
Anne-Kathrin Schmuck

PhD Thesis

Advancing, Combining, and Comparing Methods
from Computer Science and Control

Building Bridges in Abstraction-Based
Controller Synthesis

Building Bridges in
Abstraction-Based Controller Synthesis
Advancing, Combining, and Comparing Methods

from Computer Science and Control

Vorgelegt von
Dipl.-Ing. Anne-Kathrin Schmuck (geb. Hess)

aus Erfurt

von der Fakultät IV - Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktorin der Ingenieurwissenschaften
- Dr.-Ing. -

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender:
Gutachter:
Gutachter:
Gutachter:

Prof. Dr.-Ing. Uwe Nestmann
Prof. Dr.-Ing. Jörg Raisch
Prof. Dr. Paulo Tabuada
Prof. Dr.-Ing. Thomas Moor

Tag der wissenschaftliche Aussprache: 18. September 2015

Berlin 2015

PhD Thesis

Building Bridges in Abstraction-Based
Controller Synthesis

Advancing, Combining, and Comparing Methods from Computer Science
and Control

Anne-Kathrin Schmuck

Anne-Kathrin Schmuck: Building Bridges in Abstraction-Based Controller Synthesis
PhD Thesis, c© Berlin 2015

Supervisor:
Prof. Dr.-Ing. Jörg Raisch

Location:
Fachgebiet Regelungssysteme, Fakultät IV - Elektrotechnik und Informatik, Technische
Universität Berlin, Einsteinufer 17, 10587 Berlin, Germany

ISBN: 978-3-7375-7174-6
www.epubli.de

Abstract

Abstraction based controller synthesis is a well established two-step procedure to solve
complex control problems involving discrete valued quantities. First, a symbolic abstrac-
tion of the system to be controlled is generated providing a discrete time model with
a finite, discrete valued signal space and finitely many states. Second, a symbolic con-
troller for a desired symbolic specification is constructed using the previously generated
symbolic model. This controller synthesis approach is usually used in two different set-
tings. Either (i) the specification is naturally given by a Linear Temporal Logic (LTL)
or a Computation Tree Logic (CTL) formula over a finite set of symbols, which can
only be encountered by symbolic controller synthesis techniques. Or (ii) the system to
be controlled is naturally equipped with a finite set of external symbols through which
it interacts with its environment, e.g., the controller.

For each of the two settings specific approaches to solve the synthesis problem have
been proposed independently. In Part I of this thesis we will investigate the abstraction
step of two different approaches, namely quotient based abstractions (QBA) and strongest
asynchronous l-complete approximations (SAlCA), tailored to setting (i) and (ii), respec-
tively. It will be shown that the resulting abstractions are generally incomparable. We
will therefore derive necessary and sufficient conditions on the original system which al-
low for a detailed comparison. This builds our first bridge between the computer science
community, which inspired the construction of QBA and the control systems community,
where SAlCA were developed.

When the second setting is considered where the use of abstraction based controller
synthesis is motivated by the symbolic input-output structure of the system, the desired
specification might not naturally be symbolic. However, to apply supervisory control
theory (SCT), a framework for symbolic controller synthesis commonly used in com-
bination with SAlCA, the specification is required to be modelled by a deterministic
finite automaton (DFA). This motivates the investigation of larger specification classes
to enrich the applicability of abstraction based controller synthesis in setting (ii). In
Part II of this thesis we show that SCT can be extended to handle specifications realized
by deterministic pushdown automata (DPDA). This builds our second bridge between
the computer science community, where different automata models, such as DFA and
DPDA, are formalized and the control systems community, where SCT was developed.

v

Zusammenfassung

Der abstraktionsbasierte Reglerentwurf ist eine bekannte, zweistufige Entwurfsmethode,
bei welcher zuerst eine Abstraktion des zu regelnden Systems konstruiert wird, welche
diskretwertige externe Signale und eine endliche Zustandsmenge besitzt. Danach wird
mit Hilfe dieser Abstraktion für eine gewünschte Spezifikation ein ereignisdiskreter Reg-
ler entworfen. Diese Reglersynthese wird üblicherweise in zwei verschiedenen Szenarien
angewendet. Entweder ist die Spezifikation durch einen Logik-Ausdruck über einer endli-
chen Menge von Symbolen gegeben, welche nur durch symbolische (d.h. ereignisdiskrete)
Reglersyntheseverfahren behandelt werden kann. Oder das zu regelnde System besitzt
nur diskretwertige Mess- und Stellsignale, die nur die Interaktion mit einem ereignisdis-
kreten Regler erlauben.

Für jedes dieser beiden Szenarien wurden unabhängig voneinander verschiedene Ansätze
für die abstraktionsbasierte Reglersynthese entwickelt. Im ersten Teil dieser Arbeit ver-
gleichen wir den Abstraktionsschritt zweier Ansätze, nämlich die quotientenbasierte Ab-
straktion (QBA) und die strengste asynchrone l-vollständige Approximation (engl. stron-
gest asynchronous l-complete approximations (SAlCA)). Es wird sich zeigen, dass die
resultierenden Abstraktionen generell nicht vergleichbar sind. Wir geben deshalb not-
wendige und hinreichende Bedingungen für das Originalsystem an, welche einen direk-
ten Vergleich ermöglichen. Damit bauen wir die erste Brücke zwischen dem Gebiet der
Informatik, durch welche die Konstruktion der QBA beeinflusst wurde, und dem Gebiet
der Regelungstechnik, in dem SAlCA entwickelt wurden.

Wenn im abstraktionsbasierten Reglerentwurf das zweite Szenario vorliegt, d.h., das
zu regelnde System nur diskretwertige Mess- und Stellsignale besitzt, ist die Spezifikati-
on meist nicht in einer einheitlichen Form gegeben. In Verbindung mit SAlCA wird der
Reglerentwurf meist unter Verwendung der Supervisory Control Theory (SCT) durch-
geführt. Allerdings kann die SCT nur angewendet werden, wenn die Spezifikation als
deterministischer endlicher Automat (engl. deterministic finite automaton (DFA)) mo-
delliert werden kann. Um die Anwendbarkeit dieser Entwurfsmethode zu verbessern, wird
die SCT im zweiten Teil dieser Arbeit erweitert, um auch Spezifikationen in Form von
deterministischen Kellerautomaten (engl. deterministic pushdown automata (DPDA))
behandeln zu können. Damit bauen wir die zweite Brücke zwischen dem Gebiet der
Informatik, in dem verschiedene Automatenmodelle, wie DFA und DPDA, formalisiert
wurden, und dem Gebiet der Regelungstechnik, in dem SCT entwickelt wurde.

vi

Contents

Introduction 1

I. A Bridge Between Strongest Asynchronous l-Complete Approxima-
tions and Quotient-Based Abstractions 3

1. Literature Review and Contributions I 5
1.1. Quotient Based Abstractions . 5
1.2. Strongest l-Complete Approximations . 6
1.3. Comparison and Contributions . 8
1.4. Publications . 10

2. From SlCA to SAlCA 11
2.1. Notation . 12
2.2. Properties of Dynamical Systems with T = N0 13
2.3. Strongest l-Complete Approximations (SlCA) 18
2.4. State Space Dynamical Systems (SSDS) 20
2.5. Evolution Laws and State Machines . 21
2.6. Asynchronous State Space Dynamical Systems (ASSDS) 24
2.7. Asynchronous Properties of Dynamical Systems 28
2.8. Strongest Asynchronous l-Complete Approximations (SAlCA) 34

3. Quotient Based Abstractions (QBA) 39
3.1. Transition System Based Construction . 39
3.2. State Machines vs. Transition Systems . 40
3.3. State Machine Based Construction . 42

4. Modeling the Original System 43
4.1. Asynchronous State Space φ-Dynamical Systems (ASSφDS) 44
4.2. External ASSDS of ASSφDS . 48

5. Simulation Relations 51
5.1. Simulation Relations for ASSφDS . 52
5.2. Using ASSφDS as a Unified Model . 57

vii

Contents

5.3. Connections to Related Notions of Similarity 61

6. A New Approach to Realizing SAlCA 63
6.1. Constructing SAlCA from ASSφDS . 64
6.2. Constructing Realizations of SAlCA from Infinite SM 65
6.3. Relating the Abstraction to the “Original” System 70
6.4. Ordering Abstractions based on Simulation Relations 72
6.5. Example . 74

7. Quotient-based Abstractions with Increasing Precision 79
7.1. Incorporating the Partition Refinement Algorithm 80
7.2. An Alternative Construction of QBA . 82
7.3. Example . 84

8. Comparison of SAlCA and QBA 87
8.1. The viewpoint of SAlCA . 87
8.2. The viewpoint of QBA . 92
8.3. Some Comments on Control and Future Research 95

II. A Bridge Between Supervisory Control Theory and Deterministic Push-
down Automata 99

9. Literature Review and Contributions II 101
9.1. Supervisory control theory (SCT) . 101
9.2. Deterministic Pushdown Automata (DPDA) 102
9.3. Extensions of SCT . 103
9.4. Outline and Contributions . 104
9.5. Publications . 104

10.The Supervisory Control Problem over Language Models 107
10.1. Preliminaries . 107
10.2. A New Iterative Algorithm . 109

11.Enforcing Controllability for DCFL Models Least Restrictively 113
11.1. Realizing LM by Automata . 113
11.2. Manufacturing Example . 119
11.3. Building Blocks of the Algorithm Calculating Fc for DCFL 121
11.4. Effective Computability of Fc for DCFL 127

Conclusion 131

viii

Contents

A. Appendix Part I 133
A.1. Proofs for Chapter 6 . 133
A.2. Proofs for Chapter 7 . 146
A.3. Proofs for Chapter 8 . 149

B. Appendix Part II 157
B.1. Proofs for Chapter 11 . 157
B.2. Counterexample . 160

Bibliography 163

ix

Introduction

The increasing interconnection of physical components and digital hardware in today’s
engineering systems causes challenges that have been focused on both by the control
and the computer science community. Although some efforts have been made to bring
these parallel advances together there are still considerable gaps between concepts in
both fields addressing very similar questions. Closing these gaps seems to be a promising
way towards new solutions in this field.

In this thesis we build two different bridges between results obtained by the control
and the computer science community in the broad field of abstraction-based controller
synthesis. The common idea of the latter is to simplify a given complex (possibly not
directly solvable) control problem by generating a symbolic abstraction of the system to
be controlled. This allows to apply controller synthesis techniques developed for symbolic
system models.

In Part I a bridge is built between two different techniques constructing symbolic
abstractions, namely quotient based abstractions (QBA) and strongest asynchronous l-
complete approximations (SAlCA). The construction of QBA is motivated by a problem
setting where a system should obey a specification given in terms of a linear temporal
logic (LTL) or computational tree logic (CTL) formula over a finite set of symbols, e.g.,
“always eventually visit region A”. Inspired by techniques developed in the computer
science community for verification and synthesis of software processes, QBA are gener-
ated by partitioning the state space of the original system into a finite number of cells.
The obtained set of equivalence classes of this partition is then used as the set of states
and the set of outputs of the QBA. This implies that the used output symbols are gen-
erated artificially usually based on the given specification and can be used as a degree
of freedom in the abstraction process to adjust the abstraction accuracy.

Contrary to this viewpoint, SAlCA are tailored to handle systems where the available
interface for control is symbolic. Hence, the construction of a symbolic abstraction is
motivated by limited sensing (e.g., a sensor that can only detect threshold crossings)
and/or limited actuation (e.g., a valve that can only be fully opened or closed). In this
case, contrary to the setting for QBA, the set of external symbols that can be used to
construct the abstraction is predefined by the system. To increase abstraction accuracy
when constructing SAlCA the number l of past input and output symbols considered in
the construction of the abstract state space can be increased.

1

Contents

While QBA and SAlCA are using a similar approach to tackle the abstraction based
controller synthesis problem the constructions used are substantially different. To for-
mally compare both approaches we investigate how the two outlined scenarios for QBA
and SAlCA can be incorporated in a unified setup. For this unified setup we can show
that the abstractions resulting from QBA and SAlCA are generally incomparable when
assuming a predefined set of output symbols. We therefore derive necessary and suffi-
cient conditions on the original system that allow to relate the resulting abstractions.
Surprisingly, we can show that for the scenario considered by QBA those conditions
are automatically satisfied and the construction of SAlCA and QBA results in bisimilar
abstractions.

In the setting for SAlCA the use of abstraction based controller synthesis is motivated
by the input/output structure of the plant. Hence the specification used for controller
synthesis might not have a particular symbolic structure. However, to apply supervisory
control theory (SCT), a popular symbolic controller synthesis technique, both the system
and the specification need to be representable by a deterministic finite automaton (DFA).
While both QBA and SAlCA can typically be realized by DFA requiring the same for
the specification may be restrictive.

To extend the applicability of abstraction based controller synthesis in the presence of
a symbolic controller interface Part II contributes to a generalization of SCT to specifi-
cations that can be realized by deterministic pushdown automata (DPDA). This builds
a bridge between automata theoretic concepts from the computer science community
and the controller synthesis technique of SCT.

As the classical algorithm to solve the supervisory control problem (SCP) for DFA
does not readily carry over to the case where the specification is described by a DPDA
we first introduce a new conceptual iterative algorithm to solve the SCP. This algorithm
is composed of two subroutines, i.e., (i) enforcing controllability least restrictively for
DPDA and (ii) ensuring nonblockingness of DPDA. While an implementable algorithm
for (ii) was given in [60] we derive an implementable algorithm for (i) in Part II. The
implementation of the overall algorithm solving the SCP for specifications representable
by DPDA is available as a plug-in in libFAUDES [31].

The research which lead to this thesis was conducted in cooperation with my super-
visor, Jörg Raisch, as well as Paulo Tabuada (Part I) and Sven Schneider (Part II). It
was also inspired by discussions with Thomas Moor, Uwe Nestmann, Matthias Rungger
and my colleagues Vladislav Nenchev and Behrang Monajemi Nejad. I am very thankful
for their honest, valuable and critical feedback on my work and their willingness to co-
operate and to share their view of abstraction based controller synthesis with me, which
shaped my view of this field.

2

Part I.

A Bridge Between Strongest
Asynchronous l-Complete

Approximations and Quotient-Based
Abstractions

1. Literature Review and Contributions I

In Part I two different techniques for constructing symbolic abstractions, namely quo-
tient based abstractions (QBA) and strongest asynchronous l-complete approximations
(SAlCA), are compared. To illustrate the conceptual differences of both approaches we
discuss the historical background of both methods in Section 1.1 and Section 1.2. There-
after, in Section 1.3 the steps of our subsequent bridging endeavor are outlined and the
contributions of Part I are emphasized. Chapter 1 is concluded by a list of publications
by the author where some results contained in Part I have appeared previously.

1.1. Quotient Based Abstractions

The construction of QBA originates from research activities in the computer science
community on verification and synthesis of software processes. Given a property in linear
temporal logic (LTL) or computational tree logic (CTL) and an automaton model of the
environment, this work is focused on synthesizing a process which satisfies the specified
property despite the behavior of the environment.

These ideas were first transfered to hybrid systems, i.e., systems involving continu-
ous and discrete-valued signals, by Alur and Dill [1]. They showed that a very simple
hybrid system, namely a timed automaton, allows for a symbolic abstraction. In par-
ticular, they derived a bisimulation relation, i.e., an equivalence relation ensuring that
properties formulated in LTL or CTL are preserved [34] between the timed automata
and its abstraction. Hence, verification and synthesis techniques can be applied to timed
automata by using their bisimilar symbolic abstractions.

The work of Alur and Dill was extended to other classes of hybrid systems in [2] and
inspired other researchers to extend the notion of bisimulation to other system classes,
e.g. linear continuous systems [29, 41, 75], affine continuous systems [70], linear discrete-
time systems [69], switched linear systems [44] , general flow systems [8] or behavioral
systems [27]. While [41, 75, 70, 44, 8, 27] are investigating bisimilarity of system models
of the same type for the purpose of complexity reduction, the goal of the work conducted
in [1, 2, 29, 69], was to construct bisimilar symbolic models from other models to apply
verification or synthesis techniques.

These advances led to the considered abstraction based controller synthesis, where
based on a given LTL or CTL specification, (i) a (bisimilar) symbolic abstraction is
calculated, (ii) a symbolic controller is synthesized, (iii) this controller is refined to be

5

1. Literature Review and Contributions I

applicable to the original system. Thereby, the closed loop system is ensured to be
correct by design, i.e., the original model connected to the refined controller fulfills
the specification. As steps (i) and (iii) are highly dependent on the dynamics of the
original model, the overall problem was only solved for special system classes, e.g., linear
continuous systems [68, 63], multi-affine control systems [4] or piecewise-affine hybrid
systems [21]. These results are nicely summarized in [67, Part II]. Additionally, [22, 64,
66] use category theory to unify this synthesis on a theoretical level.

In the contributions contained in [67, Part II] step (i) of the outlined synthesis is
realized by partitioning the original signal space into a (finite) set of equivalence classes
such that this partition allows for a bisimulation relation between the original model and
its abstraction. The set of equivalence classes of this partition is then used as discrete
states and output symbols of the constructed symbolic abstraction. Hence, the used
output symbols are generated artificially, usually based on the given specification, and
can be used as a degree of freedom in the abstraction process to adjust the abstraction
accuracy.

However, the conditions for the existence of a partition allowing for a bisimilar ab-
straction are rather restrictive. Therefore, several researchers have also investigated the
construction of approximately bisimilar symbolic abstractions [13] for controller synthe-
sis, e.g., [65, 79, 15, 30, 14, 80], partially summarized in [67, Part III]. Here, instead
of a partition, a cover of the state space is constructed and equivalence of systems is
only investigated with respect to a deviation parameter ε. However, this research is also
guided by the general idea of defining the set of output symbols artificially based on a
given specification and required precision ε.

1.2. Strongest l-Complete Approximations

Mostly independently from the line of research outlined in the previous section abstrac-
tion based controller synthesis was also developed for a different problem setting first
considered in [3] and [32]. Here, a system with possibly continuous dynamics is con-
sidered which interacts with the environment through discrete valued signals. This is
for example the case if the input signal can only take a finite number of values due to
actuator limitations (e.g. a valve which can only be “open” or “closed”), or if the mea-
surements are quantized (e.g., the measurement device only detects if the temperature
in a reactor is getting “too cold”, “too warm”, or returns to be “OK”).

In this setting the construction of a symbolic abstraction for controller synthesis is
motivated by the fact that the interface between the system and the controller is sym-
bolic. This implies that, contrary to the setting for QBA, the set of external symbols is
predefined by the abstracted system and cannot be used as a degree of freedom in the
abstraction process.

One method explicitly addressing the problem of an adaptable abstraction accuracy

6

1.2. Strongest l-Complete Approximations

in the presence of a predefined set of symbols is the so called strongest l-complete ap-
proximation (SlCA) [45, 46, 36]. This abstraction exactly mimics the strings of symbols
generated by the system over finite time intervals of length l + 1. Contrary to the work
in [32, 3] this allows for increasing the approximation accuracy by increasing the length
of the considered intervals.

The construction of SlCA is based on behavioral system theory [76, 77] and was
originally motivated by the property of l-completeness denoting that the behavior of a
system, i.e., the set of all infinite sequences of symbols compatible with its evolution, can
be reconstructed by appending strings of symbols of length (l + 1) in a particular way.
This idea is transferred to SlCA by taking the strings of length (l+1) from the behavior
of the original system and constructing the abstract behavior by appending them such
that the latter becomes l-complete. Hence, the SlCA of a system is given as a behavior,
i.e., as a set of infinite sequences of symbols. Generally this allows for many different
automaton realizations of the latter, which is desirable for control purposes. However,
almost all previous literature on SlCA makes only use of a particular realization naturally
arising in the abstraction process. This realization uses the set of l-long strings of external
symbols as its state space. Therefore, SlCA can be realized by a finite state symbolic
model if the set of symbols is finite, which is usually assumed in the considered setting.

Using behavioral system theory to formalize the construction of SlCA has the advan-
tage that the construction of an abstraction can be formalized without reference to a
specific realization, comparable to the idea of using category theory to unify the quotient
based approach in [22, 64, 66]. However, this also implies that the application of this
approach to a real model is not straightforward. It was for example shown in [12, 37]
and [50] how the construction of SlCA can be applied to continuous linear time invariant
systems and nonlinear discrete-time systems, respectively. However, as for QBA, these
concrete solutions do not translate to other system classes.

The idea of using l-long strings of symbols as abstract states was also used for con-
structing abstractions of incrementally stable switched systems in [30] and incrementally
stable stochastic control systems in [80]. However, [30, 80] use l-long sequences of modes
rather then input and output symbols as abstract states and no symbolic controller in-
terface is assumed. Interestingly, the abstractions constructed in [30, 80] are based on
(approximated versions of) QBA but employ ideas from SlCA in a quite different con-
text. Contrary, the recent work by Tarraf [72, 71] uses the same setting as SlCA and also
constructs abstractions using l-long strings of input and output symbols. However, the
actual abstraction procedure is guided by a subsequently employed optimization based
controller synthesis and is therefore substantially different from SlCA.

7

1. Literature Review and Contributions I

1.3. Comparison and Contributions

Using QBA and SlCA exactly as defined in existing work does not directly allow for a
comparison. We therefore need to revisit both constructions before we can draw formal
connections between the two.

In Chapter 2 we first consider SlCA which are only constructed for time invariant
systems in [36] and subsequent papers. The term “time invariant” is thereby interpreted
in a behavioral way, i.e., refers to systems that are invariant with respect to the backward
time shift of signals. As this assumption is not made for QBA we extend the construction
of SlCA to not necessarily time invariant systems based on our previous work in [53].
To obtain a symbolic abstraction which is still suitable for symbolic controller synthesis
we ensure that this new abstraction, referred to as strongest asynchronous l-complete
approximation (SAlCA), can still be realized by a finite state symbolic model.

During the derivation of SAlCA in Chapter 2 we additionally resolve an inconsistency
on the definition of the l-completeness property in [36, 35] which is slightly stronger
than the original definition by J.C.Willems in [76]. Furthermore, to formalize the term
asynchronous in SAlCA, we introduce asynchronous versions of the well-known concepts
of state property, memory span, and l-completeness. This extends the behavioral systems
theory in a consistent way.

As SAlCA are formalized using behavioral system theory both the system to be ab-
stracted and the resulting abstraction are given by a behavior, i.e., a set of infinite
sequences of symbols. Contrary, in the construction of QBA the original and the ab-
stract system are usually modelled by a so called transition system, which is formalized
in Chapter 3. While these two setups are substantially different we will show in Chap-
ter 4 that they can be incorporated under mild assumptions, by modeling the original
system as a so called asynchronous state space φ-dynamical system (ASSφDS), which
we have introduced in [54]. This allows to define a common “original” model for the
construction of QBA and SAlCA.

The behavior of an SAlCA is constructed by appending strings of length l + 1 from
the behavior of the original system in a particular way such that the resulting abstract
behavior is l-complete and a superset of the original behavior. Equality of both behaviors
only holds if the original system is l-complete. Hence, the construction of SAlCA and its
relation to the original system is based on behavioral inclusion and equivalence. Contrary,
the construction of QBA was motivated by the need to obtain a bisimilar symbolic model
of the original one to ensure that properties formulated in LTL or CTL are preserved.
While the existence of a bisimulation relation implies behavioral equivalence, the inverse
implication does usually not hold.

In the spirit of our bridging endeavor it is therefore interesting to investigate when the
stronger property of bisimilarity also holds between the original system, modeled by an
ASSφDS, and its SAlCA, given by a behavioral system. To formally investigate this we

8

1.3. Comparison and Contributions

derive a notion of (bi)similarity for ASSφDS in Chapter 5, which is inspired by [27, 26, 8]
and based on previous results in [52]. To also relate other system models we furthermore
show in Chapter 5 that ASSφDS can be used as a unifying modeling framework. Hence,
the notion of (bi)simulation relations for ASSφDS can be directly transferred to other
system models, e.g., transition systems or behavioral systems. Besides the formal beauty
of this result, it shows that (bi)simulation relations for ASSφDS can be used to relate
different system models (e.g., a transition system to a behavioral model).

Equipped with a unified model of the original system and a notion of similarity between
different system models we now seem to be ready to compare SAlCA and QBA. However,
there are two additional gaps resulting from the different problem setups considered by
QBA and SAlCA that have to be closed first.

As discussed previously, the construction of QBA typically starts with partitioning
the state space into a finite set of equivalence classes which is used as the set of discrete
outputs and the set of abstract states of the resulting QBA. The calculation of a suitable
partition is typically done iteratively. First, an initial partition of the state space is
chosen, e.g., induced by the LTL or CTL specification. Then a refinement algorithm [11]
is run which terminates if the partition allows to construct a QBA which is bisimilar to
the original system. With every step the partition of the state space is refined until the
algorithm terminates. Therefore, the construction of the set of output symbols (being
the equivalence classes of the final partition) is already part of the abstraction process
when using QBA.

Conceptually, there is a strong correspondence of this iterative calculation of the set
of output symbols in the construction of QBA and increasing the parameter l when
constructing realizations of SAlCA. However, there are two main differences. (i) While
the state space of QBA is given by the set of output symbols, the state space of SAlCA
is constructed from the whole set of external symbols, i.e., inputs and outputs. (ii) The
set of output symbols is predefined in the setting for SAlCA. Hence, the cover of the
state space is refined by changing l instead of changing the set of output symbols.

The key in understanding the formal and conceptual differences between QBA and
SAlCA lies (i) in the incorporation of different choices of symbols used to construct
the abstract state space of realizations of SAlCA and (ii) in the incorporation of the
iterative calculation of the set of output symbols in the construction of QBA. These two
points are addressed in Chapter 6 and Chapter 7, respectively, resulting in a set of new
realizations for SAlCA and a a chain of QBA with increasing precision which previously
appeared in [57, 58].

Using these new abstract models resulting from SAlCA and QBA we can finally for-
malize a comparison between the two in Chapter 8 which is based on [57, 58]. However,
as outlined previously, the assumptions about the set of output symbols are fundamen-
tally different in both settings. We therefore obtain a comparison for both viewpoints
separately.

9

Bibliography

First, we take the viewpoint of SAlCA and assume a predefined set of output symbols.
Surprisingly, this results in generally incomparable abstractions. We will therefore derive
necessary and sufficient conditions in terms of properties on the original system which
ensure that both abstractions become bisimilar. These conditions will turn out to be
rather restrictive.

Thereafter, we take the viewpoint of QBA and assume that the output event set can
be chosen arbitrarily. Hence, we assume that the refinement algorithm is run prior to the
construction of SAlCA and QBA. In this special case we can show that both abstractions
coincide. Hence, in this second set up the necessary and sufficient conditions derived
previously are satisfied automatically.

1.4. Publications

In the following publications by the author some results contained in Part I have ap-
peared previously or are currently under review.

[52] Anne-Kathrin Schmuck and Jörg Raisch. Constructing (bi)similar finite state ab-
stractions using asynchronous l-complete approximations. In Proc. 53rd Annual Con-
ference on Decision and Control, 2014.

[54] Anne-Kathrin Schmuck and Jörg Raisch. Simulation and bisimulation over multiple
time scales in a behavioral setting. In Proc. 22nd Mediterranean Conf. on Control
and Automation, Palermo, Italy, 2014.

[53] Anne-Kathrin Schmuck and Jörg Raisch. Asynchronous l-complete approximations.
Systems & Control Letters, 73(0):67 – 75, 2014.

[57] Anne-Kathrin Schmuck, Paulo Tabuada, and Jörg Raisch. Comparing asynchronous
l-complete approximations and quotient based abstractions. Proc. 54rd Annual Con-
ference on Decision and Control, 2015. (to appear).

[58] Anne-Kathrin Schmuck, Paulo Tabuada, and Jörg Raisch. Comparing asyn-
chronous l-complete approximations and quotient based abstractions. IEEE
Transactions on Automatic Control, 2015. (under review, preprint available at
http://arxiv.org/abs/1503.07139).

10

2. From SlCA to SAlCA

Behavioral systems theory was developed by J.C.Willems [76, 77] in the late 80ies as
an alternative concept to model dynamical systems. The basic idea is to “provide a
mathematical framework for discussing dynamics on a general level, that is, without
reference to a specific class of (physical, economic, or engineering) examples” [76, p.171].
In behavioral systems theory a dynamical system is embedded in an “unexplained”
environment with which it interacts through certain variables. These variables evolve
along some timescale T and take their values in some set W . Obviously, a system can
usually produce only a certain subset of trajectories from the set W T := {ω | ω : T →W}
of all signals over T taking values in W . This subset is called the behavior B ⊆ W T of
the dynamical system.

Definition 2.1. A dynamical system is a tuple Σ = (T,W,B), consisting of the time
axis T , the signal space W and the behavior B ⊆W T .

Using behaviors to model systems abstracts from the detailed underlying process (e.g.,
differential equations) and focuses on the behavior itself. This motivated the use of this
framework to derive strongest (asynchronous) l-complete approximations (SlCA). The
construction of SlCA is based on the property of l-completeness introduced in [76, 77] for
dynamical systems evolving over a right- and left-unbounded time scale, e.g., T = Z or
T = R. However, in [36] and subsequent papers, SlCA are only defined for time invariant
systems evolving on N0. As pointed out in [35, p.44], for systems evolving on N0, the
l-completeness property for time invariant systems used in [36, 35] is slightly stronger
than the original definition by J.C.Willems in [76]. This implies that the SlCA suggested
in [36] is also l-complete in the sense of [76] but not necessarily the strongest l-complete
approximation in the sense of [76].

The use of the time axis N0 instead of Z when constructing SAlCA is motivated
by the fact that technical systems are usually started at a particular time and might
have a distinct start up phase before resuming a nominal behavior. This distinct initial
behavior can be nicely modeled when considering a time axis starting at time t = 0,
resulting in realizations with distinct initial states. We adapt this viewpoint in this
thesis but want to consider systems which are not necessarily time invariant, i.e., systems
that are not invariant with respect to the backward time shift of signals. We therefore
extend the construction of SlCA to this system class while resolving the aforementioned
inconsistency on the property of l-completeness in this chapter, which is based on [53].

11

2. From SlCA to SAlCA

After introducing required notation in Section 2.1 we first provide a straightforward
extension of SlCA from [36] to the l-completeness definition from [76] in Section 2.2-
Section 2.4. We will show in Section 2.5 that, unfortunately, those abstractions do gen-
erally not allow for a realization by a finite state machine. However, the latter is necessary
to apply existing controller synthesis techniques such as supervisory control theory.

Intuitively, a system is realizable by a state machine if it allows for concatenation of
state trajectories that reach the same state asynchronously (i.e., at different times), as
used in the context of state maps by Julius and van der Schaft [27, 26]. To emphasize
that this property does not imply and is not implied by the time invariance property of
behavioral systems we call it asynchronous state property and formalize it in Section 2.6.
Then we can introduce an asynchronous l-completeness property in Section 2.7 since
the state and the l-completeness property are strongly related. This leads to a new
approximation technique introduced in Section 2.8, which is referred to as strongest
asynchronous l-complete approximation (SAlCA) and which ensures that the resulting
abstraction can be realized by an FSM.

The previously outlined derivation of SAlCA from SlCA in this chapter is accompa-
nied by a formal extension of the well-known concepts of state property, memory span
and l-completeness from [76] to (i) a positive time axis N0 and (ii) an asynchronous
interpretation of concatenation. Due to these extensions some well known results in
behavioral system theory are proven again for this setting.

2.1. Notation

To simplify notation we derive most properties in this chapter for T = N0 only, if they are
solely used for discrete time dynamical systems Σ = (N0,W,B) in this thesis. However,
it should be kept in mind that they analogously hold for other choices of T ⊆ R+

0 . As we
also discuss dynamical systems with time axis T 6= N0 in Chapter 4, we will occasionally
use a general time axis T ⊆ R+

0 to apply the obtained properties in Chapter 4.

For any l ∈ N0, (W)l := {ω | ω : [0, l− 1]→W} denotes the set of strings with length
|ω|L = |[0, l−1]| = l and elements in W . Now let I = [t1, t2] be a bounded interval on N0

with length |I| = t2− t1 + 1. Then ·|I : (W)N0→ (W)|I| restricts a map ω ∈WN0 to the
domain I while disregarding absolute time information, i.e., for ω′ = ω|I = ω(t1) . . . ω(t2)

it holds that ω′ ∈ (W)|I| instead of ω′ ∈ (W)I . Similarly, B|I restricts all trajectories in
B to I while disregarding absolute time information. For t1 < t2 we define ω|[t2,t1] := λ,
where λ denotes the empty string with |λ|L = 0.

Now let W,V and Ṽ be sets. Then the projection of the set W and the symbol w ∈W

12

2.2. Properties of Dynamical Systems with T = N0

to V is defined by

πV (W) :=


V , W=V×Ṽ

W , W=V

∅ , else

and πV (w) :=


v , w=(v, ṽ)∈V×Ṽ

w , W=V

λ , else,

respectively. With this, the projection of a signal ω ∈W T to V is given by1

πV (ω) := {ν ∈ V T | ∀t ∈ T . ν(t) = πV (ω(t))}

and πV (B) denotes the projection of all signals in the behavior to V . Given two signals
ω1, ω2 ∈W T and two time instants t1, t2 ∈ T , the concatenation ω3 = ω1 ∧t1t2 ω2 is given
by

∀t ∈ T . ω3(t) =

ω1(t) , t < t1

ω2(t− t1 + t2) , t ≥ t1
, (2.1)

where · ∧tt · is denoted by · ∧t ·. Furthermore, if T = N0, the concatenation of their
restrictions ω′1 = ω1|[0,t1] and ω′2 = ω2|[0,t2] is defined as

ω′1 · ω′2 :=
(
ω1 ∧t1+1

0 ω2

)
|[0,t1+t2+1]. (2.2)

This corresponds to the standard concatenation of finite strings.

2.2. Properties of Dynamical Systems with T = N0

Properties for dynamical systems where introduced in [76] for the left- and right-unbounded
time axis T = Z. As this thesis only considers systems evolving over a nonnegative time
axis T = N0 (occasionally also T ⊆ R+

0), we restate all necessary properties for this case
and derive complementary results to the setting in [76].

Time Invariance

Following [77, Def. II.3], a dynamical system Σ = (T,W,B) with nonnegative time axis
is said to be time invariant if σB ⊆ B, where σt denotes the backward shift operator
defined s.t. ∀t, t′ ∈ T . (σtf)(t′) := f(t′ + t). Furthermore, Σ is called strictly time
invariant if σB = B.

1Throughout this thesis we use the notation ”∀ · . ·”, meaning that all statements after the dot hold
for all variables before of the dot. ”∃ · . ·” is interpreted analogously.

13

2. From SlCA to SAlCA

Completeness

When reasoning about dynamical systems with right-unbounded time axis one has to
distinguish between local and eventuality properties. Local properties can be evaluated
on a finite time interval whereas eventuality properties can only be evaluated after
infinite time. Systems whose behavior can be fully described by local properties are
called complete.

Definition 2.2 ([77], Def. II.4). A dynamical system Σ = (T,W,B) is complete if(
∀t1, t2 ∈ T, t1 ≤ t2 . ω|[t1,t2] ∈ B|[t1,t2]

)
⇔ ω ∈ B. (2.3a)

It is easy to show that for T = N0 (2.3a) is equivalent to(
∀k ∈ N0 . ω|[0,k] ∈ B|[0,k]

)
⇔ ω ∈ B, (2.3b)

which is also known as ω-closedness [39]. Using this simplified notation we can define
the ω-closure of a dynamical system and state some interesting properties.

Definition 2.3. Given a dynamical system Σ = (N0,W,B), its ω-closure is defined by
Σ = (N0,W,B) s.t.

B = {ω ∈WN0 | ∀k ∈ N0 . ω|[0,k] ∈ B|[0,k]}. (2.4)

Furthermore, B is called the ω-closure of B.

Lemma 2.4. Given a dynamical system Σ = (N0,W,B) and its ω-closure Σ = (N0,W,B)
it holds that

(i) B ⊆ B,

(ii) ∀k ∈ N0 . B|[0,k] = B|[0,k] and

(iii) B = B ⇔ Σ is complete.

Proof. We prove all statements separately.
(i) As ω ∈ B implies ∀k ∈ N0 . ω|[0,k] ∈ B|[0,k] it implies ω ∈ B (from (2.4)).

(ii) “⊆” follows directly from (i). To show “⊇” we pick ω̃ ∈ B|[0,k] implying the existence

of ω ∈ B s.t. ω|[0,k] = ω̃ and therefore ω̃ ∈ B|[0,k] (from (2.4)).
(iii) “⇒”: Observe that “⇐” in (2.3b) always holds. To show “⇒” we pick ω s.t. ∀k ∈

N0 . ω|[0,k] ∈ B|[0,k]. Using (2.4) this implies ω ∈ B. As B = B we have ω ∈ B.

“⇐”: B ⊆ B always holds from (i). To show B ⊆ B we pick ω ∈ B. Using (2.4) this
implies ∀k ∈ N0 . ω|[0,k] ∈ B|[0,k]. As Σ is complete, this implies ω ∈ B.

14

2.2. Properties of Dynamical Systems with T = N0

Example 2.1. Consider the dynamical system

Σ = (N0,W,B) with W = {a, b} and B = {a∗bω}, (2.5)

where (·)∗ and (·)w denote, respectively, the finite and the infinite repetition of the
respective string. Using this behavior in (2.4) we obtain

B|[0,k] =
{
arbk+1−r

∣∣∣r ∈ N0, r ≤ k + 1
}
, hence B = {aω, a∗bω} ⊃ B.

This implies that B is not complete. /

l-Completeness

The behavior of a complete system can be fully described by local properties. In the
special case where these properties can be evaluated on bounded time intervals of length
l + 1 with l ∈ N0, following [76, p.184], the system is called l-complete.

Definition 2.5. A dynamical system Σ = (N0,W,B) is l-complete for l ∈ N0 if(
∀k ∈ N0 . ω|[k,k+l] ∈ B|[k,k+l]

)
⇔ ω ∈ B. (2.6)

Intuitively, l-completeness is explained easiest by the following gedankenexperiment.
Assume playing a sophisticated domino game where⋃

k∈N0

B|[k,k+l]

is the set of dominos, namely all finite strings representing the restriction of admissible
signals to a time interval of length l+ 1. The domino game is played by picking the first
domino from the set B|[0,l] and appending one domino from the set B|[1,1+l] if the last l
symbols of the first domino are equivalent to the first l symbols of the second domino.
Playing the domino game arbitrarily long and with all possible initial conditions and
domino combinations results in the set Bl containing all signals that satisfy the left side
of (2.6). If the system is l-complete we have B = Bl emphasizing that all valid signals
can be fully described by a local property.

Example 2.2. Consider the system

Σ = (N0, {a, b},B) s.t. (2.7)

B = {aaab(aab)ω, aab(aab)ω, ab(aab)ω, b(aab)ω},

Observe that Σ is time invariant, but not strictly time invariant, since

aaab(aab)w /∈ σB = {aab(aab)ω, ab(aab)ω, b(aab)ω, (aab)ω}.

15

2. From SlCA to SAlCA

b a

a a

a a

a b

. . .

0 2 4 N0

b a a

a a b

a b a

b a a

. . .

0 2 4 N0

Figure 2.1.: Domino game for l = 1 (left) and l = 2 (right) in Example 2.2.

Using l = 1 we get the domino set

∀k ∈ N0 . B|[k,k+1] = B|[0,1] = {aa, ab, ba}. (2.8)

As depicted in Figure 2.1 (left), we can start the domino game with the piece ba and
append a piece that starts with an a, e.g., aa. Observe that the signal constructed in
Figure 2.1 (left), i.e., ω = baaab..., is not allowed in (2.7) since not more than two
sequential a’s can occur for k > 0. However, we can of course construct all signals ω ∈ B
using the outlined domino game. This implies that (i) the system Σ in (2.7) is not
1-complete and (ii) the domino game constructs a behavior B1 that is larger than the
one in (2.7), i.e., B1 ⊃ B. Now, increasing l to l = 2 gives the following set of domino
pieces

B|[0,2] = {aaa, aab, aba, baa}, (2.9)

∀k > 0 . B|[k,k+2] = B|[1,3] = {aab, aba, baa}.

Playing the domino game with these sets results, for example, in the signal depicted
in Figure 2.1 (right), where always two symbols are required to match. Observe that
after the first piece we are only allowed to pick from the set B|[1,3]. This prevents the
occurrence of more than two sequential a’s since the domino aaa cannot be attached.
We get B2 = B, i.e., the system Σ in (2.7) is 2-complete. /

As a special case it can be shown that the behavior of an l-complete system Σ can by
fully described by the initial signal pieces B|[0,l] if Σ is strictly time invariant.

Lemma 2.6. Let Σ = (N0,W,B) be a strictly time invariant dynamical system and
l ∈ N0. Then Σ is l-complete if(

∀k ∈ N0 . ω|[k,k+l] ∈ B|[0,l]
)
⇔ ω ∈ B. (2.10)

Proof. If Σ is strictly time invariant, i.e., σB = B, then ∀k ∈ N0 . σkB = B, hence
∀k ∈ N0 . B|[k,k+l] = B|[0,l]. Therefore, (2.10) and (2.6) are equivalent.

16

2.2. Properties of Dynamical Systems with T = N0

Remark 2.1. For systems that are time invariant but not strictly time invariant there
exist k ∈ N0 s.t. B|[k,k+l] ⊂ B|[0,l], implying that in this case (2.6) and (2.10) are not
equivalent. Therefore, as already pointed out in [35, p.44], the definition of l-completeness
via (2.10), as used in [36, Def.8] and subsequent papers, does not coincide with the
definition of l-completeness via (2.6), as originally used by J.C.Willems [76, Sec.1.4.1].
In particular, an l-complete system in the sense of [36] (i.e., a system satisfying (2.10)) is
also l-complete in the sense of [76] (i.e., it also satisfies (2.6)) but the inverse implication
does not hold in general. To see this, suppose that Σ = (N0,W,B) is l-complete in the
sense of [36]. Then, obviously,(

∀k ∈ N0 . ω|[k,k+l] ∈ B|[0,l]
)
⇒ ω ∈ B

and ∀k ∈ N0 . B|[k,k+l] ⊆ B|[0,l]. It follows that(
∀k ∈ N0 . ω|[k,k+l] ∈ B|[k,k+l]

)
⇒ ω ∈ B,

which implies l-completeness in the sense of [76]. Therefore, l-completeness in the sense
of [36] is a stronger property than l-completeness in the sense of [76]. /

Memory Span

Recalling the gedankenexperiment of Section 2.2, at time k all necessary information to
determine the future evolution (i.e., the next feasible domino) of an l-complete system
is captured in the last l symbols of the observed signal ω. Following [76, p.184], systems
which exhibit this property are said to have memory span l.

Definition 2.7. A dynamical system Σ = (N0,W,B) has memory span l ∈ N0 if

∀ω, ω′ ∈ B, k ∈ N0 .
(
ω|[k,k+l−1] = ω′|[k,k+l−1] ⇒ ω ∧k ω′ ∈ B

)
. (2.11)

If Σ has memory span l = 0 it is called memoryless.

It obviously holds that any l-complete system has memory span l. However, the reverse
implication is only true if the system is complete to ensure that its behavior can be fully
described by a local property such as a finite memory span. This statement was proven
in [76, Prop.1.1] for T = Z and trivially specializes to T = N0.

Proposition 2.8. Let Σ = (N0,W,B) be a dynamical system and l ∈ N0. Then

Σ is l-complete⇔

(
Σ is complete

∧Σ has memory span l

)
(2.12)

17

2. From SlCA to SAlCA

Proof. “⇒”: Obviously l-completeness implies completeness (from (2.3b) and (2.6)). To
show that l-completeness of Σ implies (2.11) we fix ω1, ω2 ∈ B, k ∈ N0 s.t. ω1|[k,k+l−1] =
ω2|[k,k+l−1] and show ω = ω1 ∧k ω2 ∈ B. As ω1|[k,k+l−1] = ω2|[k,k+l−1] it holds that

ω|[k′,k′+l] =

ω1|[k′,k′+l] , k′ < k

ω2|[k′,k′+l] , k′ ≥ k
, hence ∀k′ ∈ N0 . ω|[k′,k′+l] ∈ B|[k′,k′+l].

Now ω ∈ B follows from l-completeness of Σ with (2.6).
“⇐”: To show that (2.6) holds for a complete system Σ with memory span l we fix
ω ∈ WN0 s.t. the left hand side of (2.6) holds and show that ω ∈ B follows if Σ is
complete and has memory span l (as the reverse direction in (2.6) always holds). Observe
that the left hand side of (2.6) implies

∃ω0, ω1, ω2, . . . ∈ B .


ω0|[0,l] = ω|[0,l]
∧ω1|[1,l+1] = ω|[1,l+1]

∧ω2|[2,l+2] = ω|[2,l+2]

∧ . . .

 , (2.13)

hence ω0|[1,l] = ω1|[1,l] and ω1|[2,l+1] = ω2|[2,l+1]. As Σ has memory span l this implies
ω0 ∧1 ω1 ∈ B and ω1 ∧2 ω2 ∈ B and therefore

(ω0 ∧1 ω1 ∧2 ω2) |[0,l+2] = ω|[0,l+2] ∈ B|[0,l+2].

Iteratively applying this procedure therefore yields ∀τ ∈ N0 . ω|[0,τ] ∈ B|[0,τ] implying
ω ∈ B from (2.3b) as Σ is complete.

2.3. Strongest l-Complete Approximations (SlCA)

The set Bl generated in the domino game outlined in Section 2.2 also matches the
behavior of the system Σ if Σ is r-complete with r ≤ l since using larger dominos cannot
lead to a richer behavior. Furthermore, as already shown in Example 2.2, we will always
get Bl ⊇ B even if the system is not complete at all, since using less information in the
domino game generates more freedom in constructing signals. Following [36, Def.9], this
leads to the definition of l-complete approximations.

Definition 2.9. Let Σ = (N0,W,B) be a dynamical system. Then Σ′ = (N0,W,B′) is an
l-complete approximation of Σ = (N0,W,B) if (i) Σ′ is l-complete (defined via (2.6))
and (ii) B′ ⊇ B. Furthermore, Σ′ is the strongest l-complete approximation of Σ if
(i) Σ′ is an l-complete approximation of Σ and (ii) for any l-complete approximation
Σ′′ = (N0,W,B′′) of Σ it holds that B′ ⊆ B′′.

18

2.3. Strongest l-Complete Approximations (SlCA)

Remark 2.2. As an immediate consequence of Remark 2.1, l-complete approximations
introduced in [36] (where l-completeness is defined via (2.10) instead of (2.6)) are always
l-complete approximations as defined above. The reverse implication does generally not
hold. /

Generalizing the results in [36, Prop.10] to the l-completeness definition in (2.6) shows
that the behavior Bl constructed in the domino game of the previous section is the
behavior of the (unique) strongest l-complete approximation.

Theorem 2.10. Let Σ = (N0,W,B) be a dynamical system. Then the unique strongest

l-complete approximation (SlCA) of Σ is given by Σ̂l⇑ = (N0,W, B̂l
⇑
), with

B̂l⇑ :=
{
ω ∈WN0

∣∣∣∀k ∈ N0 . ω|[k,k+l] ∈ B|[k,k+l]

}
. (2.14)

Furthermore, if Σ is strictly time invariant then

B̂l⇑ =
{
ω ∈WN0

∣∣∣∀k ∈ N0 . ω|[k,k+l] ∈ B|[0,l]
}
. (2.15)

Proof. To show that Σ̂l⇑ is a strongest l-complete approximation we prove all three
conditions in Definition 2.9 separately.

(i) Σ̂l⇑ is l-complete as (2.14) implies B̂l⇑ |[k,k+l] = B|[k,k+l], hence

ω ∈ B̂l⇑ ⇔
(
∀k ∈ N0 . ω|[k,k+l] ∈ B̂l

⇑ |[k,k+l]

)
.

(ii) B ⊆ B̂l⇑ holds as ω ∈ B implies ∀k ∈ N0 . ω|[k,k+l] ∈ B|[k,k+l], hence ω ∈ B̂l⇑ from
(2.14).

(iii) For any l-complete approximation Σ′ = (N0,W,B′) of Σ the inclusion B ⊆ B′
and therefore B|[k,k+l] ⊆ B′|[k,k+l] holds. Hence, using (2.14), ω ∈ B̂l⇑ implies
∀k ∈ N0 . ω|[k,k+l] ∈ B′|[k,k+l] and therefore ω ∈ B′ since Σ′ is l-complete.

Observe that Σ̂l⇑ is unique as (iii) implies that B̂l⇑ is the unique smallest element of the
set {B′} containing the behaviors of all l-complete approximations Σ′ = (N0,W,B′) of
Σ. The second part of the theorem follows directly from (2.10) in Lemma 2.6.

Example 2.3. As a consequence of Theorem 2.10, the behaviors B1 and B2 constructed
in Example 2.2 characterize the strongest 1-complete and the strongest 2-complete ap-
proximation of the system in (2.7), respectively. /

Remark 2.3. The SlCA for a time invariant system Σ using the l-completeness property
in the sense of [36] was shown to be characterized by the behavior

B̃ =
{
ω ∈WN0

∣∣∣∀k ∈ N0 . ω|[k,k+l] ∈ B|[0,l]
}
.

Then, since time invariance implies ∀k ∈ N0 . B|[k,k+l] ⊆ B|[0,l], we have B̂l⇑ ⊆ B̃.
Therefore, the SlCA characterized by Theorem 2.10 is a tighter approximation than the
SlCA defined in [36]. /

19

2. From SlCA to SAlCA

2.4. State Space Dynamical Systems (SSDS)

As behaviors are sets of infinite sequences which can technically not be recorded one
usually derives the behavior of a system from physical principals which results in equa-
tions including more than the externally visible variables. These additional variables are
called latent variables [76]. Latent variables for which the axiom of state holds are called
states. The latter is true if at any time all relevant information necessary to decide on
the possible future evolution of a dynamical system is captured by the current value
of the latent variables. Additionally using state variables to model the dynamics of a
system results in a so called state space dynamical system.

Definition 2.11 ([76], p.185). The dynamical system ΣS = (T,W ×X,BS) is a state
space dynamical system (SSDS) if

∀(ω, ξ), (ω′, ξ′) ∈ BS , t ∈ T .
(
ξ(t) = ξ′(t)⇒ (ω, ξ) ∧t (ω′, ξ′) ∈ BS

)
. (2.16)

ΣS is a state space representation of Σ = (T,W,B) if πW (BS) = B.

By investigating Definition 2.5, 2.7 and 2.11 we can conclude that (i) every l-complete
system has memory span l, (ii) the state property implies that Σx = (N0, X, πX(BS))
has memory span one and (iii) a straightforward choice for the state space of systems
with memory span l is given by the set of admissible strings2 up to length l. This takes
into account that for the first l time steps we can only memorize the symbols already
seen. Using this choice, we can generalize the construction of a state space representation
given in [36, p.6] to systems with memory span l in the sense of Definition 2.7.

Proposition 2.12. Let Σ = (N0,W,B) be a system with memory span l. Furthermore,
let

X :=
(⋃

r∈[0,l−1] B|[0,r−1]

)
∪
(⋃

k∈N0
B|[k,k+l−1]

)
(2.17)

and let BS ⊆ (W ×X)N0 s.t. (ω, ξ) ∈ BS iff

ξ(k) =

ω|[0,k−1] 0 ≤ k < l

ω|[k−l,k−1] k ≥ l
and ω ∈ B. (2.18)

Then ΣS = (N0,W ×X,BS) is a state space representation of Σ.

Proof. πW (BS) = B holds by construction. To show (2.16), pick (ω1, ξ1), (ω2, ξ2) ∈ BS
and k′ ∈ N0 s.t. ξ1(k′) = ξ2(k′) and show (ω, ξ) = (ω1, ξ1)∧k′ (ω2, ξ2) ∈ BS . First observe
that

ξ1(k′) = ω1|[max{0,k′−l},k′−1] = ω2|[max{0,k′−l},k′−1] = ξ2(k′). (2.19)

2In contrast to [36] this choice of the state space represents only the reachable part of
⋃
r≤l (W)r.

20

2.5. Evolution Laws and State Machines

This implies for k′ < l that ω = ω1 ∧k′ ω2 = ω2 ∈ B. From Σ having memory span
l (2.19) implies3 ω = ω1 ∧k′ ω2 ∈ B for k′ ≥ l. Now remember that (2.18) holds for
(ω1, ξ1), (ω2, ξ2) ∈ BS . Therefore, ξ = ξ1 ∧k′ ξ2 implies that for all k ∈ N0

ξ(k) =



ω1|[0,k−1] (k ≤ k′) ∧ (k < l)

ω1|[k−l,k−1] (k ≤ k′) ∧ (k ≥ l)

ω1|[0,k′−1] · ω2|[k′,k−1] (k′ < k < k′ + l) ∧ (k < l)

ω1|[k−l,k′−1] · ω2|[k′,k−1] (k′ < k < k′ + l) ∧ (k ≥ l)

ω2|[k−l,k−1] (k ≥ k′ + l) .

Hence, with ω = ω1 ∧k′ ω2 ∈ B, ξ = ξ1 ∧k′ ξ2 satisfies (2.18), proving (ω, ξ) ∈ BS .

Since the SlCA Σ̂l⇑ = (N0,W , B̂l⇑) of any dynamical system Σ = (N0,W,B) is l-

complete it follows from Proposition 2.8 that Σ̂l⇑ has memory span l and we can use
Proposition 2.12 to construct a state space representation of Σ̂l⇑ , which is denoted by
Σ̂l⇑
S = (N0,W × X̂ l⇑ , B̂l⇑S). Note that the state space constructed in Proposition 2.12 has

finitely many elements if W is finite.

Example 2.4. Recall that the dynamical system Σ in Example 2.2 is 2-complete and
we have ⋃

r∈[0,1]

B|[0,r−1] = {λ, a, b} and
⋃
k∈N0

B|[k,k+1] = {aa, ab, ba}.

Using Proposition 2.12, this implies that Σ in (2.7) can be realized by the state space
dynamical system ΣS = (N0,W ×X,BS) with X = {λ, a, b, aa, ab, ba}. Analogously,
the state space representation of the strongest 1-complete approximation of Σ has state
space X1⇑ = {λ, a, b}. /

2.5. Evolution Laws and State Machines

Evolution laws where introduced in [76] to model the step-by-step evolution of a be-
havioral system. In comparison to their construction in [76, Sec.1.5], where only time
invariant systems with time axis Z are considered, a slightly more general definition of
time dependent evolution laws is used in this section.

Definition 2.13. A time dependent discrete time evolution law is a tuple Σψ = (N0,W,
X, ψ,X0), where X is the set of states, W is the set of external symbols, X0 ⊆ X is the

3Observe that, under the premises of (2.11), ω1 ∧k ω2 = ω1 ∧k+l ω2 in the right side of the implication
in (2.11).

21

2. From SlCA to SAlCA

set of initial states and ψ : N0 → 2X×W×X is the time dependent next state relation.
Furthermore, the behavior induced by ψ is defined by

Bψ :=

{
(ω, ξ)

∣∣∣∣∣
(

ξ(0) ∈ X0

∧∀k ∈ N0 . (ξ(k), ω(k), ξ(k + 1)) ∈ ψ(k)

)}
. (2.20a)

Let δ :=
⋃
k∈N0

ψ(k) ⊆ X ×W ×X be a time independent next state relation and

Bδ :=

{
(ω, ξ)

∣∣∣∣∣
(

ξ(0) ∈ X0

∧∀k ∈ N0 . (ξ(k), ω(k), ξ(k + 1)) ∈ δ

)}
(2.20b)

the behavior induced by it. Then Σψ is called time independent if Bψ = Bδ.

When Σψ is time independent the definition of Σψ simplifies to the time independent
discrete time evolution law Σδ = (N0,W,X, δ,X0) with induced behavior Bδ. Note that
Bδ is not necessarily time invariant in the (behavioral) sense of Section 2.2. Observe
that for unrestricted initial states, i.e., X0 = X, Σδ coincides with [76, Def.1.4] and the
behavior Bδ becomes time invariant and coincides with the one in [76, p.189].

Based on the behavior of an SSDS ΣS an evolution law reproducing its step-by-step
evolution can be constructed as follows.

Definition 2.14. Let ΣS = (N0,W ×X,BS) be an SSDS and Σψ = (N0,W,X, ψ,X0)
an evolution law s.t. X0 = πX(BS)|[0,0] and

ψ(k) :=

(x,w, x′)

∣∣∣∣∣∣∣∃(ω, ξ) ∈ BS .
 ξ(k) = x

∧ω(k) = w

∧ξ(k + 1) = x′


 . (2.21)

Then Σψ is the evolution law induced by ΣS.

State Machines

Time independent discrete time evolution laws Σδ are, up to some notational differences,
identical to state machines Q as, e.g., used in [36].

Definition 2.15 ([36], Def. 3). A state machine (SM) is a tuple Q = (X,W, δ,X0)
where X is the set of states, W is the set of external symbols, X0 ⊆ X is the set of
initial states, and δ ⊆ X ×W × X is a next state relation. The full behavior of Q is
defined by

Bf (Q) := Bδ. (2.22)

Q is called live and reachable if

∀x ∈ X . ∃(ω, ξ) ∈ Bf (Q), k ∈ N0 . ξ(k) = x (2.23)

Furthermore, Q is called a finite state machine (FSM) if |X| <∞ and |W | <∞.

22

2.5. Evolution Laws and State Machines

As the realization of an abstraction by an FSM is a necessary prerequisite for the
application of symbolic controller synthesis methods, we are interested in realizing SlCA
by an FSM whenever W is finite.

Evolution Laws for l-Complete Dynamical Systems

Thinking back to the presented domino game in Section 2.2 and the construction of a
state space representation ΣS = (N0,W ×X,BS) of an l-complete dynamical system Σ in
Proposition 2.12, a transition constructed in (2.21) from BS represents adding an allowed
domino in the domino game. However, the set of allowed dominos is time dependent since
we have to pick from the subset B|[k,k+l] of all dominos Dl+1 at time k. This suggests
that the evolution law induced by ΣS is time dependent. Therefore, extending the usual
construction from [36, Thm.12] to the l-completeness definition used in this thesis results
in a time dependent evolution law rather than an SM.

Proposition 2.16. Let Σ = (N0,W,B) be an l-complete dynamical system and ΣS =
(N0,W ×X,BS) its state space representation constructed in Proposition 2.12. Then ΣS

induces the evolution law Σψ = (N0,W,X, ψ,X0) with X0 = {λ} and

ψ(k) =
{

(x,w, x · w)
∣∣k < l ∧ x · w ∈ B|[0,k]

}
(2.24)

∪
{

(x,w, (x · w)|[1,l−1])
∣∣k ≥ l ∧ x · w ∈ B|[k−l,k]

}
.

Proof. The next state relation (2.24) satisfies (2.21). Moreover, πX(BS)|[0,0] = {λ} as
(2.18) implies ξ(0) = ω|[0,−1] = λ. Hence Σψ is the evolution law induced by ΣS .

Remark 2.4. Recall the gedankenexperiment in Section 2.2 and observe that in the
construction of Proposition 2.12 the state represents the “recent past” of the signal w,
i.e., a finite string of length l if k ≥ l (see Figure 2.2 (middle)). However, at start up, i.e.,
for k < l, no “past” of this length exists. In this case the state describes the available
past information, i.e., a finite string of length r ∈ [0, l − 1] contained in the set B|[0,r−1]

(see Figure 2.2 (left)). Therefore, assuming |x|L = r < l implies that (x,w, x′) ∈ ψ(k) if
x′ is the extension of x by w and a valid initial behavior, i.e., x′ ∈ B|[0,r].

Recall that the domino game describes the admissible behavior by appending domino
pieces of length l + 1 such that the last l symbols match. Therefore, assuming |x|L = l
implies (x,w, x′) ∈ ψ(k) if x · w is a domino that is currently allowed to be attached,
hence x · w ∈ B|[k−l,k] and x′ = x|[1,l−1] · w (see Figure 2.2 (middle)). /

As every l-complete approximation is l-complete, we can use Proposition 2.16 to con-
struct an evolution law induced by the SlCA of our running example.

Example 2.5. Using the state space derived in Example 2.4 and the construction of the
next state relation in (2.24), we can construct the evolution law Σψ realizing the state
space representation ΣS of the dynamical system Σ in Example 2.2. The evolution law

23

2. From SlCA to SAlCA

w

x

x′

0 k N0

w

x

x′

k′ k N0

x x′
w

ψ(k)

Figure 2.2.: Correspondence of one step in the domino game for k = 3 < l = 4 (left) and k > l = 4
with k′ = k − l (middle) to one transition in Σψ (right).

λ

a b

aa ab ba

a b

a b a

b a
a

a
if k ∈ {3}

Figure 2.3.: Evolution law Σψ constructed in Example 2.5, realizing the state space representation
ΣS of the dynamical system Σ in Example 2.2.

Σψ is depicted in Figure 2.3 where a transition (x,w, x′) ∈ ψ(k) is depicted by an arrow
from x to x′ labeled by “w if k ∈ V ” where V := {k ∈ N0|(x,w, x′) ∈ ψ(k)}. Whenever
a transition can always occur if its source state x is reached the label reduces to “w”.
The initial state is indicated by an arrow pointing to it from “outside”. Note, that in
Σψ2 the transition from state aa to itself is time dependent as three sequential a’s are
only allowed at start up. /

2.6. Asynchronous State Space Dynamical Systems (ASSDS)

It was shown in the previous section that a straightforward extension of [36, Thm.12]
to the l-completeness definition used in this thesis results in time dependent evolution
laws rather than state machine realizations of SlCA. Obviously, one could render the
evolution law Σψ in Definition 2.14 time independent by using time as an additional
state variable. However, this would always lead to an infinite state set.

To ensure that constructed abstractions are always realizable by state machines we
want to derive a new property of dynamical systems in this section allowing for real-
izability by a time independent evolution law, in particular by a (finite) SM. Observe
that this property must allow for concatenation of state trajectories that reach the same

24

2.6. Asynchronous State Space Dynamical Systems (ASSDS)

state asynchronously (i.e., at different times). This is formalized in the following defini-
tion inspired by [26, p.59].

Definition 2.17. The dynamical system ΣS = (N0,W ×X,BS) is an asynchronous
state space dynamical system (ASSDS) if

∀(ω, ξ), (ω′, ξ′)∈BS , k, k′∈N0 .
(
ξ(k)=ξ′(k′)⇒ (ω, ξ) ∧kk′ (ω′, ξ′)∈BS

)
. (2.25)

ΣS is an asynchronous state space representation of Σ = (T,W,B) if πW (BS) = B.

It can be easily observed that every asynchronous state space dynamical system is also
a synchronous4 state space dynamical system since we can always pick k1 = k2 = t in
(2.25) and get (2.16).

Using Definition 2.17 we can verify our intuition and show that the asynchronous
concatenation in the definition of ASSDS implies that its induced evolution law is time
independent and can therefore be equivalently given by a state machine.

Proposition 2.18. Let ΣS = (N0,W,X,BS) be an ASSDS. Then the evolution law
induced by ΣS is time independent and can therefore be equivalently represented by an
SM Q = (X,W, δ,X0) s.t. X0 = πX(BS)|[0,0] and

δ :=

(x,w, x′)

∣∣∣∣∣∣∣∃(ω, ξ) ∈ BS , k ∈ N0 .

 ξ(k) = x

∧ω(k) = w

∧ξ(k + 1) = x′


 . (2.26)

Furthermore, Q is live and reachable. Q is called the state machine induced by ΣS.

Proof. First, observe that (2.23) holds for Q by construction. To prove the first part
of the statement, let Σψ = (N0,W,X, ψ,X0) be the evolution law induced by ΣS and
δ =

⋃
k∈N0

ψ(k). Now observe that (2.20a) and (2.20b) coincide (i.e., Bψ = Bδ) if

∀k ∈ N0 .

(
(x,w, x′) ∈ ψ(k)

∧(x,w′′, x′′) ∈ δ

)
⇒ (x,w′′, x′′) ∈ ψ(k), (2.27)

which remains to be shown. Using (2.21) and δ =
⋃
k∈N0

ψ(k), the left hand side of (2.27)
implies for all k ∈ N0

∃(ω′, ξ′)∈BS .

 ξ′(k)=x

∧ω′(k)=w

∧ξ′(k+1)=x′

 and ∃(ω′′, ξ′′)∈BS , k′′∈N0.

 ξ′′(k′′)=x

∧ω′′(k′′)=w′′

∧ξ′′(k′′+1)=x′′

.
4To clearly distinguish the asynchronous state property and the (standard) state property from Sec-

tion 2.4 we will refer to the latter one as synchronous state property in the remainder of this thesis.
The same convention is applied to other properties as memory span and l-completeness.

25

2. From SlCA to SAlCA

Now (2.25) implies (ω, ξ) = (ω′, ξ′) ∧kk′′ (ω′′, ξ′′) ∈ BS and therefore ξ(k) = x, ω(k) = w′′

and ξ(k + 1) = x′′ implying (x,w′′, x′′) ∈ ψ(k) (from (2.21)).

Remark 2.5. It is interesting to note that the asynchronous state property from Def-
inition 2.17 and the resulting time independence of the induced evolution law coincide
precisely with the “standard” notion of time invariant state space systems in continu-
ous or discrete time (see, e.g., [28, Ch.2]). It should be kept in mind though that this
notion does not imply and is not implied by the (behavioral) notion of time invariance
introduced in Section 2.1. /

ASSDS vs. SM

As we will use the connection between ASSDS and SM quite extensively in Part I we
investigate Proposition 2.18 more closely.

First, observe that we can also invert Proposition 2.18 to obtain an ASSDS from a
given SM. However, it follows from (2.22) and (2.20b) that the full behavior Bf (Q) of a
state machine Q is fully determined by a local property, i.e., the next state relation δ.
Hence, the resulting ASSDS is always complete.

Proposition 2.19. Let Q = (X,W, δ,X0) be an SM. Then ΣS = (N0,W ×X,Bf (Q))
is an ASSDS and ΣS is complete. ΣS is called the ASSDS induced by Q.

Proof. To see that ΣS is an ASSDS pick (ω, ξ), (ω′, ξ′) ∈ Bf (Q) s.t. ξ(k) = ξ′(k′). Then
it follows immediately from (2.20b) that (ω̃, ξ̃) = (ω, ξ) ∧k (ω′, ξ′) ∈ Bf (Q) as for all k′′

holds that (ξ̃(k′′), ω̃(k′′), ξ̃(k′′ + 1)) ∈ δ.
For completeness of ΣS , observe that “⇐” always holds in (2.3b). To show “⇒”,

pick (ω, ξ) s.t. ∀k ∈ N0 . (ω|[0,k], ξ|[0,k]) ∈ Bf (Q)|[0,k]. This implies that ξ(0) ∈ X0 and
∀k ∈ N0 . (ξ(k), ω(k), ξ(k + 1)) ∈ δ and therefore (ω, ξ) ∈ Bf (Q) from (2.20a). Hence,
Bf (Q) is complete.

Investigating Proposition 2.18 and 2.19 it is immediately obvious that the two con-
structions do not always commute. Hence, starting with an ASSDS ΣS and constructing
its induced SM Q, the latter only reproduces ΣS as its induced ASSDS if ΣS is complete.
This is formalized in the following lemma.

Lemma 2.20. Let ΣS = (N0,W ×X,BS) be an ASSDS, Q = (X,W, δ,X0) the SM
induced by ΣS and Σ′S = (N0,W ×X,B′S) the ASSDS induced by Q. Then

(i) Σ′S = ΣS and
(ii) ΣS = Σ′S iff ΣS is complete.

Proof. Note that (ii) is an immediate consequence of (i) and Lemma 2.4 (iii). We there-
fore only prove (i), hence we show that Bf (Q) = BS . Fix any (ω, ξ) ∈ Bf (Q) and observe

26

2.6. Asynchronous State Space Dynamical Systems (ASSDS)

that using (2.21) in (2.20a) implies

∃(ω0, ξ0), (ω1, ξ1) ∈ BS .

 ξ0|[0,1] = ξ|[0,1] ∧ ω0(0) = ω(0)

∧ξ1|[1,2] = ξ|[1,2] ∧ ω1(1) = ω(1)

∧ξ0(1) = ξ1(1)

 . (2.28)

As ΣS is an ASSDS the last line in (2.28) implies (ω0, ξ0) ∧1 (ω1, ξ1) ∈ BS (from (2.16))
hence (ω, ξ)|[0,1] ∈ BS |[0,1]. Applying this argument iteratively gives

Bf (Q) =
{

(ω, ξ)
∣∣∀k ∈ N0 . (ω, ξ)|[0,k] ∈ BS |[0,k]

}
.

Therefore, using (2.4), obviously Bf (Q) = BS .

For the complementary result to Lemma 2.20 recall from Proposition 2.18 that the
SM induced by an ASSDS is always live and reachable. Hence, starting with an SM Q
and constructing its induced ASSDS ΣS , the latter only reproduces Q as its induced SM
if Q is live and reachable.

Lemma 2.21. Let Q = (X,W, δ,X0) be an SM, ΣS = (N0,W ×X,BS) the ASSDS
induced by Q and Q′ = (X,W, δ′, X ′0) the SM induced by ΣS. Then Q = Q′ iff Q is live
and reachable.

Proof. Recall from Proposition 2.19 that BS = Bf (Q). Therefore, using (2.23) in Propo-
sition 2.18 immediately implies X0 = X ′0 and δ = δ′. It is furthermore easy to see that
X0 = X ′0 and δ = δ′ with X ′0 and δ′ as in Proposition 2.18 implies (2.23).

Example 2.6. We revisit Example 2.1 and assume that the system Σ in (2.5) is addi-
tionally equipped with a state space X s.t.

ΣS = (N0,W ×X,BS) with X = {xa, xb} and BS = {(a, xa))∗(b, xb)ω}. (2.29)

It can easily be verified that ΣS is an ASSDS. Using Proposition 2.18 therefore results
in the SM Q1 induced by ΣS which is depicted in Figure 2.4 (left). It is obvious that Q1

is live and reachable. Now applying (2.22) to Q1 results in its full behavior

Bf (Q1) = {(a, xa))ω, (a, xa))∗(b, xb)ω}.

Recalling the arguments from Example 2.1 it can be easily observed that

Bf (Q1) = Bf (Q1) = BS ⊃ BS .

Hence the ASSDS ΣS,1 = (N0,W ×X,Bf (Q1)) induced by Q1 via Proposition 2.19 is
complete while ΣS is not complete implying ΣS 6= ΣS,1.

27

2. From SlCA to SAlCA

xa xb

a

b

b

xa xb xc

a

b

b

a

Figure 2.4.: SM Q1 (left) and Q2 (right) used in Example 2.6. The former is live and reachable
while the latter is not reachable.

Now we consider the SM Q2 depicted in Figure 2.4 (right). The additional state xc
is obviously not reachable in Q2 (i.e., Q2 is not reachable). Constructing the ASSDS
induced by Q2 via Proposition 2.19 results again in ΣS,1 as Bf (Q1) = Bf (Q2). However,
the SM induced by ΣS,1 is given by Q1 depicted in Figure 2.4 (left) which is obviously
not equivalent to Q2. /

Summarizing the results from Lemma 2.20 and Lemma 2.21 ASSDS and SM can be
used interchangeably to model a system if the former is complete and the latter is live and
reachable. In this case we call them a realization of one another. As we will occasionally
use different external signal spaces in the following chapters we define realizations slightly
more general as suggested by the preceding discussion.

Definition 2.22. Given a dynamical system Σ = (N0,W,B) and an ASSDS ΣS =
(N0,W ×X,BS), let V be a set s.t. πV (W) 6= ∅ (resp. πV (W × X) 6= ∅). Then Σ
(resp. ΣS) is said to be realized by the SM Q w.r.t. V , if πV (Bf (Q)) = πV (B) (resp.
πV (Bf (Q)) = πV (BS)) and Q is live and reachable.

2.7. Asynchronous Properties of Dynamical Systems

We have shown in the previous section that the asynchronous state property renders
the step-by-step evolution of a dynamical system realizable by a state machine. It now
remains to introduce an abstraction method generating an ASSDS rather then an SSDS.
Following the spirit of the construction of SlCA and recalling from Section 2.2 that the
notions of state, memory span and l-completeness are strongly related, we first derive
asynchronous versions of the latter in this section. We furthermore prove their connection
in direct analogy to the synchronous case in Section 2.2.

Asynchronous Memory Span

Recall that the concepts of synchronous state property and synchronous memory span are
strongly related, since the synchronous state property implies that

28

2.7. Asynchronous Properties of Dynamical Systems

Σx = (N0, X, πX(BS)) has memory span one. To get the same relation for the asyn-
chronous case we define an asynchronous memory span.

Definition 2.23. The dynamical system Σ = (N0,W,B) has asynchronous memory span
l if

∀ω, ω′ ∈ B, k, k′ ∈ N0 .
(
ω|[k,k+l−1] = ω′|[k′,k′+l−1] ⇒ ω ∧kk′ ω′ ∈ B

)
. (2.30)

As expected, it can be easily seen that every system with asynchronous memory span l
also has synchronous memory span l.

For systems with an asynchronous memory span the domino game presented in Sec-
tion 2.2 is significantly simplified. At any point in time k we can attach any domino
from the whole domino set Dl+1 =

⋃
k∈N0

B|[k,k+l], as long as the first l symbols of the
newly attached domino match the last l symbols of the previous domino. Recall that
this implies time independent transitions in the induced evolution law which is what we
are aiming at.

Asynchronous l-Completeness

Having in mind the aforementioned simplification of the domino game, the definition of
asynchronous l-completeness comes as no surprise.

Definition 2.24. The dynamical system Σ = (N0,W,B) is asynchronously l-complete
if (

ω|[0,l−1] ∈ B|[0,l−1]

∧∀k ∈ N0 . ω|[k,k+l] ∈
⋃
k′∈N0

B|[k′,k′+l]

)
⇔ ω ∈ B. (2.31)

Again, it is easily verified that a system is synchronously l-complete if it is asynchronously
l-complete.

Remark 2.6. The second line in (2.31) describes that the possible future evolution
of the system depends on the l past values of a signal if k ≥ l. However, at start up
this “past” is not yet fully available. Therefore, the first line in (2.31) is needed to
ensure that all signals start with an allowed initial pattern. However, observe that if
Σ is time invariant the condition σB ⊆ B implies ∀k ∈ N0 . σ

tB|[k,k+l] ⊆ B|[0,l] giving⋃
k′∈N0

B|[k′,k′+l] = B|[0,l]. Then the first line in (2.31) is implied by the second and is
therefore unnecessary. This is stated in the following lemma. /

Lemma 2.25. A time invariant dynamical system Σ = (N0,W,B) is asynchronously
l-complete if (

∀k ∈ N0 . ω|[k,k+l] ∈ B|[0,l]
)
⇔ ω ∈ B. (2.32)

Proof. As pointed out in Remark 2.6, time invariance of Σ implies
⋃
k′∈N0

B|[k′,k′+l] =
B|[0,l]. Hence (2.32) and (2.31) are identical.

29

2. From SlCA to SAlCA

Remark 2.7. Recall from Remark 2.1 that in [36] l-completeness for time invariant
systems is defined by (2.32) (instead of (2.6)). Therefore, Lemma 2.25 implies that this
stronger version of l-completeness from [36] coincides with the property of asynchronous
l-completeness for time-invariant systems. /

Example 2.7. We now investigate the asynchronous l-completeness properties of the
system Σ in (2.7). Since Σ is time invariant, it follows from Remark 2.6 that⋃

k∈N0

B|[k,k+l] = B|[0,l].

Therefore, the simplified domino game for l = 1 is identical to the one played in Ex-
ample 2.2 implying that the system (2.7) is not asynchronously 1-complete. For l = 2,
observe that in the simplified domino game we are still allowed to use the piece aaa
from the set B|[0,2] at any time k > 0. Therefore, more than two sequential a’s can be
produced by this game implying that the system (2.7) is not asynchronously 2-complete.
Extending l to l = 3 gives the set⋃

k′∈N0

B|[k′,k′+3] = B|[0,3] = {aaab, aaba, abaa, baab}.

Now, playing the simplified domino game ensures that always three symbols have to
match, preventing the piece aaab to be attachable for k > 0. Hence, the resulting behavior
is identical to B. This implies that the system (2.7) is asynchronously 3-complete. /

Asynchronous l-Completeness vs. Asynchronous Memory Span

Recall from Proposition 2.8 that a synchronously l-complete system always has syn-
chronous memory span l whereas the reverse implication only holds if the system is
complete. To emphasize that the asynchronous properties extend the behavioral systems
theory in a consistent way, we prove the same correspondence for the asynchronous case.

Proposition 2.26. Let Σ = (N0,W,B) be a dynamical system and l ∈ N0. Then

Σ is asynchronously l-complete⇔

(
Σ is complete

∧Σ has asynchronous memory span l

)
. (2.33)

Proof. “⇒” As asynchronous l-completeness implies synchronized l-completeness, it also
implies completeness. To show that asynchronous l-completeness of Σ implies (2.30), we
fix ω1, ω2 ∈ B, k1, k2 ∈ N0 s.t. ω1|[k1,k1+l−1] = ω2|[k2,k2+l−1] and show that ω = ω1∧k1

k2
ω2 ∈

B follows. We distinguish two cases:

30

2.7. Asynchronous Properties of Dynamical Systems

- k1 = 0: Observe that ω = ω1 ∧0
k2
ω2 = ω2|[k2,∞), hence

ω|[0,l−1] = ω2|[k2,k2+l−1] = ω1|[0,l−1] ∈ B|[0,l−1] and

∀k ∈ N0 . ω|[k,k+l] ∈ B|[k+k2,k+k2+l] ⊆
⋃
k′∈N0

B|[k′,k′+l].

With asynchronous l-completeness of Σ it follows that ω ∈ B (from (2.31)).
- k1 6= 0: Observe that for all k ∈ N0

ω|[k,k+l] =

ω1|[k,k+l] ∈ B|[k,k+l] ⊆
⋃
k′∈N0

B|[k′,k′+l] , k < k1

ω2|[k′,k′+l] ∈ B|[k′,k′+l] ⊆
⋃
k′∈N0

B|[k′,k′+l] , k ≥ k1

,

with k′ = k − k1 + k2. Hence ω|[0,l−1] = ω1|[0,l−1] ∈ B|[0,l−1] and
∀k ∈ N0 . ω|[k,k+l] ∈

⋃
k′∈N0

B|[k′,k′+l]. With asynchronous l-completeness of Σ it
follows that ω ∈ B (from (2.31)).

“⇐” To show that (2.31) holds for a complete system Σ with asynchronous memory
span l, we fix ω ∈WN0 s.t. the left hand side of (2.31) holds and show that ω ∈ B follows
if Σ is complete and has asynchronous memory span l (as the inverse direction in (2.31)
always holds). Observe that the left hand side of (2.31) implies

∃ω0, ω1, ω2, . . . ∈ B, k′, k′′, . . . ∈ N0 .


ω0|[0,l] = ω|[0,l]
∧ω1|[k′,k′+l] = ω|[1,1+l]

∧ω2|[k′′,k′′+l] = ω|[2,2+l]

∧ . . .

 . (2.34)

hence ω0|[1,l] = ω1|[k′,k′+l−1] and ω1|[k′+1,k′+l] = ω2|[k′′,k′′+l−1]. As Σ has asynchronous

memory span l, this implies ω0 ∧1
k′ ω1 ∈ B and ω1 ∧k

′+1
k′′ ω2 ∈ B and therefore(

ω0 ∧1
k′ ω1 ∧k

′+1
k′′ ω2

)
|[0,l+2] = ω|[0,l+2] ∈ B|[0,l+2].

Iteratively applying this procedure therefore yields ∀τ ∈ N0 . ω|[0,τ] ∈ B|[0,τ] implying
ω ∈ B as Σ is complete.

ASSDS and SM of Asynchronously l-Complete Systems

Recall from the simplified domino game that the memory of an asynchronously l-
complete system is still given by the last l symbols of the last domino. Hence, we can
construct a state space representation for the asynchronous case equivalently to Propo-
sition 2.12.

31

2. From SlCA to SAlCA

Proposition 2.27. Let Σ = (N0,W,B) be a dynamical system with asynchronous mem-
ory span l. Then ΣS = (N0,W,X,BS) from Proposition 2.12 is an asynchronous state
space representation of Σ.

Proof. πW (BS) = B holds by construction from Proposition 2.12. To show (2.25) we pick
(ω1, ξ1), (ω2, ξ2) ∈ BS and k′, k′′ ∈ N0 s.t. ξ1(k′) = ξ2(k′′) and show (ω, ξ) = (ω1, ξ1) ∧k′k′′
(ω2, ξ2) ∈ BS .

We first observe that

ξ1(k′) = ω1|[max{0,k′−l},k′−1] = ω2|[max{0,k′′−l},k′′−1] = ξ2(k′′) (2.35)

and show ω ∈ B using two different cases:
- If k′, k′′ ≤ l, (2.35) implies k′ = k′′ and ω = ω1 ∧k

′
k′′ ω2 = ω2 ∈ B.

- If k′ ≤ l, k′′ > l or k′ > l, k′′ ≤ l (2.35) implies k′ = l or k′′ = l, respectively. As
k′, k′′ > l, this implies that ω ∈ B follows from Σ having asynchronous memory span5

l.
It remains to show that ξ satisfies (2.18). Remember that (2.18) holds for (ω1, ξ1),

(ω2, ξ2) ∈ BS . Therefore, ξ = ξ1 ∧k
′
k′′ ξ2 implies that for all k ∈ N0

ξ(k) =



ω1|[0,k−1] (k ≤ k′) ∧ (k < l)

ω1|[k−l,k−1] (k ≤ k′) ∧ (k ≥ l)

ω1|[0,k′−1] · ω2|[k′′,k−k′+k′′−1] (k′ < k < k′ + l) ∧ (k < l)

ω1|[k−l,k′−1] · ω2|[k′′,k−k′+k′′−1] (k′ < k < k′ + l) ∧ (k ≥ l)

ω2|[k−k′+k′′−l,k−k′+k′′−1] (k ≥ k′ + l) .

Hence, with ω = ω1 ∧k
′
k′′ ω2 ∈ B we know that ξ = ξ1 ∧k

′
k′′ ξ2 satisfies (2.18).

As we already know from Proposition 2.18 that every ASSDS allows for a SM realiza-
tion, we can construct the latter in direct analogy to Proposition 2.16.

Proposition 2.28. Let Σ = (N0,W,B) be an asynchronously l-complete dynamical sys-
tem and ΣS = (N0,W,X,BS) its asynchronous state space representation from Proposi-
tion 2.27. Then Q = (X,W, δ,X0) with X0 = {λ} and

δ =
{

(x,w, x · w)
∣∣∣|x|L < l ∧ x · w ∈ B|[0,|x|

L
]

}
(2.36)

∪
{

(x,w, (x · w)|[1,l−1])
∣∣|x|L = l ∧ x · w ∈

⋃
k′∈N0

B|[k′,k′+l]
}

realizes ΣS w.r.t. W ×X.

5Observe that, under the premises of Definition 2.23, ω1 ∧k
′

k′′ ω2 = ω1 ∧k
′+l
k′′+l ω2 in the right side of the

implication in (2.30).

32

2.7. Asynchronous Properties of Dynamical Systems

Proof. Observe that δ =
⋃
k∈N0

ψ(k) with ψ(k) from (2.24) and recall from Proposi-
tion 2.16 that Σψ is the induced evolution law of ΣS . Furthermore, Proposition 2.18
implies that Q is the induced evolution law of ΣS and Q is live and reachable. Now l-
completeness of Σ implies completeness of ΣS .Therefore it follows from Lemma 2.20 (ii)
and Definition 2.22 that ΣS is realized by the SM Q = (X,W, δ,X0) w.r.t. W ×X.

Remark 2.8. The next state relation δ in (2.36) can be interpreted analogously to ψ
in (2.24), see the discussion in Remark 2.4. Observe that now the condition in the last
line of (2.36) is weakened w.r.t. (2.24) in the sense that x · w can be any domino in the
gedankenexperiment in Section 2.2. /

Example 2.8. Recall from Example 2.7 that the system (2.7) in Example 2.2 is asyn-
chronously 3-complete and that (2.9) implies

⋃
k∈N0

B|[t,k+2] = {aaa, aab, aba, baa}. Adding
the set

⋃
r∈[0,2] B|[0,r−1] = {λ, a, b, aa, ab, ba}, the state space defined in Proposition 2.12

with l = 3 for the system in (2.7) is given by

X = {λ, a, b, aa, ab, ba, aaa, aab, aba, baa}.

Using this state space and the construction of the next state relation in (2.36), we can
construct an FSM Q realizing the system (2.7) in Example 2.2. The result is depicted
in Figure 2.5. /

λ

a b

aa ab ba

aaa aab aba baa

a b

a b a

a b a a

b a a
b

Figure 2.5.: FSM Q realizing (2.7).

Remark 2.9. Observe that (2.10) in Lemma 2.6 and (2.32) in Lemma 2.25 are identi-
cal. Therefore, Lemma 2.6 and Lemma 2.25 imply that the asynchronous and the syn-
chronous l-completeness property coincide for strictly time invariant systems. As a direct
consequence, the state space representation of a strictly time invariant (synchronously)
l-complete system can be realized by the FSM Q constructed in Proposition 2.28. /

33

2. From SlCA to SAlCA

2.8. Strongest Asynchronous l-Complete Approximations
(SAlCA)

It was shown in Section 2.7 that asynchronously l-complete dynamical systems can be
represented by an ASSDS which allows for realizability by an SM. Hence, abstracting
a dynamical system by an asynchronously l-complete one allows to realize the latter
by an SM. Motivated by this we construct asynchronous l-complete approximations
analogously to the synchronous versions in Definition 2.9.

Definition 2.29. Let Σ = (N0,W,B) be a dynamical system. Then Σ′ = (N0,W,B′) is
an asynchronous l-complete approximation of Σ if (i) Σ′ is asynchronously l-complete
and (ii) B′ ⊇ B. Furthermore, Σ′ = (N0,W,B′) is the strongest asynchronous l-complete
approximation of Σ if (i) Σ′ is an asynchronous l-complete approximation of Σ and
(ii) for any asynchronous l-complete approximation Σ′′ = (N0,W,B′′) of Σ it holds that
B′ ⊆ B′′.

Recall that for an asynchronously l-complete system the domino game gedankenex-
periment can be simplified such that at any time k we can attach any domino from the
whole domino set

Dl+1 =
⋃
k∈N0

B|[k,k+l]. (2.37)

This simplified domino game now constructs the unique strongest asynchronous l-complete
approximation B̂l↑ .

Theorem 2.30. Let Σ = (N0,W,B) be a dynamical system. Then the unique strongest

asynchronous l-complete approximation (SAlCA) of Σ is given by Σ̂l↑ = (N0,W, B̂l
↑
),

with

B̂l↑ :=

{
ω ∈WN0

∣∣∣∣∣
(

ω|[0,l−1] ∈ B|[0,l−1]

∧∀k ∈ N0 . ω|[k,k+l] ∈
⋃
k′∈N0

B|[k′,k′+l]

)}
. (2.38)

Furthermore, if Σ is time invariant then

B̂l↑ =
{
w ∈WN0

∣∣∣∀k ∈ N0 . w|[k,k+l] ∈ B|[0,l]
}
. (2.39)

Proof. The proof of the first part follows the same lines as the proof of Theorem 2.10,
and the second part follows directly from Lemma 2.25.

Remark 2.10. As a direct consequence of Remark 2.9, the strongest synchronous and
the strongest asynchronous l-complete approximation coincide for strictly time invariant
systems. This can be easily seen by noting that (2.15) in Theorem 2.10 and (2.39) in
Theorem 2.30 coincide.

34

2.8. Strongest Asynchronous l-Complete Approximations (SAlCA)

Furthermore, recall from Remark 2.7 that the stronger notion of l-completeness from
[36] coincides with the property of asynchronous l-completeness for time-invariant sys-
tems. Therefore, the strongest l-complete approximation of a time invariant system Σ
suggested in [36] is identical to its strongest asynchronous l-complete approximation Σ̂l↑

introduced in Definition 2.29. The latter is, by definition, also a synchronous l-complete
approximation, but not necessarily the strongest one. /

Remark 2.11. The construction of Σ̂l↑ relies on the computation of the set⋃
k∈N0

B|[k,k+l], which is in general not a trivial task. However, a finite external sig-
nal space W implies the existence of a finite time kti ∈ N0 s.t. Σ becomes time invariant
for k > kti. For this case, [35, p.51] proposes a pragmatically motivated extension of the
strongest l-complete approximation in the sense of [36]. It can be easily observed that

the behavior B?l constructed in [35, p.51] coincides with B̂l↑ in (2.38). As the approach
in [35, p.51] is pragmatically motivated this coincidence underlines the relevance of our
theoretically developed notion. /

Properties of SAlCA

As we will extensively use SAlCA in Part I of this thesis we investigate this abstraction
more closely than SlCA.

Lemma 2.31. Given a dynamical system Σ = (N0,W,B) and its SAlCA Σ̂l↑ = (N0,W, B̂l
↑
)

it holds that

(i) B ⊆ B̂l+1↑ ⊆ B̂l↑,

(ii) B|[0,l−1] = B̂l↑ |[0,l−1],

(iii)
⋃
k∈N0

B|[k,k+l] =
⋃
k∈N0

B̂l↑ |[k,k+l], and

(iv) B = B̂l↑ ⇔ Σ is asynchronously l-complete.

Proof. We show all statements separately.
(i) Pick ω ∈ B and observe that ω|[0,l] ∈ B|[0,l] and ∀k ∈ N0 . ω|[k,k+l+1] ∈ B|[k,k+l+1] ⊆⋃

k′∈N0
B|[k′,k′+l+1]. Hence, (2.38) implies ω ∈ B̂l+1↑ . Similarly, pick ω ∈ B̂l+1↑ , im-

plying ω|[0,l−1] ∈ B|[0,l−1] (as ω|[0,l] ∈ B|[0,l]) and ∀k ∈ N0 . ω|[k,k+l+1] ∈ B|[k,k+l+1]

and therefore ∀k ∈ N0 . ω|[k,k+l] ∈ B|[k,k+l] ⊆
⋃
k′∈N0

B̂l↑ |[k′,k′+l]. With this (2.38)

implies ω ∈ B̂l↑ .
(ii) “⊆” follows immediately from (i). To show “⊇” we pick ω̃ ∈ B̂l↑ |[0,l−1]. This implies

that there exists ω ∈ B̂l↑ s.t. ω|[0,l−1] = ω̃. Using (2.38) therefore yields ω̃ ∈ B|[0,l−1].

(iii) “⊆” follows immediately from (i). To show “⊇” we pick ω̃ ∈
⋃
k∈N0

B̂l↑ |[k,k+l]. This

implies that there exists ω ∈ B̂l↑ and k ∈ N0 s.t. ω|[k,k+l] = ω̃. Using (2.38) therefore
yields ω̃ ∈

⋃
k∈N0

B|[k,k+l].

35

2. From SlCA to SAlCA

(iv) “⇒” Observe that “⇐” in (2.31) always holds. We therefore pick ω s.t. the left

side of (2.31) holds. Using (2.38) this implies ω ∈ B̂l↑ . As B = B̂l↑ we have ω ∈ B.
Hence, Σ is asynchronously l-complete.
“⇐” Observe that B ⊆ B̂l↑ always holds from (i). We therefore pick ω ∈ B̂l↑ . Using
(2.38) this implies that the left side of (2.31) holds for ω. As Σ is asynchronously

l-complete, this implies ω ∈ B. Hence, B̂l↑ ⊆ B implying B = B̂l↑ .

As the SAlCA of Σ is constructed from the set of dominos Dl+1 with length l + 1
which can be obtained locally from B, the resulting abstraction coincides with the one
obtained from the ω-closure Σ of Σ.

Proposition 2.32. Given a dynamical system Σ = (N0,W,B) and its ω-closure Σ =
(N0,W,B) it holds that

Σ̂l↑ = Σ̂l↑ . (2.40)

Proof. Observe that Lemma 2.4 (ii) implies ∀k ∈ N0 . B|[k,k+l] = B|[k,k+l]. Hence,

B|[0,l−1] = B|[0,l−1] and
⋃
k∈N0

B|[k,k+l] =
⋃
k∈N0

B|[k,k+l].

Substituting these equalities in (2.38) immediately yields B̂l↑ = B̂l↑ .

Realizing SAlCA

As SAlCA are asynchronously l-complete by construction they can always be realized
by the SM constructed in Proposition 2.28. Hence, the construction of a finite state
machine Q̂l↑ from a given dynamical system Σ (with finite external signal space W) using
SAlCA can be summarized by the following corollary and is illustrated in Figure 2.6.
The corollary can be derived from the results Figure 2.6 refers to.

Corollary 2.33. The SAlCA Σ̂l↑ = (N0,W, B̂l
↑
) of a dynamical system Σ = (N0,W,B)

with finite external signal space W can be represented by the ASSDS
Σ̂l↑
S = (N0,W, X̂

l↑ , B̂l↑S) with X̂ l↑ and B̂l↑S as in Proposition 2.12. Furthermore, Σ̂l↑
S can

be realized by the FSM Q̂l↑ = (X̂ l↑ ,W, δ̂l
↑
, X̂ l↑

0) given in Proposition 2.28.

Summarizing the construction of the “standard” realization Q̂l↑ of the SAlCA of Σ,
as depicted in Figure 2.6, it obviously suffices to know the set of dominos

Dl+1 =
⋃
k∈N0

B|[k,k+l] =
⋃
k∈N0

B|[k,k+l] (2.41)

obtained from Σ or Σ to construct Q̂l↑ . This observation is indicated by the dashed line
in Figure 2.6 and summarized in the following corollary. This corollary can be derived

36

2.8. Strongest Asynchronous l-Complete Approximations (SAlCA)

Original System Abstraction

Σ

Σ

Σ̂l↑ Σ̂l↑
S

Q̂l↑

Choose X̂ l↑ as
in (2.17)

Definition 2.3

SAlCA

Theorem 2.30

Propositi
on 2.32

Proposition 2.27

Proposition 2.28

Corollary 2.34

Figure 2.6.: Illustration of the construction of an SM Q̂l↑ realizing the SAlCA of a given dynami-
cal system Σ. The dashed line illustrates the “shortcut” formalized in Corollary 2.34.

from the results illustrated in Figure 2.6 and will be revisited in Chapter 6 where a new
set of realizations for SAlCA is introduced.

Corollary 2.34. Given a dynamical system Σ = (N0,W,B) s.t. |W | 6= ∞, the SAlCA

of Σ is realized by the finite, reachable and live state machine Q̂l↑ = (X̂ l↑ ,W, δ̂l
↑
, X̂ l↑

0)
s.t.

X̂ l↑ =

 ⋃
r∈[0,l−1]

B|[0,r−1]

 ∪
⋃
t∈N0

B|[t,t+l−1]

 , (2.42a)

X̂ l↑
0 ={λ}, and (2.42b)

δ̂l
↑

=
{

(x̂, w, x̂ · w)
∣∣∣|x̂|L < l ∧ x̂ · w ∈ B|[0,|x̂|

L
]

}
(2.42c)

∪
{

(x̂, w, (x̂ · w)|[1,l−1])
∣∣|x̂|L = l ∧ x̂ · w ∈

⋃
t′∈N0

B|[t′,t′+l]
}
.

B and B can be used interchangeably in (2.42).

Concluding the Example

The behaviors constructed by the domino games discussed in Example 2.7 character-
ize the strongest asynchronous 1-, 2- and 3-complete approximations for the system
Σ in (2.7), respectively. Realizations for the strongest asynchronous 1- and 2-complete
approximations using the constructions from Proposition 2.28 are shown in Figure 2.7.

As the system Σ in (2.7) is asynchronously 3-complete, its behavior coincides with that
of its strongest asynchronous 3-complete approximation. Hence, the corresponding FSM
is shown in Figure 2.5. Observe that the FSM realizing Σ̂1↑

S and the evolution law Σψ1

37

2. From SlCA to SAlCA

realizing Σ̂1⇑
S depicted in Figure 2.7 (left) and Figure 2.3 (left), respectively, coincide.

This is a direct consequence from Remark 2.9 since Σ̂1⇑ is strictly time invariant as
discussed in Example 2.3.

λ

a b

a b

a
b

a

λ

a b

aa ab ba

a b

a b a

b a

a

a

Figure 2.7.: FSMs realizing the strongest asynchronous 1-complete approximation Σ̂1↑

S (left) and

the strongest asynchronous 2-complete approximation Σ̂2↑

S (right) of (2.7).

Summarizing the results of our running example, we have the following. The system
under consideration, Σ = (N0,W,B) in (2.7), is time invariant but not strictly time
invariant. Σ is synchronously 2-complete and can therefore be realized by the time de-
pendent evolution law Σψ2 depicted in Figure 2.3 (right). It is asynchronously 3-complete
(but not asynchronously 2-complete) and can therefore be realized by the FSM depicted

in Figure 2.5. Its strongest asynchronous 2-complete approximation Σ̂2↑ is of cause also
a synchronous 2-complete approximation of Σ, but not the strongest one. In fact, as
Σ is synchronously 2-complete and asynchronously 3-complete, Σ̂2⇑ = Σ̂3↑ = Σ, and
therefore B̂2⇑ = B̂3↑ = B ⊂ B̂2↑ .

38

3. Quotient Based Abstractions (QBA)

In this chapter we briefly outline the basic construction of quotient based abstractions
(QBA). In Section 3.1 we discuss them in their usual setting without reference to be-
havioral systems theory and assume the “original” system to be modeled by a transition
system. Thereafter, in Section 3.2, we draw the connection between transition systems
and state machines. As the latter model the step-by-step evolution of discrete behaviors,
this builds a bridge to behavioral systems theory. Finally, we show in Section 3.3 how to
fully reduce the construction of QBA to state machines to obtain a consistent notation
for SAlCA and QBA in subsequent chapters.

3.1. Transition System Based Construction

We start this section on the construction of QBA by modeling the system to be abstracted
by a so called transition system.

Definition 3.1. A transition system (TS) is a tuple T = (X,X0, U, f, Y, h), where X
is the set of states, X0 is the set of initial states, U is the set of inputs, Y is the set of
outputs, f : X × U→ 2X is a transition map and h : X→Y is an output function.

Observe that TS are output deterministic by definition as h is a single valued function.
This implies that whenever Y is finite it induces a finite partition on the state space of
T . This observation motivates the use of Y as the state space of the QBA of T which
results in an identity output function of this abstraction.

Definition 3.2. Given a TS T = (X,X0, U, f, Y, h), its quotient TS is defined by T̂ O =
(X̂O, X̂O0 , U, f̂, Y, ĥ) s.t.

X̂O := {y ∈ Y |∃x ∈ X . y = h(x)} , (3.1a)

X̂O0 := {y ∈ Y |∃x ∈ X0 . y = h(x)} , (3.1b)

f̂(x̂, u) :=

x̂′
∣∣∣∣∣∣∣∃x, x′ ∈ X .

 x̂ = h(x)

∧x̂′ = h(x′)

∧x′ ∈ f(x, u)


 , and (3.1c)

ĥ(x̂) = x̂. (3.1d)

39

3. Quotient Based Abstractions (QBA)

3.2. State Machines vs. Transition Systems

Both state machines (SM) from Definition 2.15 and transition systems (TS) from Def-
inition 3.1 model the step by step evolution of a system. While SM are equipped with
an (unspecified) signal space W which might influence or be influenced by the state
evolution of this SM, TS model the evolution of a system by two different maps. I.e.,
the input (which is assumed to be fed into the system by a controller) influences the
evolution of the state and the output is generated by the system based on the current
state. To obtain a connection between SM and TS we use the following assumption.

Assumption 1. The set of external symbols W is composed of a set of input symbols
U and a set of output symbols Y , hence W = U × Y .

Before we relate SM and TS we use Assumption 1 to define some properties of SM
with inputs and outputs.

Definition 3.3. Let Q = (X,U × Y , δ,X0) be an SM. Then the sets of admissible inputs
and outputs of a state x ∈ X are defined by1

Uδ(x) :=
{
u∈U

∣∣∃y∈Y, x′∈X . (x, u, y, x′)∈δ
}

and (3.2a)

Hδ(x) :=
{
y ∈ Y

∣∣∃u ∈ U, x′ ∈ X . (x, u, y, x′) ∈ δ
}
, (3.2b)

respectively. Furthermore, Q is said to be output deterministic if

∀x ∈ X . Hδ(x) 6= ∅ ⇒ |Hδ(x)| = 1 (3.2c)

and Q is said to have separable dynamics if

∀x, x′ ∈ X,u ∈ U .
(
(x, u, y, x′) ∈ δ ⇒ ∀y′ ∈ Hδ(x) . (x, u, y′, x′) ∈ δ

)
. (3.2d)

Intuitively, Q has separable dynamics, i.e., (3.2d) holds, if the transition relation δ can
be separated into a transition map f and an output function h. By investigating (3.2c)
and (3.2d) it is obvious that an output deterministic SM always has separable dynamics.
However, if Q is not output deterministic the latter is not always true as illustrated in
the following example.

Example 3.1. Consider the state machine Q depicted in Figure 3.1. Now observe that
(x1, u1, y1, x2) ∈ δ and Hδ(x1) = {y1, y2}, but (x1, u1, y2, x2) /∈ δ, showing that (3.2d)
does not hold. /

If we consider state machines with inputs and outputs, the only difference between
TS and SM is given by the fact that the former requires the transition map f and the

1Slightly abusing notation, we denote the triple (x,w, x′) with w = (u, y) simply by a quadruple
(x, u, y, x′), meaning (x, (u, y), x′).

40

3.2. State Machines vs. Transition Systems

x1

x2 x3

(u1, y1) (u1, y2)

(u1, y1)
(u1, y1)

Figure 3.1.: State machine Q considered in Example 3.1.

output map h to be separable while the latter allows the next state to be dependent on
the last output via the next state relation δ. Intuitively, both versions coincide if Q has
separable dynamics. As the latter is implied by output determinism and we have defined
TS to be output deterministic, an output deterministic SM can be equivalently modeled
by a TS. To formalize this we first define how to “rewrite” SM in TS and and vice versa.

Definition 3.4. Let Q = (X,U × Y , δ,X0) be an output deterministic state machine.
Then Q defines the transition system T = (X,X0, U, f, Y, h) s.t.

x′ ∈ f(x, u) ⇔ ∃y ∈ Y . (x, u, y, x′) ∈ δ (3.3a)

y = h(x) ⇔ y ∈ Hδ(x) (3.3b)

Definition 3.5. The transition system T = (X,X0, U, f, Y, h) defines the state machine
Q = (X,U × Y , δ,X0) s.t.

δ :=
{

(x, u, y, x′)
∣∣x′ ∈ f(x, u) ∧ y = h(x)

}
. (3.4)

Using these definitions we have the following obvious result.

Lemma 3.6. Let Q1 be an output deterministic SM, T1 the TS defined by Q1 via Defi-
nition 3.4 and Q2 the SM defined by T1 via Definition 3.5. Then Q1 = Q2.

Proof. We pick x, x′, u and y and show that (x, u, y, x′) ∈ δ1 ⇔ (x, u, y, x′) ∈ δ2:
“⇒” (3.3) gives x′ ∈ f1(x, u) and y = h1(x), hence (using (3.4)) (x, u, y, x′) ∈ δ2.
“⇐” (3.4) gives x′ ∈ f1(x, u) and y = h1(x). Using (3.3), there exists ỹ s.t.
(x, u, ỹ, x′) ∈ δ1 and using (3.2b), we know that ỹ ∈ Hδ1(x). Now as Q1 is output deter-
ministic we have {ỹ} = Hδ1(x), hence ỹ = h1(x) = y, and therefore (x, u, y, x′) ∈ δ1.

Lemma 3.7. Let T1 be a TS, Q1 the SM defined by T1 via Definition 3.5 and T2 the TS
defined by Q1 via Definition 3.4. Then T1 = T2.

Proof. Follows the same lines as the proof of Lemma 3.6 and is therefore omitted.

Remark 3.1. Conceptually, TS and SM with inputs and outputs coincide with the
concept of Moore and Mealy machines, respectively. However, it should be noted that
translating a Mealy into a Moore machine usually postpones the output to the next
state, e.g., the transition (x, u, y, x′) ∈ δ results in y = h(x′). Observe from Equation 3.3
that our translation from SM to TS results in y = h(x), instead. /

41

3. Quotient Based Abstractions (QBA)

Original System Abstraction

Q T T̂ O Q̂O
QBA

Definition 3.2Definition 3.4 Definition 3.5

Theorem 3.8

Figure 3.2.: Illustration of the construction of the quotient state machine Q̂O of Q using QBA.

3.3. State Machine Based Construction

Using the results from the previous section, both the TS T modeling the “original”
system and its quotient TS T̂ O can be equivalently represented by output deterministic
SM Q and Q̂O as depicted in Figure 3.2. To reduce the discussion of QBA to SM we
introduce a shortcut from Q to Q̂O, as depicted by the dashed line in Figure 3.2.

Theorem 3.8. Given an output deterministic SM Q = (X,U × Y , δ,X0), the state
machine Q̂O = (X̂O, U × Y , δ̂O, X̂O0) constructed from Q as depicted by the solid path in
Figure 3.2 is characterized by

X̂O = {y ∈ Y |∃x ∈ X . y ∈ Hδ(x)} , (3.5a)

X̂O0 = {y ∈ Y |∃x ∈ X0 . y ∈ Hδ(x)} , (3.5b)

δ̂O =

(x̂, u, y, x̂′)

∣∣∣∣∣∣∣∃x, x′ ∈ X .

 x̂ ∈ Hδ(x)

∧x̂′ ∈ Hδ(x
′)

∧(x, u, y, x′) ∈ δ


 . (3.5c)

Furthermore, Q̂O is output deterministic and H
δ̂O

(x̂) = {x̂}.

Proof. - Observe from Definition 3.4 that the state space of T is given by X and using
(3.3) and the fact that Q is output deterministic implies

h(x) = y ⇔ y ∈ H(x). (3.6)

- This immediately implies that (3.1a) and (3.5a) as well as (3.1b) and (3.5b) coincide.
- Now observe that combining (3.1c), (3.1d) and (3.4) implies that

δ̂O =
{

(x̂, u, x̂, x̂′)
∣∣∃x, x′ ∈ X .

(
x̂ = h(x) ∧ x̂′ = h(x) ∧ x′ ∈ f(x, u)

)}
. (3.7)

- Using (3.3) and (3.6) in (3.7) yields

δ̂O =
{

(x̂, u, x̂, x̂′)
∣∣∃x, x′∈X .

(
x̂∈Hδ(x) ∧ x̂′∈Hδ(x) ∧ (x, u, x̂, x′)∈δ

)}
(3.8)

implying that (3.5c) and (3.8) coincide and H
δ̂O

(x̂) = {x̂}.

42

4. Modeling the Original System

In Chapter 2 and Chapter 3 it was shown how finite state abstractions can be constructed
using SAlCA and QBA if the “original” system evolves over a discrete time axis N0 and
has a finite external signal space W . In this chapter we discuss how those methods can
be applied to more general dynamical systems Σ̆ = (T̆ , W̆ , B̆) whose signals evolve over
a right-unbounded time axis T̆ ⊆ R+

0 taking values in a signal space W̆ s.t. |W̆ | =∞.
The common starting point of methods generating finite state abstractions of such

systems is the definition of a finite set W of symbols. In the literature on SAlCA this set
of symbols W is usually assumed to be predefined by the system that is abstracted. I.e.,
W defines the symbolic interface between the system and the controller, resulting from
limited sensing (e.g., a sensor that can only detect threshold crossings) and/or limited
actuation (e.g., a valve that can only be fully opened or closed). In contrast the literature
on QBA usually assumes full sensing and actuating capabilities but defines a finite set of
output symbols Y as the set of equivalence classes of a state space partition. The latter
is usually induced by a given specification the subsequently to be designed controller
should guarantee. In this case, U is usually defined as a (finite) set of input trajectories
guiding the system from one cell of the state space partition to another. Hence, in the
setting of QBA the set of symbols W is composed of a finite set of input symbols U and
a finite set of output symbols Y .

In both cases, prior to the abstraction process, a model of the external symbolic
dynamics of the system Σ̆ = (T̆ , W̆ , B̆) w.r.t. W needs to be constructed. In this chapter
we will first formalize the intuition outlined above by modeling a dynamical system
Σ̆ = (T̆ , W̆ , B̆) with finite external symbol set W as a so called φ-dynamical system (see
[54]) with internal time axis T̆ and external time axis N0 in Section 4.1. By generalizing
the asynchronous state property from Definition 2.17 to φ-dynamical systems we show
in Section 4.2 that, whenever the latter holds, the external symbolic dynamics of a φ-
dynamical system can be modeled by an ASSDS. As the step by step evolution of an
ASSDS can be realized by an SM, this observation results in a unified setting to apply
SAlCA and QBA.

43

4. Modeling the Original System

4.1. Asynchronous State Space φ-Dynamical Systems
(ASSφDS)

We consider a state space dynamical system Σ̆S = (T̆ , W̆ × X̆, B̆S) whose trajectories
evolve over a right-unbounded time axis T̆ ⊆ R+

0 and take values in a dense signal
space W̆ . This system is additionally equipped with a set of external symbols W and
a triggering mechanism which relates the time axis T̆ of the dynamical system Σ̆S to a
sequence of symbols enumerated by a discrete time axis T = N0. This mechanism results
in a time scale transformation from internal time T̆ to external time T . Obviously, the
sequence of external symbols ω ∈WN0 is determined by the internal dynamics described
by B̆S but also by the chosen (or given) triggering mechanism. To handle such models
with distinct internal and external time axes but coupled dynamics, we use the notion
of φ-dynamical systems introduced in [54].

Definition 4.1. A φ-dynamical system is a tuple Σ̆φ = (T̆ , T, W̆ ,W, φ), consisting of
internal and external time axes T̆ and T , internal and external signal spaces W̆ and W ,

and a signal relation φ ⊆ W̆ T̆ ×W T × T , where1

T =
{
θ : T̆ ⇀T

∣∣∣θ is surjective and monotonically increasing
}

is the set of suitable time scale transformations.

The inverse time scale transformation2 θ−1 : T → 2T̆ is then given by

θ−1(k) = {t ∈ T̆ | θ(t) = k}. (4.1)

Furthermore, the projection of φ to W̆ T̆ and W T is referred to as the internal and
external behavior of Σ̆φ, respectively.

As the original system is modeled by an ASSDS Σ̆S = (T̆ , W̆ × X̆, B̆S), it seems natural
to also include the state space X̆ in the third component of Σ̆φ to obtain a state space
φ-dynamical system. However, for the term “state space system” to be sound, we need
to ensure that the state property is preserved by the relation φ. Based on the discussion
in Chapter 2, we restrict our attention to the asynchronous state property as defined in
Definition 2.17.

Definition 4.2. Σ̆φ
S = (T̆ , T, W̆ × X̆,W, φS) with φS ⊆ (W̆ × X̆)T̆ × W T × T is an

asynchronous state space φ-dynamical system (ASSφDS) if

∀
(

(ω̆, ξ̆), ω, θ
)
,
(

(ω̆′, ξ̆′), ω′, θ′
)
∈ φS , k, k′ ∈ T, t ∈ θ−1(k), t′ ∈ θ′−1(k′) .(

ξ̆(t) = ξ̆′(t′)
)
⇒
(

(ω̆, ξ̆) ∧tt′ (ω̆′, ξ̆′), ω ∧kk′ ω′, θ ∧tt′ θ̃′
)
∈ φS ,

(4.2)

1Here, ⇀ denotes a partial function.
2If θ−1 is not set valued, i.e., ∀k ∈ T . |θ−1(k)| = 1, by slightly abusing notation, the unique element
tk ∈ θ−1(k) is denoted by θ−1(k) itself and tk = θ−1(k) is used.

44

4.1. Asynchronous State Space φ-Dynamical Systems (ASSφDS)

Σ̆φ
S = (T̆ , T, Ŭ×Y̆×X̆, U×Y , φS)

Σ̆S = (T̆ , Ŭ×Y̆×X̆, B̆S)

Triggeringr d

γ̆∈Y̆ T̆µ̆∈Ŭ T̆

µ∈UN0 {γ1, . . ., γn}∈2Y
N0

θ∈T̆T θ∈T̆T

Figure 4.1.: ASSDS Σ̆S considered in Example 4.1-4.3 equipped with a finite set of input symbols
U and output symbols Y and a triggering mechanism relating input and output
trajectories (µ̆, γ̆) to sequences of input and output symbols (µ, γ) via r and d.

where ∀t ∈ T̆ . θ̃′(t) = θ′(t) + k − k′.

Remark 4.1. Observe that when using the synchronous state property (see (2.16) in
Section 2.2) in Definition 4.2 it makes a difference if one requires synchronization in
the external or the internal time instances, or both. It was therefore suggested in [54,

Def. 2] to call Σ̆φ
S an externally synchronized state space φ-dynamical system if k = k′

in (4.2) and a synchronized state space φ-dynamical system if k = k′ and t = t′ in (4.2).
However, as these concepts will not be used in the remainder of this thesis we restrict
our attention to the asynchronous version in Definition 4.2. /

To illustrate the intuitive idea of ASSφDS we consider an ASSDS with inputs and
outputs, i.e., W̆ = Ŭ × Y̆ equipped with a finite set of input symbols U and output
symbols Y and an external time axis T = N0, as depicted in Figure 4.1. We discuss
three different signal relations φ resulting from different triggering mechanisms θ in the
following examples.

Example 4.1. Consider the system depicted in Figure 4.1 and assume that the output
can only be measured every τ seconds. This results in time-triggered discretization and
can be modelled by a time scale transformation θa s.t.

∀k ∈ N0 . θ
−1
a (k) = kτ, (4.3a)

where τ ∈ T̆ is a fixed time discretization parameter.
Now assume that the sensor measuring y̆ can only detect if the current measurement
lies in certain bounds. This can be modelled by defining a finite cover Λ = {Ay | y ∈
Y ∧Ay ⊆ Y̆ } of the output space Y̆ and a quantizer d : Y̆ → 2Y s.t.

d(y̆) = {y ∈ Y |y̆ ∈ Ay} . (4.3b)

45

4. Modeling the Original System

Hence, at each triggering time k, an output symbol y ∈ d(γ̆(kτ)) is generated by the
sensor which can be used by a controller to issue a symbolic input u ∈ U . Generally, this
input can be translated by the map r in any input trajectory µ̆ ∈ Ŭ [0,τ). For simplicity
we assume that the set of input events U is a finite subset of the input space, i.e., U ⊆ Ŭ ,
and r is realized by a zero-order-hold, i.e.,

r(u) = {µ̆ ∈ Ŭ [0,τ) | ∀t ∈ [0, τ) . µ̆(t) = u}. (4.3c)

Using the maps d and r it is easy to see that we can define φa such that
((µ̆, γ̆), (µ, γ), θa) ∈ φa if

∀k ∈ N0 .

(
γ(k) ∈ d(γ̆(θ−1

a (k)))

∧µ̆|[θ−1
a (k),θ−1

a (k+1)) ∈ r(µ(k))

)
. (4.3d)

Observe that in this case θa does not need to be included in φ as it is given by (4.3a)
for all choices of internal and external signals. /

Example 4.2. Now we assume that the sensor measuring y̆ can only detect threshold-
crossings and issues an output event whenever this happens. This results in output event-
triggered discretization and can be modeled in many different ways. For simplicity, we
assume again the cover Λ and the quantizer d from Example 4.1 but additionally assume
that each cell Ay is an open set. Then the output event-triggered discretization can be
modeled by assuming that an event is triggered whenever a cell Ay is left. This results
in the time scale transformation θb s.t.

γ(0) ∈ d(γ̆(0)) , θ−1
b (0) = 0 and (4.4a)

∀k > 0 . θ−1
b (k) = glb

{
t ≥ θ−1

b (k − 1)
∣∣γ̆(t) /∈ d−1(γ(k − 1))

}
, (4.4b)

where glb denotes the greatest lower bound and ∀y ∈ Y . d−1(y) = Ay.
The outlined output event-triggered discretization is illustrated in Figure 4.2 using the

cover Λ = {[0, 11), (9, 21), (19, 31), (29, 40]} over Y̆ = [0, 40] and an arbitrary trajectory

γ̆ ∈ Y̆ T̆ (see Figure 4.2 (top)) resulting in a time scale transformation θb ∈ T T̆ (see
Figure 4.2 (middle)).

Using the map r from Example 4.1 we can furthermore define φb s.t.
((µ̆, γ̆), (µ, γ), θb) ∈ φb if (4.4a) holds and

∀k > 0 .


θ−1
b (k) = glb

{
t ≥ θ−1

b (k − 1)
∣∣γ̆(t) /∈ d−1(γ(k − 1))

}
∧γ(k) ∈ d(γ̆(θ−1

b (k)))

∧µ̆|[θ−1
b (k),θ−1

b (k+1)) ∈ r(µ(k))

 . (4.4c)

As θb depends on γ̆ in (4.4c), contrary to Example 4.1, θb needs to be included in the
relation φb, which motivated its definition in Definition 4.1. Furthermore, observe in

46

4.1. Asynchronous State Space φ-Dynamical Systems (ASSφDS)

(4.4c) that θ−1
b (k + 1) is unknown when µ̆(θ−1(k)) needs to be applied. However, zero-

order-hold is typically implemented such that the input signal µ̆ is kept constant until
an event is triggered, issuing an update of the current value of µ̆, which resolves this
issue. /

T̆

T̆

T̆

10

20

30

40
Y̆

γ̆∈Y̆ T̆

2

4

6

8

T
θb∈T T̆

2

4

6

8

T

0

θc∈T T̆

Figure 4.2.: Illustration of point to point (θb) and set to point (θc) time scale transformations
as constructed in Example 4.2 and Example 4.3, respectively, using the cover Λ =
{[0, 11), (9, 21), (19, 31), (29, 40]} over Y̆ = [0, 40].

Remark 4.2. It is important to note that in behavioral models only infinite trajectories
are included. Even though this is very reasonable for the internal dynamics of the control
system, i.e., for Σ̆S , one can easily observe, that output-event triggered discretization

of an infinite output signal γ̆ ∈ Y̆ T̆ , as discussed in Example 4.2, might result in a
finite string of output symbols γ · y if the cell Ay is never left by the trajectory γ̆.
Obviously, one could repeat the symbol y infinitely often to generate an infinite sequence
of output symbols. However, if one has to know that γ̆ will never leave Ay to do so,
as suggested in [67, Def. 7.2], this generates a non-causal time-triggering mechanism
violating Equation 4.2. This can be avoided if the symbol y is repeated after a fixed time

47

4. Modeling the Original System

td, if γ̆ has not left Ay during this time period. This would combine event triggered with
slow time triggered discretization. /

Example 4.3. Recall from Example 4.1 and Example 4.2 that the inverses θ−1
a and θ−1

b

are not set-valued, i.e., different points in dom(θa) and dom(θb) are mapped to different
points in N0. We therefore call θa and θb point to point time scale transformations. It is
easy to see that θb can be used to define a set to point time scale transformation θc s.t.

∀k ∈ N0 . θ
−1
c (k) =

[
θ−1
b (k), θ−1

b (k + 1)
)
, (4.5)

depicted in Figure 4.2 (bottom). Obviously, θ−1
c is set valued and every point in T̆ is in the

domain of θc. While this does not make a difference for the external sequences of symbols
(µ, γ) it will have some implications for the similarity relations defined subsequently in
Chapter 5. For now it is easy to see that we can construct a signal relation φc s.t.
((µ̆, γ̆), (µ, γ), θc) ∈ φc if (4.4a), (4.4c) and (4.5) hold. /

4.2. External ASSDS of ASSφDS

Recall from the previous section that Definition 4.2 ensures that the state remains the
only past information required to decide on the future evolution of Σ̆φ

S , including the
next triggering instant. Moreover, as t and t′ are required to be in the domain of θ the
future evolution of Σ̆φ

S is fully determined by states reached at times corresponding to a
triggering instant via θ. This set of states is referred to as the set of externally reachable
states.

Definition 4.3. Let Σ̆φ
S = (T̆ , T, W̆ × X̆,W, φS) be an ASSφDS. Then

X̆φ,k :=
{
x ∈ X

∣∣∣∃((ω̆, ξ̆), (ω), θ
)
∈ φS , t ∈ θ−1(k) . ξ̆2(t) = x

}
(4.6)

is the set of states reachable at external time k ∈ T and X̆φ =
⋃
k∈T X̆

φ,k is the set of

externally reachable states of Σ̆φ
S.

Observe that X̆φ is still likely to be infinite as X̆ is infinite. If θ is given by the set-to-
point time scale transformation constructed in Example 4.3 we even have X̆φ = X̆. The
latter is also true for the special case of a unique time axis, i.e., T̆ = T , and an identity
time scale transformation, i.e., θ(t) = t.

As an important intermediate result we now show that an ASSDS ΣS modeling the
external dynamics of Σ̆φ

S can be constructed using the externally reachable state space

X̆φ of Σ̆φ
S as its state space.

48

4.2. External ASSDS of ASSφDS

Theorem 4.4. Let Σ̆φ
S = (T̆ , T, W̆ × X̆,W, φ) be an ASSφDS, X := X̆φ and

BS :=

{
(ω, ξ)

∣∣∣∣∣∃((ω̆, ξ̆), ω′, θ)∈φ .
(

ω = ω′

∧∀k∈T . ∃t∈θ−1(k) . ξ̆(t)=ξ(k)

)}
. (4.7)

Then ΣS = (T,W ×X,BS) is an asynchronous state space dynamical system.

Proof. To show that (2.25) holds for ΣS , we pick (ω1, ξ1), (ω2, ξ2) ∈ BS and k1, k2 ∈ T
s.t. ξ(k1) = ξ(k2) and show that (ω, ξ) = (ω1, ξ1) ∧k1

k2
(ω2, ξ2) ∈ BS .

- Using (4.7) there exist (ω̆1, ξ̆1), (ω̆2, ξ̆2) ∈ B̆S and θ1, θ2 ∈ T s.t.

((ω̆1, ξ̆1), (ω1), θ1), ((ω̆2, ξ̆2), (ω2), θ2) ∈ φ

and for all k ∈ T

∃t ∈ θ1
−1(k) . ξ̆1(t) = ξ1(k) and ∃t ∈ θ2

−1(k) . ξ̆2(t) = ξ2(k).

- Now we define new timescale transformations θ̃1 : T̆ →T and θ̃2 : T̆ →T s.t. for all
t ∈ T̆ and k ∈ T it holds that

θ̃i(t) = k ⇔
(
t ∈ θ−1

i (k) ∧ ξ̆i(t) = ξi(k)
)
. (4.8)

- Now pick t1 = θ̃−1
1 (k1) and t2 = θ̃−1

2 (k2) and observe from (4.8) that t1 ∈ θ1
−1(k1), t2 ∈

θ2
−1(k2) and

ξ̆1(t1) = ξ1(k1) = ξ2(k2) = ξ̆2(t2). (4.9)

- Defining θ = θ1 ∧t1t2 (θ2 + k1 − k2) and (ω̆, ξ̆) = (ω̆1, ξ̆1) ∧t1t2 (ω̆2, ξ̆2), (4.9) now implies(
(ω̆, ξ̆), ω, θ

)
∈ φ from (4.2) in Definition 4.2.

- It remains to show that ∀k ∈ T . ∃t ∈ θ−1(k) . ξ̆(t) = ξ(k).

· Let k < k1 and pick t = θ̃1
−1

(k) giving t < t1. Using the construction of the signals
θ, ξ̆ and ξ via concatenation, (2.1) implies

θ(t) = θ1(t), ξ̆(t) = ξ̆1(t) and ξ(k) = ξ1(k). (4.10)

Now recall from (4.8) that t ∈ θ1
−1(k) and ξ̆1(t) = ξ1(k). Combining the latter with

(4.10) therefore yields t ∈ θ−1(k) and ξ̆(t) = ξ(k).

· Let k ≥ k1 and pick t = θ̃2
−1

(k−k1+k2)+t1−t2 giving t ≥ t1. Using the construction
of the signals θ, ξ̆ and ξ via concatenation, (2.1) implies

θ(t) = θ2(t−t1 +t2)+k1−k2, ξ̆(t) = ξ̆2(t−t1 +t2) and ξ(k) = ξ2(k−k1 +k2). (4.11)

Now recall from (4.8) that t − t1 + t2 ∈ θ2
−1(k − k1 + k2) and ξ̆2(t − t1 + t2) =

ξ2(k − k1 + k2). Combining the latter with (4.11) therefore yields θ(t) = k (hence
t ∈ θ−1(k)) and ξ̆(t) = ξ(k).

49

4. Modeling the Original System

Original System External Symbolic Dynamics

Σ̆S Σ̆φ
S

ΣS ΣS

Q

Assumption 2

Definition 4.2 Theorem 4.4 Definition 2.3
Proposition 2.18

Lemma 2.20

Figure 4.3.: Connection between the original system Σ̆S and the state machine Q modeling the
step by step evolution of its external symbolic dynamics under Assumption 2.

Definition 4.5. Given the premises of Theorem 4.4, ΣS = (T,W ×X,BS) is the exter-

nal ASSDS of Σ̆φ
S.

Summarizing the preceding discussion, the external symbolic dynamics of Σ̆S can be
modeled by an ASSDS ΣS if the following assumption holds.

Assumption 2. The internal dynamics of the original system can be modeled by an
ASSDS Σ̆S = (T̆ , W̆ × X̆, B̆S) equipped with a finite set of external symbols W and a
signal map φS s.t. (4.2) holds.

The chain of constructions to obtain ΣS from Σ̆S under Assumption 2 are summa-
rized in Figure 4.3. This picture is completed by recalling from Proposition 2.28 and
Lemma 2.20, that ΣS induces an SM Q modeling its step-by-step evolution and realizing
its ω-closure ΣS . We will see in Chapter 6 and Chapter 7, that the latter observation
allows us to consider a unified setting for SAlCA and QBA resulting in a formal com-
parison of the resulting abstract state machines in Chapter 8.

50

5. Simulation Relations

The definition of SAlCA was motivated in Chapter 2 by the fact that the behavior
B̂l↑ resulting from the simplified domino game played with l + 1 long pieces of the
symbolic behavior B ⊆WN0 is an overapproximation of the latter, hence B ⊆ B̂l↑ . It was
furthermore shown that equality holds iff Σ = (N0,W,B) is asynchronously l-complete.
Hence, the construction of SAlCA and its relation to the system Σ is based on inclusion
(or equality) of the external behavior B ⊆WN0 .

Contrary, in the literature on QBA usually the stronger properties of similarity and
bisimilarity are used to relate the abstraction to the original model. These properties are
formalized by constructing so called simulation and bisimulation relations between the
state spaces of two models in a step-by-step fashion, ensuring that trajectories visiting
only related states at every time point produce the same output trajectory. Hence, the
existence of a simulation or bisimulation relation implies, respectively, behavioral inclu-
sion and equality of the output part of the external behavior, i.e., BY ⊆ Y N0 . However,
the inverse implication does usually not hold.

In the spirit of our bridging endeavor it is therefore interesting to investigate if those
stronger properties do also hold between the original system and a state space realization
of its SAlCA w.r.t. the full external behavior B ⊆WN0 . Motivated by the fact that the
original system is assumed to be modeled by an ASSφDS, we first formalize similarity
and bisimilarity for the general class of ASSφDS in Section 5.1. To consider matching of
external sequences w.r.t. different sets of symbols, we furthermore use the set

V s.t. πV (W) 6= ∅ (5.1)

to define the considered signal space (i.e., V = W for SAlCA and V = Y for QBA with
W = U × Y from Assumption 1).

As the SAlCA is usually given by an ASSDS rather than an ASSφDS we also need a
notion of simulation relations for other system models. We will show in Section 5.2 that
ASSφDS can also be used to model ASSDS and SM. Hence, the notion of simulation
relations for ASSφDS can be directly transfered to ASSDS and SM. Additionally to the
formal beauty of this result, using this general approach allows to relate different system
models (e.g., an SM Q to an ASSφDS Σ̆φ

S).
In Section 5.3 the chapter is concluded by a discussion of related notions of similarity

which have appeared previously.

51

5. Simulation Relations

5.1. Simulation Relations for ASSφDS

Asynchronous state space φ-dynamical systems (ASSφDS) as introduced in Definition 4.2
are generally not assumed to be complete. Inspired by [26, Def. 5.21], simulation relations
for this system class will therefore be defined in a concatenation based fashion in this
section.

Definition 5.1. Let Σ̆φ
S,i = (T̆i, T, W̆i × X̆i,Wi, φS,i), i ∈ {1, 2} be ASSφDS and V a

set s.t. πV (W1) = πV (W2) 6= ∅. Then a relation R ⊆ X̆1 × X̆2 is a simulation relation

from Σ̆φ
S,1 to Σ̆φ

S,2 w.r.t. V (written R ∈ SV (Σ̆φ
S,1, Σ̆

φ
S,2)) if

∀x̆1 ∈ X̆φ,0
1 .

(
∃x̆2 ∈ X̆φ,0

2 . (x̆1, x̆2) ∈ R
)

and (5.2a)

∀ (x̆1, x̆2) ∈ R,
(

(ω̆1, ξ̆1), ω1, θ1

)
∈ φS,1, k1 ∈ N0, t1 ∈ θ1

−1(k1) .

(
ξ̆1(t1) = x̆1

)
⇒

∃
(

(ω̆2, ξ̆2), ω2, θ2

)
∈ φS,2, k2 ∈ N0, t2 ∈ θ2

−1(k2) .
ξ̆2(t2) = x̆2

∧∀k ≥ k1 . πV (ω1)(k) = πV (ω2)(k − k1 + k2)

∧

∀ k ≥ k1, t
′
1 ∈ θ1

−1(k), t′1 ≥ t1 .

∃t′2 ∈ θ2
−1(k − k1 + k2) . (ξ̆1(t′1), ξ̆2(t′2)) ∈ R



 .

(5.2b)

Furthermore, R ⊆ X̆1 × X̆2 is a bisimulation relation between Σ̆φ
S,1 and Σ̆φ

S,2 w.r.t. V

(written R ∈ BV (Σ̆φ
S,1, Σ̆

φ
S,2)) if R ∈ SV (Σ̆φ

S,1, Σ̆
φ
S,2) and1 R−1 ∈ SV (Σ̆φ

S,2, Σ̆
φ
S,1).

Remark 5.1. Recall from Definition 4.2 that this thesis defines a state space φ-dynamical

system as a five-tuple with signal relation φS ⊆ (W̆ × X̆)T̆ ×W T ×T instead of a seven

tuple with signal map φS : B̆→ 2W
T×T as in [54, Def. 1]. Additionally, Definition 5.1

differs from the definition of an asynchronous simulation relation in [54, Def. 4] in two
ways. (i) Definition 5.1 uses a simpler implication structure in (5.2b) to simplify subse-

quent proofs. However, since the state property holds for Σ̆φ
S , it can be shown that (5.2b)

and (6b) in [54, Def. 4] coincide. (ii) By requiring the relation of initial states in (5.2a)
and given point (i), the simulation relation defined in Definition 5.1 actually coincides
with the so called 0-initial simulation relation defined in [54, Def. 6]. The existence of
the latter is shown to imply the existence of an asynchronous simulation relation in [54,
Lem. 1] and is therefore slightly stronger. However, as we only use this type of simulation
relation in the remaining part of this thesis, we restrict our attention to this notion. /

52

5.1. Simulation Relations for ASSφDS

t1 t′1 T̆1

k1 k1+1 N0

X̆1

x̆′1x̆1 ξ̆1

t2 t′2 T̆2

k2 k2+1 N0

X̆2

x̆′2x̆2
ξ̆2

Figure 5.1.: Visualization of the last line in (5.2b) for two point to point time scale transforma-
tions θ1 and θ2, with θ1

−1(k1) = {t1}, θ1−1(k1 + 1) = {t′1}, θ2
−1(k2) = {t2} and

θ2
−1(k2 + 1) = {t′2}. Dotted lines connect related states.

To generate some intuition for the simulation relations constructed in Definition 5.1,
we will discuss (5.2b) using some graphical illustrations. For this purpose assume that

we have signals
(

(ω̆1, ξ̆1), ω1, θ1

)
∈ φS,1, and

(
(ω̆2, ξ̆2), ω2, θ2

)
∈ φS,2 such that the states

x̆1 = ξ̆1(t1) and x̆2 = ξ̆2(t2), with k1 = θ1(t1) and k2 = θ2(t2), are related. To simulate

Σ̆φ
S,1, the system Σ̆φ

S,2 must exhibit two properties, namely (i) the signal ν2 = πV (ω2)

generated by Σ̆φ
S,2 after k2 must be identical to the external signal ν1 = πV (ω1) generated

by Σ̆φ
S,1 after k1 and (ii) the state trajectories ξ̆1 and ξ̆2 need to stay related for all future

external time instants.
Concerning the second property, the nature of θ significantly influences how restrictive

this requirement is. For example, having a point to point time scale transformation in
both systems only requires state trajectories to be related at sampling points (Figure 5.1),
while a set to point time scale transformation, for example, requires state trajectories
to be related at all future times (Figure 5.2). However, as clearly visible in Figure 5.1
and 5.2, both cases allow for a stretching or shrinking of time between related state
trajectories. If both systems have an identity time scale transformation (and therefore
T̆ = T̆1 = T̆2 = T) this stretching or shrinking of time is no longer allowed, as shown in
Figure 5.3.

A Partial Order for ASSφDS

Using Definition 5.1 we can formally define an ordering on the set of ASSφDS in the usual
way and show that simulation and bisimulation relations are, respectively, preorders and
equivalence relations for the set of ASSφDS.

1As usual, R−1 := {(x̆2, x̆1) | (x̆1, x̆2) ∈ R}.

53

5. Simulation Relations

t1 t′1

a

T̆1

k1 k1+1 N0

X̆1

x̆′1x̆1 ξ̆1

t2 t′2

b

T̆2

k2 k2+1 N0

X̆2

x̆′2x̆2
ξ̆2

Figure 5.2.: Visualization of the last line in (5.2b) for two set to point time scale transformations
θ1 and θ2, with a = θ1

−1(k1) = [t1, t
′
1) and b = θ2

−1(k2) = [t2, t
′
2). Dotted lines

connect related states.

t1 T̆

X̆1

x̆1 ξ̆1

t2 T̆

X̆2

x̆2
ξ̆2

Figure 5.3.: Visualization of the last line in (5.2b) for two identity time scale transformations,
i.e., ∀ t ∈ T̆ . t = θ1(t) = θ2(t).

Definition 5.2. Given the premises of Definition 5.1, Σ̆φ
S,1 is simulated by Σ̆φ

S,2 w.r.t.

V (written Σ̆φ
S,1 �V Σ̆φ

S,2) if there exists a relation R ∈ SV (Σ̆φ
S,1, Σ̆

φ
S,2) and Σ̆φ

S,1 and Σ̆φ
S,2

are bisimilar w.r.t. V (written Σ̆φ
S,1
∼=V Σ̆φ

S,2) if there exists a relation R ∈ BV (Σ̆φ
S,1, Σ̆

φ
S,2).

Theorem 5.3. The relations �V and ∼=V are a preorder and an equivalence relation for
the set of ASSφDS, respectively.

Proof. To simplify notation we denote the conjunction on the right hand side of (5.2b)
by Ω, i.e.,

Ωab :=


ξ̆b(tb) = x̆b

∧∀k ≥ ka . πV (ωa)(k) = πV (ω2)(k − ka + kb)

∧
∀ k ≥ ka, t′a ∈ θa−1(k), t′a ≥ ta .

∃t′b ∈ θb
−1(k − ka + kb) . (ξ̆a(t

′
a), ξ̆b(t

′
b)) ∈ R

 .

54

5.1. Simulation Relations for ASSφDS

We first show that �V is a preorder, i.e., �V is reflexive and transitive. To prove reflex-
ivity, we pick an arbitrary Σ̆φ

S , construct

R =
{

(x̆1, x̆2) ∈ X̆ × X̆
∣∣∣x̆1 = x̆2

}
and show that (5.2) holds. First observe that (5.2a) holds by construction. To see that
this is also true for (5.2b), observe that whenever there exists(

(ω̆1, ξ̆1), ω1, θ1

)
∈ φ, k1 ∈ N0, t1 ∈ θ1

−1(k1) s.t.
(
ξ̆1(t1) = x̆1

)
for some (x̆1, x̆2) ∈ R (i.e., x̆1 = x̆2) we can pick(

(ω̆2, ξ̆2), ω2, θ2

)
=
(

(ω̆1, ξ̆1), ω1, θ1

)
, k2 = k1 and t2 = t2

to make (5.2b) hold for any V with πV (W) 6= ∅.
To prove transitivity, we pick arbitrary Σ̆φ

S,1, Σ̆
φ
S,2, Σ̆

φ
S,3 and V s.t. πV (W1) = πV (W2) =

πV (W3) 6= ∅ and Σ̆φ
S,1 �V Σ̆φ

S,2 and Σ̆φ
S,2 �V Σ̆φ

S,3, i.e., there exist simulation relations

R12 ∈ SV (Σ̆φ
S,1, Σ̆

φ
S,2) and R23 ∈ SV (Σ̆φ

S,2, Σ̆
φ
S,3). Now we define

R13 = R12 ◦ R23 :=

{
(x̆1, x̆3)∈X̆1×X̆3

∣∣∣∣∣∃x̆2∈X̆2 .

(
(x̆1, x̆2)∈R12

∧(x̆2, x̆3)∈R23

)}
(5.3)

and show that (5.2) holds for R13 and V , implying Σ̆φ
S,1 �V Σ̆φ

S,3.
- Observe that (5.2a) holds for R12 and R23, implying

∀x̆1 ∈ X̆10 .
(
∃x̆2 ∈ X̆20, x̆3 ∈ X̆30 . (x̆1, x̆2) ∈ R12 ∧ (x̆2, x̆3) ∈ R23

)
(5.4)

and therefore (using (5.3)) (5.2a) holds for R13.
- To show (5.2b), we fix

(x̆1, x̆3) ∈ R13,
(

(ω̆1, ξ̆1), ω1, θ1

)
∈ φ1, k1 ∈ N0, t1 ∈ θ1

−1(k1) s.t. ξ̆1(t1) = x̆1

and show that Ω13 holds.
· Using (5.4) we know that there exist x̆2 ∈ X̆2 and x̆3 ∈ X̆3 s.t. (x̆1, x̆2) ∈ R12 and

(x̆2, x̆3) ∈ R23. As R12,R23 are simulation relations, we know that (5.2b) holds. This
implies that we can fix(

(ω̆2, ξ̆2), ω2, θ2

)
∈ φ2, k2 ∈ N0, t2 ∈ θ2

−1(k2) s.t. Ω12 holds and(
(ω̆3, ξ̆3), ω3, θ3

)
∈ φ3, k3 ∈ N0, t3 ∈ θ3

−1(k3) s.t. Ω23 holds.

55

5. Simulation Relations

· Observe, that the first lines of Ω13 and Ω23 are equivalent.
· Using the second line of Ω12 and Ω23 we get

πV (ω1)(k) = πV (ω2)(k − k1 + k2)

= πV (ω3)((k − k1 + k2)− k2 + k3) = πV (ω3)(k − k1 + k3)

implying that the second line of Ω13 also holds.
· The third lines of Ω12 and Ω23 imply

∀ k ≥ k1, t
′
1 ∈ θ1

−1(k), t′1 ≥ t1 .(
∃t′2 ∈ θ2

−1(k − k1 + k2) . (ξ̆1(t′1), ξ̆2(t′2)) ∈ R12

∧∃t′3 ∈ θ3
−1((k − k1 + k2)− k2 + k3) . (ξ̆2(t′2), ξ̆3(t′3)) ∈ R23

)

Using (5.3) this implies that the last line of Ω13 holds.

Now we show that the relation ∼=V is an equivalence relation, i.e., ∼=V is reflexive,
transitive and symmetric. From Definition 5.2 and Definition 5.1 it follows that the
relation ∼=V is defined by two simulation relations. Therefore reflexivity and transitivity
follows from the first part of this proof. To prove symmetry, we pick arbitrary Σ̆φ

S,1, Σ̆
φ
S,2

and V s.t. πV (W1) = πV (W2) 6= ∅ and show(
Σ̆φ
S,1
∼=V Σ̆φ

S,2

)
⇒
(

Σ̆φ
S,2
∼=V Σ̆φ

S,1

)
.

It follows immediately from Definition 5.2 that for any bisimulation relation R between
Σ̆φ
S,1 and Σ̆φ

S,2 w.r.t. V we can pick R̃ = R−1 as a bisimulation relation between Σ̆φ
S,2

and Σ̆φ
S,1 w.r.t. V , implying Σ̆φ

S,2
∼=V Σ̆φ

S,1.

Behavioral Inclusion

As related states generate the same external events (see (5.2b)) the existence of a simu-
lation relation from one system to another one implies that the external behavior of the
first is a subset of the second one. As an immediate consequence, external behavioral
equivalence is obtained if two systems are bisimilar. This is formalized in Proposition 5.4
which generalizes [26, Thm. 5.41] to ASSφDS.

Proposition 5.4. Given the premises of Definition 5.1 and Bi = πV (φS,i), i ∈ {1, 2},
it holds that(

Σ̆φ
S,1 �V Σ̆φ

S,2

)
⇒ (B1 ⊆ B2) and

(
Σ̆φ
S,1
∼=V Σ̆φ

S,2

)
⇒ (B1 = B2) .

56

5.2. Using ASSφDS as a Unified Model

Proof. Observe, that B1 ⊆ B2 iff

∀
(

(ω̆1, ξ̆1), ω1, θ1

)
∈ φS,1 . ∃

(
(ω̆2, ξ̆2), ω2, θ2

)
∈ φS,2 . πV (ω1) = πV (ω2)

Now fix
(

(ω̆1, ξ̆1), ω1, θ1

)
∈ φS,1. Since ΣS,1 �V ΣS,2, (5.2a) and (5.2b) hold for k = 0.

Using (4.6), we can pick t1 ∈ θ1
−1(0) and

(
(ω̆2, ξ̆2), ω2, θ2

)
∈ φS,2, t2 ∈ θ2

−1(0) s.t.

∀k ≥ 0 . πV (ω1)(k) = πV (ω2)(k).

As T ⊆ R+
0 , this implies πV (ω1) = πV (ω2) what proves the first statement. The second

statement follows immediately from the first and the definition of the relation ∼=V in
Definition 5.1 and Definition 5.2.

5.2. Using ASSφDS as a Unified Model

In Chapter 4, ASSφDS were introduced as a way to model systems where (possibly
continuous) internal dynamics are related to external event sequences using a signal map
φ. While this is the main usage of ASSφDS in this thesis we will show in this section that
ASSφDS can also serve as a common modeling framework for other state space models
used in this thesis, namely ASSDS and SM. This allows to define relations among them
with the understanding that their respective ASSφDS are related via Definition 5.1.

φi-Extensions of ASSDS and SM

We start the formalization of the above intuition by rewriting a given ASSDS into an
ASSφDS. This can be done by introducing an identity signal map which does neither
change the time axis nor state or event trajectories, resulting in the following ASSφDS.

Definition 5.5. Let ΣS = (T,W ×X,BS) be an ASSDS and

φi(BS) =

{
((ξ, ω), ω′, θi) ∈ BS ×W T × T

∣∣∣∣∣
(

ω = ω′

∧∀k ∈ T . θi(k) = k

)}
(5.5)

the identity signal relation. Then [ΣS]φi := (T, T,W ×X,W, φi(BS)) is the φi-extension
of ΣS.

Lemma 5.6. Let ΣS be an ASSDS and [ΣS]φi its φi-extension. Then
(i) [ΣS]φi is an ASSφDS and

(ii) ΣS is the external ASSDS of [ΣS]φi defined via Definition 4.5.

Proof. We show both statements separately.

57

5. Simulation Relations

(i) We have to show that (4.2) holds for φi(BS). Hence, pick

((ω, ξ), ω, θi) ,
(
(ω′, ξ′), ω′, θi

)
∈ φi(BS), k, k′ ∈ T s.t. ξ(k) = ξ′(k′).

Now observe that (ω̃, ξ̃) = (ω, ξ)∧kk′ (ω′, ξ′) ∈ BS as ΣS is an ASSDS and obviously
ω̃ = ω ∧kk′ ω′. Furthermore, observe that

θ̃ = θi ∧kk′
(
θi + k − k′

)
= θi,

implying that
(

(ω̃, ξ̃), ω̃, θ̃
)
∈ φi(BS), what proves the statement.

(ii) It can be easily observed from (5.5) that (4.7) holds by definition of φS,i. Further-

more, as T̆ = T (4.6) implies Xφ = X. With this the statement follows immediately
from Definition 4.5.

Lemma 5.6 implies that we can use an ASSDS and its φi-extension interchangeably
to model the same dynamics, as depicted in Figure 5.4 (middle). Similarly, it was shown
in Section 2.6, that ASSDS and SM can be used interchangeably whenever the former
is complete and the latter is live and reachable. Using this assumption, the φi-extension
[Q]φi of a live and reachable SM Q can be constructed via its induced ASSDS as depicted

in Figure 5.4 (bottom). Obviously, we can formally also define the φi-extension
[
Σ̆φ
S

]φi
of an ASSφDS Σ̆φ

S , as depicted in Figure 5.4 (top), evaluating directly to Σ̆φ
S .

Hence, given a model2 M∈ (ASSφDS ∪ASSDS ∪ SM?), without loss of generality, we
can useM and [M]φi interchangeably. This leads to the following definition of simulation
relations for these models via Definition 5.1.

Definition 5.7. Given two state space models Mi ∈ (ASSφDS ∪ASSDS ∪ SM?) , i ∈
{1, 2} with state spaces Xi and external signal spaces Wi, let [Mi]

φi denote their φi-
extensions constructed from Mi as depicted in Figure 5.4 and V a set s.t. πV (W1) =
πV (W2) 6= ∅.

Then a relation R ⊆ X1 × X2 is a simulation relation from M1 to M2 w.r.t. V
(written R ∈ SV (M1,M2)) if R ∈ SV ([M1]φi , [M2]φi). Analogously, R ⊆ X1 × X2

is a bisimulation relation between M1 and M2 w.r.t. V (written R ∈ BV (M1,M2)) if

R ∈ BV ([M1]φi , [M2]φi).

Simulation Relations for live and reachable SM

Recall from Section 5.1 that simulation relations are defined in a concatenation-based
fashion in Definition 5.1 as their external behavior might not be complete. However,

2Slightly abusing notation we associate the abbreviations for each model with the set of all models in
this class and denote by SM? the class of all live and reachable SM.

58

5.2. Using ASSφDS as a Unified Model

[
Σ̆φ
S

]φi
:= Σ̆φ

S

ΣS [ΣS]φi

Q ΣS

[
ΣS

]φi =: [Q]φi

Definition 5.5

Definition 4.5

Lemma 5.6

Definition 5.5

Definition 4.5

Lemma 5.6

Proposition 2.19

Proposition 2.18

Lemma 2.21

Figure 5.4.: Constructing the φi-extensions of an ASSφDS Σ̆φS , an ASSDS ΣS and an SM? (i.e.,
a live and reachable SM) Q (top to bottom).

SM where shown in Lemma 2.20 to only realize complete dynamical systems. Hence,
the φi-extension of an SM is always complete. This allows to simplify the definition of
simulations relations for SM via Definition 5.7 and Definition 5.1 as follows.

Theorem 5.8. Let Qi = (Xi,Wi, δi, Xi0), i ∈ {1, 2} be two live and reachable SM and
V s.t. πV (W1) = πV (W2) 6= ∅. Then R ∈ SV (Q1,Q2) iff

∀x1 ∈ X10 . (∃x2 ∈ X20 . (x1, x2) ∈ R) and (5.6a)

∀ (x1, x2) ∈ R, w1 ∈W1, x
′
1 ∈ X1 .

(x1, w1, x
′
1) ∈ δ1 ⇒ ∃x′2 ∈ X2, w2 ∈W2 .

 (x2, w2, x
′
2) ∈ δ2

∧πV (w1) = πV (w2)

∧(x′1, x
′
2) ∈ R

 .

(5.6b)

Proof. Let ΣS,i be the ASSDS induced by Qi and Σφ
S,i = [ΣS,i]

φi the φS,i-extensions of
ΣS,i. Then it follows form Figure 5.4 (middle), Proposition 2.19 and (5.5) that

Σφ
S,i = [Qi]φi = (T, T,Wi ×Xi,Wi, φi(Bf (Qi))).

Using (4.3) this implies that Xφi,0
i = Xi0 and hence (5.2a) and (5.6a) coincide. It there-

fore suffices to show that (5.6b) holds for Q1 and Q2 iff (5.2b) holds for Σφ
S,1 and Σφ

S,2.
“⇒”: To prove this statement we pick R s.t. (5.6b) holds and show that (5.2b) also

holds for R, i.e., we pick

(x1, x2) ∈ R, ((ω1, ξ1), ω1, θ1) ∈ φ1 , k1 ∈ N0 s.t. ξ1(θ1
−1(k1)) = x1

59

5. Simulation Relations

and show that (5.2b:r) is true3 .
First observe that (5.5) implies (ω1, ξ1) ∈ Bf (Q1) and θ1

−1(k) = k for all k ∈ N0, hence
ξ1(k1) = x1. Now it follows from (2.20b) that

∀k ∈ N0 . (ξ1(k), ω1(k), ξ1(k + 1)) ∈ δ1.

For all k ≥ k1 we can therefore pic x′1 = ξ1(k + 1) and w = ω1(k) (in particular for
k = k1) and observe that (5.6b:l) holds. As we know that (5.6b) holds for R this implies
that (5.6b:r) holds for every choice of k ≥ k1 above.
Now consider the particular case k = k1. Then (5.6b:r) implies (among other things) the
existence of x′2 ∈ X2 s.t. ((ξ1(k1 + 1), x′2) ∈ R. As (5.6b:l) holds for all k ≥ k1 we can
therefore aply (5.6b) again implying the existence of x′′2 ∈ X s.t. (ξ1(k1 + 2), x′′2) ∈ R.
We can therefore repetitively apply (5.6b:l) for all tuples (ω1(k), ξ1(k)) reached at time
k ≥ k1 along the trajectories (ω1, ξ1) ∈ Bf (Q1) and obtain a tuple of trajectories (ω2, ξ2)
s.t.

∀k ≥ k1 .

 (ξ2(k − k1 + k2), ω2(k − k1 + k2), ξ2(k − k1 + k2 + 1)) ∈ δ2

∧πV (ω1)(k) = πV (ω2)(k − k1 + k2)

∧(ξ1(k), ξ2(k − k1 + k2)) ∈ R

 (5.7)

from (5.6b:r) where ξ2(k2) = x2. As Q2 is reachable, it follows from (2.23), the first line
of (5.7) and (2.20b) that (ω2, ξ2) ∈ Bf (Q2). Now (5.5) implies ((ω2, ξ2), ω2, θ2) ∈ φ2 with
θ2
−1(k) = k for all k ∈ N0. This immediately implies that the first line of (5.2b:l) holds

and that the second and third line of (5.2b:l) follow from the second and third line of
(5.7).

“⇐”: To prove this statement we pick R s.t. 5.2b holds and show that 5.6b also holds
for R, i.e., we pick

(x1, x2) ∈ R, w ∈W,x′1 ∈ X1 s.t. (x1, w, x
′
1) ∈ δ1

and show that (5.6b:r) is true.
As (x1, w, x

′
1) ∈ δ1 and Q is live and reachable, we know from (2.23) that there exists

(ω1, ξ1) ∈ Bf (Q1) and k1 ∈ N0 s.t. x1 = ξ1(k1). Using (2.20b) we can pick (ω1, ξ1) s.t.
x′1 = ξ1(k1 + 1) and w = ω1(k1). Now (5.5) implies the existence of ((ω1, ξ1), ω1, θ1) ∈ φ1

s.t.
ξ1(θ1

−1(k1)) = ξ1(k1) = x1 and ξ1(θ1
−1(k1 + 1)) = ξ1(k1 + 1) = x′1,

implying that (5.2b:l) holds. As we know that (5.2b) holds forR this implies that (5.2b:r)
holds. Now (5.2b:r) and (5.5) imply the existence of ξ2 and ω2 s.t.

(ω2, ξ2) ∈ Bf (Q2), ξ2(k2) = x2, and ω2(k2) = w.

3To simplify notation we denote the left and right sides of the implication in (5.2b) by (5.2b:l) and
(5.2b:r), respectively. The same convention is used of the implication in (5.6b).

60

5.3. Connections to Related Notions of Similarity

Now it follows from (2.20b) that (x2, w, ξ2(k2 + 1)) ∈ δ2. We can therefore pick x′2 =
ξ2(k2 + 2) and observe that (5.6b:r) holds from (5.2b:r).

Remark 5.2. Recall from Section 3.2 that output deterministic SM can be equivalently
represented by TS. Hence, substituting (3.3) in (5.6) and choosing V = Y yields

∀x1 ∈ X10 . ∃x2 ∈ X20 . (x1, x2) ∈ R and (5.8a)

∀ (x1, x2) ∈ R, x′1 ∈ X1, u1 ∈ U1 . h1(x1) = h2(x2)

∧x′1 ∈ f1(x1, u1)⇒ ∃x′2 ∈ X2, u2 ∈ U2 .

(
x′2 ∈ f2(x2, u2)

∧(x′1, x
′
2) ∈ R

). (5.8b)

It is easy to see that (5.8) coincides with the usual definition of simulation relations for
TS, as e.g. in [67, Def. 4.7]. /

5.3. Connections to Related Notions of Similarity

To the best of the authors knowledge the only work on similarity relations in the be-
havioral setting was done by Julius and van der Schaft [27, 26]. In this work behavioral
systems Σ with state maps ϕ are used to define simulation relations and it was proven in
[26, Thm.5.27] that the constructed bisimulation relations are only equivalence relations
if these state maps are past induced and Markovian.

Interestingly, the dynamics of the tuple (Σ, ϕ) used in [26] can equivalently be modeled
by a dynamical system ΣS = (T,W ×X,BS) and the properties of past inducedness and
Markovianity, given in [26, Sec.3.3.2], coincide with the asynchronous state property in
(2.25). Hence, if (Σ, ϕ) is past induced and Markovian it can be equivalently modeled by
an ASSDS ΣS . In this case we could define its φi-extension [(Σ, ϕ)]φi by the second line in
Figure 5.4 and apply Definition 5.7. However, as discussed in Remark 5.1, the simulation
relation defined in Definition 5.1 (as used in Definition 5.7) is a weaker notion then the
one previously presented in [54, Def. 4]. Using [54, Def. 4] in Definition 5.7 instead, it
can be shown that the resulting bisimulation relation coincides with the one given in
[26, Def. 5.21].

The idea of constructing φi-extensions of state-space models with unique time axis
from Figure 5.4 can be applied equivalently to other system models. The simplest one are
state machines and transition systems, already discussed in Theorem 5.8 and Remark 5.2,
respectively. Analogously, using T = R+

0 and W = U×Y ×D, where D is the disturbance
space, we can construct BS such that ΣS captures the dynamics of a linear time invariant
system used by van der Schaft in [75]. There, the inputs and outputs are required to
match for bisimilar systems, implying V = U × Y . Now constructing the φi-extension

61

5. Simulation Relations

[ΣS]φi of ΣS and applying Definition 5.7 results in a bisimulation relation which can be
shown to coincide with the one given in [75, Def. 2.1].

All aforementioned notions of (bi)similarity focus on relating systems with unique time
scale resulting in a state trajectory matching requirement as depicted in Figure 5.3. To
the best of the authors knowledge, the only work explicitly introducing simulations and
bisimulations between systems with different time scales was presented by Davoren and
Tabuada [8] using so called general flow systems (GFS) [9].

Interestingly, the intuitive interpretation of the different simulation relations depicted
in Figure 5.1 - 5.3 coincides with the idea behind the r-, p- and t-simulation relations
constructed in [8] for GFL, respectively. For discrete and continuous systems, which are
a subclass of GFS, the simulation relation in Definition 5.1 can therefore be shown to
reproduce the relations in [8] by choosing appropriate time scale transformations. How-
ever, Definition 5.1 extends the constructions in [8] for the mentioned subclass of GFS
by including external trajectories. Furthermore, relating two systems with different time
scale transformations allows for a larger variety of relations when using Definition 5.1
instead of r-, p- and t-simulation relations constructed in [8].

62

6. A New Approach to Realizing SAlCA

In the original version of QBA, discussed in Section 3.1, the abstraction is obtained
from a transition system, modeling the “original” system. In this model the external
signal space is usually divided into inputs and outputs. On the other hand, SAlCA
are constructed from a behavior B evolving over the discrete time axis T = N0 and
taking values in some signal space W , where the division of the latter into inputs and
outputs is not necessarily assumed. However, if the abstraction should be used for control
purposes, W = U × Y is a practical choice of the external signal space W . Hence, using
Assumption 1 when constructing SAlCA builds a bridge to the setting of QBA.

However, as a direct consequence of the abstraction procedure for SAlCA, using As-
sumption 1 implies that both U and Y are used to construct the state space of Q̂l↑

(see (2.42a) in Corollary 2.34). Contrary, QBA use only the output space to construct
the abstract state space (see (3.5a) in Theorem 3.8). Hence, an obvious way to connect
both settings is to use W = Y when constructing SAlCA. However, as the labels of
the transitions in δ̂l

↑
are given by w ∈ W (see (2.42c) in Corollary 2.34), the resulting

finite state machine Q̂l↑ cannot contain input information in this case, hence cannot be
used for control purposes as outlined above. To circumvent this problem, we suggest a
different way of constructing Q̂l↑ in this chapter.

In Section 6.1 we will first recall how the construction of SAlCA from Section 1.2 can
be applied to the original model given by an ASSφDS from Chapter 4 in an obvious
manner. This reveals that, using Assumption 2, the standard realization Q̂l↑ of the
resulting SAlCA can be equivalently obtained by using the state machine Q instead of
Σ̆φ
S in Figure 4.3 as the “original” model. Using this observation, we derive a construction

of Q̂l↑ from Q directly in Section 6.2 and show, how this allows to incorporate different
choices of abstract state spaces.

Thereafter, we will take the first step in our bridging endeavor in Section 6.3 and
Section 6.4, where we investigate how the newly constructed realizations of SAlCA are
related, respectively, to the original model and among each other. These results reveal a
nice connection to QBA, which allow for simulation relations to the original system by
construction.

63

6. A New Approach to Realizing SAlCA

Original
System

External Symbolic Dynamics Abstraction

Σ̆φ
S

ΣS Σ

ΣS Σ

Q

Σ̂l↑ Σ̂l↑
S

Q̂l↑

Q̂Ilm

Theorem 4.4

Definition 2.3

Lemma 2.20

Proposition 2.18

SAlCA

Theorem 2.30 Proposition 2.27

Proposition 2.28

Corollary 2.34

Definition 2.11

Definition 2.11

Definition 6.3

Theorem 6.5
& m=0,V=W

Assumption 2
X̂ l↑ as in

(2.42a)

Figure 6.1.: Connection between the original system modeled by an ASSφDS Σ̆φS and the standard

realization Q̂l↑ of its SAlCA under Assumption 2. The dashed lines illustrate the

construction of Q̂l↑ form Q directly, as discussed in Section 6.2.

6.1. Constructing SAlCA from ASSφDS

The construction of the state machine Q̂l↑ from Corollary 2.34 depicted in Figure 2.6
is based on a behavioral system model Σ = (N0,W,B). The basic idea of SAlCA is to

construct an SM whose external behavior B̂l↑ exactly mimics the behavior B over finite
time intervals of length l+1, hence is the result of the simplified domino-game discussed
in Section 2.8.

It was shown in Chapter 4 that under Assumption 2 the external dynamics of the
“original” system can be modeled by an ASSDS ΣS = (N0,W ×X,BS). In this case,
Σ can obviously be obtained from ΣS by simply projecting its behavior to the external
signal space W . This observation allows to connect Figure 2.6 and Figure 4.3 to obtain
the construction of Q̂l↑ abstracting the external behavior of Σ̆S as depicted in Figure 6.1.

By investigating Figure 6.1 it is obvious that the construction of Q̂l↑ does not require
realizability of Σ̆φ

S by a state machine. Nevertheless, if the latter is true, B can be obtained
from the SM Q as B = πW (Bf (Q)) (from Lemma 2.20). However, if Q is given and used

as the “original” model, we can construct Q̂l↑ from Q directly without taking a “detour”
over constructing B first. We will see in the following section that this builds the bridge
to QBA as it allows for different choices of abstract state spaces.

64

6.2. Constructing Realizations of SAlCA from Infinite SM

6.2. Constructing Realizations of SAlCA from Infinite SM

Given Assumption 2, the abstraction process of SAlCA will be reduced in this section
to the construction of an abstract SM Q̂ from the given infinite SM

Q = (X,W, δ,X0), s.t. (2.23) holds, (6.1a)

as depicted by the dashed lines in Figure 6.1. Recall that (2.23) holds for Q in Figure 6.1

from Proposition 2.18. While the construction of Q̂l↑ requires the state space to be
constructed from W , we also want to incorporate the possibility to only consider a
subspace of W , e.g., only inputs U or only outputs Y) for the state space construction
to build a bridge to QBA. To simplify notation, we therefore introduce the set

V s.t. πV (W) 6= ∅ and |V | <∞ (6.1b)

as the choice of considered signals for the state space construction. Assuming that V
is finite ensures that the obtained abstraction is an FSM. To simplify notation for this
state space construction we introduce the behavior

BV := πV (Bf (Q)) and BSV := πV×X(Bf (Q)) (6.1c)

and extend its time axis from N0 to Z by pre-appending each ν ∈ BV (resp. (ν, ξ) ∈ BSV)
with the special symbol �, e.g., ν = v0v1v2 . . . ∈ BV ⊆ (V)N0 is transformed to �ν =
. . . � � � v0v1v2 . . . ∈ �BV ⊆ (V ∪ {�})Z. This extension is also used for other behaviors in
this section and always denoted by the left-raised � annotation. With this slight change
of notation, we redefine the domino-set in (2.37) to

Dl+1 :=
⋃
k′∈N0

�BV |[k′−l,k′]. (6.1d)

Playing the domino game from Section 2.8 with the set in (6.1d) results in the abstract
behavior

�B̂l↑V :=

{
ν

∣∣∣∣∣
(
∀k < 0 . ν(k) = �
∧∀k ∈ N0 . ν|[k−l,k] ∈ Dl+1

)}
. (6.2)

Slightly abusing our terminology from Section 2.8, we call Σ̂l↑
V := (N0, V, B̂l

↑
V) the SAlCA

of Σ w.r.t. V . This is justified, as the behavior �B̂l↑V coincides with �B̂l↑ for V = W , what
is shown in the following proposition. However, if V 6= W , e.g., V = Y , the left-extension
of the behavior πV (B̂l↑) is generally only a subset of �B̂l↑V . Intuitively, this is due to the
fact that playing the domino game with dominos over W = U × Y might restrict the
allowed moves due to the additional matching requirement on the past inputs.

Proposition 6.1. Given (6.1) and the system models depicted in Figure 6.1 it holds

that �B̂l↑ = �B̂l↑V if V = W . Hence, Σ̂l↑
V = Σ̂l↑ if V = W .

65

6. A New Approach to Realizing SAlCA

Proof. Let Σ in Figure 6.1 be the dynamical system Σ = (N0,W,B). Then it follows
from Proposition 2.18 and Lemma 2.20 (i) that B = πW (Bf (Q)) and therefore BV = B
if V = W . Now recall from (2.38) and Proposition 2.32 that this implies

B̂l↑ =

{
ν

∣∣∣∣∣
(

ω|[0,l−1] ∈ BV |[0,l−1]

∧∀k ∈ N0 . ω|[k,k+l] ∈
⋃
k′∈N0

BV |[k′,k′+l]

)}
. (6.3)

Now consider the left extensions �B̂l↑ and �BV and the domino set in (6.1d) for
V = W . Then the second line of (6.2) is obtained from (6.3) by substituting⋃
k′∈N0

BV |[k′,k′+l] by the domino set Dl+1 and shifting the restriction window for ω
from [k, k+ l] to [k− l, k]. By additionally requiring ∀k < 0 . ν(k) = � it is ensured that
for any time k < l only dominos with l− k-diamonds on the left can be attached in the
domino game. This immediately implies that at time k = l − 1 a domino with only one
diamond and l symbols from W is attached, which can only be obtained from �BV |[−1,l]

ensuring ω|[0,l−1] ∈ BV |[0,l−1].

Using Proposition 6.1 it is now easy to see that the abstract state space X̂ l↑ in (2.42a)
of Corollary 2.34 can be redefined to {�}l ∪Dl if V = W is chosen. This simply means
that all states with length r < l are pre-appended by l−r diamonds while all states with
length l are left unchanged. Hence {�}l∪Dl is obviously a good candidate for an abstract
state space, where each state has length l, which significantly simplifies the subsequent
construction of abstract state machines.

Corresponding External Event Sequences

As it is our goal in this section to construct abstract state machines from Q directly,
we would like to derive the transition relation δ̂ directly from δ. As a first step, we
investigate the connection between the state spaces, i.e., how a string ζ ∈ {�}l ∪Dl can
correspond to a state x ∈ X of Q. Observe that ζ is a string of length l and x is a state
reached at a particular time k ∈ N0. We consider the cases where ζ is generated by Q
immediately before, immediately after or while x was reached. This leads us to a set of
intervals

I lm = [m− l,m− 1] s.t. l,m ∈ N0, and m ≤ l, (6.4)

where1 [k, k] + I l0 = [k − l, k − 1] corresponds to the first, [k, k] + I ll = [k, k + l − 1]
corresponds to the second, and all other choices [k, k] +I lm correspond to the third case.
Based on (6.4) the set of compatible states are defined in Definition 6.2 and illustrated
in Figure 6.2.

1The addition of two intervals is interpreted in the usual sense, i.e., [a, b] + [c, d] = [a+ c, b+ d].

66

6.2. Constructing Realizations of SAlCA from Infinite SM

a b c c b b. . .γ: . . .

x

ζ0
ζ1

ζ2
ζ3

ξ:

Figure 6.2.: Illustration of corresponding external event sequences ζm∈EI
3
m(x), m∈{0, . . . , 3} for

state x = ξ(k) where V = Y = {a, b, c} and γ(k)∈Hδ(x), k∈N0.

Definition 6.2. Given (6.1) and (6.4), the set of corresponding external event se-
quences w.r.t. I lm of a state x ∈ X is defined by

EI
l
m(x):=

{
ζ

∣∣∣∣∣∃(ν, ξ) ∈ BSV , k ∈ N0 .

(
ξ(k) = x

∧ζ = ν|[k,k]+Ilm

)}
. (6.5)

Furthermore, Q is future unique w.r.t. I lm if

∀x ∈ X, ζ, ζ ′ ∈ EI
l
m(x) . ζ|[l−m,l−1] = ζ ′|[l−m,l−1]. (6.6)

Observe that ζ, ζ ′ ∈ EI
l
m(x) in (6.6) are obtained from two trajectories (ν, ξ),

(ν ′, ξ′) ∈ BSV passing x at time k ∈ N0 and k′ ∈ N0, respectively, (i.e., ξ(k) =
ξ′(k′) = x) using (6.5). During this restriction of ν (resp. ν ′) to ζ (resp. ζ ′) absolute
time information is disregarded (see Section 2.1), implying ζ|[l−m,l−1] = ν|[k,k+m−1] and

ζ ′|[l−m,l−1] = ν|[k′,k′+m−1]. Therefore, Q is future unique w.r.t. I lm if for all states x ∈ X
all trajectories passing x have the same m-long (non-strict) future of external events, i.e.
ν|[k,k+m−1] = ν ′|[k′,k′+m−1]. Using this intuition it is easy to see that Q is always future

unique w.r.t. I l0 = [−l,−1], as this interval has no future.

I lm-Abstract State Machines

We now proceed by constructing m different abstract state machines of Q using the
outlined correspondence between X and Dl via I lm.

Definition 6.3. Given (6.1) and (6.4), the I lm-abstract state machine of Q is defined

by Q̂Ilm = (X̂I
l
m , U × Y , δ̂Ilm , X̂I

l
m

0) s.t.

X̂I
l
m :=

{
ζ
∣∣∣∃x ∈ X . ζ ∈ EI

l
m(x)

}
, (6.7a)

X̂
Ilm
0 :=

{
ζ
∣∣∣∃x ∈ X0 . ζ ∈ EI

l
m(x)

}
, and (6.7b)

67

6. A New Approach to Realizing SAlCA

a b c c dγ̂:

ξ2:

ξ1:

.

x1 x′1

x2

x′2

a b c

b c c

c c d

. . .

. . .

x̂ ∈ EI
3
1 (x1)

x̂′ ∈ EI
3
1 (x′1) ∩ EI

3
1 (x2)

x̂′′ ∈ EI
3
1 (x′2)

Figure 6.3.: Illustration of construction of abstract states x̂, x̂′, x̂′′ ∈ X̂I31 and trajectories ξ̂ and
γ̂ from the original system Q where V = Y = {a, b, c, d}.

δ̂I
l
m :=


(x̂, w, x̂′)

∣∣∣∣∣∣∣∣∣∣∣∣


x̂′|[0,l−m−1] =

(
x̂|[0,l−m−1]·πV (w)

)
|[1,l−m]

∧x̂|[l−m,l−1] =
(
πV (w)·x̂′|[l−m,l−2]

)
|[0,m−1]

∧∃x, x′∈X .

 x̂∈EI
l
m(x)

∧x̂′∈EI
l
m(x′)

∧(x,w, x′)∈δ






. (6.7c)

The construction of the abstract state machines in Definition 6.3 are illustrated in Fig-
ure 6.3 and can be interpreted as follows. Using (6.7a) instead of X̂I

l
m = Dl ∪ {�}l

ensures that Q̂Ilm is live and reachable, which is purely cosmetic but allows to simplify
subsequent proofs. The last line in the conjunction of (6.7c) simply says that we have

a transition in Q̂Ilm from x̂ to x̂′ if there is a transition in Q between any two states
compatible with x̂ and x̂′, respectively. However, the first two lines in the conjunction
of (6.7c) additionally ensure that x̂ and x̂′ obey the rules of the domino game, i.e.,

x̂|[1,l−1] = x̂′|[0,l−2]

and the current external event v = πV (u, y) is contained in either x̂ or x̂′ or both, at the
position corresponding to the current time point, i.e.,

v = x̂′(l − 1) if m = 0,

v = x̂(l −m) = x̂′(l − 1−m) if 0 < m < l and

v = x̂(0) if m = l.

Obviously, one could neglect these two conditions and still obtains a valid abstraction.
We will discuss this generalized abstraction briefly in Remark 6.3.

68

6.2. Constructing Realizations of SAlCA from Infinite SM

Realizing SAlCA

Recall that the abstract state machines Q̂Ilm constructed in Definition 6.3 only ensure
that symbolic sequences taking values in the signal space V obey the rules of the domino
game from Section 2.8 played with dominos from (6.1d). Therefore, Q̂Ilm only realizes

Σ̂l↑
V w.r.t. V .

Theorem 6.4. Given (6.1) and Σ̂l↑
V = (N0, V, B̂l

↑
V), let Q̂Ilm be defined as in Defini-

tion 6.3. Then Q̂Ilm realizes Σ̂l↑
V w.r.t. V .

Proof. See Section A.1.1 on page 134.

As an intuitive consequence of Theorem 6.4, choosing m = 0 and the full external event
set V = W when constructing Q̂Ilm in Definition 6.3 yields the “standard” realization
Q̂l↑ of SAlCA in Corollary 2.34 if all states of length r < l are pre-appended by l − r
diamonds. This is formalized by a trivial bisimulation in the following theorem.

Theorem 6.5. Given (6.1) with V = W , let Q̂l↑ be constructed as depicted by one of

the solid paths in Figure 6.1 and Q̂Il0 as in Definition 6.3. Furthermore, let

R =
{

(x̂, �x̂) ∈ X̂ l↑ × X̂Il0
∣∣∣�x̂ = �l−|x̂| · x̂

}
(6.8)

where �r is an r-long string containing only diamonds. Then R ∈ BW (Q̂l↑ , Q̂Il0).

Proof. See Section A.1.2 on page 135.

Observe from Theorem 6.5 that Q̂l↑ and Q̂Il0 are equivalent up to a trivial renaming of
states. This result finally explains the dashed lines in Figure 6.1 from Q to Q̂l↑ . Observe,
that we need to restrict the connection between the two SM to the case m = 0 and
V = W as Σ̂l↑

S is assumed to be constructed from Σ̂l↑ using the state space X̂ l↑ in
(2.42a). If we drop these restrictions, we get a slightly different connection.

Proposition 6.6. Given Q̂Ilm as in Definition 6.3, the dynamical system
Σ̂l↑
S = (N0,W × X̂I

l
m ,Bf (Q̂Ilm)) is an ASSDS and realized by Q̂Ilm w.r.t. W × X̂I

l
m.

Furthermore, Σ̂l↑
S is an asynchronous state space representation of Σ̂l↑

V = (N0, V, B̂l
↑
V)

w.r.t. V , i.e., πV (Bf (Q̂Ilm)) = B̂l↑V .

Proof. The first claim follows immediately from Proposition 2.19. As Q̂Ilm is live and
reachable by definition, the second claim follows from Lemma 2.21. Finally,
πV (Bf (Q̂Ilm)) = B̂l↑V directly follows from Theorem 6.4.

Using Proposition 6.6 we obtain a new chain of constructions from the original system
Σ̆φ
S to the new realizations Q̂Ilm of its SAlCA w.r.t. V as depicted in Figure 6.4. It should

69

6. A New Approach to Realizing SAlCA

Original
System

External Symbolic Dynamics Abstraction

Σ̆φ
S

ΣS Σ

Q

Σ̂l↑
V Σ̂l↑

S

Q̂Ilm

Theorem 4.4

Proposition 2.18

Definition 2.11

SAlCA

w.r.t. V Proposition 6.6

Definition 6.3

Proposition 6.6

Assumption 2

Figure 6.4.: Connection between the original system modeled by an ASSφDS Σ̆φS and the new

realizations Q̂Ilm of its SAlCA w.r.t. V under Assumption 2.

be noted that whenever V 6= W , input information is only contained in Σ̂l↑
S but not in

Σ̂l↑
V . Hence, in this case Σ̂l↑

S cannot be constructed from Σ̂l↑
V . However, if V = W the

connection between Σ̂l↑
V and Σ̂l↑

S as depicted in Figure 6.1 can be established by choosing

the state space X̂I
l
m instead of X̂ l↑ .

Remark 6.1. In the context of SlCA a state machine Q̂l+ was introduced in [47] whose
state at time k represents the string of external symbols from time k−l+1 to time k, i.e.,
from the interval [k, k]+I l1. While the state sets of Q̂l+ and Q̂Il1 coincide, their transition

structure slightly differs. This is a consequence of the fact that Q̂l+ was intended to serve
as a set-valued observer for the states of Q in [47] and not as an abstraction for controller
synthesis. /

6.3. Relating the Abstraction to the “Original” System

Using Assumption 2 the original system is modeled by an ASSφDS Σ̆φ
S . However, we

have seen in the previous chapter that the abstract state machines Q̂Ilm can be derived
from Q directly, as depicted in Figure 6.4. It is therefore interesting to investigate if
the question of relation between the “original” and the “abstract” system can also be
reduced to investigating the relation between the SM Q and Q̂Ilm as the latter can be
done locally.

Similarity of Σ̆φ
S and Σ̂l↑

S

Using the general notion of similarity for ASSφDS and the construction of φi-extensions
for ASSDS and SM we can show on a very general level when similarity of Σ̆φ

S and Σ̂l↑
S

can be reduced to similarity of Q and Q̂Ilm .

70

6.3. Relating the Abstraction to the “Original” System

Theorem 6.7. Given the system models depicted in Figure 6.4 and (6.1b) it holds that

R ∈ SV (Q, Q̂Ilm)⇔ R ∈ SV (Σ̆φ
S , Σ̂

l↑
S), (6.9a)

R ∈ SV (Q̂Ilm ,Q)⇐ R ∈ SV (Σ̂l↑
S , Σ̆

φ
S) and (6.9b)

ΣS is complete⇒
(
R ∈ SV (Q̂Ilm ,Q) ⇒ R ∈ SV (Σ̂l↑

S , Σ̆
φ
S)
)
. (6.9c)

Proof. See Section A.1.3 on page 136.

Using Definition 5.2 we have the following immediate consequence of Theorem 6.7.

Corollary 6.8. Given the system models depicted in Figure 6.4 and (6.1b) it holds that

Q �V Q̂I
l
m ⇔ Σ̆φ

S �V Σ̂l↑
S and (6.10a)

ΣS is complete⇒
(
Q ∼=V Q̂I

l
m ⇔ Σ̆φ

S
∼=V Σ̂l↑

S

)
. (6.10b)

Intuitively, the result in (6.10b) is not very surprising, as bisimilarity implies behavioral

equivalence of all models, hence B̂l↑V = BV = πV (B). However the last equality only holds
if ΣS is complete as BV = πV (B). However, this should not worry us too much, as in

this case using SAlCA can never result in an ASSDS Σ̂l↑
S which is bisimilar to Σ̆φ

S as the

former is always complete. Hence, for all situations where bisimilarity of Σ̂l↑
S and Σ̆φ

S can
be achieved, it can actually be reduced to investigating state machines.

Similarity of Q and Q̂Ilm

We now investigate under which conditions the obtained abstractions Q̂Ilm actually sim-
ulate the original state machine Q. This requires the construction of a relation between
the original state space X and the abstract state space X̂I

l
m . As X̂I

l
m defines a cover for

X s.t. each cell is given by all states x corresponding to a string ζ ∈ X̂Ilm via EI
l
m , the

latter is a natural choice for a relation between X and X̂I
l
m .

Recall from Lemma 2.31 (iv) and the construction of Σ̂l↑
V depicted in Figure 6.4 that

BV = B̂l↑V if ΣV = (N0, V,BV) is asynchronously l-complete. In this case, we know from

Proposition 6.6 that the V -part of the external behavior of Q and Q̂Ilm coincide. As
shown in Proposition 5.4, behavioral equivalence is always necessary for a relation R to
be a bisimulation relation, but usually not sufficient. We therefore introduce a stronger
condition, called state-based asynchronous l-completeness, to serve the latter purpose.

Definition 6.9. Given (6.1) and (6.4), we say that Q is state-based asynchronously
l-complete w.r.t. I lm if

∀x ∈ X, ζ ∈ Dl+1 .
(
ζ|[0,l−1] ∈ EI

l
m(x)⇒ ζ ∈ E[m−l,m](x)

)
. (6.11)

71

6. A New Approach to Realizing SAlCA

Theorem 6.10. Given (6.1) and Q̂Ilm as in Definition 6.3, let

R =
{

(x, x̂) ∈ X × X̂Ilm
∣∣∣x̂ ∈ EI

l
m(x)

}
. (6.12)

Then it holds that
(i) R ∈ SW (Q, Q̂Ilm)⇔ Q is future unique w.r.t. I lm and

(ii) R−1∈SV (Q̂Ilm ,Q)⇔ Q is state-based asyc. l-compl. w.r.t. I lm
Proof. See Section A.1.4 on page 138.

Remark 6.2. Recall from Definition 2.24 that ΣV = (N0, V,BV) is asynchronously l-

complete if ν ∈ B̂l↑V implies ν ∈ BV . Intuitively, the latter is true if any connection
of two l-long dominos results in an l + 1-long domino also consistent with BV . This is
equivalent to requiring that for all ζ ∈ Dl+1 there exists an x ∈ X s.t. the implication
in (6.11) holds. In contrast, Q is state based asynchronously l-complete w.r.t. I lm if for
all ζ ∈ Dl+1 and for all x ∈ X the implication in (6.11) holds. Therefore, asynchronous
l-completeness of Σ is always implied by (6.11), but not vice-versa. /

Intuitively, Q̂Ilm simulatesQ w.r.t. V if for every related state pair (x, x̂) ∈ R and every

transition (x,w, x′) ∈ δ which Q “picks”, Q̂Ilm can “pick” a transition (x̂, w′, x̂′) ∈ δ̂Ilm
s.t. v = πV (w) = πV (w′). However, if m > 0, a state x̂ ∈ X̂I

l
m has only outgoing

transitions s.t. v = x̂(l − m). Therefore, Q̂Ilm can only simulate Q iff in every state
x ∈ X all outgoing transitions agree on this v, i.e., Q is “output deterministic” w.r.t. V .
For m > 1 applying this reasoning iteratively gives the (rather restrictive) condition of
future uniqueness of Q.

As the outlined problems are absent for m = 0 (as Q is always future unique w.r.t. I l0),

Q̂Il0 , which we know to coincide with the original realization Q̂l↑ of SAlCA for V = W ,
always simulates Q.

Corollary 6.11. Given (6.1) and Q̂Il0 as in Definition 6.3 it holds that Q �W Q̂I
l
0.

6.4. Ordering Abstractions based on Simulation Relations

Thinking back to the domino game we know that using longer dominos (i.e., increasing
l) gives less freedom in composing them and therefore yields a tighter abstraction. This

intuition carries over to the abstract state machines Q̂Ilm , inducing an ordering in terms
of simulation relations.

Theorem 6.12. Given (6.1) and Q̂Ilm as in Definition 6.3, let

R =
{

(x̂l+1, x̂l) ∈ X̂I
l+1
m × X̂Ilm

∣∣∣x̂l = x̂l+1|[1,l]
}
. (6.13)

Then it holds that

72

6.4. Ordering Abstractions based on Simulation Relations

(i) R ∈ SV (Q̂I
l+1
m , Q̂Ilm) and

(ii) R−1∈SV (Q̂Ilm , Q̂I
l+1
m)⇔ B̂l↑V = B̂l+1↑

V

Proof. See Section A.1.5 on page 140.

Recall from (6.1c) and Lemma 2.31 (i) and (iv) that asynchronous l-completeness of

ΣV = (N0, V,BV) implies B̂l↑V = B̂l+1↑

V . Therefore, Theorem 6.12 (ii) implies that the
accuracy of the abstraction cannot be increased by increasing l > r if ΣV = (N0, V,BV)
is asynchronously r-complete and m is fixed, e.g., m = 0. As the necessary and sufficient
property for bisimilarity in Theorem 6.10 is stronger then asynchronous r-completeness
(see Remark 6.2), the standard realization Q̂l↑ of SAlCA might never result in a bisimilar
abstraction of an r-complete dynamical system, no matter how large l is chosen.

Interestingly, we will show that increasing m, i.e., shifting the interval into the future,
results in a “smaller” state machine w.r.t. simulation relations.

Theorem 6.13. Given (6.1) and Q̂Ilm as in Definition 6.3 with m < l, let

R =

(x̂m+1, x̂m) ∈ X̂Ilm+1×X̂Ilm

∣∣∣∣∣∣∣
 x̂m+1|[0,l−2] = x̂m|[1,l−1]

∧∃x∈X .

(
x̂m+1∈EI

l
m+1(x)

∧x̂m∈EI
l
m(x)

)
 . (6.14)

Then it holds that
(i) R ∈ SV (Q̂Ilm+1 , Q̂Ilm) and

(ii) R−1 ∈ SV (Q̂Ilm , Q̂Ilm+1)⇔

(
Q is future unique w.r.t. I lm+1

∧Q is state-based async. l-complete w.r.t. I lm

)
.

Proof. See Section A.1.6 on page 142.

It is important to note that future uniqueness and state-based asynchronous l-com-
pleteness are incomparable properties, i.e., non is implied by the other. Therefore, there
exist situations where Q̂Ilm with m > 0 simulatesQ (i.e.Q is future unique w.r.t. I lm) and

Q̂Ilm is tighter than Q̂Il0 in terms of simulation relations. However, if Q is future unique
w.r.t. I lm, it is obviously also future unique w.r.t. I ln, n < m. In this case, state-based
asynchronous l-completeness of Q w.r.t. I ln implies that (i) Q̂Irn is bisimilar to Q (from
Theorem 6.10) and (ii) increasing r > l and m > n will not result in a tighter abstraction
(from Theorem 6.12 and Theorem 6.13). Hence, by using the additional parameter m
when realizing SAlCA, we are able to obtain a bisimilar abstraction if there exists l and
m s.t. Q is both future unique and state-based asynchronous l-complete w.r.t. I lm.

Remark 6.3. It is interesting to note that Theorem 6.4 also holds for a more general
abstract transition system Q̂ whose transition relation is defined by the last line of the
conjunction in (6.7c) only, i.e., it is not required that successive states obey the rules

73

6. A New Approach to Realizing SAlCA

Q :
x1 x2

x3

x4x5

(u1,y1)

(u2,y2)(u3,y3)

(u3,y3)(u4,y4)

(u1,y1)

Figure 6.5.: Transition structure of the SM Q in (6.15).

of the domino game. This choice of Q̂ obviously gives a weaker abstraction then Q̂Ilm
in Definition 6.3 and does not coincide with Q̂l↑ in Corollary 2.34 for m = 0. However,
it solves the issue discussed in Theorem 6.10, i.e., it always simulates Q for any choice
of m. It should be noted though, that Theorem 6.13 (i) does not hold for Q̂. Actually,
different choices of m give incomparable abstractions when the first two lines in (6.7c)
are dropped. In this case it strongly depends on the nature of Q if using the past or the
future to construct X̂ is more beneficial in terms of similarity relations. /

6.5. Example

We conclude this chapter with a detailed example illustrating the construction of I lm-
abstract state machines and the property of future uniqueness and state-based asyn-
chronous l-completeness for different choices of l and m.

For simplicity, we consider a finite state machine

Q = (X,U × Y , δ,X0) s.t. V = Y and (6.15)

X = {x1, . . ., x5}, Y = {y1, . . ., y4}, U = {u1, . . ., u4} and X0 = {x1, x5}

as the “original” model. The transition structure of Q is depicted in Figure 6.5, where
transitions (x, u, y, x′) ∈ δ are depicted by an arrow from x to x′ labeled by (u, y). It can
be inferred from Figure 6.5 that the external behavior of Q is given by

BV = {y1y2((y3y2)∗(y3y4)∗)ω, y1y4((y3y2)∗(y3y4)∗)ω}

where (·)∗ and (·)ω denote, respectively, the finite and infinite repetition of the respective
string. Furthermore, the sets of 1-long and 2-long dominos obtained from BV via (6.1d)
are given by

D1 = Y and D2 = {�y1, y1y2, y1y4, y2y3, y3y2, y3y4, y4y3}.

74

6.5. Example

Q̂I1
0 :

� y1

y2

y3

y4

(u1,y1)

(u2,y2)

(u3,y3)(u2,y2)

(u4,y4)(u3,y3)

(u4,y4)

Q̂I1
1 :

y1

y2

y3

y4

(u1,y1)

(u2,y2)(u3,y3)

(u3,y3)(u4,y4)

(u1,y1)

Figure 6.6.: I10 - and I11 -abstract state machines of Q in (6.15).

To play the domino-game from Section 2.8 for l = 1, i.e., with dominos from the set
D2, we have to pick �y1 as the initial domino and append dominos such that the last
element of the first matches the first element of the second domino. It is easy to see that
in this example every such combination of dominos yields a sequence contained in BV .
Hence, ΣV = (N0, V,BV) is asynchronously 1-complete and therefore also asynchronously
2-complete.

Choosing l = 1

Using Q in (6.15) we can construct the I1
0 - and I1

1 -abstract state machines of Q using
Definition 6.3 whose transition structure is depicted in Figure 6.6. Using I1

0 = [−1,−1]
we consider the immediate past of a state and obtain the following properties of Q w.r.t
I1

0 .

(A1) Q is not state-based asynchronously 1-complete w.r.t. I1
0 :

To see that (6.11) does not hold we choose x2 and y1y4 ∈ D2 and observe that
y1 ∈ E[−1,−1](x2) but y1y4 /∈ E[−1,0](x2).

(A2) Q is future unique w.r.t. I1
0 (as this always holds).

Now using I1
1 = [0, 0] we consider the current output values of a state and obtain the

following properties of Q w.r.t I1
1 .

(B1) Q is not state-based asynchronously 1-complete w.r.t. I1
1 :

To see that (6.11) does not hold, we choose x1 and y1y4 ∈ D2 and observe that
y1 ∈ E[0,0](x1) but y1y4 /∈ E[0,1](x1).

(B2) Q is future-unique w.r.t. I1
1 :

It is easy to see that Q is output deterministic. Using (6.6) this immediately implies
that Q is future-unique w.r.t. I1

1 .

75

6. A New Approach to Realizing SAlCA

Using (A2) and (B2), we know from Theorem 6.10 (i) that the relations

RI1
0 :={(x1, �)} ∪ {(x2, y1), (x2, y3)} ∪ {(x3, y2), (x3, y4)}

∪ {(x4, y1), (x4, y3)} ∪ {(x5, �)} and (6.16a)

RI1
1 :={(x1, y1), (x2, y2), (x3, y3), (x4, y4), (x5, y1)} (6.16b)

are simulation relations from Q to Q̂I1
0 and Q̂I1

1 , respectively. It should be noted that
every state xi ∈ X is related via RI1

1 to its unique output {yj} = Hδ(xi), while xi ∈ X
is related via RI1

0 to all possible output events Q might produce immediately before
reaching xi, i.e., the set of y-labels of all incoming transitions.

Using (A1) and (B1) we know from Theorem 6.10 (ii), that both relations are not
a bisimilation relation between Q and Q̂I1

0 (resp. Q̂I1
1). This can be observed from

Figure 6.6 by choosing (x2, y1) ∈ RI1
0 and (y1, (u4, y4), y4) ∈ δ̂I1

0 and observing that x2

has no outgoing transition labeled by y4. Similarly, we can choose (x1, y1) ∈ RI1
1 and

(y1, (u1, y1), y4) ∈ δ̂I1
1 and observe that there actually exists an outgoing transition in

x1 labeled by (u1, y1) but this transition reaches state x2 which is not related to y4 via
RI1

1 .

Choosing l = 2

Increasing l and constructing the I2
0 - and I2

2 -abstract state machines of Q using Defini-

tion 6.3 yields the state machines Q̂I2
0 and Q̂I2

2 whose transition structure is depicted in
Figure 6.7. It is interesting to note that using more information from the past, i.e., using
I2

0 = [−2,−1] instead of I1
0 = [−1,−1], does not render Q state-based asynchronously

l-complete.

(C1) Q is not state-based asynchronously 2-complete w.r.t. I2
0 :

To see that (6.11) does not hold, we choose x2 and �y1y4 ∈ D3 and observe that
�y1 ∈ E[−2,−1](x2) but �y1y4 /∈ E[−2,0](x2).

(C2) Q is future unique w.r.t. I2
0 (as this always holds).

Contrary, using more information from the future, i.e., using I2
2 = [0, 1] instead of

I1
1 = [0, 0], renders Q state-based asynchronously l-complete. However, in this case the

future uniqueness-property is lost.

(D1) Q is state-based asynchronously 2-complete w.r.t. I2
2 :

Using more future information actually resolves the ambiguity from I1
1 . E.g., choos-

ing x1 we can only pick y1y2y3 ∈ D3 to obtain y1y2 ∈ E[0,1](x1), obviously implying
y1y2y3 ∈ E[0,2](x1).

76

6.5. Example

Q̂I2
0 :

〈��〉 〈�1〉

〈12〉 〈32〉

〈23〉 〈43〉

〈14〉 〈34〉

(u1,y1)

(u2,y2)

(u4,y4)

(u3,y3)

(u3,y3)

(u2,y2)

(u4,y4)

(u3,y3)

(u3,y3)

(u2,y2)

(u4,y4)

Q̂I2
2 :

〈12〉 〈23〉

〈32〉 〈34〉

〈43〉〈14〉

(u1,y1)

(u2,y2)

(u2,y2)

(u3,y3)

(u3,y3)

(u4,y4)

(u4,y4)

(u1,y1)

Figure 6.7.: I20 - and I22 -abstract state machines of Q in (6.15), where 〈ij〉 := yiyj .

(D2) Q is not future-unique w.r.t. I2
2 :

To see that (6.6) does not hold pick x2 and observe that y2y3y2, y2y3y4 ∈ EI
2
2 (x1)

but obviously y2y3y2 6= y2y3y4.

Using Theorem 6.10 we can now construct relations RI2
0 and RI2

2 analogously to the
ones for l = 1 in (6.16). However, now (C1)-(D2) imply that

RI2
0 ∈ SV (Q, Q̂I2

0) but
(
RI2

0

)−1
/∈ SV (Q̂I2

0 ,Q) and(
RI2

2

)−1
∈ SV (Q̂I2

2 ,Q) but RI2
2 /∈ SV (Q, Q̂I2

2).

To see that RI2
2 is not a simulation relation from Q to Q̂I2

2 pick (x3, y3y4) ∈ RI2
2 and

(x3, u3, y3, x2) ∈ δ and observe that y3y4 does not have an outgoing transition labeled
by (u3, y3).

Choosing l > 2

First recall from (D2) that Q is not future unique for I2
2 . Using (6.6) this implies that

for any interval I lm with m − 1 ≥ 2 (i.e., any interval with two or more future values)
the property of future uniqueness does not hold.

In terms of state-based asynchronous l-completeness the problem is completely oppo-
site. If we use m − 1 < 2 (implying future uniqueness of Q w.r.t. I lm from (A2) and
(C2)) Q can never be state-based asynchronously l-complete for any l as the ambiguity
for attaching dominos cannot be resolved by further knowledge about the past. In this
case the counterexamples from (A1) and (C1) can always be reused by pre-appending

77

6. A New Approach to Realizing SAlCA

the considered strings by an appropriate number of diamonds. It is rather necessary to
look at least two steps into the future, i.e., pick m− 1 ≥ 2, to resolve this ambiguity as
shown in (D1).

Concluding the above discussion there obviously exists no l and m s.t. Q in (6.15)
is both state-based asynchronously l-complete and future unique w.r.t. I lm. Therefore,
increasing l and m will never result in a bisimilar abstraction of Q in (6.15).

78

7. Quotient-based Abstractions with
Increasing Precision

As already briefly discussed in Chapter 4, the construction of QBA from a possibly
continuous system typically starts by partitioning the state space X into a finite set of
equivalence classes which are used as discrete outputs Y when constructing the exter-
nal discrete event model of the original system. In the considered modeling framework
the latter is given by ΣS , as depicted in Figure 4.3. As Y is chosen to be the set of
equivalence classes of a partition on the state space and an output y ∈ Y is assumed to
be directly generated by states rather then transitions, the state machine Q induced by
ΣS is naturally output deterministic, i.e., can be equivalently represented by a transi-
tion system T . This explains why transition systems are commonly used to model the
“original” system when using QBA.

The calculation of a suitable set of output symbols Y is typically done iteratively. First,
an initial partition of the state space is chosen, e.g., induced by the specification that
should be fulfilled by a subsequently designed controller. Then a refinement algorithm is
run which terminates if the partition allows to construct a QBA Q̂O which is bisimilar
to Q. Hence, with every step, the partition of the state space is refined until it is tight
enough for controller synthesis or the algorithm terminates. Therefore, the construction
of Y is already part of the abstraction process when using QBA.

Conceptually, there is a strong correspondence of this iterative calculation of the out-
put event set Y in the construction of QBA and the increasing of the parameter l when
constructing realizations of SAlCA as outlined in Chapter 6. Recall that in the setting
for SAlCA the external event set Y is predefined and only used as the abstract state set
of the abstract state machine Q̂Ilm if l = 1 (and V = Y). However, when increasing l,
the number of abstract states is increased, resulting in a finer cover of the state space,
hence in a tighter abstraction.

Therefore, the key in understanding the formal and conceptual differences between
QBA and SAlCA lies in the incorporation of the iterative calculation of Y into the
abstraction process of QBA. This idea is formalized in Section 7.1 resulting in a chain
of abstract SM Q̂lO, where the lth abstraction results from the lth step of the partition
refinement algorithm. Thereafter, an alternative way to construct Q̂lO is proposed in
Section 7.2 to provide a formal basis for the comparison of SAlCA and QBA.

79

7. Quotient-based Abstractions with Increasing Precision

7.1. Incorporating the Partition Refinement Algorithm

In Chapter 6 it was shown how to construct realizations of SAlCA with increasing
precision from a SM Q with predefined external event set W as given in (6.1). Choosing

V = Y in (6.1b) results in abstract SM Q̂Ilm whose state space is given by l-long strings
of output events Y . Hence, the “weakest” abstraction uses Y directly as its state space.
By increasing l, the number of abstract states is increased, resulting in a finer cover of
the state space.

To compare this cover-refinement incorporated in the construction of SAlCA to the
partition refinement step usually done prior to applying QBA, we assume the original
system to be modeled by an SM

Q = (X,U × Y , δ,X0) s.t. |Y | <∞, (7.1)

define the initial (finite) partition of the state space by

Φ1 =
{

H−1
δ (ŷ)

∣∣ŷ ∈ 2Y
}

(7.2)

and run the re-partitioning algorithm in [11] starting with (7.2). Using SM instead of
TS, we restate this algorithm with slightly modified notation. Using this notation, some
necessary properties of the resulting partitions are restated from [11] in Lemma 7.2.

Definition 7.1. Given (7.1) and l ∈ N, let

Tδ(x) :=
{
x′ ∈ X

∣∣∃u ∈ U, y ∈ Y . (x, u, y, x′) ∈ δ
}

(7.3)

be the set of input and output independent post states of a state x. Then the lth partition
Φl of X w.r.t. Y is iteratively defined by1

Φ1 :=
{

H−1
δ (ŷ)

∣∣ŷ ∈ 2Y
}

(7.4a)

and Φl := ◦Z∈Φl−1 Φl
Z (7.4b)

s.t. Φl
Z :=

{
Z ′ ∩ T−1

δ (Z)
∣∣∣Z ′∈Φl−1

}
∪
{
Z ′ \ T−1

δ (Z)
∣∣∣Z ′∈Φl−1

}
. (7.4c)

Furthermore, Ŷ l and φl : X→ Ŷ l denote the set of equivalence classes and the natural
projection map of Φl, respectively.

Lemma 7.2. Given (7.1) and Φl as in Definition 7.1 it holds that

∀Z ∈ Φl, x, x′ ∈ Z . Hδ(x) = Hδ(x
′), (7.5a)

Φl=
{
Z∈2X

∣∣∣∀Z ′∈Φl−1.
((
Z ∩ T−1

δ (Z ′) 6= ∅
)
⇒
(
Z ⊆ T−1

δ (Z ′)
))}

, (7.5b)

and Φl is a fixed point of (7.4) if

∀Z,Z ′∈Φl.
((
Z ∩ T−1

δ (Z ′) 6= ∅
)
⇒
(
Z ⊆ T−1

δ (Z ′)
))
. (7.5c)

1In (7.4b) the operator ◦a∈Afa composes all functions fa with a ∈ A in any order.

80

7.1. Incorporating the Partition Refinement Algorithm

Proof. • Show (7.5a): It follows from [11], Prop.3.9 (i) that

∀Z ∈ Φl . ∃Z ′ ∈ Φl−1 . Z ⊆ Z ′ (7.6)

Now recall from (7.4a) that for all Z0 ∈ Φ0 there exists V ∈ 2Y s.t. Z0 = H−1
δ (V) and

Φ0 is a partition. Using (7.6) we obtain Z ⊆ H−1
δ (V), what proves the statement.

• Show (7.5b): If follows from [11], Prop.3.9(v) that

∀Z ′ ∈ Φl−1, Z ∈ Φl .

(
Z ∩ T−1

δ (Z ′) = ∅
∨Z ⊆ T−1

δ (Z ′)

)

Using that A⇒ B is logical equivalent to ¬A ∨B and rewriting the previous statement
into set-notation gives (7.5b).
• Show (7.5c): It follows from [11], Prop.3.10 (iii) that Φl is a fixed point of (7.4) if
Φl+1 = Φl. With this (7.5c) follows immediately from (7.5b).

Using the set of equivalence classes Ŷ l and the natural projection map φl : X→ Ŷ l of
Φl from Definition 7.1 we can define a QBA for every l by first constructing an output
deterministic version of Q.

Definition 7.3. Given (7.1) and Φl as in Definition 7.1, the output deterministic version
of Q w.r.t. Φl is defined by Ql = (X,U × Ŷ l, δl, X0) s.t.

δl :=

{
(x, u, ŷ, x′)

∣∣∣∣∣
(

ŷ = φl(x)

∧∃y∈Y . (x, u, y, x′)∈δ

)}
. (7.7)

Furthermore, Q̂lO = (X̂ lO, U × Ŷ l, δ̂lO, X̂ lO
0) denotes the quotient state machine of Ql as

defined in Theorem 3.8.

It is a well known result in the construction of QBA that the refinement algorithm
in Definition 7.1 terminates if the resulting partition allows for the construction of Ql
and Q̂lO s.t. both models are bisimilar. As this is a classical result from the literature
on QBA we omit the proof and only restated the result in our notation.

Theorem 7.4 (e.g. [67], Thm. 4.18). Given Ql and Q̂lO as in Definition 7.3, let

R =
{

(x, x̂) ∈
(
X × X̂ lO

)∣∣∣x̂ = φl(x)
}

(7.8)

be a relation. Then
(i) R ∈ S

U×Ŷ l
(Ql, Q̂lO) and

(ii) R−1 ∈ S
Ŷ l

(Q̂lO,Ql)⇔ Φl is a fixed-point of (7.4).

81

7. Quotient-based Abstractions with Increasing Precision

7.2. An Alternative Construction of QBA

Recall from Chapter 6 that the abstract SM Q̂Ilm outputs events in the set Y while the
quotient SM Q̂lO outputs events in the refined set Ŷ l. However, to formally compare both
SM using simulation relations as defined in Chapter 5 both models must have the same
output event set. We therefore propose a different quotient SM in this section which is
directly obtained from Q and Φl and has the output event set Y .

Definition 7.5. Given (7.1) and Φl as in Definition 7.1, the l-th quotient state machine
of Q is defined by Q̂lH = (X̂ lH, U × Y , δ̂lH, X̂ lH

0) s.t.

X̂ lH = Ŷ l, (7.9a)

X̂ lH
0 =

{
ŷ ∈ Ŷ l

∣∣∣∃x ∈ X0 . ŷ = φl(x)
}
, and (7.9b)

δ̂lH =

(x̂, u, y, x̂′)

∣∣∣∣∣∣∣∃x, x′ ∈ X .

 x̂ = φl(x)

∧x̂′ = φl(x′)

∧(x, u, y, x′) ∈ δ


 . (7.9c)

To show that the construction in Definition 7.5 is sound, we show in the following theo-
rem that the “actual” QBA Q̂lO can be constructed from Q̂lH using a simple re-definition
of the output space. The resulting construction of quotient state machines with increas-
ing precision is summarized in Figure 7.1. While the solid line depicts the construction of
Q̂lO via Ql from Section 7.1, the alternative construction using Definition 7.5 is depicted
by a dashed line.

Theorem 7.6. Given Q̂lO and Q̂lH as in Definition 7.3 and Definition 7.5, respectively,
it holds that

X̂ lO = X̂ lH, X̂ lO
0 = X̂ lH

0 and δ̂lO =
{

(x̂, u, x̂, x̂′)
∣∣∣∃y∈Y . (x̂, u, y, x̂′)∈δ̂lH

}
.

Proof. See Section A.2.1 on page 146.

Using Theorem 7.6 it seems natural to recover the similarity results in Theorem 7.4 for
Q and Q̂lH. However, there is a small technicality arising from running the re-partitioning
algorithm on SM instead of TS, spoiling this result for bisimilarity.

Intuitively, one step in (7.4) results in a clustering of states with identical post-cells.
Hence, a fixed point of (7.4) is obtained if all states in one cell have the same post-
cell(s). Using Q instead of T , post states x̃ of a state x (calculated using T in (7.3))
might depend on the chosen output event y ∈ Hδ(x). E.g., knowing that two states
x, x′ ∈ H−1

δ ({y1, y2}) have the same post cell does not imply that there exist transitions
from x and x′ to this cell for both output events y1 and y2. However, this is obviously
true if Q has separable dynamics, i.e., if (3.2d) holds.

82

7.2. An Alternative Construction of QBA

Q

Ql Q̂lO

Q̂lH

Definition 7.3

Theorem 3.8

Theorem 7.6

Definition 7.5

Φl

Figure 7.1.: The solid line illustrate the construction of the quotient SM Q̂lO from the output
deterministic SM Ql using QBA. The dashed line illustrates the construction of Q̂lH
from Q directly.

Theorem 7.7. Given (7.1), Q̂lH as in Definition 7.5 and R as in (7.8), it holds that
(i) R ∈ SU×Y (Q, Q̂lH) and

(ii) (3.2d) holds for Q ⇒
(
R−1 ∈ SY (Q̂lH,Q)⇔ Φl is a fixed-point of (7.4)

)
.

Proof. See Section A.2.2 on page 146.

It is interesting to observe from the proof of Theorem 7.7 that R−1 ∈ SY (Q̂lH,Q)
always implies that Φl is a fixed-point of (7.4) while the other direction requires Q to
have separable dynamics. Hence, if the latter is not true, it is not guarantied that the
quotient state machine Q̂lH obtained from the final partition of the fixed-point algorithm
is bisimilar to Q. However, if a fixed-point of (7.4) is reached, no tighter abstraction can
be generated using QBA. This observation is supported by the following obvious result
on the ordering of quotient state machines based on l.

Theorem 7.8. Given (7.1) and Q̂lH as in Definition 7.3, let

R =

{
(x̂l+1, x̂l) ∈

(
X̂ l+1H × X̂ lH

)∣∣∣∣(φl+1
)−1

(x̂l+1) ⊆
(
φl
)−1

(x̂l)

}
(7.10)

be a relation. Then
(i) R ∈ SU×Y (Q̂l+1H, Q̂lH) and

(ii) R−1 ∈ SU×Y (Q̂lH, Q̂l+1H)⇔ Φl is a fixed-point of (7.4).

Proof. See Section A.2.3 on page 148.

This implies that a bisimilar quotient state machine Q̂lH of Q can only be constructed
using Definition 7.5 if Q has separable dynamics and (7.4) terminates. We conclude this
section by giving two different sensing scenarios for systems with a predefined output
space Y which result in a SM Q modeling the external discrete event system ΣS which
does/does not have separable dynamics.

83

7. Quotient-based Abstractions with Increasing Precision

Example 7.1. Consider a system where each output yi ∈ Y is generated by a different
sensor and the sensing regions of different sensors overlap. Then ŷ = {y1, y2} corresponds
to the situation where both sensor 1 and sensor 2 are active. In this case, all possible
outputs are generated simultaneously, solely based on the current state of the system.
It is therefore unintuitive to assume that the system considers only one of them and
changes its dynamics according to this choice. The system naturally fulfills (3.2d) and
the output event set could simply be redefined to Ŷ := 2Y . /

Example 7.2. Consider a system where all measurements are generated by a single
sensor with measurement uncertainties. Then {y1, y2} = Hδ(x) technically means that
the sensor will either output y1 or y2 if the system is in state x, but not both. Hence, y1

and y2 cannot be measured simultaneously. In this scenario, Q must not have separable
dynamics, as based on the single obtained measurement value, the dynamics of the
system might indeed vary. Furthermore, a redefinition of the output event set to Ŷ := 2Y

cannot be practically motivated as the newly defined output ŷ = {y1, y2} cannot be
detected from the outputs of the system. /

7.3. Example

We conclude this chapter by revisiting the example in Section 6.5. In particular, we
discuss the construction of the l-th quotient state machine of the SM Q in (6.15) depicted
in Figure 6.5. Recall that Q in (6.15) is output deterministic. As discussed in Chapter 3
this implies that (3.2d) holds, hence Q has separable dynamics.

Using (7.4) the first and second partition of X w.r.t. Y are given by

Φ1 = {{x1, x5}, {x2}, {x3}, {x4}} and (7.11a)

Φ2 = {{x1}, {x2}, {x3}, {x4}, {x5}} (7.11b)

with

Ŷ 1 ={{y1}, {y2}, {y3}, {y4}} and (7.12a)

Ŷ 2 = {{y1y2}, {y2y3}, {y3y2, y3y4}, {y4y3}, {y1y4}} . (7.12b)

Using (7.5c) in Lemma 7.2 we have the following observations.

(E1) Φ1 is not a fixed-point of (7.4):
To see that (7.5c) does not hold, pick x1, x5 ∈ H−1({y1}) and observe that x1 ∈
T−1
δ ({y2}) and x5 /∈ T−1

δ ({y2}), hence {y1}∩T−1
δ ({y2}) 6= ∅ but {y1} 6⊆ T−1

δ ({y2}).

(E2) Φ2 is a fixed-point of (7.4):
As all cells of Φ2 are singletons (7.5c) trivially holds.

84

7.3. Example

Q̂1H :

{y1}

{y2}

{y3}

{y4}

(u1,y1)

(u2,y2)(u3,y3)

(u3,y3)(u4,y4)

(u1,y1)

Q̂2H :
{〈12〉} {〈23〉}

{〈32〉,〈34〉}

{〈43〉}{〈14〉}

(u1,y1) (u2,y2)

(u4,y4)

(u4,y4)

(u3,y3)

(u1,y1)

Figure 7.2.: First and second quotient state machines of Q in (6.15), where 〈ij〉 := yiyj .

Now constructing the first and second quotient state machine of Q using Definition 7.5
yields the SM depicted in Figure 7.2. Using Theorem 7.7 (i) we know that

R1H :={(x1, {y1}), (x2, {y2}), (x3, {y3}), (x4, {y4}), (x5, {y1})} and (7.13a)

R2H :={(x1, {y1y2}), (x2, {y2y3}), (x3, {y3y2, y3y4}), (x4, {y4y3}), (x5, {y1y4})} (7.13b)

are simulation relations from Q to Q̂1H and Q̂2H, respectively. However, Theorem 7.7
(ii) implies that only R2H is a bisimulation relation between Q and Q̂2H. To see that
this is not true for R1H, we choose (x1, {y1}) ∈ R1H and ({y1}, (u1, y1), {y4}) ∈ δ̂1H and
observe that there exists only one outgoing transition in x1 labeled by (u1, y1) reaching
x2, which is not related to {y4} via R1H.

85

8. Comparison of SAlCA and QBA

Recall from Chapter 4 that under Assumption 1-2 the step-by-step evolution of the
“original” system can be modeled by the SM Q in (7.1). It was furthermore shown in
Chapter 6 and Chapter 7 that the abstract FSM resulting from SAlCA and QBA can
be directly obtained from Q. Hence, Q can be used as a common basis for constructing
Q̂Ilm and Q̂lH. However, as outlined at various points of the preceding part of this thesis,
the assumptions about the external output event set Y contained in Assumption 1 are
fundamentally different in both settings. We therefore obtain a comparison for both
viewpoints in this chapter.

First, in Section 8.1, we take the viewpoint of SAlCA and assume a predefined output
space Y and apply both the constructions of SAlCA and QBA to Q. Surprisingly, we
will show that this results in generally incomparable abstract state machines. We will
therefore derive necessary and sufficient conditions in terms of properties on Q which
ensure that both abstractions become bisimilar. These conditions will turn out to be
rather restrictive.

Thereafter, in Section 8.2, we take the viewpoint of QBA and assume that the output
event set can be arbitrary chosen. Hence, we assume that the refinement algorithm in
Definition 7.1 is run for l steps first, using an arbitrary initial partition Φ1. This results
in an output deterministic state machine Q which is used as a basis to construct both
the quotient and the I1

1 -abstract state machine. In this special case, we can show that
both abstractions coincide. Hence, in this second set up, the necessary and sufficient
conditions derived in Section 8.1 are automatically fulfilled.

8.1. The viewpoint of SAlCA

Recall that the construction of the abstract SM Q̂Ilm in Chapter 6 is based on (6.1)
(partially resulting from Assumption 2), while the construction of the quotient SM Q̂lH
in Chapter 7 is based on (7.1) (resulting from Assumption 1). To compare both methods
we make the following additional assumption.

Assumption 3. The SM Q modeling the external discrete event dynamics of Σ̆φ
S has

separable dynamics.

Combining (6.1) and (7.1) and using Assumption 3, the SM Q̂Ilm and Q̂lH compared in

87

8. Comparison of SAlCA and QBA

this section are assumed to be constructed from an SM

Q = (X,U × Y , δ,X0) s.t. (2.23) and (3.2d) holds, (8.1a)

modeling the external discrete event dynamics of Σ̆φ
S as depicted in Figure 4.3. Further-

more, combining (6.1b) with the observation that for QBA only the output set Y is used
to construct the states of Q̂lH the set V in (6.1b) is set to

V = Y, i.e., |Y | <∞. (8.1b)

Redefining the Natural Projection Map of Φl

Recall that the abstract state spaces X̂I
l
m and X̂ lH induce a cover (resp. a partition) on

the original state space X which is iteratively refined by increasing l. Using Theorem 6.10
and Theorem 7.7 we know that states x ∈ X are related to abstract states x̂ ∈ X̂I

l
m

and x̂′ ∈ X̂ lH via EI
l
m and φl, respectively. As the first essential result of our bridging

endeavor we now show that these two maps coincide for m = l if Assumption 3 holds.

Proposition 8.1. Given (8.1) and Φl as in Definition 7.1 it holds that

Φl =

{(
EI

l
l

)−1
(Υ)

∣∣∣∣Υ ∈ 2(Y)l
}
. (8.2)

Proof. See Section A.3.1 at page 149.

Proposition 8.1 implies that the equivalence classes of Φl are given by all sets Υ ∈ 2(Y)l

of l-long dominos ζ which are consistent with the behavior of Q and the map EI
l
l is the

natural projection map of Φl taking a state x ∈ X to its (unique) equivalence class.
Using this observation in Definition 7.5 gives the following obvious corollary.

Corollary 8.2. Given (7.1) and Q̂lH as in Definition 7.5, it holds that

X̂ lH =
{

Υ
∣∣∣∃x ∈ X . Υ = EI

l
l (x)

}
(8.3a)

X̂ lH
0 =

{
Υ
∣∣∣∃x ∈ X0 . Υ = EI

l
l (x)

}
, and (8.3b)

δ̂lH =

(x̂, u, y, x̂′)

∣∣∣∣∣∣∣∃x, x′ ∈ X .

 x̂ = EI
l
l (x)

∧x̂′ = EI
l
l (x′)

∧(x, u, y, x′) ∈ δ


 . (8.3c)

88

8.1. The viewpoint of SAlCA

Comparing Q̂Ill and Q̂lH

Recall that the construction of the I ll -abstract SM of Q using SAlCA in Definition 6.3

is also based on the set EI
l
l of corresponding external event sequences. Hence, Q̂lH in

Corollary 8.2 is conceptually similar to Q̂Ill but does not coincide with the latter. While
the abstract states x̂ ∈ X̂Ill are strings ζ ∈ (Y)l inducing a cover on the state space X,

the abstract states x̂ ∈ X̂ lH are sets Υ ∈ 2(Y)l inducing a partition on the state space X.
Having this connection between Q̂lH and Q̂Ill in mind, there are two interesting ques-

tions to be asked when comparing them.
(i) Does Q̂lH realize the SAlCA Σ̂l↑

Y = (N0, Y, B̂l
↑
Y) (constructed from Q in (8.1a) as

depicted in Figure 6.4) of Σ w.r.t. Y ?

(ii) Can we establish an ordering of the SM Q̂lH and Q̂Ill in terms of simulation rela-
tions?

Unfortunately, we will see that non of the above statements is true in general. We will
therefore derive necessary and sufficient conditions on the structure of Q in (8.1a) for
those statements to hold. We start by giving the only comparing result that holds in
general.

Theorem 8.3. Given (8.1), Q̂lH as in Definition 7.5 and Σ̂l↑
Y = (N0, Y, B̂l

↑
Y) constructed

as depicted in Figure 6.4, it holds that πY (Bf (Q̂lH)) ⊆ B̂l↑Y .

Proof. See Section A.3.2 at page 151.

As external behavioral inclusion is a necessary condition for the existence of a simula-
tion relation from Q̂lH to Q̂Ill (where the external behavior of Q̂Ill w.r.t. Y is given by B̂l↑Y
from Theorem 6.4) the natural next step is to construct this relation. However, thinking
back to the results in Theorem 6.10 (i) and Theorem 7.7 (i) there is not much hope

for success, as the existence of a simulation relation from Q̂lH to Q̂Ill would imply the
existence of a simulation relation from Q to Q̂Ill without the need for future-uniqueness
of Q w.r.t. I ll . Not surprisingly, the latter condition will turn out to be necessary and

sufficient for the naturally chosen relation from Q̂lH to Q̂Ill to be a simulation relation.
For the inverse relation to be a simulation relation from Q̂Ill to Q̂lH the following

property will turn out to be necessary and sufficient.

Definition 8.4. Given (8.1) and (6.1d), Q is domino consistent for l ∈ N0 if

∀ζ∈Dl+1,Υ∈2(Y)l .

(
ζ|[0,l−1]∈Υ⇒ ∃x∈

(
EI

l
l

)−1
(Υ) . ζ∈E[0,l](x)

)
(8.4)

Intuitively, domino consistency of Q implies that whenever a string ζ is part of an
abstract state x̂, i.e., ζ ∈ x̂, any domino ζ ′ ∈ Dl+1 that can be attached to ζ in the
domino game, i.e., ζ ′|[0,l−1] = ζ, can be attached for this particular abstract state x̂, i.e.,

89

8. Comparison of SAlCA and QBA

there exists a transition from x̂ to x̂′ s.t. ζ ′|[1,l] ∈ x̂′. Recalling that Q̂Ill is constructed
to allow all possible moves of the domino game, it becomes intuitively clear why the
condition in Definition 8.4 is needed to prove that Q̂lH can simulate Q̂Ill .

Theorem 8.5. Given (8.1) and Q̂Ill and Q̂lH as in Definition 6.3 and Definition 7.5,
respectively, let

R =
{

(ζ,Υ) ∈ X̂Ill × X̂ lH
∣∣∣ζ ∈ Υ

}
. (8.5)

Then
(i) R ∈ SY (Q̂Ill , Q̂lH)⇔ Q is domino consistent for l and

(ii) R−1∈SY (Q̂lH, Q̂Ill)⇔ Q is future unique w.r.t. I ll .

Proof. See Section A.3.3 at page 153.

Recalling from Proposition 5.4 that the existence of a simulation relation implies be-
havioral inclusion we can simply combine the results from Theorem 8.3 and Theorem 8.5
(i) to obtain an answer to our first question.

Corollary 8.6. Given (8.1), Q̂lH as in Definition 7.5 and Σ̂l↑
Y = (N0, Y, B̂l

↑
Y) constructed

as depicted in Figure 6.4, Q̂lH realizes Σ̂l↑
Y w.r.t. Y if Q is domino consistent for l.

Even though, we have only given a sufficient condition in Theorem 8.3 it should be
noted that this condition is “almost” necessary in the following sense. The only reason
for domino consistency to not be necessary for behavioral equivalence is that for any
string γ ∈ B̂l↑Y domino consistency is only required for all cells this string passes through.
As in general not every string passes though all cells that contain any of is l-long pieces,
domino consistency is only necessary for the cells which are actually passed, i.e., for
“almost all” cells.

To wrap up the comparison of Q̂Ill and Q̂lH we show that future uniqueness of Q w.r.t.
I ll always implies domino consistency of Q.

Lemma 8.7. Given (8.1) and (6.1d) it holds that

Q is future unique w.r.t. I ll ⇒ Q is domino consistent for l. (8.6)

Proof. Using (6.6), future uniqueness of Q w.r.t. I ll implies that that for all x ∈ X holds

EI
l
l (x) 6= ∅ ⇒ |EIll (x)| = 1. (8.7)

Using (8.3a) this immediately implies |x̂| = 1 for all x̂ ∈ X̂ lH. Now pick ζ ∈ Dl+1 and
x̂ ∈ X̂ lH s.t. ζ ′ = ζ|[0,l−1] ∈ x̂, implying x̂ = {ζ ′}. As ζ ∈ Dl+1 we know that there exists

(γ, ξ) ∈ BSV and k ∈ N0 s.t. ζ = γ|[k,k+l] and therefore ζ ∈ E[0,l](ξ(k)) and ζ ′ ∈ EI
l
l (ξ(k)).

This immediately implies ξ(k) ∈
(

EI
l
l

)−1
(x̂), what proves the statement.

90

8.1. The viewpoint of SAlCA

As the inverse implication in Lemma 8.7 is generally not true, Q̂Ill might actually be
a tighter abstraction than Q̂lH if Q is not future unique w.r.t. I ll . However, recall from

Theorem 6.10 that in this case Q̂Ill does not simulate Q, i.e., might be “too tight” to
suitably abstract Q. Hence, assuming future uniqueness of Q w.r.t. I ll to compare Q̂Ill
and Q̂lH does not exclude interesting scenarios for bisimilarity of the latter two.

Proposition 8.8. Given (8.1) s.t. Q is future unique w.r.t. I ll and Q̂Ill and Q̂lH as in
Definition 6.3 and Definition 7.5, respectively, let

R =
{

(ζ,Υ) ∈ X̂Ill × X̂ lH
∣∣∣Υ = {ζ}

}
. (8.8)

Furthermore, let Rl↑ and RlH denote the relations defined in (6.12) and (7.8), respec-
tively. Then it holds that

(i) Q̂lH realizes Σ̂l↑
Y w.r.t. Y ,

(ii) R ∈ BY (Q̂Ill , Q̂lH), hence Q̂Ill ∼=Y Q̂lH,

(iii) Rl↑ ∈ BY (Q, Q̂Ill)⇔ RlH ∈ BY (Q, Q̂lH) and

(iv) Φl is a fixed-point of (7.4)⇔ Q is state-based asyc. l-compl. w.r.t. I ll .

Proof. See Section A.3.4 on page 156.

Hence, whenever Q is future unique w.r.t. I ll the abstractions Q̂Ill and Q̂lH are equiv-
alent up to a trivial renaming of states.

Comparing Q̂Il0 and Q̂lH

Up until now we have investigated when Q̂lH is realizing Σ̂l↑
Y and how Q̂lH compares

to Q̂Ill . However, recall from Theorem 6.4 that choosing m = 0, i.e., construction Q̂Il0
instead of Q̂Ill results in the “original” realization of SAlCA. Therefore, we want to
conclude our comparison by investigating the connection between Q̂lH and Q̂Il0 .

Proposition 8.9. Given (8.1) s.t. Q is future unique w.r.t. I ll and Q̂Ilm and Q̂lH as in
Definition 6.3 and Definition 7.5, respectively, it holds that

(i) Q̂lH ∼=Y Q̂I
l
l �Y Q̂I

l
0 and

(ii) Q̂lH ∼=Y Q̂I
l
l ∼=Y Q̂I

l
0 if Q is state-based asyc. l-compl. w.r.t. I l0.

Proof. Follows from Proposition 8.8 (i), Definition 5.2 and Theorem 6.13.

It is interesting to note that Q being state-based asynchronously l-complete w.r.t.
I ll does not imply that the latter also holds for m = 0 (as shown by the example in
Section 6.5). Hence, even if a fixed-point of (7.4) is reached after l-steps and Q is future-

unique w.r.t. I ll this does not imply bisimilarity of Q̂lH and Q̂Il0 .

91

8. Comparison of SAlCA and QBA

Example

We conclude this section by revisiting the example in Section 6.5 and Section 7.3 to
compare the abstractions constructed therein. First observe that the SM Q depicted
in Figure 6.5 is live, reachable and has separable dynamics, i.e., fulfills (8.1). Future
uniqueness of Q w.r.t. I ll was already investigated in Section 6.5 and is given by the
properties (B2) and (D2) for l = 1 and l = 2, respectively. Hence,Q is future unique w.r.t.
I1

1 but not w.r.t. I2
2 . Concerning domino consistency, we have the following observations.

(F1) Q is domino consistent for l = 1:
Follows from (D1) and Lemma 8.7.

(F2) Q is domino consistent for l = 2:
Follows from the fact that every 2-long string ζ ∈ D2 is only contained in one
abstract state x̂ ∈ X̂ lH ⊆ Υ. Therefore, (8.4) trivially holds.

Now observe that (B2) and Proposition 8.8 implies that Q̂I1
1 and Q̂1H are identical up

to the trivial renaming of states given by R in (8.8). This is also obvious by investigating
Figure 6.6 (right) and Figure 7.2 (left). It can be furthermore observed from (6.16) and
(7.13) that

R1H = RI1
1 ◦ R

with R from (8.8). This is actually always true if Q is future unique w.r.t. I ll and was
used to prove Proposition 8.8 (iii)-(iv).

As Q is not future unique w.r.t. I2
2 from (D2) we cannot apply Proposition 8.8 for

l = 2. However, it follows from (F2) and Corollary 8.6 that Q̂2H realizes the SAlCA Σ̂l↑
Y

of Σ w.r.t. Y . This implies that for this particular example using QBA yields a bisimilar
abstraction of Q (from (E2) and Theorem 7.7) which is a realization of the SAlCA Σ̂l↑

Y

of Σ w.r.t. Y . However, this realization cannot coincide with any abstract state machine

Q̂Ilm as one of its states is given by a set Υ ∈ 2(Y)l with |Υ| > 1. In particular, as Q̂I2
0

only simulates Q but is not bisimilar to the latter (from (C1) and Theorem 6.10) and
Q̂I2

2 is only simulated by Q but not vice versa (from (D2) and Theorem 6.10) we have
the following (strict) ordering of abstractions

Q̂I2
2 �Y Q̂2H �Y Q̂I

2
0 with Q̂2H ∼=Y Q.

8.2. The viewpoint of QBA

In comparison to the previous section we now assume that Y in Assumption 1 can be
arbitrarily chosen and outputs are generated based on the current state rather then a
transition. In the spirit of Figure 4.3 we therefore assume an arbitrary initial partition
Φ1 on the state space X of Σ̆S and run the repartitioning algorithm in Definition 7.1 for

92

8.2. The viewpoint of QBA

l steps to obtain Y , which is then used to construct Σ̆φ
S and Q as depicted in Figure 4.3.

As Y induces a partition on the state space, Q is obviously output deterministic. Hence,
the abstract and quotient state machines compared in this section are assumed to be
constructed from an SM

Q = (X,U × Y , δ,X0) s.t. (2.23), (3.2c) and (3.2d) holds and (8.9a)

∀y ∈ Y . ∃x ∈ X . {y} = Hδ(x). (8.9b)

Here, (8.9b) holds as Y is assumed to be the set of equivalence classes of a partition of
the state space X, i.e., all outputs are “reachable”.

As we assume that the partition refinement algorithm is run prior to the construction
of abstractions, a further refinement of the cover is not necessary. As Q is output deter-
ministic, we can furthermore use the “classical” construction of QBA in Theorem 3.8 to
obtain Q̂O from Q using Y both as the set of output events and the set of states of Q̂O.
To mimic this construction by SAlCA, we use

V = Y and l = 1. (8.9c)

Comparing Q̂I1
1 and Q̂O

As we restrict our attention in this section to l = 1 and an output deterministic SM Q,
Q is always future unique w.r.t. I1

1 .

Lemma 8.10. Given (8.9), Q is future unique w.r.t. I1
1 .

Proof. It is shown in (A.20) (see Section A.3.1 on page 149) that EI
1
1 = Hδ. Hence,

(3.2c) implies for all x ∈ X that |EI1
1 (x)| = 1. Hence, (6.6) is trivially fulfilled.

Lemma 8.10 and Theorem 8.5 already imply bisimilarity of Q̂1H and Q̂I1
1 . Moreover,

using Q̂O instead of Q̂1H the renaming of states by R in (8.8) is not required and we
obtain a one-to-one matching of Q̂I1

1 and Q̂O.

Theorem 8.11. Given (8.9) and Q̂O and Q̂I1
1 as defined in Theorem 3.8 and Defini-

tion 6.3, respectively, it holds that

Q̂O = Q̂I1
1 .

Proof. (8.9b), (6.7a) and (3.5a) immediately imply

X̂I
1
1 = Y = X̂O and X̂

I1
1

0 = X̂O0 .

Furthermore, using l = 1 the first two lines in (6.7c) evaluate to λ = λ and are therefore

always true. Hence, using EI
1
1 = Hδ (from (A.20) in Section A.3.1 on page 149) (3.5)

and (6.7) are also identical, what proves the statement.

93

8. Comparison of SAlCA and QBA

Q′ :
x1 x2

x3

x4x5

(u1,̂y1)

(u2,̂y2)(u3,̂y3)

(u3,̂y3)(u4,̂y4)

(u1,̂y5)

Figure 8.1.: Transition structure of the SM Q′ in (8.10).

Using Lemma 8.10, Theorem 8.11 and Theorem 6.12 we have the following obvious
result on the comparison of Q̂O and Q̂Il0 .

Corollary 8.12. Given (8.9) and Q̂O and Q̂I1
0 as defined in Theorem 3.8 and Defini-

tion 6.3, respectively, it holds that
(i) Q̂O �Y Q̂I

1
0 and

(ii) Q̂O ∼=Y Q̂I
1
0 if Q is state-based asyc. 1-compl. w.r.t. I1

0 .

Example

We revisit the example in Section 6.5 and Section 7.3 and adapt it to the setting discussed
in this section. For this purpose, assume that Φ1 in (7.4a) is just an arbitrary partition
on the state space X of Q and Y in (6.15) is the set of equivalence classes of this
arbitrarily chosen partition (and not a predefined output event set). Now running the
repartitioning algorithm in Definition 7.1 we obtain Φ2 in (7.11b) as the fixed point of
(7.4) (from (F2)). We therefore use Ŷ 2 in (7.12b) as the set of considered output events
enumerated from 1 to 5 and define

Q′ = (X,U × Ŷ 2, δ,X0) s.t. V = Ŷ 2 (8.10)

where the transition structure ofQ′ is depicted in Figure 8.1. Observe that, in comparison
to Q in Figure 6.5, every state xi has a unique output ŷi.

Using Definition 6.3 we can construct the I1
0 - and I1

1 -abstract state machines of Q′ as

depicted in Figure 8.2, where the latter coincides with the quotient state machine Q̂O
from Theorem 3.8. It is obvious from Figure 8.1 and Figure 8.2 that Q′ and Q̂′I1

1 (resp.
Q̂′O) are equivalent up to a trivial renaming of states and therefore bisimilar.

However, Q̂′I1
1 (resp. Q̂′O) is a tighter abstraction ofQ′ then Q̂′I1

0 in terms of simulation
relations as Q′ is not state-based asynchronously 1-complete w.r.t. I1

0 . To see that (6.11)

94

8.3. Some Comments on Control and Future Research

Q̂′I1
0 :

�

ŷ1 ŷ2

ŷ3

ŷ4ŷ5

(u1,̂y1)

(u1,̂y5)

(u2,̂y2)

(u3,̂y3)(u2,̂y2)

(u4,̂y4)(u3,̂y3)

(u4,̂y4)

Q̂′I1
1 = Q̂′O :

ŷ1 ŷ2

ŷ3

ŷ4ŷ5

(u1,̂y1)

(u2,̂y2)(u3,̂y3)

(u3,̂y3)(u4,̂y4)

(u1,̂y5)

Figure 8.2.: I10 - and I11 -abstract state machines of Q′ in (8.10).

does not hold, we choose x1 and �ŷ5 ∈ D2 and observe that � ∈ E[−1,−1](x1) but �ŷ5 /∈
E[−1,0](x1) (where D2 and E() are obtained from Q′ rather then from Q).

Summarizing the above observations, we have the following ordering of abstractions

Q′ ∼=Y Q̂′O = Q̂′I1
1 �Y Q̂′I

1
0 .

8.3. Some Comments on Control and Future Research

In Section 8.1-8.2 we have compared finite state machine abstractions resulting from
SAlCA and QBA using the notion of simulation relations. The construction of those
abstractions is usually motivated by a control problem involving a finite set of output
symbols as discussed in Chapter 1. To use the obtained comparing results, it would
therefore be interesting to investigate the usability of the constructed abstractions for
control purposes. Unfortunately, given the different settings of SAlCA and QBA, the
controller synthesis techniques applied in the literature also differ significantly, as they
are usually tailored to the respective setting. We are therefore not aiming at a profound
comparison of the latter, but rather emphasize some observations from the running ex-
ample discussed in Chapter 6-8.

In the literature on QBA so called alternating simulation relations are used to evaluate
if an abstraction is suitable for control (see e.g. [67, Def.4.19] for a formal definition).
It is interesting to note that for any choice of l and m the inverse relation R−1 of R in
Theorem 6.10 (resp. Theorem 7.7) is an alternating simulation relation from Q̂Ilm (resp.

Q̂lH) to Q iff R is a simulation relation from Q to Q̂Ilm (resp. Q̂lH) and

∀(x, x̂) ∈ R . U
δ̂
(x̂) ⊆ Uδ(x). (8.11)

Hence, the abstraction must simulate Q to be suitable for controller synthesis in the
setting of QBA.

95

8. Comparison of SAlCA and QBA

In our running example we have shown in Section 6.5 that RI2
2 is not a simulation

relation from Q to Q̂I2
2 (depicted in Figure 6.7 (right)). Intuitively, this is due to the

fact that the abstraction has to “guess” non-deterministically when observing y2 to
which state to move to be able to “follow” the future evolution of Q. Interestingly, it
can be observed in Figure 6.6 (right) that the abstraction Q̂I1

1 also needs to decide to
either move to y2 or y4 from y1 when observing the output y1. However, it was shown
in Section 6.5 that RI1

1 is a simulation relation from Q to Q̂I1
1 and it can be easily

observed that (8.11) holds for RI1
1 in (6.16). Hence, Q̂I1

1 is suitable for control in terms
of alternating simulation relations, while Q̂I2

2 is not.
Intuitively, this is due to the fact that, using simulation relations, it is implicitly as-

sumed that the abstraction “knows” to which state the original system moves. Therefore,
Q̂I1

1 can observe if Q moves to x2 or x4 and can then pick the “right” state, i.e., the
related one. Contrary, the states y3y2 and y3y4 of Q̂I2

2 are related to the same state x3.
Therefore, knowing that Q moves to x3 does not help to decide which state to pick in
Q̂I2

2 when observing y2.

The previous argument obviously only works if the abstraction has full state informa-
tion from the original system when “simulating” its moves. However, in the setting for
SAlCA the controller (which is designed based on the abstraction and therefore usually
given as a sub-machine of the latter) can only interact with the system through the
(predefined) set of output symbols Y . As the state space of Q is usually infinite while
Y is finite, this usually implies that no full state feedback is available. Intuitively, one
would therefore need to require that non-determinism in Q̂ can be resolved without full
state information.

This issue was recently discussed in [51] where it is shown that alternating simulation
relations are in general not sufficient for abstraction based control if no full state feed-
back is available. To overcome this issue [51] suggests feedback refinement relations for
a particular class of transition systems which allow for abstraction based controller syn-
thesis using a predefined set of output events. As applying these ideas to the abstractions
constructed in this thesis would require a non-trivial extension of the relations provided
in [51], we postpone this idea to future work.

However, even without this formal extension, we can draw the following conclusions
from the construction of I lm-abstract state machines in Definition 6.3. Observe, that
choosing m = 0, i.e., considering the original realization of SAlCA, will always result in
a deterministic state machine, i.e., observing an output y ∈ Y fully determines the next
state of the abstraction Q̂Il0 . Hence, the issue of unresolved non-determinism discussed
above cannot occur in Q̂Il0 and R in (6.16) is always a simulation relation from Q
to Q̂Il0 (from Corollary 6.11). Nevertheless, (8.11) still needs to hold to allow for an
alternating simulation relation. For Q̂I1

0 and Q̂I2
0 constructed in Section 6.5 the latter is

unfortunately not true as, e.g., Uδ(x2) = {u2} ⊆ U
δ̂I

1
0
(y1) = {u2, u4} and (x2, y1) ∈ RIl0

96

8.3. Some Comments on Control and Future Research

(from (6.16)).
Interestingly, this observation draws a nice connection to the conditions for controller

synthesis using SlCA in [38]. Therein, the original system is required to have a free input,
i.e.,

∀x ∈ X . Uδ(x) = U. (8.12)

As (8.12) always implies (8.11), assuming a free input implies that RIl0 is an alternating
simulation relation. In this case obviously no state information is needed for the abstrac-
tion to simulate the moves of the original system. In this particular scenario alternating
simulation relations are therefore sufficient for controller synthesis even with no full state
feedback.

Using these insights it would be interesting to investigate which conditions on Q allow
for control based on a predefined set of input and output symbols using abstract state
machines Q̂Ilm with m > 0 and quotient state machines Q̂lH. As we have shown that
increasing m results in tighter abstractions this could be beneficial if Q̂Il0 is not tight
enough for a particular controller synthesis problem and increasing l does not refine the
abstraction sufficiently. It seems promising to extend the notion of feedback refinement
relations from [51] for this purpose.

It was briefly mentioned in Chapter 1 that controllers for QBA are usually constructed
using a variant of reactive synthesis (see, e.g., [67, Ch.6]) while SlCA where used for
abstraction based control by applying a variant of supervisory control theory (SCT) in
[38]. The main difference between those synthesis techniques lies in the interpretation
of the system model. While reactive synthesis interprets the symbolic abstraction (given
as an FSM) as a Büchi-Automaton, i.e., a generator of infinite strings, SCT usually
interprets the FSM as a deterministic finite automaton (DFA), i.e., a generator of finite
strings.

There also exists SCT over infinite strings (see, e.g., [73, 74, 40]). While this synthesis
approach is not very popular in the control systems community, it is well suited for
the abstraction based controller synthesis problem considered in Part I of this thesis, as
using behavioral systems theory to model the original system implicitly assumes that its
dynamics evolve over infinite stings. Therefore, completing the bridge between abstrac-
tion based controller synthesis using QBA and SAlCA would require the investigation of
the connection of SCT over infinite strings and reactive synthesis. While classical SCT
using DFA was recently compared to reactive synthesis in [10], the connection between
reactive synthesis and SCT over infinite strings remains a challenging open problem for
future research.

97

Part II.

A Bridge Between Supervisory
Control Theory and Deterministic

Pushdown Automata

9. Literature Review and Contributions II

In Part II of this thesis, supervisory control theory (SCT), a symbolic controller synthesis
technique, is extended to a larger class of specifications, namely specifications that can
be realized by deterministic pushdown automata (DPDA). We first review the original
version of SCT in Section 9.1 and discuss the enriched modeling capabilities of DPDA
compared to DFA in Section 9.2. In Section 9.3 recent extensions of SCT to other lan-
guage classes are discussed. Finally, Section 9.4 outlines the incorporation of SCT and
DPDA and discusses the contributions of Part II. This chapter is concluded by a list
of publications by the author, where some results contained in Part II have appeared
previously.

9.1. Supervisory control theory (SCT)

Supervisory control theory (SCT) was established by Ramadge and Wonham [48, 78, 49]
for the purpose of controller synthesis on formal languages. Given a finite set of symbols
Σ, a language is a set of finite sequences of symbols from Σ. In comparison, a discrete
behavior B, as used in Part I, consists of infinite sequences of symbols. In language
theory, discrete behaviors are referred to as ω-languages [39], opposed to ∗-languages,
which we only call languages in this thesis.

Historically, SCT refers to a controller synthesis problem where the system, usually
called plant, and the specification are given by languages rather then behaviors. Given a
plant and a specification, SCT defines a minimally restrictive supervisor as a controller
which (i) generates a closed loop system (i.e., the plant interconnected with a controller)
respecting the specification, (ii) restricts the plant as little as possible, (iii) does not
prevent uncontrollable (i.e., unpreventable) events and (iv) ensures that the system is
always able to evolve to a desired situation. This was formalized in [78] by defining
the desired closed loop language K (i.e., the set of desired finite strings of symbols the
system should generate under control) as a supremum over the intersection of the plant
and specification language respecting the above properties.

The question of how to calculate K is called the supervisory control problem (SCP).
In [78], an implementable fixed point algorithm solving the SCP was presented using
finite automaton realizations of the involved languages. This fixed point algorithm it-
eratively executes the following on the product automaton of plant and specification.
(i) It removes controllability problems, i.e., situations where the controller attempts to

101

9. Literature Review and Contributions II

regular
languages

determ. finite
automata (DFA)

determ. context
free languages

determ. pushdown
automata (DPDA)

context free languages
pushdown automata

(PDA)

context sensitive languages
linear bounded automata (LBA)

general languages
Turing maschins (TM)

Petri net
languages
Petri nets

(PN)

Figure 9.1.: Chomsky Hierarchy (solid black) with the intermediate language class of DCFL
(dashed gray) and the class of PNL (dotted grey).

prevent uncontrollable events, minimal restrictively. (ii) It resolves blocking issues, i.e.,
situations where the closed loop cannot reach a marking state. Obviously, step (i) may
generate new blocking issues, while step (ii) may lead to new controllability problems.
The algorithm terminates when no more controllability problems or blocking situations
are present. It was shown in [78] that this algorithm always terminates. As it calculates
a minimally restrictive supervisor, obtaining an empty solution K = ∅ implies that there
exists no solution to the considered SCP.

9.2. Deterministic Pushdown Automata (DPDA)

A very popular method to categorize formal languages is the Chomsky Hierarchy [7,
24], depicted in Figure 9.1. The lowest level of this hierarchy is given by the class of
regular languages (REG), realized by deterministic finite automata (DFA). REG are the
least expressive languages in the Chomsky Hierarchy, but have the nicest computational
properties. Moving upwards in the hierarchy increases expressiveness while decreasing
the existence of closure properties.

The class of deterministic context free languages (DCFL) is a strict subclass of the
context free languages (CFL) and the smallest language class in the Chromsky Hierar-
chy fully containing REG. DCFL can be realized by deterministic pushdown automata
(DPDA), which are essentially DFA equipped with an infinite stack which is used in a
“last in-first out” manner.

102

9.3. Extensions of SCT

Using this stack, DPDA can model two additional phenomena compared to DFA. First,
the number of occurrences of different symbols can be matched during the evolution of
the system. Second, the ordering of past events can be memorized to reproduce this order
in the future evolution of the system in a reverse manner. These additional modeling
capabilities were originally introduced to describe arithmetic expressions in computer
programs with arbitrary nesting of balanced parentheses. However, also in manufacturing
systems, matching the number or order of different production steps is a common task.
This motivates the use of DPDA to model the specification in the context of SCT.

9.3. Extensions of SCT

Recall that the fixed point algorithm solving the SCP presented in [78] and discussed
in Section 9.1 uses finite automaton realizations of the involved languages. This clearly
restricts its applicability to regular plant and specification languages. Interestingly, it was
shown in [62] and [33] that the SCP cannot be solved for the case where both the plant
and the specification language are DCFL, as DCFL are not closed under intersection.
However, for the setting where only the specification language is a DCFL while the plant
language is still regular, Griffin suggested an implementable algorithm to solve the SCP
in [20, 19]. Unfortunately, as shown by the counterexample in Appendix B.2, Griffin’s
algorithm does not construct a minimally restrictive supervisor as required by the SCP,
contrary to his claim in [20, 19].

Another very popular language class fully containing REG is the class of Petri net
languages (PNL). Petri nets where introduced by Carl A. Petri in [43] and are incom-
parable to DCFL w.r.t. to their expressive power, as depicted in Figure 9.1. SCT was
also extended to the class of Petri nets in [16, 17], where both the plant and the specifi-
cation are modeled by a Petri net. However, to the best of the authors knowledge, it is
not possible to solve the SCP over PNL such that the resulting controller is minimally
restrictive (see also the surveys [23, 25]). As there exists a class of languages contained
in both DCFL and PNL, solving the latter issue for DCFL specifications will generate a
solution that is transferable to this subset of PNL specifications.

In [73, 74] SCT was also formalized for regular ω-languages, which are realizable by
Büchi-Automata, called ωSCT. While this synthesis approach is not very popular in the
control systems community, it would be more natural to use in the context of abstraction
based controller synthesis as briefly discussed in Section 8.3 of Part I and shown in [39].
To apply the classical version of SCT in abstraction based controller synthesis from
Part I, the finite state symbolic abstraction of the plant resulting from QBA or SAlCA
needs to be interpreted as a DFA rather then a Büchi-Automaton. In this case the plant
is implicitly assumed to terminate its evolution at some point, as it only produces finite
sequences of symbols. However, as those finite sequences can be arbitrarily long, the
two mentioned interpretations only differ on a conceptual level. Nevertheless it should

103

Bibliography

be kept in mind that controllers synthesized using the classical version of SCT do not
ensure that the resulting closed loop is live, i.e., can run for infinite time.

9.4. Outline and Contributions

In Part II of this thesis we show how the SCP can be solved for the setting of a regu-
lar plant and a deterministic context free specification language. In comparison to the
suggested (but incomplete) solution in [20], we do not restrict ourselves to prefix-closed
languages (see Section 10.1 for a formal definition).

Unfortunately, the iterative procedure to solve the SCP for REG suggested in [78] does
not readily carry over to the case where the specification is described by a DCFL. To
solve the SCP for the latter case, an alternative fixed-point algorithm is needed. Based on
[61] and [56] we introduce an alternative procedure in Chapter 10 which is able to cope
with DCFL specifications. While this algorithm differs from the standard procedure in
[78], it still involves the two basic steps of removing controllability problems and blocking
situations, as discussed in Section 9.1. However, in the case where the specification is
described by a DCFL, both steps have to be realized for DCFL rather then for REG.
Therefore, the desired closed loop language K is computable in this setting if, for the
class of DCFL, (i) there exists an implementable algorithm to remove controllability
problems, (ii) there exists an implementable algorithm to remove blocking problems
(iii) it is decidable if no more controllability (or blocking) problems are present and
(iv) the new fixed point algorithm terminates using the implementable algorithms for
(i) and (ii).

Based on previous work in [55] and [56], we will show in Chapter 11 that (i) and
(iii) are true. I.e., we will derive an implementable algorithm to remove controllability
problems in DPDA and show how to check that no more controllability problems are
present. Concerning (ii), an implementable algorithm removing blocking problems in
DPDA was suggested in [60, 59]. Its construction is based on the realization of DCFL
by context free grammars satisfying the LR(1) determinism property and deterministic
parsers. As these realizations of DCFL are substantially different from DPDA, we refrain
from summarizing these results in this thesis. Unfortunately, (iv) is still an open problem
and left for future research. We have, however, not encountered termination problems in
any realistic example.

The implementation of the overall algorithm solving the SCP for deterministic context
free specification languages is available as a plug-in in libFAUDES [31].

9.5. Publications

In the following publications by the author some results contained in Part II of this
thesis have appeared previously or are currently under review.

104

Bibliography

[55] Anne-Kathrin Schmuck, Sven Schneider, Jörg Raisch, and Uwe Nestmann. Extend-
ing supervisory controller synthesis to deterministic pushdown automata—enforcing
controllability least restrictively. In Proceedings of the 12th IFAC - IEEE International
Workshop on Discrete Event Systems, pages 286–293, 2014.

[61] Sven Schneider, Anne-Kathrin Schmuck, Jörg Raisch, and Uwe Nestmann. Re-
ducing an operational supervisory control problem by decomposition for deterministic
pushdown automata. In Proceedings of the 12th IFAC - IEEE International Workshop
on Discrete Event Systems, pages 214–221, 2014.

[56] Anne-Kathrin Schmuck, Sven Schneider, Jörg Raisch, and Uwe Nestmann. Supervi-
sory control synthesis for deterministic context free specification languages – enforcing
controllability least restrictively. Discrete Event Dynamic Systems, 2015. (to appear).

105

10. The Supervisory Control Problem over
Language Models

In [78], Ramadge and Wonham suggested an iterative procedure to solve the supervisory
control problem (SCP) which works well for the case of regular languages but does not
readily carry over to the case where the specification is described by a DCFL. To solve
the SCP for the latter case, an alternative fixed-point algorithm is needed.

In Section 10.1 we first introduce required notation and define language models (LM)
to describe the symbolic dynamics of a system. Based on previous work in [61] and
[56], we then provide an alternative iterative algorithm to solve the SCP over LM in
Section 10.2, which is able to cope with DCFL specifications.

10.1. Preliminaries

In this section, required notation is introduced and language models are defined, which
are used as the basic modeling framework in Part II of this thesis. We furthermore
introduce required properties for this system model and show, that the set of all language
models forms a complete lattice w.r.t. set inclusion.

Notation

Let Σ be a finite set of symbols or events, called the alphabet. This alphabet is, as usual,
partitioned into a set of controllable events (preventable by the controller) and a set of
uncontrollable events, i.e., Σ = Σc ∪ Σuc with Σc ∩ Σuc = ∅, denoted by Σ = Σc] Σuc.
Furthermore, Σ∗ and Σω denotes the set of all finite- and infinite-length strings of symbols
from Σ, respectively, and we define Σ+ = Σ∗ \ {λ} and Σ≤1 = Σ ∪ {λ}, where λ is the
empty string. The projection of a string w ∈ Σ∗ on its ith element is denoted by πi(w)
and the concatenation of two strings w,w′ ∈ Σ∗ is denoted by w · w′ (meaning that w′

is appended to w). Moreover, w is defined to be a prefix of w′, denoted by w v w′, if
∃w′′ ∈ Σ∗ . w · w′′ = w′ and w is defined to be a strict prefix of w′, denoted by w @ w′,
if ∃w′′ ∈ Σ+ . w · w′′ = w′.

107

10. The Supervisory Control Problem over Language Models

Language Models

As usual, any subset of Σ∗ is called a language, denoted by L ⊆ Σ∗ and the prefix
closure L ⊆ Σ∗ of L ⊆ Σ∗ is defined by L := {w ∈ Σ∗ | ∃w′ ∈ L . w v w′}. L is called
prefix-closed if L = L.

Remark 10.1. Recall, that we have used discrete behaviors B in Part I to model the
external sequences of symbols generated by the system. Using the alphabet Σ as the
finite external symbol set W , those behaviors are simply given by B ⊆ Σω, as they
are defined as a set of infinite sequences of symbols. In the sence of language theory, a
discrete behavior is therefore simply an ω-language (opposed to a ∗-language, which we
only call language in this thesis). /

Using languages instead of behaviors to model the symbolic dynamics of a system
implicitly assumes that the system will terminate its evolution at some point, as it only
produces finite sequences of symbols. Therefore, one usually distinguishes between the
set of all generated finite event sequences, called the (prefix closed) unmarked language,
and a (usually strict) subset of the latter, called the marked language. The marked
language contains only those strings after which a termination of the systems evolution
is expected, e.g., after the successful completion of a certain task. We therefore describe
a system by a language model, combining its marked and unmarked language.

Definition 10.1. Let Lum, Lm ⊆ Σ∗ be languages over Σ = Σc] Σuc. Then a language
model D is defined by the tuple D = Lum, Lm s.t. Lum(D) = Lum = Lum and Lm(D) =
Lm ⊆ Lum. The set of all language models over Σ is referred to as LM.

As languages are partially ordered by set inclusion, not surprisingly, LM form a com-
plete lattice using the following intuitive partial order.

Definition 10.2. Let D,D′ ∈ LM. Then

D ≤ D′ ⇔

(
Lum(D) ⊆ Lum(D′)

∧Lm(D) ⊆ Lm(D′)

)
. (10.1)

Lemma 10.3 ([61], Lemma 11). (LM,≤) is a complete lattice with

inf(D,D′) := Lum(D) ∩ Lum(D′),Lm(D) ∩ Lm(D′) and

sup(D,D′) := Lum(D) ∪ Lum(D′),Lm(D) ∪ Lm(D′) .

1Note that all results from [61] used in this thesis were verified by S. Schneider using the interactive
theorem prover Isabelle/HOL [42]. We therefore refrain from providing proofs for those statements.

108

10.2. A New Iterative Algorithm

Controllability and Blocking

Recall that the fixed-point algorithm to solve the SCP over regular languages consists of
two steps, namely (i) the removal of controllability problems, i.e., situations where the
controller attempts to prevent uncontrollable events minimal restrictively, and (ii) the
removal of blocking issues, i.e., situations where the closed loop cannot reach a marking
state. To formalize the solution of the SCP over LM we therefore need to introduce the
notion of controllability and blocking for languages.

Definition 10.4. Let L,L′ ⊆ Σ∗ be languages s.t. Σ = Σc]Σuc. Then L is defined to be
nonblocking w.r.t. L′ (written Nb(L,L′)) if L ⊆ L′. Furthermore, w ∈ L = L is defined
to be controllable w.r.t. L′ (written ContS(L,L′, w)) if

∀µ ∈ Σuc .
(
wµ ∈ L′ ⇒ wµ ∈ L

)
, (10.2)

and L = L is defined to be controllable w.r.t. L′ = L′ (written Cont(L,L′)) if2

∀w ∈ L . ContS(L,L′, w).

Using the notions from Definition 10.4 we can define nonblocking and controllable LM
in an obvious manner.

Definition 10.5. Let D,D′ ∈ LM. Then D is nonblocking (written NbLM(D)), if
Nb(Lum(D),Lm(D)) and D is controllable w.r.t. D′ (written ContLM(D,D′)) if
Cont(Lum(D),Lum(D′)).

10.2. A New Iterative Algorithm

In the usual formulation of the SCP in [78] a controller DC is a minimally restrictive
supervisor for a plant DP and a specification DS , if DC (i) generates a closed loop
Dcl = inf(DP , DC) which contains as many words as possible while respecting the spec-
ification, (ii) does not prevent uncontrollable events (i.e., Dcl is controllable w.r.t. DP),
and (iii) ensures that the system is always able to evolve into a marked word (i.e., Dcl

is nonblocking). These three properties are formalized in the following definition.

Definition 10.6. Let DP , DS ∈ LM. Then

DC ∈ LM s.t.

 Lm(inf(DP , DC)) ⊆ Lm(DS)

∧ContLM(inf(DP , DC), DP)

∧NbLM(inf(DP , DC))

 (10.3a)

2Observe that Cont(L,L′) is equivalent to the standard definition of controllability given by (L · Σuc)∩
L′ ⊆ L.

109

10. The Supervisory Control Problem over Language Models

is a sound controller (written DC ∈ Csound(DP , DS)).

DC ∈ Csound(DP , DS) s.t.
∀ D′C ∈ Csound(DP , DS) .

(inf(DP , D
′
C) ≤ inf(DP , DC))

(10.3b)

is a maximally permissive controller (written DC ∈ Cmp(DP , DS)) and

DC ∈ Cmp(DP , DS) s.t. ∀D′C ∈ Cmp(DP , DS) . DC ≤ D′C (10.3c)

is the smallest maximally permissive controller (written DC = Csmp(DP , DS)).

Note that the first and the last line of (10.3a) imply that for sound controllers
DC ∈ Csound(DP , DS), the unmarked closed loop language is a subset of the unmarked
specification language, i.e., Lum(inf(DP , DC)) ⊆ Lum(DS). Furthermore, maximally per-
missive controllers as defined in Definition 10.6 are equivalent to minimally restrictive
supervisors as defined in [78].

Interestingly, DC = ∅, ∅ is a sound controller for arbitrary DP and DS , as in this case
(10.3a) trivially holds. Calculating a maximal permissive controller excludes this trivial
(but sound) solution, as long as a non-empty solution exists. Given a plantDP and a spec-
ification DS , (10.3b) implies that maximally permissive controllers D′C ∈ Cmp(DP , DS)
are not unique but generate a unique closed loop inf(DP , D

′
C). Using (10.3c), this closed

loop is equivalent to the smallest maximally permissive controller D′′C = Csmp(DP , DS),
which is obviously unique. Using this intuition, D′′C can be obtained by the following
supremum over the intersection of DP and DS .

Theorem 10.7 ([61], Prop. 2, Thm. 7). Let DP , DS ∈ LM. Then

Csmp(DP , DS) = Sup

{
Lm, Lm

∣∣∣∣∣
(

Lm ⊆ Lm(inf(DP , DS))

∧Cont(Lm,Lum(DP))

)}
.

In [78] the marked language of Csmp(DP , DS) in Theorem 10.7 is called the marked
supremal controllable (nonblocking) sublanguage of Lm(DP) ∩ Lm(DS) denoted by K.
To calculate K, a monotonic operator Ω : 2Σ∗→ 2Σ∗ , s.t.

Ω(Lm) := {w ∈ Lm | ∀w′ v w . ContS(Lm,Lum(DP), w′)} (10.4)

was introduced in [78, Lemma 2.1].
By iteratively applying Ω starting with Lm(DP) ∩ Lm(DS) = Lm(inf(DP , DS)) one

obtains K as the (unique) greatest fixed point of Ω. Furthermore, it was shown in [78,
Sec. 5] that, ifDP andDS are realizable by DFA, there exists an implementable algorithm
operating on the automata level calculating a DFA realizing K. Unfortunately, as pointed
out earlier, this algorithm cannot be translated in a straightforward manner to the
scenario considered in this thesis. Therefore, we define a new iterative calculation of
Csmp(DP , DS) as a basis for an implementable algorithm solving the SCP for DPDA
specifications.

110

10.2. A New Iterative Algorithm

Definition 10.8. Let D ∈ LM and Fc,Fnb : LM→ LM s.t.

Fc(D) := Ψ(Lum(D)),Ω(Lm(D)) (10.5a)

Fnb(D) := Lm(D),Lm(D) , (10.5b)

where Ψ : 2Σ∗→ 2Σ∗ s.t.

Ψ(Lum) := {w ∈ Lum | ∀w′ @ w . ContS(Lum,Lum(DP), w′)} (10.6)

and Ω as in (10.4). Then

U(Fc,Fnb, D) :=

D , Fc(D) = D

U(Fc,Fnb,Fnb(Fc(D))) , else
(10.7)

is the iterative calculation of Fnb ◦ Fc until Fc returns its input.

Intuitively, given an LM D, the function Fc(D) returns a controllable (with respect to
DP) LM with maximal marked language, while the function Fnb(D) returns a maximal
nonblocking LM. As both functions can only remove strings from the unmarked and the
marked language, it is easy to show, that they are monotone w.r.t. to the partial order
≤ defined in Definition 10.2.

Lemma 10.9. Let D ∈ LM. Then Fc(D) ≤ D and Fnb(D) ≤ D.

Proof. Follows from Def. 17(i), Lemma 5 and Lemma 8 in [61].

Observe, that the operator U(Fc,Fnb, D), defined in Definition 10.8, iterates over re-
moving noncontrollability and blocking situations until a fixed-point is reached. This
iteration can be used to formalize the solution of the SCP in the following obvious way.

Theorem 10.10. Let DP , DS ∈ LM. Then

Csmp(DP , DS) = U(Fc,Fnb,Fnb(inf(DP , DS))),

if U(Fc,Fnb,Fnb(inf(DP , DS))) terminates.

Proof. Follows from Lemma 4, Def. 19 and Thm. 11 in [61].

Remark 10.2. In contrast to Theorem 10.10, the algorithm presented in [78, Sec. 5] to
calculate K, uses, in slightly different notation, the iterator

F′c(D) = Ψ′(Lum(D)),Ψ′(Lum(D)) ∩ Lm(D) (10.8)

with Ψ′(Lum) = {w ∈ Lum | ∀w′ v w . ContS(Lum,Lum(DP), w′)}.

Note that Ψ′ in (10.8) differs from Ψ in (10.6) by all-quantifying w′ v w instead of
w′ @ w. It will be shown in Remark 11.2 in Section 11.3 why Ψ′ (in contrast to Ψ)
cannot be implemented for DPDA realizations of LM. /

111

11. Enforcing Controllability for DCFL
Models Least Restrictively

In this chapter we are aiming at an implementable solution of the SCP where the plant
is given by an LM DP with marked and unmarked REG and the specification is given by
an LM DS with unmarked and marked DCFL. As the intersection of a REG and a DCFL
is a DCFL (see [24, p.135]), the unmarked and marked language of D = inf(DP , DS) are
also DCFL.

Recall from Theorem 10.10, that the iterative algorithm U defined in Definition 10.8
is initialized with D = inf(DP , DS) to calculate DC = Csmp(DP , DS) as its fixed point.
Therefore, the desired smallest maximally permissive controller DC is computable by
the algorithm U in Theorem 10.10 for the setting of a regular plant and a deterministic
context free specification language if, for the class of DCFL, (i) Fc is computable, (ii) Fnb

is computable, (iii) it is decidable if Fc returns its input and (iv) U terminates for the
particular choice of DP and DS using the implementable algorithms realizing Fc and
Fnb.

We will show in this chapter that (i) and (iii) are true, i.e., we will derive an imple-
mentable algorithm realizing Fc and show how to check whether Fc returns its input.
As this algorithm will use the DPDA realizations of the involved DCFL, we first review
different automata, in particular DPDA, and their semantics in Section 11.1 and discuss
how they realize LM. In Section 11.2, we introduce a detailed manufacturing example to
outline the practical relevance of the SCP considered in this thesis which is used in Sec-
tion 11.3 to illustrate the functions defined therein. Finally, it is shown in Section 11.4,
that the chain of automata manipulations introduced in Section 11.3 actually realizes
Fc on the automaton level. It is furthermore shown in Section 11.4 that it is decidable
weather Fc returns its input.

11.1. Realizing LM by Automata

In this section, we briefly review different automata, in particular DPDA, and show how
they realize LM.

113

11. Enforcing Controllability for DCFL Models Least Restrictively

Pushdown Automata (PDA)

Pushdown automata are usually defined as follows.

Definition 11.1. A pushdown automaton (PDA) is a tuple

M := (Q,Σ,Γ, δ, q0,�, F) (11.1)

s.t. (i) the state set Q, the external alphabet Σ, the stack alphabet Γ, and the set of
transitions δ are finite, (ii) δ ⊆ Q×Σ≤1 × Γ× Γ∗ ×Q is the stack-dependent next state
relation, (iii) � ∈ Γ is the end-of-stack marker, (iv) F ⊆ Q is the set of marking states,
(v) q0 ∈ Q is the initial state and � is the initial stack-content, (vi) � is always retained
as the bottom element of the stack.

When graphically representing PDA, a transition (q, σ, γ, s, q′) ∈ δ is usually depicted
by an edge from q to q′ labeled by σ, γ, s, denoting that by taking this transition, σ ∈ Σ≤1

is generated, γ ∈ Γ (called “stack-top”) is popped from the top of the stack, and s ∈ Γ∗

is pushed onto the stack (with the right-most symbol first). Note that σ ∈ Σ≤1, i.e., σ
can either be a symbol from the alphabet or the empty string. Two transitions with the
same pre and post state are depicted by one edge with two labels. This is illustrated in
the following example.

Example 11.1. Consider the external alphabet Σ = {a, b}, the stack alphabet Γ =
{�, •}, the state set Q = {q1, q2, q3}, the set of marking states F = {q3} and the initial
state q1. Then M1 in Figure 11.1 is a PDA.
The word aabb is generated by M1 using the chain

q1

[
�

]
a,�,•�−−−→ q1

[
•
�

]
a,•,••−−−→ q1

[•
•
�

]
b,•,λ−−→ q2

[
•
�

]
b,•,λ−−→ q2

[
�

]
λ,�,�−−−→ q3

[
�

]
of state and stack tuples. E.g., the transition a,•,•• removes one bullet from the top of
the stack (hence, this transition can only occur if there is a bullet on top of the stack)
and pushes two bullets back in. In total this transition therefore adds one bullet to the
stack. /

Note that because of (vi) in Definition 11.1,

(q, σ,�, s, q′) ∈ δ ⇒
(
∃s′ ∈ Γ∗ . s = s′ ·�

)
,

i.e., the end-of-stack marker � is never removed from the stack. Furthermore, as σ ∈ Σ≤1

in Definition 11.1, M can do “silent moves” (called λ-transitions), possibly modifying
the stack but not generating an external symbol (e.g., see M1 in Figure 11.1, from q2 to
q3). We collect the starting states of all λ-transitions in the set

Qλ(M) := {q ∈ Q | ∃γ ∈ Γ, s ∈ Γ∗, q′ ∈ Q . (q, λ, γ, s, q′) ∈ δ}.

114

11.1. Realizing LM by Automata

q1 q2 q3

a,�,•�
a,•,••

b,•,λ

b,•,λ

λ,�,�

Figure 11.1.: PDA M1 in Example 11.1.

Configurations of PDA

From a system theoretic point of view a system state would be a pair (q, s), where q ∈ Q
is an (automaton) state and s ∈ Γ∗ represents the current stack content. Hence, a PDA
with |Q| <∞ may have infinite state space (in a system theoretic sense) since the stack
is not restricted. In the computer science literature the pair (q, s) is sometimes referred
to as a configuration. For our purposes it turns out to be convenient to add the string
of generated external symbols to this pair.

Definition 11.2. The set of configurations of M is defined by C(M) := Q × Σ∗ × Γ∗

and the initial configuration is (q0, λ,�).

In Definition 11.2, (q, w, s) ∈ C(M) consists of a state q, a history variable w (storing
the external symbols generated), and a stack variable s (storing the current stack con-
tent). Obviously, a transition from one configuration to another occurs when M takes
a transition e ∈ δ. To make this step visible, we augment, whenever suitable, configu-
rations by the corresponding incoming state transition. Using this convention, the next
configuration transitions are defined as follows.

Definition 11.3. The next configuration transition of M is defined by
`M⊆ ((δ ∪ {⊥})× C(M))2 s.t.

(e, (q, w, γ · s′)) `M (e′, (q′, w · σ, s · s′)) for e′ = (q, σ, γ, s, q′),

where ⊥ denotes an undefined (or irrelevant) pre-transition.

Starting with the initial configuration, i.e., (⊥, (q0, λ,�)), and iteratively doing single-
step configuration transitions according to Definition 11.3 generates trajectories of con-
figurations (enriched with the taken transitions). This can be conveniently used to define
languages generated by PDA.

Definition 11.4. A derivation of M is defined by1 f : N0⇀ ((δ ∪ {⊥})× C(M))

s.t. ∀n < max(dom(f)) . f(n) `M f(n+ 1)

1Here, ⇀ denotes a partial function.

115

11. Enforcing Controllability for DCFL Models Least Restrictively

and is called finite if max(dom(f)) < ∞ and infinite otherwise. D(M) and Dω(M)
denote the sets of all finite and infinite derivations, respectively, and the sets DI(M) and
DωI (M) contain all elements of D(M) and Dω(M), respectively, starting with f(0) =
(⊥, (q0, λ,�)). Furthermore,

Dmax(M,w) :=

{
f∈DI(M)

∣∣∣∣∣
(
∃e, q, s . f(max(dom(f))) = (e, (q, w, s))

∧@e′, q′, s′ . (e, (q, w, s)) `M (e′, (q′, w, s′))

)}
defines the set of maximal finite derivations of a string w ∈ Σ∗.

As usual, we call a configuration c ∈ C(M) reachable, if there exists an initial derivation
d ∈ DI(M) “passing through it”.

Definition 11.5. The set of reachable configurations of M is defined by

Creach(M) := {c ∈ C(M)|∃d ∈ DI(M), e ∈ (δ ∪ {⊥}) , n ∈ N0 . d(n) = (e, c)} .

PDA vs. LM

The unmarked language of a PDA M is the collection of all finite strings of labels from Σ
which M can generate. These strings can obviously be determined by projecting the set
of finite initial derivations DI(M) on Σ∗. If DI(M) is restricted to the set of derivations
ending in a marking state, the same procedure results in the marked language of M .
This is formalized in the following definition, resulting in the obvious connection between
PDA and LM via their unmarked and marked language. The class of languages generated
by PDA is the class of context free languages (CFL).

Definition 11.6. The marked and the unmarked language generated by M are given by

Lm(M) := {w | (q, w, s) ∈ Creach(M) ∧ q ∈ F} and (11.2a)

Lum(M) := {w | (q, w, s) ∈ Creach(M)} (11.2b)

respectively.

Definition 11.7. A PDA M realizes an LM D (written M�D), if Lm(M) = Lm(D)
and Lum(M) = Lum(D).

Recall that M can do silent moves (called λ-transitions), which may modify the stack
but do not generate an external symbol and are therefore not visible in the LM D
realized by M . This implies that an infinite string of λ-transitions results in a silent
blocking situation for M even if NbLM(D).

Definition 11.8. A PDA M is silently blocking (written M ∈ SBA) if

∃d ∈ DωI (M), n ∈ N . ∀k ≥ n . π2(π2(d(n))) = π2(π2(d(k))),

where2 π2(π2(e, (q, w, s))) = w.

2Slightly abusing notation, we also use πi(d) to denote the ith element of the tuple d.

116

11.1. Realizing LM by Automata

Observe that every LM D with context free marked and unmarked language can be
realized by a PDAM which is not silently blocking. We therefore assume in the remainder
of this chapter that the specification DS ∈ LM is always realized by an automaton which
is not silently blocking and we will show in Section 11.4 that the algorithm realizing Fc

does not introduce silent blocking.

Other Automata Models as Subclasses of PDA

Using the construction of PDA in Definition 11.1, it is straightforward to introduce
deterministic pushdown automata (DPDA) by restricting the next state relation δ to be
deterministic. The class of languages generated by DPDA is the class of deterministic
context free languages (DCFL).

Definition 11.9. A deterministic pushdown automaton (DPDA) is a PDA M s.t.

∀e1 = (q, λ, γ, s, q′) ∈ δ, e2 = (q, σ, γ, s′, q′′) ∈ δ . e1 = e2 and

∀e1 = (q, σ, γ, s, q′) ∈ δ, e2 = (q, σ, γ, s′, q′′) ∈ δ . e1 = e2. (11.3)

Example 11.2. The PDA M1 depicted in Figure 11.1 is deterministic, i.e., M1 ∈ DPDA,
as (11.3) holds. This can be verified by checking that (i) whenever there exists an
outgoing λ-transition in state q requiring stack-top γ there exists no other outgoing
transition in q requiring stack-top γ and (ii) there exist no two transitions requiring the
same stack-top γ and label σ in one state q. The marked and unmarked language of M1

are

Lm(M1) = {anbn | n ∈ N} and

Lum(M1) = {ambn | m,n ∈ N0, n ≤ m} = Lm(M1),

respectively. /

Finite automata can be defined as special PDA which do neither have λ-transitions
nor a stack.

Definition 11.10. A finite automaton (FA) is a PDA M

s.t. ∀(q, σ, γ, s, q′) ∈ δ . (γ = s = � ∧ σ 6= λ) (11.4)

and a deterministic finite automaton (DFA) is a DPDA s.t. (11.4) holds.

The class of languages generated by DFA is the class of regular languages (REG).
Note that for every language L generated by an FA, there also exists a DFA generating
L [see 24, p.22]. However, this is not true for PDA and DPDA, implying that DCFL are
a strict subclass of CFL, i.e., DCFL ⊂ CFL.

117

11. Enforcing Controllability for DCFL Models Least Restrictively

p1 p2

a

b

b

Figure 11.2.: DFA M2 in Example 11.3.

Example 11.3. The automaton M2 in Figure 11.2 is a DFA with input alphabet Σ =
{a, b}, state set Q = {p1, p2}, marking state set F = {p2} and initial state p1, where
a transition (p, σ,�,�, p′) ∈ δ is depicted by an edge from p to p′ labeled by σ. The
marked and unmarked language of M2 are given by

Lm(M2) = {anbbm | n,m ∈ N0} and

Lum(M2) = {anbm | n,m ∈ N0} = Lm(M2),

respectively. /

Product Automata

The infimum of two LM, as introduced in Lemma 10.3 and used in Theorem 10.10
to calculate the desired smallest minimally restrictive controller, can be realized by a
product automaton. The following standard definition of the product of a DFA and a
DPDA is the only one used in the remainder of this chapter and is adapted from [24,
p.135].

Definition 11.11. Let M1 = (Q1,Σ, {�}, δ1, q10,�, F1) ∈ DFA and M2 = (Q2,Σ,
Γ, δ2, q20,�, F2) ∈ DPDA. Then the product automaton is defined by
M× = M1×M2 = (Q×,Σ,Γ, δ×, q×0,�, F×) with Q× = Q1 ×Q2,

δ× =


((p, q), σ, γ, s, (p′, q′))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



 σ ∈ Σ

∧(q, σ, γ, s, q′) ∈ δ2

∧(p, σ,�,�, p′) ∈ δ1


∨

 σ = λ

∧p = p′

∧(q, λ, γ, s, q′) ∈ δ2






,

q×0 = (q10, q20) and F× = F1 × F2.

As stated in [24, p.135], this product automaton is again a DPDA and its marked and
unmarked language are given by

Lm(MP ×MO) = Lm(MP) ∩ Lm(MO) and (11.5a)

Lum(MP ×MO) = Lum(MP) ∩ Lum(MO). (11.5b)

118

11.2. Manufacturing Example

11.2. Manufacturing Example

This section introduces an example taken from [56] to illustrate the algorithm subse-
quently derived in Section 11.3-11.4 and to outline the practical relevance of the consid-
ered problem.

Consider a manufacturing process where two products A and B are manufactured
on a machine sequentially. Assume that the sequence and the production rate of both
products vary over time (because, e.g., the supply rate of different ingredients necessary
to produce A andB is non-constant). The machine always produces two pieces ofB at the
same time. Therefore, the production of a pair of pieces B is modeled by a string B1B2,
where B1 is a controllable event, while B2 is not controllable. The production of one
piece A is represented by the controllable event A. Finally, in a different manufacturing
step, which is not modeled here, one piece of A and one piece of B are assembled to
form one piece of the final product C.

As A and B are perishable, all produced pieces should be used up (by assembling C)
every day. Therefore, the external event r is triggered if the end of the working day is
“close”. After this event, the controller should balance the number of produced pieces
by disabling the appropriate event. At the end of the working day, the external event F
is triggered and all pieces which have not been used in the production of C are moved
to the trash. A new process is started when the external event S occurs, indicating the
beginning of the next working day.

This specification can be realized by the DPDA MS depicted in Figure 11.3. There,
the state q1 represents the standard functionality, i.e., neither r nor F have occurred
and the machine produces pieces of A and B. q2 represents the balancing mode. The
event F leads to q3, modeling the end of this day’s production process. Finally, state
q4 represents the dumping of unused pieces if balancing was aborted by F . In MS , the
stack is used to count the difference between the number of pieces of type A (#(A)) and
type B (#(B)) produced, e.g., the stack content “• • • �” models #(A) − #(B) = 3
while “◦ ◦ ◦ �” corresponds to #(B)−#(A) = 3. Therefore, balancing is achieved if the
stack is exhausted (i.e., contains only “�”) before F occurs.

Recall that the plant can produce either one piece of A or two pieces of B sequentially,
which can be modeled by the DFA MP,1 depicted in Figure 11.4 (left). The external
events r and F are included in MP,1 by self-looping them in all states while the external
event S resets the automaton to its initial state. However, the occurrence of r, F , and
S is not arbitrary and can be modeled by the DFA MP,2 as depicted in Figure 11.4
(middle). In MP,2, the state pI represents the standard production process. If r occurs,
the machine is prepared to shut down while still producing pieces. The actual shut down
is triggered by the event F , leading to the final state pF , from which the machine is
restarted by the external event S. The DFA modeling the overall plant behavior is the
product MP = MP,1×MP,2, depicted in Figure 11.4 (right).

Observe, that in this control problem the external events r, F , S and the event B2

119

11. Enforcing Controllability for DCFL Models Least Restrictively

q1 q2 q3 q4

A,�,•� A,•,•• A,◦,λ
B1,�,◦� B1,◦,◦◦ B1,•,λ
B2,�,◦� B2,◦,◦◦ B2,•,λ

r,λ,λ

A,◦,λ
B1,•,λ

B2,•,λ B2,◦,◦◦

F,λ,λ λ,λ,λ

λ,•,λ
λ,◦,λ

S,�,�

Figure 11.3.: DPDA MS representing the specification in the manufacturing example of Sec-
tion 11.2. Here the abbreviation σ,λ,λ := {σ,γ,γ|γ ∈ Γ} is used to denote transitions
not modifying the stack which are enabled for any stack-top.

pA

pB

A

B1
B2
S

r
F

r
F
S

pI pr pFr F

S

A B1 B2A B1 B2

p1

p2

p3

p4

p5

p6

r F

S

r F

S

A

B1B2

A

B1B2

Figure 11.4.: DFA MP,1 (left), DFA MP,2 (middle) and DFA MP = MP,1×MP,2 (right) modeling
the plant in the manufacturing example of Section 11.2.

cannot be prevented by the controller and are therefore uncontrollable, giving Σuc =
{B2, r, F, S} and Σc = {A,B1}.

Remark 11.1. The maximal mismatch of the number of pieces of type A and B dur-
ing one day is unpredictable. If the maximal mismatch were known prior to controller
design, one can obviously also realize DS as a DFA coding the current mismatch in the
DFA states. However, this might result in an automaton which has a very large number
of states and transitions. In this case, as the specification is usually modeled using engi-
neering intuition for the problem to be solved, writing down the specification as a DPDA
is more intuitive and less prone to error. Furthermore, controller synthesis using DPDA
specifications does not need to be redone if the maximal mismatch changes. Finally,
storing a DPDA with finite stack usually requires less memory than storing a language-
equivalent DFA. This benefit obviously grows with the maximal mismatch considered.
The latter benefit is also obtained when using discrete event systems with parameters,
proposed in [5, 6]. While this modeling framework is similar to the use of DPDA, to
the best of the authors’ knowledge it can only handle safety specifications w.r.t. a set

120

11.3. Building Blocks of the Algorithm Calculating Fc for DCFL

(11)

(21)

(32)

(42)

(53)

(63)

(54)

(64)

A,�,•�
A,•,••
A,◦,λ

B1,�,◦�
B1,◦,◦◦
B1,•,λ

B2,�,◦�
B2,◦,◦◦
B2,•,λ

r,λ,λ

r,λ,λ F,λ,λ

A,◦,λ

B1,•,λB2,•,λ
B2,◦,◦◦

F,λ,λ λ,λ,λ λ,•,λ
λ,◦,λ

λ,λ,λ λ,•,λ
λ,◦,λ

S,�,�

S,�,�

Figure 11.5.: DPDA MP×S�DO = Fnb(inf(DP , DS)) in the manufacturing example of Sec-
tion 11.2, where (ij) := (pi, qj).

of unsafe states Qus ⊆ Q. This circumvents the need to handle stack-dependent con-
trollability issues, which is necessary when using an unrestricted class of context free
specification languages, as discussed in the remaining part of this section. /

Recall from Theorem 10.10 that the iterative calculation U is initialized with
Fnb(inf(DP , DS)). Therefore, to obtain the first input to Fc, we construct the product
automaton of the DFA MP�DP and the DPDA MS�DS depicted in Figure 11.4 and
Figure 11.3, respectively, using the construction in Definition 11.11. This results in the
product automaton MP×S = MP ×MS whose accessible part is depicted in Figure 11.5.

Observe that MP×S is not silently blocking, i.e.,MP×S /∈ SBA, as the silent self-loops
in states (p5, q4) and (p6, q4) will eventually terminate if the end-of-stack-marker � is
reached. Furthermore, no blocking situations occur in MP×S as in every state an outgoing
transition exists for all stack-tops in Γ = {•, ◦,�}. As MP×S� inf(DP , DS) we therefore
have NbLM(inf(DP , DS)). This obviously implies

MP×S�DO = Fnb(inf(DP , DS)) = inf(DP , DS).

Hence, the DPDA MP×S depicted in Figure 11.5 realizes the input to the first call of Fc

in the iterative algorithm U of Theorem 10.10.

11.3. Building Blocks of the Algorithm Calculating Fc for DCFL

This section is mostly taken from [56] and derives a chain of automata manipulations for
DPDA to realize one call of the function Fc in the iterative algorithm U of Theorem 10.10
for DCFL. Given an LM DO and its DPDA realization MO�DO, the algorithm has to
compute a DPDA M ′O realizing Fc(DO), i.e., M ′O�Fc(DO). I.e., this algorithm has to
find all controllability problems in MO and delete them in a minimally restrictive way.

121

11. Enforcing Controllability for DCFL Models Least Restrictively

Intuitively, a controllability problem occurs if the maximal finite derivations of a string
w for MP and MO end in the state p and q, respectively, and MP can generate an
uncontrollable event µ ∈ Σuc in p while MO cannot generate µ in q. Therefore, the first
step of the algorithm needs to find pairs (p, q) that can be reached in MP and MO,
respectively, generating the same string w.

Recall from Theorem 10.10 that Fc is first called with input DO = Fnb(inf(DP , DS))
in U , i.e., NbLM(DO) and DO ≤ inf(DP , DS). Now observe that these properties of DO

are also true for the input of Fc in all future iterations of U as Fnb and Fc are monotone
(from Lemma 10.9) and Fnb is always executed prior to Fc (from Theorem 10.10). We
can therefore assume without loss of generality that MO�DO always satisfies Lm(MO) ⊆
Lm(DP) and Lum(MO) ⊆ Lm(MO). Due to these properties, we can easily obtain the
pairs (p, q) by calculating a product automaton M× = MP ×MO, which has the same
marked and unmarked language as MO. This is shown in the following lemma. Observe
that the product construction is necessary in every iteration as the application of Fnb

might significantly change the structure of its input (see [60]).

Lemma 11.12. Let M× = MP ×MO s.t. MP ∈ DFA, MO ∈ DPDA, Lm(MO) ⊆ Lm(MP),
Lum(MO) ⊆ Lm(MO) and MO /∈ SBA.
Then (i) Lm(M×) = Lm(MO), (ii) Lum(M×) = Lum(MO), (iii) M× /∈ SBA, and (iv) ×
is implementable.

Proof. (i) follows from Lm(MO) ⊆ Lm(MP) and (11.5). Lum(MO) ⊆ Lm(MO) and
Lum(MP) = Lum(MP) implies Lum(MO) ⊆ Lum(MP), which, using (11.5), immedi-
ately proves (ii). λ-transitions in M× are exactly copied from MO implying (iii) since
MO /∈ SBA and (iv) follows from [24, p.135].

Example 11.4. Consider the manufacturing example in Section 11.2 and recall that this
control problem does not require the application of Fnb to inf(DP , DS) (as the latter is
nonblocking) implying MO = MP×S in the first call of Fc. Hence, M× = MP ×MO is,
modulo the labeling of states, equivalent to MP×S and therefore given by the DPDA in
Figure 11.5. /

Splitting States

Unfortunately, in contrast to the DFA algorithm in [78, Lemma 5.1], it is not possible
to remove controllability problems in MO in a minimally restrictive fashion by deleting
states or edges in M×. This is due to the following observations: (i) it is possible that con-
trollability problems occur in one state for a strict subset of possible stack-tops (e.g., as
B2 ∈ Σuc, M× = MP×S in Figure 11.5 has a controllability problem in (p4, q2) for stack-
top � only). Therefore, removing this state may also delete controllable words. (ii) It
is generally not possible to uniquely prevent a certain stack-top symbol in a given state
by removing certain pre-transitions as an incoming transition can generate more than

122

11.3. Building Blocks of the Algorithm Calculating Fc for DCFL

one stack-top3 (e.g., the transition ((p3, q2), B1, •, λ, (p4, q2)) in Figure 11.5 generates as
stack-top the symbol which is currently in the stack underneath •). (iii) Controllability
problems are locally not detectable in states (p̃, q̃) ∈ Qλ as it is not possible to deter-
mine in (p̃, q̃) whether an uncontrollable event µ ∈ Σuc generated by MP in p̃ is also
generated by M× after a finite sequence of λ-transitions starting in (p̃, q̃) (e.g., deter-
mining whether in Figure 11.5 S ∈ Σuc can always be generated in (p5, q4) after all finite
sequences of λ-transitions starting in (p5, q3)). If such a controllability problem occurs,
it will be resolved at the final state (p̃, q̃′) of the λ-transition sequence (e.g. in (p5, q4)).
However, observe that (p̃, q̃) ∈ F× and (p̃, q̃′) /∈ F× implies that the word w̃ ∈ Lm(M×)
with ((p̃, q̃), w̃, s), ((p̃, q̃′), w̃, s′) ∈ Creach(M×) (having a controllability problem) is not
removed from the marked language by removing (p̃, q̃′) in M× (e.g. as (p5, q3) ∈ F× and
(p5, q4) /∈ F× in Figure 11.5, all words marked by (p5, q3) are not removed from the
marked language by removing (p5, q4)). To remove a word w ∈ Lm(M×) with a control-
lability problem from the marked language, we have to ensure that only its maximal
derivation f ∈ Dmax(M×, w) ends in a marking state.

To overcome these problems we split states and redirect transitions in a particular
way, such that deleting certain states deletes all words w ∈ Lm(M×) (and only those)
having a controllability problem. For this purpose we introduce four new state types:
regular (·r) and special (·s) main states

Mr(Q) := {〈q〉r | q ∈ Q} and Ms(Q) := {〈q〉s | q ∈ Q}

and regular (·r) and special (·s) auxiliary states

Ar(Q,Γ) := {〈q, γ〉r | q ∈ Q ∧ γ ∈ Γ} and As(Q,Γ) := {〈q, γ〉s | q ∈ Q ∧ γ ∈ Γ},

where

M(Q) =Mr(Q) ∪Ms(Q) and A(Q,Γ) = Ar(Q,Γ) ∪ As(Q,Γ)

are the sets of all main and all auxiliary states, respectively. Hence, every state is split
into two entities, i.e., a set of regular and a set of special states, each consisting of one
main and |Γ| auxiliary states. Using these new states, we define a function splitting states
and redirecting transitions.

Definition 11.13. Let M = (Q,Σ,Γ, δ, q0,�, F). Then the split automaton MSp =
SPLIT(M) is defined by MSp = (QSp,Σ,Γ, δSp, qSp 0,�, FSp) with QSp = M(Q) ∪

3This is the reason why the algorithm presented in [20] does not give a minimally restrictive controller.

123

11. Enforcing Controllability for DCFL Models Least Restrictively

A(Q,Γ),

δSp = {(〈p〉r, λ, γ, γ, 〈p, γ〉r)|p ∈ Q, γ ∈ Γ}
∪ {(〈p〉s, λ, γ, γ, 〈p, γ〉s)|p ∈ Q, γ ∈ Γ}

∪

{
(〈p, γ〉r, σ, γ, s, 〈p′〉r)

∣∣∣∣∣
(

(p, σ, γ, s, p′) ∈ δ
∧(p /∈ F ∨ σ 6= λ)

)}
∪
{

(〈p, γ〉r, λ, γ, s, 〈p′〉s)
∣∣(p, λ, γ, s, p′) ∈ δ ∧ p ∈ F}

∪
{

(〈p, γ〉s, λ, γ, s, 〈p′〉s)
∣∣(p, λ, γ, s, p′) ∈ δ}

∪
{

(〈p, γ〉s, σ, γ, s, 〈p′〉r)
∣∣(p, σ, γ, s, p′) ∈ δ ∧ σ 6= λ

}
,

qSp 0 = 〈q0〉r and FSp = (Ar(F,Γ) ∪ As(Q,Γ)) \Qλ(MSp).

Example 11.5. Using the automaton M× = MP×S depicted in Figure 11.5, we can
construct its split version MSp = SPLIT(M×) by applying Definition 11.13. To keep
the illustration of this automaton reasonably simple, we split each state (pi, qj) into a
regular and a special entity, denoted by {ij}r and {ij}s, respectively, while only depict-
ing the splitting of {42}r, {54}s and {64}r into main and auxiliary states. The resulting
simplified automaton is shown in Figure 11.6, where also all “obviously useless” entities
(i.e., entities that are not connected by a path (ignoring the labels) to the initial state)
were removed. Observe that the entity {53}r is not marking (while (p5, q3) was marking
in M×) as it has only outgoing λ transitions which are redirected to the special entity
{54}s. Observe that 〈(p5, q4), •〉s, 〈(p5, q4), ◦〉s ∈ Qλ(MSp) and 〈(p5, q4),�〉s /∈ Qλ(MSp),
implying that the latter is marking while the former are not. /

Intuitively, the newly introduced auxiliary states separate outgoing transitions by their
required stack-top, as shown in Example 11.5. Therefore, if a controllability problem
occurs for one stack-top, we can delete the respective auxiliary state without deleting
controllable words.

Furthermore, observe that all main states belong to Qλ(MSp) while, due to deter-
minism, auxiliary states can either belong to the set Qλ(MSp) or do not have outgoing
λ-transitions at all. This uniquely defines the subset of states (i.e., A(Q,Γ) \Qλ(MSp))
for which controllability can and must efficiently be tested.

The new special states are used to ensure that only states reached by maximal deriva-
tions of words w ∈ Lm(MO) are marking. Observe that the construction in SPLIT
ensures that final states of maximal derivations always are in the set A(Q,Γ)\Qλ(MSp).
Therefore, shifting the marking into those states ensures that uncontrollable words can
be removed from the marked language by removing states in the set A(Q,Γ)\Qλ(MSp).
Before formally proving this statement we show that SPLIT does not change the marked
and unmarked language of its input.

124

11.3. Building Blocks of the Algorithm Calculating Fc for DCFL

{11}r

{21}r

{32}r

〈42〉r

〈42•〉r
〈42◦〉r

〈42�〉r

{53}r

{63}r

〈54〉s

〈54•〉s

〈54◦〉s

〈54�〉s

〈64〉r 〈64◦〉r

〈64•〉r〈64�〉r

A,�,•�
A,•,••
A,◦,λ

B1,�,◦�
B1,◦,◦◦
B1,•,λ

B2,�,◦�
B2,◦,◦◦
B2,•,λ

r,λ,λ

r,λ,λ

A,◦,λ

B1,•,λ
B2,•,λ

B2,◦,◦◦

λ,•,• λ,◦,◦

λ,�,�

F,λ,λ

F,�,�

F,◦,◦ F,•,•

λ,λ,λ

λ,λ,λ

λ,•,λ

λ,◦,λ

λ,�,�
λ,•,•

λ,◦,◦

S,�,�

λ,•,λ

λ,◦,λ
λ,�,�

λ,•,•

λ,◦,◦

S,�,�

Figure 11.6.: A slightly simplified version of the DPDA MSp = SPLIT(MP×S) constructed in
Example 11.5, where {ij}k := Ak((pi, qj)) ∪Mk((pi, qj),Γ), 〈ij〉k := 〈(pi, qj)〉k and
〈ijγ〉k := 〈(pi, qj), γ〉k. The introduced main and auxiliary states are marked in dark
and light gray, respectively, and uncontrollable states are hatched.

Lemma 11.14. Let MSp = SPLIT(M) s.t. M ∈ DPDA and M /∈ SBA.
Then (i) Lum(MSp) = Lum(M), (ii) Lm(MSp) = Lm(M), (iii) MSp ∈ DPDA, (iv) MSp /∈
SBA, and (v) SPLIT is implementable.

Proof. See Section B.1.1 on page 157.

Lemma 11.15. Let MSp = SPLIT(M) s.t. Lum(M) ⊆ Lm(M). Then

∀ w ∈ Lum(MSp), f ∈ Dmax(MSp, w) .

π1(π2(f(max(dom(f))))) ∈ (A(Q,Γ) \Qλ(MSp))

and FSp ⊆ A(Q,Γ) \Qλ(MSp), where π1(π2((e, (q, w, s)))) = q.

Proof. Observe from Definition 11.13 that the second statement immediately follows
from the definition of FSp and it holds thatM(Q) ⊆ Qλ(MSp) and Qλ(MSp) ⊆ QSp\FSp.
Therefore it remains to show that maximal derivations cannot end in states Qλ(MSp).
Pick f ∈ Dmax(MSp, w) s.t. f(max(dom(f))) = (e, (q, w, s)) and assume q ∈ Qλ(MSp)
implying q /∈ FSp. As M is nonblocking it follows from Lemma 11.14 (i)-(ii) that MSp

is also nonblocking. Therefore, there exist e′, q′, s′ s.t. (e, (q, w, s)) `MSp
(e′, (q′, w, s′))

implying that f is not a final derivation from Definition 11.3, proving the statement by
contradiction.

125

11. Enforcing Controllability for DCFL Models Least Restrictively

Accessibility

Technically, we are now ready to delete all states that have a controllability problem.
However, the automaton MSp = SPLIT(MP ×MO)�DO might not be accessible, i.e.,
there may exist states and transitions that are not contained in a reachable configura-
tion. This implies that the subsequently introduced function to remove states with a
controllability problem may change the automaton without changing the correspond-
ing language. Hence, we would not be able to decide on the automaton level, whether
Fc(DO) = DO. We therefore remove all non-accessible parts, adapting the algorithm in
[18, Thm.4.1].

Definition 11.16. Let M = (Q,Σ,Γ, δ, q0,�, F). Then the accessible part AC(M)
of M is defined by MAc = (QAc,Σ,Γ, δAc, q0,�, FAc) s.t. QAc = Q \ Qna(M), FAc =
F \Qna(M) and δAc = δ \ δna(M), where

Qna(M) := {q ∈ Q \ {q0} | Lm((Q,Σ,Γ, δ, q0,�, {q})) = ∅}

are the non-accessible states and

δna(M):=

e = (q, x, γ, s, q′) ∈ δ

∣∣∣∣∣∣ ∀ r /∈ Q, δ
′ = (δ ∪ {(q, λ, γ, γ, r)}) \ {e} .

Lm((Q ∪ {r},Σ,Γ, δ′, q0,�, {r})) = ∅


are the non-accessible transitions.

Note that in a DPDA, in contrast to A DFA, transitions can be non-accessible even if
they connect accessible states, since the required stack-top might not be available at its
pre-state.

Example 11.6. Consider the automaton MSp in Example 11.5, depicted in Figure 11.6.
It can be verified by inspection that all states and transitions are accessible, i.e., MAc =
AC(MSp) = MSp. This is due to the fact that all main states are accessible with all

possible stack-tops {•, ◦,�}. This implies that all auxiliary states and their outgoing
transitions are also accessible. /

Not surprisingly, removing the non-accessible part of a DPDA does not affect its
marked and unmarked language.

Lemma 11.17. Let MAc = AC(M) s.t. M ∈ DPDA and M /∈ SBA.
Then (i) Lm(MAc) = Lm(M), (ii) Lum(MAc) = Lum(M), (iii) MAc ∈ DPDA, (iv) MAc /∈
SBA, and (v) AC is implementable.

Proof. Observe that Qna(M) and δna(M) are not contained in a reachable configuration.
Therefore, removing these sets does not change the marked and unmarked language,
implying (i) and (ii). Since M ∈ DPDA and M /∈ SBA, (iii) and (iv) immediately follow
as AC only removes states and transitions. (v) follows, as the emptiness of a CFL is
decidable [see 24, p.137].

126

11.4. Effective Computability of Fc for DCFL

Removing Controllability Problems

As the final step of our algorithm, we will identify states in the set A(Q,Γ) \Qλ(MSp)
that have a controllability problem and remove them. This is done in analogy to the
DFA algorithm in [78].

Definition 11.18. Let Σuc ⊆ Σ, MP ∈ DFA, MO ∈ DPDA, M× = MP ×MO =
(Q×,Σ,Γ, δ×, q×0,�, F×), and MAc = AC(SPLIT(M×)) = (QAc,Σ,Γ, δAc, q0,�, FAc).
Furthermore, let

NCS :=


〈(p, q), γ〉 ∈ ((QAc ∩ A(Q×,Γ)) \Qλ(MAc)) |

∃µ ∈ Σuc .

(
∃p′ . (p, µ,�,�, p′) ∈ δP
∧∀s, r . (〈(p, q), γ〉, µ, γ, s, r) /∈ δAc

)


be the set of non-controllable auxiliary states.
Then RNCS(MAc) = (QR,Σ,Γ, δR, q0,�, FR), where QR = QAc \ NCS, FR = FAc \
NCS and δR = {(q, x, γ, w, q′) ∈ δ′|q, q′ ∈ QR} is the automaton without non-control-
able auxiliary states.

Example 11.7. Consider the accessible automaton MAc = MSp depicted in Figure 11.6
and recall that Σuc = {F, r, S,B2}. While F and r are always enabled in MAc, the un-
controllable event B2 is prevented in 〈(p4, q2),�〉r, introducing a controllability problem
in this state. For S observe that all auxiliary states related to p5 and p6 are contained in
Qλ(MAc) except for 〈(p5, q4),�〉s and 〈(p6, q4),�〉r, where no controllability problem oc-
curs. This implies that all finite sequences of λ-transitions starting in {53}r and {63}r will
eventually end in 〈(p5, q4),�〉s and 〈(p6, q4),�〉r, respectively, where S is enabled. There-
fore, the set of uncontrollable auxiliary states of MAc is given by NCS = {〈(p4, q2),�〉r},
shown hatched in Figure 11.6. Removing this state and all ingoing and outgoing transi-
tions generates the automaton M ′O = RNCS(MAc). Observe that M ′O has a blocking sit-
uation in 〈(p4, q2)〉r for all words w whose derivations generate stack-top � in 〈(p2, q2)〉r.
This is resolved by the algorithm realizing the function Fnb in [60, 59]. /

11.4. Effective Computability of Fc for DCFL

In the previous section three functions to manipulate DPDA, namely SPLIT, AC and
RNCS where introduced. We now show in this section that this sequence of automaton
manipulations, starting with a nonblocking DPDA, removes all (and only those) marked
words having a prefix which is uncontrollable w.r.t. the plant and hence realizes one call
of Fc in the iterative algorithm U of Theorem 10.10.

Recall from Theorem 10.10 that Fc is first called with input DO = Fnb(inf(DP , DS))
in U , i.e., NbLM(DO) and DO ≤ inf(DP , DS). Now observe that these properties on DO

127

11. Enforcing Controllability for DCFL Models Least Restrictively

are also true for the input of Fc in all future iterations of U as Fnb and Fc are monotone
(from Lemma 10.9) and Fnb is always executed prior to Fc (from Theorem 10.10). We can
therefore assume without loss of generality that MO�DO always satisfies NbLM(DO)
and DO ≤ inf(DP , DS)in the following theorem.

Theorem 11.19. Let DP , DS , DO ∈ LM s.t. NbLM(DO) and DO ≤ inf(DP , DS). Fur-
thermore, let MP ∈ DFA, MO ∈ DPDA. Then

RNCS(AC(SPLIT(MP ×MO))) � Fc(DO) (11.6)

if MP�DP and MO�DO.

Proof. See Section B.1.2 on page 159.

Remark 11.2. Observe from steps (C) and (E)(a) in the proof of Theorem 11.19 in
Section B.1.2 that unmarked words w ∈ Lum(MO) with a controllability problem are
still contained in the unmarked language of M ′O = RNCS(AC(SPLIT(MP ×MO))). This
follows from the construction of SPLIT, which implies that there always exists a non-
maximal derivation generating w and ending in a main state 〈(p, q)〉 ∈ Qλ(MAc) which is
neither marking nor considered in NCS. Hence, this state cannot be removed by RNCS
even if w has an uncontrollability problem. This is the reason why we cannot implement
Ψ′(Lum(MO)), i.e., the removal of all uncontrollable unmarked words, as used by [78]
(see Remark 10.2). /

Considering the problem statement from the beginning of this chapter, we also need to
prove that the considered chain of automaton manipulations introduced in Section 11.3
introduces no silent blocking situations and allows to determine if Fc returns its input.

Theorem 11.20. Let M ′O = RNCS(AC(SPLIT(MP ×MO))) s.t. MP ∈ DFA, MO ∈
DPDA and MO /∈ SBA. Then M ′O /∈ SBA.

Proof. It follows from Lemma 11.12, 11.14 and 11.17 that AC(SPLIT(MP ×MO)) /∈
SBA. Now observe from Definition 11.18 that RNCS does obviously not introduce infinite
λ-sequences as this function only removes existing states and transitions.

Theorem 11.21. Let DO, D
′
O ∈ LM s.t. D′O = Fc(DO). Then it is decidable whether

DO = D′O.

Proof. Pick MP ∈ DFA, MO ∈ DPDA s.t. MP�DP and MO�DO and let M ′O =
RNCS(AC(SPLIT(MP ×MO))). Then it follows from Theorem 11.19 that M ′O�D′O.

Now let MAc = AC(SPLIT(MP ×MO)) and observe that it follows from
Lemma 11.12, Lemma 11.14 and Lemma 11.17, that Lum(MAc) = Lum(MO) and Lm(MAc)
= Lm(MO), implying MAc�DO. Now observe from Definition 11.18 that MAc = M ′O
(implying DO = D′O) iff NCS = ∅, which is obviously decidable.

128

11.4. Effective Computability of Fc for DCFL

Theorem 11.19 is the main result of Part II and shows that there exists an imple-
mentable algorithm to realize Fc for DCFL using their DPDA realizations. This algo-
rithm has polynomial runtime as each of its components has polynomial runtime. In
particular, the operations ×, SPLIT , and RNCS have quadratic runtime and the op-
eration AC from [24, p.137] can be implemented with cubic runtime (see [60, 59]). We
believe that significant complexity reductions for real world problems can be achieved
by using distributed or hierarchical versions of the monolithic case treated in this work.

129

Conclusion

In this thesis we have built two bridges between results obtained by the control and the
computer science community in abstraction-based controller synthesis.

In Part I we have compared finite state machine abstractions resulting from strongest
asynchronous l-complete approximation (SAlCA) and quotient based abstraction (QBA).
For this purpose we have first derived an asynchronous version of the existing abstrac-
tion technique of strongest l-complete approximations (SlCA). SlCA were introduced
in [36] for (behaviorally) time invariant systems using a stronger version of the original
l-completeness property defined in [76]. To resolve the resulting inconsistencies, and also
to address a wider system class, the procedure suggested in [36] can be adapted in a
straightforward way using the original l-completeness notion from [76], capturing also
time variant systems. This, not surprisingly, leads to realizations with time dependent
next state relations. To address this, we have proposed a new approximation technique,
called strongest asynchronous l-complete approximation (SAlCA). This abstraction was
shown to always be realizable by a state machine (SM) with time independent next
state relation. For time invariant systems it produces the same approximation as [36],
however, the mentioned inconsistencies are resolved.

As QBA are not restricted to (behaviorally) time invariant systems this generalization
can be viewed as the first step to formally relate QBA and SAlCA. To obtain a common
ground for this comparison we have furthermore introduced the notion of φ-dynamical
systems, a modeling framework for systems with distinct (possibly continuous) internal
time axis and (usually discrete) external time axis. By generalizing the asynchronous
state property to φ-dynamical systems we have shown that, whenever this property
holds, the external symbolic dynamics of a φ-dynamical system can be modeled by an
asynchronous state space dynamical system (ASSDS) with unique discrete time axis
T = N0. As we have shown that the step by step evolution of an ASSDS can be realized
by an SM and both QBA and SAlCA are constructible from SM directly, this observation
results in a unified setting to construct SAlCA and QBA.

To bridge the remaining differences between SAlCA and QBA, we have introduced a
new parameter m ∈ [0, l] to realize SAlCA by different state machines. We have shown
that the choice m = 0 corresponds to relating states in the original state machine Q
to their strict l-long past of external symbols, reproducing the standard realization of
SAlCA. On the other hand, choosing m = l corresponds to relating states in the original

131

11. Enforcing Controllability for DCFL Models Least Restrictively

state machine Q to their l-long future of external symbols. We have shown that the
construction of realizations for SAlCA with m = l is closely related to the construction
of QBA, if the latter is obtained from a partition resulting from l steps of the usual
repartitioning algorithm. The latter was formalized by incorporating the refinement step
into the construction of QBA resulting in a chain of different realizations with increasing
precision.

Even if the latter observation renders both methods conceptually similar, they are
generally incomparable if the system to be abstracted is equipped with a predefined set
of output symbols. Only in the special case where the original system is future unique for l
time steps both abstractions are identical up to a trivial renaming of states. Interestingly,
a slightly weaker condition than future uniqueness implies that the realization of QBA
resulting from the lth step of the repartitioning algorithm realizes the behavior of the
SAlCA. This implies that there exist situations where a QBA realizes the SAlCA but
does not coincide with a realization of SAlCA using l and m.

If the output symbol set is not predefined it can be arbitrarily chosen prior to the con-
struction of SAlCA and QBA, as usually done when constructing QBA. In this scenario
no further refinement of the obtained abstractions is necessary resulting in identical ab-
stract state machines when using SAlCA and QBA and choosing l = m = 1.

In Part II we have described two steps in the generalization of SCT to situations where
the plant language is regular but the specification language is deterministic context free.
In this case, the SCP cannot be solved using the iterative functions derived in [78]. We
have therefore discussed a slightly modified fixed point calculation U using the two basic
functions Fc and Fnb. This calculation is computable for the considered SCP, if, for the
class of DCFL, (i) Fc is computable, (ii) Fnb is computable, (iii) it is decidable if Fc

returns its input and (iv) U terminates.
Thereafter, we have presented an implementable algorithm realizing the function Fc to

calculate the largest controllable marked sublanguage of a given DCFL. This algorithm
consists of a sequence of automaton manipulations which, starting with a nonblocking
DPDA, removes all (and only those) marked words having a prefix which is uncontrollable
w.r.t. the plant. We have shown that this sequence of automaton manipulations realizes
Fc, does not introduce silent blocking and allows to decide if Fc returns its input. This
implies that (i) and (iii) are true.

Concerning (ii), an algorithm realizing Fnb for DCFL was suggested in [60, 59] which
was not discussed in this thesis. However, the overall algorithm solving the SCP for
deterministic context free specification languages is available as a plug-in in libFAUDES

[31]. Finally, characterizing the class of SCP for which (iv) can be guaranteed is left for
future work. We have, however, not encountered termination problems in any realistic
example.

132

A. Appendix Part I

A.1. Proofs for Chapter 6

In this section we provide detailed proofs for the theorems in Chapter 6. To simplify
subsequent proofs we first translate the conditions for a transition in Q̂Ilm which were
given in Definition 6.3 in terms of transitions of Q into conditions of the domino game.

Lemma A.1. Given (6.1) and Q̂Ilm as in Definition 6.3 it holds for all w ∈ W and

x̂, x̂′ ∈ X̂Ilm that

(x̂, w, x̂′)∈δ̂Ilm

⇔

 x̂′|[0,l−m−1] =
(
x̂|[0,l−m−1] · πV (w)

)
|[1,l−m]

∧x̂′|[l−m,l−2] = x̂|[l−m+1,l−1]

∧x̂|[0,l−m−1] · πV (w) · x̂′|[l−m,l−1] ∈ Dl+1

 (A.1a)

⇔ ∃ζ ∈ Dl+1 .

 ζ|[0,l−1] = x̂

∧ζ|[1,l] = x̂′

∧πV (w) = ζ(l −m)

 (A.1b)

Proof. “⇒”:
• Observe from (6.7c) that (x̂, w, x̂′) ∈ δ̂Ilm iff the first two lines of the conjunction in
(6.7c) are fulfilled and there exist x, x′ ∈ X s.t.

∃(ν, ξ)∈�BSV , k .

(
ξ(k) = x

∧x̂ = ν|[k+m−l,k+m−1]

)
, (A.2a)

∃(ν ′, ξ′)∈�BSV , k′ .

(
ξ′(k′) = x′

∧x̂′ = ν ′|[k′+m−l,k′+m−1]

)
, (A.2b)

∃(ν ′′, ξ′′)∈�BSV , k′′ .

 ξ′′(k′′) = x

∧ν ′′(k′′) = v

∧ξ′′(k′′ + 1) = x′

 , (A.2c)

Here (A.2a) and (A.2b) follow from (6.5) and (A.2c) follows from (2.20b).
• Now observe from (A.2) that ξ(k) = x = ξ′′(k′′) and ξ′(k′) = x′ = ξ′′(k′′ + 1). Using

133

A. Appendix Part I

(2.25) we therefore obtain

(ν̃, ξ̃) = (ν, ξ) ∧kk′′ (ν ′′, ξ′′) ∧k
′′+1
k′ (ν ′, ξ′) ∈ �BSV (A.2d)

giving

ν̃|[k+m−l,k+m] = ν|[k+m−l,k−1] · ν ′′(k′′) · ν ′|[k′,k′+m−1]

= x̂|[0,l−m−1] · v · x̂′|[l−m,l−1],

and therefore, as ν̃|[k+m−l,k+m] ∈ �BV |[k+m−l,k+m] (using (6.1d)) we have x̂|[0,l−m−1] ·
πV (u, y) · x̂′|[l−m,l−1] ∈ Dl+1.
• Now let ζ = ν̃|[k+m−l,k+m] ∈ Dl+1 and observe that v = ζ(l −m). With this choice
of ζ the first two lines of the conjunction in (6.7c) immediately imply ζ|[0,l−1] = x̂ and
ζ|[1,l] = x̂′.
“⇐”:
• Pick ζ ∈ Dl+1 and w, x̂ and x̂′ s.t. the right side of (A.1b) holds.
• It is easy to see that the first two lines of the conjunction in (A.1a) and (6.7c) hold
with this choice and ζ = x̂|[0,l−m−1] · v · x̂′|[l−m,l−1] ∈ Dl+1.

• Now using (6.1d) there exist (ν̃, ξ̃) and k̃ ∈ N0 s.t. ζ = ν̃|[k̃+m−l,k̃+m−1].

• Now we can choose all signals in (A.2a) and (A.2b) equivalent to (ν̃, ξ̃) and x = ξ̃(k̃)

as well as x′ = ξ̃(k̃ + 1), giving x̂ ∈ EI
l
m(x), x̂′ ∈ EI

l
m(x′) and (x,w, x′) ∈ δ, hence the

last line of the conjunction in (6.7c) holds.

A.1.1. Proof of Theorem 6.4

First observe that Q̂Ilm is live and reachable by definition. Using Definition 2.22 we
therefore only prove both directions of the behavior inclusion separately:

1.) Show B̂l↑V ⊆ πV (Bf (Q̂Ilm)):

Pick ν̂ ∈ �B̂l↑V , ω̂ s.t. πV (ω̂) = ν̂|[0,∞) and ξ̂ s.t. ∀k ∈ N0 . ξ̂(k) = ν̂|[k−l+m,k+m−1]. Then
we prove both lines in (2.20b) separately:

• Show ξ̂(0) ∈ X̂I
l
m

0 :
Using the same argument as in the proof of Proposition 6.1 (hence, dominos can only have
diamonds when they are obtained from the initial behavior) we know that ν̂|[m−l−1,m−1] ∈
�BV |[m−l−1,m−1] for m ∈ [0, l]. Hence there exists (ν ′, ξ′) ∈ BSV s.t. ν ′|[m−l−1,m−1] =

ν̂|[m−l−1,m−1]. Using (6.5) this implies that ν̂|[m−l,m−1] ∈ EI
l
m(ξ′(0)) with ξ′(0) ∈ X0,

hence ξ̂(0) ∈ X̂I
l
m

0 (from (6.7b)).

• Show ∀k ∈ N0 . (ξ̂(k), ω̂(k), ξ̂(k+1))∈δ̂Ilm :
As (6.2) implies ∀k ∈ N0 . ν̂|[k−l+m,k+m] ∈ Dl+1, this follows immediately from the

choice of ξ̂ and (A.1b).

134

A.1. Proofs for Chapter 6

2.) Show πV (Bf (Q̂Ilm)) ⊆ B̂l↑V :

Pick (ω̂, ξ̂) ∈ Bf (Q̂Ilm) and ν̂ ∈ (V ∪ {�})N0 s.t. πV (ω̂) = ν̂|[0,∞) and ∀k < 0 . ν̂(k) = �.
To show ν̂ ∈ �B̂l↑V , observe that the first line of (6.2) holds by construction and the
second line of (6.2) follows directly from (A.1b) and the second line of (2.20b), if we
pick ξ̂ accordingly.

A.1.2. Proof of Theorem 6.5

• First observe from (6.1c), (6.5) and (6.7a) that

X̂I
l
m =

⋃
k∈N0

�BV |[k−l+m,k+m−1] ⊆ {�}l ∪Dl (A.3)

where equality only holds for m = 0, hence X̂I
l
0 = {�}l ∪ Dl. Furthermore, it can be

observed from (6.5) and (6.7b) that

X̂
Ilm
0 = �BV |[−l+m,m−1], hence X̂

Il0
0 = �BV |[−l,−1] = {�}l. (A.4)

• It is therefore easy to see that x̂ ∈ X̂ l
0 = {λ} implies �x̂ = �l ∈ X̂I

l
0

0 = {�}l and vice
versa, hence (5.6a) holds for R and R−1.
• Now recall from the proof of Proposition 6.1 that for the choice of V = W it holds
that B = BV . Using this and (2.42c) we obtain

(x̂, w, x̂′) ∈ δ̂l↑

⇔

 x̂′ = x̂ · w
∧|x̂|L < l

∧x̂ · w ∈ BV |[0,|x̂|
L

]

 ∨
 x̂′ = (x̂ · w)|[1,l−1]

∧|x̂|L = l

∧x̂ · w ∈
⋃
k′∈N0

BV |[k′,k′+l] = Dl+1



⇔

(
x̂′ = x̂ · w
∧∃r > 0 . �r ·x̂ · w ∈ BV |[−r,l−r]

)
∨

 x̂′ = (x̂ · w)|[1,l−1]

∧|x̂|L = l

∧x̂ · w ∈ Dl+1



•Now observe that |x̂|L = l implies �x̂ = x̂ and |x̂|L < l with �x̂ = �r·x̂ ∈
⋃
k′∈N0

BV |[k′,k′+l] =
Dl+1 implies �x̂ ∈ BV |[−r,l−r−1]. We therefore obtain

(x̂, w, x̂′) ∈ δ̂l↑ ⇔

(
�x̂′ = (�x̂ · w)|[1,l−1]

∧�x̂ · w ∈ Dl+1

)
⇔ (�x̂, w, �x̂′) ∈ δ̂Il0

where the last equality follows from (A.1b). Using this, (5.6b) obviously holds for R and
R−1. �

135

A. Appendix Part I

A.1.3. Proof of Theorem 6.7

We prove the statement by applying Definition 5.7 and Theorem 5.8. Therefore, we first
construct the φi-extensions of the involved models. Using Figure 6.1 and Figure 5.4 gives
the following ASSφDS.

[Q]φi = (T, T,W ×X,W, φi(Bf (Q)))[
Q̂Ilm

]φi
= (T, T,W × X̂Ilm ,W, φi(Bf (Q̂Ilm))

Σ̆φ
S = (T̆ , T, W̆ × X̆,W, φS)[

Σ̂l↑
S

]φi
= (T, T,W × X̂Ilm ,W, φi(Bf (Q)))

First, recall that Q is constructed from Σ̆φ
S as depicted in Figure 6.4 implying that

the external reachable state space X̆φ of Σ̆φ
S coincides with the state space X of Q. As[

Q̂Ilm
]φi

and
[
Σ̂l↑
S

]φi
also share the same (externally reachable) state space, (5.2a) always

holds for all implications in (6.9). Therefore we only prove that the various implications
hold for (5.2b).

1.) Show R ∈ SV ([Q]φi ,
[
Q̂Ilm

]φi
)⇒ R ∈ SV (Σ̆φ

S ,
[
Σ̂l↑
S

]φi
):

- Pick (x, x̂) ∈ R,
(

(ω, ξ̆), ω, θ
)
∈ φS , k1 ∈ N0 s.t. ξ̆(θ−1(k1)) = x.

- First observe that (4.7) implies the existence of ξ s.t.

∀k ∈ T . ξ(k) = ξ̆(θ−1(k)) and (ω, ξ) ∈ BS .

- As Q is induced by ΣS we know from Lemma 2.20 and Lemma 2.4 (i) that Bf (Q) =
BS ⊇ BS , hence (ω, ξ) ∈ Bf (Q).
- Therefore, we know from (5.5) that ((ω, ξ), ω, θi) ∈ φi(Bf (Q)) and ξ(k1) = x.

- Now recall that R ∈ SV ([Q]φi ,
[
Q̂Ilm

]φi
) and (x, x̂) ∈ R. Hence, the above observation

implies the existence of
(

(ω̂, ξ̂), ω̂, θi

)
∈ φi(Bf (Q̂Ilm)) s.t. the right side of (5.2b) holds.

- As πV (Bf (Q̂Ilm)) = B̂l↑V (from Theorem 6.4), this immediately implies that there exits

ω̂′ ∈WN0 s.t.
(

(ω̂′, ξ̂), ω̂′, θi

)
∈ φi(Bf (Q̂Ilm)) and πV (ω̂) = πV (ω̂′).

- With this it immediately follows that the right side of (5.2b) holds for this choice of
signals, which proves the statement.

2.) Show R ∈ SV (Σ̆φ
S ,
[
Σ̂l↑
S

]φi
)⇒ R ∈ SV (Q, Q̂Ilm):

- Pick (x, x̂) ∈ R, w ∈W,x′ ∈ X1 s.t. (x,w, x′) ∈ δ.
- AsQ is induced by ΣS , using (2.21) we can pic (ω, ξ) ∈ BS and k1 ∈ N0 s.t. x′ = ξ(k1+1)
and w = ω(k1).

136

A.1. Proofs for Chapter 6

- Now (4.7) implies the existence of ξ̆ s.t.

∀k ∈ N0 . ξ(k) = ξ̆(θ1
−1(k)) and

(
(ω, ξ̆), ω, θ

)
∈ φS .

- Now recall that R ∈ SV (Σ̆φ
S ,
[
Σ̂l↑
S

]φi
) and (x, x̂) ∈ R. Hence, the above observation

implies the existence of
(

(ω̂, ξ̂), ν̂, θi

)
∈ φi(Bf (Q̂Ilm)) s.t. the right side of (5.2b) holds.

- As Σ̂l↑
S is realized by Q̂Ilm w.r.t. V (from Theorem 6.4) this implies that we can pick

x̂′ = ξ̂(k2 + 1) and w′ s.t. πV (w′) = πV (ω̂(k2)) s.t. the right side of (5.6b) holds, what
proves the statement.

3.) Show R ∈ SV (
[
Σ̂l↑
S

]φi
, Σ̆φ

S)⇒ R ∈ SV (Q̂Ilm ,Q):

- Pick (x̂, x) ∈ R, w ∈W, x̂′ ∈ X̂Ilm s.t. (x̂, w, x̂′) ∈ δ̂Ilm
- As the behavior of Σ̂l↑

S is given by Bf (Q̂Ilm) from Proposition 6.6 we can pick (ω̂, ξ̂) ∈
Bf (Q̂Ilm) and k1 s.t. x̂′ = ξ̂(k1 + 1) and w = ω̂(k1).

- Now (5.5) implies
(

(ω̂, ξ̂), ω̂, θi

)
∈ φi(Bf (Q̂Ilm)).

- Now recall that R ∈ SV (
[
Σ̂l↑
S

]φi
, Σ̆φ

S) and (x̂, x) ∈ R. Hence, the above observation

implies the existence of
(

(ω, ξ̆), ω, θ
)
∈ φS s.t. the right side of (5.2b) holds.

- As Q is induced by Σ̆φ
S this implies that we can pick x′ = ξ(k2 + 1) and w′ = ω(k2) s.t.

the right side of (5.6b) holds, what proves the statement.

4.) Show ΣS is complete⇒
(
R ∈ SV (

[
Q̂Ilm

]φi
, [Q]φi)⇒ R ∈ SV (

[
Σ̂l↑
S

]φi
, Σ̆φ

S)

)
:

- Pick (x̂, x) ∈ R,
(

(ω̂, ξ̂), ω̂, θi

)
∈ φi(Bf (Q̂Ilm)) , k1 ∈ N0 s.t. ξ̂(k1) = x̂.

- Using Proposition 6.6 this implies (ω̂, ξ̂) ∈ Bf (Q̂Ilm).

- Therefore, we know from (5.5) that
(

(ω̂, ξ̂), ω̂, θi

)
∈ φi(Bf (Q̂Ilm)) and ξ̂(k1) = x̂.

- Now recall that R ∈ SV (
[
Q̂Ilm

]φi
, [Q]φi) and (x̂, x) ∈ R. Hence, the above observation

implies that the existence of ((ω, ξ), ω, θi) ∈ φi(Bf (Q)) s.t. the right side of (5.2b) holds.
- As ΣS is complete andQ is induced by ΣS we know that BS = Bf (Q), hence (ω, ξ) ∈ BS .

- Now (4.7) implies the existence of ξ̆ s.t.

∀k ∈ N0 . ξ(k) = ξ̆(θ1
−1(k)) and

(
(ω, ξ̆), ω, θ

)
∈ φS .

- With this it immediately follows that the right side of (5.2b) holds for this choice of
signals, which proves the statement. �

137

A. Appendix Part I

A.1.4. Proof of Theorem 6.10

We show both statements separately.

(i) R ∈ SW (Q, Q̂Ilm)⇔ Q is future unique w.r.t. I lm.

• We first show that (5.6a) always holds for R:
Pick x ∈ X0. Then it follows from (2.23) and (6.5) that there exists ζ ∈ Dl s.t.

ζ ∈ EI
l
m(x). Using (6.7b) we get ζ ∈ X̂I

l
m

0 , which proves the statement.

• It remains to show that (5.6b) holds for R and W iff Q is future unique w.r.t. I lm. We
show both directions separately:

“⇐” : We first assume that Q is future unique w.r.t. I lm and prove the implication in
(5.6b).

– Pick (x, x̂) ∈ R, i.e., x̂ ∈ EI
l
m(x) and w, x′ s.t. (x,w, x′) ∈ δ.

– It follows from (6.5) and (2.20b) that (A.2a) and (A.2c) holds, hence

(ν̃, ξ̃) = (ν, ξ) ∧kk′′ (ν ′′, ξ′′) ∈ BSV , (A.5)

where ξ̃(k) = x (A.6a)

ξ̃(k + 1) = x′ (A.6b)

ν̃|[k+m−l,k−1] = ν|[k+m−l,k−1] (A.6c)

ν̃(k) = πV (w) = v (A.6d)

– Now pick x̂′ = ν̃|[k+m−l+1,k+m] and observe that (A.6b) implies x̂′ ∈ EI
l
m(x′).

– Furthermore, (A.6a) implies ν̃|[k+m−l,k+m−1] ∈ EI
l
m(x) and using (6.6) and (A.6c)

therefore yields x̂ = ν|[k+m−l,k+m−1] = ν̃|[k+m−l,k+m−1], hence x̂|[1,l−1] = x̂′|[0,l−2].

– With this, using (A.6d) immediately shows that (6.7c) holds, hence (x̂, w, x̂′) ∈ δ̂Ilm .

“⇒” :
– Observe that (5.6b) holds for R and W iff

∀x, x′, x̂, w .

(
x̂ ∈ EI

l
m(x)

∧(x,w, x′) ∈ δ

)
⇒
(
∃x̂′ ∈ EI

l
m(x′) . (x̂, w, x̂′) ∈ δ̂Ilm

)
(A.7)

– Recall that Q is always future unique w.r.t. I lm if m = 0. Therefore, we assume m > 0
and show that (6.6) holds if (A.7) holds.

138

A.1. Proofs for Chapter 6

– Pick x ∈ X and ζ, ζ ′ ∈ EI
l
m(x).

– Using (6.5), there exist (ν, ξ)∈BSV and k s.t. x = ξ(k) and ζ ′ = ν|[k+m−l,k+m−1].
– Now pick x′ = ξ(k + 1) and w s.t. πV (w) = ν(k) = ζ ′(l − m) and observe that
(x,w, x′) ∈ δ (hence we can apply (A.7) with x̂ = ζ) and

ζ̃ = ζ ′|[1,l−1] · ν(k +m) ∈ EI
l
m(x′). (A.8)

– First observe that the right side of (A.7) implies x̂(l −m) = ζ(l −m) = πV (w) (from
(6.7c) and m > 0), hence ζ(l −m) = ζ ′(l −m).

– Furthermore, we know that there exists ζ ′′ ∈ EI
l
m(x′) s.t. (ζ, w, ζ ′′) ∈ δ̂Ilm , hence (from

(6.7c)) ζ|[1,l−1] = ζ ′′|[0,l−2].

– Using (A.8) and the same reasoning as before (substituting x by x′ and ζ, ζ ′ by ζ̃, ζ ′′)
we immediately obtain ζ ′′(l −m) = ζ̃(l −m) = ζ ′(l −m+ 1).
– As ζ|[1,l−1] = ζ ′′|[0,l−2] we therefore have ζ(l −m+ 1) = ζ ′(l −m+ 1).
– Applying this process iteratively therefore yields ζ|[l−m,l−1] = ζ ′|[l−m,l−1], what proves
the statement.

(ii) R−1 ∈ SV (Q̂Ilm ,Q)⇔ Q is state-based async. l-compl.

• First observe that (5.6a) always holds for R−1, as we can pick x̂ ∈ X̂I
l
m

0 and (6.7b)

implies the existence of x ∈ X0 s.t. ζ ∈ EI
l
m(x).

• It remains to show that (5.6b) holds for R−1 and Y iff Q is state-based asynchronously
l-complete w.r.t. I lm. We show both directions separately:

“⇐” :
– Pick (x̂, x) ∈ R−1, i.e., x̂ ∈ EI

l
m(x) and w, x̂′ s.t. (x̂, w, x̂′) ∈ δ̂Ilm . Then it follows from

(A.1b) that there exists ζ ∈ Dl+1 s.t. ζ|[0,l−1] = x̂, ζ|[1,l] = x̂′ and πY (w) = ζ(l −m).

Using (6.11) this implies that ζ ∈ E[m−l,m](x), hence there exists (ν, ξ) ∈ BSV and k ∈ N0

s.t. x = ξ(k) and ζ = ν|[k+m−l,k+m].

– Now pick x′ = ξ(k + 1) and observe that x̂′ ∈ EI
l
m(x′), hence (x̂′, x′) ∈ R−1. Further-

more, (2.20b) implies the existence of w′ s.t. (x,w′, x′) ∈ δ and πW (w′) = v, what proves
the statement.

“⇒” :
– Pick x ∈ X and ζ ∈ Dl+1 s.t. ζ|[0,l−1] ∈ EI

l
m(x). Furthermore define x̂ = ζ|[0,l−1]

and x̂′ = ζ|[1,l] and v = ζ(l − m) and observe from (A.1b) that there exists w s.t.

(x̂, w, x̂′) ∈ δ̂Ilm and πV (w) = v and observe that (x̂, x) ∈ R−1.

– AsR−1 ∈ SV (Q̂Ilm ,Q) we know that there exist x′ and w′ s.t. (x,w′, x′) ∈ δ, πW (w′) =

v and x̂′ ∈ EI
l
m(x′).

139

A. Appendix Part I

– With this we know that (A.2) holds, hence ζ = ν̃|[k+m−l,k+m] and x = ξ̃(k) and

therefore ζ ∈ E[m−l,m](x).

A.1.5. Proof of Theorem 6.12

To simplify the proof of Theorem 6.12 (ii) we first show that the necessary and sufficient
condition in Theorem 6.12 (ii) is equivalent to a particular condition of the domino-game.

Lemma A.2. Given (6.1) let

∀ζ ∈ ({�} ∪ V)l+2 .

((
ζ|[0,l] ∈ {�}l ∪Dl+1

∧ζ|[1,l+1] ∈ Dl+1

)
⇒ ζ ∈ Dl+2

)
. (A.9)

Then
(A.9)⇔ B̂l↑V = B̂l+1↑

V .

Proof. We prove both directions separately.

“⇒”:
− Recall from Lemma 2.31 (i) that B̂l+1↑

V ⊆ B̂l↑V always holds. We therefore only prove

that (A.9) implies B̂l↑V ⊆ B̂
l+1↑

V .

− Now pick ν ∈ �B̂l↑V and observe that the second line in (6.2) and (A.9) implies
∀k∈N0 . ν|[k−l−1,k]∈Dl+2. Using (6.2) again and observing that the first line in (6.2) is

independent of l gives ν ∈ �B̂l+1↑

V , hence B̂l↑V ⊆ B̂
l+1↑

V .

“⇐”:
− Observe that (A.9) always holds if ζ|[0,l] ∈ {�}l. We therefore pick ζ ∈ V l+2 s.t.
ζ|[0,l] ∈ Dl+1 and ζ|[1,l+1] ∈ Dl+1.

− Now recall from the proof of Proposition 6.1 that πV (B) = BV and from Lemma 2.31

(ii) and Proposition 2.32 that
⋃
k∈N0

B|[k,k+l] =
⋃
k∈N0

B̂l↑V |[k,k+l]. This immediately yields

Dl+1 =
⋃
k∈N0

�B̂l↑V |[k−l,k].

− This implies the existence of ν, ν ′ ∈ �B̂l↑V and k, k′ ∈ N0 s.t. ν|[k−l,k] = ζ|[0,l] and
ν ′|[k′−l,k′] = ζ|[1,l+1].

− Picking ν ′′ = ν ∧kk′ ν it is easily verified that ν ′′ ∈ �B̂l↑V and ν ′′|[k−l,k+1] = ζ.

− As B̂l↑V = B̂l+1↑

V we know that ν ′′ ∈ B̂l+1↑

V and therefore using (6.2) gives ν ′′|[k−l,k+1]∈
Dl+2, what proves the statement .

Proof of Theorem 6.12

We show both statements separately.

140

A.1. Proofs for Chapter 6

(i) Show R ∈ SV (Q̂I
l+1
m , Q̂Ilm).

• Show (5.6a):

– Let x̂l+1 ∈ X̂I
l+1
m

0 and pick x̂l = x̂l+1|[1,l].
– It follows from (6.7b) that there exists an x ∈ X0 s.t. x̂l+1 ∈ EI

l+1
m (x).

– Now it can be easily observed from (6.5) that x̂l ∈ EI
l
m(x), hence x̂l ∈ X̂

Ilm
0 (from

(6.7b)) and (x̂l+1, x̂l) ∈ R (from (6.13)).

• Show (5.6b):

– Pick (x̂l+1, x̂l) ∈ R, w, v and x̂′l+1, x̂′l s.t. (x̂l+1, w, x̂
′
l+1) ∈ δ̂I

l+1
m , x̂′l = x̂′l+1|[1,l] and

v = πV (w).
– With this choice it immediately follows that (x̂′l+1, x̂

′
l) ∈ R and it remains to show

that there exist w′ s.t. (x̂l, w
′, x̂′l) ∈ δ̂I

l
m , and v = πV (w′).

– Using Lemma A.1 we have

x̂′l+1|[0,l−m] =
(
x̂l+1|[0,l−m] · v

)
|[1,l+1−m]

x̂′l+1|[l+1−m,l−1] = x̂l+1|[l−m+2,l]

x̂l+1|[0,l−m] · v · x̂′l+1|[l+1−m,l] ∈ Dl+2

– Now using x̂l = x̂l+1|[1,l] (from (6.13)) and x̂′l = x̂′l+1|[1,l] (from above) yields

x̂′l|[0,l−m−1] =
(
x̂l|[0,l−m−1] · v

)
|[1,l−m]

x̂′l|[l−m,l−2] = x̂l|[l−m+1,l−1]

x̂l|[0,l−m−1] · v · x̂′l|[l−m,l−1] ∈ Dl+1.

By using Lemma A.1 again this proves the statement .

(ii) Show R−1∈SV (Q̂Ilm , Q̂I
l+1
m)⇔ B̂l↑V = B̂l+1↑

V

• We first show that (5.6a) always holds for R−1:

– Let x̂l ∈ X̂
Ilm
0 .

– It follows from (6.7b) that there exists an x ∈ X0 s.t. x̂l ∈ EI
l
m(x).

– Using (6.5) there exists (ν, ξ)∈BSV s.t. ξ(0) = x and x̂l = ν|[m−l,m−1].

– Now pick x̂l+1 = ν|[m−l−1,m−1] and observe that x̂l+1 ∈ EI
l+1
m (x), hence x̂m+1 ∈ X̂I

l+1
m

0

(from (6.7b)) and (x̂l, x̂l+1) ∈ R−1 (from (6.13)).

• It remains to show that (5.6a) holds for R−1 iff (A.9) holds. We show both directions
separately:

141

A. Appendix Part I

“⇐:”
- Pick (x̂l, x̂l+1) ∈ R−1, w, v and x̂′l+1, x̂′l s.t. (x̂l, w, x̂

′
l) ∈ δ̂I

l
m , x̂′l+1 = x̂l(0) · x̂′l (i.e.,

(x̂′l+1, x̂
′
l) ∈ R) and v = πV (w).

- Now using (A.1b) implies the existence of ζ ∈ Dl+1 s.t. ζ|[0,l−1] = x̂l, ζ|[1,l] = x̂′l and

v = ζ(l−m), hence x̂′l+1 = ζ ∈ Dl+1. Furthermore, recall that x̂l+1 ∈ X̂I
l+1
m ⊆ {�}l∪Dl+1

(from (A.3)). Therefore, we can apply Lemma A.2 and obtain ζ ′ ∈ Dl+2 s.t. ζ ′|[0,l] = x̂l+1,
ζ ′|[1,l+1] = x̂′l+1 and v = ζ ′(l + 1−m).
- Using (A.1b) again this implies the existence of w′ s.t. v = πV (w′) and (x̂l+1, w

′, x̂′l+1) ∈
δ̂I

l+1
m , what proves the statement.

“⇒:”
- Pick ζ s.t. ζ|[0,l] ∈ {�}l ∪Dl+1 and ζ|[1,l+1] ∈ Dl+1. Furthermore, define x̂l = ζ|[1,l] and
x̂′l = ζ|[2,l] and v = ζ(l −m+ 1).

- With this choice (A.1b) implies the existence of w s.t. v = πV (w) and (x̂l, w, x̂
′
l) ∈ δ̂I

l
m .

- Now observe that (x̂l, ζ|[0,l]) ∈ R−1 and recall that R−1∈SV (Q̂Ilm , Q̂I
l+1
m), hence we

know that there exists ζ ′, w′ s.t. (ζ|[0,l], w′, ζ ′) ∈ δ̂I
l+1
m , πV (w′) = v = ζ(l −m + 1) and

x̂′l = ζ ′|[1,l], hence ζ ′ = ζ|[1,l+1].
- Now using (A.1b) for l + 1 implies ζ ∈ Dl+2, what proves the statement.

A.1.6. Proof of Theorem 6.13

To simplify the proof of Theorem 6.13 (ii) we first show that the necessary and sufficient
conditions in Theorem 6.13 (ii) are equivalent to a simpler condition of the domino-game.

Lemma A.3. Given (6.1) let

∀ζ, ζ ′ ∈ Dl+1 .
(
ζ|[0,l−1] = ζ ′|[0,l−1] ⇒ ζ = ζ ′

)
. (A.10)

Then

(A.10)⇔

(
Q is future unique w.r.t. I lm+1

∧Q is state-based async. l-complete w.r.t. I lm

)
.

Proof. We show all statements separately:

• Show (A.10) implies future uniqueness of Q w.r.t. I lm+1:

– Pick x ∈ X and ζ, ζ ′ ∈ EI
l
m+1(x).

– It follows from (6.5) that there exist (ν, ξ), (ν ′, ξ′)∈BSV and k, k′ ∈ N0 s.t.

ξ(k) = ξ(k′) = x,

ν|[k−l+m+1,k+m] = ζ and

ν ′|[k′−l+m+1,k′+m] = ζ ′

142

A.1. Proofs for Chapter 6

– Using (2.25) we can therefore construct (ν ′′, ξ′′) = (ν, ξ) ∧kk′ (ν ′, ξ′).
– Now pick ζ̃ = ν|[k−l,k] and ζ̃ ′ = ν ′′|[k−l,k] and observe

ζ̃ ′|[0,l−1] = ν ′′|[k−l,k−1] = ν|[k−l,k−1] = ζ̃|[0,l−1]. (A.11)

– Using (A.10) we therefore have ζ̃ = ζ̃ ′, hence ν(k) = ζ(l−m+1) = ζ ′(l−m+1) = ν ′′(k).
– Now we can pick ζ̃ = ν|[k−l+1,k+1] and ζ̃ ′ = ν ′′|[k−l+1,k+1] and (by reusing the above
argument) obtain ν(k) = ζ(l −m+ 2) = ζ ′(l −m+ 2) = ν ′′(k).
– Iteratively applying the above reasoning therefore yields ζ|[l−m+1,l] = ζ ′|[l−m+1,l], what
proves the statement.

• Show (A.10) implies that Q is state-based asynchronously l-complete w.r.t. I lm:

– Pick x ∈ X, ζ ∈ Dl+1 s.t. ζ|[0,l−1] ∈ EI
l
m(x).

– It follows from (6.5) that there exist (ν, ξ)∈BSV and k ∈ N0 s.t.

ξ(k) = ξ(k′) = x and

ν|[k−l+m,k+m−1] = ζ|[0,l−1]

– Now pick ζ ′ = ν|[k−l+m,k+m] and observe that ζ ′ ∈ E[m−l,m](x), ζ|[0,l−1] = ζ ′|[0,l−1] and
ζ ′ ∈ Dl+1.
– Using (A.10) we have ζ = ζ ′ and therefore ζ ∈ E[m−l,m](x), what proves the statement.

• Show that future uniqueness of Q w.r.t. I lm+1 and state-based asynchronously l-
completeness of Q w.r.t. I lm implies (A.10):
– Pick ζ, ζ ′ ∈ Dl+1 s.t. ζ|[0,l−1] = ζ ′|[0,l−1].
– Observe that this implies ζ|[0,l−1] ∈ Dl. Hence, there exists x ∈ X s.t. ζ|[0,l−1] ∈
EI

l
m(x) = E[m−l,m−1](x).

– Using that Q is state-based asynchronously l-complete w.r.t. I lm we know that ζ, ζ ′ ∈
E[m−l,m](x).

– Using (6.5) this implies that ζ|[1,l], ζ ′|[1,l] ∈ EI
l
m+1(x).

– As Q is future unique w.r.t. I lm+1 this implies ζ|[1,l] = ζ ′|[1,l], hence ζ = ζ ′, what proves
the statement.

Proof of Theorem 6.13

(i) Show R ∈ SV (Q̂Ilm+1 , Q̂Ilm).

• Show that (5.6a) holds for R:

– Let x̂m+1 ∈ X̂
Ilm+1

0 and pick x̂m = � · x̂m+1|[0,l−2], implying x̂m+1|[0,l−2] = x̂m|[1,l−1].

– Furthermore, it follows from (6.7b) that there exists an x ∈ X0 s.t. x̂m+1 ∈ EI
l
m+1(x).

143

A. Appendix Part I

– Now it can be easily observed from (6.5) that x̂m ∈ EI
l
m(x), hence x̂m ∈ X̂I

l
m

0 (from
(6.7b)) and (x̂m+1, x̂m) ∈ R (from (6.13)).

• Show that (5.6b) holds for R:

– Pick (x̂m+1, x̂m) ∈ R, w, v and x̂′m+1 s.t. (x̂m+1, w, x̂
′
m+1) ∈ δ̂Ilm+1 and v = πV (w).

– Using (6.7c) this implies x̂m+1|[1,l−1] = x̂′m+1|[0,l−2] and x̂m+1(l −m− 1) = v.
– Now pick x̂′m = x̂m+1 and observe that the first two lines in (A.1a) hold and (x̂m, x̂

′
m) ∈

R. Therefore (6.14) and (6.5) implies

∃(ν, ξ)∈BSV , k .

(
ξ(k) = x

∧x̂m = ν|[k+m−l,k+m−1]

)
and (A.12a)

∃(ν ′, ξ′)∈BSV , k′ .

(
ξ′(k′) = x

∧x̂′m = ν ′|[k′+m+1−l,k′+m]

)
. (A.12b)

– As ξ(k) = ξ′(k′) = x in (A.12), using (2.25) gives

(ν̃, ξ̃) = (ν, ξ) ∧kk′ (ν ′, ξ′) ∈ BSV , where

ν̃|[k+m−l,k+m] = ν|[k+m−l,k−1] · ν ′|[k′,k′+m]

= x̂m|[0,l−m−1] · x̂′m|[l−m−1,l−1]. (A.13)

– As x̂′m(l −m− 1) = x̂m+1(l −m− 1) = v this implies

x̂m|[0,l−m−1] · v · x̂′m|[l−m,l−1] ∈ Dl+1.

– Now (A.1a) implies the existence of w′ s.t. πV (w′) = v and (x̂m, w
′, x̂′m) ∈ δ̂Ilm .

– It remains to show that (x̂′m+1, x̂
′
m) ∈ R.

· First observe that x̂′m+1|[0,l−2] = x̂m+1|[1,l−1] = x̂′m|[1,l−1] from above, hence the first
line in (6.14) holds.

· Now (x̂m+1, w, x̂
′
m+1) ∈ δ̂Ilm+1 and (A.1b) implies the existence of

ζ ∈ Dl+1 s.t. x̂m+1 = ζ|[0,l−1] and x̂′m+1 = ζ|[1,l].

· We can therefore pick (ν̃, ξ̃) ∈ BSV , x̃ and k̃ s.t.

ν̃|[k̃+(m+1)−l,k̃+(m+1)] = ζ and x̃ = ξ̃(k + 1),

implying x̂′m+1 ∈ EI
l
m+1(x̃) and x̂′m = x̂m+1 ∈ EI

l
m(x̃), hence the second line in (6.14)

also holds.

(ii) Show R−1 ∈ SV (Q̂Ilm , Q̂Ilm+1)⇔ (A.10)

144

A.1. Proofs for Chapter 6

• We first show that (5.6a) always holds for R−1:

– Let x̂m ∈ X̂I
l
m

0 and observe that it follows from (6.7b) that there exists an x ∈ X0 s.t.

x̂m ∈ EI
l
m(x).

– Using (6.5) there exists (ν, ξ)∈BSV s.t. ξ(0) = x and x̂m = ν|[m−l,m−1].

– Now pick x̂m+1 = ν|[m+1−l,m] and observe that x̂m+1 ∈ EI
l
m+1(x), hence x̂m+1 ∈ X̂

Ilm+1

0

(from (6.7b)) and (x̂m, x̂m+1) ∈ R−1 (from (6.14)).

• It remains to show that (5.6b) holds for R−1 iff (A.10) in Lemma A.3 holds. We show
both statements separately:

“⇐”:
– Pick (x̂m, x̂m+1) ∈ R−1, w, v and x̂′m s.t. (x̂m, w, x̂

′
m) ∈ δ̂Ilm and v = πV (w).

– Using (A.1b) this implies the existence of ζ ∈ Dl+1 s.t. x̂m = ζ|[0,l−1], x̂
′
m = ζ|[1,l] and

v = ζ(l −m).
– Now let ζ ′ = x̂m|[0,0] · x̂m+1 and observe that ζ|[0,l−1] = ζ ′|[0,l−1] and therefore ζ = ζ ′

(from (A.10)), hence x̂m+1 = x̂′m.
– As ζ ′ ∈ Dl+1 we can pick (ν̃, ξ̃) ∈ BSV , x̃ and k̃ s.t. ν̃|[k̃+m−l,k̃+m] = ζ.

– Now pick ζ ′′ = ν̃|[k̃+(m+1)−l,k̃+(m+1)] and observe that x̂m+1 = ζ ′′|[0,l−1] and ζ ′′(l−m−
1) = v. Therefore choosing x̂′m+1 = ζ ′′|[1,l] and using (A.1b) implies the existence of w′

s.t. (x̂m+1, w
′, x̂′m+1) ∈ δ̂Ilm+1 and πV (w′) = v.

– Furthermore, observe that choosing x̃ = ξ̃(k̃ + 1) implies x̂′m+1 ∈ EI
l
m+1(x̃) and

x̂′m = x̂m+1 ∈ EI
l
m(x̃), hence (x̂′m, x̂

′
m+1) ∈ R−1.

“⇒”:
– Pick ζ, ζ ′ ∈ Dl+1 s.t. ζ|[0,l−1] = ζ ′|[0,l−1] and pick x̂m = ζ|[0,l−1] = ζ ′|[0,l−1], x̂

′
m = ζ|[1,l],

x̂m+1 = ζ ′|[1,l] and v = ζ(l −m).

– Using (A.1b) this implies the existence of w s.t. (x̂m, w, x̂
′
m) ∈ δ̂Ilm and v = πV (w).

– Using the same reasoning as before it furthermore holds that (x̂m, x̂m+1) ∈ R−1 as
ζ ′ ∈ Dl+1.

– As R−1 ∈ SV (Q̂Ilm , Q̂Ilm+1) we know that there exist w′, x̂′m+1 s.t. (x̂m+1, w
′, x̂′m+1) ∈

δ̂I
l
m , v = πV (w′) and (x̂′m, x̂

′
m+1) ∈ R−1.

– Now let l = 1 implying m = 0 (as m < l). Then (6.7c) implies v = x̂m+1(1) and
therefore ζ(1) = v = x̂m+1(1) = ζ ′(1) implying ζ = ζ ′.
– Now let l > 1 and observe that x̂m+1|[1,l−1] = x̂′m+1|[0,l−2] = x̂′m|[1,l−1] (from (6.7c) and
(6.14)). Therefore ζ(l) = x̂′m(l − 1) = x̂m+1(l − 1) = ζ(l)′ holds, giving ζ = ζ ′.

145

A. Appendix Part I

A.2. Proofs for Chapter 7

In this section we provide detailed proofs for the claims made in Chapter 7.

A.2.1. Proof of Theorem 7.6

Recall from Definition 7.3 that φl : X→ Ŷ l and therefore applying (3.2b) to δl in (7.7)

yields Hδl(x) = {φl(x)} (as Hδl : X→ 2Ŷ
l
). Hence we have

∀x ∈ X .
(
ŷ ∈ Hδl(x)⇔ ŷ = φl(x)

)
. (A.14)

Furthermore, recall from Definition 7.3 that Q̂lO is obtained from Ql via Theorem 3.8.
Hence, applying the latter to Ql instead of Q means that we have to substitute Y by
Ŷ l, δ by δl and Hδ by Hδl (using (A.14)) in Equation 3.5, giving

X̂ lO =
{
ŷ ∈ Ŷ l

∣∣∣∃x ∈ X . ŷ = φl(x)
}

= Ŷ l = X̂ lH, (A.15a)

X̂ lO
0 =

{
ŷ ∈ Ŷ l

∣∣∣∃x ∈ X0 . ŷ = φl(x)
}

= X̂ lH
0 , and

δ̂lO =

(x̂, u, ŷ, x̂′)

∣∣∣∣∣∣∣∃x, x′ ∈ X .

 x̂ = φl(x)

∧x̂′ = φl(x′)

∧(x, u, ŷ, x′) ∈ δl


 . (A.15b)

The equality in (A.15a) holds as Ŷ l is defined to be the set of equivalence classes of Φl.
Now substituting (7.7) in (A.15b) and using H

δ̂O
(x̂) = {x̂} (from (3.5)) yields

δ̂lO =

(x̂, u, x̂, x̂′)

∣∣∣∣∣∣∣∃x, x′ ∈ X, y ∈ Y .

 x̂ = φl(x)

∧x̂′ = φl(x′)

∧(x, u, y, x′) ∈ δ




With (7.9c), this imediatelly gives

δ̂lO =
{

(x̂, u, x̂, x̂′)
∣∣∣∃y ∈ Y . (x̂, u, y, x̂′) ∈ δ̂lH

}
,

what proves the statement. �

A.2.2. Proof of Theorem 7.7

(i) Show R ∈ SU×Y (Q, Q̂lH):

- Pick x ∈ X0 ⊆ X. As Φl is a partition of X (see [11, Prop.3.9(i)]), φl is the
natural projection map of Φl and Ŷ l is a set of equivalence classes of Φl, there

146

A.2. Proofs for Chapter 7

must exist x̂ ∈ Ŷ l s.t. x̂ = φl(x). Hence (5.6a) holds
- Pick (x, x̂) ∈ R, i.e. x̂ = φl(x) and (x, u, y, x′) ∈ δ. If we now choose x̂′ = φl(x′)
we obtain (x′, x̂′) ∈ R and (x̂, u, y, x̂′) ∈ δ̂lH (from (7.9c)). Hence (5.6b) holds.

(ii) Show, R−1 ∈ SY (Q̂lH,Q)⇒ Φl is a fixed-point of (7.4):
- Observe that (5.6b) holds for R−1 and V = Y iff

∀ x̂, x̂′, u, y, x .((
x̂ = φl(x)

∧(x̂, u, y, x̂′)∈δ̂lH

)
⇒ ∃x′, u′ .

(
x̂′ = φl(x′)

∧(x, u′, y, x′)∈δ

)) (A.16)

- Fix x̂, x̂′, u, y and recall from (7.3) and (7.9c) that

(x̂, u, y, x̂′) ∈ δ̂lH ⇔ ∃x̃, x̃′ ∈ X .

 x̂ = φl(x̃)

∧x̂′ = φl(x̃′)

∧(x̃, u, y, x̃′) ∈ δ


- Now let Z :=

(
φl
)−1

(x̂) and Z ′ :=
(
φl
)−1

(x̂′) and observe that (A.16) implies
that for all choices of x ∈ Z there exists u′ and x′ ∈ Z ′ s.t. (x, u′, y, x′)∈δ. Hence,
using (7.3), (A.16) implies that

Z ∩ T−1
δ (Z ′) 6= ∅ ⇒ Z ⊆ T−1

δ (Z ′),

i.e. Φl is a fixed point of (7.4).

(ii) Show,

(
(3.2d) holds for Q
∧Φl is a fixed-point of (7.4)

)
⇒ R−1 ∈ SY (Q̂lH,Q)

- (5.6a) always holds for R−1, as we can pick x̂ ∈ X̂ lH
0 and obtain from (7.9b) that

there exists x ∈ X0 s.t. x̂ = φl(x).

- Pick x̂, x̂′, u, y, x s.t. the left side of (A.16) holds and let Z :=
(
φl
)−1

(x̂) and

Z ′ :=
(
φl
)−1

(x̂′).
- Then (7.9c) implies the existence of x̃ ∈ Z and x̃′ ∈ Z ′ s.t. (x̃, u, y, x̃′) ∈ δ, hence
Z ∩ T−1

δ (Z ′) 6= ∅.
- As Φl is a fixed-point of (7.4), we therefore know that Z ⊆ T−1

δ (Z ′), hence there
exists u′, y′ and x′ ∈ Z ′ s.t. (x, u, y′, x′) ∈ δ (with x from the left side of (A.16)).
- However, the right side of (A.16) only holds if we can choose y′ = y, what follows
from (3.2d) since Q has separable dynamics. �

147

A. Appendix Part I

A.2.3. Proof of Theorem 7.8

(i) Show R ∈ SY (Q̂l+1H, Q̂lH):

- Show (5.6a) holds for R: Pick x̂l+1 ∈ X̂ l+1H
0 and Zl+1 =

(
φl+1

)−1
(x̂l+1) and observe

from (7.9b) that there exists x ∈ X0 s.t. x ∈ Zl+1. Using (7.6) there exists Zl ∈ Φl

s.t. Zl ⊇ Zl+1, hence x ∈ Zl. Now choosing x̂l as the equivalence class of Zl (i.e.

Zl =
(
φl
)−1

(x̂l)), yields x̂l = φl(x), giving x̂l ∈ X̂ lH
0 and (x̂l+1, x̂l) ∈ R.

- Show (5.6b) holds for R:

– Pick (x̂l+1, x̂l) ∈ R, Zl+1 =
(
φl+1

)−1
(x̂l+1) and Zl =

(
φl
)−1

(x̂l), , i.e., Zl+1 ⊆ Zl. Fur-

thermore, pick u, y, x̂′l+1, x̂
′
l s.t. (x̂l+1, u, y, x̂

′
l+1) ∈ δ̂l+1H and Z ′l+1 =

(
φl+1

)−1
(x̂′l+1) and

Z ′l =
(
φl
)−1

(x̂′l) s.t. Z ′l+1 ⊆ Z ′l , implying that (x̂′l+1, x̂
′
l) ∈ R.

– Recall from (7.3) and (7.9c) that

(x̂l+1, u, y, x̂
′
l+1) ∈ δ̂l+1H ⇔ ∃x, x′ ∈ X .

 x̂l+1 = φl+1(x)

∧x̂′l+1 = φl+1(x′)

∧(x, u, y, x′) ∈ δ


– As Zl+1 ⊆ Zl and Z ′l+1 ⊆ Z ′l we obviously have x̂l = φl(x) and x̂′l = φl(x′), implying

(x̂l, u, y, x̂
′
l) ∈ δ̂lH, what proves the statement.

(ii) Show
(
R−1∈SU×Y (Q̂lH, Q̂l+1H)⇔ Φl fixed-point of (7.4)

)
:

• We first prove that (5.6b) holds for R−1 iff Φl is a fixed-point of (7.4).
– Observe that (5.6b) holds for R−1 and V = U × Y iff

∀ x̂l+1, x̂l, x̂
′
l, u, y .((

φl+1
)−1

(x̂l+1) ⊆
(
φl
)−1

(x̂l)

∧(x̂l, u, y, x̂
′
l)∈δ̂lH

)
⇒ ∃x̂′l+1 .

((
φl+1

)−1
(x̂′l+1) ⊆

(
φl
)−1

(x̂′l)

∧(x̂l+1, u, y, x̂
′
l+1) ∈ δ̂l+1H

) (A.17)

– “⇐”: as Φl is a fixed-point of (7.4) we know that

∀Zl ∈ Φl, Zl+1 ∈ Φl+1 . (Zl+1 ⊆ Zl ⇒ Zl+1 = Zl) (A.18)

Hence, whenever the left side in (A.17) holds, we know that
(
φl+1

)−1
(x̂l+1) =

(
φl
)−1

(x̂l) and

we have to pick x̂′l+1 s.t.
(
φl+1

)−1
(x̂′l+1) =

(
φl
)−1

(x̂′l) and obtain that the right side of (A.17)
trivially holds from (7.9c).

– “⇒”: Fix x̂l, x̂
′
l, u, y and define Zl =

(
φl
)−1

(x̂l) and Z ′l =
(
φl
)−1

(x̂′l). With this, (A.17)
implies that

∀Zl+1 ⊆ Zl .
(
Zl ∩ T−1

δ (Z ′l) 6= ∅ ⇒ Zl+1 ⊆ T−1
δ (Z ′l)

)
(A.19)

148

A.3. Proofs for Chapter 8

as T−1
δ (Z ′l+1) ⊆ T−1

δ (Z ′l) with Z ′l+1 =
(
φl+1

)−1
(x̂′l+1).

– Now observe that from (7.6) and the fact that Φl and Φl+1 are partitions follows
Zl =

⋃
Zl+1⊆Zl Zl+1. Hence, (A.19) implies

Zl ∩ T−1
δ (Z ′l) 6= ∅ ⇒ Zl ⊆ T−1

δ (Z ′l),

i.e., Φl is a fixed point of (7.4).
• Finally, we show that (5.6b) holds for R−1 if Φl is a fixed-point of (7.4):
– Pick x̂l ∈ X̂ lH

0 and observe from (7.9b) that there exists x ∈ X0 s.t. x̂l = φl(x).

– Now pick any x̂l+1 s.t.
(
φl+1

)−1
(x̂l+1) ⊆

(
φl
)−1

(x̂l).
– As Φl is a fixed-point of (7.4) we know that (A.18) holds, hence(
φl
)−1

(x̂l) =
(
φl+1

)−1
(x̂l+1) and therefore x̂l+1 = φl+1(x), implying x̂l+1 ∈ X̂ l+1H

0 . �

A.3. Proofs for Chapter 8

In this section we provide detailed proofs for the claims made in Chapter 8.

A.3.1. Proof of Proposition 8.1

We prove this statement by induction.
• l = 1: Recall that I1

1 = [0, 0]. Therefore (2.20b), (6.5) and V = Y implies

EI
1
1 (x)

=

{
y ∈ (Y ∪ {�})

∣∣∣∣∣∃(µ, γ, ξ)∈�Bf (Q), k∈N0 .

(
ξ(k) = x

∧y = γ|[k,k]

)
.

}

=

y ∈ Y
∣∣∣∣∣∣∣∃(µ, γ, ξ)∈�Bf (Q), k ∈ N0 .

 ξ(k) = x

∧γ(k) = y

∧(ξ(k), µ(k), γ(k), ξ(k + 1)∈δ)




=
{
y ∈ Y

∣∣∃u ∈ U, x′ ∈ X . (x, u, y, x′) ∈ δ
}

= Hδ(x) (A.20)

where the second last line holds as Q is reachable and live, as this implies that all
transitions in δ are part of an infinite derivation. The rest follows from (7.4a).
• (l − 1)→ l: Given that

Φl−1 =

{(
EI

l−1
l−1

)−1
(Υ)

∣∣∣∣Υ ∈ 2(Y)l−1
}

(A.21)

149

A. Appendix Part I

holds with I l−1
l−1 = [0, l − 2], we show (8.2).

– First observe that{(
EI

l
l

)−1
(Υ)

∣∣∣∣Υ ∈ 2(Y)l
}

=
{{

x ∈ X
∣∣∣Υ = EI

l
l (x)

}∣∣∣Υ ∈ 2(Y)l
}

=
{
Z∈2X

∣∣∣∀x, x′∈Z . EI
l
l (x) = EI

l
l (x′)

}
(A.22)

We therefore have to show that the right side of (A.22) and the right side of (7.5b) in
Lemma 7.2 coincide for a fixed Z ∈ 2X .
– Using (6.5) and V = Y we can rewrite EI

l
l for all ζ ∈ (Y)l as follows.

ζ ∈ E[0,l−1](x)

⇔ ∃(µ, γ, ξ)∈Bf (Q), k∈N0 .

(
ξ(k) = x

∧ζ = γ|[k,k+l−1]

)

⇔ ∃(µ, γ, ξ)∈Bf (Q), k∈N0 .

 ξ(k) = x

∧(ξ(k), µ(k), ζ(0), ξ(k + 1)) ∈ δ
∧ζ|[1,l−1] = γ|[k+1,k+l−1]



⇔ ∃(µ, γ, ξ)∈Bf (Q), k∈N0 .

 ξ(k) = x

∧(ξ(k), µ(k), ζ(0), ξ(k + 1)) ∈ δ
∧ζ|[1,l−1] ∈ E[0,l−2](ξ(k + 1))


⇔ ∃x̃ ∈ X,u ∈ U .

(
(x, u, ζ(0), x̃) ∈ δ
∧ζ|[1,l−1] ∈ E[0,l−2](x̃)

)

where the last line follows from Q being reachable and live.
– Using this equivalence we can rewrite the right side of (A.22) for fixed x, x′ ∈ Z as

E[0,l−1](x) = E[0,l−1](x′)

⇔ ∀ζ ∈ (Y)l .
(
ζ ∈ E[0,l−1](x)⇒ ζ ∈ E[0,l−1](x′)

)

⇔ ∀ζ ∈ (Y)l .

∃x̃ ∈ X,u ∈ U .

(
(x, u, ζ(0), x̃) ∈ δ
∧ζ|[1,l] ∈ E[0,l−2](x̃)

)
⇒

∃x̃′ ∈ X,u′ ∈ U .

(
(x′, u′, ζ(0), x̃′) ∈ δ
∧ζ|[1,l] ∈ E[0,l−2](x̃′)

)

150

A.3. Proofs for Chapter 8

⇔ ∀y ∈ Y,Υ ∈ 2(Y)l−1

.

∃x̃ ∈ X,u ∈ U .

(
(x, u, y, x̃) ∈ δ
∧Υ = E[0,l−2](x̃)

)
⇒

∃x̃′ ∈ X,u′ ∈ U .

(
(x′, u′, y, x̃′) ∈ δ
∧Υ = E[0,l−2](x̃′)

)

⇔ ∀y ∈ Y,Υ ∈ 2(Y)l−1

.
∃x̃ ∈

(
E[0,l−2]

)−1
(Υ), u ∈ U . (x, u, y, x̃) ∈ δ ⇒

∃x̃′ ∈
(

E[0,l−2]
)−1

(Υ), u′ ∈ U . (x′, u′, y, x̃′) ∈ δ

– Now it follows from (8.1a) (in particular (3.2d)) that

E[0,l−1](x) = E[0,l−1](x′)

⇔

(
Hδ(x) = Hδ(x

′)

∧∀Z l−1 ∈ Φl−1 .
(
{x} ∩ T−1

δ (Z l−1) 6= ∅ ⇒ {x′} ∩ T−1
δ (Z l−1) 6= ∅

))
– Substituting the previous statement into the right side of (A.22) yields

∀x, x′ ∈ Z . E[0,l−1](x) = E[0,l−1](x′)

⇔

(
∀x, x′ ∈ Z . Hδ(x) = Hδ(x

′)

∧∀Z ′ ∈ Φl−1 .
((
Z ∩ T−1

δ (Z ′) 6= ∅
)
⇒
(
Z ⊆ T−1

δ (Z ′)
)))

⇔

(
∀x, x′ ∈ Z . Hδ(x) = Hδ(x

′)

∧Z ∈ Φl

)
where the last line follows from applying (7.5b).
– Now it follows from (7.5a) in Lemma 7.2 that Z ∈ Φl implies ∀x, x′ ∈ Z . Hδ(x) =
Hδ(x

′). We therefore obtain that

Z ∈
{(

E[0,l−1]
)−1

(Υ)

∣∣∣∣Υ ∈ 2(Y)l
}
⇔ Z ∈ Φl

what proves the statement. �

A.3.2. Proof of Theorem 8.3

To simplify the subsequent proof of Theorem 8.3 we first derive two lemmas which are
a direct consequence of Proposition 8.1 which was proven in the previous section.

Lemma A.4. Given (8.1) it holds that

∀Υ ∈ 2(Y)l , r < l .
(

EI
l
l

)−1
(Υ) ⊆

(
EI

l−r
l−r
)−1

(Υ|[0,l−r−1]). (A.23)

151

A. Appendix Part I

Proof. - Pick x ∈
(

EI
l
l

)−1
(Υ). Using (6.5) this implies that for all ζ ∈ Υ there exists

(ν, ξ) ∈ BSV , k ∈ N0 s.t. x = ξ(k) and ζ = ν|[k,k+l−1].
- Now observe, that for every choice of ζ, it holds that ζ|[0,l−r−1] ∈ Υ|[0,l−r−1]. Using the

same choice of signals (ν, ξ) and k this immediately implies that x ∈
(

EI
l−r
l−r
)−1

(Υ|[0,l−r−1]),

what proves the statement.

Lemma A.5. Given (8.1) and Q̂lH as in Definition 7.5, it holds that

∀x̂, x̂′, u, y . (x̂, u, y, x̂′) ∈ δ̂lH ⇒

(
x̂′|[0,l−2] ⊆ x̂|[1,l−1]

∧y ∈ x̂|[0,0]

)
. (A.24)

Proof. - Pick x̂, x̂′, u, y s.t. (x̂, u, y, x̂′) ∈ δ̂lH and define Z =:
(

EI
l
l

)−1
(x̂) and Z ′ =:(

EI
l
l

)−1
(x̂′).

- Using (7.9c), this implies that there exists x ∈ Z s.t. y ∈ Hδ(x). Furthermore, using

(A.23) we know that x ∈
(

EI
1
1

)−1
(x̂|[0,0]). With this (A.20) implies y ∈ x̂|[0,0].

- Now let Z̃ ′ =
(

EI
l−1
l−1

)−1
(x̂′|[0,l−2]) and recall from (A.23) that Z ′ ⊆ Z̃ ′ implying

T−1
δ (Z ′) ⊆ T−1

δ (Z̃ ′).

- Using (7.9c) and (7.3) we know that (x̂, u, y, x̂′) ∈ δ̂lH implies Z ∩T−1
δ (Z ′) 6= ∅. Hence,

Z ∩ T−1
δ (Z̃ ′) 6= ∅ and therefore (using (7.5b) in Lemma 7.2) Z ⊆ T−1

δ (Z̃ ′).
- This implies that

∀x ∈ Z . ∃x′ ∈ Tδ(x) . x̂′|[0,l−2] = E[0,l−2](x′) (A.25)

- Now recall from (6.5) that

x̂|[1,l−1] =
⋃

x∈Tδ̆(Z)

E[0,l−2](x)

implying x̂′|[0,l−2] ⊆ x̂|[1,l−1].

Proof of Theorem 8.3

- Pick γ ∈ πY (Bf (Q̂lH)).

- Using (2.20b) we know that there exist (µ, ξ̂) s.t. ξ̂(0) ∈ X̂ lH
0 and

∀k ∈ N0 . (ξ̂(k), µ(k), γ(k), ξ̂(k + 1)) ∈ δ̂lH.

152

A.3. Proofs for Chapter 8

- Using Lemma A.5 we know that for all k ∈ N0 it holds that

ξ̂(k + 1)|[0,l−2] ⊆ ξ̂(k)|[1,l−1] and γ(k) ∈ ξ̂(k)|[0,0].

Applying these equations iteratively yields γ|[k,k+l−1] ∈ ξ̂(k).
- Furthermore, we can use (7.9c) and (2.20b) to know that

∃(γ′, ξ′)∈BSV , k′ .

 γ′(k′)=γ(k)

∧ξ̂(k)=EI
l
l (ξ′(k′))

∧ξ̂(k + 1)=EI
l
l (ξ′(k′ + 1))

 ,

- Using these signals, γ|[k,k+l−1] ∈ ξ̂(k) implies that

∃(γ′′, ξ′′)∈BSV , k′′ .

(
γ′′|[k′′,k′′+l−1] = γ|[k,k+l−1]

∧ξ′′(k′′) = ξ′(k′)

)
and

∃(γ′′′, ξ′′′)∈BSV , k′′′ .

(
γ′′′|[k′′′,k′′′+l−1] = γ|[k+1,k+l]

∧ξ′′′(k′′′) = ξ′(k′ + 1)

)
Using (2.25) we now obtain

γ̃ = γ′′ ∧k′′k′ γ′ ∧k
′+1
k′′′ γ′′′ ∈ πY (Bf (Q)) = BV (A.26)

where γ|[k,k+l] = γ̃|[k′,k′+l] and therefore γ|[k,k+l] ∈ Dl+1.

- Now observe from (7.9b) and (6.5) that ξ̂(0) ∈ X̂ lH
0 implies ξ̂(0) ⊆ πY (Bf (Q))|[0,l−1]

and therefore γ|[0,l−1] ∈ BV |[0,l−1].

- Combining that ∀k ∈ N0 . γ|[k,k+l] ∈ Dl+1 and γ|[0,l−1] ∈ BV |[0,l−1] we obtain γ ∈ B̂l↑Y
(from (6.2)). �

A.3.3. Proof of Theorem 8.5

We prove both statements separately.

(i) Show R ∈ SY (Q̂Ill , Q̂lH)⇔ Q̂lH is domino consistent.

• We first show that (5.6a) always holds for R:

– Pick ζ ∈ X̂I
l
l

0 . Then it follows from (6.7b) that there exists x ∈ X0 s.t. ζ ∈ EI
l
l (x).

– Now Pick Υ = EI
l
l (x) and observe that Υ ∈ X̂ lH

0 , which proves the statement.

• Now we need to show that (5.6b) holds for R and V = Y iff Q̂lH is domino consistent.
We show both directions separately:

153

A. Appendix Part I

“⇒”
– Observe that (5.6b) holds for R and U × Y iff

∀ ζ, ζ ′,Υ, u, y .(
ζ ∈ Υ

∧(ζ, u, y, ζ ′)∈δ̂Ill

)
⇒ ∃Υ′, u′ .

(
ζ ′ ∈ Υ′

∧(Υ, u′, y,Υ′)∈δ̂lH

) (A.27)

– Now pick ζ̃ ∈ Dl+1 and Υ ∈ 2(Y)l s.t. ζ = ζ̃|[0,l−1] ∈ Υ and pick ζ ′ = ζ̃|[1,l] as well as

y = ζ̃(0). Then it follows from (A.1b) in Lemma A.1 with m = l that there exits u s.t.

(ζ, u, y, ζ ′)∈δ̂Ill , hence the left side of (A.27) holds.

– Now we know from the right side of (A.27) and (7.9c) that there exists x∈
(

EI
l
l

)−1
(Υ),

u′ and x′ s.t. (x, u, y, x′)∈δ and ζ ′ ∈ EI
l
l (x′).

– Now it follows immediately from (6.5) that y · ζ ′ = ζ̃ ∈ E[0,l](x), what proves the
statement.
“⇐”
– Pick (ζ,Υ) ∈ R, i.e., ζ ∈ Υ and u, y, ζ ′ s.t. (ζ, u, y, ζ ′) ∈ δ̂Ill .
– Now it follows from Lemma A.1 that y · ζ ′ ∈ Dl+1.

– Using (8.4) therefore implies the existence of x∈
(

EI
l
l

)−1
(Υ) s.t. y · ζ∈E[0,l](x).

– Using (6.5) this implies that there exists (µ′, γ′, ξ′) ∈ BV and k′ ∈ N0 s.t.

Υ = EI
l
l (ξ′(k′)) and ζ ′ ∈ EI

l
l (ξ′(k′ + 1))

– Now pick Υ′ = EI
l
l (ξ′(k′ + 1)) and observe that ζ ′ ∈ Υ′.

– Moreover, using (7.9c) with x = ξ′(k′), x′ = ξ′(k′ + 1) and u′ = µ′(k′) immediately
implies (Υ, u′, y,Υ′)∈δ̂lH, what proves the statement.

(ii) R−1∈SY (Q̂lH, Q̂Ill)⇔ Q is future unique w.r.t. I ll .
“⇒”
– Let RIll and RO be equivalent to the relations in (6.12) and (7.8) (with m = l),
respectively. Then it follows from Theorem 6.10 and Theorem 7.7 that

RO ∈ SY (Q, Q̂lH), and (A.28a)

RIll ∈ SY (Q, Q̂Ilm)⇔ Q is future unique w.r.t. I ll . (A.28b)

154

A.3. Proofs for Chapter 8

– Now take R as in (8.5) observe that

RO ◦ R−1 =

{
(x, x̂)∈X×X̂Ill

∣∣∣∣∣∃Υ∈X̂ lH .

(
(x,Υ)∈RO

∧(Υ, x̂)∈R−1

)}

=

{
(x, x̂)∈X×X̂Ill

∣∣∣∣∣∃Υ∈X̂ lH .

(
Υ = EI

l
l (x)

∧x̂ ∈ Υ

)}
=
{

(x, x̂)∈X×X̂Ill
∣∣∣x̂∈EI

l
l (x)

}
= RIll

– Now combining (A.28) with(
RO ∈ SY (Q, Q̂lH)

∧R−1 ∈ SY (Q̂lH, Q̂Ill)

)
⇒ RO ◦ R−1 ∈ SY (Q, Q̂Ill)

gives

R−1 ∈ SY (Q̂lH, Q̂Ill)⇒ Q is future unique w.r.t. I ll .

“⇐”
– We know that Q is future unique w.r.t. I ll . Using (6.6), this implies that that for all
x ∈ X holds

EI
l
l (x) 6= ∅ ⇒ |EIll (x)| = 1. (A.29)

Using (7.9a) this immediately implies |Υ| = 1 for all Υ ∈ X̂ lH. Therefore (8.5) becomes

R =
{

(ζ,Υ) ∈ X̂Ill × X̂ lH
∣∣∣Υ = {ζ}

}
. (A.30)

– Show that (5.6a) holds for R−1:

∗ Pick Υ ∈ X̂ lH
0 . Then it follows from (7.9b) that there exists x ∈ X0 s.t. Υ = EI

l
l (x).

∗ Now pick ζ ∈ Υ and observe that ζ ∈ EI
l
l (x), i.e., ζ ∈ X̂I

l
l

0 (from (6.7b)).
– Show that (5.6b) holds for R−1:
∗ Pick (Υ, ζ) ∈ R−1, i.e., Υ = {ζ} and u, y,Υ′, ζ ′ s.t. (Υ, u, y,Υ′) ∈ δ̂lH and Υ′ = {ζ ′}.
∗ Using (A.30) this immediately implies that (Υ′, ζ ′) ∈ R−1.

∗ Now (7.9c) implies the existence of x, x′ s.t. {ζ} = EI
l
l (x), {ζ ′} = EI

l
l (x′) and

(x, u, y, x′) ∈ δ. Using (6.7c) this immediately implies (ζ, u, y, ζ ′) ∈ δ̂I
l
l , what proves

the statement. �

155

A. Appendix Part I

A.3.4. Proof of Proposition 8.8

First observe that (i) follows from Corollary 8.6, (ii) follows from (A.30) in the proof of
Theorem 8.5 and (iv) follows from (iii) using Theorem 6.10 and Theorem 7.7. Hence, we
only prove (iii).
Let R as in (8.8) and observe that

Rl↑ ◦ R =

{
(x,Υ) ∈ X × X̂ lH

∣∣∣∣∣∃ζ ∈ X̂Ill .
(

(x, ζ) ∈ Rl↑

∧(ζ,Υ) ∈ R

)}

=

{
(x,Υ) ∈ X × X̂ lH

∣∣∣∣∣∃ζ ∈ X̂Ill .
(

ζ ∈ EI
l
l (x)

∧Υ = {ζ}

)}
=
{

(x,Υ) ∈ X × X̂ lH
∣∣∣Υ = EI

l
l (x)

}
= RlH

where the second last equality results from (A.29) as Q is future unique w.r.t. I ll . Using

the same chain of equalities equivalently yields R−1 ◦
(
Rl↑
)−1

=
(
RlH

)−1
. Similarily, we

obtain

RlH ◦ R−1 =

{
(x, ζ) ∈ X × X̂Ill

∣∣∣∣∣∃Υ ∈ X̂ lH .

(
(x,Υ) ∈ RlH

∧(Υ, ζ) ∈ R−1

)}

=

{
(x, ζ) ∈ X × X̂Ill

∣∣∣∣∣∃Υ ∈ X̂ lH .

(
Υ = EI

l
l (x)

∧Υ = {ζ}

)}
=
{

(x, ζ) ∈ X × X̂Ill
∣∣∣ζ ∈ EI

l
l (x)

}
= Rl↑

Using the same chain of equalities equivalently yields R ◦
(
RlH

)−1
=
(
Rl↑
)−1

.

With this observations (iii) follows immediately from the transitivity of simulation rela-
tions proven in Theorem 5.3.

156

B. Appendix Part II

B.1. Proofs for Chapter 11

In this section we provide detailed proofs for the claims made in Chapter 11.

B.1.1. Proof of Lemma 11.14

To simplify notation, we collect all states q, reachable by a finite sequence of λ-transitions
from a configuration (q̃, w, s̃) with q̃ ∈ F in the set

Qrlt(M,w) :=

q ∈ Q
∣∣∣∣∣∣∣∣∣∣
∃ f ∈ DI(M), n ∈ N, q̃ ∈ F .(

f(n) = (ẽ, (q̃, w, s̃))

∧∃n′ > n . f(n′) = (e, (q, w, s))

)
 . (B.1)

(i) Lum(MSp) = Lum(M): Let q ∈ Q, w ∈ Σ∗, γ ∈ Γ, s ∈ Γ∗ and (q, w, γ · s) be
an arbitrary configuration reachable by the initial derivation f ∈ DI(M), implying w ∈
Lum(M). Observe that the state q is mapped to the states {〈q〉r, 〈q, γ〉r} if q /∈ Qrlt(M,w)
and to {〈q〉s, 〈q, γ〉s} if q ∈ Qrlt(M,w)1. Using this, we can show that the single-step
relation

(e, (q, w, γ · s)) `M ((q, σ, γ, s′, q′), (q′, w · σ, s′ · s)) (B.2)

is mimicked by a sequence of two single-step relations in MSp in four different ways
(a) (q /∈ Qrlt(M,w) ∧ (σ 6= λ ∨ q /∈ F)):

(ĕ, (〈q〉r, w, γ · s)) `MSp
((〈q〉r, λ, γ, γ, 〈q, γ〉r), (〈q, γ〉r, w, γ · s))

`MSp
((〈q, γ〉r, σ, γ, s′, 〈q′〉r), (〈q′〉r, w · σ, s′ · s))

(b) (q ∈ F ∧ σ = λ):

(ĕ, (〈q〉r, w, γ · s)) `MSp
((〈q〉r, λ, γ, γ, 〈q, γ〉r), (〈q, γ〉r, w, γ · s))

`MSp
((〈q, γ〉r, σ, γ, s′, 〈q′〉s), (〈q′〉s, w · σ, s′ · s))

1Observe that reaching q with two different initial derivations f, f ′ ∈ DI(M) might result in different
mappings as the condition in (B.1) might only hold for one out of the two.

157

B. Appendix Part II

(c) (q ∈ Qrlt(M,w) ∧ σ = λ):

(ĕ, (〈q〉s, w, γ · s)) `MSp
((〈q〉s, λ, γ, γ, 〈q, γ〉s), (〈q, γ〉s, w, γ · s))

`MSp
((〈q, γ〉s, σ, γ, s′, 〈q′〉s), (〈q′〉s, w · σ, s′ · s))

(d) (q ∈ Qrlt(M,w) ∧ σ 6= λ):

(ĕ, (〈q〉s, w, γ · s)) `MSp
((〈q〉s, λ, γ, γ, 〈q, γ〉s), (〈q, γ〉s, w, γ · s))

`MSp
((〈q, γ〉s, σ, γ, s′, 〈q′〉r), (〈q′〉r, w · σ, s′ · s))

Therefore, using induction, we can always construct a derivation f ′ ∈ DI(MSp), n
′ ∈

N s.t. f ′(n′) = (e′, (q′, w, γ · s)) giving w ∈ Lum(MSp) and therefore, Lum(MSp) ⊆
Lum(M). Using the fact that the relations in case (a)-(d) only occur, iff there exists
a matching relation (B.2) in M and derivations in MSp can only be concatenated iff
this is possible in M , the construction of single-step relations in M matching single-step
relations in MSp gives the same cases as before, implying Lum(M) ⊆ Lum(MSp).
(ii) Show Lm(MSp) = Lm(M): Let w ∈ Lm(M) and f ∈ DI(M), n ∈ N, q ∈ F s.t.
f(n) = (e, (q, w, γ · s)) is the starting configuration in (B.2). If σ 6= λ in (B.2), we know
from part (i) and cases (a) and (d) that there exists a derivation f ′ ∈ DI(MSp), n

′ ∈ N
s.t. f ′(n′) = (ĕ, (〈q, γ〉r, w, γ · s)) with 〈q, γ〉r ∈ FSp (as q ∈ F and 〈q, γ〉r /∈ Qλ(MSp)),
giving w ∈ Lm(MSp). Now let σ = λ. Since M /∈ SBA, there exists σ′ 6= λ and a finite
chain of singe-step relations, s.t.

(ĕ, (q, w, γ · s)) `∗M (ẽ, (q̃, w, γ̃ · s̃)) `M ((q̃, σ′, γ̃, s̃′, q̃′), (q̃′, w · σ′, s̃′ · s̃)) (B.3a)

or (ĕ, (q, w, γ · s)) `∗M (ê, (q̂, w, γ̂ · ŝ)) 6`M . (B.3b)

Then we can combine case (b),(c) and (d) from part (i) to mimic (B.3a) by

(ĕ, (〈q〉, w, γ · s)) `∗MSp
(h̃, (〈q̃, γ̃〉s, w, γ̃ · s̃))

`MSp
((〈q̃, γ̃〉s, σ′, γ̃, s̃′, 〈q̃′〉r), (〈q̃′〉r, wσ′, s̃′ · s̃))

and (B.3b) by the finite chain (⊥, (〈q〉, w, γ · s)) `∗MSp
(ĥ, (〈q̂, γ̂〉s, w, γ̂ · ŝ)) 6`MSp

.
Now observe that all states in As(Q,Γ)∩Qλ(QSp) can only have outgoing λ-transitions,
due to the determinism of Q that is preserved in QSp (from (iii)). Therefore, we have
〈q̃, γ̃〉s, 〈q̂, γ̂〉s 6∈ Qλ(MSp), hence 〈q̃, γ̃〉s, 〈q̂, γ̂〉s ∈ FSp by definition. This implies that
there exists f ′ ∈ DI(MSp) and n′′ ∈ N with f ′(n′) = (h, (p, w, r)) s.t. p ∈ FSp, implying
w ∈ Lm(MSp), hence Lm(M) ⊆ Lm(MSp). For the proof of Lm(MSp) ⊆ Lm(M) observe
that if w is accepted by a state 〈q, γ〉r ∈ FSp, it follows from (i) and the construction of
FSp that w is accepted by q ∈ F in M . Now let w be accepted by a state 〈q, γ〉s ∈ FSp.
Then it follows from case (b) in the proof of (i) that there exists p ∈ F accepting w,

158

B.1. Proofs for Chapter 11

since otherwise, 〈q, γ〉s ∈ FSp is not reachable by w, hence w ∈ Lm(M).
Since we only split states, redirect existing transitions and add unique λ-transitions, (iii)
and (v) follow immediately from the construction. Furthermore, observe from cases (a)-
(d) in the proof of statement (i) that every added λ-transition (from main to auxiliary
states) is preceded and followed by a transition from M . Hence (iv) follows from M /∈
SBA.

B.1.2. Proof of Theorem 11.19

Let us define MAc = AC(SPLIT(MP ×MO)) and M ′O = RNCS(MAc).

Observe that the premises imply Lm(MO) ⊆ Lm(MP) and Lum(MO) ⊆ Lm(MO) (from
Definition 10.4, 10.1 and 11.7). Furthermore, recall from Definition 11.7 and Defini-
tion 10.8 that (11.6) is true iff

Lum(M ′O) = Ψ(Lum(MO)) and Lm(M ′O) = Ω(Lm(MO)), (B.4)

which remains to be shown using the following steps:

(A) From Lemma 11.12, 11.14 and 11.17, follows that Lum(MAc) = Lum(MO) and
Lm(MAc) = Lm(MO).

(B) Pick w ∈ Lum(MO) with ¬ContS(Lum(MO), LPum, w). Using Lemma 11.15, we can
fix fw ∈ Dmax,MAc

(w) and its final state 〈(p, q), γ〉 ∈
((QAc ∩ A(Q×,Γ)) \Qλ(MAc)). Using Definition 11.11 this implies that MP only
accepts w in p. Now Definition 10.4, (11.2b) and (A) imply that there exists
µ ∈ Σuc s.t. (p, µ,�,�, p′) ∈ δP and ∀s, r . (〈(p, q), γ〉, µ, γ, s, r) /∈ δAc, giving
that 〈(p, q), γ〉 ∈ NCS.

(C) It follows from the construction in Definition 11.13 that there always exists a non-
maximal derivation generating w and ending in the main state 〈(p, q)〉 ∈ Qλ(MAc)
which is neither marking nor considered in NCS.

(D) Definition 11.18 implies that w ∈ Lum(M ′O) or w ∈ Lm(M ′O) iff there exists a
derivation f ′ ∈ D(MAc) with final configuration (r, w, s) s.t. ∀n ∈ dom(f ′) holds
that π2(f ′(n)) /∈ NCS. Now observe that for w ∈ Lm(M ′O) f ′ needs to be maximal
while for w ∈ Lum(M ′O) there always exists a non-maximal derivation (from (C)).
Now MAc ∈ DPDA implies that for all prefixes w′ @ w (resp. w′ v w) holds that
their maximal derivations are a prefix of f ′ (where w′ v w only holds if f ′ is
maximal). Therefore, using (B) implies

w ∈ Lum(M ′O)⇒
(
∀w′ @ w . ContS(Lum(MO), LPum, w

′)
)

and (B.5a)

w ∈ Lm(M ′O)⇒
(
∀w′ v w . ContS(Lum(MO), LPum, w

′)
)
. (B.5b)

(E) Now assume ¬ContS(Lum(MO), LPum, w) and all w′ @ w are controllable. From
(B) follows that 〈(p, q), γ〉 ∈ NCS is removed. This has two consequences:

159

B. Appendix Part II

(a) we still have w ∈ Lum(M ′O) from (C), i.e.,(
∀w′ @ w . ContS(Lum(MO), LPum, w

′)
)
⇒ w ∈ Lum(M ′O), (B.6a)

and
(b) if w ∈ Lm(MO) we have w /∈ Lm(M ′O) from (B) and Lemma 11.15, i.e., w is

only contained in Lm(MO) if ContS(Lum(MO), LPum, w) giving(
∀w′ v w . ContS(Lum(MO), LPum, w

′)
)
⇒ w ∈ Lm(M ′O). (B.6b)

(F) Finally, combining (B.5) and (B.6) obviously yields (B.4), which proves the state-
ment.

B.2. Counterexample

In this appendix, the algorithm presented in [20, p.827] and [19, p.64] is applied to an
example. This example appeared previously in [55] and [56]. It will be shown that this
represents a counterexample to [20, Theorem 3.5] and [19, Theorem 5.2.5] since the final
DPDA does not realize the supremal controllable sublanguage of the given prefix closed
deterministic context free specification language (which is required to be a subset of
the given prefix closed regular plant language). Therefore we claim that the problem of
automatically calculating a supremal controllable sublanguage of a DCFL was not solved
by Griffin in [19, 20].
The algorithm is initialized with a DFA G and a DPDA M realizing the plant and the
specification, respectively, s.t. Lm(G) = Lum(G), Lm(M) = Lum(M) and Lm(M) ⊆
Lm(G). Observe that the DFA G and the DPDA M depicted in Fig. B.1 satisfy these
requirements since their languages are given by

Lm(G) = Lum(G) = {an, anb, anbu|n ∈ N} and

Lm(M) = Lum(M) =

 an, amb, akbu |

n,m, k ∈ N,m > 0, k > 1

 ,

where Σc = {a, b} and Σuc = {u}. Using these automata, the construction follows seven
steps.
1. Construct M ′, depicted in Fig. B.2, by making M scan its entire input, using the

algorithm in [24, Lemma10.3.].
2. Construct a DPDA M ′′ that accepts the complement of Lm(M) using the algorithm

in [24, Thm.10.1]. For the considered example M ′′ is identical to M ′ in Fig. B.2 but
with exchanged non-marking and marking states, i.e., F ′′ = {qd}.

3. Construct a DPDA M ′′′ that accepts Lc
m(M)∩Lm(G), i.e., calculate the cross product

of G and M ′′ using the algorithm in [24, Thm.6.5].

160

B.2. Counterexample

p0 p1 p2

a

b u q0 q1 q2

a,�,•�; a,•,••

b,•,λ u,•,•

Figure B.1.: DFA G (left) and DPDA M (right) realizing plant and specification, respectively.

q0 q1 q2 qd

a,�,•�; a,•,••

b,•,λ u,•,•

b,�,�;u,�,�;u,•,•

Ψ

Φ

Φ

Figure B.2.: DPDA M ′, with Ψ = Φ \ u,•,• and Φ = {a,�,�; a,•,•; b,�,�; b,•,•;u,�,�;u,•,•}.

4. Construct M1, depicted in Fig. B.3, as the accessible part of M ′′′, using the algorithm
in [18, Thm.4.1].

5. Construct a predicting machine to observe so called µ-reverse paths using the algo-
rithm in [24, p.240]. For the considered example, the construction simply defines an
additional stack symbol µγ , ∀γ ∈ Γ s.t.

µγ :=
{
q ∈ Q1\F1

∣∣∃q′ ∈ F1, v ∈ Σ∗uc . (⊥, (q, w, γ · s)) `∗M1
(⊥, (q′, w · v, s′))

}
which denotes the set of unmarked states in M1 from which a derivation starting with
stack-top γ, generating a sequence of uncontrollable symbols v ∈ Σ∗uc and reaching a
marking state q′ (i.e., a so called µ-reverse path), exists. For M1, depicted in Fig. B.3,
this gives µ� = {(p1, q1)} and µ• = ∅. The predicting machine Mµ

1 , depicted in
Figure B.4, is then identical to M1 but uses pairs [γ, µγ] as stack.

6. Construct M2, depicted in Fig. B.5, by deleting all transitions

δcp :=

{
(q, σ, γ, γ′ · s, q′) ∈ δM

∣∣∣∣∣
(

(q, σ, γ, [γ′, µγ′] · s, q′) ∈ δMµ
1

∧σ ∈ Σc ∧ q′ ∈ µγ′

)}
in M which produce a stack-top in q′ which enables a µ-reverse path starting in
q′. For M and Mµ

1 , depicted in Fig. B.1 and B.4, respectively, observe that e =

(00) (11) (22) (1d) (2d)

a,�,•�; a,•,••

b,•,λ u,•,• u,�,�

b,�,� u,�,�

Figure B.3.: DPDA M1, with (ij) := (pi, qj)

161

B. Appendix Part II

(00) (11) (22) (1d) (2d)

a,[�,µ�],[•,µ•][�,µ�]
a,[•,µ•],[•,µ•][•,µ•]

b,[•,µ•],λ u,[•,µ•],[•,µ•] u,[�,µ�],[�,µ�]

b,[�,µ�],[�,µ�] u,[�,µ�],[�,µ�]

Figure B.4.: DPDA Mµ
1 with µ� = {(p1, q1)} and µ• = ∅. The set of µ-reverse paths is depicted

in red (dashed) while the set of edges in δcp is depicted in blue (dotted).

q0 q1 q2

a,�,•�; a,•,••

u,•,•

Figure B.5.: DPDA M2

q0

a,�,•�; a,•,••

Figure B.6.: DPDA M3

((p0, q0), b, [•, µ•], λ, (p1, q1)) ∈ δMµ
1

is the only ingoing transition to (p1, q1) (where
the only µ-reverse path starts for stack-top �, since µ� = {(p1, q1)}) and, since
M1 is trim, eventually leads to the stack-top � in (p1, q1). Using the corresponding
transition to e in M , this gives δcp = {(q0, b, •, λ, q1)}. By deleting δcp in M , we obtain
M2, depicted in Fig. B.5.

7. Construct M3, depicted in Fig. B.6, as the accessible part of M2, using the algorithm
in [18, Thm.4.1]. If δcp in step 6 is empty, the algorithm terminates. Otherwise, the
algorithm is restarted with M = M3.

Obviously, M3 does not have further controllability problems. Therefore, the algorithm
would redo steps 1-6 and then return M3.

Now observe that the specification language Lm(M) restricts the plant language
Lm(G) such that u cannot occur after exactly one a. This generates a controllability
problem for the word ab only. Using (10.4) in Section 10.2, the supremal controllable
sublanguage of Lm(M) for this example is given by

K = {w ∈ Lm(M) | ∀w′ v w . w′ 6= ab} = Lm(M) \ {ab} (B.7)

=
{
an, amb, akbu

∣∣∣n,m, k ∈ N,m, k > 1
}

implying that Lm(M3) = {an | n ∈ N} is a strict subset of K which is an obvious
contradiction to [20, Thm.3.5]. Furthermore, K in (B.7) cannot be realized using the
state and transition structure of M and only deleting existing transitions.
The automatic synthesis of a DPDA realizing K for this example is provided as an
example within our pushdown-plug-in for libFAUDES [31].

162

Bibliography

[1] R. Alur and D. Dill. Automata for modeling real-time systems. In Automata,
Languages and Programming, volume 443 of Lecture Notes in Computer Science,
pages 322–335. Springer Berlin Heidelberg, 1990.

[2] R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas. Discrete abstractions of
hybrid systems. Proceedings of the IEEE, 88(7):971 –984, jul. 2000. ISSN 0018-9219.

[3] P. J. Antsaklis, J. A. Stiver, and M. Lemmon. Hybrid system modeling and au-
tonomous control systems. In Hybrid Systems, volume 736 of Lecture Notes in
Computer Science, pages 366–392. Springer Berlin Heidelberg, 1993.

[4] C. Belta and L. C. G. J. M. Habets. Controlling a class of nonlinear systems on
rectangles. IEEE Transactions on Automatic Control, 51(11):1749–1759, Nov 2006.

[5] Y.-L. Chen and F. Lin. Modeling of discrete event systems using finite
state machines with parameters. In Control Applications, 2000. Proceedings
of the 2000 IEEE International Conference on, pages 941–946, 2000. doi:
10.1109/CCA.2000.897591.

[6] Y.-L. Chen and F. Lin. Safety control of discrete event systems using finite state
machines with parameters. In American Control Conference, 2001. Proceedings of
the 2001, volume 2, pages 975–980 vol.2, 2001. doi: 10.1109/ACC.2001.945847.

[7] N. Chomsky. Three models for the description of language. IRE Transactions on
Information Theory, 2(3):113–124, September 1956.

[8] J. M. Davoren and P. Tabuada. On simulations and bisimulations of general flow
systems. In Hybrid Systems: Computation and Control, pages 145–158. Springer,
2007.

[9] J. M. Davoren, V. Coulthard, N. Markey, and T. Moor. Non-deterministic tempo-
ral logics for general flow systems. In Hybrid Systems: Computation and Control,
volume 2993 of Lecture Notes in Computer Science, pages 280–295. Springer Berlin
Heidelberg, 2004. ISBN 978-3-540-21259-1.

163

http://dx.doi.org/10.1109/CCA.2000.897591
http://dx.doi.org/10.1109/CCA.2000.897591
http://dx.doi.org/10.1109/ACC.2001.945847

Bibliography

[10] R. Ehlers, S. Lafortune, S. Tripakis, and M. Vardi. Reactive synthesis vs. super-
visory control: Bridging the gap. Technical Report 162, University of California
at Berkeley, 2013. URL http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/

EECS-2013-162.pdf.

[11] J.-C. Fernandez. An implementation of an efficient algorithm for bisimulation equiv-
alence. Science of Computer Programming, 13(2–3):219 – 236, 1990. ISSN 0167-
6423.

[12] D. Franke, T. Moor, and J. Raisch. Discrete supervisory control of switched linear
systems. at-Automatisierungstechnik Methoden und Anwendungen der Steuerungs-,
Regelungs-und Informationstechnik, 48(9/2000):460, 2000.

[13] A. Girard and G. J. Pappas. Approximation metrics for discrete and continuous
systems. Automatic Control, IEEE Transactions on, 52(5):782 –798, may 2007.

[14] A. Girard, A. A. Julius, and G. J. Pappas. Approximate simulation relations for
hybrid systems. Discrete Event Dynamic Systems, 18(2):163–179, 2008.

[15] A. Girard, G. Pola, and P. Tabuada. Approximately bisimilar symbolic models for
incrementally stable switched systems. IEEE Transactions on Automatic Control,
55(1):116–126, 2010.

[16] A. Giua and F. DiCesare. Blocking and controllability of petri nets in supervisory
control. IEEE Transactions on Automatic Control, 39(4):818–823, 1994.

[17] A. Giua and F. DiCesare. Decidability and closure properties of weak petri net
languages in supervisory control. IEEE Transactions on Automatic Control, 40(5):
906–910, 1995.

[18] C. Griffin. A note on deciding controllability in pushdown systems. IEEE Trans-
actions on Automatic Control, 51(2):334 – 337, feb. 2006.

[19] C. Griffin. Decidability and optimality in pushdown control systems: A new approach
to discrete event control. PhD thesis, The Pensylvania State University, 2007.

[20] C. Griffin. A note on the properties of the supremal controllable sublanguage in
pushdown systems. IEEE Transactions on Automatic Control, 53(3):826 –829, apr.
2008. ISSN 0018-9286.

[21] L. C. G. J. M. Habets, P. J. Collins, and J. H. van Schuppen. Reachability and con-
trol synthesis for piecewise-affine hybrid systems on simplices. IEEE Transactions
on Automatic Control, 51(6):938–948, June 2006.

164

http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-162.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-162.pdf

Bibliography

[22] E. Haghverdi, P. Tabuada, and G. J. Pappas. Bisimulation relations for dynamical,
control, and hybrid systems. Theoretical Computer Science, 342(2-3):229 – 261,
2005.

[23] L. E. Holloway, B. H. Krogh, and A. Giua. A survey of petri net methods for
controlled discrete event systems. Discrete Event Dynamic Systems, 7:151–190,
1997.

[24] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, languages and
computation. Addison-Wesley Publishing company, 1979.

[25] M. Iordache and P. Antsaklis. Supervision based on place invariants: A survey.
Discrete Event Dynamic Systems, 16:451–492, 2006.

[26] A. A. Julius. On interconnection and equivalence of continuous and discrete systems:
a behavioral perspective. PhD thesis, University of Twente, 2005.

[27] A. A. Julius and A. J. van der Schaft. Bisimulation as congruence in the behavioral
setting. Proc. 44th IEEE Conf. on Decision and Control, and the European Control
Conference, pages 814–819, Dec. 12-15 2005.

[28] T. Kailath. Linear systems, volume 1. Prentice-Hall Englewood Cliffs, NJ, 1980.

[29] G. Lafferriere, G. J. Pappas, and S. Sastry. O-minimal hybrid systems. Mathematics
of Control, Signals and Systems, 13(1):1–21, 2000.

[30] E. Le Corronc, A. Girard, and G. Gössler. Mode sequences as symbolic states in
abstractions of incrementally stable switched systems. In 52nd IEEE Conference
on Conference on Decision and Control-2013, 2013.

[31] libFAUDES. Software library for discrete event systems., 2006-2013. URL http:

//www.rt.eei.uni-erlangen.de/FGdes/faudes/.

[32] J. Lunze. Qualitative modelling of linear dynamical systems with quantized state
measurements. Automatica, 30(3):417 – 431, 1994.

[33] T. Masopust. A note on controllability of deterministic context-free systems. Au-
tomatica, 48(8):1934–1937, 2012.

[34] R. Milner. Communication and concurrency. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1989. ISBN 0-13-115007-3.

[35] T. Moor. Approximationsbasierter Entwurf diskreter Steuerungen für gemischtwer-
tige Regelstrecken. In Forschungsberichte aus dem Max-Planck-Institut für Dynamik
komplexer technischer Systeme, volume 2. Shaker Verlag, 1999. Dissertation.

165

http://www.rt.eei.uni-erlangen.de/FGdes/faudes/
http://www.rt.eei.uni-erlangen.de/FGdes/faudes/

Bibliography

[36] T. Moor and J. Raisch. Supervisory control of hybrid systems within a behavioural
framework. Systems and Control Letters, 38:157–166, 1999.

[37] T. Moor and J. Raisch. Abstraction based supervisory controller synthesis for high
order monotone continuous systems. In Modelling, Analysis, and Design of Hybrid
Systems, volume 279 of Lecture Notes in Control and Information Sciences, pages
247–265. Springer Berlin Heidelberg, 2002.

[38] T. Moor, J. Raisch, and S. O’Young. Discrete supervisory control of hybrid systems
based on l-complete approximations. Discrete Event Dynamic Systems, 12(1):83–
107, 2002.

[39] T. Moor, K. Schmidt, and T. Wittmann. Abstraction-based control for not neces-
sarily closed behaviours. In Proceedings of the 18th IFAC World Congress, pages
6988–6993, 2011.

[40] T. Moor, C. Baier, T.-S. Yoo, F. Lin, and S. Lafortune. On the computation of
supremal sublanguages relevant to supervisory control. In Proceedings of the 11th
International Workshop on Diskrete Event Systems, Mexico, October 2012.

[41] G. J. Pappas. Bisimilar linear systems. Automatica, 39:2035–2047, 2003.

[42] L. Paulson, T. Nipkow, and M. Wenzel. Isabelle/HOL, 2011. URL http:

//isabelle.in.tum.de.

[43] C. A. Petri. Kommunikation mit Automaten. PhD thesis, Universität Hamburg,
1962.

[44] G. Pola and A. J. van der Schaft. Equivalence of switching linear systems by
bisimulation. International Jurnal of Control, 79:74–92, 2006.

[45] J. Raisch and S. O’Young. A totally ordered set of discrete abstractions for a given
hybrid or continuous system. In Hybrid Systems IV, volume 1273 of Lecture Notes
in Computer Science, pages 342–360. Springer Berlin Heidelberg, 1997.

[46] J. Raisch and S. O’Young. Discrete approximation and supervisory control of con-
tinuous systems. IEEE Transactions on Automatic Control, 43(4):569–573, Apr
1998.

[47] J. Raisch, T. Moor, N. Bajcinca, S. Geist, and V. Nenchev. Distributed state es-
timation for hybrid and discrete event systems using l-complete approximations.
In Proceedings of the 10th International Workshop on Discrete Event Systems, vol-
ume 10, pages 129–134, 2010.

166

http://isabelle.in.tum.de
http://isabelle.in.tum.de

Bibliography

[48] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event
processes. In Analysis and Optimization of Systems, volume 63 of Lecture Notes
in Control and Information Sciences, pages 475–498. Springer Berlin Heidelberg,
1984. ISBN 978-3-540-13552-4.

[49] P. J. Ramadge and W. M. Wonham. The control of discrete event systems. Pro-
ceedings of the IEEE, 77:81–98, 1989.

[50] G. Reißig. Computing abstractions of nonlinear systems. IEEE Transactions on
Automatic Control, 56(11):2583–2598, 2011.

[51] G. Reißig and M. Rungger. Feedback refinement relations for symbolic controller
synthesis. 53rd IEEE Conference on Decision and Control, Los Angeles, 2014.

[52] A.-K. Schmuck and J. Raisch. Constructing (bi)similar finite state abstractions
using asynchronous l-complete approximations. In Proc. 53rd Annual Conference
on Decision and Control, 2014.

[53] A.-K. Schmuck and J. Raisch. Asynchronous l-complete approximations. Systems
& Control Letters, 73(0):67 – 75, 2014.

[54] A.-K. Schmuck and J. Raisch. Simulation and bisimulation over multiple time
scales in a behavioral setting. In Proc. 22nd Mediterranean Conf. on Control and
Automation, Palermo, Italy, 2014.

[55] A.-K. Schmuck, S. Schneider, J. Raisch, and U. Nestmann. Extending supervisory
controller synthesis to deterministic pushdown automata—enforcing controllability
least restrictively. In Proceedings of the 12th IFAC - IEEE International Workshop
on Discrete Event Systems, pages 286–293, 2014.

[56] A.-K. Schmuck, S. Schneider, J. Raisch, and U. Nestmann. Supervisory control
synthesis for deterministic context free specification languages – enforcing control-
lability least restrictively. Discrete Event Dynamic Systems, 2015. (to appear).

[57] A.-K. Schmuck, P. Tabuada, and J. Raisch. Comparing asynchronous l-complete
approximations and quotient based abstractions. Proc. 54rd Annual Conference on
Decision and Control, 2015. (to appear).

[58] A.-K. Schmuck, P. Tabuada, and J. Raisch. Comparing asynchronous l-
complete approximations and quotient based abstractions. IEEE Transac-
tions on Automatic Control, 2015. (under review, preprint available at
http://arxiv.org/abs/1503.07139).

[59] S. Schneider. Behavioral optimizations for deterministic pushdown automata. In
(submitted for publication), 2014.

167

Bibliography

[60] S. Schneider and U. Nestmann. Enforcing operational properties including blockfree-
ness for deterministic pushdown automata. 2014. http://arxiv.org/abs/1403.5081.

[61] S. Schneider, A.-K. Schmuck, J. Raisch, and U. Nestmann. Reducing an opera-
tional supervisory control problem by decomposition for deterministic pushdown
automata. In Proceedings of the 12th IFAC - IEEE International Workshop on
Discrete Event Systems, pages 214–221, 2014.

[62] R. S. Sreenivas. On a weaker notion of controllability of a language k with respect
to a language l. Automatic Control, IEEE Transactions on, 38(9):1446–1447, 1993.

[63] P. Tabuada. Symbolic control of linear systems based on symbolic subsystems.
IEEE Transactions on Automatic Control, Special issue on Symbolic Methods for
Complex Control Systems., 51(6):1003–1013, June 2006.

[64] P. Tabuada. Symbolic models for control systems. Acta Informatica Special Issue
Hybrid Systems and Control Letters, 43(7):477–500, Feb. 2007.

[65] P. Tabuada. An approximate simulation approach to symbolic control. IEEE Trans-
actions on Automatic Control, 53(6):1406–1418, 2008.

[66] P. Tabuada. Controller synthesis for bisimulation equivalence. Systems and Control
Letters, 57:443–452, 2008.

[67] P. Tabuada. Verification and Control of Hybrid Systems - A Symbolic Approach,
volume 1. Springer, 2009.

[68] P. Tabuada and G. J. Pappas. From discrete specifications to hybrid control. In
Proceedings. 42nd IEEE Conference on Decision and Control, volume 4, pages 3366–
3371. IEEE, 2003.

[69] P. Tabuada and G. J. Pappas. Finite bisimulations of controllable linear systems.
In Proceedings. 42nd IEEE Conference on Decision and Control, 2003., volume 1,
pages 634–639 Vol.1, Dec 2003.

[70] P. Tabuada and G. J. Pappas. Bisimilar control affine systems. Systems & Control
Letters, 52(1):49 – 58, 2004.

[71] D. C. Tarraf and L. A. D. Espinosa. On finite memory approximations constructed
from input/output snapshots. In 50th IEEE Conference on Decision and Control,
pages 3966–3973, 2011.

[72] D.C. Tarraf, A. Megretski, and M. A. Dahleh. Finite approximations of switched ho-
mogeneous systems for controller synthesis. Automatic Control, IEEE Transactions
on, 56(5):1140–1145, May 2011.

168

Bibliography

[73] J. Thistle and W. M. Wonham. Control of infinite behavior of finite automata.
SIAM Journal on Control and Optimization, 32(4):1075–1097, 1994.

[74] J. Thistle and W. M. Wonham. Supervision of infinite behavior of discrete-event
systems. SIAM Journal on Control and Optimization, 32(4):1098–1113, 1994.

[75] A. J. van der Schaft. Equivalence of dynamical systems by bisimulation. IEEE
Transactions on Automatic Control, 49(12):2160–2172, 2004.

[76] J. C. Willems. Models for dynamics. Dynamics Reported, 2:172–269, 1989.

[77] J. C. Willems. Paradigms and puzzles in the theory of dynamic systems. IEEE
Transactions on Automatic Control, 36(3):258–294, 1991.

[78] W. M. Wonham and P. J. Ramadge. On the supremal controllable sublanguage of
a given language. In SIAM Journal on Control and Optimization, volume 25, pages
637–659, 1987.

[79] M. Zamani, G. Pola, M. Mazo, and P. Tabuada. Symbolic models for nonlinear con-
trol systems without stability assumptions. Automatic Control, IEEE Transactions
on, 57(7):1804–1809, 2012.

[80] M. Zamani, I. Tkachev, and A. Abate. Bisimilar symbolic models for stochastic
control systems without state-space discretization. In Proc. 17th Conf. on Hybrid
Systems: Computation and Control, pages 41–50, 2014. ISBN 978-1-4503-2732-9.

169

© Berlin 2015

	Abstract
	Zusammenfassung
	Contents
	Introduction
	Introduction

	I A Bridge Between Strongest Asynchronous l-Complete Approximations and Quotient-Based Abstractions
	1 Literature Review and Contributions I
	1.1 Quotient Based Abstractions
	1.2 Strongest l-Complete Approximations
	1.3 Comparison and Contributions
	1.4 Publications

	2 From SlCA to SAlCA
	2.1 Notation
	2.2 Properties of Dynamical Systems with T=N0
	2.3 Strongest l-Complete Approximations (SlCA)
	2.4 State Space Dynamical Systems (SSDS)
	2.5 Evolution Laws and State Machines
	2.6 Asynchronous State Space Dynamical Systems (ASSDS)
	2.7 Asynchronous Properties of Dynamical Systems
	2.8 Strongest Asynchronous l-Complete Approximations (SAlCA)

	3 Quotient Based Abstractions (QBA)
	3.1 Transition System Based Construction
	3.2 State Machines vs. Transition Systems
	3.3 State Machine Based Construction

	4 Modeling the Original System
	4.1 Asynchronous State Space -Dynamical Systems (ASSDS)
	4.2 External ASSDS of ASSDS

	5 Simulation Relations
	5.1 Simulation Relations for ASSDS
	5.2 Using ASSDS as a Unified Model
	5.3 Connections to Related Notions of Similarity

	6 A New Approach to Realizing SAlCA
	6.1 Constructing SAlCA from ASSDS
	6.2 Constructing Realizations of SAlCA from Infinite SM
	6.3 Relating the Abstraction to the "Original" System
	6.4 Ordering Abstractions based on Simulation Relations
	6.5 Example

	7 Quotient-based Abstractions with Increasing Precision
	7.1 Incorporating the Partition Refinement Algorithm
	7.2 An Alternative Construction of QBA
	7.3 Example

	8 Comparison of SAlCA and QBA
	8.1 The viewpoint of SAlCA
	8.2 The viewpoint of QBA
	8.3 Some Comments on Control and Future Research

	II A Bridge Between Supervisory Control Theory and Deterministic Pushdown Automata
	9 Literature Review and Contributions II
	9.1 Supervisory control theory (SCT)
	9.2 Deterministic Pushdown Automata (DPDA)
	9.3 Extensions of SCT
	9.4 Outline and Contributions
	9.5 Publications

	10 The Supervisory Control Problem over Language Models
	10.1 Preliminaries
	10.2 A New Iterative Algorithm

	11 Enforcing Controllability for DCFL Models Least Restrictively
	11.1 Realizing LM by Automata
	11.2 Manufacturing Example
	11.3 Building Blocks of the Algorithm Calculating for
	11.4 Effective Computability of for DCFL

	Conclusion
	Conclusion

	A Appendix Part I
	A.1 Proofs for Chapter 6
	A.2 Proofs for Chapter 7
	A.3 Proofs for Chapter 8

	B Appendix Part II
	B.1 Proofs for Chapter 11
	B.2 Counterexample

	Bibliography

