitialCondition parameter, or
in2i corresponding to the input for the external initial condition. The output
and state update function are translated as follows:

1 DiscreteIntegrator_ID#1#i :=

2 state_DiscreteIntegrator_ID#1#i // output function
3 state_DiscreteIntegrator_ID#1#i :=

4 DiscreteIntegrator_ID#1#i + ((G * T) * in1i); // state update

Here, G is the gain derived from the gainval parameter and T is either 1 for
accumulation mode or derived from the CompiledSampleTime parameter for
integration mode.

Additionally, a Discrete Integrator can be configured to output its state
(ShowStatePort parameter) on a dedicated output (the second) of the block.

6.5 Mapping of Simulink Blocks to Boogie2 127

The translation is straightforward by simply using the state variable as an
output. The state of the block can be reset by an additional port with the Ex-

ternalReset parameter, which is currently not supported by our translation.
Finally, the output values of the block can be limited with the LimitOutputs

parameter for which the bounds are specified with UpperSaturationLimit

and LowerSaturationLimit parameters. Then, the block outputs its value
unless it is above or below the given limits. If the value exceeds the bounds,
it outputs either the upper or the lower bound.

We realize this behavior in our translation with the following function:

1 function {:inline} limit_DiscreteIntegrator_ID#i (x: typeId) returns
(typeId) {

2 builtin_if_typeId(x < lsl[i], lsl,

3 builtin_if_typeId(x > usl[i], usl, x)

4)

5 }

6 ...

7 DiscreteIntegrator_ID#1#i :=

8 limit_DiscreteIntegrator_ID#i(DiscreteIntegrator_ID#1#i);

Here, usl[i] and lsl[i] are the upper and lower bounds as specified in the
corresponding parameters, and typeId is the type of the output signal as
explained in the description for the MinMax block. Note that we use inlining
({:inline}) of the function in this example, which requires us to define a body
of the function instead of axioms. Functions defined this way are translated
into a macro by the Boogie tool, which enables the Z3 theorem prover to handle
the function more efficiently for the cost of decreased readability of the model
in Boogie2.

6.5.7 User-defined Functions Block Set

Function S-Function Stateflow

In this subsection, we describe the translations and approximations for the
Function and S-Function blocks from the User-defined Functions block set
and for unsupported blocks.

S-Functions

S-Function blocks enable the use of system-functions during simulation. System-
functions can be written in various programming languages like MATLAB
Code (M-code), C++ or Fortran. Other programming languages than M-code

128 Transformation of Discrete-Time Simulink Models to Boogie

are compiled into Matlab/Simulink executables (MEX-files) and dynamically
linked into the model. This also holds for Stateflow state machines. In our
translation, we over-approximate S-Function blocks by assuming that they
may output any value within the range outputs data type. Since we do not
know what happens internally in an S-Function, the closed over-approxima-
tion we can make is to assume the outputs to be within their type boundaries.
Hence, for every output i, we assume that every vector element j is within its
type bounds:

1 havoc S-Function#i#j;

2 assume type_min <=S-Function#i#j && S-Function#i#j <= type_max;

If an S-Function block is used to model a Stateflow chart, we analyze the
parameters of the corresponding chart object in order to constrain the ap-
proximation. To this end, we analyze whether for data objects of the charts,
the scope parameter is set to “OUTPUT_DATA”, which indicates an output sig-
nal. For each output data object, we extract the props.range.minimum and
props.range.maximum parameters and use them for the approximation:

1 assume props.range.minimum <=S-Function#i#j &&

2 S-Function#i#j <= props.range.maximum;

However, this is only a safe approximation if the above parameters of the
Stateflow chart are correctly specifying its behavior. If those parameters are
not set for an output signal, we treat it as only bounded by its data type.

Function Block

The Fcn block applies a mathematical expression (in M-code) to its input
signals. Although this expression may contain mathematical operations that
we cannot map to Boogie2, there is still a number of operations we are able to
map or to approximate (see below). Hence, we parse the Expr parameter of the
block and check whether it contains an operation we currently not support in
our translation. If it does, we use an over-approximation only bounded by the
type of the output signal like for S-Function blocks. Otherwise, we translate
the expression to Boogie2. In this expression, input signals are referenced with
the variable u and vector elements are accessed with u(i) where i is an one-based
index. Arithmetic, relational and logical operators are translated according to
the mappings presented before (see Sum, Product, RelationalOperator and
Logic blocks). Furthermore, we over-approximate the mathematical functions
by introducing additional variables and constraining these with upper (max)
and lower (min) bounds:

1 havoc fun_UID_ID;

2 assume min <=fun_UID_ID && fun_UID_ID <= max;

The name for the variable is constructed using the name of the mathematical
function (fun), the ID of the block (ID) and an additional counter UID to avoid
collisions if a function is used multiple times in an expression. The bounds for
the approximations of supported mathematical functions are defined as follows:

6.5 Mapping of Simulink Blocks to Boogie2 129

Figure 6.5: Over-approximation of sqrt with Linear Functions

Functions min max

sin, cos, tanh −1 1

atan −π

2
π

2

atan2 −π π

rem(x,y) sign(x)≤ 0→ sign(x)∗abs(y) sign(x)≤ 0→ 0

sign(x)> 0→ 0 sign(x)> 0→ sign(x)∗abs(y)

sqrt(x) x≤ 1→ x x≤ 1→ 0.5x+0.5

x > 1→ f1(x) x > 1→ f2(x)

For the approximation of sqrt, we use linear functions. The functions f1 and
f2 are calculated depending on the upper bound for the data type. The func-
tion f1 is chosen as the linear function that intersects the points (1,1) and

(type max,
√

type max) and f2 as the tangent of the point
(

type max
2 ,

√
type max

2

)
.

The functions f1 and f2 are depicted in Figure 6.5 and together from a linear
over-approximation of the sqrt function in the interval [1, type max].

For example, a Fcn block wit a scalar input and the Expr parameter set to
“4*rem(u,3)” is translated into:

1 havoc rem_1_ID;

2 assume (signum_real(in1) <= 0) ==>

3 (signum_real(in1)*abs_real(3) <= rem_1_ID && rem_1_ID <= 0);

4 assume (signum_real(in1) > 0) ==>

5 (0 <= rem_1_ID && rem_1_ID <= signum_real(in1)*abs_real(3));

6 Fcn_ID_1#1 := 4 * rem_1_ID;

6.5.8 Sinks Block Set

In our translation, we do not translate blocks from the Sinks block set, e. g.,
Terminator, Scope or Display blocks, since they do not influence the behavior
of the model.

130 Transformation of Discrete-Time Simulink Models to Boogie

So far, we have introduced the translation mappings for specific block types.
However, there are some mechanisms we need to consider for multiple (but not
all) block types. We discuss these mechanisms in the following subsection.

6.5.9 Implicit Casts and Mechanisms for Multiple Block Types

In the previous section, we have presented our transformation rules for specific
block types. In this section, we discuss mechanisms that affect almost every
block. We describe how we deal with implicit casting in our translation before
we discuss the saturation of output signals, which can be enabled for various
block types.

Implicit Casts

Simulink does not require explicit typing of the data types for signals within
a model. Instead, it supports inheritance of data types and offers different in-
ference algorithms to calculate the inherited data types. An important benefit
of our approach is the use of run-time information, which we extract from the
Matlab/Simulink tool for models in some state after initialization. Hence, we
have the information about the actual data type the simulation environment
is using.

However, Simulink is weakly typed and performs implicit casting. This
means it is possible in Simulink to add an integer to a floating point variable
or to use floating point variables or integers as inputs for Logic blocks. Fur-
thermore, MultiPortSwitch blocks accept floating point signals although their
index values are integers and implicitly cast these signals. In contrast, Boogie2
is strongly typed. Every built-in arithmetic, logical, relational, or assignment
operation requires all arguments to be of the same type and rejects the speci-
fication otherwise. To be able to translate Simulink models, we need to make
implicit casts explicit: For every operation that we translate, we need to ensure
that all types are suitable and that we cast a variable into the required type,
if necessary. A major problem is that the Boogie verification framework does
not support even explicit casts. However, the Z3 theorem prover does (at least
for integers and reals). Hence, we extend the preamble of our formal model
with the following Z3-functions:

1 function {:bvbuiltin "to_real"} int_to_real(x:int) returns (real);
2 function {:bvbuiltin "to_int"} real_to_int(x:real) returns (int);

In addition, we need to define the cast operations for real and integer signals
that are treated as Boolean signals. According to the Simulink documentation,
a numeric value is interpreted as false if it is 0 and as true otherwise. Hence
we define the cast operations in our preamble as follows:

6.5 Mapping of Simulink Blocks to Boogie2 131

1 function {:inline} bool_to_real(x:bool) returns (real){
builtin_if_real(x, 1.0, 0.0) }

2 function {:inline} bool_to_int(x:bool) returns (int) {

builtin_if_int(x, 1, 0) }

3 function {:inline} real_to_bool(x:real) returns (bool){
builtin_if_bool(x == 0.0, false, true) }

4 function {:inline} int_to_bool(x:int) returns (bool) {

builtin_if_bool(x == 0, false, true)}

To take care of implicit casts, we check the types of the signals whenever
we create an assignment or an expression in Boogie2 during the translation
of any Simulink element whether they have compatible data types. If they
are not compatible, we use one of the casting functions corresponding to the
type of the output signal. For example, assume there is a Sum block that
has a floating point signal connected to its first input (in1), an integer signal
connected to its second input (in2) and outputs a floating point signal. The
resulting translation for the block in Boogie2 is as follows:

1 Sum_ID#1#0 := in1 + int_to_real(in2);

Note that Simulink also supports explicit casting with DataTypeConversion

blocks. In our translation we treat these blocks like port blocks and apply the
cast function to the outputs.

Saturation

Many blocks in Simulink provide an automatic saturation of output signals in
case of overflows. The saturation is activated if the parameter SaturateOn-

IntegerOverflow is set to “on”. If an output signal is saturated, it cannot
exceed the bounds of its data type. If a calculation leads to a value bigger
(or smaller) than the bound, the block outputs the maximum (or minimum)
value of the data type instead. To support this behavior in our translation,
we create saturation functions for each data type used in the model. For each
data type we create the following function:

1 function {:inline} saturate_type (x: boogieType) returns (boogieType) {

2 builtin_if_boogieType(x < type_min, type_min,

3 builtin_if_boogieType(x > type_max, type_max, x))

4 }

In this statements, type is a Simulink type that is mapped to boogieType in
our translation and type_min and type_max are the lower and upper bound
of the Simulink type. Note that this function has a similar behavior like the
limit function of the Discrete Integrator block. For example, the saturation
function for the Simulink type uint8 is defined as follows:

132 Transformation of Discrete-Time Simulink Models to Boogie

1 function {:inline} saturate_uint8 (x: int) returns (int) {

2 builtin_if_int(x < 0, 0, builtin_if_int(x > 255, 255, x))

3 }

Here, uint8 is mapped to the Boogie2 type int. Assume there is a Sum block
that adds two signals of the type uint8 and has saturation enabled. With our
translation, the resulting assignment is:

1 Sum_ID#1#0 := saturate_uint8(in1 + in2);

Both, saturation and cast functions are added during the translation if
necessary, i. e., if the saturation flag is set, or if signals have different data
types.

6.6 Summary

In this chapter, we have presented our approach for an automatic transfor-
mation of Matlab/Simulink models into the formal model in Boogie2. To
this end, we have first given an overview over the general translation process.
Then, we have discussed the assumptions and limitations to the models to
make our automatic approach applicable. We have introduced the basic con-
cepts of our formal model and how we calculate the control flow graph for the
model. In our automatic transformation, we iterate over the graph to translate
block by block. Hence, we have discussed the behavior and parameters of the
supported block types and presented our translation into our formal Boogie2
model for each block. Finally, we have presented how we deal with saturation
and implicit casts, which can occur at various blocks within a Simulink model.

Overall, with the transformation presented in this chapter, we can translate
a Simulink model automatically in a formal model that preserves or over-ap-
proximates the behavior. By enhancing this formal model with assertions and
invariants, which we both also create during the translation, we can automat-
ically verify the model using the Boogie verification framework. In the next
chapter, we present in detail how we generate the assertions and invariants for
a given Simulink model, and how we compose the formal specification that is
passed to the verification tool chain.

7 Automatic Inductive
Verification of Simulink Models

In this chapter, we present our verification approach for Simulink models,
which is based on the formal model generated by the translation presented
in the previous chapter. In our approach, we use two verification strategies
to automatically verify a given Simulink model: inductive invariant checking
and k-induction. To enable the automatic verification of the generated formal
model w. r. t. the absence of important error classes, we compose the model,
the verification goals and invariants into a common formal model. In the
following, we refer to this composition as formal specification. The formal
specification, which is generated according to a particular verification strategy
(with a number of unrolls for the k-induction), can be verified using the Boogie
tool chain.

This chapter is structured as follows: First, in Section 7.1 we describe
how we compose the formal specification from the formal model, verification
goals and loop invariants for inductive invariant checking and k-induction. In
Section 7.2, we describe how we apply our slicing technique to obtain smaller
specifications for k-induction to reduce the complexity of the verification task.
We present in Section 7.3 how we generate the verification goals for certain
error classes during the translation into the formal model. Then, we present in
Section 7.4 which loop invariants we automatically generate when translating
a given Simulink model.

7.1 Automatic Generation of Formal Specifications

To verify a Simulink model, we compose the formal model presented in Chap-
ter 6 with verification goals and invariants to obtain a formal specification.
Depending on the use of the particular verification strategy, more precisely
inductive invariant checking or k-induction, the structure of the formal model
is different. In this section, we present the general composition for both veri-
fication strategies.

133

134 Automatic Inductive Verification of Simulink Models

As described in Chapter 4, the idea of the verification process is to start
with inductive invariant checking since it is the best scaling method. Moreover,
inductive invariant checking is naturally supported by the Boogie verification
framework. When transforming the formal specification into verification con-
ditions, the Boogie tool automatically derives some invariants using abstract
interpretation and automatically performs loop cutting. However, inductive
invariant checking requires stronger loop invariants than k-induction.

The second step in the process is to use k-induction for the verification. k-
induction requires more computational effort (depending on k) but also requires
weaker invariants. Since k-induction is currently not directly supported by the
Boogie tool, we generate a formal specification that is tailored to the desired k
and adopt the approach for combined case k-induction presented by Donaldson
et al. [DHKR11] (see Section 2.3.2).

In the next two subsections, we describe how we generate the specifications
for each verification strategy.

7.1.1 Inductive Invariant Checking

In the first step in our verification process, we attempt to verify the model
using inductive invariant checking. The idea of inductive invariant checking
for loops is to show the following base case and induction step:

� Base Case All initial states S0 before the loop is executed satisfy the
loop invariant I: S0 |= I.

� Induction Step For an arbitrary state Sn that satisfies the loop invari-
ant I, the subsequent state Sn+1 (obtained by the execution of the loop
body) still satisfies I: Sn |= I −→ Sn+1 |= I.

In our formal model, we represent the simulation loop as a (while) loop in
the Boogie2 specification. This means all blocks are translated into Boogie2
assignments in the loop body. Furthermore, all Boogie2 variables generated
for the block outputs and internal states are initialized according to initial
values specified in the block parameters or set to 0. Since Boogie is naturally
supporting inductive invariant checking, we model the simulation loop as a
(desugared) loop without loop cutting (see Section 2.3.2) to invoke the loop
detection of the Boogie tool. This is necessary since the Boogie tool only
performs the invariant inference if it detects a loop.

When constructing the formal specification, automatically generated asser-
tions are added to the loop body either before or after the assignments for the
corresponding block. Furthermore, loop invariants are added to the loop head.
These invariants are either automatically generated during the translation or
manually specified by the user.

Figure 7.1 depicts how we generate the formal specification for inductive in-
variant checking from the translation artifacts. Firstly, we add the declarations
for each variable (according to naming scheme and the data type) used in the

7.1 Automatic Generation of Formal Specifications 135

Figure 7.1: Formal Specification for Inductive Invariant Checking

formal model. After that, the initial assignments are added corresponding to
the initialization phase. Then, the simulation loop is modeled as a (desugared)
loop. The loop invariants are added to the goto-block representing the loop
head. The loop body contains the assignments that represent the semantics
of the Simulink blocks obtained by the translation presented in Chapter 6. In
addition to the statements obtained by the translation, we also add verification
goals for the error classes of interest as assertions.

With this specification, we realize the following verification idea: First,
we show that if the model is executed on a valid state, it is in a valid state
afterwards using inductive invariant checking. We do this by showing that
some initial state Sinit satisfies the loop invariant I initially. Then, we show for
an arbitrary state Sn that satisfies I that the consecutive state Sn+1 satisfies
the invariant I. Second, we use verification goals to show that none of the
considered errors may occur during one execution step of the model. In other
words, we ensure that every intermediate state between two simulation steps
is valid w. r. t. the error classes of interest.

If the Boogie tool succeeds in proving these formulas, the model is free of
such errors. Otherwise, the Boogie tool reports an error with the line number,
the trace, and a counterexample.

There are three possible types of errors: The Boogie tool either reports a

(1) loop invariant entry error or an

(2) invariant maintenance error or an

(3) assertion violation.

If it reports (1), then the invariant was not satisfiable even before entering the
loop which usually indicates a problem with a manually specified invariant. If
it reports (2), this could also indicate a problem with the manually specified
invariants or that the automatically generated invariants are to weak to verify
the model. Finally, if it reports (3), then one of the checks for error classes of

136 Automatic Inductive Verification of Simulink Models

Figure 7.2: Formal Specification for K-Induction

interest failed. This can either indicate an actual error in the Simulink model,
or that the loop invariants are not strong enough to verify the formal specifi-
cation. Then, we have to inspect the counterexample whether it is spurious.
If this is the case, the user has to decide whether he wants to add further in-
variants manually or whether he wants to try k-induction first. For the latter,
we generate a formal specification tailored to a particular k as presented in the
next subsection.

7.1.2 k-Induction

If inductive invariant checking was not suitable to prove the absence of errors in
a formal specification due to weak invariants, we use k-induction in our process
to verify the specification. As introduced in Section 2.3.2, the verification idea
of k-induction is the following:

� Base Case Starting from some initial state S0 we show that k consec-
utive states S0, . . . ,Sk satisfy some property I (e. g., a loop invariant):
S0 |= I∧S1 |= I∧·· ·∧Sk |= I.

� Induction Step For k arbitrary, consecutive states Sn, . . . ,Sn+k (obtained
by k executions of the loop body) that satisfy the property I, we show
that the subsequent state Sn+k+1 still satisfies I: Sn |= I ∧ ·· · ∧ Sn+k |=
I −→ Sn+k+1 |= I.

Since the Boogie tool currently does not support k-induction, we adopt the
approach for combined-case k-induction by Donaldson et al. [DHKR11] (see
Section 2.3.2) and generate a formal specification tailored to a particular k.
Here, we encode both, the base case and the induction step, into one verifica-
tion condition.

7.1 Automatic Generation of Formal Specifications 137

Figure 7.2 depicts the specification generated for k-induction. The initial-
ization phase is modeled similar to inductive invariant checking. For the base
case (1), we unroll the loop body k times (indicated by the “∗k”) before the
loop is entered. Each unrolled loop body corresponds to one simulation step
in the Simulink model. For every step, we ensure that the loop invariants are
satisfied by adding them to the loop body as assertions. Furthermore, we add
checks for the considered error classes to the unrolled loop body as assertions.
To model the arbitrary start state for the induction step (2), we first set all
variables of the model to an arbitrary value using the havoc command.

Then, the loop body is unrolled k times (3) where all invariants and veri-
fication goals are assumed to hold in k consecutive steps. In other words, (3)
describes all possible executions of k steps where neither the invariants nor
the verification goals are violated. Finally, the loop body is unrolled another
(k+1)th time (4). In this last unrolled loop body, all invariants and verification
goals are checked with assertions.

Note that we apply loop cutting in the formal specification generated for
k-induction. Hence, the resulting Boogie program is free of cycles. More
precisely, the base case of the specification is actually a sequence of k loops
as obtained by loop cutting. Furthermore, the jumps to the end of the loop
are preserved to be able to also model execution paths where the loop finishes
in less than k steps. However, since the specification is acyclic, the Boogie
tool does not detect a loop and, hence, neither invokes its invariant inference
procedure nor distinguishes whether an assertion is an invariant or an error
check. For that reason, we have decided to encode the type of the assertion
directly into a label in the formal specification.

When verifying the formal specification wit the Boogie tool, it either returns
an assertion violation or that it has been successfully verified. In case of
Boogie returning an error, we evaluate the label corresponding to the violated
assertion. From the label

LABEL_ASSERTION#[ID]#[TYPE]#[STEP]

we extract the TYPE and the STEP parameter. The TYPE parameter indicates
whether it is an assertion for an invariant or for an error check. The following
table shows the possible error types:

TYPE Description

0 over- and underflow check

1 division-by-zero

2 range violation

3 loop invariant (automatic)

4 loop invariant (manual)

If TYPE is set to 0, 1 or 2 it indicates that an error check failed which means
there is an error in the model. If it is set to 3 or 4 the violated assertion

138 Automatic Inductive Verification of Simulink Models

is an invariant that is either too weak or indicates that a manually specified
invariant is not suitable (4).

The STEP parameter indicates in which of the unrolled loop bodies the
assertion was violated. A value from 1 to k indicates that the violated assertion
originates from the base case. If an error check failed in the base case, it
indicates that there is an error in the model. If STEP has the value of 2k+ 1
the assertion was violated in the induction step. This indicates that there
either may be an error in the model, that the chosen k is not high enough,
or that the invariants are not strong enough. Hence, we have to review the
counterexample and either find an actual error or a spurious counterexample.
To eliminate the latter we increase k or add some manually specified invariants.
If we increase k, a new formal specification is generated tailored to the new k
and the Boogie tool is invoked with the new specification again.

However, since the size (and complexity) of the verification condition in-
creases with the size of k, the time needed for the verification also increases.
To overcome this problem, we use slicing to reduce the complexity of the Si-
mulink model and the resulting verification problem for a particular assertion
violation discovered in an earlier verification attempt.

7.2 Slicing for k-Induction

The basic idea of our approach is to start with the best scaling verification
strategy (inductive invariant checking) first. If we are not able to show certain
properties with this strategy, we start using k-induction, which scales less well
since the size of the verification condition increases with k. To overcome this
problem, we use the slicing technique presented in Chapter 5 to reduce the size
of the verification condition by focusing on a particular property.

The key idea for this phase in our verification process is to translate and
afterwards verify only a slice of the model instead of the entire model. To
calculate the slice, we obtain the slicing criterion from the assertion violations
of an earlier verification attempt, e. g., the result of the last k-induction run
that did not finish in reasonable time.

Figure 7.3 depicts the basic procedure to apply slicing within our verifi-
cation process. Starting from a given Simulink model, we generate both the
Control Flow Graph (CFG) and the Matlab/Simulink Dependence Graph
(MSDG). Then, we use the error label to determine the actual block b where
the error has occurred. This block is used as the slicing criterion to perform
a static backward slice (2) as presented in Chapter 5. As result, we obtain a
MSDG where all nodes that belong to the slice are marked. Once the slice is
calculated, we start the translation of the model into the Boogie2 specification
by iterating over the CFG as discussed in Chapter 6. However, in contrast
to the original translation algorithm, we only translate those blocks that are
marked in the MSDG. Finally, the translation artifacts are composed into a
specification for k-induction (3) as presented in the previous section.

7.3 Automatic Generation of Verification Goals 139

Figure 7.3: Slicing Procedure for K-induction

The slice of the formal specification only contains the assignments, invari-
ants and verification goals that directly or transitively influence the assign-
ments and verification goals for the block b. With that, we can reduce the size
of the verification condition and hence, the time needed for the verification
w. r. t. the properties of interest for a particular Simulink block. This in turn
enables us to use greater values for k than without slicing.

Since we use static backward slicing to calculate the slice for the block b, we
safely over-approximate the set of blocks that influence the calculation result at
block b. This is the case since the calculation of data and control dependence
in our approach and the calculation of the slice is conservative. More precisely,
the slice also contains blocks from possibly infeasible execution paths and all
blocks that are relevant to calculate these. Furthermore, the slice contains all
blocks on which b is transitively data dependent including dependences that
range over more than one simulation step. However, all blocks in the slice are
also part of the original model and all statements generated for the slice are
also generated for the original model. Hence, if we verify the absence of an
error for block b in the slice, this also holds for the original specification. In
other words, the verification of the slice is sound w. r. t. the original model.

7.3 Automatic Generation of Verification Goals

In this section, we present the automatic generation of specific verification
goals w.r.t. important and typical run-time errors that are usually hard to
detect using testing. With the generated verification goals, we are able to
apply the general verification framework as presented in Section 7.1 in a fully
automatic way to ensure the absence of the error classes of interest. The
currently supported classes are the following:

140 Automatic Inductive Verification of Simulink Models

� Overflows and Underflows We consider every occurrence of an over-
or underflow in the model as an error. An over- or underflow occurs if
the value of a signal exceeds the bounds of its data type.

� Range Violations The second class of errors we consider are range
violations at the control input of MultiPortSwitch blocks. These occur
if the value for a control input is outside of the ranges specified in the
block parameters. It is possible that this behavior is intentional and the
model behaves correctly using the signal connected to the default port.
However, it might also be unintended since if not configured manually,
the last data input is the default input by definition. Hence, we consider
every range violation as an error.

� Division-By-Zero We consider every division-by-zero as an error. More-
over, we assume that they are not modeled intentionally, e. g., by setting
a parameter to a value like“1/0”. Hence, we focus on blocks that may use
an input signal as a divisor. Those are the Product and the Fcn block.
Note that S-Function blocks, which are over-approximated in our for-
mal model may also use input values in a division. Since we consider
these blocks as black boxes and a signal value of 0 may also be inten-
tional, we require the user to specify a manual invariant for the inputs
to S-Function blocks if 0 is not a valid for a particular input signal.

In our approach, we want to ensure that none of the above errors can occur
at any time during the execution of a given model. Since loop invariants can
be violated in the Hoare calculus or weakest precondition approach within
a loop as long as they are satisfied at the end of the loop, we need to use
an additional mechanism to ensure that no error occurs in any intermediate
state of the loop. To realize this, we add verification goals to the specification
at every point where one of the above errors may occur. These verification
goals are modeled with assertions in the formal specification. Therefore, we
automatically generate the verification goals depending on the block type and
the parameter configuration during the translation of the blocks into the formal
model. These assertions are added to the formal specification. Assertions for
range violations and division-by-zero errors are placed before and assertions
for over- and underflows after the statements representing a block.

While simply adding these assertions is suitable to verify the models for
the absence of errors, it is not well suited to track back the cause of an error
in case that Boogie reports a counterexample. As presented in Section 2.3.2
the Boogie tool translates every goto block within the specification into a
block equation. If it finds a counterexample, it returns the label of the block
equation that could not be satisfied, a line number for the assertion, a trace of
labels for satisfied block equations and the variable assignments. To identify
the block corresponding to the assertion, we have to analyze the context of
the assert statement. To obtain more precise traces, we add additional goto
blocks into the Boogie2 specification for every assertion. With that, we can
directly encode the corresponding Simulink block and type of the error into the
label that is reported if an error is found. Hence, we translate the assertions
for all error classes into:

7.3 Automatic Generation of Verification Goals 141

1 goto LABEL_ASSERTION#ID#TYPE#STEP;

2 LABEL_ASSERTION#ID#TYPE#STEP:

3 assert (...);

Here, ID is the unique identifier of the block. Furthermore, TYPE indicates the
error class and STEP specifies the unroll step if k-induction is used as presented
in Section 7.1.2. With that, we can directly use the trace to identify the
Simulink block and the type of an error and report it to the user.

7.3.1 Encoding Over- and Underflow Checks

The assertion for over- and underflows checks if the result of a calculation in
a block can exceed the data type bounds of the output signal. Hence, the
assertion has to be placed after the calculation of the block outputs. We
generate the following assertion:

1 // translation for a block with ID = 42,
2 outi j := (...);

3

4 goto LABEL_ASSERTION#42#0#STEP;

5 LABEL_ASSERTION#42#0#STEP:

6 assert (type_min <= outi j && outi j <= type_max);

Here, outi j represents the variable for the ith output (and the jth signal in a
vector) of the block, type_min and type_max are the bounds of the data type
of outi j and the “0” in the label indicates an over- and underflow check.

This assertion is generated for every block type that performs a calculation
which might possibly exceed the bounds of its data type. Such blocks are for
example Sum, Product, DiscreteIntegrator, Fcn, and Gain blocks.

7.3.2 Encoding Division-by-zero Checks

A division-by-zero error can occur in Product and Fcn blocks. For Product

blocks, the generation of assertions is straightforward. We generate an as-
sertion for each input that is used as a divisor, i. e., the entry in the Inputs

parameter for the block is a “/”. This assertion is placed before the output of
the block is calculated:

1 // assertion for a Product block with ID = 42
2 // where the input ini j corresponds to a ”/” in the Inputs Parameter
3

4 goto LABEL_ASSERTION#42#1#STEP;

5 LABEL_ASSERTION#42#1#STEP:

6 assert (ini j != 0);

7

8 // translation for a block with ID = 42,
9 outi j := (... / ini j ..);

142 Automatic Inductive Verification of Simulink Models

Note that the “1” in the label indicates that this assertion is a division-by-zero
check.

For Fcn blocks, we have to consider that the inputs are part of an expres-
sion specified in the Expr parameter. Hence, it is not suitable to only check
the inputs. Instead we need to analyze the expression and need to produce
checks for each subexpression used as a divisor. For a Fcn block that uses a
subexpression subn as divisor in the expression specified in Expr, we generate
the following assertion to check for a division-by-zero:

1 // assertion for a Fcn block with ID = 42
2 // where subn is a subexpression of Exp
3

4 goto LABEL_ASSERTION#42#1#STEP;

5 LABEL_ASSERTION#42#1#STEP:

6 assert (subn != 0);

7

8 // translation for a block with ID = 42,
9 outi j := (... / subn ..);

Note that an assertion is created for each subexpression used as divisor.

7.3.3 Encoding Range Violation Checks

Range violations can occur at MultiPortSwitch blocks if the signal connected
to the control port has a value that is not in the range specified by the Dat-

aPortOrder and DataPortIndices parameter. Hence, we place the assertion
for this check before the translation of the block. However, the assertion is
only generated if the block uses its last data input as default input since we
assume it may be used unintentionally.

The assertion is constructed from the contents of the DataPortOrder and
DataPortIndices parameter, which we store in a idx array that maps the
number of a data input to its index value. For a MultiPortSwitch block, we
generate the following assertion:

1 // assertion for a MultiPortSwitch block with ID = 42
2

3 goto LABEL_ASSERTION#42#2#STEP;

4 LABEL_ASSERTION#42#2#STEP:

5 assert (in1 == idx[2] || ... in1 == idx[n]);

6

7 // translation for the MultiPortSwitch with ID = 42,
8 goto MultiportSwitch_42_data_2, ... MultiPortSwitch_42_data_n;

9 ...

In the above listing, n is the number of inputs to the block, in1 is the control
input and the 2 in the label indicates that the assertion is a check for a range
violation.

7.4 Loop Invariants 143

7.3.4 Other Verification Goals

In our framework, we currently support the automatic generation of verification
goals described in the previous subsections. However, it is generally possible
to generate assertions for further goals automatically. For example, many
Simulink blocks have parameters that enable the specification of a minimal
and maximal output value. However, these bounds are not mandatory. If a
block violates them, a warning may be reported by the simulation engine but
there are no further consequences for the behavior of the model. Since these
are not run-time errors, we currently have not included these parameters into
our automatic generation of verification goals. Another possible extension may
be the translation of ProofObjective and Assumption blocks introduced by
the Simulink Design Verifier toolbox. These blocks can be directly encoded
into assertions in our formal specification. However, since they are not part of
the standard Simulink block library, we decided to currently not support them
in our approach.

With the automatically generated verification goals presented in this sec-
tion and the formal model from the previous chapter, we are able to ensure
that none of the errors of interest can occur within a given Simulink model.
However, to verify the model with inductive techniques, we also need to derive
suitable loop invariants to obtain useful verification results.

7.4 Loop Invariants

In this section, we describe the automatic generation of some loop invariants
needed for the verification of the simulation loop in our approach. Furthermore,
we also enable the user to specify additional invariants manually.

As discussed in Section 7.1, the verification of loops using the Boogie verifi-
cation framework (and weakest preconditions) generally consists of two steps:

1. We show that the program state before the execution of the loop satisfies
the loop invariant (base case).

2. For an arbitrary program state satisfying the loop invariant, we show that
the program state after the execution of the loop body (still) satisfies the
loop invariant (induction step).

Since in our formal model a Simulink model is represented by its simulation
loop, we need to specify invariants that are suitable for the entire model. That
means we need to specify invariants that are satisfied between two arbitrary,
consecutive simulation steps.

Note that a major challenge arises from the fact that in Boogie2 the types
are unbounded while Simulink types have bounds. Since for the verification of
loops an arbitrary model state is used, we need to ensure with loop invariants
that this state is valid w. r. t. data type bounds in the Simulink model. Hence,
we generate invariants that limit the range of each variable to the bound given

144 Automatic Inductive Verification of Simulink Models

by the type. Furthermore, we generate invariants that are not required to
verify the model but greatly reduce the needed verification time.

In Boogie2, loop invariants are modeled as assertions that are placed in
the code block representing the loop head (see Section 2.3.2, Formula (2.10)).
Similar to the verification goals, we use labels to encode the corresponding
Simulink block, the type of the invariant, and the unroll step for k-induction.
An automatically generated invariant is indicated with the TYPE segment in
the label set to 3. Manually specified invariants are indicated by a 4.

7.4.1 Automatically Generated Invariants

In our approach, we automatically generate two kinds of invariants: The first
kind are invariants that limit the variables in our formal model to the corre-
sponding Simulink data types. They are necessary to verify the formal model
for the absence of errors for the error classes discussed in the previous sec-
tion. The second kind of invariants are generally not necessary to verify the
formal specification. However, adding these invariants greatly improves the
verification time.

Data Type Invariants

Besides Boogie2 assignments and verification goals, we also generate invariants
for each block directly during the translation. For an invariant limiting the
variables to their type bounds, we generate the following assertion that is
placed in the loop head:

1 //invariants for a block with ID = 42,
2 goto LABEL_ASSERTION#42#3#STEP;

3 LABEL_ASSERTION#42#3#STEP:

4 assert (type_min <= outi j && outi j <= type_max);

5 ...

Here, type_min and type_max are the lower and upper bounds for the Simulink
data type of an output signal outi j. A data type invariant is generated for each
output or state variable in our formal model.

Control Flow Invariants

While the above presented data type invariants are well suited for the use of
inductive invariant checking, they may lead to scalability issues when using k-
induction. The problem is that the invariants are assumed to hold k times in the
induction step regardless of whether the execution context of the corresponding
block is executed or not. To show that all invariants hold, the underlying
theorem prover Z3 has to explore every feasible execution path in the model.
For every feasible path, it has to explore all possible assignments for each
variable, even if the variable does not belong to the execution path and hence,

7.4 Loop Invariants 145

is unrelated to any of the variables in the feasible path. In other words, the
above presented data type invariant leads to an unnecessary large state space
when using k-induction.

To reduce this problem, we generate invariants for the data type bounds
that include control flow dependencies. More precisely, we specify when a data
type bounds invariant has to be satisfied. Hence, we generate the following
data type invariant for each block b that is within a conditional execution
context e:

1 assert (pe ==> invb);

In the above listing, pe is the predicate specified by the predicate block of
the execution context (e. g., the predicate variable generated for an Enable

block). The data type invariant invb for block b is generated as presented in
the previous subsection. In other words, we only require a signal value to be
within its data type bounds if it is part of a feasible execution path. With
that, we can limit the search space for the solver to valid execution traces of
the model.

Note that these more precise invariants for data type bounds limit the
search space for the solver in each unrolled simulation step and hence greatly
decrease the verification time for our case studies when using k-induction.
To improve the verification time even more, we constrain the arbitrary start
states for the induction step to be consistent with the predicates of conditional
execution contexts. Hence, we generate invariants that relate the variables
used to calculate a predicate to the more precise data type invariants. For
a Switch block, we generate an invariant that describes how the predicate is
calculated:

1 //invariants for a Switch block with ID = 42,
2 goto LABEL_ASSERTION#42#3#STEP;

3 LABEL_ASSERTION#42#3#STEP:

4 assert (predicate_Switch_42#1#0 == criteria);

Analogously to the mapping presented in Section 6.5, the criteria is either
“in2 < Threshold”, “in2 != 0” or “in2 <= Threshold”.

7.4.2 Manually Specified Invariants

Besides the automatically generated invariants, we also enable the user to
specify additional invariants manually. Manually specified invariants might be
required to succeed with the verification if the model is too complex to find a
suitable k for k-induction or if the automatically generated invariants are too
weak to be used with a smaller k.

146 Automatic Inductive Verification of Simulink Models

For this purpose, we enable the user to specify further invariants that are
automatically added to the formal specification during the translation process.
For manually specified invariants, we require the following syntax.

[ID]@[Invariant]@[Port]

Here, ID is the identifier of the block and Invariant is an expression over
a variable generated for the block in the formal model that evaluates to a
Boolean value. The Port indicates the corresponding output of the block and
is used to apply casts to the expression if data types are not matching.

For example, the invariant“769@(state_UnitDelay_769#1#0 <= 9)@1”for
a UnitDelay block with the ID 769 and one integer output signal is translated
into the following:

1 goto LABEL_ASSERTION#769#4#STEP;

2 LABEL_ASSERTION#769#4#STEP:

3 assert (state_UnitDelay_769#1#0 <= 9);

Note that the value 4 for the TYPE indicates that it is a manually specified
invariant.

To define an invariant over a range of values, it is possible to use a range

macro: “702@range(state_UnitDelay_702#1#0,-1000.0,1000.0)@1”. The
macro translates into the following:

1 goto LABEL_ASSERTION#702#4#STEP;

2 LABEL_ASSERTION#702#4#STEP:

3 assert (-1000.0 >= state_UnitDelay_702#1#0 &&

4 state_UnitDelay_702#1#0 <= 1000.0);

Note that if the user specifies an invariant that is not consistent with the
model, an invariant maintenance error is reported by the Boogie tool.

7.5 Summary

In this chapter, we have presented our verification approach for Matlab/Si-
mulink models. We have first discussed the two verification strategies we use in
our approach: inductive invariant checking and k-induction. For both, we have
presented how we automatically generate a formal specification from the formal
model. These specifications are tailored to the desired verification strategy. We
have shown how our slicing technique is used in our verification approach to
obtain a slice of the formal specification, which can be used to significantly
reduce the verification effort. Furthermore, we have presented the automatic
generation of verification goals for certain run-time errors and the automatic
generation of invariants that are necessary to automatically verify the absence
of these errors in a model.

8 Implementation

To show the practical applicability of our approach, we have implemented our
automatic slicing and verification techniques presented in the previous chapters
in our MeMo tool suite. The MeMo tool suite implements all steps of our
verification process from parsing via the formal verification itself of the model
to a visualization of the counterexamples obtained from the Boogie verification
framework. Furthermore, it provides a graphical user interface that guides the
user through the verification process.

8.1 The MeMo Framework

The MeMo tool suite generally consists of three modules corresponding to the
verification process presented in Chapter 4, a parsing module and a graphical
user interface. Figure 8.1 depicts the basic components of our tool.

� Parsing Engine The parsing engine provides the other components in
our tool suite with the necessary information. It does not only parse the
model file to create an intermediate representation used by the other com-

Figure 8.1: The MeMo Tool Suite

147

148 Implementation

ponents. It also enhances the parsed model with information extracted
from the Matlab/Simulink tool and performs some preprocessing steps
like the flattening of subsystems and the bus analysis (as presented in Sec-
tion 5.4.1). Furthermore, it stores all information gathered in a database
for subsequent use without the need to parse the model again.

� Slicing Engine The slicing engine takes the model in our intermediate
representation and performs the dependence analysis (as presented in
Section 5.2) to create a dependence graph representation. This represen-
tation is then used to calculate static forward and backward slices (as
presented in Section 5.3). Additionally, it calculates the sorted order,
and hence, the control flow graph using the execution contexts and de-
pendences calculated during the dependence analysis and provides it to
the translation engine.

� Translation Engine The translation engine uses the intermediate rep-
resentation of the model and the control flow graph provided by the
slicing engine to perform the block-by-block translation of the Simulink
model into the formal Boogie2 model as presented in Chapter 6. Fur-
thermore, it manages the data type mappings of all Simulink data types
within a model, the mappings for the supported arithmetical operations
and mechanisms that are not specific to a certain block type (see Sec-
tion 6.5.9). Finally, it generates the formal specifications for the desired
verification technique depending on a given k.

� Verification Engine The verification engine uses the formal specifica-
tion provided by the translation engine to verify it using the Boogie
verification framework. Furthermore, it processes the counterexamples
such that they can be displayed within the graphical user interface.

The MeMo tool suite is mainly written in the platform independent pro-
gramming language Java. It is written for the Eclipse Rich Client Plat-
form (Eclipse RCP)1, which enables us to reuse and to extend best practices
and design patterns provided by the Eclipse RCP framework. Currently, the
MeMo suite consists of five eclipse plug-ins that together comprise about 50.000
lines of code2. In the following sections, we summarize the main features of
the implementation for the components presented above.

8.2 Parsing Engine

The main purpose of our parsing engine is to provide our techniques presented
in the previous chapters with the required information stored in a suitable and
complete intermediate representation. To obtain this representation, we do not
only need to parse the file for the Simulink model of interest, but also to obtain
all information about referenced library blocks or models as well as run-time

1http://eclipse.org/
2Note that this number also includes code comments and few classes that are automatically
generated.

8.2 Parsing Engine 149

Figure 8.2: The Parse Process for a Simulink Model

information that is not available directly from model files. Figure 8.2 depicts
the steps of our parsing process realized by our parsing engine. In the following
subsections, we give a brief description of the steps and their implementation.

8.2.1 Parsing of Model and Inlining of References

In our parsing step we start by parsing the model file for the model of interest
first. Therefore, we use a parser for Simulink MDL files, which is part of the
Simulink Library for Java3 originally developed at the Technische Universität
München which is based on the CUP Parser Generator for Java4. Note that we
only use the generated parser and the data structures to create an Abstract
Syntax Tree (AST) from the Simulink Library for Java and create our own
intermediate representation.

Once the model is parsed, we traverse the abstract syntax tree to create a
skeleton in our intermediate representation. Whenever the traversal encounters
a section in the AST that represents a block of the type Reference, we search
in an user-defined list of models and libraries for the referenced subsystem and
parse the corresponding file if necessary. The Reference block is then replaced
by the referenced subsystem. This is done recursively for replaced references
such that in the final AST all sections represent basic blocks. Then, the AST
is transfered into our intermediate representation to provide a skeleton for the
next step.

8.2.2 Enhancement with Run-time Information

Since the slicing and verification approach presented in this work requires in-
formation that is not available from the model files, we need to extract these
parameters directly from the Matlab/Simulink tool. To control and access
the Matlab/Simulink tool, we use the MatlabControl5 library. MatlabCon-
trol is able to connect to the Java MATLAB Interface that resides in a Java
Virtual Machine running within the MATLAB instance. To this end, Matlab-
Control provides proxy classes to execute procedure calls remotely using Java

3http://www.cqse.eu/en/products/simulink-library-for-java/overview/
4http://www2.cs.tum.edu/projects/cup/
5http://code.google.com/p/matlabcontrol/

150 Implementation

Remote Method Invocation. However, the capabilities of the Java MATLAB
Interface are limited to an eval method that can be used to execute MAT-
LAB command, and get and set methods to read from or write values to the
workspace. Note that the get and set methods only support primitive data
types and arrays.

To obtain run-time information, e. g., the inferred data types of signals,
we start MATLAB and load the model (and user-defined initialization files)
into the Matlab/Simulink tool and set it to the compiled state. Then, we
traverse through all blocks within the skeleton. For each block, we execute
a small script in MATLAB Code (M-code) using the eval command that
extracts all parameters of a block and saves it to the workspace in a temporary
variable. Then, we read the variable from the workspace and update the block
parameters if necessary. At the end, we obtain a model in our intermediate
representation that is enhanced with run-time parameters and ready for further
preprocessing steps.

8.2.3 Preprocessing

Once all information for the model is collected, we apply a number of pre-
processing steps to prepare the intermediate representation for the algorithms
presented in Chapter 5 to Chapter 7. Besides the analysis of bus systems
already presented in Section 5.4.1, we also flatten the subsystem within the
model, we unfold branches in signal lines and resolve parameters from masked
subsystems.

To ease the calculation of data flow trough the model, we flatten the hi-
erarchical structure of the models w. r. t. data flow. To this end, we iterate
through the model and for every subsystem found, we reconnect the signal
lines connected to inputs and outputs of the subsystem block to the corre-
sponding port blocks (e. g., Inport or Enable blocks). This has the benefit
that in subsequent analyses, we can directly traverse the signal lines through
the model. Furthermore, we analyze the model for Goto and From blocks,
which are used to model signal flow without using lines to avoid line crossings.
In our intermediate representation, we create virtual signal lines from every
Goto block to its corresponding From block.

An important preprocessing step is the unfolding of signal lines. In Simulink
models, a line can branch into two or more lines to model signal flow from one
block to many blocks. In the model file, such branches are modeled as sub-
elements of a line (or a branch element) specification that only contain a source
block or a destination. To unfold these branches, we iterate over all lines in
the model and create a new line for every branch.

A preprocessing step that is especially important for our translation ap-
proach is that we resolve the parameters of masked Subsystem and Reference

blocks. In Simulink masks can be used to specify additional variables and
constants within masks that are used by the (basic) blocks within the subsys-
tem. For example, the composite Counter Limited block from the Sources

8.3 Slicing Engine 151

Block Set requires the specification of an “upper limit”. This “upper limit”
is then used as the mask parameter for the composite Wrap To Zero block, in
which it is used as the Threshold parameter for a Switch block. To lift this
information directly to the basic blocks, we iterate over all blocks in the model
and check whether the use parameters from their masked parent subsystems.
If they do, we traverse through the hierarchy to determine a concrete value for
this parameter and replace the mask variables in the basic blocks.

8.2.4 Persisting the Parsed Model

Since the parsing process is rather costly, we decided to save the parsed model
with all preprocessing steps applied to a database. The main idea is to parse
only once, but to verify and slice multiple times using the intermediate rep-
resentation stored in the database. To persist the parsed model, we currently
use a PostgreSQL6 database management system. The communication with
the database is done using the Java Persistence API, more precisely the Hi-
bernate7 framework. With that, we can save and load the Java objects of the
intermediate representation directly to and from the relational PostgreSQL
database.

8.3 Slicing Engine

The slicing engine basically implements the techniques presented in Chapter 5
and the calculation of the CFG as presented in Section 6.4. Furthermore, it
can visualize the slices by colorizing the blocks directly in the model using the
MatlabControl library. Note that all figures depicting slices in Chapter 5 have
been created with our MeMo tool suite.

8.4 Translation Engine

The translation engine implements the transformation from our intermediate
representation to the formal specification as presented in Chapter 6 and Chap-
ter 7. Our main idea for the transformation engine is to provide an implemen-
tation that can be easily extended by translation rules for further Simulink
blocks and for additional mappings for data types, e. g., for the theory of
floating point numbers as proposed by Rümmer and Wahl in [RW10].

To achieve that, the translation engine consists of three main components:
A BlockTranslatorFactory, an ArithmeticsMapping component and a data
model for the formal specification, the BoogieModel.

6http://www.postgresql.org/
7http://hibernate.org/

152 Implementation

8.4.1 BlockTranslatorFactory

The BlockTranslatorFactory implements the factory pattern and returns an
instance of a translator class for a certain block type. It is invoked during the
traversal of the CFG for every block. The translator classes are required to
extend the abstract class AbstractBoogieTransformer, which is instantiated
with a block and an ArithmeticsMapping. To add a type specific translation,
a concrete translator class needs to override the calculateBoogie method that
takes a BoogieCodeBlock from the BoogieModel as parameter. Note that for
all statements generated during translation, the expressions have to be created
by ArithmeticsMapping.

8.4.2 ArithmeticsMapping

In our implementation, the ArithmeticsMapping component manages all data
type mappings and arithmetic operations for the translation. The component is
designed to be replaceable, as long as it implements the ArithmeticsMapping

interface. Amongst others, this interface requires the implementation of a
calc and a getPreamble method. Here, calc method takes an operator, a
data type, and the left and right hand side and returns the corresponding
Boogie2 expression. The getPreamble returns those parts of the preamble
that are not specific to a certain block, e. g., data type bounds, functions for
the over-approximation of behavior, and built-in functions from the Z3.

8.4.3 BoogieModel

The BoogieModel is our data model for a Boogie2 specification. It models
a tree of the different elements of a Boogie2 program (e. g., BoogieProce-

dure, BoogieLoopBlock, BoogiePredicateBlock, BoogieAssignmentBlock,
BoogieStatement). During translation, these model elements are created de-
pending on the type of the Simulink block and passed to the block transla-
tor. All model elements implement the abstract class BoogieCodeBlock that
provides methods to add statements, invariants, assertions, functions and vari-
ables. Block translators can use this methods to add their translation artifacts
to the model. If necessary, these artifacts are passed through the hierarchy of
the BoogieModel to their corresponding elements. For example, variables are
passed to the BoogieProcedure and invariants are passed to the next Boo-

gieLoopBlock in hierarchy. Note that manually specified invariants are added
to the BoogieModel once all blocks are translated.

Finally, all elements of the BoogieModel have a print function that prints
the Boogie2 statements represented by this element according to a k given as
parameter that specifies the number of steps for k-induction. Moreover, every
element calls the print function for each of its child elements. Hence, calling
print on the BoogieModel returns the complete Boogie2 specification.

8.5 Verification Engine 153

8.5 Verification Engine

Once a Simulink model is translated, the verification engine invokes the Boogie
verification framework with the formal specification that has been written to a
file. Furthermore, we configure the Boogie tool to write the counterexamples
and the error traces into some files. When the verification is finished (i. e., the
Boogie tool terminates), we analyze the trace for the verification results. If
the verification succeeded or was inconclusive (i.e. the file containing the trace
is empty), we directly report these results to the user. If the trace contains
errors, we analyze the counterexamples and the error traces to post-process the
results for the user. For that purpose, we extract the block and the type of the
error from the assertion label. Additionally, we analyze the counterexample
to match the variable assignments to the corresponding Simulink blocks. Due
to optimizations within the Z3 theorem prover, assignments from the formal
model that simply forward a value (e. g., port blocks, Mux and Demux blocks)
are sometimes not contained in the counterexample. Hence, to obtain a coun-
terexample that is consistent with the Simulink model, we calculate a backward
slice for the block where the error occurred. Then, the variable assignments
for the blocks are propagated backwards to the blocks contained in the slice
that do not have a corresponding assignment in the reported counterexample.

8.6 Graphical User Interface of the MeMo Tool

To support our verification approach we have developed a graphical user in-
terface based on the Eclipse RCP framework to guide the user through the
verification process. Figure 8.3 depicts this user interface and in the following,
we briefly present its core features.

Figure 8.3: The MeMo Tool

154 Implementation

In our tool suite, we utilize the Project structure within Eclipse. A MeMo
Project (1) consists of a Simulink model and a number of file artifacts that are
automatically generated. The parsing process is triggered by a context menu
entry of the model and provides a wizard that lets the user specify additional
models and configuration scripts for the model. Our tool suite enables the
user to work with multiple versions of a model and to select the database for
a model version of interest (2). The verification and slicing techniques can
be easily started using buttons (3). The verification results are displayed in a
console (4) and if counterexamples have been reported, they are presented in a
more human readable way in the verification results view (5). From this view,
the user can also start the verification for a slice of the model using an entry
(6) in the context menu for the displayed errors.

8.7 Summary

In this chapter, we have presented our implementation for the techniques of
our verification approach: the MeMo tool suite. First, we have discussed the
general architecture of the tool suite. After that, we discussed each component
in more detail and especially focused on the parsing and the translation engine.
We have presented some features of our parsing engine to show how we obtain
all the information that is required by our verification and slicing techniques.
Furthermore, we have discussed our implementation of the translation engine,
which is designed to be easily extensible by adding new block translators and
arithmetics. Finally, we have briefly presented the verification engine and
our post-processing for the counterexamples before we have introduced our
graphical user interface that guides the user through our verification process.

9 Evaluation

In this chapter, we present an evaluation of our slicing and verification tech-
niques. We use the implementation presented in the previous chapter to show
the practical applicability of our approach. The most important measures are
performance and quality. For our verification approach, we evaluate quality
by measuring the capability to detect errors and to show the absence of er-
rors from the error classes of interest. To this end, we measure the number of
actual errors in the model and the number of spurious counterexamples that
are reported for verification runs. The latter may occur if the automatically
generated invariants are too weak. However, with k-induction we are able to
eliminate most of these spurious counterexamples fully automatically. To this
end, we assess whether a model is verified fully automatically or user interven-
tion in terms of additional manually specified invariants is required. For the
slicing technique, we evaluate the quality by measuring the precision of the
calculated slices. We have performed a set of experiments on a number of Si-
mulink designs that comprise both synthetic benchmarks and models provided
by industrial partners.

All experiments have been performed on a machine with an Intel (Dual)Core
i7-4500U CPU 1.8 GHz and 8 GB main memory. For both techniques, we
have measured the computational effort by monitoring the execution times of
our implementation. To this end, we have instrumented the code with Sys-
tem.currentTimeInMillis() statements. This means that the smallest unit of
measurement is milliseconds. For all measurements with run-times of a few
milliseconds, it is possible that rounding errors might have occurred for exe-
cution time below one millisecond. Another factor that might have impacted
the measured execution time is internal caching performed by the Java virtual
machine (e. g., for the processing of counterexamples). Note that for the com-
bination of the slicing and verification technique the slicing criterion is taken
from a previous verification attempt. This means that the dependence analysis
and the scheduling have already been done for the previous attempt and are
reused. Finally, there are factors out of our control like the garbage collection
of the Java virtual machine and the multi-threading of the Windows operating
system that might have affected the reported execution times.

155

156 Evaluation

In the following sections, we start with a brief description of the Simulink
designs used to evaluate our approach in Section 9.1. After that, we present
our experimental results for our slicing technique in Section 9.2. Then, in
Section 9.3, we present our evaluation of our verification approach. Finally, we
summarize this chapter in Section 9.4.

9.1 Case Studies

For the evaluation of our verification approach, we use three models: a care-
fully designed synthetic benchmark TestModel, a model of an Odometer and
a design representing a distance warning (DistWarn) system for a car. The
latter two models have been provided by our industrial partners within our
MeMo project. For the experimental evaluation of our slicing technique, we
use additional models: some synthetic models we have designed to contain
certain language features like nested control flow or bus systems, which have
been used as examples in the previous chapters, and a number of models taken
from the set of examples shipped out with the Simulink tool suite.

In the next four subsections, we introduce the three case studies used for the
evaluation of our verification technique and then briefly discuss the additional
models.

9.1.1 TestModel Design

For a first evaluation of our approach, we have constructed a synthetic bench-
mark that features a number of possible and actual errors w. r. t. the error
classes of interest, namely over- and underflows, range violations and division-
by-zero errors. It consists of two subsystems: one is implementing a counter
with a reset and the other contains a sequence of MultiPortSwitch blocks.
Furthermore, the TestModel contains a Product block performing a division on
the highest hierarchy level. Figure 9.1 depicts the model and its components.
The model consists of a total of 31 blocks, where 6 blocks are virtual blocks (2
subsystems and 4 port blocks). All blocks except for the subsystems are basic
blocks.

The “Counter with Reset” subsystem (Figure 9.1b) represents a simple
counter that adds up a value up to a specified limit. We use an UnitDelay

block to store the counting value that is initialized to 0 and incremented by
1 in every simulation step. The incremented value is compared to the reset
value with a RelationalOperator block for inequality. As long as the values
are not equal, the upper input (T) of the Switch block is forwarded and passed
to the output of the subsystem. Otherwise, the value is reset. The contents
of the second subsystem (“Cascading Switches”) are depicted in Figure 9.1c.
It uses the value supplied by the counter to select a value that is provided to
the output of the subsystem. This output value is then used as divisor in the
Product block (see Figure 9.1).

9.1 Case Studies 157

(a) Top Level View of the Model

(b) Counter with Reset Subsystem (c) CascadingSwitches Subsystem

Figure 9.1: Structure of TestModel

The TestModel is designed to contain at least one block for each error class
of interest. In this model, over- and underflows may occur at both Sum blocks in
the subsystems in Figure 9.1b and Figure 9.1c. Range violations may occur at
the MultiPortSwitch blocks “MultiportSwitch” and “MultiportSwitch2” in
the CascadingSwitches subsystem (Figure 9.1c). Finally, a division-by-zero
error may occur at the Product block in Figure 9.1a.

Note that we have designed the TestModel model to be erroneous. If the
counter exceeds the value of 19, the control input for “MultiportSwitch” be-
comes 3. Then, a range violation occurs1 at the block “MultiportSwitch2”
since the signal at its control input becomes 3, too. Furthermore, if the counter
exceeds a value of 29, a range violation occurs at “MultiportSwitch” since its
control input becomes 4. Finally, if the counter reaches 70, a division-by-zero
occurs at the Product block since the default cases for “MultiportSwitch”
and “MultiportSwitch1” are executed, which leads to a value of 7.0 at the
control input of “MultiportSwitch2”. Then, the block “MultiportSwitch2”
outputs a 0, which is used as divisor in the Product block.

9.1.2 Odometer

Our second case study is a Simulink design modeling an odometer for a car. It
has been provided by our project partner Model Engineering Solutions GmbH

1As mentioned in Section 6.5.9, floating point control signals are cast to integers in Mul-

tiPortSwitch blocks.

158 Evaluation

Figure 9.2: Architecture of the Odometer Model

within our MeMo project. It counts the distance traveled and outputs a warn-
ing signal in case of an overflow in the distance calculation. Furthermore, it
also tracks the fuel consumption and outputs a signal once the tank volume
falls below a given threshold. The architecture of this model is depicted in
Figure 9.2.

The Odometer model consists of three components on the highest hierarchy
level. The Inputs component provides values for simulation using Constant

blocks and Signal Builder blocks that provide values from the workspace.
Signal Builder blocks are composite blocks that internally use FromWorkspace
blocks to generate signals. The Odometer component consists of three further
subcomponents that realize the above mentioned tasks and contain a number
of hierarchical subsystems. The communication between all above mentioned
components is realized by bus signals.

The Odometer model makes heavy use of model referencing and user-
defined libraries. Besides the main model (Odometer.mdl), it has references
to three different external libraries that are used multiple times. Note that
one model reference contains a Stateflow design, which models a state-based
controller to output a modulated signal that can be used to control an optical
or acoustic warning indicator. Furthermore, the Odometer model is configured
with two scripts in MATLAB Code (M-code) to set up the paths to the refer-
enced models and parameters used by various Constant blocks in the model.

With all model references included, the Odometer model consists of 190
blocks including 25 subsystems. It is a medium sized model that does not
contain floating point arithmetics and is ready for code generation. Due to
its explicit modeling of the overflow detection on the distance counter it does
not contain any error w. r. t. the error classes of interest. Hence, it is perfectly
suitable to show the absence of errors on a correct model.

9.1.3 Distance Warning (DistWarn)

Our third case study models a distance warning system that tracks the po-
sition of up to two vehicles driving ahead to warn the driver if the distance
falls below a given threshold. It has been provided by our project partner
Berner & Mattner Systemtechnik GmbH within our MeMo project. Figure 9.3
depicts the top level components of the model. It consists of a component

9.1 Case Studies 159

Figure 9.3: Architecture of the DistWarn Model

simulating the input signals, the actual distance warning component and some
post-processing of the calculated results. Within the Control Signals compo-
nent, the input signals are generated by a SignalBuilder block. Furthermore,
ManualSwitch blocks are used to model sensor failures. The communication
between all components is realized by bus signals.

Within the DistanceWarning component, the Sensor Preprocessing com-
ponent analyzes the input signals for failures and performs a conversion of the
velocity units first. After that, the Object Velocity Calculation uses radar
signals to calculate the distance to some vehicles ahead. Furthermore, it calcu-
lates if there are multiple vehicles driving ahead and provides this information
to its output. The calculated signals are then evaluated in the Results Eval-

uation component within a Stateflow design.

The DistWarn design uses model referencing and user-defined libraries as
well as a number of composite blocks from the Simulink block library. It uses
one small subsystem from an user-defined library and two references to a larger
model (about 37 blocks), which is called DistanceCalculation.

Altogether, with all library links and model references resolved, the Dist-
Warn model consists of 264 blocks. It is one of our largest case studies and
contains floating point arithmetics, a number of multiplication operations and
some Simulink constructs that make the verification challenging. Furthermore,
the DistWarn design contains some errors that we discuss in detail in the eval-
uation section.

9.1.4 Additional Models for Slicing Evaluation

In addition to our three case studies for our verification approach, we also use
a set of additional models that are used for the experimental evaluation of
our slicing approach. Besides some models taken from the Simulink examples,
we use a number of synthetic models that showcase some Simulink features
and have been used as examples in the previous chapter. In the following, we
briefly describe these models:

� control flow The first model we use in our experimental evaluation is
synthetic and features the hierarchical nesting of Conditional Execution
Contexts (CECs).

160 Evaluation

Table 9.1: Overview of the Characteristics of the Case Studies

Model Block
Count

Line
Count

Subsys.
Count

Ref.
Count

Hierarchy
Depth

Models without large Feedback Loops or Bus Systems

slicingexample 26 27 2 1 2

Benchmark 31 31 2 0 1

control flow 57 47 8 1 3

clutch if 103 112 11 0 4

Models with large Feedback Loops

f14 control 64 66 5 1 3

climatecontrol 103 103 10 0 2

enginewc 114 120 13 0 3

aero guidance 338 381 28 18 5

Models with Bus Systems

busexample 19 18 0 0 0

Odometer 190 192 25 4 5

DistWarn 264 315 31 27 6

� slicingexample This is the model introduced to illustrate the original
slicing technique in Section 5.3.

� busexample The model we have introduced in Section 5.4, to illustrate
the slicing of bus systems.

� aero guidance A Simulink example for a missile guidance system.

� f14 control A design from the Simulink examples modeling the flight
control of a military aircraft.

� climatecontrol A Simulink example design modeling a climate control
for a car.

� clutch if A design from the Simulink examples representing the clutch
of a car.

� enginewc A Simulink example modeling an engine of a car.

Table 9.1 briefly summarizes the characteristics of all 11 case studies. The
model sizes range from 26 to 338 blocks. The line count describes the num-
ber of lines after all line branches are resolved. Furthermore, the layers of
hierarchy introduced by subsystems varies from 0 to 6. The table also shows
the number of subsystems and references in the model. Note that references
are automatically replaced by the corresponding blocks from a (possibly user-

9.2 Slicing Evaluation 161

defined) library or model reference. All models are loaded from the database
in 8 to 40 seconds.

In Table 9.1, the case studies are partitioned into three groups whether
they contain large feedback loops and bus systems or not. A model contains a
feedback loop if a block depends on a value calculated in a previous simulation
step. We consider a feedback loop as large if more than a third of the blocks
in a model are part of a feedback loop.

In the following sections, we use the case studies presented above for the
experimental evaluation of our slicing and verification approach. In the next
section, we present and discuss the experiments for our slicing technique.

9.2 Slicing Evaluation

In this section, we present our experimental evaluation results for our slicing
technique presented in Chapter 5. To evaluate the performance of our slicing
technique, we measure the computational effort for the construction of the
dependence graph and for the slicing algorithm itself. To evaluate the quality,
we measure the precision of the slicing technique. As measure for the precision
of our approach, we use the average slice size metric as introduced by Binkley
et al. [BGH07]. The basic idea of the average slice size is to calculate the
average size of all possible slices for a program. Analogously, we measure
the computational effort for the slicing algorithm by using the average slice
computation time. These measures are defined as follows:

Definition 9.1 (Average Slice Size (Simulink Model)). For a Simulink model
m that consists of a set of blocks B = b1, . . .bn, we define the average slice size
SAV G(m) for m as

SAV G(m) =
1
|m| ∑b∈B

|s(b)|
|m|

Here, s(b) is the slice with the block b used as slicing criterion. |s(b)| is the
number of blocks within the slice and |m| is the number of blocks within the
original model.

Note that this measure also includes subsystems. Since we flatten the model
in our intermediate representation, we use the corresponding port blocks of the
subsystem as slicing criteria instead of the actual subsystem block.

Definition 9.2 (Average Slice Computation Time (Simulink Model)). For a
Simulink model m that consists of a set of blocks B = b1, . . .bn, we define the
average slice computation time TAV G(m) for m as

TAV G(m) =
1
|m| ∑b∈B

T (s(b))

162 Evaluation

Table 9.2: Experimental Results for the Basic Slicing Technique

Model MSDG Forward Backward

(ms) TAVG
(ms)

SAVG
(%)

σ

(%)
TAVG
(ms)

SAVG
(%)

σ

(%)

No Feedback Loops, No Bus Systems

Benchmark < 1 <0.01 50.36 26.85 <0.01 50.36 30.54

slicingexample < 1 <0.01 51.78 26.50 <0.01 52.37 31.74

control flow < 1 <0.01 33.55 25.08 <0.01 33.70 23.77

clutch if < 1 <0.01 69.98 30.31 0.06 68.60 32.78

Average 51.42 51.26

With large Feedback Loops

f14 control < 1 <0.01 53.62 27.45 0.05 53.67 33.13

climatecontrol < 1 0.06 57.23 24.72 0.03 57.16 37.40

enginewc < 1 0.06 83.51 22.56 0.09 83.53 27.80

aero guidance < 1 0.11 82.15 31.10 0.08 82.12 20.22

Average 69.13 69.12

With Bus Systems

busexample < 1 <0.01 36.57 21.50 <0.01 36.57 30.43

Odometer < 1 0.03 31.69 24.52 <0.01 31.76 23.59

DistWarn < 1 0.05 28.83 19.34 0.04 28.90 28.57

Average 32.36 32.41

Total Avg. 52.66 52.61

For the slice s(b) with the block b used as slicing criterion, T (s(b)) is the time
needed to calculate s(b).

For the experimental evaluation of our slicing technique, we have calculated
the above measures for each of the case studies introduced in Section 9.1. In
the following sections, we first present and discuss the evaluation of our base
slicing approach presented in Section 5.3. After that, we present the evaluation
result for the routing-aware approach presented in Section 5.4.

9.2.1 Evaluation of Our Basic Slicing Technique

Table 9.2 shows the experimental results for our basic slicing technique for all
11 models. For each model, the table shows the time needed to construct the
Matlab/Simulink Dependence Graph (“MSDG”). Furthermore, it shows the

9.2 Slicing Evaluation 163

average slice size (“SAVG”), the average slice computation time (“TAVG”) and the
standard deviation (“σ”) for forward and backward slicing. The latter indicates
the mean distance between the average slice size and the actual slice sizes.

For all case studies, the dependence analysis and the construction of the
MSDG is done in less then one millisecond. Furthermore, in average we only
need a fraction of a millisecond to calculate the slice with the reachability anal-
ysis. Hence, we can calculate slices for each model in less then 2 milliseconds.

With the basic slicing approach, we have obtained an average slice size
around 52.6% for all case studies for both forward and backward slicing. This
means, with our basic slicing approach we are able to reduce the models by
half of their size in average. Note that the average slice size strongly depends
on some model characteristics. In our case studies we have identified two
factors that have a high impact on the slice size: feedback loops and control
flow. Feedback loops are cycles in data flow that result in strongly connected
components in the MSDG. For every block represented by a node in the
strongly connected component, we obtain the same slice. Furthermore, large
or many conditional execution contexts introduce more control dependences
that can lead to an increase of the average slice size.

However, for our industrial case studies (DistWarn and Odometer), we are
able to achieve an average reduction in the slice size of more than 68%. These
results render the uses of slicing as an automatic model reduction technique
prior to the verification promising. Note that we obtain this average slice size
of less than a third for the industrial cases studies without resolving the bus
systems. Since we require tho models for verification to be executable, we
can also use our routing-aware slicing approach to obtain even more precise
slices by resolving the bus signals in the models. Hence, we have evaluated our
routing-aware slicing approach on these case studies and present the results in
the next subsection.

9.2.2 Evaluation of the Routing-aware Slicing Technique

Since Simulink models, especially our industrial cases studies, often contain
bus systems, we can obtain more precise slices using our routing-aware ap-
proach. However, our routing-aware approach requires the models under test
to be executable since it uses run-time information about subsystems to con-
struct routing-aware MSDG. Table 9.3 shows the experimental results for our
routing-aware approach. Note that our routing-aware approach only differs
from our basic technique if bus systems are present in the model. Hence,
Table 9.3 only shows the results for the third group of Table 9.2.

With our routing-aware approach, we have been able to reduce the average
slice size for the case studies containing bus systems by 9.27 percentage points
for forward and 9.69 for backward slicing. This is an increase in precision of
more than 28% compared to the basic approach.

164 Evaluation

Table 9.3: Experimental Results for the Routing-aware Slicing Technique

Model MSDG Forward Backward

(ms) TAVG
(ms)

SAVG
(%)

σ

(%)
TAVG
(ms)

SAVG
(%)

σ

(%)

busexample < 1 <0.01 26.04 15.32 <0.01 24.93 19.68

Odometer < 1 0.02 24.2 16.04 0.03 24.15 20.51

DistWarn < 1 0.02 19.05 15.65 0.04 19.09 21.40

Average 23.10 22.72

Total Avg. 50.13 49.97

To assess the the average slice size calculated with our approach, we com-
pare them to the average slices sizes reported by Binkley et al. [BGH07] in
a large scale empirical study on a number of programs written in imperative
programming languages. In this study, they reported an average slice size
of 26.1% for forward slicing and 26.8% for backward slicing. In comparison,
our approaches yield average slice sizes for all models of 52.6% for the basic
and 50.13% for the routing-aware approach. However, the programs used in
[BGH07] were not from the domain of controller software. Hence, it is very
likely that they do not contain large feedback loops like our case studies.

Note that our routing-aware slicing technique yields an average slice size
of less than 25% for the industrial case studies. Hence, it significantly reduces
the complexity of the models.

9.3 Verification Evaluation

In this section, we present our experimental evaluation results for our verifica-
tion approach. We have verified the three case studies TestModel, Odometer
and DistWarn using our approach. To evaluate the performance of our ap-
proach, we have measured the computational effort for the transformation into
the formal specification and for the verification of this specification with the
Boogie verification framework. To evaluate the quality of our verification tech-
nique, we measure its capabilities to detect errors and to verify the absence of
errors. To this end, we apply our verification process presented in Section 4.3
to each case study. For each step in our process, we measure the number
of counterexamples obtained by a verification run and distinguish these into
actual errors and spurious counterexamples. Furthermore, we evaluate the
capability of our technique to eliminate spurious counterexamples. In the fol-
lowing subsections, we present our experimental results for each of our three
case studies.

9.3 Verification Evaluation 165

9.3.1 TestModel

As our first case study we use the TestModel design depicted in Figure 9.1.
Since the original TestModel contains three errors, we have also used three
slightly modified versions of the model (TestModel 1 err, TestModel corr and
TestModel lim 20). More precisely, we use TestModel and TestModel 1 err to
demonstrate the capabilities to detect errors, and TestModel corr and Test-
Model lim 20 to show the absence of errors with our verification approach.
The modifications for each model are discussed in detail in the subsequent
paragraphs.

Table 9.4 shows the evaluation results for our first case study. For each ver-
sion of TestModel, the table shows verification runs using inductive invariant
checking, k-induction and the combination of slicing and k-induction. Induc-
tive invariant checking is indicated in column k with a “–”, for k-induction it
shows the value of k. Furthermore, the table shows the lines of code (“LOC”)
and time required to generate the Boogie2 specification in milliseconds. The
latter includes the dependence analysis to obtain the CECs, the calculation
of the CFG, and the actual translation of the model into a file. The column
“Checks” indicates the number of assertions generated for the error classes of
interest. The number comprises all assertions that have composed into the
specification. Since for k-induction an assertion is added multiple times in the
base case, the number in brackets indicates the number of distinct assertions.
Finally, the table shows the verification time in seconds, which includes post-
processing of counterexamples, and the number of counterexamples reported
by the Boogie tool. All results are averaged over five runs.

The first set of results in Table 9.4 shows three verification runs on the orig-
inal model. With inductive invariant checking, we have obtained three coun-
terexamples. Two are reported for both erroneous MultiPortSwitch blocks.
The third is a spurious counterexample for an overflow at the Sum block in the
counter subsystem. In the subsequent verification runs with k-induction using
k = 2 and k = 100, we have only obtained one counterexample for the range vi-
olation at the “MultiportSwitch2” block. Since for k = 100 the reported error
is in the base case, we can be sure that this is not a spurious counterexample
and we have detected an error. Note that this error shadows other errors in
the model when using k-induction since it occurs once the counter reaches 20
while the other two errors require the counter to reach 30 and 70.

We have modified the original TestModel model and fixed both range vio-
lations in the model TestModel 1 err by modeling the default case explicitly
as depicted in Figure 9.4a and Figure 9.4b. The second group of results in
Table 9.4 depicts the verification runs on TestModel 1 err. We have obtained
two counterexamples with inductive invariant checking. One is for the division-
by-zero that occurs at the Product block and the other is, again, the spurious
counterexample for the overflow at the Sum block. Then, with k-induction
(k = 2), we have still obtained two counterexamples. By trying larger ks, we
have been able to eliminate one spurious counterexample with k = 49. Since,

166 Evaluation

Table 9.4: Evaluation Results for the Testmodel Model

Model k LOC Trans.
Time
(ms)

Checks Verif.
Time
(s)

Counter-
examples

TestModel – 301 15 7(7) 0.99 3

TestModel 2 901 15 21(7) 0.97 1

TestModel 100 27361 221 707(7) 4.56 1

TestModel 1 err – 395 16 5(5) 0.90 2

TestModel 1 err 2 871 16 15(5) 0.97 2

TestModel 1 err 30 8,095 65 155(5) 25.17 2

TestModel 1 err 49 12,997 94 250(5) 118.04 1

TestModel 1 err
Slice: 9/31 Blocks

49 4,107 31 50(1) 1.22 1

TestModel 1 err
Slice: 9/31 Blocks

57 4,747 31 58(1) 1.16 0

TestModel corr – 319 16 5(5) 0.90 1

TestModel corr 2 969 15 15(5) 0.99 1

TestModel corr 57 16,919 124 305(5) 32.94 0

TestModel corr
Slice: 9/33 Blocks

57 4,747 31 58(1) 1,16 0

TestModel lim 20 – 301 16 7(7) 1.21 3

TestModel lim 20 2 901 16 21(7) 0.86 0

a range of the counting variable between 70 and 79 leads to the division-
by-zero, k = 49 is suitable to eliminate the counterexample for the overflow
(79+49 = 128) due to shadowing. However, this verification run takes almost
2 minutes. Instead of verifying the whole model with k = 57, we can also show
that the overflow error is spurious in less than 2 seconds by verifying only the
slice for the corresponding Sum block with k = 57. Note that for the verification
of the slice with k = 49 the spurious counterexample is still reported since the
division-by-zero error does not shadow it any more. However, it can be useful
to advance to the slicing step in our verification process earlier to eliminate
spurious counterexamples with less computational effort.

For the model TestModel corr, we have eliminated the division-by-zero from
TestModel 1 err by adding a Switch and a Constant block such that a con-
stant value is used if the CascadingSwitches subsystem outputs a 0 (see
Figure 9.4c). Although the model is now free of errors w. r. t. the error classes

9.3 Verification Evaluation 167

(a) Fixed
“MultiportSwitch”

(b) Fixed
“MultiportSwitch2”

(c) Fix to avoid Division-by-
Zero

Figure 9.4: Changed Model Elements for TestModel 1 err and TestModel corr

of interest, the spurious counterexample for the overflow is still reported for
inductive invariant checking and k-induction (k = 2). However, we can ver-
ify the absence of errors with k = 57 in less than 35 seconds. Again, the use
of slicing can greatly reduce the computation time to eliminate the spurious
counterexample.

For the model TestModel lim 20, we have modified the Constant block
that provides the limit to the counter subsystem and set it to 20 instead of
71. With this configuration, neither the range violations nor the division-by-
zero can occur. When attempting to verify the model TestModel lim 20 with
inductive invariant checking, three spurious counterexamples are reported for
the Sum block and both MultiPortSwitch blocks. However, with k-induction
(k = 2) we can show the absence of errors for this model in less than one second.

Discussion

Before we present the experimental evaluation for the industrial case studies,
we discuss results for all versions of the TestModel model. In all verification
runs, the formal specification has been generated in less than one second. The
computational effort for the verification increases with the size of the specifica-
tion. However, applying our slicing technique to the models has greatly reduced
the computational effort especially for the elimination of spurious counterex-
amples.

Note that the counter subsystem in the TestModel model is intentionally
modeled in a way that stresses the verification with our inductive techniques by
using an equality to reset the counter. Since we only generate invariants from
the data type bounds, the arbitrary start state for the verification includes
assignments to the counter variable that are larger than the actual limit of
the counter and would lead to an overflow. To verify that no overflow can
occur, we have to choose k such that we reach the assignment to the counter
variable that would cause the overflow in k steps from the limit of the counter.
Since the Sum block has the data type int8 and counts up to 71, we need at

168 Evaluation

Table 9.5: Evaluation Results for the Odometer Model

Model k LOC Trans.
Time
(ms)

Checks Verif.
Time
(s)

Counter-
examples

Odometer – 1,042 59 8(8) 1.37 1

Odometer 2 3,778 75 24(8) 1.47 0

least a k of 57 (71+57 = 128) to verify that no overflow is possible. However,
a manually added invariant that the counter variable is always smaller than
the limit can easily eliminate the spurious counterexample. Furthermore, if ≤,
≥, < or > are used instead of equality and inequality, it is possible to show
that the counterexample is spurious with k = 2 since every assignment to the
counter variable greater than the limit is reset in the first step.

Note that for TestModel lim 20 no spurious counterexamples are reported
for k-induction with k = 2. This is the case since the ranges for valid control
inputs of the“MultiportSwitch”block are propagated to the counter variable.

9.3.2 Odometer

The second case study we have used for the evaluation of our approach is the
Odometer model. Table 9.5 shows the evaluation results obtained by applying
our verification approach to the model. The Odometer model does not contain
any MultiPortSwitch blocks. All of the 8 checks are generated either for
potential over- and underflows (6) or for potential division-by-zero errors (2).

As shown in Table 9.5, we have obtained one counterexample2 during the
first verification run with inductive invariant checking. The counterexample
has been reported for an invariant maintenance error for a UnitDelay block
within a referenced block from a library. The cause for this error is a type
mismatch for a signal connected to the library block, which is an unsigned
integer of width 32, and output of the UnitDelay block within the library,
which is a signed 32 bit integer. However, this counterexample is spurious
since the signal connected to the library block can never exceed a certain bound
(10000) that is specified in the configuration file and is always positive. Hence,
we have performed a verification run using k-induction with k = 2. With that,
we have been able to verify the absence of errors w. r. t. the run-time errors of
interest in less than two seconds for the Odometer model.

2Note that this is auctually the error displayed in Figure 8.3.

9.3 Verification Evaluation 169

Table 9.6: Evaluation Results for the DistWarn Model

Model k LOC Trans.
Time
(ms)

Checks Verif.
Time
(s)

Counter-
examples

DistWarn – 1,919 109 20(20) 3.32 17

DistWarn 2 7,437 150 60(20) 11.64 15

DistWarn corr – 1,927 94 20(20) 1.85 8

DistWarn corr 2 7,716 146 60(20) 9.30 6

DistWarn corr 4 11,801 203 100(20) 171.35 6

DistWarn corr 8 20,649 275 180(20) 1,013.03 6

DistWarn corr 9 22,861 283 200(20) 15,298.60 6

DistWarn corr 10 25,073 320 220(20) > 12h ——

DistWarn corr
Slice1: 87/264 Bl.

11 14,677 227 72(6) 152.56 0

DistWarn corr
Slice2: 87/264 Bl.

11 14,677 224 72(6) 357.78 0

DistWarn corr
Slice3: 87/264 Bl.

21 34,981 485 220(10) > 12h ——

DistWarn corr
(4 Invariants)

– 1,939 97 20(20) 1.95 10

2 7,437 150 60(20) 10.53 0

Distance-
Calculation

11 4,009 41 39(3) 1.47 0

9.3.3 DistWarn

The third case study we have used to evaluate our verification approach is
the DistWarn system. Although it is the largest of the three case studies, it
neither contains MultiPortSwitch nor Product blocks. However, it contains a
number of Sum and DiscreteIntegrator blocks, where over- and underflows
can occur. Since the original DistWarn model contains a number of errors, we
have also used a modified version DistWarn corr for our evaluation. In the
latter, we have fixed the errors from the original DistWarn model.

Table 9.6 shows the experimental results obtained for the DistWarn model.
First, we have verified the original model (DistWarn) with inductive invari-

170 Evaluation

Figure 9.5: Source for the spurious Counterexamples

ant checking. With that, we have obtained 17 counterexamples for over- and
underflows at 11 different blocks. With a subsequent verification run using
k-induction, we have been able to eliminate two spurious counterexamples for
two blocks.

When inspecting the counterexamples, we discovered that many of them
correspond to actual errors in the DistWarn model. More precisely, the model
contains four DiscreteIntegrator blocks that are neither reseted nor limited.
Hence, over- or underflows can (and will) occur at these blocks. This accounts
for six of the 15 counterexamples in Row 2 of Table 9.6. Furthermore, two Sum

blocks can overflow, since they use output values of two of the DiscreteInte-

grator blocks. This accounts for three of the 15 counterexamples. However,
the remaining six counterexamples are spurious and occur at three blocks in
the model.

To investigate the spurious counterexamples, we have modified the four
DiscreteIntegrator blocks of the original DistWarn model. To this end, we
have added a saturation to [−1000,1000] to the output values for all integra-
tor blocks. The evaluation results for the modified model (DistWarn corr) are
shown in Table 9.6. With inductive invariant checking, we have obtained 8
counterexamples for over- or underflows for 6 blocks in the model. With k-
induction (k = 2) we have been able to eliminate two spurious counterexamples.
However, our tool still reports 6 counterexamples for over- and underflows at
3 blocks, When inspecting the counterexamples, we discovered that all coun-
terexamples are spurious.

The source of the spurious counterexamples is a certain combination of
blocks in the DistanceCaluclation model, which is referenced twice in Dis-
tanceWarning. Figure 9.5 depicts an excerpt of the DistanceCaluclation model,
which is the source of four spurious counterexamples. Here, the state of the
UnitDelay is only changed every 10 simulation steps. This means for our veri-
fication approach that we have to unroll the model with k-induction such that
the UnitDelay is at least updated once. Since the automatically generated in-
variants only limit the state variable of the UnitDelay block to the data type
bounds (similar to the counter subsystem in our TestModel design), a spurious

9.4 Summary 171

counterexample is reported otherwise. From the counterexamples reported for
DistWarn corr, four are a result of calculations that directly follow the blocks
from Figure 9.5. However, due to another UnitDelay block being involved in
the calculation, we need k = 11 to eliminate these spurious counterexamples.
Furthermore, in the actual DistanceCaluclation model, the construct from
Figure 9.5 is used again after those calculations. Hence, we need k = 21 to
eliminate the other two spurious counterexamples.

Note that the entire DistWarn corr model is too complex to be verified for
k = 21 (and even for k = 11) in reasonable time. We have not been able to
finish the verification run for k = 10 in 12 hours. However, with our slicing
technique and k-induction, we have been able to eliminate four of the six
spurious counterexamples. To this end, we have used our slicing technique to
calculate slices for two of the blocks that introduce spurious counterexamples,
each contained in one of the two model references to the DistanceCaluclation
model. Note that both slices have the same number of blocks. Although
each reference to the DistanceCaluclation model uses a different sensor,
the preprocessing for both values is the same. With slicing, we were able to
eliminate four spurious counterexamples (2 with Slice1 and 2 with Slice2) in
less than three minutes for the first model reference to DistanceCaluclation

and in less than six minutes for the second reference. However, we were not
able to eliminate the two remaining counterexamples in a reasonable amount
of time with fully automatic techniques (see the Sice3 with slicing for the block
that causes the counterexamples and k = 21).

To show that no further errors exist in our DistWarn corr model, we have
added some invariants manually. More precisely, we have added an invariant
for each UnitDelay block in each occurrence of the above discussed model
elements. The invariants limit the state variables for the UnitDelay blocks
to more precise bounds corresponding to the limits of the DiscreteIntegra-

tor block. When attempting to verify the model using these invariants and
inductive invariant checking, we have obtained 11 counterexamples. The two
additional counterexamples are invariant maintenance errors reported for two
of the manually added invariants. However, with k-induction and k = 2 we
have been able to show the absence of errors w. r. t. the error classes of interest
for the DistWarn corr model in less then eleven seconds.

Note that we can eliminate the spurious counterexamples in the Distance-
Calculation in less than 2 second by applying our technique directly to the
referenced model. Although this does not help for elimination of the remain-
ing spurious counterexamples in the DistWarn corr model, it may generally
indicate a starting point for future work using forward slicing or contract-based
verification. We discuss this in more detail in Chapter 10.

9.4 Summary

The experimental evaluation results presented in this chapter demonstrate the
performance, the capabilities to detect and to show the absence of errors w. r. t.

172 Evaluation

the class of common run-time errors, and the practical applicability of our
verification approach.

For our slicing technique, the performance evaluation shows that the com-
putational effort for the dependence analysis and the construction of the MSDG
is low. Even for the largest of our case studies, a slice is calculated in a fraction
of a second. We expect the slicing technique to scale well with larger models,
since the effort will increase linearly with the size of the models, the number
of bus signals and propagated CECs. Note that the set of models we have
used for the experimental evaluation of our slicing technique might not be rep-
resentative since the set is rather small and contains models with few blocks
and synthetic data. Furthermore, most case studies are taken from the Simu-
link examples and are rather showcases for the capabilities of the Simulink tool
suite than real world (controller) models. However, based on the results for our
two industrial case studies we would rather expect a decrease in the average
slice size in a larger scale empirical evaluation with industrial case studies.

The results for the computational effort of our verification technique meets
our expectations. Although the worst-case complexity of our scheduling al-
gorithm is exponential with the number of blocks, the transformation time
scales well for the case studies. All case studies have been transformed in
less than a half second. Regarding the verification of the translated models,
our performance evaluation indicates that the computational effort exponen-
tially increases as expected with the size of the specification and, hence, the
complexity of the verification condition. However, with the application of our
slicing technique, we were able to reduce the complexity and to obtain veri-
fication results in considerably less time. The evaluation demonstrates that
we are able to detect and to show the absence of common run-time errors.
We have detected all errors in our synthetic TestModel design and even found
some design flaws in the DistWarn model. Furthermore, we have shown the
absence of errors for the Odometer model and that k-induction is well suited
for the elimination of spurious counterexamples. However, it may require high
ks to compensate for weak invariants.

We have demonstrated the practical applicability of our verification frame-
work by applying our proposed verification process to the case studies. We
were able to fully automatically translate and verify two of the case studies
and have needed only little manual intervention for the third. We have demon-
strated that our slicing technique, which provides an average reduction of the
models of 50%, improves the scalability of our approach by greatly reducing
the time needed to show certain properties. Finally, we have demonstrated
that for larger industrial models like our third case study, where a fully auto-
matic translation and verification is not possible, our approach can be applied
with only a little manual intervention.

10 Conclusion and Future
Work

In this chapter, we give a conclusion of the work presented in this thesis. We
first summarize the developed techniques and obtained results for our ver-
ification approach for Matlab/Simulink models in Section 10.1. Then, in
Section 10.2, we discuss the results of this thesis with respect to the objectives
we have defined in the introduction of this thesis (Section 1.2). Finally, we
give an outlook on future work in Section 10.3.

10.1 Results

In this thesis, we have presented our approach for the automatic verification
of discrete-time Matlab/Simulink models. Our approach enables the fully
automatic verification of embedded controllers modeled in Matlab/Simulink
for the absence of a number of important classes of run-time errors. It is based
on a translation of Matlab/Simulink models into a formal representation, the
Boogie2 intermediate verification language, which enables the use of the Boogie
verification framework for Matlab/Simulink models. The basic idea of our
approach is to use a combination of different inductive verification strategies
and automatic model reduction techniques to obtain a fully automatic and
comparatively scalable verification framework for Matlab/Simulink.

A prerequisite for the application of formal verification techniques is to ob-
tain a formal semantics for Matlab/Simulink models. Since the semantics for
Simulink is only given informally by the Matlab/Simulink documentation, we
have presented a mapping to the formally well defined Boogie2 intermediate
verification language. We use the sequential simulation semantics that is given
to the models by the discrete, fixed-step simulation engine (solver) to translate
the models into a semantically equivalent Boogie2 program. The basic idea of
this mapping is to represent the simulation loop of the solver as a loop within
the Boogie2 specification. Furthermore, we determine the execution order of
all blocks in a given model according to the scheduling rules defined in the
Matlab/Simulink documentation. A main advantage of our mapping is the

173

174 Conclusion and Future Work

preservation of mechanisms for the conditional execution of blocks within Si-
mulink models. For this mapping, we have presented a fully automatic trans-
lation for a subset of basic Simulink blocks into the corresponding Boogie2
statements. The translation is modular and can easily be extended by further
block types in the future.

For the verification of the transformed models, we have presented the adap-
tion of two inductive verification strategies for Matlab/Simulink: inductive
invariant checking and k-induction. While inductive invariant checking scales
better, k-induction provides a higher degree of automation since it requires less
strong invariants at the cost of more computational effort. For both strate-
gies, verification goals for the run-time errors of interest and loop invariants
are fully automatically generated during the translation. Depending on the se-
lected verification strategy, we automatically create a corresponding Boogie2
program that comprises the formal model obtained from the automatic trans-
lation, the automatically generated verification goals, and the automatically
generated invariants. The resulting Boogie2 programs are used as input to the
Boogie tool to, for example, show the absence of errors for a Simulink model
or to obtain counterexamples for potential errors.

To address the problem of increasing computational effort with k-induction,
we have presented an automatic model reduction technique based on slicing.
To this end, we have introduced a novel slicing technique for Simulink mod-
els. This technique is based on a dependence analysis for Matlab/Simulink
models according to the simulation semantics to determine data and control
dependences. The calculated dependences are used to compute a slice for the
model for a given block as slicing criterion. Our slicing technique automati-
cally calculates static slices that respect all possible executions that can affect
a criterion. Hence, the slices calculated with our approach can be verified by
applying our automatic translation directly to the slice. The resulting slices
are significantly smaller than the complete model. Thus, the computational
effort of formal verification is also noticeably reduced.

In our approach, we have presented a process that assists the efficient use of
the particular verification strategies and abstraction techniques. The general
idea of this process is to start with the best scaling strategy (inductive invariant
checking). Subsequently, if the automatically generated invariants are too
weak, k-induction is used with increasing k. Finally, if the computational effort
for the verification of the entire model is too big, slicing is used to reduce the
complexity of the verification for a specific block of interest in the model.

To show the practical applicability of our approach, we have implemented
all techniques presented in this thesis in our MeMo tool suite. The MeMo tool
suite is based on the Eclipse Rich Client Platform (Eclipse RCP) and provides
a graphical user interface that guides the developer through our verification
process. To evaluate the applicability, we have used three case studies: a sim-
ple model carefully designed to contain a number of run-time errors and model
elements to stress the verification approach (TestModel), and two industrial
case studies. The first is a model for an Odometer and the second industrial
design models a distance warning system (DistWarn) that tracks the distance

10.2 Discussion 175

to vehicles driving ahead. The evaluation results show that we have been able
to translate and verify all models fully automatically. With our approach,
we have been able to detect run-time errors in the TestModel and DistWarn
design and to show the absence of errors for the Odometer. Furthermore, we
have used a number of modified versions of TestModel and DistWarn where we
have successively removed errors in the design to demonstrate the capabilities
of our process to automatically eliminate spurious counterexamples. We have
been able to fully automatically eliminate all spurious counterexamples except
for two in the DistWarn design. To show the absence of errors for the complete
corrected version (DistWarn corr), we had to add only four invariants manu-
ally. Overall, the degree of automation in our verification framework is very
high and scalable compared to other approaches for the formal verification of
Matlab/Simulink models.

10.2 Discussion

In this section, we discuss our approach w. r. t. the objectives that we have
defined in Section 1.2.

The aim of this thesis was to provide an automated formal verification
framework for Matlab/Simulink models. To apply formal verification, a for-
mal semantics for the only informally defined semantics of Matlab/Simu-
link models was required. In our framework, we obtain the formal semantics
with an automatic translation of a relevant subset of blocks for discrete-time
Matlab/Simulink models into a formal intermediate representation. More
precisely, we translate the models according to the informally specified simula-
tion semantics into the formally well defined Boogie2 intermediate verification
language. To this end, we translate the instances of each supported block type
according to their discrete, fixed-step simulation semantics and their param-
eter configuration. Our translation respects the mechanisms for conditional
execution of blocks and, hence, is more precise w. r. t. control flow than other
existing approaches.

Furthermore, we have defined the following criteria for our framework:

� Automation The first criterion for our framework was to reach a high
degree of automation for the verification approach such that no or only
little user (inter)action is required to verify a model. In our framework,
we have presented a fully automatic translation of Matlab/Simulink
models into the Boogie2 language that does not require any user in-
teraction or annotations. Furthermore, verification goals and invariants
are generated fully automatically for the models. The resulting formal
Boogie2 program is verified automatically with the Boogie verification
framework. Our experimental results have shown that we were able to
verify two of our three case studies fully automatically. In our verification
process, user interaction is only required for selecting a k, for selecting a
slicing criterion and, in some cases, to specify manual invariants. The lat-

176 Conclusion and Future Work

ter are automatically integrated during the automatic generation of the
Boogie2 program no matter which verification strategy or k is chosen.

� Coverage The second criterion for our approach was the coverage of
a substantial subset of the blocks from the Simulink block library. In
our framework, we have presented translation rules for more than 40 fre-
quently used basic blocks. These basic blocks are sufficient to translate all
of our case studies. Furthermore, our framework automatically integrates
model and library references. Hence, we are able to translate further
composite blocks from the Simulink block library like Signal Builder,
Counter (limited), Difference or Wrap to Zero blocks, which are
all used by our case studies. To provide extensibility, our approach uses
a modular block-by-block translation such that rules for further block
types can easily be added in the future.

� Verification Goals Besides an automatic transformation, we also re-
quired our framework to automatically generate verification goals for
important run-time errors. In our framework, we automatically gener-
ate checks for such errors during the translation of blocks. These checks
are used to detect or to show the absence of certain errors. The gen-
erated checks depend on whether a certain type of error may possibly
occur at a specific block type. Our framework currently supports the
automatic generation of checks for the following error classes of interest:
division-by-zero, range violations and over- and underflows. The checks
are automatically weaved into the formal representation for a given Si-
mulink model.

� Scalability We required our translation and verification approach to
scale well with the size of the models and their state space. Although
the worst case complexity of our scheduling algorithm is exponential in
the number of blocks in an execution context, this worst case hardly oc-
curs in practice. Moreover, the complexity of the other algorithms used in
the translation and slicing are linear in the number of blocks, of resolved
signals, of execution contexts, or a combination of these. The evaluation
results show that the impact of the scheduling algorithm on the trans-
lation time is negligible. Hence, we expect the translation time to scale
well in most practical cases. To achieve scalability of the verification,
we use inductive techniques together with SMT-solving. While inductive
verification techniques scale well compared to fully automatic techniques
like model checking, they are generally less automated. To overcome
this problem, we increase the degree of automation by automatically
generating the invariants to verify models for the error classes of interest
and by using k-induction. Furthermore, our framework provides a slic-
ing technique to automatically reduce the complexity of models w. r. t.
a specific point in the model. With this technique we are able to split
the verification task into a number of subtasks with less computational
effort.

� Comprehensibility In addition to scalability, we required our frame-
work and especially the verification results to be comprehensible. We

10.3 Outlook 177

fulfill this requirement since our translation encodes the block informa-
tion directly into the variable names. Every model element is traceable
in our framework by an unique identifier assigned during the parsing
process. Furthermore, we make use of the Boogie2 goto-blocks to encode
information about the automatically generated checks and invariants into
the Boogie2 program. In case of an error report by the Boogie verifica-
tion framework, we post-process the reported traces and counterexamples
and present it in our graphical user interface in a human-readable way.
Moreover, we have also presented a verification process that recommends
how the user should use our framework. This process is supported by
the graphical user interface of our implementation.

� Practicability Finally, we required our framework to be applicable to
real world industrial models. We have shown the applicability of our
framework by automatically verifying the Matlab/Simulink designs pro-
vided by our industrial partners in our experimental evaluation. The re-
sults demonstrate that we are able to automatically parse, translate and
verify industrial models (including referenced models and configuration
files) in a reasonable amount of time.

Overall, our verification framework for discrete-time Matlab/Simulink
models meets all the requirements given in Section 1.2. It enables the auto-
matic verification of discrete time Matlab/Simulink models for the absence
of a number of important run-time errors. In the next section, we discuss
possible extensions to our framework that tackle open questions and motivate
future work.

10.3 Outlook

In this section, we discuss possible improvements and extensions of our ver-
ification framework for discrete-time Matlab/Simulink models presented in
this thesis.

Optimizations of the Framework While the experimental evaluation of our
framework is promising, there is still room for optimizations to achieve even
better computation times for the verification and to increase the automation.
In this paragraph, we discuss some of these short-term goals.

First, the complexity of the scheduling algorithm used in our approach is
exponential in the worst case. However, it was not in the scope of this thesis
to develop an efficient scheduling algorithm. Hence, a more sophisticated (and
less brute force) algorithm may improve the translation time for a given model.
Second, the use of the Z3 theorem prover within the Boogie verification frame-
work does not enable the full power of the Z3 since the Boogie tool disables the
automatic configuration1 of Z3. This leads to situations where a Z3 instance

1The Z3 tool uses heuristics to select suitable theory solvers and to perform a number of
simplification and rewriting steps.

178 Conclusion and Future Work

started by Boogie is not able to solve a problem in hours, while a manually
started instance solves the problem in seconds. Note that some configuration
parameters are required for the Boogie tool to work correctly. Since we were
able to achieve a huge performance increase for our framework by changing
only one parameter, a thorough investigation of the Z3 parameters may lead
to a substantial performance increase. Third, the abstract interpretation per-
formed by Boogie is done w. r. t. arithmetic operations directly supported by
the Boogie tool. Since we use built-in functions of the Z3 in our formal model
and a number of optimizations (e. g., the use of ite), it could be useful to
generate further invariants automatically by extracting them from an inter-
val analysis performed on the intermediate representation of the model w. r. t.
particular block parameters. Finally, the comprehensibility of the verification
results could be increased by displaying them directly in the corresponding
Simulink models.

Extension of the Supported Block Set and Arithmetics While the set
of blocks supported by our framework is suitable to translate and verify our
industrial case studies, it could be extended by further blocks from the standard
library, e. g., the blocks from the Lookup Tables block set. Furthermore,
the supported arithmetics could be extended in future. While the support
of floating point values in our framework generally enables the verification of
Simulink models in earlier design stages, the mapping to the real type is not
sound w. r. t. rounding errors in floating point arithmetics. This means that
although our technique reports the absence of errors in a model containing
floating point values, there is a small chance that an error can occur because
of floating point rounding. Although our technique is perfectly suitable to
discover flaws in the general design of the models, it could be extended to use
the theory of floats (QF FPBV and QF BV) once it has been fully added to
the Z3 theorem prover and to the Boogie verification framework. Note that
these are quantifier free theories and, hence, the translation for some block
types has to be adjusted to use macros instead of functions (i. e., all Boogie2
functions need to be inlined with {:inline}). Furthermore, our framework
currently does not support fixed-point data types as often used in embedded
controllers. We already have done some work on a formalization of fixed-
point types based on a mapping to the bit vector type in Boogie2. However,
when using bit vectors, Boogie and Z3 do currently not meet our requirements
w. r. t. performance. Hence, it would be an interesting question whether a
formalization based on a mapping to the integer type performs significantly
better.

Multirate Blocks In our framework, we currently do not support blocks that
have a different sample time than the parent model. In future, it would be
useful to add support for multirate blocks. However, models with multirate
blocks may require stronger invariants and a higher value of k for the verifi-
cation using k-induction since they do not calculate outputs in every global
sampling step. Hence, adding support for multirate blocks may require the
development of further techniques to automatically derive stronger invariants.

10.3 Outlook 179

Stateflow A long term goal for our verification framework would be adding
support for Stateflow models to enable a comprehensive verification of Simu-
link/Stateflow models. This would require the development of a slicing and
a verification technique for Stateflow models. Since the simulation semantics
of Stateflow is strictly sequential and, in contrast to other statechart dialects,
deterministic, a mapping of Stateflow models to Boogie2 should generally be
possible. However, to translate Stateflow models, a thorough analysis of the
semantics of Stateflow models has to be done. Note that there is already some
work on the semantics of Stateflow by Hamon and Rushby [Ham05, HR04].
We have already done some work on slicing of Stateflow models. To this end,
we have applied the technique of Wang et al. [WDQ02] to Stateflow models.
However, the granularity of this approach are composite states and, hence, it
is rather imprecise. Especially w. r. t. the verification of Stateflow models, a
more precise technique would be desirable.

Abstraction by Slicing In our framework, we currently use our slicing tech-
nique only to calculate static backward slices to perform a verification run on
a partial model that contains all blocks that directly or transitively influence
the calculation at a particular block. It is an interesting question whether our
slicing technique can also be used as an abstraction technique. Therefore, for-
ward slicing could be used to calculate a slice of all blocks that are affected by
a particular block. For example, we could use limited DiscreteIntegrator

blocks from the DistWarn corr case study as slicing criterion. Then, a sub-
sequent verification of the slice while assuming that the outputs of the block
are arbitrary values within the limits would possibly render a fully automatic
elimination of the spurious counterexamples. Furthermore, the development of
conditioned slicing and chopping techniques for Matlab/Simulink to calculate
abstractions for a model could be an interesting research topic.

Contracts Another possible extension of our framework is the integration of
contract-based verification to improve the scalability of our framework w. r. t.
large scale industrial controller models with thousands of blocks. However, con-
tracts decrease the automation significantly. In contrast to Boström [Bos11],
we would not recommend to add contracts to every atomic subsystem. Con-
ditional executed subsystems are also atomic subsystems but may propagate
their execution contexts outside the subsystem. Instead, we would recommend
the use of contracts only for model references, atomic subsystems that model
a controller function and Stateflow blocks since it is likely that a specification
exists for these kind of blocks. This specification may be used to derive the
contract or at least parts of it automatically. Note that although the Boogie
verification framework naturally supports contract-based verification, adjust-
ments in the translation are required to enable k-induction. More precisely,
each atomic subsystem needs to be modeled within its own simulation loop.

180

List of Figures

2.1 The MDD Process . 23

2.2 The MATLAB Architecture . 25

2.3 The MDD Process in Simulink 26

2.4 A Example Simulink Model . 28

2.5 The Simulation Phases in Simulink 31

2.6 Example Program and its Weakest Precondition 40

2.7 Example Program and CFG with Loop-Cutting 43

2.8 A Example Program and its CFG 56

2.9 PDG and Slice for Line 10 for Fig. 2.8 57

4.1 The General Verification Idea 68

4.2 The Architecture of the Verification Framework 70

4.3 The Verification Process . 71

5.1 An Enabled Subsystem and its contents 77

5.2 A MultiPortSwitch . 78

5.3 CFG for an Arbitrary Model with Nested Control Flow 80

5.4 Propagated ECs for a MultiPortSwitch 82

5.5 An Example Simulink Model and its MSDG, the Marked MSDG
and the resulting Slice for the Block write(mul) 89

5.6 Example Matlab/Simulink model with Bus Systems 90

5.7 Slice for “Display ?” (Original Algorithm) 91

5.8 Model with nested Bus Systems and a BusAssigment block . . . 93

5.9 Routing-aware MSDG with Slice for “Display ?” 96

181

182 LIST OF FIGURES

5.10 Routing-aware Slice for “Display ?” 97

6.1 The Translation Process . 100

6.2 Example Model with Control Flow 101

6.3 The Structure of the Formal Model 104

6.4 An Excerpt from the Example Simulink Model (Figure 5.5) and
the Output and Update Functions 106

6.5 Over-approximation of sqrt with Linear Functions 129

7.1 Formal Specification for Inductive Invariant Checking 135

7.2 Formal Specification for K-Induction 136

7.3 Slicing Procedure for K-induction 139

8.1 The MeMo Tool Suite . 147

8.2 The Parse Process for a Simulink Model 149

8.3 The MeMo Tool . 153

9.1 Structure of TestModel . 157

9.2 Architecture of the Odometer Model 158

9.3 Architecture of the DistWarn Model 159

9.4 Changed Model Elements for TestModel 1 err and TestModel corr 167

9.5 Source for the spurious Counterexamples 170

List of Algorithms

5.1 Search for all Execution Contexts in a Model 84

5.2 Propagation of Conditional Execution Contexts (Backward) . . . 85

5.3 Slicing Algorithm . 88

183

184

List of Tables

2.1 Primitive Types in Boogie2 . 49

6.1 Mapping of data types . 108

9.1 Overview of the Characteristics of the Case Studies 160

9.2 Experimental Results for the Basic Slicing Technique 162

9.3 Experimental Results for the Routing-aware Slicing Technique . 164

9.4 Evaluation Results for the Testmodel Model 166

9.5 Evaluation Results for the Odometer Model 168

9.6 Evaluation Results for the DistWarn Model 169

185

186

List of Acronyms

CFG Control Flow Graph . 41
MDD Model Driven Development . 23
MDA Model Driven Architecture . 21
MDE Model Driven Engineering . 21
OMG Object Management Group . 21
UML Unified Modeling Language . 22
PIM Platform Independent Model . 22
CIM Computation Independent Model . 22
PSM Platform Specific Model . 22
DSML Domain-specific Modeling Language . 22
M-code MATLAB Code . 25
FOL First Order Logic .35
VC Verification Condition . 36
WP Weakest Precondition . 35
WLP Weakest Liberal Precondition . 37
SMT Satisfiability Modulo Theories. .46
ESC Extended Static Checking . 47
PDG Program Dependence Graph . 54
MSDG Matlab/Simulink Dependence Graph . 86
EC Execution Context . 30
CEC Conditional Execution Context . 79
Eclipse RCP Eclipse Rich Client Platform . 148
AST Abstract Syntax Tree . 149
EFSM Extended Finite State Machine . 64
STPDG Synchronous Threaded Program Dependence Graph 65

187

188

Bibliography

References

[ABC+11] Kelly Androutsopoulos, David Binkley, David Clark, Nicolas
Gold, Mark Harman, Kevin Lano, and Zheng Li. Model pro-
jection: simplifying models in response to restricting the envi-
ronment. In Proceedings of the 33rd International Conference on
Software Engineering, pages 291–300, New York, NY, USA, 2011.
ACM. ISBN: 978-1-4503-0445-0.
(Referenced on pages 62 and 64.)

[ACH+09] Kelly Androutsopoulos, David Clark, Mark Harman, Zheng Li,
and Laurence Tratt. Control dependence for extended finite state
machines. In Proceedings of the 12th International Conference
on Fundamental Approaches to Software Engineering, pages 216–
230, 2009.
(Referenced on pages 62 and 64.)

[ACH+13] Kelly Androutsopoulos, David Clark, Mark Harman, Jens Krinke,
and Laurence Tratt. State-based model slicing: A survey. ACM
Comput. Surv., 45(4):53:1–53:36, August 2013.
(Referenced on page 63.)

[ACOS00] R. Arthan, P. Caseley, C. O’Halloran, and A. Smith. ClawZ: con-
trol laws in Z. In Third IEEE International Conference on Formal
Engineering Methods (ICFEM 2000)., pages 169–176, 2000.
(Referenced on page 60.)

[AGH+09] K. Androutsopoulos, N. Gold, M. Harman, Zheng Li, and
L. Tratt. A theoretical and empirical study of EFSM depen-
dence. In IEEE International Conference on Software Mainte-
nance (ICSM 2009)., pages 287–296. IEEE, Sept 2009. ISSN:
1063-6773.
(Referenced on pages 62 and 64.)

189

190 BIBLIOGRAPHY

[ASK04] Aditya Agrawal, Gyula Simon, and Gabor Karsai. Semantic
translation of Simulink/Stateflow models to hybrid automata us-
ing graph transformations. Electronic Notes in Theoretical Com-
puter Science, 109:43 – 56, December 2004. Proceedings of the
Workshop on Graph Transformation and Visual Modelling Tech-
niques (GT-VMT 2004).
(Referenced on page 59.)

[BC12] Olivier Bouissou and Alexandre Chapoutot. An operational se-
mantics for Simulink’s simulation engine. In Proceedings of the
13th ACM SIGPLAN/SIGBED International Conference on Lan-
guages, Compilers, Tools and Theory for Embedded Systems,
LCTES ’12, pages 129–138, New York, NY, USA, 2012. ACM.
ISBN: 978-1-4503-1212-7.
(Referenced on page 60.)

[BCD+06] Mike Barnett, Bor-yuh Evan Chang, Robert Deline, Bart Jacobs,
and K. Rustan M. Leino. Boogie: A modular reusable verifier for
object-oriented programs. In Frank S. Boer, Marcello M. Bon-
sangue, Susanne Graf, and Willem-Paul Roever, editors, 4th In-
ternational Symposium on Formal Methods for Components and
Objects (FMCO 2005), volume 4111 of Lecture Notes in Computer
Science, pages 364–387. Springer, 2006. ISBN: 978-3-540-36749-
9.
(Referenced on pages 15 and 47.)

[BCW12] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-
Driven Software Engineering in Practice. Morgan & Claypool,
2012. ISBN: 9781608458820.
(Referenced on page 23.)

[BDdM+13] Clark Barrett, Morgan Deters, Leonardo de Moura, Albert Oliv-
eras, and Aaron Stump. 6 years of SMT-COMP. Journal of
Automated Reasoning, 50(3):243–277, 2013.
(Referenced on page 46.)

[BGH07] David Binkley, Nicolas Gold, and Mark Harman. An empiri-
cal study of static program slice size. ACM Trans. Softw. Eng.
Methodol., 16(2), April 2007.
(Referenced on pages 161 and 164.)

[BHH+14] Pontus Boström, Mikko Heikkilä, Mikko Huova, Marina Waldén,
and Matti Linjama. Verification and validation of a pressure
control unit for hydraulic systems. In István Majzik and Marco
Vieira, editors, Software Engineering for Resilient Systems, vol-
ume 8785 of Lecture Notes in Computer Science, pages 101–115.
Springer International Publishing, 2014. ISBN: 978-3-319-12240-
3.
(Referenced on page 61.)

References 191

[BHL+10] Thomas Ball, Brian Hackett, Shuvendu K. Lahiri, Shaz Qadeer,
and Julien Vanegue. Towards scalable modular checking of user-
defined properties. In Gary T. Leavens, Peter O’Hearn, and Sri-
ram K. Rajamani, editors, Verified Software: Theories, Tools,
Experiments, volume 6217 of Lecture Notes in Computer Science,
pages 1–24. Springer Berlin Heidelberg, 2010. ISBN: 978-3-642-
15056-2.
(Referenced on page 47.)

[BLS05] Mike Barnett, K.RustanM. Leino, and Wolfram Schulte. The
spec# programming system: An overview. In Gilles Barthe,
Lilian Burdy, Marieke Huisman, Jean-Louis Lanet, and Traian
Muntean, editors, Construction and Analysis of Safe, Secure,
and Interoperable Smart Devices, volume 3362 of Lecture Notes
in Computer Science, pages 49–69. Springer Berlin Heidelberg,
2005. ISBN: 978-3-540-24287-1.
(Referenced on pages 41 and 47.)

[BM07] Aaron R. Bradley and Zohar Manna. The calculus of computation
- decision procedures with applications to verification. Springer
Berlin Heidelberg

”
Berlin, Heidelberg, 2007. ISBN: 978-3-540-

74112-1.
(Referenced on page 33.)

[Bos11] Pontus Boström. Contract-based verification of simulink models.
In Shengchao Qin and Zongyan Qiu, editors, Formal Methods and
Software Engineering, volume 6991 of Lecture Notes in Computer
Science, pages 291–306. Springer Berlin Heidelberg, 2011. ISBN:
978-3-642-24558-9.
(Referenced on pages 61 and 179.)

[BSST09] Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Ce-
sare Tinelli. Satisfiability modulo theories. In Handbook of Satis-
fiability, pages 825–885. 2009.
(Referenced on page 46.)

[BST10] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB
standard: Version 2.0, 2010.
(Referenced on page 53.)

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A
unified lattice model for static analysis of programs by construc-
tion or approximation of fixpoints. In Proceedings of the 4th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, POPL ’77, pages 238–252, New York, NY, USA, 1977.
ACM.
(Referenced on page 53.)

[CCGR00] Alessandro Cimatti, Edmund Clarke, Fausto Giunchiglia, and
Marco Roveri. NUSMV: a new symbolic model checker. In-
ternational Journal on Software Tools for Technology Transfer,

192 BIBLIOGRAPHY

2(4):410–425, 2000.
(Referenced on page 60.)

[CCM+03] Paul Caspi, Adrian Curic, Aude Maignan, Christos Sofronis, and
Stavros Tripakis. Translating discrete-time Simulink to Lustre. In
Rajeev Alur and Insup Lee, editors, Embedded Software, volume
2855 of Lecture Notes in Computer Science, pages 84–99. Springer
Berlin / Heidelberg, 2003.
(Referenced on pages 60 and 66.)

[CCO05] Ana Cavalcanti, Phil Clayton, and Colin O’Halloran. Control law
diagrams in Circus. In John Fitzgerald, Ian J. Hayes, and An-
drzej Tarlecki, editors, FM 2005: Formal Methods, volume 3582
of Lecture Notes in Computer Science, pages 253–268. Springer
Berlin Heidelberg, 2005. ISBN: 978-3-540-27882-5.
(Referenced on page 61.)

[CDC00] Cécile Canovas-Dumas and Paul Caspi. A PVS proof obligation
generator for Lustre programs. In Michel Parigot and Andrei
Voronkov, editors, Logic for Programming and Automated Rea-
soning, volume 1955 of Lecture Notes in Artificial Intelligence,
pages 179–188. Springer Berlin Heidelberg, 2000. ISBN: 978-3-
540-41285-4.
(Referenced on page 60.)

[CDH+09] Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinen-
bach, Michal Moskal, Thomas Santen, Wolfram Schulte, and
Stephan Tobies. VCC: A practical system for verifying concur-
rent c. In Stefan Berghofer, Tobias Nipkow, Christian Urban,
and Makarius Wenzel, editors, Theorem Proving in Higher Order
Logics, volume 5674 of Lecture Notes in Computer Science, pages
23–42. Springer Berlin Heidelberg, 2009. ISBN: 978-3-642-03358-
2.
(Referenced on page 47.)

[CFR+99] E.M. Clarke, M. Fujita, S.P. Rajan, T. Reps, S. Shankar, and
T. Teitelbaum. Program slicing of hardware description lan-
guages. In Laurence Pierre and Thomas Kropf, editors, Correct
Hardware Design and Verification Methods, volume 1703 of Lec-
ture Notes in Computer Science, pages 298–313. Springer Berlin
Heidelberg, 1999. ISBN: 978-3-540-66559-5.
(Referenced on page 65.)

[CMW13] Ana Cavalcanti, Alexandre Mota, and Jim Woodcock. Simu-
link timed models for program verification. In Zhiming Liu, Jim
Woodcock, and Huibiao Zhu, editors, Theories of Programming
and Formal Methods, volume 8051 of Lecture Notes in Computer
Science, pages 82–99. Springer Berlin Heidelberg, 2013. ISBN:
978-3-642-39697-7.
(Referenced on page 61.)

References 193

[Det96] D.L. Detlefs. An overview of the extended static checking sys-
tem. In Proceedings of the First Workshop on Formal Methods in
Software Practice, pages 1–9, 1996.
(Referenced on page 47.)

[DHKR11] Alastair F. Donaldson, Leopold Haller, Daniel Kroening, and
Philipp Rümmer. Software verification using k-induction. In Eran
Yahav, editor, Static Analysis, volume 6887 of LNCS, pages 351–
368. Springer Berlin Heidelberg, 2011. ISBN: 978-3-642-23701-0.
(Referenced on pages 43, 134, and 136.)

[Dij75] Edsger W Dijkstra. Guarded commands, nondeterminacy and
formal derivation of programs. Communications of the ACM,
18(8):453–457, 1975.
(Referenced on page 35.)

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A ma-
chine program for theorem-proving. Commun. ACM, 5(7):394–
397, July 1962.
(Referenced on page 46.)

[DLNS98] D.L. Detlefs, K. Rustan M. Leino, G. Nelson, and J.B. Saxe.
Extended static checking. In SRC Research Report 159, Compaq
Systems Research Center, 1998.
(Referenced on page 47.)

[dMB08] Leonardo de Moura and Nikolaj Börner. Z3: An efficient SMT
solver. In C.R. Ramakrishnan and Jakob Rehof, editors, Tools
and Algorithms for the Construction and Analysis of Systems,
volume 4963 of Lecture Notes in Computer Science, pages 337–
340. Springer Berlin Heidelberg, 2008. ISBN: 978-3-540-78799-0.
(Referenced on page 52.)

[Fea91] Paul Feautrier. Dataflow analysis of array and scalar refer-
ences. International Journal of Parallel Programming, 20(1):23–
53, 1991.
(Referenced on page 41.)

[FL06] Chris Fox and Arthorn Luangsodsai. And-or dependence graphs
for slicing statecharts. 2006.
(Referenced on page 64.)

[FLGD+11] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton,
Rajarshi Ray, Olivier Lebeltel, Rodolfo Ripado, Antoine Girard,
Thao Dang, and Oded Maler. SpaceEx: Scalable verification of
hybrid systems. In Ganesh Gopalakrishnan and Shaz Qadeer, ed-
itors, Computer Aided Verification, volume 6806 of Lecture Notes
in Computer Science, pages 379–395. Springer Berlin Heidelberg,
2011. ISBN: 978-3-642-22109-5.
(Referenced on page 60.)

194 BIBLIOGRAPHY

[FLL+02] Cormac Flanagan, K Rustan M Leino, Mark Lillibridge, Greg
Nelson, James B Saxe, and Raymie Stata. Extended static check-
ing for java. In ACM Sigplan Notices, volume 37, pages 234–245.
ACM, 2002.
(Referenced on page 47.)

[Flo67] Robert W Floyd. Assigning meanings to programs. Mathematical
aspects of computer science, 19(19-32):1, 1967.
(Referenced on page 34.)

[FOW84] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The pro-
gram dependence graph and its use in optimization. In M. Paul
and B. Robinet, editors, International Symposium on Program-
ming, volume 167 of Lecture Notes in Computer Science, pages
125–132. Springer Berlin Heidelberg, New York, NY, USA, 1984.
ISBN: 978-3-540-12925-7.
(Referenced on page 54.)

[FS01] Cormac Flanagan and James B. Saxe. Avoiding exponential ex-
plosion: Generating compact verification conditions. In Proceed-
ings of the 28th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL ’01, pages 193–205, New
York, NY, USA, 2001. ACM. ISBN: 1-58113-336-7.
(Referenced on page 40.)

[GR02] Vinod Ganapathy and S. Ramesh. Slicing synchronous reactive
programs. Electronic Notes in Theoretical Computer Science,
65(5):50 – 64, 2002. SLAP’2002, Synchronous Languages, Ap-
plications, and Programming (Satellite Event of ETAPS 2002).
(Referenced on pages 62 and 63.)

[Ham05] Grégoire Hamon. A denotational semantics for Stateflow. In Pro-
ceedings of the 5th ACM international conference on Embedded
software (EMSOFT ’05), pages 164–172, New York, NY, USA,
2005. ACM. ISBN: 1-59593-091-4.
(Referenced on page 179.)

[HHWT97] ThomasA. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi.
HyTech: A model checker for hybrid systems. In Orna Grum-
berg, editor, Computer Aided Verification, volume 1254 of Lec-
ture Notes in Computer Science, pages 460–463. Springer Berlin
Heidelberg, 1997. ISBN: 978-3-540-63166-8.
(Referenced on page 60.)

[HJWW09] David Hardin, D. Randolph Johnson, Lucas Wagner, and
Michael W. Whalen. Development of security software: A high-
assurance methodology. In International Conference of Formal
Engineering Methods (ICFEM 2009). Springer Verlag, 2009.
(Referenced on page 62.)

References 195

[HLW12] Wei Hu, T. Loeffler, and J. Wegener. Quality model based on
ISO/IEC 9126 for internal quality of MATLAB/Simulink/State-
flow models. In 2012 IEEE International Conference on Industrial
Technology (ICIT), pages 325–330, March 2012.
(Referenced on pages 18 and 74.)

[Hoa69] Charles Antony Richard Hoare. An axiomatic basis for computer
programming. Communications of the ACM, 12(10):576–580, Oc-
tober 1969.
(Referenced on page 34.)

[HR04] Grégoire Hamon and John M. Rushby. An operational semantics
for Stateflow. 2984:229–243, 2004.
(Referenced on page 179.)

[HRB90] Susan Horwitz, Thomas W. Reps, and David Binkley. Interpro-
cedural slicing using dependence graphs. ACM Transactions on
Programming Languages and Systems, 12(1):26–60, 1990.
(Referenced on page 57.)

[Jea03] B. Jeannet. Dynamic partitioning in linear relation analysis: Ap-
plication to the verification of reactive systems. Formal Methods
in System Design, 23(1):5–37, 2003.
(Referenced on page 60.)

[JH05] Anjali Joshi and Mats P.E. Heimdahl. Model-based safety analy-
sis of Simulink models using SCADE design verifier. In Com-
puter Safety, Reliability, and Security, volume 3688 of LNCS,
pages 122–135. Springer Berlin Heidelberg, 2005. ISBN: 978-3-
540-29200-5.
(Referenced on page 62.)

[Ken02] Stuart Kent. Model driven engineering. In Michael Butler, Luigia
Petre, and Kaisa Sere, editors, Integrated Formal Methods, vol-
ume 2335 of Lecture Notes in Computer Science, pages 286–298.
Springer Berlin Heidelberg, 2002. ISBN: 978-3-540-43703-1.
(Referenced on pages 21 and 22.)

[KR03] Aditya Rajeev Kulkarni and S. Ramesh. Static slicing of reactive
programs. In Proceedings of the 3rd IEEE International Workshop
on Source Code Analysis and Manipulation (SCAM), pages 98–
107, 2003.
(Referenced on page 65.)

[Kri98] Jens Krinke. Static slicing of threaded programs. In Proceedings
of the 1998 ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering, pages 35–42, New
York, NY, USA, 1998. ACM. ISBN: 1-58113-055-4.
(Referenced on page 65.)

[Kro11] B.H. Krogh. sliceMDL. Private Communication, February 2011.
(Referenced on pages 62 and 66.)

196 BIBLIOGRAPHY

[KS08] Daniel Kroening and Ofer Strichman. Decision procedures, vol-
ume 5. Springer Berlin Heidelberg, 2008. ISBN: 978-3-540-74104-
6.
(Referenced on pages 33, 45, and 46.)

[KSTV03] B. Korel, I. Singh, L. Tahat, and B. Vaysburg. Slicing of state-
based models. In Proceedings of the 19th International Confer-
ence on Software Maintenance (ICSM), pages 34 – 43, sept. 2003.
ISSN: 1063-6773.
(Referenced on pages 62 and 64.)

[Lan09] Kevin Lano. Slicing of UML state machines. In Proceedings of the
9th WSEAS international conference on Applied informatics and
communications, pages 63–69. World Scientific and Engineering
Academy and Society (WSEAS), 2009.
(Referenced on pages 62, 63, and 66.)

[Lei05] K. Rustan M. Leino. Efficient weakest preconditions. Information
Processing Letters, 93(6):281 – 288, 2005.
(Referenced on page 40.)

[Lei08] K. Rustan M. Leino. This is Boogie 2. Unpublished Technical
Report, 2008.
(Referenced on pages 48 and 49.)

[LF10] A. Luangsodsai and C. Fox. Concurrent statechart slicing. In
2nd Computer Science and Electronic Engineering Conference
(CEEC), pages 1–7, Sept 2010.
(Referenced on page 64.)

[LS09] Dirk Leinenbach and Thomas Santen. Verifying the Microsoft
Hyper-V Hypervisor with VCC. In Ana Cavalcanti and Den-
nis R. Dams, editors, FM 2009: Formal Methods, volume 5850
of Lecture Notes in Computer Science, pages 806–809. Springer
Berlin Heidelberg, 2009. ISBN: 978-3-642-05088-6.
(Referenced on page 47.)

[Mata] MathWorks. MATLAB Simulink. The MathWorks Inc,
http://www.mathworks.com/products/simulink/.
(Referenced on page 26.)

[Matb] MathWorks. Simulink getting started guide. The MathWorks Inc,
http://www.mathworks.com/help/pdf doc/simulink/sl gs.pdf.
(Referenced on page 26.)

[Mat07] MathWorks. Code verification and run-time error detection
through abstract interpretation. Whitepaper, 2007.
(Referenced on page 61.)

[Mat14a] The MathWorks. MATLAB Documentation. The Math-
Works, Inc., 2014. http://www.mathworks.de/de/help/

matlab/index.html.

http://www.mathworks.de/de/help/matlab/index.html
http://www.mathworks.de/de/help/matlab/index.html

References 197

(Referenced on page 13.)

[Mat14b] The MathWorks. Simulink Documentation. The MathWorks,
Inc., 2014. http://www.mathworks.de/de/help/simulink/

index.html.
(Referenced on pages 14, 15, 82, 99, and 110.)

[MBR06] B. Meenakshi, Abhishek Bhatnagar, and Sudeepa Roy. Tool
for translating Simulink models into input language of a model
checker. In Zhiming Liu and Jifeng He, editors, Formal Methods
and Software Engineering, volume 4260 of Lecture Notes in Com-
puter Science, pages 606–620. Springer Berlin Heidelberg, 2006.
ISBN: 978-3-540-47460-9.
(Referenced on page 60.)

[MM+01] Joaquin Miller, Jishnu Mukerji, et al. Model driven architecture
(MDA), 2001. Object Management Group, Draft Specification
ormsc/2001-07-01.
(Referenced on page 21.)

[MWC10] Steven P. Miller, Michael W. Whalen, and Darren D. Cofer. Soft-
ware model checking takes off. Communications of the ACM,
53(2):58–64, February 2010.
(Referenced on page 62.)

[MZC12] Chris Marriott, Frank Zeyda, and Ana Cavalcanti. A tool chain
for the automatic generation of Circus specifications of Simulink
diagrams. In John Derrick, John Fitzgerald, Stefania Gnesi, Sar-
fraz Khurshid, Michael Leuschel, Steve Reeves, and Elvinia Ric-
cobene, editors, Abstract State Machines, Alloy, B, VDM, and Z,
volume 7316 of Lecture Notes in Computer Science, pages 294–
307. Springer Berlin Heidelberg, 2012. ISBN: 978-3-642-30884-0.
(Referenced on pages 61 and 66.)

[OO84] Karl J. Ottenstein and Linda M. Ottenstein. The program depen-
dence graph in a software development environment. In Proceed-
ings of the first ACM SIGSOFT/SIGPLAN Software Engineer-
ing Symposium on Practical Software Development Environments,
pages 177–184, 1984.
(Referenced on pages 56 and 57.)

[RHR91] Christophe Ratel, Nicolas Halbwachs, and Pascal Raymond. Pro-
gramming and verifying critical systems by means of the syn-
chronous data-flow language Lustre. SIGSOFT Softw. Eng.
Notes, 16(5):112–119, September 1991.
(Referenced on page 60.)

[RKK04] S. Ramesh, A. Kulkarni, and V. Kamat. Slicing tools for syn-
chronous reactive programs. In Proceedings of the 2004 ACM SIG-
SOFT International Symposium on Software Testing and Analy-
sis, ISSTA ’04, pages 217–220, New York, NY, USA, 2004. ACM.

http://www.mathworks.de/de/help/simulink/index.html
http://www.mathworks.de/de/help/simulink/index.html

198 BIBLIOGRAPHY

ISBN: 1-58113-820-2.
(Referenced on page 65.)

[RS09] Michael Ryabtsev and Ofer Strichman. Translation validation:
From Simulink to C. In Ahmed Bouajjani and Oded Maler, edi-
tors, Computer Aided Verification, volume 5643 of Lecture Notes
in Computer Science, pages 696–701. Springer Berlin Heidelberg,
2009. ISBN: 978-3-642-02657-7.
(Referenced on pages 61 and 66.)

[RS10] Pritam Roy and Natarajan Shankar. SimCheck: An expressive
type system for Simulink. In César Muñoz, editor, Proceedings of
the Second NASA Formal Methods Symposium (NFM 2010), vol-
ume NASA/CP-2010-216215 of NASA Conference Proceedings,
pages 149–160, April 2010. Washington D.C.
(Referenced on pages 61 and 66.)

[RW10] Philipp Rümmer and Thomas Wahl. An smt-lib theory of binary
floating-point arithmetic. In International Workshop on Satisfia-
bility Modulo Theories (SMT), 2010.
(Referenced on page 151.)

[SA13] Rupinder Singh and Vinay Arora. Literature analysis on model
based slicing. International Journal of Computer Applications,
70(16):45–51, 2013.
(Referenced on page 62.)

[Sch06] D.C. Schmidt. Guest editor’s introduction: Model-driven engi-
neering. Computer, 39(2):25–31, Feb 2006.
(Referenced on page 21.)

[Sel03] Bran Selic. The pragmatics of model-driven development. IEEE
Software, 20(5):19–25, 2003.
(Referenced on page 24.)

[Sha00] Natarajan Shankar. Combining theorem proving and model
checking through symbolic analysis. In Catuscia Palamidessi,
editor, CONCUR 2000 – Concurrency Theory, volume 1877 of
Lecture Notes in Computer Science, pages 1–16. Springer Berlin
Heidelberg, 2000. ISBN: 978-3-540-67897-7.
(Referenced on page 60.)

[Sil12] Josep Silva. A vocabulary of program slicing-based techniques.
ACM Computing Surveys (CSUR), 44(3):12:1–12:41, June 2012.
(Referenced on pages 54 and 57.)

[SK00] B Izaias Silva and Bruce H Krogh. Formal verification of hybrid
systems using CheckMate: a case study. In Proceedings of the
American Control Conference, volume 3, pages 1679–1683, 2000.
(Referenced on pages 59 and 60.)

References 199

[SSC+04] N. Scaife, C. Sofronis, P. Caspi, S. Tripakis, and F. Maraninchi.
Defining and translating a ”safe”subset of Simulink/Stateflow into
Lustre. In Proceedings of the 4th ACM International Conference
on Embedded Software, EMSOFT ’04, pages 259–268, New York,
NY, USA, 2004. ACM. ISBN: 1-58113-860-1.
(Referenced on pages 60 and 66.)

[SSS00] Mary Sheeran, Satnam Singh, and Gunnar St̊almarck. Check-
ing safety properties using induction and a sat-solver. In Jr.
Hunt, WarrenA. and StevenD. Johnson, editors, Formal Methods
in Computer-Aided Design, volume 1954 of Lecture Notes in Com-
puter Science, pages 127–144. Springer Berlin Heidelberg, 2000.
ISBN: 978-3-540-41219-9.
(Referenced on page 43.)

[Tip95] Frank Tip. A survey of program slicing techniques. Journal of
Programming Languages, 3:121–189, 1995.
(Referenced on pages 54 and 57.)

[Tiw02] Ashish Tiwari. Formal semantics and analysis methods for Simu-
link Stateflow models, 2002. Unpublished report, SRI Interna-
tional.
(Referenced on page 60.)

[TSCC05] Stavros Tripakis, Christos Sofronis, Paul Caspi, and Adrian
Curic. Translating discrete-time simulink to lustre. ACM Trans-
actions on Embedded Computing Systems (TECS), 4(4):779–818,
2005.
(Referenced on pages 60 and 66.)

[VLH07] Sara Van Langenhove and Albert Hoogewijs. SVtL: System veri-
fication through logic tool support for verifying sliced hierarchical
statecharts. 4409:142–155, 2007.
(Referenced on pages 62, 63, and 66.)

[WB14] Jonatan Wiik and Pontus Boström. Contract-based verification
of MATLAB and Simulink matrix-manipulating code. In Stephan
Merz and Jun Pang, editors, Formal Methods and Software En-
gineering, volume 8829 of Lecture Notes in Computer Science,
pages 396–412. Springer International Publishing, 2014. ISBN:
978-3-319-11736-2.
(Referenced on page 61.)

[WD96] Jim Woodcock and Jim Davies. Using Z: Specification, Refine-
ment, and Proof. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1996. ISBN: 0-13-948472-8.
(Referenced on page 60.)

[WDQ02] Ji Wang, Wei Dong, and Zhi-Chang Qi. Slicing hierarchical au-
tomata for model checking UML statecharts. In Proceedings of
the 4th International Conference on Formal Engineering Meth-

200 BIBLIOGRAPHY

ods: Formal Methods and Software Engineering, pages 435–446,
London, UK, UK, 2002. Springer-Verlag. ISBN: 3-540-00029-1.
(Referenced on pages 62, 63, 66, and 179.)

[Wei81] Mark Weiser. Program slicing. In Proceedings of the 5th In-
ternational Conference on Software Engineering, pages 439–449,
Piscataway, NJ, USA, 1981. IEEE Press. ISBN: 0-89791-146-6.
(Referenced on page 54.)

[WY04] Fangjun Wu and Tong Yi. Dependence analysis for UML class
diagrams. Journal of Electronics (China), 21(3):249–254, 2004.
(Referenced on page 62.)

[ZC09] Frank Zeyda and Ana Cavalcanti. Mechanised translation of con-
trol law diagrams into Circus. In Michael Leuschel and Heike
Wehrheim, editors, Integrated Formal Methods, volume 5423 of
Lecture Notes in Computer Science, pages 151–166. Springer
Berlin Heidelberg, 2009. ISBN: 978-3-642-00254-0.
(Referenced on pages 61 and 66.)

[Zha98] Jianjun Zhao. Applying slicing technique to software architec-
tures. In Proceedings of the Fourth IEEE International Con-
ference on Engineering of Complex Computer Systems (ICECCS
’98)., pages 87–98, Aug 1998.
(Referenced on page 62.)

[Zha04] Y. Zhang. Test-driven modeling for model-driven development.
Software, IEEE, 21(5):80–86, Sept 2004.
(Referenced on page 24.)

[ZZW+13] Liang Zou, Naijun Zhan, Shuling Wang, Martin Fränzle, and
Shengchao Qin. Verifying Simulink diagrams via a hybrid hoare
logic prover. In Proceedings of the Eleventh ACM International
Conference on Embedded Software, EMSOFT ’13, pages 9:1–9:10,
Piscataway, NJ, USA, 2013. IEEE Press. ISBN: 978-1-4799-1443-
2.
(Referenced on page 60.)

Publications of Robert Reicherdt 201

Publications of Robert Reicherdt

[HRB13] Paula Herber, Robert Reicherdt, and Patrick Bittner. Bit-precise
formal verification of discrete-time MATLAB/Simulink models us-
ing SMT solving. In Proceedings of the Eleventh ACM International
Conference on Embedded Software, EMSOFT ’13, pages 8:1–8:10,
Piscataway, NJ, USA, 2013. IEEE Press. ISBN: 978-1-4799-1443-2.

[HWS+11] Wei Hu, Joachim Wegener, Ingo Stürmer, Robert Reicherdt, Elke
Salecker, and Sabine Glesner. MeMo - methods of model quality.
In Dagstuhl-Workshop MBEES: Modellbasierte Entwicklung einge-
betteter Systeme VII, pages 127–132, 2011.

[RG12] Robert Reicherdt and Sabine Glesner. Slicing MATLAB Simulink
models. In ACM/IEEE 34th International Conference on Software
Engineering (ICSE’12), pages 551–561. IEEE, 2012.

[RG14a] Robert Reicherdt and Sabine Glesner. Formal verification of
discrete-time MATLAB/Simulink models using Boogie. In Dimitra
Giannakopoulou and Gwen Salaün, editors, Software Engineering
and Formal Methods, volume 8702 of Lecture Notes in Computer
Science, pages 190–204. Springer International Publishing, 2014.
ISBN: 978-3-319-10430-0.

[RG14b] Robert Reicherdt and Sabine Glesner. Methods of model quality
in the automotive area. pages 73–74. Köllen, 2014. ISBN: 978-
388579-621-3.

Supervised Theses

[Bit13] Patrick Bittner. Automatische Transformation und Verifikation von
MATLAB/Simulink Modellen mit UCLID. Master Thesis, 2013. TU
Berlin.

[Li14] Yi Li. Entwicklung eines CAN Bootloaders. Bachelor Thesis, 2014.
TU Berlin.

[Sta14] Georgios Stavrakakis. 3D-Visualisierung von Metrikergebnissen für
MATLAB/Simulink. Bachelor Thesis, 2014. TU Berlin.

	Title
	Contents
	1 Introduction
	1.1 Problem
	1.2 Objectives
	1.3 Proposed Solution
	1.4 Motivation
	1.5 Main Contributions
	1.6 Context of this Work
	1.7 Overview of this Thesis

	2 Background
	2.1 Model Driven Development and Engineering
	2.1.1 Model Driven Engineering
	2.1.2 Model Driven Development
	2.1.3 Summary

	2.2 MATLAB/Simulink
	2.2.1 Simulink
	2.2.2 Model Elements and Simulation Mechanics
	2.2.3 Simulation
	2.2.4 Summary

	2.3 Program Verification
	2.3.1 Verification of the Correctness of Programs
	2.3.2 Automatic and Inductive Verification with Weakest Preconditions
	2.3.3 Verification with Automatic Theorem Proving
	2.3.4 Summary

	2.4 The Boogie Verification Framework
	2.4.1 Boogie2
	2.4.2 The Boogie Verifier
	2.4.3 Summary

	2.5 Slicing
	2.5.1 The Program Dependence Graph
	2.5.2 Static Slicing with Program Dependence Graphs

	2.6 Summary

	3 Related Work
	3.1 Verification of Simulink Models
	3.1.1 Verification of Hybrid Simulink Models
	3.1.2 Verification of Discrete Simulink Models

	3.2 Slicing of Simulink Models
	3.2.1 Slicing of State-based Models
	3.2.2 Slicing of Synchronous Models

	3.3 Summary

	4 Automatic Verification Approach
	4.1 Verification Idea
	4.2 Verification Framework Architecture
	4.3 Verification Process
	4.4 Summary

	5 Slicing of Simulink Models
	5.1 Assumptions
	5.2 Dependence Analysis
	5.2.1 Data Flow and Data Dependence
	5.2.2 Control Flow in Simulink
	5.2.3 Conditional Execution Contexts and Control Dependence
	5.2.4 Calculation of Control Dependence
	5.2.5 Summary

	5.3 Slicing of Simulink Models
	5.3.1 Building the Dependence Graph
	5.3.2 Computing the Simulink Slice
	5.3.3 Example

	5.4 Increasing the Precision of Slices
	5.4.1 Routing-aware Dependence Analysis
	5.4.2 Routing-aware Dependence Graph

	5.5 Summary

	6 Transformation of Discrete-Time Simulink Models to Boogie
	6.1 Overview
	6.2 Assumptions
	6.3 A Formal Model for Simulink
	6.3.1 Modeling Blocks
	6.3.2 Modeling Signals
	6.3.3 Block States and Intermediate Results
	6.3.4 Initialization
	6.3.5 Modeling Control Flow
	6.3.6 Data Types

	6.4 Calculation of the Control Flow Graph
	6.4.1 How Simulink calculates the Sorted Order
	6.4.2 Calculating the Sorted Order

	6.5 Mapping of Simulink Blocks to Boogie2
	6.5.1 Sources Block Set
	6.5.2 Math Operations Block Set
	6.5.3 Logic and Bit Operations
	6.5.4 Ports & Subsystems Block Set
	6.5.5 Signal Routing Block Set
	6.5.6 Discrete Block Set
	6.5.7 User-defined Functions Block Set
	6.5.8 Sinks Block Set
	6.5.9 Implicit Casts and Mechanisms for Multiple Block Types

	6.6 Summary

	7 Automatic Inductive Verification of Simulink Models
	7.1 Automatic Generation of Formal Specifications
	7.1.1 Inductive Invariant Checking
	7.1.2 k-Induction

	7.2 Slicing for k-Induction
	7.3 Automatic Generation of Verification Goals
	7.3.1 Encoding Over- and Underflow Checks
	7.3.2 Encoding Division-by-zero Checks
	7.3.3 Encoding Range Violation Checks
	7.3.4 Other Verification Goals

	7.4 Loop Invariants
	7.4.1 Automatically Generated Invariants
	7.4.2 Manually Specified Invariants

	7.5 Summary

	8 Implementation
	8.1 The MeMo Framework
	8.2 Parsing Engine
	8.2.1 Parsing of Model and Inlining of References
	8.2.2 Enhancement with Run-time Information
	8.2.3 Preprocessing
	8.2.4 Persisting the Parsed Model

	8.3 Slicing Engine
	8.4 Translation Engine
	8.4.1 BlockTranslatorFactory
	8.4.2 ArithmeticsMapping
	8.4.3 BoogieModel

	8.5 Verification Engine
	8.6 Graphical User Interface of the MeMo Tool
	8.7 Summary

	9 Evaluation
	9.1 Case Studies
	9.1.1 TestModel Design
	9.1.2 Odometer
	9.1.3 Distance Warning (DistWarn)
	9.1.4 Additional Models for Slicing Evaluation

	9.2 Slicing Evaluation
	9.2.1 Evaluation of Our Basic Slicing Technique
	9.2.2 Evaluation of the Routing-aware Slicing Technique

	9.3 Verification Evaluation
	9.3.1 TestModel
	9.3.2 Odometer
	9.3.3 DistWarn

	9.4 Summary

	10 Conclusion and Future Work
	10.1 Results
	10.2 Discussion
	10.3 Outlook

	List of Figures
	List of Algorithms
	List of Tables
	List of Acronyms
	Bibliography

