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ABSTRACT

As the amount of available multimedia content becomes more and more abun-
dant, the use of automatic multimedia analysis solutions in order to find relevant
semantic search results or to identify illegal content present on the World Wide Web
has reached a critical importance. In addition, the advances in digital media man-
agement techniques have facilitated delivering digital videos to consumers. There-
fore, accessing online video content has become extremely easy. As emotions play
an important role for multimedia content selection and consumption in peoples’
daily life, analyzing the emotional content (i.e., affective content) of videos in order
to structure mostly unstructured or ill-structured data is of high value.

This thesis focuses on the high-level research question of discriminative feature
representations and modeling methods for affective content (including violence)
analysis of videos, while keeping the domain knowledge about the problem or ap-
plication at hand to a minimum. Towards addressing this research question, anal-
ysis frameworks which let the video data itself construct mid-level steps to narrow
the “affective gap” between low-level audio visual elements and high-level seman-
tics are presented.

In the first part of the thesis, we first address the issue of feature engineering
in the field of video affective content analysis. We present a deep learning archi-
tecture to construct audio and static visual higher level representations from raw
data instead of handcrafting such higher level representations. Second, a compre-
hensive analysis of supervised machine learning algorithms for emotional content
modeling is performed. Finally, the importance of temporal information for the
generation of discriminative analysis models is investigated.

In the second part of the thesis, we concentrate on a special case of video af-
fective content analysis: Violence detection. A comprehensive analysis on the dis-
criminative power of different modalities including audio, static and dynamic vi-
sual is performed. A “divide-et-impera” approach is presented to model a complex
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concept (namely, violence) present in videos, where kernel-based and deep learn-
ing methods are used as base building blocks. In addition, a “coarse-to-fine” analy-
sis setup is introduced to address the time efficiency of the video analysis process.
The effectiveness of the frameworks presented in both parts are discussed with
extensive experiments on standard video datasets using official evaluation metrics.



ZUSAMMENFASSUNG

Die Menge anverfiigbaren Multimedia-Inhaltenwichststdndig. Automatische Mul-
timedia Analysel6sungen sind erforderlich, um relevante semantische Suchergeb-
nisse zu finden oder unzuldssige Inhalte im World Wide Web zu identifizieren. Dar-
tiber hinaus haben Fortschritte im Bereich digitaler Medien-Management-Techni-
ken den Zugriff auf digitale Videos deutlich vereinfacht. Emotionen spielen eine
entscheidene Rolle bei Auswahl und Konsum von Multimedia-Inhalten. Dadurch
gewinnt die Analyse von emotionalen Inhalten (so genannten affektiven Inhalten)
von Videos an Bedeutung fiir die Strukturierung meist unstrukturierter oder schlecht
strukturierter Daten.

Diese Dissertation beschiéftigt sich mit der Darstellung diskriminativer Merk-
male und Modellierungsmethoden von affektiven Inhalten (einschlieBlich Gewalt)
in Videos. Der Fokus liegt mehr auf der tibergeordneten Funktionalitdt als auf
dem konkreten Anwendungsfall. Es werden Frameworks zur Analyse von Video-
daten betrachtet, die in der Lage sind, die , affektive Liicke“ (, affective gap“ auf En-
glisch) zu schlieflen, indem sie iibergeordnete semantische Reprasentationen aus
einfachen audio-visuellen Daten ableiten.

Der erste Teil der Dissertation befasst sich mit Feature-Engineering im Kontext
affektiver Inhaltsanalyse von Videos. Wir stellen eine ,Deep Learning“ -Architektur
vor, mit deren Hilfe sich automatisch iibergeordnete (,higher level“ auf Englisch)
Darstellungen von Audio und statischem Video aufbauen lassen, ohne dass manu-
elle Eingaben notig werden. Danach wird eine umfassende Analyse {iberwachter
maschineller Lernalgorithmen (,supervised machine learning“ auf Englisch) zum
Modellieren emotionaler Inhalte durchgefiihrt. SchlieBlich wird die Bedeutung von
zeitlichen Faktoren bei der Erzeugung diskriminativer Analysemodelle untersucht.

Der zweite Teil der Dissertation konzentriert sich auf einen speziellen Fall von
affektiver Inhaltsanalyse von Videos: Erkennung gewalttétiger Inhalte. Eine um-
fassende Analyse der Diskriminierungsfihigkeit verschiedener Modalitdten
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iv Zusammenfassung

einschlieRlich Audiomodalitit, statischer und dynamischer visueller Modalitét wird
durchgefiihrt. Eine ,teile und herrsche® (,divide-et-impera“) Losung zur Model-
lierung eines komplexen Konzepts (ndmlich Gewalt) wird présentiert, die auf Ker-
nelmethoden und ,Deep Learning“ beruht. Zusitzlich wird ein ,grob zu fein“
(,coarse-to-fine“ auf Englisch) Analyseaufbau zur Zeiteffizienzsteigerung im Video-
analyseprozess eingefiihrt.

Die Wirksamkeit der in beiden Teilen betrachteten Frameworks wird im Zuge
der Durchfithrung umfangreicher Experimente auf anerkannten Multimedia-
Datensédtzen anhand offizieller Bewertungsmetriken diskutiert.
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INTRODUCTION

In ever-increasing multimedia sources, emotions play an important role in multi-
media content selection and consumption. This thesis focuses on the analysis of
emotional content including the violence of videos to narrow the affective gap be-
tween low-level audio-visual data and the high-level emotional content of videos.
In this introductory chapter, we first provide in Section[L.1]the basic concepts used
throughout this thesis. The motivation of the present work is explained in Sec-
tion The focus of the thesis including addressed issues and related research
questions is discussed in detail in Section[1.3]and, subsequently, Section .4 pro-
vides real-life scenarios that are the subject of this thesis. In the final two subsec-
tions, the contributions as well as the impact of this thesis are summarized (Sec-
tion[1.5) and the organization of the manuscript is introduced (Section|[1.6).

1.1 Basic Concepts

Multimedia can essentially be defined as content that involves different modalities
such as audio, visual information and text. Video is one instance of such multime-
dia contents and, due to its multi-modal nature, constitutes a complex instance.
A video consists of a sequence of frames where each frame can be thought as an
individual image. In addition, a video usually contains an audio signal synchro-
nized with the frames and, in some cases, textual data related to its content (e.g.,
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metadata, script). One of the biggest research questions in the field of multimedia
is how to make a computer (partly) understand the content of a multimedia data
item (i.e., an image, audio or video file); the related research field is called multime-
dia content analysis [51]. In other words, this research field studies how to close the
so-called “semantic gap” between raw multimedia data and high-level semantics
describing its content.

The semantic meaning or content of a video can be described from different
perspectives. Two basic levels of video content perception can be differentiated:
These are cognitive-level and affective-level [57]. The aim of the studies that ana-
lyze video content at the cognitive-level is to extract information (so called “facts”
according to the terminology used in [57]) in terms of objects or people appearing
in a video, events or scenes (e.g., someone playing a guitar). The other basic con-
tent analysis perspective is to explore the content of videos at the affective-level.
The affective content of videos can be basically defined as the intensity and type of
affects (i.e., emotions) that are contained in videos and expected to arise in users
while watching the videos [57].

Semantic content analysis approaches — whether at the cognitive or affective
level — that are based on machine learning techniques make use of feature repre-
sentations at different abstraction levels to model multimedia content. The fea-
ture representations can be classified according to different schemes. One type is
the classification based on the level of semantic information which a given feature
carries. In the terminology which we adopt, at one extreme, a feature is said to
be “low-level” if it carries (almost) no semantic information (e.g., value of a single
pixel or audio sample); at the other extreme, it is said to be “high-level” if it car-
ries maximally semantic information (e.g., a guitarist performing a song in a clip).
Between both, “mid-level” feature representations are derived from raw data, but
are one step closer to human perception. Another possible type of classification,
which is particularly relevant in video analysis, where data items are not a single
image but sequences, is the distinction between “static” and “dynamic” (or tempo-
ral) features.

1.2 Motivation

The last two decades have witnessed an extraordinary development in the various
technologies relating to audio, visual or textual data acquisition, storage, transmis-
sion and computing power. Illustration of those developments are ubiquitous; we
just have to take a scan around us to realize it, be it at home, in the street, in con-
cert halls, or on squares during various celebrations. In all of these locations or
venues, devices equipped with cameras, microphones, gigabytes of storage, wire-
less connections, and powerful processors are present: PCs, Home Entertainment
devices, smart phones or tablets enable the capture of multimedia in general, and
sound and videos in particular, which then can be stored, processed, published or
transmitted.
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Multimedia data can represent innumerable events or scenes. A non-exhaustive
list of what multimedia can represent includes:

¢ Surveillance data, thanks to the presence of CCTV cameras placed in streets
or public places;

* Personal recordings or photo collections, obtained through consumer video
cameras or portable devices equipped with cameras and microphones;

¢ Entertainment data items.

Of the above given list, the last item — entertainment data items — plays a partic-
ular role in our daily life. Entertainment data items encompass not only profession-
ally edited videos such as concert recordings, shows, movies, documentaries but
also user-generated videos which are shared or posted on various platforms such
as YouTubeﬂ Facebookﬂ Instagranﬂ Vime(f_r] or Dailymotiorﬂ Concerning user-
generated videos, we witnessed an unprecedented boom as evidenced by statis-
tics. For instance, according to YouTube statisticaﬂ the website has over 1 billion
of users and YouTube CEO Susan Wojcicki announced on the 25" of July’2015 that
400 hours of video are uploaded every minute [22]. We can only expect these figures
to grow [104]. Videos uploaded to YouTube can include redundant content. How-
ever, the number and, more importantly, the growth over time (Figure[1.1) is quite
significant considering that YouTube is merely one of the various online platforms
where videos are uploaded.

Concerning professionally edited videos, movies account for a large part of this
type of multimedia data. In their habits of viewing movies, consumers have shifted
away from the traditional broadcasting means such as conventional television or
materialized supports (e.g., tapes, DVDs)[Z] to adopt new broadcasting solutions
such as video-on-demand (VOD) services which attest an ever growing demate-
rialization trend. Dematerialization which was popularized by iTunes in the years
’90 and '00 - initially for music, but later also for audio-visual content — has re-
cently enjoyed a new growth thanks to services such as Amazon Primeﬂ Hullﬂ or
Netﬂi)m As an illustration of this growth, the latter features already 74 millions of
users and announced its expansion to more than 130 countrieq' !}

Ihttps://www.youtube.com/

*https://www.facebook.com/

Shttps://www.instagram.com/

4https://vimeo.com/

Shttp://www.dailymotion.com/
6https://www.youtube.com/yt/press/statistics.html

7ht‘l'.p ://www.wsj.com/news/articles/SB10001424052702304887104579306440621142958
8https://www.amazon.de/prime/

9nttp://www.hulu.com/
Ohttp://www.netflix.com
11http ://wwu.forbes.com/sites/laurengensler/2016/01/19/netflix-fourth-quarter-earnings
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Hours of Video Uploaded per Minute (Official Statistics)
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Figure 1.1: Video upload rate (in hours of video per minute) on YouTube from June
2007 to July 2015.

User-generated and professionally edited videos share a number of common
features:

(a) Their number is enormous, and continuously growing (e.g., Figure[1.1);

(b) They are mostly unstructured or ill-structured, i.e., they are organized ac-
cording to poor schemes - e.g., for user-generated videos, organization and
retrieval are based on file names or user-generated tags, or comments on
sites hosting the videos (like YouTube). User-generated tags are useful in-
formation sources. However, they might be problematic in the sense that the
tagging intent of users cannot be always used to index the multimedia con-
tent (i.e., the tags are not related to the actual content of multimedia items,
but correspond more to reputations or judgments [98]). For movies, on the
other hand, structuring is based on genres (which is a rough classification
scheme), actors playing in the movie, directors, or summaries which are gen-
erally performed manually by professionals;

(c) Both types of videos (i.e., user-generated and professionally edited) contain
emotions, or are meant to provoke emotions by spectators. For instance, in
user-generated videos which get a high number of hits, scenes with strong
emotions, which can be considered as “funny” or “violent” are often present.
A similar consideration can be derived for movies, because they are typically
designed to convey emotions (e.g., romance, comedy, thriller).

In view of the properties (a) and (b), there appears a need for a better — finer
— organization scheme. In view of (c), organizations based on analyzing emotions
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more likely evoked in users (i.e., the affective content of videos) can provide a scal-
able and adaptable solution as an alternative to cognitive-level video analysis where
an extensive research is going on, since emotions play an important role in multi-
media content selection and consumption.

Emotional analysis is basically the subject of affective computing introduced in
1995 by Rosalind Picard [101]. Affective computing refers to emotional intelligence
of technical systems in general; yet so far, research in this domain has mostly been
focusing on aspects of human-machine interaction [49]. However, there are fewer
studies that address the analysis of affective information contained in the audio-
visual content itself. In this thesis, we therefore undertake an analysis of emotions
to perform different tasks relating to the organization of user-generated videos and
movies.

1.3 Focus of the Thesis

As said in Section[1.2} our ultimate goal is to develop solutions for affective content
analysis of videos, more specifically professionally edited or user-generated videos.
Throughout the thesis, we address this goal at different levels. In the first part of the
thesis (Chapters[8land[4), we approach the affective content analysis as understood
in its broadest sense, i.e., the analysis of emotions in general.

Next to this general analysis, we dedicate the second part of the thesis (Chap-
ters[5|and[6) to the concept of violence as a special case of affective content anal-
ysis, since violence plays an important part in movies or in user-generated videos.
For instance, several movie genres involve violence as one of the dominant con-
cepts present in a movie — horror, action, adventure to name a few. Violence is
usually used to evoke strong emotions by the user. In addition, due to the potential
harmful effects of violence among sensible audiences, spectators may have the de-
sire to avoid violent contents. The importance of violence justifies, therefore, that
we specifically dedicate a part of this thesis to describe algorithms for analyzing
violent contents.

Achieving automatic emotion analysis or violence detection in professionally
edited or user-generated videos requires the analysis of multiple modalities, typi-
cally audio and visual. This observation implies (1) multimedia data to be properly
represented by means of appropriate audio-visual features, so that (2) automatic
analysis can be performed thanks to inferring techniques such as pattern recogni-
tion and machine learning.

The literature survey considering the two points (1) and (2) on the affective con-
tent analysis of videos reveal the following issues which are worth investigating in
this thesis. The first issue is related to feature representation. The most of ap-
proaches in the field of affective content analysis either use general-purpose audio-
visual features or construct domain-specific and problem-dependent representa-
tions. The general-purpose features are easy to construct and generic, whereas
the problem-dependent ones are time-consuming and generally require domain
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knowledge. The second issue is related to model generation. When we analyze
the approaches in the field, most of them concentrate on the feature engineer-
ing part of the analysis and use commonplace approaches such as SVM model-
ing for its modeling part. Hence, this thesis focuses on these two issues. The ulti-
mate research question of this thesis through the aforementioned two parts con-
cerns building discriminative feature representations and modeling methods for
affective content (including violence) analysis of videos, while keeping the domain
knowledge to a minimum and using the data itself during the construction of analy-
sis models. Consequently, each part of this work contains research elements which
tackle the problem of feature representation or the problem of classification.

1.4 Targeted Real-life Scenarios

Systems analyzing audio-visual signals in terms of their affective content can be
used in many applications including summarization, indexing and retrieval in large
archives. It enables, for instance, to choose “sad” moments in a drama when gener-
ating the highlights of the multimedia content. Another application scenario is the
automatic affective tagging of audio-visual contents which can be used to structure
multimedia items in a cold start scenario where no information (e.g., preferences)
about users is available. The framework we present in the first part of the thesis
(Chapters[3|and[4) can typically be applied on these real-life scenarios.

Another important application scenario is related to youth protection services.
Nowadays, children are submerged by connected equipment, whether this is at
school, at home or even in the car. Notable examples of such equipment include
TV, cable or satellite set-top boxes, tablets or the smartphones of the parents, when
those let their children play with it. Parents can always try to track these “unde-
sired” contents (e.g., violent content). However, this tracking might not be con-
stantly possible. In these situations, automatically detecting and filtering violent
content would show a considerable utility. In the second part of the thesis (Chap-
ters[5|and[6), we address this real-life scenario with the presented framework.

1.5 Contributions of the Thesis

The main contributions of the thesis as well as the related publications are given in
this section.

 Audio and static visual affective feature learning. The majority of existing af-
fective content analysis methods (discussed in Chapter |2) use handcrafted
low and/or mid-level audio-visual representations. Different from these ap-
proaches we apply a deep learning approach to learn audio and static visual
features to represent videos for affective content analysis. More specifically,
we use a convolutional neural network (CNN) architecture to learn higher
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level acoustic patterns from the audio signal of videos using an acoustic spec-
tral descriptor-time domain representation as 2D raw data. Next to this, we
apply the CNN architecture on keyframes of videos to extract static visual
patterns from raw visual data. The commonplace approach of using CNNs
on images is to apply them on the RGB color space. In this study, we extend
this approach and work in the HSV color space in addition to the RGB color
space and evaluate the learned static visual representations within the con-
text of affective video content analysis. The findings of the feature learning
provide valuable insights for the field of affective content analysis of videos,
as we experimentally show that superior classification performance can be
achieved while keeping the domain knowledge to a minimum and let data
define patterns for content analysis. This enables to concentrate more on the
modeling part than the feature engineering part of the analysis. The details
of representation learning are discussed in Chapter|3| Part of the work pre-
sented in Chapter [3} and work pertaining to this topic have been presented
in:

- Esra Acar, “Learning Representations for Affective Video Understand-
ing”, ACM International Conference on Multimedia (ACMMM), 2013 [I].

- Esra Acar, Frank Hopfgartner and Sahin Albayrak, “Understanding af-
fective content of music videos through learned representations”, Inter-
national Conference on MultiMedia Modelling (MMM), 2014 [5].

* Ensemble learning with enriched multi-modal cues for affective modeling. The
contributions for this part of the study (Chapter [4) are twofold. First, we
distance ourselves from the prior art — discussed in detail in Chapter |2|-
and generate analysis models using ensemble learning (decision tree based
bootstrap aggregating to be more specific). This learning method is shown
to further enhance the classification accuracy of the system compared to
SVM modeling which is the commonplace approach. Second, we extend our
audio-visual feature set with motion and domain-specific representations
whose applicability, to the best of our knowledge, have not been investigated
yet. The use of motion-based features within the context of affective con-
tent analysis is limited — as discussed later in Chapter [2]- to simple motion
features (such as frame differencing). We apply dense trajectory features to
derive higher level representations via sparse coding to boost the classifica-
tion performance of the proposed system. In addition, we explore optimal
late fusion mechanisms, since we are in the presence of multi-modal fea-
tures to represent videos. These contributions are important, as it is experi-
mentally shown that ensemble learning based analysis outperforms the SVM
based one — which is the dominant modeling approach - on both profession-
ally edited and user-generated videos. Besides, the importance of using ad-
vanced motion features such as dense trajectories for affective content anal-
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ysis is presented through extensive experiments. Part of the work presented
in Chapter[4] and work related to this matter have been presented in:

- Esra Acar, Frank Hopfgartner and Sahin Albayrak, “Fusion of learned
multi-modal representations and dense trajectories for emotional anal-
ysis in videos”, IEEE International Workshop on Content-Based Multi-
media Indexing (CBMI), 2015 [6].

- Esra Acar, Frank Hopfgartner and Sahin Albayrak, “A comprehensive
study on mid-level representation and ensemble learning for emotional
analysis of video material”, Multimedia Tools and Applications (MTAP)
journafﬂ June, 2016 [8].

* A comprehensive study of the correlation between audio-visual features and
the concept of “violence”. Within the context of violence detection in videos,
we perform an extensive analysis of audio-visual features at different levels.
More specifically, we evaluate the discriminative power of vector quantiza-
tion and sparse coding based mid-level audio representations and the extent
to which the fusion of these representations with static and dynamic visual
representations further improves the violence analysis in videos. The find-
ings related to this contribution provide valuable insights for violent con-
tent analysis of videos. It is experimentally shown that videos need to be de-
scribed from different perspectives such as audio, static and dynamic visual
features to achieve state-of-the-art performance. This is also an indication of
the diverse nature of “violence” concept. Part of the work presented in Chap-
ter[5} as well as other related work on this topic have been presented in:

- Esra Acar, Frank Hopfgartner and Sahin Albayrak, “Violence detection
in Hollywood movies by the fusion of visual and mid-level audio cues”,
ACM International Conference on Multimedia (ACMMM), 2013 [4].

- Esra Acar, Frank Hopfgartner and Sahin Albayrak, “Detecting violent
content in Hollywood movies by mid-level audio representations”, IEEE
International Workshop on Content-Based MultimediaIndexing (CBMI),
2013 [3].

- Dominique Maniry, Esra Acar, Frank Hopfgartner and Sahin Albayrak,
“A visualization tool for violent scenes detection”, ACM International
Conference on Multimedia Retrieval ICMR), 2014 [86].

e Feature space partitioning and coarse-to-fine analysis for violence detection.
The contributions for this part of the study (Chapter[6) are twofold. First, our
work differs from the prior art (discussed in detail in Chapter [2) by model-
ing the concept of “violence” as a plurality of subconcepts (i.e., feature space

12http://link.springer.com/journal/11042
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partitioning); this stems from our observation that “violence” is usually ex-
pressed under diverse forms, rather than as a single type. Second, we in-
troduce a coarse-to-fine analysis analysis strategy for violence detection in
videos in order to cope with the heavy computations resulting from the ad-
vanced dynamic and static visual representations introduced to ameliorate
the performance. The feature space partitioning approach eliminates the
need for time-consuming manually designed violence-related concepts (e.g.,
fight, explosion) and lets data define subconcepts in terms of audio-visual
characteristics. As we use no subconcept hardwired to “violence”, the ap-
proach can be extended to other complex concepts. The coarse-to-fine anal-
ysis enables computational efficiency without sacrificing too much from per-
formance. Besides, it provides a scalable solution adjustable depending on
the processing power or accuracy requirements. Part of the work presented
in Chapter[6|and related work in this topic have been presented in:

- Esra Acar, Frank Hopfgartner and Sahin Albayrak, “TUB-IRML at Me-
diaEval 2014 Violent Scenes Detection Task: Violence Modeling through
Feature Space Partitioning”, MediaEval Benchmarking, 2014 [2].

- Esra Acar, Frank Hopfgartner and Sahin Albayrak, “Detecting Violent
Content in Hollywood Movies and User-Generated Videos”, Smart In-
formation Systems, Springer International Publishing, 2015 [9].

- EsraAcar, Frank Hopfgartner and Sahin Albayrak, “Breaking Down Vio-
lence Detection: Combining Divide-et-Impera and Coarse-to-Fine Stra-
tegies”, Neurocomputing j ournaEl October, 2016 [7].

1.6 Organization of the Thesis

This thesis is organized as follows. In Chapter[2} the background on emotion rep-
resentation models, affective content analysis and violence detection is presented.
In Chapter[3} audio and static visual feature learning using deep learning architec-
tures and the evaluation of these learned representations on a video dataset con-
sisting of music video clips from different genres is introduced. Chapter [4] extends
the framework presented in Chapter[3Jand concentrates primarily on the modeling
part of affective content analysis in videos. Also, the evaluation part is extended
with a more challenging dataset which contains user-generated video clips from
YouTube and Flickf'] The next chapter (Chapter[5) addresses the detection of “vi-
olence” in videos and presents a comprehensive evaluation on audio-visual repre-
sentations for violent content analysis in videos. The subsequent chapter (Chap-
ter[6) deepens the modeling aspects of violence detection and introduces feature
space partitioning and coarse-to-fine analysis for more discriminative model gen-
eration and time efficiency, respectively. Finally, Chapter [7| concludes the thesis

1Bhttp://www.journals.elsevier.com/neurocomputing/
Yhttps://wuw.flickr.com/
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and gives future research directions within the context of affective content (includ-
ing “violence” concept) analysis.



BACKGROUND

This chapter introduces the basic concepts of affective analysis used throughout
this thesis. In addition, a literature review on affective content analysis and on the
special case of violence detection in videos is provided. We start by defining the
term emotion in Section[2.1]and by providing emotion representation models that
are commonly used in affective analysis in Section 2.2} Subsequently, Section[2.3]
discusses a review of existing works related to affective content analysis. In Sec-
tion the concept of violence is defined, then uni-modal and multi-modal vio-
lent content analysis approaches, and the MediaEvaﬂ benchmarking task initiated
for violence analysis in movies are discussed. Finally, Section [2.5 concludes this
chapter with a short summary.

2.1 Definition of an Emotion

In [108], Scherer defines an emotion as “an episode of interrelated, synchronized
changes in the states of all or most of the five organismic subsystems in response
to the evaluation of an external or internal stimulus event as relevant to major con-
cerns of the organism”. It is important here to remark that an emotion is different
from a feeling or mood which are two other affective phenomena. Feeling is the

Thttp://www.multimediaeval.org/
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term used for the subjective experience component of emotion and is not a syn-
onym for emotion [108]. Similarly, mood is also not synonymous with emotion.
Mood can be defined as a diffuse affective state characterized by a long-lasting pre-
dominance of certain types of feelings that affect the experience and behavior of
a person (e.g., cheerful, depressed) [108]. The main difference between mood and
emotion is that mood is a long-lasting and low-intensity affective state compared to
emotion and is not related to a specific stimulus, whereas an emotion is a relatively
short-term state as a reaction to an internal or external stimulus and is usually of
higher intensities [108].

Besides the definition of an emotion and the characteristics which discriminate
it from feeling and mood, an important discussion concerns the different types of
emotion: On the one hand, felt or actual emotions; on the other hand, expected
emotions. Within the context of affective video content analysis, an actual emo-
tion can be defined as the emotion that is evoked in a user while watching a video.
Hence, it is personal (i.e., subjective) and context-dependent [57]. In opposition,
an expected emotion is the one that is either intended to be communicated toward
an audience by a film director or that is likely to be elicited from the majority of an
audience who is watching a particular video [57]. For instance, “disturbing” scenes
in a horror movie are edited in a way by film makers to elicit particular emotions
in the audience. “Fear” is usually the expected emotion in this example. Although
this might be the case for most of the people watching these scenes, there are peo-
ple who find this kind of scenes “funny” (i.e., actual emotion). In this thesis, we
follow the latter definition of emotion (i.e., expected emotion) within the context
of affective content analysis of videos and use the audio-visual content that is be-
ing watched by people to infer the expected emotion. Trying to directly understand
the audio-visual or multimedia content has the advantage of being non-invasive,
which translates into a broader applicability. Besides, the expected affective re-
sponse to a specific stimulus can be mapped to a user-specific affective response
to that stimulus using the profile of a particular user [57].

2.2 Emotion Representation Models

One of the first steps in affective multimedia content analysis is to decide how to
represent emotions. Despite the existence of various other models, categorical and
dimensional approaches are the most commonly used ones for automatic affective
analysis [56].

Inthe categorical representation of emotions, there are predefined discrete emo-
tion categories such as anger, fear, sadness, joy, to name a few. Different lists of
emotion categories have been proposed in the literature. These categories can be
regarded as fixed or graded (e.g., weak, medium, strong), or as pure or mixed, or
sometimes even antagonistic (e.g., a mixture of anger, joy and irony) [56]. As an
example, we present in Figure Plutchik’s emotion wheel [102] which defines a
wheel-like diagram of emotions consisting of eight basic (i.e., primary) emotions
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and their derivatives, and illustrates various relations among these emotions. The
eight basic emotions of the Plutchik’s wheel are joy, trust, fear, surprise, sadness,
disgust, anger and anticipation. The wheel is coordinated in pairs of opposite emo-
tions (e.g., joy versus sadness, anger versus fear). The intensity of an emotion in-
creases toward the center of the wheel and is indicated with an increased color in-
tensity as shown in Figure[2.1] A final remark on Plutchik’s wheel is about secondary
emotions which are illustrated between the primary emotion leaves in Figure [2.1]
with no color. These emotions are a mixture of two neighboring primary emotions.
For instance, love is a combination of joy and trust, whereas anticipation and joy
combine into optimism. The secondary emotions of Plutchik’s wheel are love, sub-
mission, awe, disapproval, remorse, contempt, aggressiveness and optimism.

aggressiveness submission

contempt

remorse disapproval

Figure 2.1: Plutchik’s wheel of emotions [I02] used for the representation of emo-
tions of user-generated videos.

In the dimensional representation of emotions, affective analysis is performed
along affect dimensions instead of using predefined emotion categories (i.e., emo-
tions are represented as points in an n-dimensional space, where nis the number of
affect dimensions being used in the modeling of an emotion). Traditionally, emo-
tions are modeled by means of the arousal and valence dimensions [56]. There
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are studies that include an additional dimension called the control/dominance
dimension (e.g., [I145]). Arousal can be defined as the intensity of an emotion,
while valence is the fype of an emotion. Valence is typically characterized as a con-
tinuous range of affective states extending from “pleasant/positive” to “unpleas-
ant/negative”, while arousal is characterized by affective states ranging on a con-
tinuous scale from “energized/excited” and “calm/peaceful” [57]. The third dimen-
sion (i.e., control) is used to differentiate between emotional states having similar
arousal and valence (e.g., differentiating between “grief” and “rage”) and usually
ranges from “no control” to “full control” [57]. An example of dimensional repre-
sentation of emotions is Russell’s circumplex model [105] of emotions, presented

in Figure
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ANGRY .
ANNOYED,
* DISTRESSED
DELIGHTED
- L]
FRUSTRATED
HAPPY
NEGATIVE ° POSITIVE
L i |
PLEASED
* MISERABLE .
GLAD
L]
SAD
L]
GLOOMY* * ® SERENE
DEPRESSED
® CONTENT
BORED e ® AT EASE
® SATISFIED
® RELAXED
DROOPY & .
CALM
TIRED | | SLEEPY
PASSIVE / CALM

Figure 2.2: The emotion model based on Russell’s circumplex model of emotions.

As discussed in [56], the choice of a categorical or dimensional analysis is not
critical, as in practice, categories can always be mapped onto dimensions and vice
versa. For example, Figure illustrates Russell’s circumplex model of emotions
which are distributed in the Valence-Arousal space (VA-space). This implies that
emotion categories can also be placed on the VA-space. Another example would
be defining the four quadrants of the VA-space as four emotion categories and per-
form categorical emotion analysis of videos as in [145].
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2.3 Affective Content Analysis: Literature Review

The recent survey by Wang and Ji [129] provides a thorough overview of the sub-
ject and distinguishes two kinds of research. On the one hand, direct approaches
(mainstream) deduce the emotional content of videos directly from audio and/or
visual features extracted from the video data; on the other hand, implicit ones de-
duce them from the user’s reaction while being exposed to the video [129]. The
literature on emotional content analysis — and in particular on direct methods —
can be analyzed from different points of view. As also evoked in the survey by Wang
and Ji [129], a direct affective content analysis framework requires two essential el-
ements; these are video feature extraction (i.e., representation) and classification or
regression (i.e., modeling). As, in this work, we focus both on the representation
and on the modeling aspects of emotional content analysis, we present a review
of existing solutions examined from these two perspectives in Sections and
[2.3.2} respectively. In addition, stressing the importance of motion related features
enables us to highlight one of our contributions; hence, in Section we also
position existing studies with respect to the use of motion information.

2.3.1 From afeature representation point of view

Among video affective content analysis methods, using low-level audio-visual fea-
tures as video representations is one type ofcommonplace approach. In [47], Eggink
and Bland present a method for mood-based classification of TV Programs on a
large-scale dataset. Various low-level features are used as video representations;
these are audio (e.g., MFCC, sound energy, spectral rolloff, zero crossing rate) and
visual features (luminance, motion, cuts and presence of faces), either taken in-
dividually or in combination. SVMs are used as classifiers. In [130], a combined
analysis of low-level audio and visual representations based on early feature fusion
is presented for facial emotion recognition in videos. The audio features include
MFCC and zero crossing rate (ZCR). The visual features are extracted based on a
deformable model fitted on faces and correspond to various face-related informa-
tion such as facial pose, opening of the mouth or status of eyebrows. The combined
feature vectors are classified with SVMs. In order to retrieve videos containing re-
sembling emotions, Niu et al. [96] develop a similarity measure of videos based
on affect analysis. They use four low-level features (audio: sound energy, audio
pitch average; visual: motion, shot-change rate) to construct Valence-Arousal (VA)
graphs. Those VA-graphs are normalized to account for unequal video durations
and are used to derive the similarity measures. The set of videos is further parti-
tioned using spectral clustering based on the similarity measure. The result is used
in a recommender system to retrieve similar contents. Baveye et al. [15, [17] ad-
dress the issue of a common emotional database and introduce the LIRIS-ACCEDE
dataset which is an annotated creative commons emotional database. In that work,
a baseline framework was also presented, which employs low-level audio (energy,
ZCR, etc.) and still image (colorfulness, spatial edge distribution, etc.) features,
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in an SVM framework. Yazdani et al. [I45] present a method which uses low-level
audio-visual features as representation and the k-nearest neighbor classifier as the
learning method for the affective analysis of music video clips.

The major drawback of the approaches of this category — which mainly use low-
level video representations for emotional content analysis — is the risk of losing the
global structure in the video data as well as having a minimal semantic meaning
compared to higher level representations which we discuss in the following para-
graphs.

Another type of commonplace approach is to use mid-level or hierarchical rep-
resentations of videos to narrow the affective gap between the raw video data and
its emotional content by means of these higher level video representations. Irie
et al. [63] present an affective video segment retrieval method based on the corre-
lation between emotions and so-called emotional audio events (EAEs) which are
laughter, loud voice, calm music and aggressive music. The main idea is to use
EAEs as an intermediate representation. The detection of EAEs is based on the
audio information only. Xu et al. [I38] present a 3-level affective content analysis
framework, in which the purpose is to detect the affective content of videos (i.e.,
horror scenes for horror movies, laughable sections for sitcoms and emotional tag-
ging of movies). They introduce mid-level representations which indicate dialog,
audio emotional events (i.e., horror sound and laughter — similar in concept to the
EAEs of Irie et al. [63]) and textual concepts (i.e., informative emotion keywords).
In [64], Irie et al. propose to represent movie shots with so-called Bag-of-Affective
Audio-visual Words and apply a latent topic driving model in order to map these
representations to affective categories, and, hence, to achieve movie classification.
The audio-visual words are formed by bringing together audio and visual words,
which are constructed based on audio (pitch, short-term energy, MFCC) and vi-
sual (color, brightness, motion intensity and shot duration) features, respectively.
In [24], Canini et al. introduce a framework where movie scenes are represented in
a 3-dimensional connotative space whose dimensions are natural, temporal, and
energetic. The aim is to reduce the gap between objective low-level audio-visual
features and highly subjective emotions through connotation. As audio-visual rep-
resentation, they employ low-level audio descriptors (representing intensity, tim-
bre and rhythm), low and mid-level color (e.g., color energy, average saturation of
pixels) and motion (average of motion vector modules and their standard devia-
tion) descriptors. Ellis et al. [48] introduced a framework for emotional analysis of
movie trailers using mid-level representations corresponding to specific concepts
(e.g., “gunshot”, “fight”). The rationale behind their method is that human emo-
tions are closely related to such concepts rather than low-level features. They de-
fine 36 concepts (annotated at the video shot level) and build a detector for each
concept. Each concept detector is realized with an SVM using low-level audio (e.g.,
MEFCC, pitch) and visual (e.g., SIFT, number of faces) features. The concepts are
used to infer emotions in the videos. In an attempt to close the so-called emotional
gap between low-level features and emotions, Borth et al. [20] construct a visual
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sentiment ontology containing 3,000 concepts (i.e., mid-level visual representa-
tions), each corresponding to an Adjective-Noun pair (ANP). Each pair is composed
of a neutral noun associated to a strong sentiment (e.g., “beautiful flower”). Those
concepts are detected using a pool of detectors (SentiBank). Visual features such
as color histograms and local binary patterns as well as additional features (e.g.,
faces or objects) are employed in SVM detectors. The approach was evaluated on
images and videos retrieved from online repositories in order to infer emotions. In
an improvement to the work by Borth et al. [20], Chen et al. [31] aim at solving two
problems related to ANP concepts, namely the localization of objects and the ambi-
guity of annotations due to adjectives. They solve the localization issue by limiting
their study to only six common objects appearing in social media content and by
detecting those objects with a parts-based detector. The ambiguity issue between
semantically similar concepts is tackled by using a new type of SVM, which is ca-
pable of learning overlapping class labels. The method is reported to outperform
conventional SentiBank. In [70], Jiang et al. propose a comprehensive computa-
tional framework, where they extract an extensive set of features from the dataset,
ranging from well-known low-level audio-visual descriptors (audio: MFCC, energy
entropy, etc.; visual: SIFT, HOG, etc.) to high-level semantic attributes such as Ob-
jectBank and SentiBank representations.

Handcrafted higher level features (e.g., ANP in [20] or EAE in [63]) provide rep-
resentations which are closer to human perception. However, they are mainly time-
consuming in design, problem-dependent and require domain-knowledge. Hier-
archical approaches (e.g., [138]) may in addition have the disadvantage of suffering
from cascaded classification errors introduced by an additional classification layer.

All of the above-mentioned works represent videos with low or mid-level hand-
crafted features. However, in attempts to extend the applicability of methods, there
is a growing interest for directly and automatically learning features from raw audio-
visual data rather than representing them based on manually designed features,
deep learning being a widespread illustration of such direct and automatic learn-
ing. For example, Schmidt et al. [I09] address the feature representation issue for
automatic detection of emotions in music by employing regression based deep be-
lief networks to learn features from magnitude spectra instead of manually design-
ing feature representations. By taking into account the dynamic nature of mu-
sic, they also investigate the effect of combining multiple timescales of aggregated
magnitude spectra as a basis for feature learning. These learned features are then
evaluated in the context of multiple linear regression. Among deep learning solu-
tions, Convolutional Neural Networks (CNNs) have become particularly popular in
video content analysis in the last years. Li et al. [79] propose to perform feature
learning for music genre classification and use CNNs for the extraction of musical
patterns directly from audio features. Ji et al. [68] address the automated recogni-
tion of human actions in surveillance videos and develop a novel 3D-CNN model to
capture motion information encoded in multiple adjacent frames. As an improve-
ment of the SentiBank paper by Borth et al. [20], Chen et al. [30] propose to ex-
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tend it using deep learning (DeepSentiBank). CNNs are used instead of binary SVM
classifiers. The increased computational load induced by deep learning is dealt
by a GPU-based learning framework. CNNs are shown to provide substantial im-
provement compared to binary SVMs. Another work making use of DeepSentiBank
is the one by Dumoulin et al. [45], where DeepSentiBank is combined with low-
level audio-visual and CNN-based features in a hierarchical classification scheme.
In [134], Xu et al. predict sentiments in still images using CNNs. CNNs are trained
as object classifiers to classify image content according to labels such as “zebra” or
“lemon”; subsequently, transfer learning is employed for generating mid-level rep-
resentations. Logistic regression is then used to predict sentiments using the gen-
erated mid-level representations. More recently, Baveye et al. [16] compared CNNs
applied on video keyframes against the combination of Support Vector Regression
(SVR) and low-level features, and reached the conclusion that CNNs constitute a
promising solution. Xu et al. [I133] perform emotion recognition in videos using a
BoW approach, where the dictionary is constructed by clustering features obtained
from so-called auxiliary images by means of CNNs. The same CNNs are then ap-
plied on video frames to encode videos according to the BowW scheme. Unlike most
studies where features are independently extracted from audio and visual modali-
ties, Pang and Ngo [97] propose to extract joint features from the raw data directly
using Deep Boltzman Machines (DBM), i.e., they extract mid-level features which
simultaneously capture audio, visual and text information. Visual, audio and text
features are input to a multi-modal DBM which returns the joint representations.
Those joint representations are used to train SVM classifiers with RBF kernels in
order to predict emotions.

As discussed above, deep learning approaches are proven to be promising in af-
fective content analysis, while having the advantage of learning features from raw
data. Different from the aforementioned deep-learning-based works, we apply 2D
CNN modeling not only on visual data but also on audio data to learn features au-
tomatically and also investigate the performance of different color spaces in the
visual feature learning part of our affective content analysis system.

2.3.2 From a modeling point of view

A closer look at the methods proposed in the literature (Section [2.3.1) reveals that
most of them (a non-exhaustive list of examples including [20} 47 [70, (130} 138])
concentrate on the representation aspect of content analysis by proposing new
handcrafted or learned (via deep learning methods) audio-visual descriptors. The
modeling part, on the other hand, is rather neglected; we see, indeed, that authors
predominantly use SVMs as the learning method in an “Out-of-the-Box” fashion.
Although the SVM-based learning technique is the dominant modeling scheme
for video affective content analysis, certain works in the literature employ other
techniques. In [20], Borth et al. use logistic regression in addition to linear SVM
and show that logistic regression is superior to SVM. Inspired by its success in [20],
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Xu et al. also adopt logistic regression as the learning scheme in their work [134].
Dumoulin et al. [45] introduced a hierarchical classification scheme, where input
features are classified by traversing a 3-level tree. At the highest level, the features
are determined as stemming from an emotional or non-emotional video segment;
then, those classified as emotional are labeled as corresponding to positive or neg-
ative emotions; finally, at the lowest level, the class of emotion is determined. This
hierarchical scheme was tested using different types of classifiers (e.g., SVM, ran-
dom forests).

As already presented in detail in Section alternative learning methods uti-
lized in the field of affective content analysis include topic extraction via the latent
Dirichlet allocation [63], spectral clustering [96], k-nearest neighbor classifier [145]
and SVR [16].

2.3.3 The issue of motion information

One observation about the works mentioned in Section [2.3.1]is that the use of the
temporal aspect of videos is either limited or totally absent. In other words, videos
are generally analyzed as a sequence of independent frames rather than as a whole.
A few works (e.g., [24} /47, [64]) use motion-based features, and these are limited to
simple features (e.g., features based on frame differencing). For instance, Canini
et al. [24] use average motion vector magnitudes derived from the motionDS de-
scriptor [67]. Eggink and Bland [47] use motion based on the difference between
every tenth frame. Irie et al. [64] employ motion intensity as the average magni-
tude of motion vectors; they also take into account the duration of shots as another
feature.

The only notable exception is the work of Ji et al. [68], where multiple adjacent
frames are used. However, they take into account only 7 adjacent frames. Increas-
ing this number to higher dimensions would probably render the learning of the
3D-CNNs intractable. Therefore, in our opinion, a more effective mid-level motion
representation is needed.

2.4 Violent Content Detection

An analysis of existing works relating to the detection of the concept of violence
in videos brings to light two dichotomies from two different perspectives: (1) One
from the representation perspective, namely the distinction between uni-modal
approaches and multi-modal approaches, and (2) one from the modeling perspec-
tive, i.e., SVM-based modeling against non-SVM-based modeling; it also shows the
lack of a proper, commonly adopted definition of violence. Hence, in a preliminary
part (Section[2.4.1), we tackle the issue of violence definition. Then in Sections[2.4.2
and [2.4.3} we review violence detection approaches from the representation and
modeling perspectives, respectively. Finally, Section presents a synopsis of
the significant studies demonstrated at the MediaEval multimedia benchmarking
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task addressing the issue of violent content detection in videos by using a standard
violence definition and dataset.

2.4.1 Defining violence

In the following two subsections, we first discuss the issues relating to the defini-
tion of violence in the literature (Section|2.4.1.1), and then how violence is defined
within the related task of MediaEval multimedia benchmarking (Section[2.4.1.2).

2.4.1.1 The difficulty in defining violence

In spite of the existence of institutions, the task of which is to assign a recom-
mended age to movies in France, the ratings determined by those institutions are
not as strict and differentiated as the ones from the German FSK (Freiwillige Selb-
stkontrolle der Filmwirtschaft). One explanation of the sources of discrepancies is
the fact that employees from the film making industry are allowed to participate in
the recommendation process in France.

A lot of movies labeled as FSK 16 (i.e., recommended for an audience of age
higher than 16 years old) in Germany are released without restrictions in Franceﬂ
There also is no equivalence for the FSK 6 label in France, where movies are rec-
ommended only for the age of 0, 12, 16 and 1iﬂ Another illustration of differences
between countries is the age rating labels used in the USA, where one example of
label is “NC-17". The latter does not mean that audience should be at least 17 years
old, but that audience should not be 17 or under 17, while, for instance, FSK 16
means audience should be atleast 16. This can also be a source of confusion among
consumers.

In addition, the degree of violence one is able or willing to bear might vary
strongly even within a group of persons of identical age. That is probably why par-
ents should get from video producers information which is not limited to rating
only but also a preview of the most violent scenes, in order to help them decide if
the movie is adequate to be watched by their child.

Although video content analysis has been studied extensively in the literature,
violence analysis of movies or of user-generated videos is restricted to a few studies
only. Consequently, a first difficulty stems from the fact that the research commu-
nity had limited possibilities to properly define violence. We discuss some of the
most representative ones which use audio and/or visual cues in Sections [2.4.2.1
and[2.4.2.2] In these studies, other difficulties arise regarding the definition of vi-
olence. For instance, in the publications [29] and [80], violent scenes are defined
as those scenes that contain action and blood, whereas in [36] it is defined as sud-
den changes in motion in a video footage. In some of the works presented in Sec-
tions[2.4.2.1land[2.4.2.2} the authors do not even explicitly state their definition of

®http://fsf.de/jugendmedienschutz/international/filmfreigaben/
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violence. In addition, nearly all papers in which the concept is defined consider a
different definition of violence; therefore, whenever possible, we also specify the
definition adopted in each work discussed.

2.4.1.2 Towards a common definition of violence: The definition provided by
the MediaEval multimedia benchmarking

The MediaEval multimedia benchmarking Violent Scenes Detection (VSD) task is a
yearly venue which allows participating teams to test their algorithms and to posi-
tion themselves in terms of performance with respect to other teams. As MediaEval
provides not only training and test datasets but also a definition of “violence”, par-
ticipants have the possibility to evaluate their algorithms using standard data and
definitions. In this thesis, we use the violence definition provided by the MediaEval
multimedia benchmarking VSD task. This enables us to evaluate our framework
against others using the same definition and standard datasets provided by the task
organizers. The violence definition in the task evolved over the years. The very first
adopted definition of violence was objective violence, defined as “physical violence
or accident resulting in human injury or pain” [37]. This definition was used in the
VSD task in the first two editions of MediaEval (2011 and 2012). According to this
objective definition, actions such as self injuries, or other moderate actions such as
an actor pushing or hitting slightly another actor are considered violent.

In 2013, the need of defining violence closer to human perception (a lesson-
learned from the tasks of 2011 and 2012), incited the task organizers to introduce
the subjective definition of violence, in addition to the objective definition. Accord-
ing to this definition, violent scenes are the ones that “one would not let an 8 years
old child see in a movie because they contain physical violence” [37].

The last change occurred in 2014. Since then, only the subjective definition of
violence is considered for the task (2014 and 2015 editions).

2.4.2 Literature review: Feature representation perspective

In this section, we present a review of existing solutions from the representation
perspective. First, we focus on works that consider a single modality for violence
analysis in Section [2.4.2.1} Second, we review multi-modal violence analysis ap-
proaches in Section[2.4.2.2

2.4.2.1 Uni-modal violence detection approaches

Uni-modal approaches are those that are based exclusively on one modality, ei-
ther audio or visual, extracted from the video stream in order to detect violence.
Giannakopoulos et al. [52] define violent scenes as those containing shots, explo-
sions, fights and screams, whereas non-violent content corresponds to audio seg-
ments containing music and speech. Frame-level audio features both from the
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time and the frequency domain such as energy entropy, short time energy, ZCR,
spectral flux and rolloff are employed. The main issue with this work is that audio
signals are assumed to have already been segmented into semantically meaningful
non-overlapping pieces (i.e., shots, explosions, fights, screams, music and speech).

In their paper [36], de Souza et al., similarly to other works related to violence
detection, adopt their own definition of violence, and designate violent scenes as
those containing fights (i.e., aggressive human actions), regardless of the context
and the number of people involved. Their approach is based on the use of Bag-
of-Words (BoW), where local Spatial-Temporal Interest Point Features (STIP) are
used as the feature representation of video shots. They compare the performance
of STIP-based BoW with SIFT-based BoW on their own dataset, which contains 400
videos (200 violent and 200 non-violent videos). The STIP-based BoW solution has
proven to be superior to the SIFT-based one. The issue with this work is the as-
sumption that violent and non-violent video samples are perfectly balanced, i.e.,
equally represented in the dataset.

Hassner et al. [59] present a method for real-time detection of breaking violence
in crowded scenes. They define violence as sudden changes in motion in a video
footage. The method considers statistics of magnitude changes of flow-vectors
over time. These statistics, collected for short frame sequences, are represented
using the Violent Flows (ViF) descriptor. ViF descriptors are then classified as ei-
ther violent or non-violent. The authors also introduce a new dataset of crowded
scenes on which their method is evaluated. According to the presented results,
the ViF descriptor outperforms the Local Trinary Patterns (LTP) [146], histogram
of oriented gradient (HoG) [78], histogram of oriented optical flow (HoF) [78] de-
scriptors as well as the histogram of oriented gradient and optical flow (HNF) de-
scriptor [78]. The ViF descriptor is also evaluated on well-known datasets of videos
of non-crowded scenes such as the Hockey [95] and the ASLAN [72] datasets in or-
der to assess its performance in action-classification tasks of “non-textured” videos
(i.e., non-crowded). With small vocabularies, the ViF descriptor outperforms the
LTP and STIP descriptors, while with larger vocabularies, STIP outperforms ViE
However, this performance gain comes with a higher computational cost.

In [135], Xu et al. propose to use Motion SIFT (MoSIFT) descriptors to extract
a low-level representation of a video. Feature selection is applied on the MoSIFT
descriptors using kernel density estimation. The selected features are subsequently
summarized into a mid-level feature representation based on a BowW model using
sparse coding. The method is evaluated on two different types of datasets: Crowded
scenes [59] and non-crowded scenes [95]. Although Xu et al. do not explicitly define
violence, they seem to focus on violence-related concepts such as fights or sudden
changes in motion. The results show that the proposed method is promising and
outperforms HoG-based and HoF-based BoW representations on both datasets.

Uni-modal approaches have the disadvantage of having an “incomplete view”
of videos, as they take into account only one modality (e.g., [52] is audio only,
whereas [59] is dynamic visual only). The video data itself is already complex and
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the difficulty of the task of violence detection is even more amplified as “violence”
is also a complex concept. Therefore, there is a need to incorporate information
about videos from different perspectives.

2.4.2.2 Multi-modal violence detection approaches

Multi-modal methods, which constitute the most common type of approach used
in violent content detection in videos, consist in fusing audio and visual cues at
either feature or decision level. Wang et al. [28] use audio and static visual fea-
tures in order to detect horror in videos. Color and texture features are used for
the static visual representation of video shots, while MFCC are used for the audio
representation. More specifically, the mean, variance and first-order differential of
each dimension of MFCC are employed for the audio representation. As observed
from their results [28], using color and textural information in addition to MFCC
features slightly improves the performance. However, the authors do not explic-
itly state their definition of horror. Therefore, assessing the performance of their
method and identifying the situations on which it properly works is difficult.

Giannakopoulos et al. [53], in an attempt to extend their approach based solely
on audio cues [52], propose to use a multi-modal two-stage approach. In the first
step, they perform audio and visual analysis of segments of one second duration.
In the audio analysis part, audio features such as energy entropy, ZCR and MFCC
are extracted and the mean and standard deviation of these features are used to
classify scenes into one of seven classes (violent ones including shots, fights and
screams). In the visual analysis part, the average motion, motion variance and av-
erage motion of individuals appearing in a scene are used to classify segments as
having either high or low activity. The classification probabilities obtained in this
first step are then used to train a binary classifier (violence versus non-violence).

In [54], a three-stage method that uses audio and visual cues is proposed. The
authors employ audio-visual features such as motion activity, ZCR, MFCC, pitch
and rhythm features to characterize video segments with fast-tempo. Although
not explicitly stated, the authors define violent scenes as those which contain ac-
tion and violence-related concepts such as gunshots, explosions and screams. The
method was only evaluated on action movies. However, violent content can be
present in movies of all genres (e.g., drama). The performance of this method in
genres other than action is, therefore, unclear.

Lin and Wang [80] employ audio, static and dynamic visual features to ana-
lyze violence in videos. As audio features, spectrum power, brightness, bandwidth,
pitch, MFCC, spectrum flux, ZCR and harmonicity prominence features are ex-
tracted. An audio vocabulary is subsequently constructed by k-means clustering.
Audio clips of one second length are represented with mid-level audio features with
a technique derived from text analysis. However, this approach presents the draw-
back of only constructing a dictionary of twenty audio words, which prevents hav-
ing a precise representation of the audio signal of video shots. In the visual clas-
sification part, the degree of violence of a video shot is determined by using mo-
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tion intensity, the (non-)existence of flame, explosion and blood appearing in the
video shot. Violence-related concepts addressed in this work are fights, murders,
gunshots and explosions. This method was also evaluated only on action movies.
Therefore, the performance of this solution in genres other than action is uncertain.

Chen et al. [29] define a violent scene as one that contains action and blood.
The average motion, camera motion, and average shot length are used for scene
representation to classify scenes as action and non-action. Subsequently, using the
“Viola-Jones” face detector, faces are detected in each keyframe of action scenes
and the presence of blood pixels near detected human faces is checked using color
information. The approach is compared with the method of Lin and Wang [80]
because of the similar violence definitions, and is shown to perform better in terms
of precision and recall.

Ding et al. [43] observe that most existing methods identify horror scenes only
from independent frames, ignoring the context cues among frames in a video scene.
In order to consider contextual cues in horror scene recognition, they propose a
joint sparse coding based MIL technique which simultaneously takes independent
and contextual cues into account and use frame-based audio and static visual fea-
tures for video scene representation (commonplace audio-visual representations
such as MFCC, color and texture features). Their definition of violence is very sim-
ilar to the definition in [28]. They perform experiments on a horror video dataset
collected from the Internet and the results demonstrate that the performance of
the proposed method is superior to other existing well-known MIL algorithms.

The approaches of this category consider a more complete view of videos, as
they use multi-modal representations. However, the most of reviewed solutions
are problem-dependent and concentrate more on the feature engineering part of
violence analysis. Besides, the definition of violence is either not even provided or
very restrictive. For instance, Chen et al. [29] define violent scenes as the scenes
that contain action and blood, which is a highly restricted description.

2.4.3 Literature review: Modeling perspective

In the previous section (Section [2.4.2), we presented existing works from a repre-
sentation perspective and gave an overview of representations used for describing
videos. In this section, the papers addressing violence detection are presented from
the modeling perspective.

One popular type of approach adopted in the literature is classification based
on SVM models using different types of kernels. An illustration to SVM-based solu-
tions is the work by Giannakopoulos et al. [52], where a polynomial SVM based on
audio features is used as the classifier. Some authors construct SVMs using motion
descriptors; for instance, de Souza et al. [36] apply a linear SVM-based approach
using local motion descriptors, whereas Hassner et al. [59] present a method based
also on a linear SVM using global motion descriptors. The work introduced in [135]
concentrates on the feature engineering part and simply uses an SVM with RBF ker-
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nel to construct violence analysis models. Multiple kernel learning is also employed
in SVM-based violence modeling (e.g., [55]). Using SVM modeling in a staged setup
also appears to be common for violence modeling. The three-stage method pre-
sented in [54] is one example. In the first stage, they apply a semi-supervised cross-
feature learning algorithm [139] on the extracted audio-visual features for the selec-
tion of candidate violent video shots. In the second stage, high-level audio events
(e.g., screaming, gun shots, explosions) are detected via SVM training using RBF
kernel for each audio event. In the third stage, the outputs of the classifiers gen-
erated in the previous two stages are linearly weighted for final decision. Similar
to [54], the above-mentioned work by Chen et al. [29] constitutes a two-phase solu-
tion. In the first phase, an SVM with RBF kernel based on motion features is used for
the classification of video scenes into action and non-action. In the second phase,
regions near facial areas are analyzed in each keyframe of action scenes to detect
the presence of blood pixels.

Next to SVM-based solutions, approaches which make use of other types of
learning-based classifiers exist. For instance, Yan et al. [142] adopt a Multi-task
Dictionary Learning approach to detect complex events in videos. Based on the
observation that complex events are made of several concepts, certain concepts
useful for particular events are selected by means of combination of text and visual
information. Subsequently, an event oriented dictionary is learned. The experi-
ments are conducted on the TRECVid Multimedia Event Detection dataset. The
same authors have experimented Multi-task Learning in other situations. For in-
stance in [I41], Yan et al. employ a variant of Linear Discrimant Analysis (LDA —
used to find a linear combination of features capable of characterizing or discrimi-
nating several classes) called Multi-task LDA to perform multi-view action recogni-
tion based on temporal self-similarity matrices. More recently, Yan et al. [140] have
developed a Multi-task Learning approach for head-pose estimation in a multi-
camera environment under target motion.

There also exist approaches which apply Bayesian networks to model violence
(e.g., [53] and [99]). Penet et al. [99] investigate Bayesian networks and different
kinds of Bayesian network structure learning algorithms for violence detection at
the video shot level. Giannakopoulos et al. [53] apply a two-stage approach. In the
first stage, Bayesian networks are used to build binary classifiers to model violence-
related concepts such as fights, screams and activity level, and non-violence-related
concepts such as music and speech. The classification probability outputs of the
first stage constitute the feature space for the k-NN classifier used in the second
stage to model violence.

Considering a video scene as a set of shots and analyzing violence levels us-
ing MIL algorithms is another technique. For instance, the Multi-view MIL (M?IL)
modeling algorithm proposed in [43] considers a video scene as a bag of video shot
instances and construct both representations from the independent view and the
contextual view to model violence. Aiming at improving SVM-based classification,
Wang et al. [28] apply MIL (MI-SVM [11]) using audio-visual features. Video scenes



26 Chapter 2. Background

are divided into video shots, where each scene is formulated as a bag and each shot
as an instance inside the bag for MIL.

Co-training is another learning approach applied to model violence. This is for
instance used by Lin and Wang in [80], where separate classifiers for audio and vi-
sual analysis are trained. Probabilistic latent semantic analysis is applied in the
audio classification part. In the visual classification part, the degree of violence of
a video shot is determined by using violence-related concepts (i.e., high activity,
flame or explosion, and blood). Finally, the audio and visual classifiers are com-
bined in a co-training framework.

As discussed in this section, different modeling algorithms are applied in the
literature to construct violence analysis models. However, violence detection ap-
proaches mostly build a unique model for the “violence” concept (e.g., [99]) or in-
corporate domain-knowledge such as violence analysis through violence-related
concepts (e.g., [53]).

2.4.4 MediaEval Violent Scenes Detection Task

The MediaEval Violent Scene Detection (VSD) task derives from a use case attribut-
ed to the company Technicoloﬂ The French producer of video content and enter-
tainment technologies adopted the aim of helping users to select movies that are
suitable to watch with their children. Detailed description of the task (from 2012
to 2015) including the dataset, the ground-truth and evaluation criteria are given
in [38} 40} 37, [112]. The works discussed in the following paragraphs employ the
same definitions of violence adopted in the MediaEval VSD task (i.e., objective and/
or subjective violence as discussed in Section [2.4.1.2). We present here the most
promising approaches proposed for the task since its introduction in 2011 in terms
of the official evaluation metric of the task.

Penet et al. [99] propose to exploit temporal and multi-modal information for
“objective” violence detection at the video shot level. In order to model violence,
different kinds of Bayesian network structure learning algorithms are investigated.
The proposed method is tested on the dataset of the MediaEval 2011 VSD Task.
Experiments demonstrate that both multimodality and temporality add valuable
information into the system and improve the performance in terms of the Media-
Eval cost function [38]. The best performing method achieves 50% false alarms and
3% missed detection, ranking among the best submissions to the MediaEval 2011
VSD task.

In [61], Ionescu et al. address the detection of “objective” violence in Hollywood
movies using neural networks. The method relies on fusing mid-level violence-
related concept predictions inferred from low-level audio-visual features. The mid-
level concepts used in this work are gory scenes, the presence of blood, firearms
and cold weapons (for the visual modality); the presence of screams and gunshots

4http://www.technicolor.com/
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(for the audio modality); and car chases, the presence of explosions, fights and fire
(for the audio-visual modalities). The authors employ a bank of multi-layer percep-
trons featuring a dropout training scheme in order to construct the aforementioned
10 violence-related concept classifiers. The predictions of these concept classifiers
are then merged to construct the final violence classifier. The method is tested on
the dataset of the MediaEval 2012 VSD task and ranked first among 34 other sub-
missions, in terms of precision and F-measure.

In [55], Goto and Aoki propose an “objective” violence detection method which
is based on the combination of visual and audio features extracted at the segment
level, using machine learning techniques. Violence detection models are learned
via multiple kernel learning. The authors also propose mid-level violence cluster-
ing in order to implicitly learn mid-level concepts without using manual annota-
tions as in [6I]. The proposed method is trained and evaluated on the MediaEval
2013 VSD task using the official metric Mean Average Precision at 100 (MAP@100).
The results show that the method outperforms the approaches which use no exter-
nal data (e.g., Internet resources) in the MediaEval 2013 VSD task.

Derbas and Quénot [41] explore the joint dependence of audio and visual fea-
tures for both “objective” and “subjective” violent scene detection. They first com-
bine the audio and the visual features and then determine statistically joint multi-
modal patterns. The proposed method mainly relies on an audio-visual BoW rep-
resentation. The experiments are performed in the context of the MediaEval 2013
VSD task. The obtained results show the potential of the proposed approach in
comparison to methods which use audio and visual features separately, and to
other fusion methods such as early and late fusion. They also compare k-NN and
SVM learning approaches within the task of 2013 and report superior results for
k-NN classification.

In 2014 and 2015, using deep neural networks both for the representation and
modeling aspects of violence detection became popular among participants of the
MediaEval VSD task. As in previous years, the focus of most of the proposed ap-
proaches lay in the feature engineering part with SVM-based modeling (especially
linear SVM) being applied in the modeling part. For the representation part, using
CNNs emerged as the most common way of feature generation. Deep learning was
also applied in modeling (e.g., [34]). The work in [34] presents a deep learning ap-
proach to capture complex relationships between audio and visual features during
violence modeling. The authors propose a regularized deep neural network (DNN)
which first applies a feature abstraction for each input feature and then uses an-
other layer to identify feature relationships (i.e., feature fusion), and finally builds
a classification model in its last layer. Input features to the DNN are MFCC audio
features and advanced motion features such as dense trajectory based motion fea-
tures and STIP. The best performing approach of 2015 [35] employs deep learning
architectures for feature learning and simply uses SVM as classifier. In addition to
conventional motion and audio features such as MFCC, STIP and dense trajectory
based motion features, the proposed system consists of several learned representa-
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tions based on CNN and Long Short Term Memory (LSTM) [132]. First, the authors
train a CNN with a violence-related subset of ImageNe classes. They adopt a two-
stream CNN framework [111] to generate features both from static frames and op-
tical flow vectors, and subsequently apply LSTM models on top of the two-stream
CNN features to capture long-term temporal dynamics [35]. All these learned and
handcrafted features are finally used to build SVM-based violence analysis models.

The drawbacks of the approaches presented at the MediaEval VSD task (ex-
cept [55]) are similar to the ones discussed in the previous section (Section [2.4.3).
We discuss the drawbacks of the work [55] in detail in Chapter|[6]

2.5 Summary

This background chapter laid down essential definitions and presented a review of
the related research in the literature. First, we explained the main affective analysis
concepts and terms used in this thesis. More specifically, the definition of affec-
tive phenomena including emotions and emotion representation models were dis-
cussed. Second, we gave a literature review in the field of affective content analysis
in videos. The definition of violence and the related research within the context
of violence detection were also provided. More specifically, we discussed violence
analysis approaches from the representation and modeling perspectives. Finally,
we presented details on the promising approaches which took part to the Media-
Eval Violent Scenes Detection (VSD) task which is running since 2011.

The remainder of this thesis is divided in two: A first part (I), relating to emotion
analysis in general; a second one (II), addressing violence detection. In the follow-
ing chapter (firstin PartI), an affective video content analysis framework that learns
audio and static visual representations from raw audio-visual data is presented.

Shttp://www.image-net.org/
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LEARNING AUDIO AND STATIC VISUAL CUES:
APPLICATION ON EDITED VIDEOS

Video affective content analysis approaches that are based on machine learning
techniques make use of feature representations at different abstraction levels to
model the emotional content of videos. When designing an affective content anal-
ysis algorithm for videos, one of the most important steps is, therefore, the selec-
tion of discriminative features for the effective representation of video segments.
One usually employed representation is based on audio and static visual cues. The
majority of existing methods concentrate on the feature engineering part and ei-
ther use low-level audio-visual representations or generate handcrafted higherlevel
ones. These features suffer from several deficiencies, such as limited discriminative
power (especially for the low-level ones) or poor applicability to new environments
and scenarios (especially for the higher level ones). We tackle these problems first
by introducing a deep learning architecture that eliminates the need for feature
engineering by learning a hierarchy of audio or static visual features from the raw
audio or visual data; those learned representations are shown to be more discrimi-
native than handcrafted low-level and mid-level ones of the same modality (audio
or visual). We also investigate the extent to which the fusion of the learned audio
and static visual features further improves the uni-modal analysis on professionally
edited music video clips. The work presented in this chapter has been published
in [1,/5].
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3.1 Introduction

Classifying, retrieving and subsequently delivering personalized video content cor-
responding to the needs of the consumers is a challenge which still has to be re-
solved. Video affective analysis — which consists in identifying videos segments that
evoke particular emotions in the user [129] — can bring an answer to such a chal-
lenge from an original perspective. In particular, in the context of categorical af-
fective analysis, where human emotions are defined in terms of discrete categories
(opposed to dimensional affective analysis where they are non-discrete [56]), one
direction followed by many researchers consists in using machine learning meth-
ods (e.g., [64} [138][145]). Machine learning approaches make use of a specific data
representation (i.e., features extracted from the data) to identify particular events
or concepts. Their performance is heavily dependent on the choice of the data rep-
resentation on which they are applied [19]. As in any pattern recognition task, one
key issue is, therefore, to find an effective representation of video content.

The common approach for feature representation used to model the affective
content of videos is either to employ low-level audio-visual features or to build
handcrafted higher level representations based on the low-level ones (e.g., [32} 62}
85} [136]). Low-level features have the disadvantage of losing global relations or
structure in the data, whereas creating handcrafted higher level representations
is time consuming, problem-dependent and requires domain knowledge. In this
context, in the field of audio, video and more generally multi-dimensional signal
processing, automatically and directly learning suitable features (i.e., mid-level fea-
tures) from raw data to perform tasks such as event detection, summarization, re-
trieval has attracted particular attention, especially because such learning kept the
amount of required supervision to a minimum and provided scalable solutions. To
achieve this, deep learning methods such as convolutional neural networks (CNNs)
and deep belief networks are shown to provide promising results (e.g., [68}[79}[109]).
The advantages of deep learning architectures are: (1) Feature re-use: constructing
multiple levels of representation or learning a hierarchy of features, and growing
ways to re-use different parts of a deep architecture by changing the depth of the
architecture; (2) abstraction and invariance: more abstract concepts can often be
constructed in terms of less abstract ones and have potentially greater predictive
power (i.e., reduced sensitivity to changes in the input data) [19]. The recent suc-
cess of deep learning methods incited us to directly learn feature representations
from automatically extracted raw audio and color features by deep learning (more
specifically, the CNN) to obtain mid-level audio and visual representations.

We develop in the present chapter a direct and categorical affective analysis
framework and consequently address the following research question: (RQ) What
is the discriminative power of learned audio and static visual representations
against handcrafted ones of the same modality (audio or static visual)? We cre-
ate CNN architectures for audio and static visual data of videos to learn hierarchi-
cal audio and visual representations. Subsequently, we review the discriminative
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power of audio and static visual representations learned from raw audio-visual data
through deep learning against handcrafted audio and static visual ones at different
abstraction levels (low-level or mid-level). To sum up briefly, our aim in this chap-
ter is to extract higher level audio and static visual representations from raw video
data without performing feature engineering to create effective audio and visual
representations for affective content analysis of videos.

Our approach differs from the existing works (presented in Section [2.3) in the
followingaspects: (1) Bothaudioandstatic visual feature representations arelearned
from automatically extracted raw data by 2D CNN modeling and are fused at the
decision-level by SVM modeling for the affective classification of music video clips;
(2) it is experimentally shown that the learned mid-level audio-visual representa-
tions are more discriminative and provide more precise results than low-level and
handcrafted mid-level audio-visual ones. The 2D CNN modeling allows to recog-
nize particular inherent audio or static visual patterns in the video data which fa-
cilitate the generation of more discriminative classification models.

The chapter is organized as follows. Section gives an overview of the af-
fective content analysis system. In Section [3.3} we introduce our audio and static
visual representation learning method used in this work. Section[3.4]discusses how
affective content analysis models are built with the learned representations. We
provide and discuss evaluation results on a subset of the DEAP dataset [73] in Sec-
tion 3.5} Finally, concluding remarks and future directions to expand our method
are presented in Section|3.6

3.2 Overview of the Affective Content Analysis System

In this section, we present our categorical affective analysis approach. An overview
of our method is illustrated in Figure[3.1] The presented system contains the fol-
lowing steps: (1) Highlight extracts of music video clips are first segmented into
fixed-length pieces; (2) audio and visual feature extraction (i.e., MFCC and color
values in the RGB and HSV color spaces); (3) learning mid-level audio and static
visual representations (training phase only); (4) generating mid-level audio-visual
representations; (5) generating an affective analysis model (training phase only);
(6) classifying a fixed-length video clip segment into one of related emotion cate-
gories (test phase only); and (7) classifying a complete music video using the results
obtained on the fixed-length segments constituting the video (test phase only).

3.3 Representation Learning for Video Affective Content Analysis
In this section, we discuss the details of our audio and static visual representation

learning architectures. Section presents the architecture for audio, whereas
the one for static visual is discussed in Section[3.3.21
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Figure 3.1: A high-level overview of our method for music video affective analy-
sis. Final classification decisions are realized by a plurality voting process. (MFCC:
Mel-Frequency Cepstral Coefficients)

3.3.1 Learning audio representations

MFCC values are extracted for each fixed-length video segment. The set of result-
ing MFCC feature vectors, when concatenated, constitutes an MFCC-time domain
representation that can be regarded as an “image”, on which we apply 2D CNN
modeling. As CNNs were successfully applied to detect patterns from raw image
data (e.g., [74]), we considered them for the representation we obtained. The
aim is to capture both timbre (basically the tone color or tone quality of sound)
and temporal information.
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The first layer (i.e., the input layer) of the CNN is an M x N map (M = number of
feature vectors, N = feature dimension) which contains the MFCC feature vectors
from the frames of one segment. In Figure[3.2} the CNN architecture used to gen-
erate audio representations is presented. The CNN has three convolution and two
subsampling layers, and one output layer which is fully connected to the last con-
volution layer (this network size in terms of convolution and subsampling layers
has experimentally given satisfactory results). In the VA-based classification, the
output layer consists of four units: One for each quadrant of the VA-space. In the
wheel-based classification, the output layer consists of nine units (annotation ac-
cording to Russell’s circumplex model): One unit for each emotion category. Each
unit in the output layer is fully connected to each of the units in the last convo-
lution layer. After training, the output of the last convolution layer is used as the
mid-level audio representation of the corresponding video segment. Hence, the
MECC feature vectors from the frames of one segment are converted into a multi-
dimensional feature vector (which constitutes a more abstract audio representa-
tion) capturing the acoustic information in the audio signal of the video segment.

3.3.2 Learning static visual representations

Existing works (e.g., [83} 124} [I50]) have shown that colors and their proportions
are important parameters to evoke emotions. This observation has motivated our
choice of color values for the generation of visual representations for music videos.
The traditional approach of using CNNs on images for feature learning is performed
in the RGB color space (e.g., [74,[119]). Hinted by the prior art evidence that percep-
tion of emotions by humans is enhanced in a hue-saturation type color space [124],
we close this gap here by working in the HSV color space in addition to RGB and
evaluate the discriminative power of learned representations based on both color
spaces (RGB versus HSV).

Keyframes (i.e., representative frames) are extracted from each music video clip
segment, as the frame in the middle of the video segment. For the generation of
mid-level visual representations, we extract color information in the RGB and HSV
color spaces from the keyframe of each segment. The resulting color values in each
channel are given as input to a separate CNN. In Figure 3.3} the CNN architecture
used to generate visual representations is presented. The input layer of the CNN
is an X x Y map (X = number of pixels in the x-dimension, Y = number of pix-
els in the y-dimension) which contains the color values from one color channel of
the keyframe. The CNN has three convolutional and two subsampling layers, one
full connection and one output layer (this network size in terms of convolution and
subsampling layers has also experimentally given satisfactory results). The training
of the CNN is done similarly to the training of the CNN in the audio case. As a re-
sult, the color values in each color channel are converted into a multi-dimensional
feature vector. The feature vectors generated for each of the three color channels
(RGB or HSV) are concatenated into a final feature vector which forms a more ab-
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Figure 3.2: (a) A high-level overview of our mid-level audio representation genera-
tion process, (b) the detailed CNN architecture for audio representation learning.
The architecture contains three convolution and two subsampling layers, one out-
put layer fully connected to the last convolution layer (Cg). (CNN: Convolutional
Neural Network, MFCC: Mel-Frequency Cepstral Coefficients)

stract visual representation capturing the color information in the keyframe of the
music video segment.

3.4 Generating the Affective Analysis Model

As discussed in the previous sections (Sectionsand, we only use neural net-
work structures to extract higher level audio and static visual representations and
employ multi-class SVMs for model generation. There are several reasons that in-
cited us to choose SVM as classifier in the system. First, in the literature, SVM is
proven to be powerful for semantic multimedia analysis including affective con-
tent analysis [70,[130,[138]. Second, during the optimization of SVM, there are only
two hyper parameters (y and C in this work) to determine. Third, since the learned
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Figure 3.3: (a) A high-level overview of our mid-level color representation gener-
ation process, (b) the detailed CNN architecture for color representation learning.
The architecture contains three convolution and two subsampling layers, one out-
put layer fully connected to the last convolution layer (Cg). (CNN: Convolutional
Neural Network)

audio and visual representations are compared to handcrafted audio and visual
features in this work, a classifier like SVM is needed to deal with both type of rep-
resentations (learned and handcrafted). Last but not least, we work with a small
dataset and think that a kernel method such as SVM is a more proper choice over
neural network as classifier.

The representation of video segments from different modalities (audio and vi-
sual) raises the question of modality fusion during the model generation of the sys-
tem. The fusion of different modalities is generally performed at two levels within
the field of multimedia content analysis: Feature-level (early fusion) and decision-
level (late fusion) [13]. As previous studies (e.g., [115]) on semantic video analysis
have experimentally shown that late fusion strategies perform usually better than
early ones in most cases, we apply an SVM-based late fusion strategy in this work.



38 Chapter 3. Learning audio and static visual cues: Application on edited videos

For the generation of an audio affective analysis model, learned audio represen-
tations are fed into a multi-class SVM. Similarly, a visual affective analysis model is
also generated by feeding learned visual representations (RGB or HSV-based ones)
into a second multi-class SVM. The probability estimates of the two SVM models
are subsequently fed into a third multi-class SVM to generate an audio-visual affec-
tive video analysis model. Normally, in a basic SVM, only class labels or scores are
output. The class label results from thresholding the score, which is not a probabil-
ity measure. The scores output by the SVM are converted into probability estimates
using the method explained in [131].

In the test phase, mid-level audio and visual representations are created by us-
ing the corresponding CNN models for fixed-length music video segments based
on MFCC feature vectors and color values in the RGB or HSV color space. The mu-
sic video segments are then classified by using the affective video analysis mod-
els. Final decisions for the classification of music video segments are realized by
a plurality voting process where a music video is assigned the label which is most
frequently encountered among the set of fixed-length segments constituting the
video.

3.5 Performance Evaluation

The experiments presented in this section aim at comparing the discriminative
power of uni and multi-modal learned representations against handcrafted audio-
visual ones. In addition, a comparison of our mid-level audio features against au-
ditory temporal modulations (ATM) features is provided. The ATM features, which
describe temporal modulations in the frequency domain, were recently applied for
audio content analysis, in particular in the context of music recommendation [117]
and genre classification [I18]. A direct comparison with the methods which are
also tested on the DEAP dataset is limited mainly due to the usage of different sub-
sets of the DEAP dataset in different works. However, our approach is compared
against the work presented in [145] whose experimental setup is the closest one to
ours. An overview of the DEAP dataset is provided in Section[3.5.1] In Section
the experimental setup is presented. Finally, results and discussions are given in
Sections (uni-modal) and[3.5.5] (multi-modal).

3.5.1 Dataset and ground-truth

The DEAP dataset [73] is a dataset for the analysis of human affective states using
electroencephalogram, physiological and video signals. It consists of the ratings
from an online self-assessment where 120 highlight extracts of music videos were
each rated by 14 to 16 volunteers based on arousal, valence and dominance. We
have used all the music video clips whose YouTube links are provided in the dataset
and which were available on YouTube at the time when we conducted the exper-
iments (74 music clips). As only the highlight extracts of music videos have been



3.5. Performance Evaluation 39

used during the dataset creation, we perform our evaluations with these extracts.
The excerpts of different affective categories downloaded from YouTube equate to
888 fixed-length music video segments.

We perform categorical affective analysis according to two different classifica-
tion schemes, namely VA-based and wheel-based classification. For the case of the
VA-based classification, four affective labels exist. These are high arousal-high va-
lence (HA-HV), low arousal-high valence (LA-HV), low arousal-low valence (LA-LV)
and high arousal-low valence (HA-LV), each representing one quadrant in the VA-
space. Concerning the evaluation of wheel-based classification, annotations ac-
cording to Russell’s circumplex model (discussed in detail Section are used.
The labels for both classification schemes are provided in the dataset and the VA-
based classification labels are determined by the average ratings of the participants
in the online self-assessment. Table[3.1lsummarizes the main characteristics of the
DEAP dataset in more detail.

Table 3.1: The characteristics of the DEAP dataset with respect to VA-based cate-
gory (top) and wheel-based category (bottom). Note that for the VA-based classi-
fication there are 74 music videos, whereas this number is 70 for the wheel-based
classification. This is due to one of the videos for which the emotion wheel rating
was not properly recorded, and to the fact that there is only 1 clip for each of the
Hope, Surprise and Contempt categories.

VA-based Category # Music Videos | # Segments
high arousal-high valence (HA-HV) 19 228

low arousal-high valence (LA-HV) 19 228

low arousal-low valence (LA-LV) 14 168
high arousal-low valence (HA-LV) 22 264
Total 74 888
Wheel-based Category # Music Videos | # Segments
Pride 2 24
Elation 3 36

Joy 22 264
Satisfaction 5 60
Interest 4 48
Sadness 18 216
Fear 2 24
Disgust 6 72
Anger 8 96
Total 70 840
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3.5.2 Experimental setup

The length of highlight extracts of music video clips is one minute, whereas each
fixed-length piece of the extracts lasts 5 seconds (as suggested in [145]) and cor-
responds to 125 visual frames. Once the extracts are segmented into fixed-length
pieces, the construction of feature representation is performed for each piece sep-
arately.

In order to extract the 13-dimensional MFCC features, we employed the MIR
Toolbox v1.6.1] Frame sizes of 25 ms at a rate of 10 ms were used. Mean and stan-
dard deviation for each dimension of the MFCC feature vectors were computed,
which compose the low-level audio representation (LLR audio) of music video seg-
ments. As mid-level handcrafted audio representation (MLR handcrafted audio),
vector quantization based Bag-of-Words (BoW) representation of MFCC features
was generated. An audio dictionary of size k (k is equal to 512 in this work) was
constructed using 400 x k MFCC descriptors and k-means clustering [94] (experi-
mentally determined figure).

In order to generate the RGB-based low-level visual features of music video
segments (LLR colorRGB), we constructed 64-bin color histograms for each color
channel in the RGB color space resulting in 192-dimensional low-level visual fea-
ture vectors. In order to generate the HSV-based low-level visual features (LLR col-
orHSV) of video segments, we constructed normalized HSV histograms (of size 16,
4, 4 bins, respectively) in the HSV color space.

We used the Deep Learning toolboxE] in order to generate mid-level audio and
visual representations with CNN models (MLR audio, MLR colorRGB and MLR col-
orHSV). The learned audio representations (MLR audio) are constructed as ex-
plained in Section[3.3.1)and are 976-dimensional, whereas the learned color repre-
sentations (MLR colorRGB and MLR colorHSV) whose construction is discussed in
detail in Section[3.3.2]are 264-dimensional. The sigmoid was used as the activation
function. The mean-sampling — in which basically the mean over non-overlapping
regions of size N x N (N = 2 in this work) is calculated — was used in the sam-
pling layers of the CNN models. The CNN models were trained with backpropaga-
tion and stochastic gradient descent. The batch sizes during CNN model training
for audio and visual modalities were 74. A fixed learning rate of 0.2 was used for
500 epochs for both audio and visual modalities. The learning rate and number of
epochs were determined empirically according to the classification accuracies of
uni-modal SVM models.

We trained the multi-class SVMs with an RBF kernel using libsvnﬂ as the SVM
implementation. Training was performed using audio and visual features extracted
at the music video segment level. SVM hyper parameters were optimized using
a grid search and 5-fold cross-validation using the development set. The search

Thttps://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/
mirtoolbox

“https://github.com/rasmusbergpalm/DeeplearnToolbox/

Shttp://www.csie.ntu.edu.tw/~cjlin/libsvm/
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range for the y parameter was [3, —15] with a step size of —2, whereas the range for
the C parameter was [—5, 15] with a step size of 2. All segmented samples belong-
ing to a specific video were always either in the training set or in the test set dur-
ing cross-validation. For multi-modal analysis (Section[3.5.5), the fusion of audio
and visual features was performed at the decision-level using an SVM (SVM-based
fusion is explained in Section[3.4). Due to the limited amount of available music
video samples, we used the leave-one-song-out cross validation scheme. During
model generation, zero mean unit variance normalization was applied on feature
vectors of the current development dataset.

In the assessment of the discriminative power of learned audio representations
(MLR audio), we compare them against ATM features. The reason is that both
extract conceptually similar information from the audio data, the major distinc-
tion being that MLR audio features are learned, while ATM features do not involve
a learning phase but require domain knowledge. As mentioned in Section [3.3.1}
the developed MLR audio features capture both the timbre and temporal informa-
tion of an acoustic signal. Similarly, ATM features constitute a representation of
slow temporal modulations of acoustic signals. More specifically, motivated by the
human auditory and visual systems [118], they describe the power variation over
modulation scales in each primary auditory cortex channel. The extraction of the
ATM features was realized as follows: (1) The audio signal of a video segment of
5-second length is converted to a mono signal and down-sampled to 16 kHz, (2)
auditory spectrograms are computed as described in [144], (3) the computed audi-
tory spectograms are used to find temporal modulations in the frequency domain
through (inverse) discrete Fourier transforms. The implementation details of the
ATM feature extraction can be found in [118].

3.5.3 Evaluation metrics

In this chapter, the main metric used to evaluate the performance of the system is
classification accuracy. Due to the unbalanced nature of the dataset that we work
with according to the wheel-based classification scheme, we also provide macro
precision, recall and F-measure metrics which are basically the average of the class-
wise precision, recall and F-measure metrics and are computed as illustrated in

Equation[3.1] [116].

c
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where tp;, fp; and fn; are respectively true positive, false positive and false
negative rates for class i; and c is the number of classes.

3.5.4 Evaluation of uni-modal learned representations

The experiments presented in this section aim at discussing the computation times
for the representation learning phase and comparing the discriminative power of
mid-level audio and visual features which are learned from raw data against hand-
crafted low and mid-level audio and visual ones.

Computationally, the most expensive phase of the representation learning is
the training of the CNNs which takes on average 150 and 350 seconds per epoch
for MFCC and color features, respectively. The generation of feature representa-
tions using CNNs amounts to 0.5 and 1.2 seconds on average per 5-second video
segment for MFCC and color features, respectively. All the timing evaluations were
performed with a machine with 2.40 GHz CPU and 8 GB RAM.

Table 3.2: VA-based classification accuracies and the macro metrics (macro preci-
sion, recall and F-measure) on the DEAP dataset with uni-modal (audio or visual
only) representations. The best classification performance is highlighted. (LLR:
low-level representation, MacroP: macro precision, MacroR: macro recall, MacroF:
macro F-measure, MLR: mid-level representation).

Uni-modal Type Accuracy (%) | MacroP | MacroR | MacroF
LLR audio 37.84 0.391 0.355 0.341
LLR colorHSV 28.38 0.276 0.261 0.239
LLR colorRGB 27.03 0.268 0.250 0.230
MLR audio 48.65 0.509 0.466 0.464
MLR handcrafted audio 41.89 0.438 0.397 0.388
MLR colorHSV 43.24 0.454 0.410 0.431
MLR colorRGB 40.54 0.429 0.386 0.379

In Table we present the VA-based classification accuracies as well as the
macro metrics (macro precision, recall and F-measure) on the DEAP dataset with
uni-modal representations. The observations inferred from the results are as fol-
lows:

e Mid-level audio and visual representations (learned or handcrafted) outper-
form the low-level ones in terms of classification accuracy.

* Learned audio and visual representations are superior to the mid-level hand-
crafted ones (except learned RGB-based visual).

* Color representations based on the HSV color space are superior to the ones
of the same level (low or mid-level) based on the RGB color space.
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* The aforementioned observations are also confirmed by the macro metrics.

Table 3.3: Wheel-based classification accuracies and the macro metrics (macro pre-
cision, recall and F-measure) on the DEAP dataset with uni-modal (audio or visual
only) representations. The best classification performance is highlighted. (LLR:
low-level representation, MacroP: macro precision, MacroR: macro recall, MacroF:
macro F-measure, MLR: mid-level representation).

Uni-modal Type Accuracy (%) | MacroP | MacroR | MacroF
LLR audio 27.14 0.107 0.112 0.099
LLR colorHSV 34.29 0.131 0.139 0.123
LLR colorRGB 22.86 0.095 0.095 0.086
MLR audio 41.43 0.151 0.168 0.146
MLR handcrafted audio 40.00 0.145 0.163 0.142
MLR colorHSV 44.29 0.160 0.179 0.156
MLR colorRGB 31.43 0.121 0.128 0.113

Table[3.3|reports the wheel-based classification accuracies and the macro met-
rics on the DEAP dataset with uni-modal representations. The observations con-
cerning the wheel-based classification are similar to the ones derived for the VA-
based classification (Table. However, there are three significant differences in
comparison to the results for the VA-based classification. First, HSV-based color
information appears to be a more discriminative representation for music videos
compared to the audio ones. Second, RGB-based learned color representation lead
to poorer results compared to the results for the VA-based classification (e.g., the
HSV-based low-level color representation performs better than the learned RGB-
based one, although the latter one is learned). Last but not least, the macro metric
values are quite low compared to the VA-based classification. This is mainly due to
the unbalanced nature of the samples in the dataset according to the wheel-based
classification scheme. This is confirmed by the fact that the system has non-zero
macro metrics only for the classes Joy, Sadness and Anger which are the first three
classes based on the number of samples. As a final remark on Table[3.3] the differ-
ence between classification accuracies (Table[3.2]versus Table[3.3) can be explained
by the increased risk of confusion due to number of classes.

We present the confusion matrices on the DEAP dataset using the best perform-
ing uni-modal representations (according to Tables[3.2Jand3.3) in Figure[3.4]to pro-
vide an overview of the misclassification behavior of the system with uni-modal
representations for the VA-based and wheel-based classification schemes. For the
VA-based classification (Figure a)), HA-LV (i.e., high arousal and low valence)
and HA-HV (i.e., high arousal and high valence) are the two classes that can be
discriminated at the highest level and also the most confused pair of classes. For
the wheel-based classification, Figure b) shows the effects of the unbalanced
nature of the dataset.
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Figure 3.4: Confusion matrices for (a) the VA-based classification and (b) the wheel-
based classification, on the DEAP dataset with the best performing uni-modal audio
or visual representation (according to Tables[3.2]and [3.3). Mean accuracy: 48.65%
(VA-based), 44.29% (wheel-based). Darker areas along the main diagonal corre-
spond to better discrimination.

As a final evaluation on the uni-modal representations, a comparison between
the learned audio representations (MLR audio) and ATM features is performed.
The classification accuracy for MLR audio coupled with SVM is 48.65%, whereas
this value is 43.24% for ATM coupled with SVM. This shows that our learned au-
dio representations outperform ATM features by 5.4%. In order to verify that the
mean of the accuracies obtained using the MLR audio differs significantly from the
ones obtained using the ATM features in a statistical sense, a paired Student z-test
on classification accuracies from the leave-one-song-out cross validation was per-
formed. It was checked that the accuracies being compared follow a normal dis-
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tribution and have the same variance using the Jarque-Bera test [66] and the F-test,
respectively. This #-test showed that the improvement provided by MLR audio over
ATM is statistically significant (5% significance level).

3.5.5 Evaluation of multi-modal learned representations

The experiments presented in this section aim at investigating the extent to which
the fusion of the learned audio and static visual features further improves the uni-
modal analysis on music video clips. As mid-level static visual representation, we
use MLR colorHSV (learned from the raw color data in the HSV color space) due to
its superior performance compared to the RGB-based one. A comparison against
the work presented in [145] is also exposed.

Table 3.4: VA-based classification accuracies and the macro metrics (macro preci-
sion, recall and F-measure) on the DEAP dataset with multi-modal representations
fused by SVM-based fusion. The best classification performance is highlighted.
(hc: handcrafted, LLR: low-level representation, MacroP: macro precision, MacroR:
macro recall, MacroF: macro F-measure, MLR: mid-level representation).

Multi-modal Type Accuracy (%) | MacroP | MacroR | MacroF
LLR audio & LLR colorHSV 36.49 0.407 0.368 0.372
LLR audio & MLR colorHSV 40.54 0.453 0.404 0.411
MLR audio & LLR colorHSV 44.60 0.490 0.448 0.453
MLR audio & MLR colorHSV 54.05 0.557 0.529 0.536
MLR hc audio & LLR colorHSV 41.89 0.476 0.417 0.424
MLR hc audio & MLR colorHSV 50.00 0.517 0.492 0.499

In Table we present the VA-based classification accuracies as well as the
macro metrics on the DEAP dataset with multi-modal representations fused by
SVM (Section[3.4). The observations inferred from the results are as follows:

¢ The fusion of low-level audio or color representations with representations
of either level (low or mid-level — learned or handcrafted) causes a decrease
in accuracy (e.g., LLR audio combined with LLR colorHSV, MLR colorHSV or
MLR handcrafted audio performs poorer compared to the uni-modal results).
There is a strong suspicion that this is due to the cascaded classification error
introduced by an additional classification layer in the system.

* On the contrary, the fusion of mid-level audio or color representations (either
learned or handcrafted) with each other leads to better results in terms of
classification accuracy when compared to the results of uni-modal analysis.
This is an indication that these features complement each other.

¢ Last but not least, the best performing representation is the fusion of learned
audio and color representations. This concludes thatlearned representations



46 Chapter 3. Learning audio and static visual cues: Application on edited videos

are superior to mid-level handcrafted ones in the multi-modal analysis as
well.

* The aforementioned statements are based on the classification accuracy of
the system. When the macro metrics are considered, similar conclusions can
be drawn. One difference though is that the macro metrics of the system are
slightly better than the uni-modal ones, where we fuse the low-level audio
or color representations with the handcrafted representations of either level
(low or mid-level).

Table 3.5: Wheel-based classification accuracies and the macro metrics (macro pre-
cision, recall and F-measure) on the DEAP dataset with multi-modal representa-
tions fused by SVM-based fusion. The best classification performance is high-
lighted. (hc: handcrafted, LLR: low-level representation, MacroP: macro precision,
MacroR: macro recall, MacroF: macro F-measure, MLR: mid-level representation).

Multi-modal Type Accuracy (%) | MacroP | MacroR | MacroF
LLR audio & LLR colorHSV 30.00 0.084 0.114 0.093
LLR audio & MLR colorHSV 32.86 0.126 0.133 0.117
MLR audio & LLR colorHSV 37.14 0.139 0.150 0.132
MLR audio & MLR colorHSV 47.14 0.185 0.198 0.178
MLR hc audio & LLR colorHSV 35.71 0.134 0.145 0.128
MLR hc audio & MLR colorHSV 44.29 0.163 0.178 0.156

Table[3.5|reports the wheel-based classification accuracies and the macro met-
rics on the DEAP dataset with multi-modal representations. The observations con-
cerning the wheel-based classification are similar to the ones derived for the VA-
based classification (Table , except the increase in the macro metrics for the
handcrafted representations in the multi-modal analysis. As in the uni-modal anal-
ysis, the difference between classification accuracies (Table [3.4] versus Table
can be explained by the increased risk of confusion due to the number of classes.
Besides, the macro metric values are still quite low compared to the VA-based clas-
sification due to the unbalanced nature of the samples in the dataset according to
the wheel-based classification scheme as in the uni-modal analysis.

We present the confusion matrices on the DEAP dataset in Figure to pro-
vide an overview of the misclassification behavior of the system for the VA-based
and wheel-based classification schemes. Within the context of the VA-based clas-
sification, we observe that HA-LV (i.e., high arousal and low valence) and HA-HV
(i.e., high arousal and high valence) are the two classes that can be discriminated
at the highest level. Within the context of the wheel-based classification, there is
a tendency of our algorithm to classify video clips belonging to classes nearby the
classes Joy and Sadness according to the ground-truth as Joy and Sadness. We sus-
pect that this is due to the imbalanced nature of the data in the development set,
as there are more video clips labeled as Joy and Sadness.
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Figure 3.5: Confusion matrices for (a) the VA-based classification and (b) the wheel-
based classification, on the DEAP dataset with the best performing multi-modal
audio-visual representation (i.e., MLR audio and colorHSV representations). Fu-
sion method is SVM-based fusion. Mean accuracy: 54.05% (VA-based), 47.14%
(wheel-based). Darker areas along the main diagonal correspond to better discrim-
ination.

When looking in more detail at the confusion matrices in Figure[3.5] it appears
that the confusion between classes mostly occurs between neighboring classes, i.e.,
neighboring emotions more likely to resemble each other. Therefore, plotting the
Cumulative Matching Characteristic (CMC) curves is a more appropriate choice to
present the performance of the system as a function of the distance between classes,
similar to the approach adopted in [148]. The CMC curve plots the accuracy of the
system for a range of distance values between classes. We define the distances be-
tween classes as follows: (1) The distance between two classes that are on the same



48 Chapter 3. Learning audio and static visual cues: Application on edited videos

=

=
=5
=

Classification Accuracy (26)

Classification Accuracy (26)

=

0 1 2 1 2 3
Distance to Target 1., Acceptance Threshold) Distance to Target (i.., Acceptance Threshold)

(@ (b)

Figure 3.6: Cumulative Matching Characteristic (CMC) curve for the (a) VA-based
classification and (b) wheel-based classification, on the DEAP dataset with the
best performing multi-modal audio-visual representation (i.e., MLR audio and col-
orHSV representations). Fusion method is SVM-based fusion.

quadrant of the VA-space is 1; (2) the distances between two classes of different
quadrants is defined as d, + 1, where d corresponds to the number of quadrants
encountered when departing from one class in order to reach the other class. For
instance, the distance between HA-LV and HA-HV is 1, whereas it is 2 for HA-LV
and LA-HV. Similarly, the distance between Elation and Joy, which are on the same
VA-quadrant, is 1; whereas it is 2 between Sadness and Fear which are on two neigh-
boring VA-quadrants. We provide the CMC curves for the VA-based and wheel-
based classifications in Figure[3.6} According to this graph, when relaxing the con-
ditions by taking into account the CMC, the accuracies appear less pessimistic.

As a final evaluation, we provide the VA-based classification accuracies of our
approach with the best performing multi-modal representation (i.e., MLR audio
and MLR colorHSV) and the work in [145] in Table[3.6] Learned audio-visual repre-
sentations perform better in terms of classification accuracy compared to features
used in [145]. However, it is worth mentioning the existence of some differences in
the experimental setup between our work and [145]. Only a subset of 40 video clips
from the DEAP dataset form the basis of the experiments in [145]. Thus, a compari-
son is biased towards our approach due to the larger dataset (74 clips). On the other
hand, the 40 music video clips used in [145] were selected so that only the music
video clips which induce strong emotions are used. Therefore, the dataset we used
in this paper is more challenging. Another difference with the setup of [145] is that,
therein, as the ground-truth, the authors used the user ratings from laboratory ex-
periments instead of the online self-assessment ratings mentioned in Section[4.3.1}
As mentioned in the beginning of the experiments, a direct comparison with other
methods that use the same dataset is difficult due to different setups and data sub-
sets used in evaluations. We think that the work by Yazdani et al. [145] was the
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closest one that we are aware of and that we can compare with to get a rough idea
about the performance of our system against the state-of-the-art. The comparison
provided in Table[3.6]shows that multi-modal learned audio-visual representations
lead to more discriminative classifiers, as the work [145] uses only low-level audio
and visual features. More importantly, we show that the fusion of audio and vi-
sual representations (the learned ones to be more specific) is better than using uni-
modal ones for affective content classification, whereas the opposite is the case for
the work in [145].

Table 3.6: VA-based classification accuracies of our method and the work by Yazdani
et al. [I145] on the DEAP dataset.

Method Accuracy (%)
Our method (MLR audio and MLR colorHSV & SVM-based fusion) 54.05
Yazdani et al. [145] 36.00

3.6 Conclusions

In this chapter, we presented a direct and categorical affective analysis framework
where audio and static visual features are learned directly from raw audio and vi-
sual data. As the feature learning method, we applied a CNN-based method which
uses MFCC as raw audio data and color values in the RGB and HSV spaces as raw
color data. Experimental results on a subset of the DEAP dataset support our as-
sumptions (1) that learned audio-visual representations are more discriminative
than handcrafted low-level and mid-level ones, and (2) that HSV color space based
learned color features are more discriminative compared to the RGB color space
based ones.

The findings of this chapter provide valuable insights for the field of affective
content analysis of videos. First, we performed an extensive evaluation of learned
audio and visual representations against handcrafted ones at different abstraction
levels and showed that the learned ones lead to better classification performance.
The second important contribution of this work is to apply 2D CNN modeling —
which is usually applied on images — on audio features to capture both timbre and
temporal information. The audio representation learned through the CNN model-
ing is shown to be more discriminative than ATM features which describe temporal
modulations in the frequency domain. This has an important impact in the field of
emotional content analysis, as we keep the domain knowledge to a minimum with
the help of deep learning and still achieve a superior classification performance.

In this chapter, we concentrated on the feature learning perspective of affective
video analysis and applied SVM modeling which is the commonplace approach for
the modeling part of the analysis. Therefore, in the following chapter (Chapter [4)
we will concentrate more on the modeling perspective. We employed only audio
and static visual features as representation in this chapter. Motion is also an im-
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portant information source for affective video analysis [126)} [145]. Therefore, we
will also extend our feature set with other sophisticated mid-level visual features
in the next chapter (Chapter[4). Evaluations on a more challenging user-generated
content dataset in addition the DEAP dataset will also be presented in Chapter[d]



ENSEMBLE LEARNING WITH ENRICHED MULTI-MODAL
CUES: APPLICATION ON PROFESSIONALLY EDITED AND
USER-GENERATED VIDEOS

In the previous chapter, we concentrated on the representation aspects of video af-
fective content analysis and presented a novel method to learn audio and static vi-
sual representations from raw video data. In this chapter, we focus primarily on the
modeling aspect and model the affective content of videos using ensemble learn-
ing instead of SVM modeling which is the dominant classification method used
by the most of existing works in the field. Additionally, on the side of representa-
tion, we extend our feature set with advanced motion and domain-specific repre-
sentations to incorporate temporal and domain-specific information about videos
into the analysis process. In addition to the DEAP dataset, our method is evaluated
on VideoEmotion, a more challenging dataset consisting of user-generated videos.
The experimental results show that ensemble learning based models are more dis-
criminative on both datasets and that the incorporation of temporal and domain-
specific representations further improves the classification performance of the pro-
posed framework. The work presented in this chapter has been published in [6}[8].

51
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4.1 Introduction

In Chapter [3) we presented a direct and categorical affective analysis framework
based on audio and static image features which were shown to be promising for
the analysis of music videos. In this chapter, we extend our affective analysis frame-
work both from representation and modeling perspectives to analyze user-gener-
ated videos in addition to professionally edited videos. User-generated contents
are more challenging since they are not edited professionally like music videos, and
can be considered as less coherent in terms of content (e.g., more chaotic, absence
of a properly defined scenario). In this chapter, the extensions made to the frame-
work address the following research questions:

(RQ1) How does ensemble learning perform in comparison to SVM model-
ing? The most important extension of the framework tackles the modeling aspect
of video affective content analysis. As discussed in detail in Section[2.3} SVM is the
most widely used learning method for the generation of analysis models (employed
in e.g., [20,[47,[70,[130}138]). Distancing ourselves from the prior art, here, we apply
ensemble learning (more specifically, decision tree based bootstrap aggregating) to
generate emotional content analysis models and compare its performance to that
of SVM modeling on both music video clips and user-generated videos. In machine
learning, it is well known that an ensemble of base classifiers is likely to perform
better than a single base classifier. However, the application and a comprehensive
analysis of ensemble classifiers in the field of affective content analysis have not
been investigated yet. Hence, to the best of our knowledge, the proposed system
is the first to adopt ensemble learning for emotional characterization of profes-
sionally edited and user-generated videos; and we show that the adopted ensemble
learning method outperforms SVM modeling in terms of classification accuracy.

(RQ2) What is the effect of dense trajectories and SentiBank representations?
Due to the difficulty of analyzing user-generated videos, the feature set should be
improved and augmented, which constitutes another research challenge of this
chapter. As our work presented in Chapter [3| was limited to learning audio and
static visual features only, it could not optimally take into account the motion and
temporal coherence exhibited in image sequences compared to a single image.
Studies (e.g., [126}[145]) have, indeed, demonstrated that, in addition to audio and
static color features, motion plays an important role for affective content analy-
sis in videos. As discussed in detail in Section [2.3.3] the use of motion-based fea-
tures within the context of affective content analysis is limited to simple motion
features such as frame differencing. Recently, a new type of video descriptor has
emerged, namely dense feature trajectories. These descriptors, corresponding to
points which are densely sampled and tracked using dense optical flow fields, were
introduced by Wang et al. [128] for the task of action recognition in videos, and
have proven robust for action recognition. However, to the best of our knowledge,



4.1. Introduction 53

the applicability of these improved dense trajectories to the task of affective content
analysis has not been investigated yet. Distinct from the existing works presented
in Section we propose to use dense trajectory features to derive a mid-level
motion representation obtained via a sparse coding based Bag-of-Words method
to boost the classification performance of our system.

The above-mentioned audio, static and dynamic visual features that we employ
are general-purpose representations within the context of video content analysis.
In addition to them, we propose to use SentiBank domain-specific ones which are
shown to be particularly effective for emotional analysis of single images [20,[70].

To sum up, in relation to this research question, we first investigate the dis-
criminative power of dense trajectories and SentiBank and then assess the effect of
incorporating these representations [20] on the classification performance.

(RQ3) How to optimally combine audio-visual features? One additional ques-
tion arising when using multiple features, is that of fusion of information. We,
therefore, also propose an assessment of fusion mechanisms. Optimal late fusion
mechanisms are explored through the analysis of linear and SVM-based fusion for
combining the outputs of uni-modal analysis models.

To put it in a nutshell, we significantly extend the affective content analysis
method presented in Chapter [3| by addressing problematics relating to both rep-
resentation and modeling. The important extensions are as follows. First, we apply
ensemble learning (decision tree based bootstrap aggregating) in addition to SVM
to model the affective content of videos and experimentally show that ensemble
learning is superior to SVM modeling. Second, we include advanced motion and
domain-specific representations in emotion modeling to boost the classification
performance of the framework by diversifying the representation of videos. Third,
we report a comprehensive analysis on a more challenging dataset (i.e., VideoEmo-
tion [70]).

The position of our work with respect to existing solutions presented in Sec-
tion can be seen from two different perspectives. The first one is representa-
tion. When considering the papers dealing with emotion recognition from videos,
the recent works closely related to ours are those by Baveye et al. [16] and Dumoulin
et al. [45] where CNNs are used only in the visual feature extraction. Our approach
is novel in that deep learning is used not only with visual data but also with audio
data. In addition, our work makes use of advanced motion information, which is
another novel aspect. Last but not least, we not only concentrate on the representa-
tion aspects, but also propose here to comprehensively assess the behavior of two
popular classifiers, namely SVM and ensemble learning.

The chapter is organized as follows. In Section [4.2} we introduce our method
for the affective classification of videos. We provide and discuss evaluation results
on a subset of the DEAP dataset [73] and on the VideoEmotion dataset [70] in Sec-
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tion[4.3] Finally, we present concluding remarks and future directions to expand
our method in Section 4.4l

4.2 The Video Affective Analysis Framework

In this section, our extended direct and categorical affective analysis framework is
presented. We perform the analysis according to two different schemes: VA-based
and wheel-based classification, where emotion categories used in the classification
are derived from the VA-space and from an emotion wheel (both discussed in detail
in Section[2.2), respectively. The available dataset of user-generated videos (Flickr
and YouTube videos) provides annotations according to Plutchik’s emotion wheel
(discussed in detail in Section[2.2). Concerning professionally edited videos (music
video clips), although the dataset we use contains both VA-based and wheel-based
annotations, we only report VA-based classification results. The reason is our in-
sights gained in the previous chapter: The low number of samples in this dataset
(74) considering the high number of classes to discriminate (12) causes the results
to carry little statistical relevance. More details concerning these sets can be found
in Section 4.3l

In Figure[4.1} we provide an overview of the system. As shown in Figure[4.1} the
system consists of the following steps: (1) Videos (highlight extracts of music video
clips or user-generated videos of different length) are first segmented into fixed-
length pieces; (2) audio and visual feature extraction; (3) learning mid-level au-
dio and static visual representations (training phase only); (4) generating mid-level
audio-visual representations; (5) generating an affective analysis model (training
phase only); (6) classifying a fixed-length video segment into one of related emotion
categories (test phase only); and (7) classifying a complete video using the results
obtained on the fixed-length segments constituting the video (test phase only).

We already discussed the learning of audio and visual features in detail in Chap-
ter[3} to which the interested reader is referred. The only difference for the wheel-
based classification case is the use of a different emotion representation model
(Plutchik’s emotion wheel instead of Russell’s circumplex model) in this chapter.
The output layer of the trained CNNs, therefore, consists of eight units instead of
nine (annotation according to Plutchik’s emotion wheel): One unit for each emo-
tion category. The incorporation of temporal information and domain-specific
information to the system is explained in Sections and respectively.
The generation of an affective analysis model is discussed in more detail in Sec-
tion This model uses fusion, which is presented in Section|4.2.4

4.2.1 Deriving mid-level dynamic visual representations

The importance of motion in edited videos such as movies and music video clips,
and user-generated videos motivated us to extend the approach presented in Chap-
ter [3| and to incorporate motion information to our analysis framework. To this
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Figure 4.1: A high-level overview of the proposed system. The feature learning and
extraction, affective analysis model generation and decision fusion parts are ex-
plained in detail in the subsections of Section[4.2

end, we adopt the work of Wang et al. on improved dense trajectories [128]. Dense
trajectories are dynamic visual features which are derived from tracking densely
sampled feature points in multiple spatial scales. Although initially used for un-
constrained video action recognition [128], dense trajectories constitute a powerful
tool for motion or video description, and, hence, are not limited to action recogni-
tion only.

Our dynamic visual representation works as follows. First, improved dense tra-
jectories [128] of length L (L = 15 in this work) frames are extracted from each video
segment. Dense trajectories are subsequently represented by a histogram of ori-
ented gradients (HoG), a histogram of optical flow (HoF) and motion boundary
histograms in the x and y directions (MBHx and MBHy, respectively). We learn
a separate dictionary for each dense trajectory descriptor (each one of HoG, HoE
MBHx and MBHy). In order to learn the dictionary of size k (k = 512 in this work)
for sparse coding, 400 x k feature vectors are sampled from the training data (this
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figure has experimentally given satisfactory results). The sparse dictionary learn-
ing technique presented in [84] is used to learn sparse codes. In the coding phase,
we construct the sparse representations of dense trajectory features using the LARS
algorithm [46]. Given dense trajectory features and a dictionary as input, the LARS
algorithm returns sparse representations for the feature vectors (i.e., sparse mid-
level motion representations). In order to generate the final sparse representation
which is a set of dense trajectory feature vectors, we apply the max-pooling tech-
nique [143].

4.2.2 Incorporating domain-specific representations

In addition to general-purpose mid-level audio, static and dynamic visual repre-
sentations, we incorporate mid-level semantic representations of the visual con-
tent of videos for high-level video affective content analysis. More specifically, we
use SentiBank [20] which is based on emotion-related concepts. In the first ver-
sion of SentiBank, there were 1,200 concept detectors; this number increased to
2,089 in the subsequent versiorE] (version 1.1). As briefly explained in Section
each emotion-related concept is defined as an Adjective-Noun Pair (ANP) such as

» o«

“cute baby” or “dark forest”. In these ANPs, adjectives (e.g., “funny”, “peaceful”,

» o«

“gorgeous”, “weird”) are strongly connected to emotions, and nouns (e.g., “baby”,
“dog”, “car”, “wedding”) are usually objects or scenes that can be automatically de-
tected [20]. Each dimension in the SentiBank representation corresponds to the
detection score of the corresponding ANP concept detector. In this work, we use
both version 1.0 and version 1.1 of the SentiBank representations (1,200 and 2,089
ANP concepts) in order to assess the influence of the number of concepts on the

performance of video affective content classification.

4.2.3 Generating the affective analysis model

In addition to SVM modeling [6], we apply ensemble learning in order to build affec-
tive analysis models. For the generation of the models, mid-level audio, static and
dynamic visual, and domain-specific representations are fed into separate classi-
fiers. Mid-level audio and static visual representations are created by using the cor-
responding CNN models for fixed-length video segments both in the training and
test phases. In the training phase, decision trees are combined with bootstrap ag-
gregating (i.e., bagging). In the test phase, the final prediction which corresponds
to the prediction score of the ensemble of the trees for the test data is computed
as the average of predictions from individual trees. The prediction score generated
by each tree is the probability of a test sample originating from the related class
computed as the fraction of samples of this class in a tree leaf.

The prediction scores of the models are merged using one of the fusion strate-
gies presented in Section[4.2.4} Once all fixed-length video segments extracted from

Thttp://www.ee.columbia.edu/1n/dvmm/vso/download/sentibank . html
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a given video are classified, final decisions for the classification of the complete
video is realized by a plurality voting process. In other words, a video is assigned
the label which is most frequently encountered among the set of fixed-length seg-
ments constituting the video.

4.2.4 Fusion strategies

When combining results of multiple classifiers, fusion of the results constitutes an
important step. As mentioned in Chapter [3} previous studies on semantic video
analysis (e.g., [115]) have experimentally shown that late fusion strategies perform
usually better than early ones in most cases. Therefore, we investigate in this chap-
ter two distinct late fusion techniques to combine the outputs of the classification
models, namely linear fusion and SVM-based fusion.

4.2.4.1 Linear fusion

In linear fusion, probability estimates obtained from the classifiers trained sep-
arately with one of the mid-level audio, static and dynamic visual, and domain-
specific representations are linearly fused at the decision-level. The classifiers that
we adopt are all based on the same ensemble learning algorithm. Hence, we are in
the presence of homogeneous “learners” (i.e., all of the same type) according to the
terminology of [152]. In such a situation, it is advised to directly fuse the probabili-
ties (h;(x;)) generated by each of the classifiers (i.e., “learners”) using the weighted
soft voting technique [152]:

T
H(xj) =) wih;(xj) 4.1)
=

1

Classifier-specific weights (w; in Equation are optimized on the training
data. The weights assigned to the classifiers are determined in such a way that they
always sum up to 1.

4.2.4.2 SVM-based fusion

In SVM-based fusion, the probability estimates of the unimodal classifiers are con-
catenated into vectors and used to construct higher level representations for each
video segment. Subsequently, an SVM classifier which takes as input these higher
level representations is constructed. This fusion SVM is then used to predict the la-
bel of a video segment. When SVMs are used as unimodal classifiers, the scores re-
turned by the SVMs are first converted into probability estimates using the method
explained in [50].
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4.3 Performance Evaluation

The experiments presented in this section aim primarily at comparing the discrim-
inative power of our method — which is based on mid-level representations learned
and derived from audio-visual data coupled with ensemble learning as presented
in Section— against the works presented in [5} 6, [70} [97, [145]. Accessorily, as
in the previous chapter (Chapter[3), our mid-level audio representations are com-
pared against auditory temporal modulations (ATM) features. Section pro-
vides an overview of the DEAP and VideoEmotion datasets used for the evaluation.
In Section|4.3.2} we present the experimental setup. Finally, we provide results and
discussions in Section[4.3.3]

4.3.1 Dataset and ground-truth

The experiments are conducted on two types of video content: (1) Professionally
edited videos (DEAP dataset) and (2) user-generated videos (VideoEmotion data-
set). The details of the DEAP dataset such as its annotation process are already
discussed in Section[3.5.1] Therefore, here we concentrate on the details of the re-
cently introduced VideoEmotion user-generated video dataset.

The VideoEmotion dataset consists of 1,101 videos collected from Flickr and
YouTube. The videos are annotated according to 8 categories, each category cor-
responding to a basic emotion represented in a section of Plutchik’s wheel of emo-
tions (Figure [2.1). In addition to using the whole VideoEmotion dataset, as sug-
gested in [70], we also provide results on a subset of the dataset which contains only
four basic emotions more frequently used in the literature (“anger”, “fear”, “joy”,
“sadness”).

Two different classification schemes are envisaged, one being VA-based and the
other being wheel-based. The evaluation of the VA-based classification is performed
only on the DEAP dataset. Concerning the evaluation of wheel-based classification,
we use VideoEmotion, for which the labels are also provided as part of the dataset
[70]. Tables[4.1]and 4.2 summarize the main characteristics of the DEAP and of the
VideoEmotion datasets.

Table 4.1: The characteristics of the DEAP dataset with respect to VA-based cate-
gory.

VA-based Category # Music Videos | # Segments
high arousal-high valence (HA-HV) 19 228
low arousal-high valence (LA-HV) 19 228
low arousal-low valence (LA-LV) 14 168
high arousal-low valence (HA-LV) 22 264
Total 74 888
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Table 4.2: The characteristics of the VideoEmotion dataset with respect to wheel-
based category.

Wheel-based Category | # Flickr Videos | # YouTube Videos | Total
Anger 23 78 101
Anticipation 40 61 101
Disgust 100 15 115
Fear 123 44 167
Joy 133 47 180
Sadness 63 38 101
Surprise 95 141 236
Trust 44 56 100
Total 621 480 1,101

4.3.2 Experimental setup

The length of highlight extracts of music video clips is one minute, whereas the
length of user-generated videos is of varying length. Each fixed-length video seg-
ment of the videos lasts 5 seconds (as suggested in [145]) and corresponds to 125 vi-
sual frames. Once the videos are segmented into fixed-length pieces, the construc-
tion of feature representation is performed for each video segment separately. Ta-
ble[4.3]gives an overview of the features extracted to represent the video segments
and the details of feature extraction are discussed in the following paragraphs.

Table 4.3: An overview of extracted audio, static and dynamic visual features in the
framework. (LLR: low-level representation, MLR: mid-level representation).

Name Modality Dimension#
LLR audio audio 26
MLR handcrafted audio audio 512
MLR audio audio 976

LLR color static visual 24
MLR color static visual 264
MLR attributel 200 static visual 1,200
MLR attribute2089 static visual 2,089
MLR motion dynamic visual 2,048

The setup for the low-level audio (LLR audio) and the mid-level handcrafted
audio (MLR handcrafted audio) representations of video segments was explained
in detail in Section As low-level color representation (LLR color), we only
constructed normalized HSV histograms (of size 16, 4, 4 bins, respectively) in the
HSV color space and exclude the low-level color representation based on the RGB
color space in view of poor classification performance results in Chapter[3|
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The details about the generation of mid-level audio and color representations
with CNN models (MLR audio and MLR color) were explained in the previous chap-
ter as well (Section [3.5.2). However, there is one point worth mentioning about
the setup as a consequence of the additional dataset (VideoEmotion) used in this
chapter. The batch sizes during the training of the CNN models for audio and visual
modalities were 200 for the VideoEmotion dataset.

Wang’s dense trajectory implementatiorﬂis used to extract improved dense tra-
jectories from video segments. The sampling stride, which corresponds to the dis-
tance by which extracted feature points are spaced, is set to 20 pixels due to time
efficiency concerns. Subsequently, BoW representations based on the motion fea-
tures (HoG, HoE MBHx and MBHy descriptors) of the dense trajectories (MLR mo-
tion) are generated as explained in Section[4.2] The extraction of dense trajectories
takes on average 16 seconds per 5-second video segment. All the timing evaluations
were performed with a machine with 2.40 GHz CPU and 8 GB RAM. SentiBank rep-
resentations are extracted as explained in Section |4.2|using both versions of Senti-
Bank, i.e., 1,200 and 2,089 trained visual concept detectors (MLR attributel1200 and
MLR attribute2089).

The multi-class SVMs with an RBF kernel were trained using libsvm [27] as the
SVM implementation. Training was performed separately for each audio or visual
descriptor extracted at the video segment level. SVM hyper parameters were opti-
mized using a grid search and 5-fold cross-validation using the development set. All
segmented samples belonging to a specific video were always either in the training
set or in the test set during cross-validation. The search range for the y parameter
was [3, —15] with a step size of —2, whereas the range for the C parameter was [-5,
15] with a step size of 2. In order to determine the number of trees in the bagging
modeling, we applied a 5-fold cross-validation on the development dataset and set
the number of trees as the one that leads to the best classification accuracy. As in
SVM modeling, all samples belonging to a specific video were always either in the
training set or in the test set during cross-validation. During model generation,
zero mean unit variance normalization was applied on feature vectors of the de-
velopment dataset. In multi-modal analysis (Section [4.3.3.2), fusion of audio and
visual features is performed at the decision-level by linear or SVM-based fusion,
as explained in Section |4.2.4] For the DEAP dataset, due to the limited amount
of available music video samples, we used the leave-one-song-out cross validation
scheme; whereas for the VideoEmotion dataset, we used the 10 train-test splits pro-
vided as part of the dataset.

As in Chapter [3} ATM features were used to evaluate the discriminative power
of the learned audio representations. The extraction process of the ATM features
was explained in detail in the previous chapter (Section|3.5.2).

2https://lear.inrialpes.fr/people/wang/improved_trajectories
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4.3.3 Results and discussions

The evaluation of our extended framework is achieved from different perspectives:
(i) Comparison of the discriminative power of the uni-modal representations cou-
pled with ensemble learning and SVM for the VA-based and wheel-based classifi-
cation; (ii) comparison of the discriminative power of the multi-modal representa-
tions fused at the decision-level and coupled with ensemble learning and SVM for
the VA-based and wheel-based classification; (iii) comparison against the state-of-
the-art. The perspective (i) is discussed in Section [4.3.3.1} whereas the latter two
perspectives (ii) and (iii) are presented in Section [4.3.3.2] Finally, Section [4.3.3.3
provides valuable insights gained with the experimental results.

4.3.3.1 Evaluation of uni-modal modeling

In this section, we present and discuss the results of uni-modal modeling, where
we use only one modality as representation and apply bagging or SVM modeling as
the classification method. The aim of these experiments is to investigate the dis-
criminative power of learned audio-visual, motion and SentiBank representations,
and also to compare the bagging approach against the SVM modeling (experiments
relevant for the research questions RQI and RQ2).

MLR audio versus ATM features. The classification accuracy on the DEAP data-
set for MLR audio coupled with ensemble learning is 50.00%, whereas it reaches
47.30% for ATM coupled with ensemble learning. The comparison for SVM model-
ing was already discussed in Chapter [8|and is, therefore, omitted in this section.
We continue with the MLR audio-ATM comparison on the VideoEmotion data-
set. The findings for VideoEmotion are in accordance with the comparison real-
ized for DEAP. MLR audio features provide an improvement ranging from 1.66%
to 3.90% in classification accuracy over ATM. On the entire VideoEmotion set, we
obtained for MLR-audio associated with SVM and ensemble learning 34.19% and
40.33%, respectively. For ATM associated with SVM and ensemble learning, the fig-
ures are 30.29% and 37.20%, respectively. On the VideoEmotion subset, the results
are 42.17%, 50.14%, 40.51%, 46.96%. The experiments on both datasets have shown
that our learned audio representations outperform ATM features. To verify that the
mean of the accuracies obtained using the MLR audio differs significantly from the
ones obtained using the ATM features in a statistical sense, a paired Student z-test
on classification accuracies from the cross validation was performed for each data-
set separately (DEAP, entire and subset VideoEmotion). As in the previous chapter,
it was checked that the accuracies being compared follow a normal distribution
and have the same variance using the Jarque-Bera test and the F-test, respectively.
This t-test showed that the improvement provided by MLR audio over ATM is sta-
tistically significant (5% significance level).
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VA-based Classification — Accuracy Evaluation. The classification accuracies
on the DEAP dataset in the case where only one type of descriptor is employed is
presented in Figure Various observations can be inferred based on the overall
results presented in Figure[d.2]

Uni-modal Representation Accuracy on the DEAP dataset (VA-based)
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Figure 4.2: VA-based classification accuracies on the DEAP dataset with uni-modal
(audio or visual-only) representations. (LLR: low-level representation, MLR: mid-
level representation)

* Concerning the classification methods, ensemble learning, in general, im-

proves the discrimination power of uni-modal representations over SVM-
based learning, independently of the features considered (except for MLR
handcrafted audio).

Concerning the features other than domain-specific representations, we first
note that the motion representation is the best performing descriptor for
both ensemble learning and SVM-based learning. This constitutes evidence
that dense motion trajectories are strong (i.e., discriminative) features for vi-
sual analysis of videos. The superiority of the dynamic visual feature can be
explained by the fact that affect present in video clips is often characterized
by motion (e.g., camera motion).

Another observation concerns the performance gain (around 10%) of using
learned color features compared to low-level ones. When evaluated together
with our previous findings about learning color representations in Chapter (3}
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we can conclude that color values in the HSV space lead to more discrimina-
tive mid-level representations than color values in the RGB space.

* Concerning domain-specific representations, using 2,089 trained visual con-
cept detectors instead of 1,200 provides a noticeable increase (around 4%) in
terms of classification performance.

Wheel-based Classification — Accuracy Evaluation. In the remaining of this
section, we address uni-modal modeling on the VideoEmotion dataset. VideoEmo-
tion is a dataset made of user-generated Flickr and YouTube videos, and, hence, is
more challenging compared to the DEAP dataset which is made of professionally
edited videos. Further, the videos in VideoEmotion are annotated only according to
Plutchik’s wheel, which implies that the results presented below only cover wheel-
based classification.

We start evaluations on the VideoEmotion dataset with the classification accu-
racies in the case where only one type of descriptor is employed (Figures and
4.4).

Uni-modal Representation Accuracy on the entire VideoEmotion dataset
T T T T T T T

50 Elsvm
. I Ensemble

Accuracy (%)
w
o

N
o

-
o

o

Figure 4.3: Wheel-based classification accuracies on the entire VideoEmotion data-
set with uni-modal (audio or visual-only) representations. (LLR: low-level repre-
sentation, MLR: mid-level representation)

Figure [4.3| presents the performance of each descriptor on the entire Video-
Emotion dataset which is annotated according to eight emotion categories as ex-
plained in Section When compared to the classification performance re-
ported for the DEAP dataset in Figure classification accuracies are lower for
the VideoEmotion dataset. This can be explained by the fact that VideoEmotion
contains videos which are not necessarily recorded or edited by professionals, and
therefore, is more challenging compared to DEAP. The conclusions to which we can
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come from Figure [4.3]for VideoEmotion are mostly in concordance with the ones
drawn for DEAP.

* Concerning classifiers, ensemble learning improves the discrimination power
of uni-modal representations over SVM-based learning in general.

* Concerning features, SentiBank domain-specific representations are the best
performing descriptors (especially when 2,089 trained visual concept detec-
tors are used instead of 1,200), followed by mid-level motion and audio de-
scriptors.

* In addition, all mid-level representations (learned or handcrafted) outper-
form the low-level audio and visual representations. Further, learned audio
representations outperform handcrafted mid-level audio ones.

However, there is one significant difference in comparison to the results for
DEAP. Although mid-level motion descriptors are still one of the most discrimina-
tive descriptors, they are no longer the best performing ones. This can be explained
by the fact that motion present in a professionally edited video is “deliberately”
present to elicit specific emotions in the audience, whereas this might not be the
case for user-generated videos.

Uni-modal Representation Accuracy on a subset of the VideoEmotion dataset
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Figure 4.4: Wheel-based classification accuracies on the VideoEmotion subset with
uni-modal (audio or visual-only) representations. (LLR: low-level representation,
MLR: mid-level representation)

Figure[4.4presents the performance of each descriptor on a subset of the Video-
Emotion dataset, where we have four basic emotion categories as explained in Sec-
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tion[4.3.1] As a preliminary remark, we note that the results on Figure[4.4|are glob-
ally better than those on Figure[4.3] The explanation for this discrepancy lies in the
lower number of classes to be discriminated (4 against 8), which means that the
risk of confusion is reduced.

The conclusions concerning the subset of VideoEmotion (Figure [4.4) are simi-
lar to the ones derived for the whole set (Figure[4.3). Although the improvement it
provides is lower on the subset (in comparison to the whole set), ensemble learning
still outperforms SVM-based learning. SentiBank and mid-level motion represen-
tations are the best performing uni-modal descriptors.

4.3.3.2 Evaluation of multi-modal modeling

In this section, an evaluation of the performance of different combinations of the
audio-visual representations with linear and SVM-based fusion is performed on the
DEAP and VideoEmotion datasets, where the best performing multi-modal repre-
sentation and optimal decision-level fusion mechanisms are investigated (relevant
for the research questions RQ2 and RQ3).

VA-based Classification — Accuracy Evaluation. In Table[4.4} we present the
classification performances (according to the VA-based annotations) of different
combinations of audio-visual representations using linear and SVM-based fusion
on the DEAP dataset. The feature combinations we consider involve dense motion
trajectories and SentiBank domain-specific representations. This choice is justi-
fied by the findings concerning individual features. The experiments have indeed
demonstrated that dense motion trajectories and SentiBank domain-specific rep-
resentations are discriminative features. Further, mid-level learned or handcrafted
audio-visual representations are more discriminative than low-level ones. There-
fore, we combine the dense motion trajectory and SentiBank representations with
mid-level audio and color features in order to evaluate the discriminative power of
different multi-modal audio-visual representations.

From Table [4.4} we can derive the following observations which apply both to
linear and SVM-based fusion.

* First, the performance gain of combining mid-level motion features with mid-
level audio and color ones is higher than the gain of combining them with
low-level audio and color ones.

¢ In addition, the results show that combining low-level color features with
mid-level motion and audio ones leads to a decrease in classification accu-
racy (i.e., leads to more confusion between classes). On the contrary, com-
bining mid-level learned color features with mid-level motion and audio ones
leads to less confusion between classes (i.e., increased classification accu-
racy).
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Table 4.4: VA-based classification accuracies of multi-modal audio-visual represen-
tations using linear fusion on the DEAP dataset. (LLR: low-level representation,
MLR: mid-level representation).

Multi-modal Representation No attribute | MLR attr1200 | MLR attr2089

MLR motion & LLR audio 70.27 74.32 74.32

- MLR motion & MLR audio 75.68 78.38 78.38
S| MLR motion & LLR color 67.57 68.92 74.32
2| MLR motion & MLR color 70.27 70.27 75.68
§ MLR motion & LLR audio & LLR color 72.97 74.32 75.68
£ | MLR motion & LLR audio & MLR color 75.68 78.38 79.73
~| MLR motion & MLR audio & LLR color 72.97 75.68 77.03
MLR motion & MLR audio & MLR color 77.03 78.38 81.08
MLR motion & LLR audio 67.57 70.27 70.27

_§ MLR motion & MLR audio 68.92 71.62 72.97
é MLR motion & LLR color 60.81 60.81 63.51
2 MLR motion & MLR color 64.87 64.87 66.22
_‘E MLR motion & LLR audio & LLR color 66.22 66.22 67.57
L | MLR motion & LLR audio & MLR color 70.27 71.62 74.32
é MLR motion & MLR audio & LLR color 66.22 66.22 70.27
MLR motion & MLR audio & MLR color 71.62 71.62 75.68

We also observe that including domain-specific representations in the final
decision process improves classification accuracy; as regards this aspect, us-
ing 2,089 trained visual concept detectors instead of 1,200 for domain-specific
representations increases classification accuracy in general.

* As a final remark, concerning fusion schemes, SVM-based fusion leads to
poorer results compared to linear fusion. Like in the previous chapter (Sec-
tion[3.5.5), we suspect that this is due to the cascaded classification error in-
troduced by an additional classification (model generation) layer in the sys-
tem.

Wheel-based Classification—-Accuracy Evaluation. In the following paragraphs,
we present the wheel-based classification performances of different combinations
of the audio-visual representations using linear and SVM-based fusion (Table[4.5]
for the entire VideoEmotion dataset; Table[4.6]for the VideoEmotion subset), where
the best performing multi-modal representation and optimal decision-level fusion
mechanisms are investigated (experiment relevant to the research questions RQ2
and RQ3).

* The first observation (according to Table [4.5) is that learned audio-visual
representations when combined with motion representations perform bet-
ter than the combination of motion and SentiBank domain-specific features.

e In addition, combining motion and SentiBank representations with learned
audio features achieves better results than combining them with mid-level
handcrafted audio ones.
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Table 4.5: Wheel-based classification accuracies of multi-modal audio-visual repre-
sentations on the entire VideoEmotion dataset. (hc: handcrafted, MLR: mid-level
representation).

Multi-modal Representation No attrib | MLR attr1200 | MLR attr2089

MLR motion & MLR hc audio 44.60 45.85 46.87
g MLR motion & MLR audio 45.16 46.78 48.05
g MLR motion & MLR color 43.87 45.32 46.32
T | MLR motion & MLR hc audio & MLR color 45.50 46.85 47.45
§ MLR motion & MLR audio & MLR color 46.66 47.33 49.19
3 | MLR motion & MLR attributel200 43.08 N/A N/A

MLR motion & MLR attribute2089 43.33 N/A N/A
g MLR motion & MLR hc audio 43.78 43.87 44.87
‘% | MLR motion & MLR audio 44.32 44.78 46.05
g MLR motion & MLR color 43.24 43.71 45.08
@ | MLR motion & MLR hc audio & MLR color 44.34 45.17 46.27
_8 MLR motion & MLR audio & MLR color 45.15 46.39 47.18
E MLR motion & MLR attributel200 42.60 N/A N/A
& | MLR motion & MLR attribute2089 43.14 N/A N/A

¢ Concerning domain-specific representations, the use of 2,089 trained visual
concept detectors instead of 1,200 provides again an increase in classification
accuracy.

¢ QOur final observation is that the best classification performance (highlighted
in the related tables) is achieved by combining learned audio-visual repre-
sentations with motion and SentiBank (MLR attribute2089) at decision-level
and that simple linear fusion is superior to SVM-based fusion. As evoked ear-
lier, this is likely caused by the cascaded classification error due to an added
classification (model generation) layer in the system.

Table presents the performance of multi-modal audio-visual representa-
tions on the VideoEmotion subset using linear and SVM-based fusion. We can draw
conclusions which match those deduced for the entire VideoEmotion dataset. The
only important difference is that SentiBank performs much better than learned
audio-visual representations when combined with motion representations. This
result is actually on par with the results presented in [70], where attribute features
that include SentiBank (MLR attribute1200) are shown to outperform audio-visual
representations. The difference between classification accuracies (when compared
to Table[4.5) can again be explained by the increased risk of confusion due to num-
ber of classes.

Further Evaluation on VA-based and Wheel-based Classification. In order to
give an overview of the misclassification behavior of the system, we present the
confusion matrices on the DEAP dataset in Figure[4.5) whereas the confusion ma-
trices on the entire VideoEmotion dataset and on the VideoEmotion subset are il-
lustrated in in Figure[4.6{(a) and Figure[4.6(b), respectively. In Figure[4.5 we observe
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Table 4.6: Wheel-based classification accuracies of multi-modal audio-visual repre-
sentations on the VideoEmotion subset. (hc: handcrafted, MLR: mid-level repre-
sentation).

Multi-modal Representation No attrib | MLR attr1200 | MLR attr2089

MLR motion & MLR hc audio 54.59 57.47 61.81
g MLR motion & MLR audio 55.39 58.53 62.36
§ MLR motion & MLR color 55.63 57.01 61.14
‘g MLR motion & MLR hc audio & MLR color 56.00 59.30 62.16
e MLR motion & MLR audio & MLR color 57.01 60.34 63.65
3 | MLR motion & MLR attribute1200 57.77 N/A N/A

MLR motion & MLR attribute2089 60.53 N/A N/A
g MLR motion & MLR hc audio 52.25 56.73 60.40
g MLR motion & MLR audio 54.82 57.21 61.77
“_5 MLR motion & MLR color 55.20 56.37 59.91
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that HA-LV (high arousal and low valence) is the class that can be discriminated at
the highest level. The common characteristic of misclassified classes is that the
number of instances of those classes in both the development and test sets are lim-
ited.
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Figure 4.5: Confusion matrices for the VA-based classification on the DEAP data-
set with the best performing multi-modal audio-visual representation (MLR audio,
motion, color and domain-specific representations). Fusion method is linear fu-
sion. Mean accuracy: 81.08%. Darker areas along the main diagonal correspond to
better discrimination.
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In Figurea), we observe that Surpriseis the class that can be discriminated
the most. The Anticipation and Trust classes are difficult to differentiate; it seems
that these classes do not contain clear audio-visual cues. In Figure[4.6(b) (where
only four basic emotions are considered), we observe that the Joy and Fear classes
can be very well discriminated from other classes, whereas Sadness is the class with
the lowest recognition rate.

When looking in more detail at the confusion matrices in Figure and Fig-
ure[4.6} it appears that the confusion between classes is mostly between neighbor-
ing classes, i.e., neighboring emotions more likely to resemble each other. There-
fore, the Cumulative Matching Characteristic (CMC) curves are plotted to present
the performance of the system as a function of the distance between classes as in the
previous chapter (Section[3.5.5). We provide the CMC curve on the DEAP dataset
in Figure[4.7] According to this graph, when relaxing the conditions by taking into
account the CMC, the accuracies appear less pessimistic.

As Plutchik’s wheel is used for the VideoEmotion dataset, the distances between
classes are defined in a slightly different manner than for the DEAP dataset. Here,
the distance between any two classes is defined as the minimum number of emo-
tion leaves encountered when going from one class to the other in the emotion
wheel (Figure 2.1). For instance, the distance between Fear and Anger, which are
opposite emotions, is 4. Similarly, the distance between Sadness and Anticipation is
3. We provide the CMC curves on the entire VideoEmotion dataset in Figure[4.8{(a)
and on the VideoEmotion subset in Figure b). As stated earlier, with the use of
these distances, classification accuracies achieved on both datasets are revealed to
be higher, when the acceptable threshold for predictions is set to 2.

Comparison against the State-of-the-Art. As a final evaluation for the VA-
based and wheel-based classification, we compare the classification accuracy of
the framework against the state-of-the-art. Table[4.7] provides the VA-based clas-
sification accuracies of our method (ensemble learning using MLR audio, motion,
color and domain-specific representations linearly fused at the decision-level) com-
pared to the works [5], [6] and [145] to position our approach in relation to these
prior approaches (evaluation pertaining to the research question RQ1I). Our method
outperforms these works by achieving 81.08% accuracy. The paired Student #-test
on classification accuracies from the cross validation showed that the improvement
over the works [5] and [6] is statistically significant at the 5% significance level. As
before, normal distribution and equal variance checks were performed using the
Jarque-Bera test [66] and the F-test, respectively.

The results in Table demonstrate the potential of our approach for video
affective content analysis. As already discussed in detail in Section 3.5} the experi-
mental setup employed in this chapter differs from the one of the work presented
in [145] (e.g., different subset from the DEAP dataset).

Table[4.8|provides the wheel-based classification accuracies ofour method com-
pared to the works [70] and [97] to position our approach in relation to these prior
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Figure 4.6: Confusion matrices for the wheel-based classification (a) on the entire
VideoEmotion dataset and (b) on the VideoEmotion subset with the best perform-
ing multi-modal audio-visual representation (MLR audio, motion and domain-
specific representations) using linear fusion. Darker areas along the main diagonal
correspond to better discrimination. Mean accuracy: (a) 49.19%, (b) 63.65%.

approaches (addressed research question RQI). Our method outperforms them by
achieving 49.19% and 63.75% accuracies for the entire VideoEmotion dataset and
the VideoEmotion subset, respectively.
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Figure 4.7: Cumulative Matching Characteristic (CMC) curve for the VA-based clas-
sification on the DEAP dataset with the best performing multi-modal audio-visual
representation (MLR audio, motion, color and domain-specific representations).
Fusion method is linear fusion.
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Figure 4.8: Cumulative Matching Characteristic (CMC) curves for the wheel-based
classification (a) on the entire VideoEmotion dataset and (b) on the VideoEmotion
subset with the best performing multi-modal audio-visual representation (MLR au-
dio, motion and domain-specific representations) using linear fusion.

Table 4.7: VA-based classification accuracies on the DEAP dataset with audio-
visual representations. MLR audio-visual features: MLR audio, motion, color and
domain-specific.

Method Accuracy (%)
Our method (MLR audio-visual features & ensemble learning & linear fusion) 81.08
Acar et al. (MLR audio, color and motion & SVM learning and fusion) [6] 66.22
Acar et al. (MLR audio and color & SVM learning and fusion) [5] 54.05
Yazdani et al. [145] 36.00
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Table 4.8: Wheel-based classification accuracies of our method and of the works by

Jiang et al. [70] and Pang et al. [97] on the VideoEmotion dataset with audio-visual
representations.

Method Accuracy - Entire (%) | Accuracy - Subset (%)

Our method — MLR audio-visual features &

ensemble learning & linear fusion 49.19 63.75

Jiang et al. [707 46.10 60.50

Panget al. [97] 37.10 -

4.3.3.3 Summary of evaluation results: The bottom line

In this section, we identify the common denominator of the evaluation results on
both professionally edited and user-generated videos, i.e., the findings consistent
across both datasets. This also enables us to answer the research questions posed
in Section First of all, similar to the experimental results in Chapter[3} the ex-
periments on both datasets have shown that learned audio and color representa-
tions are more discriminative than handcrafted low and mid-level representations
for the user-generated videos as well.

e Regarding RQI and RQ3, we explored the modeling perspective of video af-
fective content analysis. Our findings from the perspective of modeling are
as follows:

1.

As aresult of the extensive experiments conducted on both datasets, en-
semble learning (decision tree based bagging) is superior to SVM-based
learning in emotion modeling of videos.

. Fusing the outputs of ensemble learning models using a simpler fu-

sion method (linear fusion) has proven to be more effective than an ad-
vanced fusion mechanism (SVM-based fusion).

* Regarding RQ2, we investigated the discriminative power of uni and multi-
modal representations. Our findings from the perspective of feature repre-
sentation are as follows:

1.

When considering unimodal representations, we observe that Senti-
Bank and dense trajectory-based motion representations are the most
discriminative features for emotional content analysis of both profe-
sionnaly edited and user-generated videos.

. For SentiBank, using 2,089 trained visual concept detectors instead of

1,200 provides a noticeable increase in terms of classification perfor-
mance. We closelylooked at the importance of individual ANPs to check
if some of them were consistently playing an important role across all
videos. There appears to be no ANP which clearly stands out and is rep-
resented in all videos of both datasets. Therefore, we can only conclude
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that increasing the number of ANPs helps increasing classification ac-
curacies.

4.4 Conclusions

In this chapter, we presented a promising approach for the affective labeling of pro-
fessionally edited and user-generated videos using mid-level multi-modal repre-
sentations and ensemble learning.

We concentrated both on the representation and modeling aspects. Concern-
ing the aspects relating to representation, higher level representations were learned
from raw data using CNNs and fused with dense trajectory based motion and Senti-
Bank domain-specific features at the decision-level. As a basis for feature learning,
MFCC was employed as audio feature, while color values in the HSV space formed
the static visual features. Concerning the aspects relating to modeling, we applied
ensemble learning, viz. decision tree based bagging, to classify each video into one
of the predefined emotion categories.

Experimental results on the VideoEmotion dataset and on a subset of the DEAP
dataset support our assumptions (1) that learned audio-visual representations are
more discriminative than handcrafted low-level and mid-level ones, (2) that in-
cluding dense trajectories and SentiBank representations contribute increasing the
classification performance, and (3) that ensemble learning is superior to multi-
class SVM for video affective content analysis. In addition, we have demonstrated
that fusing the outputs of ensemble learning models using a simpler fusion method
(linear fusion) is more effective than an advanced fusion mechanism (SVM-based
fusion).

As regards the modeling aspects, one potential improvement is to experiment
more advanced classifiers instead of decision trees in the ensemble learning frame-
work, such as SVMs [106].

The works we presented in Chapters[3]and 4] concentrated on affective content
analysis based on the actual audio-visual content that is being analyzed (an analy-
sis from a data perspective). Adopting an analysis from a user perspective such as
collaborative user interaction and context evaluation (a scenario in which users can
indicate their audio-visual content preferences and rate them) could bring adapt-
ability to the framework, and constitutes, therefore, another important future di-
rection.

In this part of the dissertation, the focus was on affective content analysis of
multimedia data items in general. In the second part, we address a specific case,
namely the detection of violent (disturbing) scenes in movies and user-generated
videos.






Part I1

Violent Content Detection: A Special
Case of Affective Content Analysis
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DETECTING VIOLENT CONTENT IN MOVIES: A
PERSPECTIVE ON REPRESENTATION

As emotions play an important role in multimedia content selection and consump-
tion, enabling search for movies (or videos in general) containing a particular ex-
pected emotion is a decisive functionality. In this chapter, we address the problem
of detecting “violent” (i.e., “disturbing”) scenes in movies at the video shot level,
which can be regarded as a special case of emotional analysis of videos. The so-
lution to the addressed problem constitutes an important video content under-
standing tool e.g., for providing automated youth protection services. Violent video
content detection is highly challenging due to the complex nature of videos which
contain both audio and visual information, and due to the possible diverse forms
under which the concept of violence can be expressed. Therefore, combining fea-
tures from different modalities is an effective strategy for violent content analysis
in videos. In this chapter, we focus on the video representation part of the violence
detection problem and perform a comprehensive analysis of audio-visual repre-
sentations at different abstraction levels (low and mid-level). To this end, we em-
ploy audio, color, texture, motion and attribute representations for violent content
analysis. The use of multiple features inevitably raises the question of fusion, which
we also address. Experiments are performed on the MediaEval 2013 Violent Scenes
Detection (VSD) dataset. Concerning descriptors, the results show that the best
performing uni-modal descriptor is the dense trajectory based motion descriptor.
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Concerning fusion, combining features from different modalities (audio, color, tex-
ture and motion) at the decision level using linear fusion helps improving the clas-
sification performance of the system. Without any post-processing such as tempo-
ral violence score smoothing or segment merging, the system achieves promising
results when compared to the state-of-the-art results. The work presented in this
chapter has been published in [3} 4} 86].

5.1 Introduction

As the amount of available multimedia content becomes more and more abundant,
the use of automatic multimedia analysis solutions in order to find relevant seman-
tic search results or to identify illegal content present on the World Wide Web has
reached a critical importance. In addition, the advances in digital media manage-
ment techniques have facilitated delivering digital videos to consumers. Therefore,
accessing online movies through services such as VOD has become extremely easy.
As aresult, parents are not able to constantly and precisely monitor what their chil-
dren watch. Children are, consequently, exposed to movies, documentaries, or re-
ality shows which have not necessarily been checked by parents, and which might
contain inappropriate content. Violence constitutes one example of such inappro-
priate content. Psychological studies have shown that violent content in movies
has harmful impacts, especially on children [23]. As a consequence, there is a need
for automatically detecting violent scenes in videos, where the legal age ratings are
not available.

Like any other research challenge, tackling the problem of violence detection
begins with establishing a framework, in particular adopting a definition of vio-
lence to work with. Since the concept of violence is highly subjective (i.e., person-
dependent) — not everybody would indeed evaluate a particular scene of a movie
as violent, one of the challenges within the context of multimedia violent content
detection is to properly delimit the boundaries of what can be designated as a “vio-
lent” scene. In our work, we aim at sticking to the definition of violence as described
in [37]: The subjective point of view. Subjective violent scenes are “those which one
would not let an 8 years old child see because they contain physical violence”.

Next to the issue of definition, another important step in the task of video vi-
olent content detection is the representation of video segments. In order to rep-
resent the complex heterogeneous content of movies (or videos in general), it is
necessary to use multi-modal features of different abstraction levels describing dif-
ferent aspects of the movies. Within this context, solutions using mid-level feature
representations have recently gained popularity. These solutions shifted away not
only from the traditional approaches which represented videos using low-level fea-
tures (e.g., [28} 53]) but also from the use of state-of-the-art detectors designed to
identify high-level semantic concepts (e.g., “a killing spree”). The earlier solutions
could not carry enough semantic information, and the latter ones have not reached
a sufficient level of maturity. Hinted by these recent developments, inferring mid-



5.2. Framework Overview 79

level abstract representations is more suitable than directly using low-level features
in order to bridge the semantic gap between the features and the high-level human
perception of violence. The use of mid-level representations, therefore, may help
modeling video segments one step closer to human perception. In this chapter,
we perform a comprehensive study of uni-modal features at different abstraction
levels (including mid-level ones) which are used to represent videos from different
perspectives. These are sound (through low and mid-level audio), action (through
low and mid-level motion) and scene characteristics (through color, texture and
attribute features). As a basis for the mid-level audio and motion representations,
we employ MFCC and dense trajectory features, respectively. As attribute features,
we use Classemes [121] which basically correspond to automatic detection scores
of 2,659 semantic concepts (mainly objects and scenes) trained on images from the
Web. To sum up, in this chapter, our aim is to answer the following research ques-
tions:

(RQ1) What is the discriminative power of uni-modal low-level and mid-level
audio and visual representations? The experimental results of this study shed light
on the significance of selected uni-modal representations in order to model vio-
lence in movies.

(RQ2) To which extent does the fusion of the uni-modal audio and visual rep-
resentations improve the classification performance of the system? The results
also shed light on the best feature combinations for the problem of violent content
detection. We experimentally show that different combinations of uni-modal de-
scriptors with linear fusion always improves the classification performance of the
system and the best performance is achieved when audio and visual representa-
tions at different abstraction levels (low-level or mid-level) are linearly fused. Be-
sides, the best classification performance of the introduced framework — without
any post-processing such as temporal violence score smoothing or segment merg-
ing —is promising when compared to the state-of-the-art results.

The chapter is organized as follows. Section[5.2|gives an overview of the frame-
work. In Section[5.3} we present audio representations constructed at different lev-
els. We discuss static and dynamic visual features that we evaluate in Sections|5.4
and 5.5} respectively. The violence modeling aspect of the system is introduced in
Section[5.6] We provide and discuss evaluation results obtained on the MediaEval
2013 VSD dataset consisting of Hollywood movies in Section Concluding re-
marks and future directions to expand our current approach are presented in Sec-

tion[5.8
5.2 Framework Overview
We first present an overview of the framework to evaluate the performance of uni-

modal and multi-modal analysis for violent scenes detection in movies. As shown
in Figure[5.1} the first phase of the system is feature generation. In this phase, audio



80 Chapter 5. Violent content in movies: A perspective on representation

and visual features are extracted for each video shot of movies. For audio feature
construction, the whole audio signal of the video shots is used. Only the keyframes
of the video shots are processed for the extraction of static visual features, whereas
all frames constituting the video shots are used in the dynamic visual feature ex-
traction. The details of the feature generation are explained in Sections (au-
dio), (static visual) and [5.5] (dynamic visual). In the modeling phase of the sys-
tem, audio and visual analysis models are built using the uni-modal features and
the built models are used in the test phase to predict the violence scores of the video
shots. The details of model generation and prediction are discussed in Section|5.6)

Movies

Audio features (MFCC statistics, Model Generation
MFCC-based BoAW)

> Training only

Static visual features v v v
(Colorfulness & color statistics, - / i // @ /_/ o /
SURF BoVW, Classemes)

R ooy =
violence scores
Dynamic visual features
(Motion statistics, DT-based Late Fusion
BoMW)
Final violence probability
of the shots
Video shots Representation building Test only

Figure 5.1: An overview of the violent scenes detection framework. One classifier is
built for each uni-modal feature, i.e., N = 7. (BoAW: Bag-of-Audio-Words, BoMW:
Bag-of-Motion-Words, BoVW: Bag-of-Visual-Words, C: classifier, DT: dense trajec-
tory, SURF: Speeded-Up Robust Features)

5.3 Audio Features

Sound effects and background music in movies are essential elements used by film
editors for stimulating people’s perception [126]. Therefore, audio signals are an
important data source for the representation of movies. Among the plurality of
available audio descriptors, MFCC features are shown to be indicators of the ex-
citement level of video segments [137]. For this reason, we employ MFCC extracted
from the audio signal of video shots as base audio features as illustrated in Fig-
ure[5.2] We represent the audio content of videos at two different levels: Low-level
and mid-level, which we discuss in detail in Sections[5.3.1]and[5.3.2} respectively.
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5.3.1 Low-level representation

Due to the variability in duration of video shots annotated as violent or non-violent,
each shot comprises a different number of MFCC feature vectors. Aiming at con-
structing low-level audio representations having the same dimension, mean and
standard deviation for each dimension of the MFCC feature vectors are computed.
The resulting statistics of the MFCC features compose the low-level audio repre-
sentations of the shots.

5.3.2 Mid-level representation

In order to construct mid-level audio representations for video shots, we apply an
abstraction process which uses an MFCC-based Bag-of-Audio-Words (BoAW) ap-
proach. We implement this approach using two different coding schemes, namely
vector quantization (VQ) and sparse coding (SC). The feature generation process is
illustrated in Figure The details of the VQ-based method is presented in Sec-
tion[5.3.2.1} whereas Section[5.3.2.2]discusses the SC-based one.

Video shots of movies (training dataset)

Audio signals

g

i UUuyU
Videoshts 25mswith 10ms overap ¢ ¢ ¢
v

Audio Dictionary MFCC features
(k-means) (16-dimensional)
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¢ Audio dictionary construction (sparse & vector quantization)

Audio Dictionary
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/o Yemeans clsteing —
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\ construction standard deviation audio signals
Sparse dictionary learning ¢
(m =400, k = 1024) ¢ ¢
Low-level audio SChased audio
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Audio Dictionary Audio Dictionary ! (32-dimensional) (1024-dimensional)
(sparse) (k-means) \0-based audio (1024-dimensional)
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Figure 5.2: (a) The generation of two different audio dictionaries: One by using
vector quantization (VQ) and another dictionary for sparse coding (SC). (b) The
generation process of VQ-based, SC-based and low-level audio representations for
video shots of movies.

5.3.2.1 Vector quantization

The vector quantization based method consists of two phases: (1) Dictionary con-
struction and (2) feature encoding. Figureillustrates the construction of the VQ-
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based audio dictionary. An unsupervised way is followed for the construction of the
dictionary. First, MFCC feature vectors extracted from video shots in the develop-
ment dataset are clustered with a k-means clustering [94], in which the centroid of
each of the k clusters is treated as an audio word. For the dictionary construction,
we sampled 400 x k MFCC feature vectors from the development data. The number
of feature vectors to sample was determined with preliminary evaluations.

In the feature encoding phase of the method, once an audio vocabulary of size
k (k =1024 in this work) is built, each MFCC feature vector is assigned to the clos-
est audio word in terms of Euclidean distance. Subsequently, a BoAW histogram
representing the audio word occurrences is computed for each video shot in the
development and test datasets.

5.3.2.2 Sparse coding

Similarly to the VQ-based method, the sparse coding based method also contains
the two phases of dictionary learning and feature encoding. Figure presents
the construction of the SC-based audio dictionary, which is the first phase of the
method. We employ the dictionary learning technique presented in [84]. The ad-
vantage of this technique is its scalability to very large datasets with millions of
training samples which makes the technique well suited for our work. In order to
learn the dictionary of size k (k= 1024 in this work) for sparse coding, 400 x k MFCC
feature vectors are sampled from the training data. The figures were again deter-
mined experimentally with preliminary evaluations.

In the feature encoding phase, we construct the sparse representations of audio
signals by using the LARS algorithm [46]. Given an audio signal and a dictionary,
the LARS algorithm returns sparse representations for MFCC feature vectors. In
order to generate the final sparse representation of video shots which are a set of
MEFCC feature vectors, we apply the max-pooling technique [143].

5.4 Static Visual Features

In addition to sound effects, scene characteristics of movies are also an important
element for scenes in the movies. In order to represent those scene characteristics,
color, texture and attribute features which basically describe static visual proper-
ties of the scenes are used in this work. We discuss these features in detail in Sec-
tions 5.4.1land 5.4.2] The construction of static visual features is summarized in
Figure

5.4.1 Color and texture representation

Color properties constitute an effective and computationally efficient representa-
tion of the video frames for violence analysis. For instance, in movies, many violent
scenes usually picture a dark environment or contain a lot of blood. As we regard
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Figure 5.3: The generation process of static and dynamic visual representations for
the video shots of movies. (BoMW: Bag-of-Motion-Words, BoVW: Bag-of-Visual-
Words, DT: dense trajectory, HoG: Histogram-of-Oriented-Gradients, HSL: Hue-
Saturation-Lightness, MBHx & MBHy: motion boundary histograms in the x and
y directions, SURF: Speeded-Up Robust Features)

violence analysis as a special case of affective content analysis, we use colorful-
ness [58] and color statistics in the HSL color space (mean and standard deviation
of each color channel) which are commonly used features for the emotional analy-
sis of images and videos (e.g., [83} 151]).

In addition to color, texture properties are also an important cue to describe the
content of the videos. The dense Speeded-up robust features (SURF) method [18]
is used in this work to describe the textural properties of scenes. Bag-of-Words
representations of dense SURF features (Bag-of-Visual-Words — BoVW) are gener-
ated using vector quantization. The dictionary construction and feature encoding
phases are performed similarly to the audio case (Section[5.3.2.1). A visual dictio-
nary of size k (k is equal to 1024) is constructed using 400 x k SURF descriptors
and k-means clustering. In the feature encoding phase, the SURF feature vectors
of the keyframe of video shots are assigned to the closest visual word in terms of
Euclidean distance. Subsequently, a BOVW histogram representing the visual word
occurrences is computed for each video shot in the development and test datasets.

5.4.2 Attribute representation

In order to present scene information of videos at a higher level (higher when com-
pared to the color statisticsand the BoVW representation presented in Section|5.4.1),
we use Classemes [121] attribute features. Classemes is a global attribute descriptor
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generated by models trained on images retrieved by the Bing Image Searc}ﬂ en-
gine. Since it is a global descriptor, a frame is treated and processed as a whole to
determine the semantic concepts existing in the frame. Basically, the Classemes
descriptor consists of the detection scores of 2,659 semantic concepts (mainly ob-
jects and scenes), where each dimension of the descriptor corresponds to one of
these semantic categoriesﬂ

5.5 Dynamic Visual Features

Motion captures the temporal variation of videos and is another important visual
element for film editors to elicit some particular perception in the audience. The
importance of motion in edited videos (e.g., movies and Web videos) motivated us
to incorporate motion information to our framework. The dynamic visual content
of videos provides complementary information and is commonly used for the de-
tection of violence in videos (e.g., [42} 53} [75]). For instance, the amount of activity
is proven to be strongly correlated with the existence of violence [53]. Similarly
to the audio case, we represent the dynamic visual content of videos at two dif-
ferent levels: Low-level and mid-level, which we discuss in detail in Sections|5.5.1
and[5.5.2] respectively. The construction of dynamic visual features is also summa-

rized in Figure[5.3}

5.5.1 Low-level motion representation

Average motion intensity is a commonly used low-level motion feature to analyze
violence in videos (e.g., [29,53]). In order to characterize the degree of motion of
video shots, we compute the normalized average motion intensity [81] of the video
shots based on motion vectors. The motion vectors are computed by block-based
estimation and then the normalized average motion intensity for the k* frame of a
video shot is deduced as illustrated in Equation|5.1

I

2 mug(i)

avgMotion, = =2
§ T TIMv,

(56.1)
where muvy (i) is the magnitude of the motion vector of the i block, I is the
total number of motion vectors, and M Vj is the magnitude of the largest motion
vector of the frame. In this work, this process is performed only in the vicinity of the
keyframe of the video shots. More specifically, average motion values are computed
between a given keyframe and its preceding and succeeding frames, respectively.

Thttp://www.bing.com/?scope=images
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5.5.2 Mid-level motion representation

As mid-level motion representation, we adopt the work of Wang et al. on dense
trajectories [127]. Improved dense trajectories are dynamic visual features which
are derived from tracking densely sampled feature points in multiple spatial scales.
Although initially used for unconstrained video action recognition [127], dense tra-
jectories constitute a powerful tool for motion or video description, and, hence, are
not limited to action recognition.

Our dynamic visual representation works as follows. First, dense trajectories
of length L (L = 15 in this work) frames are extracted from each video shot. Dense
trajectories are subsequently represented by a Trajectory, a histogram of oriented
gradients (HoG) and motion boundary histograms in the x and y directions (MBHx
and MBHy). The histogram of oriented optical flow (HoF) descriptor of dense tra-
jectories — part of the “bundle” of features presented in [127] - is excluded, since it
demonstrated a poor performance in our preliminary evaluations. The sparse dic-
tionary learning and coding phases are performed similarly to the audio case. For
each dense trajectory descriptor (Trajectory, HoG, MBHx and MBHy), we learn a
separate dictionary of size k (k= 1024) by sampling 400 x k feature vectors from the
development data. Finally, sparse representations are constructed using the LARS
and max-pooling algorithms.

5.6 Violence Modeling and Prediction

Two-class SVMs are trained for each uni-modal descriptor presented in Sections|5.3
and More specifically, we train a two-class SVM for each of the following
descriptors: (1) Low-level audio descriptor (MFCC statistics), (2) mid-level audio
descriptor (MFCC-based BoAW), (3) colorfulness and color statistics, (4) mid-level
static visual descriptor (SURF-based BoVW), (5) attribute descriptor (Classemes),
(6) low-level motion descriptor (average motion intensity), and (7) mid-level mo-
tion descriptor (dense trajectory based BoMW).

In the learning phase, the main issue is the problem of imbalanced data. In
the development dataset, the number of non-violent video shots is much higher
than the number of violent ones. This results in the learned boundary being too
close to the violent instances. Consequently, the SVM tends to classify every sam-
ple as non-violent. Different strategies to “push” this decision boundary towards
the non-violent samples exist. Although more sophisticated methods dealing with
the problem of imbalanced data have been proposed in the literature (see [60] for a
comprehensive survey), we choose, in the current framework, to perform random
undersampling to balance the number of violent and non-violent samples (with a
balance ratio of 1:2). This method proposed by Akbani et al. [10] appears to be par-
ticularly adapted to the application context of our work. In [10], different under-
and oversampling strategies are compared. According to the results, SVM with the
undersampling strategy provides the most significant performance gain over stan-
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dard two-class SVMs. In addition, the efficiency of the training process is improved
as a result of the reduced training data. Hence, this method is scalable to large
datasets similar to the ones used in the context of our work.

In the test phase of the framework, the fusion of the predictions of uni-modal
analysis models is performed at the decision level with a linear combination of uni-
modal violence scores applied with weights optimized on the development set.

5.7 Performance Evaluation

The experiments presented in this section aim at comparing the discriminative
power of audio and visual features at different levels (low and mid-level) for the
detection of violent content in movies. We also investigate the extent to which the
fusion of the uni-modal features further improves the classification performance of
the system. A direct comparison of our results with other works discussed in Sec-
tion[2.4|could be misleading due to the discrepancies in the definition of “violence”
in published works. However, we can reliably compare our method with the meth-
ods of the participants to the the MediaEval VSD task of 2013 as they also stick to
the same “violence” definition and are evaluated on the same dataset.

5.7.1 Dataset and ground-truth

The MediaEval 2013 VSD dataseﬂ consists of 46,525 video shots from 24 Hollywood
movies of different genres (ranging from extremely violent movies to movies with-
out violence), where each shot is labeled as violent or non-violent. The data set
is divided into a development set consisting of 35,280 shots from 17 movies and
a test set consisting of 11,245 shots from the remaining 7 movies. The movies of
the development and test set were selected in such a manner that both develop-
ment and test data contain movies of variable violence levels (extreme to none).
On average, around 11.57% and 20.24% of the shots are annotated as violent in the
development and test sets, respectively. Tables[5.1|and|5.2]give more details about
the main characteristics of the datasets.

The ground-trutfﬂ was generated by 7 human assessors, partly by developers,
partly by possible users. Violent movie segments are annotated at the frame level
(i.e., violent segments are defined by their starting and ending frame numbers).
Automatically generated shot boundaries with their corresponding key frames are
also provided for each movie. A detailed description of the dataset and the ground-
truth generation are given in [40].

3htt:p ://www.technicolor.com/en/innovation/research-innovation/scientific-data-sharing/
violent-scenes-dataset

*Annotations were made available by Fudan University, Vietnam University of Science, and Techni-
color.
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Table 5.1: The characteristics of the MediaEval 2013 VSD development dataset
(movie length in seconds, the number of video shots and the percentage of violent
segments per movie).

#  Video Title Length (sec) Video Shot# Violence (%)
1 Armageddon 8,680 3,562 07.77
2 Billy Elliot 6,349 1,236 02.45
3 Dead Poets Society 7,413 1,583 00.58
4  Eragon 5,985 1,663 13.25
5  Fight Club 8,005 2,335 15.82
6  Harry Potter V 7,953 1,891 05.43
7 Iam Legend 5,779 1,547 15.64
8 Independence Day 8,875 2,652 13.12
9 Leon 6,344 1,547 16.34
10 Midnight Express 6,961 1,677 07.11
11  Pirates of the Caribbean 8,239 2,534 18.14
12 Reservoir Dogs 5,712 856 30.40
13 Saving Private Ryan 9,751 2,494 33.96
14  The Bourne Identity 6,816 1,995 07.18
15  The Sixth Sense 6,178 963 02.00
16  The Wicker Man 5,870 1,638 06.44
17  The Wizard of Oz 5,859 908 01.02
- Total 120,769 35,280 11.57

Table 5.2: The characteristics of the MediaEval 2013 VSD test dataset (movie length
in seconds, the number of video shots and the percentage of violent segments per
movie).

# Video Title Length (sec) Video Shot# Violence (%)
1  Fantastic Four I 6,094 2,002 35.81
2 Fargo 5,646 1,061 24.13
3 Forrest Gump 8,177 1,418 16.78
4  Legally Blond 5,523 1,340 00.00
5  Pulp Fiction 8,887 1,686 29.42
6 The God Father I 10,195 1,893 10.46
7  The Pianist 8,567 1,845 20.11
- Total 53,089 11,245 20.24

5.7.2 Experimental setup

We first start by explaining the pre-processing steps performed before any video
processing was applied. This begins with a conversion of the DVD content to mpg
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videos in MPEG-2 format by using DVDFab version fﬂ and VOB2MPG version S{ﬂ
Once the mpg videos were generated, we resized the videos to a width of 640 pixels
and scaled the height to keep the same aspect ratio. Feature extraction is performed
on these pre-processed videos. Table[5.3|gives an overview of the features extracted
to represent video shots and the details of feature extraction are discussed in the
following paragraphs.

Table 5.3: An overview of extracted audio, static and dynamic visual features in
the framework. (LLR: low-level representation, MLR: mid-level representation, SC:
sparse coding, VQ: vector quantization).

Name Modality Dimension#
LLR audio audio 32
MLR audio-VQ audio 1,024
MLR audio-SC audio 1,024
LLR color static visual 7

MLR texture static visual 1,024
MLR attribute static visual 2,659
LLR motion dynamic visual 2

MLR motion dynamic visual 4,096

The MIR Toolbox V1.6.1E] was employed to extract 16-dimensional MFCC fea-
ture vectors. Frame sizes of 25 ms with a step size of 10 ms were used. MFCC statis-
tics (referred hereafter as LLR audio) and MFCC BoAW representations with the
two different coding schemes (referred hereafter as MLR audio) were computed.
The details of the audio feature extraction are explained in Section|5.3

The keyframes provided by the MediaEval VSD task organizers were used to ex-
tract static visual features (color statistics including colorfulness, SURF BoVW and
Classemes). The details of the static visual feature extraction are explained in Sec-
tion[5.4] The VLG extractorff| was used to extract Classemes features of the frames.
We refer to the color statistics, SURF BoVW and Classemes hereafter as LLR color,
MLR texture and MLR attribute, respectively.

Improved dense trajectories were extracted using the softwaref_;] provided by
Wang et al. [127]. The sampling stride, which corresponds to the distance by which
extracted feature points are spaced, is set to 20 pixels due to time efficiency con-
cerns. The remaining details of the dynamic visual feature extraction are provided
in Section Average motion intensity and dense trajectory based BOMW repre-
sentations are hereafter referred to as LLR motion and MLR motion, respectively.

Shttp://de.dvdfab.cn/

Shttp://www.svcd2dvd . com/VOB2MPG/

“https://wuw.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/
mirtoolbox

8http://vlg.cs.dartmouth.edu/projects/vlg_extractor/vlg_extractor/

9https://lear.inrialpes.fr/people/wang/improved_trajectories
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We employed the SPAMS toolboﬂ in order to compute sparse codes which are
used for the generation of mid-level audio and dynamic visual representations. The
VLFeatE] open source library was used to perform k-means clustering for vector
quantization.

Once audio, static and dynamic visual features were extracted at the video shot
level, two-class SVMs with a Radial Basis Function (RBF) kernel were trained using
libsvrr{r_zl as the SVM implementatio